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Absence of excited eigenvalues
for Fröhlich type polaron models at weak coupling

Robert Seiringer

Abstract. We consider a class of polaron models, including the Fröhlich model, at zero total
momentum, and show that at sufficiently weak coupling there are no excited eigenvalues below
the essential spectrum.

1. Main result

We consider general polaron models of the form

H D P 2 Cˆ.v/CN (1.1)

acting on the (bosonic) Fock space F .L2.Rd // for d � 1, with P D
R

Rd k a
�

k
akdk

the field momentum, N the number operator and ˆ.v/ D a.v/C a�.v/. The Hamil-
tonian H in (1.1) arises as the restriction of the usual polaron models (describing an
electron coupled to a phonon quantum field) to total momentum zero [10, 13]. The
most studied model of this kind is presumably the Fröhlich model [2], correspond-
ing to d D 3 and vk D gjkj�1 for some g 2 R. We adopt the standard notation that
a�.v/ D

R
Rd a

�

k
vkdk, with the canonical commutation relations Œak; a

�

l
� D ı.k � l/.

We shall assume that v is even, i.e., vk D v�k , and that .1C j � j/�1v 2 L2.Rd /,
which in particular ensures that ˆ.v/ is infinitesimally form-bounded with respect to
P 2 C N, hence H is well defined through its quadratic form and is bounded from
below [3, 6, 7, 12]. We shall actually make the slightly stronger assumption that

jjjvjjj WD sup
k2Rd

k.1C j � �kj/�1vk <1

(with k � k denoting the L2.Rd / norm).
In the following, we shall write v D gw with g � 0 and w fixed, and study the

spectrum of H for small g. Let E0 denote the ground state energy of H . It is well
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known that the essential spectrum of H equals ŒE0 C 1;1/ [5, 10]. Our main result
is as follows.

Theorem 1.1. There exists a g0 > 0 such that for 0 � g < g0, H has only one
eigenvalue below its essential spectrum. In particular, the spectrum of H equals
�.H/ D ¹E0º [ ŒE0 C 1;1/.

The proof given below shows that the smallness condition can be quantified in
terms of jjjvjjj. In other words, g0 � C jjjvjjj

�1 for some universal constant C > 0 (see
Remark 2.4 at the end of the next Section).

In the infrared regular case when j � j�1v 2 L2.Rd /, the corresponding result in
Theorem 1.1 is much easier to obtain via perturbation theory and is actually known
(see [1, 8]). The smallness condition depends on kj � j�1vk, however, and hence the
general result cannot be obtained via a limiting argument. Our main contribution thus
concerns the infrared singular case when j � j�1v 62L2.Rd /, which is in particular the
case for the usual Fröhlich model. The proof shows that in this case the result is non-
perturbative in a certain sense, to be made precise in Remark 2.2 below. In fact, the
relevant Birman–Schwinger eigenvalue (whose negativity would imply the existence
of an excited eigenvalue) turns out to be identically zero, hence obtaining it only to a
finite order in g would not allow to draw a conclusion.

In the case of the Fröhlich model, it was recently shown in [9] that excited eigen-
values do appear below the essential spectrum for larger values of g. In fact, their
number goes to infinity as g !1. Our result thus complements that work by prov-
ing that a minimal threshold on the coupling constant is needed for the existence of
excited eigenstates.

We expect that a result as in Theorem 1.1 holds also for non-zero total momentum,
whereP in (1.1) has to be replaced byP � � for � 2Rd , but our proof does not extend
to the case � ¤ 0 in an obvious way. As shown in [1], it is possible to prove the absence
of excited eigenvalues outside a small window j�j � O.g/.

2. Proof of Theorem 1.1

In this section we shall prove absence of excited eigenvalues ofH for g small enough.
Before starting the proof, let us introduce some notation. We shall denote by…�n the
projection onto the subspace of F where N � n, and also by …n the projection onto
the n-particle space where N D n.

For convenience, we shall assume that v is real-valued, which is not a restriction
and can always be achieved by a unitary transformation, replacing ak by ei�kak for
suitable �k 2 Œ0; 2�/.
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Throughout the proof we shall assume that g is suitably small. In particular, we
shall assume that E0 > �1, and also that �2 > 0, where we denote

�n WD inf spec…�n.H � 1 �E0/…�n

(viewed as an operator on …�nF ). Since �2 is equal to 1 at g D 0, this is the case for
small g by continuity.

A key tool in our analysis is the Schur complement formula, which we recall here
for the convenience of the reader. IfA is a self-adjoint operator and P is an orthogonal
projection such thatQAQ is invertible on the range ofQD 1�P , then the existence
of an eigenvalue 0 of A is equivalent to

yA WD PAP � PAQŒQAQ��1QAP

having an eigenvalue 0 on the range of P . In fact, if A D 0, then yAP D 0. On the
other hand, if yA' D 0 with P' D ', then A D 0 with  D ' � ŒQAQ��1QAP'.

The main strategy of the proof is strongly inspired by the work in [1]. Assume that
H has an eigenvalue E0 C 1� " for 0 < " < 1. By continuity, " is small if g is small.
In fact, we claim that " � ��1, which is a quantity that vanishes as g! 0. Otherwise,
if �1C " > 0 we can apply the Schur complement formula to the vacuum sector…0F

to obtain the identity

" �E0 � 1 D hvjŒ…
�1.H � 1 �E0 C "/…

�1��1jvi: (2.1)

Since the right side is decreasing in " for " > ��1, there can be only one solution to
this equation, given by " D 1 and corresponding to the ground state.

We can thus assume that " is small. By the Schur complement formula, applied
to the one-particle sector …1F , the existence of an eigenvalue E0 C 1 � " of H is
equivalent to the operator O."/ having an eigenvalue 0, where

O."/
D "C k2 �E0 �D

."/
C

1

1CE0 � "
jvihvj

acting on the one-particle space L2.Rd / D …1F . Here we denote

D."/
D …1a.v/X ."/a�.v/…1 with X ."/ D Œ…�2.H �E0 � 1C "/…�2��1:

Note thatX ."/ is well defined, positive and bounded for " � 0, by our assumption that
�2 > 0. Since O."/ � "CO.0/, Theorem 1.1 follows if O.0/ � 0, which we shall show
in the following. For simplicity of notation, we shall drop superscripts .0/ from now
on.
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We start by taking a closer look at the structure of D D D.0/. The canonical
commutation relations imply that

X�1a
�

k
D …�2.H �E0 � 1/a

�

k

D a
�

k
…�1..P C k/2 Cˆ.v/CN �E0/C…

�2vk

D a
�

k
Y �1k C…

�2vk

where, for general k 2 Rd , we denote

Yk D Œ…
�1..P C k/2 Cˆ.v/CN �E0/…

�1��1:

Since inf spec..P C k/2 Cˆ.v/CN/ � E0 for all k 2 Rd [4,5,11], and the ground
state of H is not orthogonal to the Fock space vacuum, Yk is well defined. This leads
to the pull-through formula

Xa
�

k
D a

�

k
Yk � vkXYk : (2.2)

Similarly,

alY
�1
k D al..P C k/

2
Cˆ.v/CN �E0/…

�1

D ..P C k C l/2 Cˆ.v/CN C 1 �E0/al C vl…
�1

and hence
alYk D ZkClal � vlZkClYk (2.3)

where we denote

Zk D Œ.P C k/
2
Cˆ.v/CN C 1 �E0�

�1:

With � 2 F denoting the vacuum vector, the kernel of D can be expressed as

D.k; l/ D h�jaka.v/Xa
�.v/a

�

l
j�i D hvjakXa

�

l
jvi:

With the identities (2.2) and (2.3) above, we have

akXa
�

l
D ak.a

�

l
Yl � vlXYl/

D ı.k � l/Yl C a
�

l
akYl � vl.Ykak � vkYkX/Yl

D ı.k � l/Yl C a
�

l
.ZkClak � vkZkClYl/ � vl.Ykak � vkYkX/Yl

D ı.k � l/Yl C a
�

l
ZkClak � vka

�

l
ZkClYl � vlYkZkClak

C vlvkYkZkClYl C vlvkYkXYl
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and hence

D.k; l/ D ı.k � l/hvjYl jvi

C vkvlh�j.1 � a.v/Yk/ZkCl.1 � Yla
�.v//j�i C vkvlhvjYkXYl jvi:

In the following we shall denote

Ek D �hvjYkjvi

for general k 2 Rd . Note that indeed E0 D �hvjY0jvi equals the ground state energy
of H , again by the Schur complement formula ((2.1) for " D 1). We thus have

O D k2 CEk �E0 CR

where k2 and Ek are understood as multiplication operators, and R is the operator
with integral kernel R.k; l/ D vkvlC.k; l/ with

C.k; l/D
1

1CE0
� h�j.1� a.v/Yk/ZkCl.1� Yla

�.v//j�i � hvjYkXYl jvi: (2.4)

We shall further need that jEk �E0j �Cg2jkj2 for small g and a suitable constant
C > 0. This can easily be proved using the resolvent identity in the form Y0 � Yk D

Y0.k
2 C 2k � P /Yk; the details are carried out in the appendix.

Of particular relevance will be the constant c0 D C.0; 0/, which turns out to be
positive, at least for small g. In fact,

c0 D hvjG
2P 2jvi CO.g4/

where we introduced the notation G D .P 2 C 1 �E0/�1. Let us write

C.k; l/ D c0 C  k C  l C F.k; l/

with  k D C.k; 0/ � C.0; 0/. This leads to the decomposition

O D k2 CEk �E0 C c0jvihvj C jvihv j C jv ihvj C vF v

D k2 CEk �E0 C c0jv C c
�1
0 v ihv C c�10 v j � c�10 jv ihv j C vF v (2.5)

where vF v is short for the operator with integral kernel vkvlF.k; l/.
We shall now distinguish two cases. If k 7! jkj�1vk is in L2.Rd /, we can argue

in a perturbative way and simply take the identity in the first line in (2.5) and write it
as

O D jkj
�
1C

Ek �E0

jkj2
C c0jkj

�1
jvihvjjkj�1 C jkj�1jvihv jjkj�1

C jkj�1jv ihvjjkj�1 C jkj�1vF vjkj�1
�
jkj:
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Since all the terms besides 1 in the parentheses are bounded and O.g2/, one readily
deduces that O � 0 for g small enough.

We can thus assume from now on that k 7! jkj�1vk is not in L2.Rd /. As long as
c0 > 0 we can drop the first rank-one projection in the second line of (2.5) for a lower
bound, and obtain O � jkj� jkj with

� D 1C
Ek �E0

jkj2
C jkj�1vF vjkj�1 � j'ih'j DW 1C A � j'ih'j

where 'k D c
�1=2
0 jkj�1vk k . Note that ' 2 L2.Rd / even if k 7! jkj�1vk is not,

since  k vanishes at k D 0 at least linearly. For the same reason, A is bounded. In
fact, k'k D O.1/ while kAk D O.g2/. This can easily be shown by controlling the
derivative of k 7! C.k; l/; the details are carried out in the appendix.

For g small enough we can thus further write

� D
p
1C A.1 � .1C A/�1=2j'ih'j.1C A/�1=2/

p
1C A

and positivity of � is equivalent to the bound k.1C A/�1=2'k � 1. Remarkably, this
latter norm is identically equal to 1, as shown in the following Lemma.

Lemma 2.1. For small g we have

h'j.1C A/�1j'i D 1:

This readily implies that inf spec � D 0, and thus with the above proves Theo-
rem 1.1.

Remark 2.2. It was already observed in [1] that

lim
g!0
k.1C A/�1=2'k D lim

g!0
k'k D 1

and thus that a perturbative investigation would require going to higher order in g.
Lemma 2.1 shows that such a perturbative strategy is bound to fail, however, as all
higher order terms in g vanish. In this sense, the result is non-perturbative.

We also note that the positive first rank-one projection in the second line of (2.5),
which was dropped to obtain the lower bound O � jkj� jkj, cannot be used to obtain
a stronger lower bound in the infrared singular case j � j�1v 62 L2.Rd /. In fact, since
the vector in question, when divided by jkj, is not in L2.Rd /, one can easily check
that

lim
"!0

inf spec.k2 C "/�1=2O.k2 C "/�1=2 D inf spec �

so � is indeed the relevant Birman–Schwinger operator.
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Proof of Lemma 2.1. We shall show that

p
c0' D

1C A

1CE0
…1
jP jY0jvi (2.6)

as well as
p
c0h'jjP jY0jvi D .1CE0/c0 (2.7)

which together obviously imply the statement.
By definition we have

p
c0'k D

vk

jkj
.�0 � �k/ (2.8)

where
�k D h�j.1 � a.v/Yk/Zk.1 � Y0a

�.v//j�i C hvjYkXY0jvi:

The key observation is contained in the following lemma.

Lemma 2.3. vk�k D h�jak.1C a.v/CD/Y0jvi:

As a consequence of the resolvent identity

…1Y0…
1
D …1G �…1Ga.v/Y0…

1

we have

h�jaka.v/Y0jvi D .k
2
C 1 �E0/h�jakGa.v/Y0jvi

D vk � .k
2
C 1 �E0/h�jakY0jvi

and hence we obtain from Lemma 2.3 that

vk�k D vk � .k
2
�E0/h�jakY0jvi C h�jakDY0jvi:

The identity

1

jkj
.k2 �E0 �D/

D .1C A/jkj �
� 1

1CE0
� c0

� 1
jkj
jvihvj C

p
c0

jkj
jvih'jjkj C

p
c0j'ihvj

thus implies that

p
c0'k D

vk

jkj

�
�0 � 1C

E0

1CE0
�E0c0 C

p
c0h'jjP jY0jvi

�
C h�jak.1C A/jP jY0jvi �E0

p
c0'k : (2.9)
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Now, ' 2L2.Rd / and so is…1jP jY0jvi, since .1CP 2CN/1=2Y0.1CP 2CN/1=2

is a bounded operator. But k 7! vkjkj
�1 is not in L2.Rd /, hence the term in paren-

theses in the first line of (2.9) has to vanish. This in particular implies the first iden-
tity (2.6), and also the second in (2.7) since

�0 � 1C
E0

1CE0
�E0c0 D �c0.1CE0/

using that c0 D 1=.1CE0/ � �0.

It remains to give the Proof of Lemma 2.3.

Proof of Lemma 2.3. Besides the identities (2.2) and (2.3) we are going to use that

YkZk D Yk �Zk � Ykjvih�jZk C j�ih�jZk (2.10)

as well as
XY0 D X � Y0 C…

1Y0 �Xa
�.v/…1Y0 (2.11)

which can easily be obtained by evaluating the differencesX�1�Y �10 and Y �1
k
�Z�1

k
,

respectively. With the aid of (2.3) and (2.10), we have (using that a.v/j�i D 0)

.1 � a.v/Yk/Zk.1 � Y0a
�.v//

D Zk �ZkY0a
�.v/ � a.v/YkZk.1 � Y0a

�.v//

D Zk C
1

vk
.akY0 �Zkak/a

�.v/ � a.v/.Yk �Zk � Ykjvih�jZk/.1 � Y0a
�.v//

D Zk C
1

vk
.akY0 �Zkak/a

�.v/ � a.v/.Yk �Zk � Ykjvih�jZk/

C a.v/YkY0a
�.v/C

1

vk
a.v/.1C Ykjvih�j/.akY0 �Zkak/a

�.v/:

Similarly, with (2.11) and (2.2) we have

a.v/YkXY0a
�.v/

D a.v/Yk.X � Y0 C…
1Y0 �Xa

�.v/…1Y0/a
�.v/

D �
1

vk
a.v/.akX � Ykak/.1 � a

�.v/…1Y0/a
�.v/ � a.v/Yk.Y0 �…

1Y0/a
�.v/:

Adding up these two identities yields

.1 � a.v/Yk/Zk.1 � Y0a
�.v//C a.v/YkXY0a

�.v/

D Zk � a.v/.Yk �Zk � Ykjvih�jZk/

C
1

vk
.1C a.v/.1C Ykjvih�j//.akY0 �Zkak/a

�.v/

�
1

vk
a.v/.akX � Ykak/.1 � a

�.v/…1Y0/a
�.v/C a.v/Yk…

1Y0a
�.v/:
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Taking the vacuum expectation value and using that aka�.v/ D vk C a
�.v/ak and

X…1 D 0 as well as Yk…0 D 0 one readily checks that

�k D h�j.1 � a.v/Yk/Zk.1 � Y0a
�.v//C a.v/YkXY0a

�.v/j�i

D
1

vk
h�jak.1C a.v//Y0jvi C

1

vk
hvjakXa

�.v/…1Y0jvi

as claimed.

Remark 2.4. One can check that all the smallness conditions assumed, namely
E0 > �1, �2 > 0, c0 > 0 and kAk < 1, can be expressed as a bound on jjjvjjj, which
quantifies the relative form bound of ˆ.v/ with respect to .P C k/2 CN, uniformly
in k 2 Rd (see the Appendix). This leads to the claimed lower bound on g0 stated
after Theorem 1.1, at least in the infrared singular case when j � j�1v 62 L2.Rd /. To
extend this statement to all v, we shall now give an alternative proof of Lemma 2.1
that equally holds in the infrared regular case.

We start from (2.9) and shall show that the parenthesis in the first line vanishes,
even if j � j�1v 2 L2.Rd /. By (2.8) and Lemma 2.3, we have

p
c0h'0jjP jY0jvi D ��0E0 � hvjY0.1C a

�.v/CD/…1Y0jvi:

Thus, the desired identity (2.7) follows if

c0 D �
E0

1CE0
� hvjY0.1C a

�.v/CD/…1Y0jvi: (2.12)

In order to show (2.12), we start from (2.4) and observe that

Z0.1 � Y0a
�.v//j�i D .1 � Y0a

�.v//j�i

since this vector is actually equal to the ground state of H . Hence

c0 D
1

1CE0
� 1 � hvjY0.1CX/Y0jvi:

That this indeed equals (2.12) is then an easy consequence of (2.11).

A. Technical bounds

In this appendix we shall show the bound kAk � O.g2/ claimed in the text. We start
by showing that

sup
k2Rd

k.1C jP C kj/Yk.1C jP C kj/k <1: (A.1)
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By explicitly designating the dependence on v and writing E0.v/ for the ground state
energy of H with interaction ˆ.v/, we can bound

Y �1k D …�1..P C k/2 Cˆ.v/CN �E0.v//…
�1

� …�1.ı C ı.P C k/2 �E0.v/C .1 � ı/E0.v.1 � ı/
�1//

for any 0 � ı � 1, which readily implies the desired bound, at least for small g.
From (A.1) one immediately deduces that supk2Rd jEkj � C jjjvjjj for some con-

stant C > 0. Similarly, one can show that jEk � E0j � C jjjvjjjjkj2. In fact, the resol-
vent identity implies that Ek is twice differentiable, and

@ki
@kj
Ek D 2ıij hvjY

2
k jvi � 4hvjYk.Pi C ki /Yk.Pj C kj /Ykjvi

for 1 � i; j � d . Since

@ki
Ek D 2hvjYk.Pi C ki /Ykjvi

vanishes at k D 0 (since v is even), the desired bound follows.
In a similar way, one shows that F is bounded and has bounded derivatives. Since

F.k; l/ vanishes by construction if either k D 0 or l D 0, this implies the desired
bound on the norm of jkj�1vF vjkj�1 (in fact, one obtains a bound on its Hilbert–
Schmidt norm this way).
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