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Abstract
The classical Steinitz theorem states that if the origin
belongs to the interior of the convex hull of a set 𝑆 ⊂ ℝ𝑑,
then there are at most 2𝑑 points of 𝑆 whose convex hull
contains the origin in the interior. Bárány, Katchalski,
and Pach proved the following quantitative version of
Steinitz’s theorem. Let 𝑄 be a convex polytope in ℝ𝑑

containing the standard Euclidean unit ball 𝐁𝑑. Then
there exist at most 2𝑑 vertices of 𝑄 whose convex hull
𝑄′ satisfies

𝑟𝐁𝑑 ⊂ 𝑄′

with 𝑟 ⩾ 𝑑−2𝑑. They conjectured that 𝑟 ⩾ 𝑐𝑑−1∕2 holds
with a universal constant 𝑐 > 0. We prove 𝑟 ⩾ 1

5𝑑2
, the

first polynomial lower bound on 𝑟. Furthermore, we
show that 𝑟 is not greater than 2√

𝑑
.

MSC 2020
52A27 (primary), 52A35 (secondary)

1 INTRODUCTION

The goal of this paper is to establish a quantitative version of the following classical result of E.
Steinitz [11].

Proposition 1.1 (Steinitz theorem). Let the origin belong to the interior of the convex hull of a set
𝑆 ⊂ ℝ𝑑 . Then there are at most 2𝑑 points of 𝑆 whose convex hull contains the origin in the interior.
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The first quantitative version of this result was obtained in [3], where the following statement
was proven.

Proposition 1.2 (Quantitative Steinitz theorem). There exists a constant 𝑟 = 𝑟(𝑑) > 0 such that for
any subset 𝑄 of ℝ𝑑 whose convex hull contains the Euclidean unit ball 𝐁𝑑, there exists a subset 𝐹 of
𝑄 of size at most 2𝑑 whose convex hull contains the ball 𝑟𝐁𝑑 .

It was also shown that 𝑟(𝑑) > 𝑑−2𝑑.
With the exception of the planar case 𝑑 = 2 [2, 6, 10], no significant improvement on 𝑟(𝑑) has

been obtained (see also [8]).
Now we state the main result of this paper in which we obtain a polynomial bound on 𝑟(𝑑).

Theorem 1 (Q.S.T. with polynomial bound). Let 𝑄 be a subset of ℝ𝑑 whose convex hull con-
tains the Euclidean unit ball 𝐁𝑑 . Then, there exist at most 2𝑑 points of 𝑄 whose convex hull 𝑄′

satisfies

1

6𝑑2
𝐁𝑑 ⊂ 𝑄′.

We conjecture the following.

Conjecture 1.1. There is a constant 𝑐 > 0 such that in any subset𝑄 ofℝ𝑑 whose convex hull contains
the Euclidean unit ball 𝐁𝑑, there are at most 2𝑑 points whose convex hull 𝑄′ satisfies

𝑐√
𝑑
𝐁𝑑 ⊂ 𝑄′.

We provide an upper bound on 𝑟(𝑑).

Theorem 2. Let 𝑢1, … , 𝑢𝑛 be unit vectors in ℝ𝑑 . Then, their absolute convex hull, that is, the convex

hull of ±𝑢1, … , ±𝑢𝑛, does not contain the ball (
√
𝑛

𝑑
+ 𝜀)𝐁𝑑 for any positive 𝜀.

It follows that if 𝑢1, … , 𝑢𝑚 form a sufficiently dense subset of the unit sphere (with a large𝑚),
then their convex hull is almost the unit ball, whereas for any 𝑛 of them with 𝑛 ⩽ 2𝑑, we have
that their convex hull does not contain the ball 2√

𝑑
𝐁𝑑, which shows that the order of magnitude

of 𝑟(𝑑) in Conjecture 1.1 is sharp if the conjecture holds.
We mention the following conjecture that is closely related to Theorem 2. It can be found in a

different formulation in [4, p. 194].

Conjecture 1.2. Let {𝑢1, … , 𝑢2𝑑} be unit vectors in ℝ𝑑. Then there is a point in the set

2𝑑⋂
𝑖=1

{𝑥 ∈ ℝ𝑑 ∶ ⟨𝑢𝑖, 𝑥⟩ ⩽ 1}

with norm
√
𝑑.
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798 IVANOV and NASZÓDI

2 THEMAIN STEPS IN THE PROOF OF THEOREM 1

Since 𝑟(1) = 1, we will assume that 𝑑 ⩾ 2 throughout the paper.
First, we reduce the problem to the polytopal case. By the classical Carathéodory theorem [7, p.

200], any point of a convex hull of a subset𝑄 ofℝ𝑑 can be represented as a convex combination of
at most 𝑑 + 1 points of 𝑄. Thus, taking a sufficiently dense subset of the unit sphere, we observe
that for any 𝜖 ∈ (0, 1) and any set𝑄 ⊂ ℝ𝑑 whose convex hull contains𝐁𝑑, there is a finite subset𝑄𝑓

of 𝑄 whose convex hull contains the ball (1 − 𝜖)𝐁𝑑. Hence, Theorem 1 follows from the following
polytopal version.

Theorem 3. Let𝑄 be a convex polytope inℝ𝑑 containing the Euclidean unit ball 𝐁𝑑 . Then there are
at most 2𝑑 vertices of 𝑄 whose convex hull 𝑄′ satisfies

1

5𝑑2
𝐁𝑑 ⊂ 𝑄′.

Proposition 1.2 was used in [3] to prove certain quantitative versions of the Helly theorem.
The connection between the quantitative Steinitz result and the quantitative Helly-type result
is via polar duality. Recently, the authors of this paper [9] have proposed a new approach to
quantitative Helly-type results via sparse approximation of polytopes. The connection between
the sparse approximation of polytopes and the quantitative Helly-type result is via polar duality
again. We state a refined version of the result on the sparse approximation of polytopes obtained
by Almendra–Hernández, Ambrus, and Kendall in [1, Theorem 1].

Proposition 2.1 (Almendra–Hernández et. al.). Let 𝜆 > 0, and 𝐿 ⊂ ℝ𝑑 be a convex polytope such
that 𝐿 ⊂ −𝜆𝐿. Then, there exist at most 2𝑑 vertices of 𝐿 whose convex hull 𝐿′ satisfies

𝐿 ⊂ −(𝜆 + 2)𝑑 ⋅ 𝐿′.

Choosing the origin smartly, one can achieve 𝜆 = 𝑑. For instance, the following statement
holds.

Proposition 2.2. Let 𝐾 be a convex body (i.e., a compact convex set with nonempty interior) in ℝ𝑑.
Then, the inclusion (𝐾 − 𝑐) ⊂ −𝑑(𝐾 − 𝑐) holds for some point 𝑐 in the interior of 𝐾, for example, if 𝑐
is the centroid of 𝐾 or of a maximal volume simplex within 𝐾.

We recall that the polar of a set 𝑆 ⊂ ℝ𝑑 is defined by

𝑆◦ =
{
𝑥 ∈ ℝ𝑑 ∶ ⟨𝑥, 𝑠⟩ ⩽ 1 for all 𝑠 ∈ 𝑆

}
.

Our idea of the proof of Theorem 3 is to use duality twice: We will start with translating the
assertion of the theorem in terms of the polar polytope 𝑄◦ of 𝑄. Then, we will choose a point
𝑐 “deep” in 𝑄◦ and consider (𝑄◦ − 𝑐)◦. Roughly speaking, by changing the center of polarity,
we obtain a more well-structured convex polytope. Next, we use Proposition 2.1 to obtain a
sufficiently reasonable bound on 𝑟(𝑑), which is not destroyed on the way back to 𝑄◦ and then
to 𝑄.
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QUANTITATIVE STEINITZ THEOREM: A POLYNOMIAL BOUND 799

We use [𝑛] to denote the sets {1, … , 𝑛}. The convex hull of a set 𝑆 is denoted by conv 𝑆. For a
nonzero vector 𝑣 ∈ ℝ𝑑,𝐻𝑣 denotes the half-space

𝐻𝑣 =
{
𝑥 ∈ ℝ𝑑 ∶ ⟨𝑥, 𝑣⟩ ⩽ 1

}
.

We use vert𝑃 to denote the vertex set of a polytope 𝑃.
For the sake of completeness, we provide a shortened original proof of Proposition 2.1.

Proof of Proposition 2.1. Without loss of generality, we may assume that the interior of 𝐿
is nonempty. The condition 𝐿 ⊆ −𝜆𝐿 ensures that the origin belongs to the interior of 𝐿.
Among all simplices with 𝑑 vertices from the set of vertices of 𝐿 and one vertex at the ori-
gin, consider a simplex 𝑆 = conv{0, 𝑣1, … , 𝑣𝑑} with maximal volume. The simplex 𝑆 can be
represented as

𝑆 =

{
𝑥 ∈ ℝ𝑑 ∶ 𝑥 = 𝛼1𝑣1 +⋯ + 𝛼𝑑𝑣𝑑 for 𝛼𝑖 ⩾ 0 and

𝑑∑
𝑖=1

𝛼𝑖 ⩽ 1

}
. (1)

Define 𝑃 =
∑
𝑖∈[𝑑]

[−𝑣𝑖, 𝑣𝑖]. It is easy to see that 𝑃 is a paralletope that can be represented as

𝑃 = {𝑥 ∈ ℝ𝑑 ∶ 𝑥 = 𝛽1𝑣1 +⋯ + 𝛽𝑑𝑣𝑑 for𝛽𝑖 ∈ [−1, 1]}. (2)

Since 𝑆 is chosen maximally, Equation (2) shows that for any vertex 𝑣 of 𝐿, 𝑣 ∈ 𝑃. By convexity,

𝐿 ⊂ 𝑃. (3)

Let 𝑆′ = −2𝑑𝑆 + (𝑣1 +⋯ + 𝑣𝑑). By (1),

𝑆′ =

{
𝑥 ∈ ℝ𝑑 ∶ 𝑥 = 𝛾1𝑣1 +⋯ + 𝛾𝑑𝑣𝑑 for𝛾𝑖 ⩽ 1 and

𝑑∑
𝑖=1

𝛾𝑖 ⩾ −𝑑

}
,

which, together with (2), yields

𝑃 ⊆ 𝑆′. (4)

Let 𝑦 be the intersection of the ray emanating from 0 in the direction −(𝑣1 +⋯ + 𝑣𝑑) and the
boundary of 𝐿. By Carathéodory’s theorem, we can choose 𝑘 ⩽ 𝑑 vertices {𝑣′

1
, … , 𝑣′

𝑘
} of 𝐿 such that

𝑦 ∈ conv{𝑣′
1
, … , 𝑣′

𝑘
}. Set 𝐿′ = conv{𝑣1, … , 𝑣𝑑, 𝑣

′
1
, … , 𝑣′

𝑘
}. Clearly, 𝑣1+⋯+𝑣𝑑

𝑑
∈ 𝑆 ⊂ 𝐿. Thus, 0 ∈ 𝐿′,

and consequently,

𝑆 ⊆ 𝐿′. (5)

Since 𝐿 ⊂ −𝜆𝐿, we also have that

𝑣1 +⋯ + 𝑣𝑑
𝑑

∈ −𝜆[𝑦, 0] ⊂ −𝜆𝐿′.
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800 IVANOV and NASZÓDI

Combining it with (3)–(5), we obtain

𝐿 ⊂ 𝑃 ⊂ 𝑆′ = −2𝑑𝑆 + (𝑣1 +⋯ + 𝑣𝑑) ⊂ −2𝑑 𝐿′ − 𝜆𝑑 𝐿′ = −(𝜆 + 2)𝑑 𝐿′, (6)

completing the proof of Proposition 2.1. □

3 PROOF OF THEOREM 1

As was explained in the previous section, it suffices to prove Theorem 3, which we proceed to
work with.
Set𝐾 = 𝑄◦. Since𝑄 ⊃ 𝐁𝑑,𝐾 ⊂ 𝐁𝑑. Also, it is easy to see that𝐾 is a convex polytope of the form

𝐾 =
⋂

𝑣∈vert𝑄

𝐻𝑣, (7)

containing the origin in its interior. By duality, it suffices to show that there are at most 2𝑑 half-
spaces𝐻𝑣 with 𝑣 ∈ vert𝑄, whose intersection is contained in the ball 5𝑑2𝐁𝑑.
Let 𝑐 be a point in the interior of 𝐾 such that the inclusion

𝐾 − 𝑐 ⊂ −𝑑(𝐾 − 𝑐)

holds. The existence of 𝑐 follows from Proposition 2.2. Set 𝐿 = (𝐾 − 𝑐)◦. Clearly,

𝐿 ⊂ −𝑑𝐿.

Now, we use Proposition 2.1 with 𝜆 = 𝑑. We obtain that there are 𝑤1,… ,𝑤𝑚 ∈ vert 𝐿 for some
integer𝑚 satisfying𝑚 ⩽ 2𝑑 such that

𝐿 ⊂ −(𝑑 + 2)𝑑 ⋅ conv{𝑤𝑖 ∶ 𝑖 ∈ [𝑚]}.

Since 𝑐 ∈ 𝐾 ⊂ 𝐁𝑑, one has that 𝐾 − 𝑐 ⊂ 2𝐁𝑑. Consequently, 𝐿 ⊃ 1

2
𝐁𝑑. So,

1

2
𝐁𝑑 ⊂ 𝐿 ⊂ −(𝑑 + 2)𝑑 ⋅ conv{𝑤𝑖 ∶ 𝑖 ∈ [𝑚]}.

Considering the polar sets, we get

(conv{𝑤𝑖 ∶ 𝑖 ∈ [𝑚]})
◦ ⊂ 2(𝑑 + 2)𝑑𝐁𝑑.

Recall that 𝑐 is an interior point of the polytope 𝐾. By (7), one has that for any 𝑤 ∈ vert𝐿, 𝐻𝑤 =

𝐻𝑣 − 𝑐 for some 𝑣 ∈ vert𝑄. It means that

(conv{𝑤𝑖 ∶ 𝑖 ∈ [𝑚]})
◦ =

⋂
𝑖∈[𝑚]

(
𝐻𝑣𝑖

− 𝑐
)

 14692120, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12965 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [16/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



QUANTITATIVE STEINITZ THEOREM: A POLYNOMIAL BOUND 801

for corresponding 𝑣𝑖 ∈ vert𝑄. Thus,

⋂
𝑖∈[𝑚]

𝐻𝑣𝑖
=

⋂
𝑖∈[𝑚]

(
𝐻𝑣𝑖

− 𝑐
)
+ 𝑐 ⊂ 2(𝑑 + 2)𝑑𝐁𝑑 + 𝑐 ⊂ (2(𝑑 + 2)𝑑 + 1)𝐁𝑑.

Since 𝑑 ⩾ 2, the desired bound for 𝑄′ = conv{𝑣𝑖 ∶ 𝑖 ∈ [𝑚]} follows. The proof of Theorem 3 is
complete, which implies Theorem 1 as was discussed earlier.

4 PROOF OF THEOREM 2

In this section, we prove Theorem 2, which is a dual version of [9, Theorem 1.4] and immediately
follows from it. For the sake of completeness, we prove Theorem 2 here. We first state the main
ingredient of the proof obtained by K. Ball and M. Prodromou.

Proposition 4.1 [5, Theorem 1.4]. Let vectors {𝑣1, … , 𝑣𝑛} ⊂ ℝ𝑑 satisfy
𝑛∑
1

𝑣𝑖 ⊗ 𝑣𝑖 = Id. Then for any

positive semidefinite operator 𝑇∶ ℝ𝑑 → ℝ𝑑, there is a point 𝑝 in the intersection of the strips {𝑥 ∈
ℝ𝑑 ∶ |⟨𝑥, 𝑣𝑖⟩| ⩽ 1} satisfying ⟨𝑝, 𝑇𝑝⟩ ⩾ trace 𝑇.

Proof of Theorem 2. There is nothing to prove if the absolute convex hull conv{±𝑢𝑖 ∶ 𝑖 ∈ [𝑛]} does
not contain the origin in its interior. So, assume that conv{±𝑢𝑖 ∶ 𝑖 ∈ [𝑛]} contains the origin in
its interior. Set 𝐾 = (conv{±𝑢𝑖 ∶ 𝑖 ∈ [𝑛]})◦. By duality, it suffices to show that 𝐾 contains a point
of Euclidean norm 𝑑√

𝑛
.

Clearly, {𝑢𝑖 ∶ 𝑖 ∈ [𝑛]} spansℝ𝑑. Consider𝐴 =
∑
𝑖∈[𝑛]

𝑢𝑖 ⊗ 𝑢𝑖 . Since the vectors span the space,𝐴

is positive definite. Using Proposition 4.1 with 𝑣𝑖 = 𝐴−1∕2𝑢𝑖, 𝑖 ∈ [𝑛], and 𝑇 = 𝐴−1, we find a point
𝑝 in ⋂

𝑖∈[𝑛]

{𝑥 ∶ |⟨𝑣𝑖, 𝑥⟩| ⩽ 1}.

such that ⟨
𝑝,𝐴−1𝑝

⟩
⩾ trace𝐴−1.

Denote 𝑞 = 𝐴−1∕2𝑝. Then, by the choice of 𝑝,

1 ⩾
||||
⟨
𝑝,𝐴−1∕2𝑢𝑖

⟩|||| = ||||
⟨
𝐴−1∕2𝑝, 𝑢𝑖

⟩|||| = |⟨𝑞, 𝑢𝑖⟩|.
That is, 𝑞 ∈ 𝐾. On the other hand,

|𝑞|2 = ⟨
𝐴−1∕2𝑝, 𝐴−1∕2𝑝

⟩
=
⟨
𝑝,𝐴−1𝑝

⟩
⩾ trace𝐴−1.

Finally, since trace𝐴 = 𝑛 and by the Cauchy–Schwarz inequality, one sees that trace𝐴−1 is at
least 𝑑

2

𝑛
. Thus, |𝑞| ⩾ 𝑑√

𝑛
. This completes the proof of Theorem 2. □
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