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Abstract

In nature, different species find their niche in a range of environments, each with its
unique characteristics. While some thrive in uniform (homogeneous) landscapes where
environmental conditions stay relatively consistent across space, others traverse the com-
plexities of spatially heterogeneous terrains. Comprehending how species are distributed
and how they interact within these landscapes holds the key to gaining insights into their
evolutionary dynamics while also informing conservation and management strategies.

For species inhabiting heterogeneous landscapes, when the rate of dispersal is low compared
to spatial fluctuations in selection pressure, localized adaptations may emerge. Such
adaptation in response to varying selection strengths plays an important role in the
persistence of populations in our rapidly changing world. Hence, species in nature are
continuously in a struggle to adapt to local environmental conditions, to ensure their
continued survival. Natural populations can often adapt in time scales short enough for
evolutionary changes to influence ecological dynamics and vice versa, thereby creating a
feedback between evolution and demography. The analysis of this feedback and the relative
contributions of gene flow, demography, drift, and natural selection to genetic variation
and differentiation has remained a recurring theme in evolutionary biology. Nevertheless,
the effective role of these forces in maintaining variation and shaping patterns of diversity
is not fully understood. Even in homogeneous environments devoid of local adaptations,
such understanding remains elusive. Understanding this feedback is crucial, for example
in determining the conditions under which extinction risk can be mitigated in peripheral
populations subject to deleterious mutation accumulation at the edges of species’ ranges
as well as in highly fragmented populations.

In this thesis we explore both uniform and spatially heterogeneous metapopulations,
investigating and providing theoretical insights into the dynamics of local adaptation in
the latter and examining the dynamics of load and extinction as well as the impact of
joint ecological and evolutionary (eco-evolutionary) dynamics in the former. The thesis is
divided into 5 chapters.

Chapter 1 provides a general introduction into the subject matter, clarifying concepts and
ideas used throughout the thesis. In chapter 2, we explore how fast a species distributed
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across a heterogeneous landscape adapts to changing conditions marked by alterations in
carrying capacity, selection pressure, and migration rate.

In chapter 3, we investigate how migration selection and drift influences adaptation and the
maintenance of variation in a metapopulation with three habitats, an extension of previous
models of adaptation in two habitats. We further develop analytical approximations for
the critical threshold required for polymorphism to persist.

The focus of chapter 4 of the thesis is on understanding the interplay between ecology and
evolution as coupled processes. We investigate how eco-evolutionary feedback between
migration, selection, drift, and demography influences eco-evolutionary outcomes in
marginal populations subject to deleterious mutation accumulation. Using simulations as
well as theoretical approximations of the coupled dynamics of population size and allele
frequency, we analyze how gene flow from a large mainland source influences genetic load
and population size on an island (i.e., in a marginal population) under genetically realistic
assumptions. Analyses of this sort are important because small isolated populations, are
repeatedly affected by complex interactions between ecological and evolutionary processes,
which can lead to their death. Understanding these interactions can therefore provide
an insight into the conditions under which extinction risk can be mitigated in peripheral
populations thus, contributing to conservation and restoration efforts.

Chapter 5 extends the analysis in chapter 4 to consider the dynamics of load (due to
deleterious mutation accumulation) and extinction risk in a metapopulation. We explore
the role of gene flow, selection, and dominance on load and extinction risk and further
pinpoint critical thresholds required for metapopulation persistence.

Overall this research contributes to our understanding of ecological and evolutionary
mechanisms that shape species’ persistence in fragmented landscapes, a crucial foundation
for successful conservation efforts and biodiversity management.
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Chapter 1

General introduction

Oluwafunmilola Olusanya

1.1 Motivation

Life on earth as we know it has been creatively woven together over billions of years,
shaped by the forces of evolution. From the magnificent expanses of tropical rainforests
to the majestic elegance of the Artcic tundra, the ecological complexity and range of life
forms we observe is testament to the remarkable capacity of species to adapt and thrive in
a wide range of environments. However, in recent decades, there has been a rapid decline
in biological diversity with a lot of species teetering on the brink of extinction owing to
climate change and other anthropogenic factors (McLaughlin et al., 2002; Kaye et al.,
2019; Lande, 1998; Lawton et al., 1995).

Pertinent among these factors is habitat fragmentation (Almond et al., 2020; Díaz et al.,
2019). As human populations continue to grow and landscapes are transformed to
meet their needs, many plant and animal species are increasingly losing their habitat
and gradually becoming confined to small and often isolated populations (Fahrig, 2003;
Haddad et al., 2015). These populations often act as islands surrounded by uninhabitable
patches, making it difficult for them to spread, locate compatible mates, and maintain
gene flow (Fahrig, 2003). As a result, many such populations have remained restricted
to these isolated pockets of habitats with limited chances for genetic exchange and
increased susceptibility to the negative effects of genetic drift and inbreeding (Frankham
et al., 2017). The consequences are a diminished capacity to respond to changes in
environmental conditions and a higher susceptibility to extinction (Lande, 1998; Gaggiotti,
2003). This vulnerability to extinction is further exacerbated by the complex interplay
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between ecological and evolutionary (eco-evolutionary) processes where an ecological
change triggers a bottleneck event for example, resulting in a decline in genetic variation,
further reducing the capacity of populations to evolve in response to more ecological
changes.

As landscapes continue to evolve, questions emerge about how species respond to these
challenges. Do they adapt to novel conditions within fragmented landscapes? what role
does gene flow play in fostering or inhibiting such adaptations? How do eco-evolutionary
processes interact to influence these dynamics? and what implications do these hold for
species maintenance and viability?

In the face of these growing concerns and questions, there is an urgent need for more
comprehensive studies and theoretical models to provide a deeper understanding of the
effects of habitat fragmentation on populations, the maintenance of diversity in fragmented
populations, and the response of such populations to changing conditions. Such theoretical
frameworks can potentially inform conservation efforts and policy interventions to address
the ongoing crisis.

This thesis therefore focuses on a theoretical exploration of the maintenance of genetic
diversity and the vulnerability of populations to extinction risk owing to habitat fragmen-
tation in the context of a metapopulation.

Before we elaborate on the thesis outline, we will give a brief introduction to pertinent
notions used throughout the thesis such as eco-evolutionary dynamics, local adaptation,
and genetic load. We will further introduce the concept of a metapopulation and give a
quick review of different types of metapopulation models.

1.2 Eco-evolutionary Dynamics

Ecology and evolution are two fundamental concepts in evolutionary biology that shed
light on the distribution and diversity of life on earth. Evolutionary dynamics focuses on
changes in the genetic makeup (allele frequency changes) of populations over time due to
key processes like natural selection, mutation, genetic drift and gene flow.

Ecological dynamics in contrast deals with the interaction between organisms or species
and their environment and how this influences their distribution and abundance. These
dynamics encompass various components such as population dynamics1, community
ecology and ecosystem interactions. Population dynamics considers changes in the
population size of a focal species due to factors such as birth rate, death rate, immigration
and emigration. An example of a classic model used in studying such dynamics is the
logistic growth equation (Verhulst, 1838). Community ecology explores the interaction and

1We focus on population dynamics in this thesis.
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co-existence between different species such as symbiotic (e.g., mutualism, commensalism,
parasitism), competitive, or predator-prey relationships (Connell and Slatyer, 1977). Some
mathematical frameworks for understanding these interactions include the Lotka-Volterra
equations (Lotka, 1925) and the competitive exclusion principle (Gause, 1934; Hardin,
1960). Ecosystem dynamics on the other hand encompasses complex interactions that
take place within ecosystems due to the flow of energy (through food chains and food
webs (Lindeman, 1942)) and nutrient cycling (such as carbon and nitrogen cycles, see
Vitousek et al. (1997) and Falkowski et al. (2000)).

Eco-evolutionary dynamics as a research field focuses on the interplay between ecology
and evolution that occurs on similar time scales (i.e., on the order of years to centuries).
In other words, it deals with the study of how evolutionary changes affect ecological
changes, how ecological changes affect evolutionary changes, and the feedback between
the two processes (Pelletier et al., 2009). A link from ecology to evolution would occur
when an ecological change (or a combination of biotic and abiotic environmental factors)
imposes selection that in turn produces a change in some ecologically important trait. On
the other hand, a link from evolution to ecology would occur when an evolved change in a
trait causes a change in the ecological dynamics of a population. Examples abound in
host-parasite interactions, range expansions, and many other phenomena.

Evolution had been traditionally thought to occur too slowly to affect ecological dynamics.
Thus, studies in ecology ignored the underlying genetic differences inherent in populations,
and studies on species’ adaptation ignored explicit population dynamics. This traditional
view continued into the 50s until the emergence of theoretical paradigms (Haldane, 1956;
Anderson and May, 1982; Pease et al., 1989; Abrams and Matsuda, 1997) and empirical
findings (Hanski, 1998; Hendry and Kinnison, 1999; Hendry et al., 2008) that under-
scored the interplay between ecological and evolutionary processes on relevant timescales.
This spurred a growing interest among biologists and ecologists in understanding how
evolutionary and ecological dynamics interact as coupled processes.

Studies of eco-evolutionary dynamics within fragmented landscapes are not only academi-
cally stimulating, but hold practical relevance for safeguarding biodiversity and ensuring
ecosystem functioning. Such studies are also indispensable because populations are re-
peatedly affected by both demographic factors like growth rate and density regulation, as
well as genetic factors like genetic drift, gene flow2 and selection.

Small and often isolated populations in fragmented habitats are highly prone to stochastic
events. One such event is variability or fluctuations in birth rates, death rates and sex
ratios, termed demographic stochasticity (Gilad, 2008), which can have profound impacts
on the survival of species. For example, chance events like individuals failing to reproduce

2Gene flow can have both genetic effects - causing changes in allele frequency within a population, as
well as demographic effects - boosting population numbers (see Sachdeva et al., 2022).
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or dying can yield a disproportionately large impact. Small populations may also undergo
phases of rapid growth followed by sharp declines which can intensify their susceptibility
to extinction.

Another random event peculiar to small population is genetic drift, defined as the random
fluctuation in allele frequency over time owing to chance events like the random sampling
of alleles during the process of reproduction. Genetic drift can cause certain alleles to
become fixed (i.e., emerge as the only variant in the population) or lost by chance in a
population leading to a loss in genetic diversity over time.

Gene flow, the exchange of genetic material among different populations, also plays a key
role in shaping the evolutionary trajectories of species. Within fragmented landscapes,
isolated populations frequently face decreased connectivity or gene flow from other patches
(owing to geographic distance, physical barriers, or altered dispersal patterns), resulting
in increased genetic divergence and the potential for speciation among these populations
(Harrison and Hastings, 1996; Hanski, 1999). Selection, another key genetic factor can
be heterogeneous (i.e., vary in pressure) with different populations encountering unique
ecological challenges and opportunities thus fostering localized adaptations (Kawecki and
Ebert, 2004). In contrast, the extent of such localized adaptation can be reduced by gene
flow when it facilitates the spread of beneficial traits throughout the metapopulation (while
maintaining genetic diversity). Density-dependent factors like resource competition and
predation can have profound effects on these interactions. For example, altered population
densities can lead to shifts in the strength and direction of selection, influencing the
evolution of traits that are essential for survival and reproduction (Bolnick and Nosil,
2007). Even in situations where selection is uniform across a landscape, these different
forces can interact in interesting ways to drive population dynamics.

The interplay between genetic and demographic factors in fragmented landscapes is far
from straightforward, requiring a comprehensive theoretical analysis to tease out these
complex relationships. Theoretical studies that use either computer simulations or explicit
analytical mathematics are crucial, as they elucidate the various possibilities that can
arise from varying assumptions. They also help in the development of analytical tools and
conceptual frameworks for the study of real organisms. Thus, in this thesis, we will develop
a theoretical understanding (using both simulations and analytical approximations) of
eco-evo dynamics in metapopulations (more on this in section 1.6) and highlight the
usefulness of these to conservation efforts.

We now go on to introduce the concept of local adaptation.
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1.3 Local adaptation

In nature, populations evolve under the selective pressure imposed by their environments.
Over time, this can lead to adaptation to local environmental conditions (i.e., native
individuals having a higher fitness compared to foreign individuals). Such adaptation to
spatial environmental heterogeneity is believed to shape much genetic and phenotypic
diversity in the wild (see Endler, 1986; Merilä and Crnokrak, 2001).

Gene flow between populations in a heterogeneous environment plays an important
role in the process of adaptation. It can either constrain local adaptation through the
introduction of maladapted alleles or favor the process by increasing genetic variation.
For example, with assisted gene flow, genetic variants that confer adaptive advantages
in certain populations or environments can be introduced into other populations facing
environmental challenges thus enhancing their adaptive capacity (Aitken and Whitlock,
2013). It is however important to note that while assisted gene flow may help increase
genetic variation and facilitate adaptation, it can in some cases result in outbreeding
depression (Weeks et al., 2011; Aitken and Whitlock, 2013) when the introduced variants
are not well suited to the environment of the recipient populations or when they are
incompatible (independent of the environment). Such risk of outbreeding depression
can be mitigated by carefully accessing the genetic compatibility between populations.
Though gene flow is an important force in its own right, theory suggests that it interacts
in intricate ways with other evolutionary factors such as the genetic architecture of traits
underlying adaptation (Billiard and Lenormand, 2005; Yeaman and Whitlock, 2011) and
genetic drift (Blanquart et al., 2012), as well as ecological factors such as demographic
stochasticity (see Kisdi, 2002).

The study of local adaptation is important for a number of reasons. It provides useful
insights into the relative strengths and key interactions among evolutionary forces like
genetic drift, mutation, migration, and selection, as well as an understanding of the
adaptive divergence of populations. Secondly, an understanding of the adaptation of
populations to local environmental conditions, or the lack of it, plays an important role in
species’ range studies - adaptation at species’ borders and the expansion and contraction
of species ranges (Polechová and Barton, 2015; Polechová, 2018). More importantly, the
knowledge of the genetic basis of local adaptation (and understanding of the conditions
facilitating such adaptations) can help improve management decisions involving the
maintenance of biodiversity through the proper management of the genetic diversity of
endangered populations, thus contributing to conservation and restoration efforts. It can
further provide new insights into climate change adaptation and help improve breeding
programs in agriculture and forestry (Simmonds, 1991).

This thesis extends previous theoretical models of local adaptation to understand how
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quickly a species changes its range in response to shifting environmental conditions
(Chapter 2). We do this using allele frequency simulations and a ‘fixed-state’ approximation
(an extension of models of ‘adaptive walks’ (Orr, 1998; Trubenova et al., 2019)). The thesis
further extends our current theoretical understanding of local adaptation in the literature
which has traditionally been restricted to adaptation in two habitats to a multi-habitat
perspective (Chapter 3). We will elucidate more on specific questions in section 1.6.

1.4 Genetic load

Central to conservation and conservation biology is the need to maintain adaptation,
preserve genetic variation, and prevent the extinction of endangered species - a noble but
difficult endeavor - difficult because genetic drift in small isolated patches (that may result
from anthropogenic factors) dramatically reduces overall genetic variation by randomly
fixing deleterious mutations which may lead to extinction (Lynch et al., 1991).

Since the majority of mutations occurring within populations are detrimental to their
overall fitness (Kimura et al., 1963; Kim et al., 2017) and purifying selection is largely
inefficient in small populations, this leads to a build-up of deleterious mutations in
the population over time. Hence, mutation, though being an essential material for
evolution (i.e., the ultimate source of genetic variation) can also have detrimental effects
on populations when it is deleterious and thus, a key force central to discussions on
adaptation and the maintenance of variation (Kondrashov, 1988; Lynch et al., 1995).

The term genetic load was introduced by Muller in 1950 as a measure of the reduction in
the mean fitness of a population (plagued by the presence of deleterious genetic variants or
mutations) relative to that of a perfect population with no such mutations. This concept
plays a pivotal role in understanding the drivers of population evolution and adaptation,
as well as in forecasting potential risks to population viability.

There are different types of genetic load depending on the underlying mechanism driving it.
These are the mutation load, drift load, inbreeding load, segregation load, substitution load
and lag load. While we have described these individual categories below, it is important
to recognize the underlying interconnectedness between these concepts. Mutations, being
the ultimate source of genetic variation, whether beneficial or deleterious, underlie all
forms of genetic load, blurring the boundaries between these classifications.

1. Mutation load: This is simply the reduction in fitness due to the build-up of
deleterious mutations within a population’s gene pool over time (Krakauer and Nowak,
2001; Henry et al., 2015). Such mutations could arise as a result of errors occurring during
DNA replication, or may be due to exposure to mutagenic agents such as chemicals and
radiation. The burden of mutation load typically depends on the rate of appearance of such
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mutations, the efficiency of selection in removing them as well as the size of the population.
Some examples of mutation load include genetic diseases such as sickle cell anemia and
Tay-Sachs disease where individuals homozygous for the mutation (i.e., carrying two copies
of the mutated gene) in a population experience severe health complications.

In very large populations, deleterious allele frequencies are typically low and maintained
by a balance between mutation and selection. In the absence of epistasis, these mutations
unless completely recessive make the same contribution to load, so that load is approxi-
mately 2U (the gemomewide deleterious mutation rate). However in small populations,
selection may be less efficient, resulting in higher deleterious allele frequencies (which can
be driven to fixation) and thus an increase in load (called the ‘drift load’) as discussed
below.

2. Drift load: This is the decline in fitness that stems from an increase in frequency
or fixation of deleterious alleles owing to drift (Poon and Otto, 2000; Willi et al., 2013).
Drift load can be of particular concern to small or isolated populations like those found on
islands or among endangered species (Whitlock, 2000; Willi et al., 2013). Over time, the
accumulation of harmful mutations resulting from genetic drift may result in a reduction in
the overall fitness of populations, potentially leading to their extinction. On the contrary,
drift has little or no effect on larger populations since such populations are less prone to
chance events.

3. Inbreeding load: Inbreeding load is the reduction in fitness (measured, for example,
as reproductive success, survival, e.t.c.) that arises from the increased expression of
recessive deleterious mutations due to inbreeding i.e., the mating of close relatives (Morton
et al., 1956; Crow, 1958). It can also be defined as the slope of the regression of fitness
on F , the inbreeding coefficient (Morton et al., 1956), where F can be estimated from
pedigree analysis of the frequency of inbred matings (Ballou, 1983). A positive regression
coefficient typically signifies a higher inbreeding load (i.e., a decrease in fitness with
increased inbreeding). To reduce the adverse effect of inbreeding, several populations
have developed mechanisms to prevent mating of close relatives. A few such mechanisms
include mating preference or mate choice and kin recognition.

4. Segregation load: This is the genetic burden borne by a population due to the
occurrence of homozygotes with less fitness owing to overdominance or heterozygote
advantage (Morton et al., 1956; Crow, 1958). When sexual reproduction takes place,
segregation can lead to a conversion of fit heterozygotes into less fit homozygotes, thus
diminishing overall mean fitness.
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5. Substitution load: Substitution load (also known as ‘the cost of substitution’)
pertains to the rate at which deleterious alleles are exchanged or substituted with new
alleles with fewer detrimental effects (Haldane, 1957; Kimura et al., 1960; Kimura, 1960,
1961; Phelps IV, 1991). Substitution load arises because newly introduced beneficial
mutations require time to completely replace older, less beneficial ones. During this
transitional phase, individuals with the advantageous allele coexist alongside those with
the deleterious allele, leading to a temporary reduction in overall fitness. Substitution load
depends on several factors including the intensity of selection, the rate of substitution,
mutation and the size of the population in question. If the rate of substitution is high,
beneficial mutations may more readily be incorporated into a populations’ gene pool,
potentially lowering the burden of load. Conversely, when the rate of substitution is
low, the accumulation of deleterious mutations may surpass the pace of advantageous
substitutions, leading to an increase in the substitution load.

6. Lag load: The lag load is a measure of the reduction in fitness due to a mismatch
of the mean trait value of a population from the optimum trait value when there is a
deviation of the selective environment from an earlier state (see Smith (1976), Lynch et al.
(1993), Kirkpatrick (1996) and Lande and Shannon (1996)). For example, when there is a
rapid directional or periodic change in environment, populations may be limited in their
rate of response to become better adapted to the new conditions, resulting in reduced
fitness. Lag load can have important implications for the ability of populations to survive
and reproduce in changing environmental conditions.

In this thesis, we focus our attention on genetic load due to the accumulation and
fixation of deleterious mutations (i.e., drift load) because of its significant implications
for the conservation of fragmented populations. Drift load is particularly relevant in
peripheral populations at the edge of a species’ range experiencing limited gene flow from
the core as well as in highly fragmented populations (metapopulations) connected by
occasional dispersers as these populations are especially prone to stochastic fluctuations.
In such populations, a change or decrease in population size due to factors like reduced
connectivity, reduced carrying capacity or demographic stochasticity, may lead to an
increase in the effect of random drift, which then enhances the accumulation of more
deleterious mutations, thus increasing their frequency in the population. This will lead
to a decline in the fitness of the population and a corresponding increase in load, which
further reduces population size. If this feedback continues and is strong enough, the
population can essentially be driven to extinction. This contentious relationship between
declining population size and subsequent increase in load, which may ultimately trigger
mutational meltdown3, has been of lasting interest among many researchers (Frankham,

3defined as the decline in fitness resulting from the accumulation of deleterious mutations which can
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2005; Lande, 1994) and has remained a controversial issue (Charlesworth et al., 1993;
Lynch et al., 1995).

In what follows, we will introduce the notion of a metapopulation (upon which our
analytical framework is built) and review existing metapopulation models in the field.

1.5 Metapopulations and metapopulation models

The ecologist Richard Levins first introduced the term metapopulation in 1969 to describe
a population of populations that persist in a balance between local extinctions and
recolonizations (Levins, 1969). This concept was further developed by Hanski (1998)
among others. Metapopulation models are important theoretical models used to describe
population dynamics in population genetics and ecology whenever local populations are
governed by local colonizations and extinctions (Bascompte and Solé, 1998; Andrewartha
et al., 1954; Hanski et al., 1997). They are built on the premise that the metapopulation
is made up of discrete local populations that interact through dispersal and gene flow.

Many species in nature conform to the metapopulation structure due to continued habitat
loss and fragmentation. A classic example of this is the Glanville fritillary butterflies on
the Åland islands in southwestern Finland (Thomas and Hanski, 1997). A second example
is the mountain-dwelling Pika found in North America and Asia (Rodhouse et al., 2010),
which inhabits talus slopes and rocky outcrops, creating a patchy distribution of suitable
habitats within its range.

Metapopulation models are useful as they offer a structured framework for assessing
the consequences of habitat fragmentation and formulating strategies to enhance species
persistence in fragmented landscapes. They also provide a holistic approach for exploring
local adaptation, accounting for spatial and temporal dynamics, population interactions,
and the influence of gene flow. Hence, they are indispensable in the planning and evaluation
of conservation programs (Akçakaya and Sjögren-Gulve, 2000).

To investigate the interactions, adaptation, and persistence of populations in fragmented
landscapes, three distinct metapopulation models can be employed. These are the
spatially implicit, spatially explicit, and spatially realistic metapopulation models. Each
of these models offer varying degree of detail and realism about the dynamics and spatial
distribution of populations within the metapopulation. Below, we give a brief description
of these different models.
result in an irreversible downward spiral and eventual extinction of the population (Lynch and Gabriel,
1990).
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1.5.1 Spatially implicit metapopulation models

As the name depicts, these are metapopulation models that do not consider the physical
location, spatial arrangement, or spatial relationship between local populations or patches
within the metapopulation. They instead focus on the overall dynamics of the metapopu-
lation ignoring any notion of physical distance between patches. There are two common
examples of spatially implicit models, the mainland-island and the many-island model of
population structure.

Mainland-Island Models: The mainland-island model (also known as the continent-
island model) of population structure was introduced by Haldane in 1930 (fig. 1.1a). It
represents the simplest framework for understanding gene flow. In this model, a large and
stable population (referred to as the mainland or continent) is connected to a small island
population by migration. Migration occurs primarily from the mainland to the island, and
the mainland is considered large enough that any reverse migration is assumed to have
negligible impact on allele frequency distribution there. Thus, this model is essentially
unidirectional, emphasizing migration from the mainland to the island while disregarding
reverse migration effects. Consequently, it offers a straightforward means of predicting
how gene flow influences allele frequency.

(a) Mainland-island model
of population structure (b) Finite island model with

varying deme sizes

Figure 1.1: Spatially implicit metapopulation models

Suppose we assume that an allele has frequency pm on the mainland and frequency pi on
the island. During each discrete generation, a fraction m of individuals from the mainland
arrive on the island such that the island population now consists of a proportion m of
immigrant individuals with frequencies pm and a proportion (1 −m) of native individuals
whose frequencies were pi in the last generation. Ignoring drift, the allele frequency on
the island follows the deterministic equation,

pi,t+1 = (1 −m)pi,t +m pm, (1.1)
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which has a stable equilibrium pi = pm indicating that over time, with increasing rate,
m, of migration, the allele frequency on the island eventually converges to the mainland
frequency.

Island Models: This is a generalization of Haldane’s model in which there are n islands
that exchange migrants randomly with one another at a rate m (Wright, 1931, 1943, 1949).
A schematic representation of this is shown in fig. 1.1b (the edges symbolize the exchange
of migrants through a common migrant pool). If p is the global average allele frequency,
then the allele frequency due to gene flow on any island i in generation t+ 1 will be,

pi,t+1 = (1 −m)pi,t +mp (1.2)

This is very similar to eq. (1.1) with pm now replaced by p = 1/n∑︁n
i=1 pi, implying that

the allele frequency in each island4, i, now approaches the average in the migrant pool as
gene flow mixes the populations.

1.5.2 Spatially explicit metapopulation models

Unlike spatially implicit models, these models take into account the spatial structure of
the environment as well as the geographic locations of populations. By integrating spatial
information, they allow for a more realistic representation of landscapes. They also allow
for the investigation of how varying migration patterns (or rules) and genetic interactions
influence the long-term evolutionary dynamics of populations.

One important distinction when considering spatially explicit models is whether they
assume discrete habitat patches or assume that individuals are dispersing in continuous
space. In discrete patch models, landscapes are divided into a set of discrete non-
overlapping patches where each patch may represent a different environment or spatial
unit and interactions between patches are then described by a set of rules or an arbitrary
migration matrix describing the probabilities or rate of movement of individuals from one
patch to another. Such models are useful for studying the effects of habitat fragmentation
and metapopulation dynamics on genetic diversity and structure. Some examples of
discrete patch models include the stepping-stone model (Kimura and Weiss, 1964) and
the lattice-based isolation by distance (IBD) model (Malécot, 1951; Guillot et al., 2009).

First introduced by Kimura and Weiss (1964) who coined the term ‘stepping-stone’, these
models simulate the dynamics of populations in discrete habitat patches where individuals
migrate predominantly between neighboring populations. They are particularly valuable
for studying how limited dispersal or gene flow influences genetic differentiation and the
spread of advantageous mutations through populations (Kimura and Weiss, 1964). These

4N.B.Throughout the thesis, we use islands, demes, patches, and subpopulations interchangeably.
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models have been utilized in studying a wide range of species such as amphibians in
wetlands (e.g., populations of choorus frogs Pseudacris maculata (Watts et al., 2015)),
marine species (e.g., blue mussel, Mytilus edulis (Coolen et al., 2020)), etc.

In lattice-based IBD models (Malécot, 1951; Maruyama, 1970), discrete patches or demes
are represented using a lattice or grid and genetic similarity is analysed based on the
distances between demes. In other words, it assumes that the rate of migration between
demes is inversely proportional to the geographical distance between them so that indi-
viduals that are in geographical proximity are more likely to be genetically similar due
to high gene flow than geographically distant populations. These models are useful for
studying the impact of geographic distance on genetic variation in populations.

In spatially explicit continuous space models on the other hand, individuals are allowed to
disperse across a spatial gradient or spatially continuous environment rather than being
confined to discrete sets. In such models, dispersal may be characterised using a diffusion
equation or dispersal kernel to describe the direction of movement or how far an individual
can go from its current location (Malécot, 1948; Kot et al., 1996). These models allow
for a more realistic representation of populations enabling the study of how landscape
features and geographical barriers influence local adaptation and the spatial distribution
of genetic variation

1.5.3 Spatially realistic metapopulation models

These are the most detailed and complex of all metapopulation models as they enable the
incorporation of precise geometric details of patch networks (e.g., number of patches, their
size, quality, and precise locations). They can also go as far as incorporating information
about the effects of human activities. Integrating these specifics into the model becomes
crucial when seeking to generate accurate quantitative forecasts about the dynamics of
actual metapopulations.

One example of a widely used spatially realistic metapopulation model is the Incidence
Function Model (IFM) (Hanski, 1994b,a). The IFM considers both occupied and empty
patches within its framework, making it particularly suitable for highly fragmented
populations or species with patchy distributions across landscapes. The key principle
within the IFM is the ‘incidence function’ - a function that depicts the probability of a
successful colonization event in an empty patch after accounting for the spatial distance
between patches, the quality of patches, and the dispersal capabilities of the species under
consideration. In essence, it provides insights into the probability of immigration from
one patch to another while considering both spatial and ecological variables.

Overall, spatially realistic models offer a richer and more nuanced depiction of metapop-
ulation dynamics. Their complexity however often makes them highly computationally
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demanding.

Having outlined these different kinds of metapopulation models, it is important to note
that a further differentiation might exist based on whether the models assume extinction
and colonization events to be instantaneous processes occurring at some rate or whether
they explicitly account for population dynamics during extinction and colonization. While
the majority of existing literature fall within the former category, a subset of studies (Ronce
and Kirkpatrick, 2001; Polechová and Barton, 2015; Polechová, 2018) have contributed to
the latter class.

In this thesis, we make use of latter class of models. In particular, we consider spatially
implicit models - the mainland-island and island models of population structure (as these
are not only simple to work with but are also useful for comprehending fundamental
metapopulation dynamics and principles without the need for delving into the particulars
of patch configuration) extending these to take into account both ecology and evolution
(particularly, the joint dynamics of population size and allele frequency). Our models
therefore account for some critical factors that contribute to extinction risk such as genetic
stochasticity (mutations and genetic drift) and demographic stochasticity (i.e., random
events like the timing and number of births and deaths, as well as variations in individual
reproductive success and survival).

1.6 Thesis outline

The Ph.D. thesis is organized into two overarching themes. The first theme focuses
on the dynamics of local adaptation and the maintenance of polymorphism in spatially
heterogeneous metapopulations. This theme is further divided into two chapters: Chapter 2
and 3.

Chapter 2 investigates how species distributed across various environments adapt to local
conditions and how quickly they adjust their range to changing environmental conditions
characterised by changes in carrying capacity, selection strength, and migration rate. In
particular, it answers the following questions,

1. How does the process of adaptation unfold in a metapopulation when conditions
change locally or across the entire metapopulation?

2. How long does it take for a metapopulation to reach a new equilibrium when there
are changes in selection or migration rate relative to drift in the metapopulation.
How closely does our developed approximation (the ‘fixed-state’ approximation)
approximate this?
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Chapter 3 extends previous work on local adaptation and the maintenance of polymorphism
(genetic diversity) in two habitats to a multi-habitat perspective. In particular, it considers
a metapopulation with three habitats, each adapted to different conditions, and investigates
the factors that influence the maintenance of polymorphism in such a metapopulation and
the role that chance (genetic drift) plays in the maintenance or loss of genetic variation.
Importantly, it provides a theoretical handle on critical (migration and selection) thresholds
required for a polymorphism.

In these two chapters (Chapter 2 and 3), we assume a simple metapopulation model where
deme sizes remain constant and are not influenced by adaptedness. This is the so-called
‘soft selection’ model.

The second theme of the thesis offers theoretical insights into the dynamics of genetic
load and extinction in metapopulations under spatially uniform selection. This theme is
divided into two chapters: Chapter 4 and 5.

Chapter 4 explores the dynamics of load and extinction in a peripheral population that
receives migrants from a large mainland. In particular, it provides answers to the following,

1. under what conditions can migration from a large mainland arrest mutational
meltdown and prevent the extinction of a peripheral population and what are the
demographic and genetic underpinnings of this effect?

2. what are the critical thresholds for extinction and how do these depend on key
parameters such as the dominance of deleterious mutations, the selective effect
of mutations, the extent of demographic fluctuations and the total genome-wide
mutation rate?

3. What role do non-random associations between allelic states at different loci (i.e.,
linkage disequilibrium, denoted as LD) or between the probability of identity by
descent at different loci (i.e., identity disequilibrium, denoted as ID) play?

Chapter 5 extends the analysis in chapter 4 to a metapopulation with infinitely5 many
demes and explores how eco-evo feedback influences extinction risk in such populations
using both simulations and analytical approximations. In particular, this chapter investi-
gates

1. the extent of gene flow required to reduce load at a single locus assuming soft
selection, and how genomewide heterosis (involving multiple selected alleles) can
affect this.

5N.B. in simulations, infinitely many demes is approximated by a large but finite number of demes.

14



2. the effect of migration on equilibrium metapopulation size and load, as well as
critical migration thresholds required for the persistence of the metapopulation.

3. how critical thresholds are influenced by the genetic architecture of load (for example,
the distribution of selective effects and the dominance coefficients of deleterious
mutations) as well as properties of the metapopulation landscape such as the carrying
capacities of local demes.

4. What is the role of the hardness of selection6?

5. What is the role of mutational bias?

These two chapters contribute to the state of the art in that they go beyond traditional
metapopulation models, explicitly accounting for the coupling between population size
and allele frequencies in providing a theoretical understanding of the influence of load on
the persistence of populations. While there is some exploration of how eco-evo feedback
may drive extinction in the context of populations adapting to spatially heterogeneous
selection (Ronce and Kirkpatrick, 2001; Szép et al., 2021), this hasn’t been explored in the
context of drift load in a uniform environment where mutations are deleterious everywhere;
this is what is novel here.

In contrast to the first theme, the metapopulation model used here assumes both soft and
hard selection. In the hard selection model, population sizes of demes are not fixed but
vary due to fluctuations in fitness (driven by stochastic fluctuations in allele frequency) as
well as demographic fluctuations.

6The ‘hardness of selection’ here is defined as the extent to which the growth rate of a population is
depressed by load.
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Chapter 2

The response of a metapopulation to a
changing environment1

Nick Barton, Oluwafunmilola Olusanya

Abstract

A species distributed across diverse environments may adapt to local conditions. We ask
how quickly such a species changes its range in response to changed conditions. Szep et al
(2021) used the infinite island model to find the stationary distribution of allele frequencies
and deme sizes. We extend this to find how a metapopulation responds to changes in
carrying capacity, selection strength, or migration rate when deme sizes are fixed. We
further develop a “fixed-state” approximation. Under this approximation, polymorphism
is only possible for a narrow range of habitat proportions when selection is weak compared
to drift, but for a much wider range otherwise. When rates of selection or migration
relative to drift change in a single deme of the metapopulation, the population takes a
time of order 1/m to reach the new equilibrium. However, even with many loci, there
can be substantial fluctuations in net adaptation, because at each locus, alleles randomly
get lost or fixed. Thus, in a finite metapopulation, variation may gradually be lost by
chance, even if it would persist in an infinite metapopulation. When conditions change
across the whole metapopulation, there can be rapid change, which is predicted well by
the fixed-state approximation.

Keywords: metapopulation, local adaptation, species’ range, diffusion, adaptive walk,
changing conditions, soft selection.

1This work has been published at https://royalsocietypublishing.org/doi/10.1098/
rstb.2021.0009
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2.1 Introduction

Species must adapt to varied environments, whilst drawing on a common pool of genetic
variation. Thus, there is a tension between selection that favours different alleles in different
places, and the maintenance of diversity across the whole species. Local populations can
only sustain themselves if they are sufficiently well-adapted; conversely, adaptation to
conditions beyond the current niche can extend the range of the species.

These issues, which lie at the interface between ecology and evolution, have only quite
recently attracted sustained theoretical attention. This ranges from studies of “evolutionary
rescue”, typically of a single isolated deme (Bell and Gonzalez, 2011; Bell, 2017; Uecker
et al., 2014), through to analyses of limits to a species’ range in one or two spatial
dimensions (Case and Taper, 2000; Kirkpatrick and Barton, 1997; Polechová, 2018). Here,
we consider an idealised metapopulation; in this island model, there is no explicit spatial
structure. Nevertheless, we can ask whether the species’ range can extend over a variety
of habitats, and examine how it responds dynamically to changing conditions – either in
a single deme, or across the whole metapopulation.

We examine a simple model, in which directional selection favours alternative alleles in two
different habitats. Provided that selection is stronger than migration, these alternative
adaptations can be maintained despite gene flow. There is substantial literature on how
heterogeneous selection can maintain diversity, beginning with Levene (1953). However,
this is largely deterministic, neglecting random drift in small local populations. Here,
we are primarily concerned with the erosion of adaptation by random drift within local
demes – which can cause a substantial “drift load” even when the whole metapopulation
is very large.

This paper is an extension of Szép et al. (2021), which analysed the joint evolution of
allele frequencies and deme sizes, in an island model with explicit density-dependent
regulation; a diffusion approximation gave explicit formulae for the stationary distribution
of an infinite metapopulation. Here, we extend this treatment to consider the evolution
of individual demes, and of the whole metapopulation, as conditions change (directly
through changes in selection and gene flow, and indirectly through their effect on the
population size); we also consider fluctuations in a metapopulation with a limited number
of demes, where variation can be lost by chance. We simplify the problem by assuming
that deme sizes are fixed, independent of adaptedness (“soft selection”), but believe that
the methods we introduce can be extended to allow density regulation (“hard selection”).

In principle, we can calculate the joint distribution of deme size and allele frequencies
under the diffusion approximation. However, this is numerically challenging, since it
involves a high dimensional partial differential equation; in any case, it can only be done
for an infinite metapopulation, where the mean population size and allele frequencies
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across the population as a whole change deterministically, even though population sizes
and allele frequencies within any deme follow a distribution. In order to go beyond mere
simulation, we use the approximation that loci are typically near fixation; this is accurate
if the number of non-native alleles that enter per generation is small. It allows us to follow
the distribution of states of a finite metapopulation through time, which depends only
on the rates of substitutions in either direction. This “fixed-state” approximation is an
extension of models of “adaptive walks” (e.g. Orr (1998); Trubenova et al. (2019)) to
structured populations.

We first consider an infinite metapopulation, and determine the accuracy of the fixed-state
approximation. We then apply the approximation to calculate the dynamics of a finite
metapopulation, and to find how its equilibria depend on the number of demes. (In
order for a non-trivial equilibrium to exist, we must allow a low rate of mutation to
maintain variation in the long term). Finally, we show how metapopulations respond
to changing conditions, focusing on changes that take the system between qualitatively
different regimes.

2.2 Model and Methods

We simulate a haploid population, assuming linkage equilibrium. Provided that selection
is weak, this is accurate, and allows us to efficiently simulate large numbers of loci and
demes; Szép et al. (2021, SI C) examined the effects of linkage disequilibrium in this
model, using individual-based simulations. We obtain analytical results by taking the
diffusion limit, which also assumes weak selection, and then approximate this by assuming
that demes are near fixation, which applies when there are few migrants (Nm <1). As
is traditional in population genetics, we take the fundamental model to be the diffusion,
since this captures the behaviour of a variety of particular life histories, and identifies the
key dimensionless parameters.

2.2.1 Simulations

Our baseline island model assumes that demes each have carrying capacity of N haploid
individuals, and contribute equally to the migrant pool. A deme of size N is expected
to lose a fraction m of individuals by emigration, and receives a Poisson distributed
number of migrants, Nm∗, with expectation Nm. There are L biallelic loci, with the two
alternative alleles labelled Xi,k = 0 or 1; i labels the deme, and k the locus. Deme i
is described by {ji,1, ji,2, . . . , ji,L}, where 0 ≤ ji,k ≤ N is the number of copies of the ‘1’
allele at the k′th locus. That allele is favoured by selection si, which we assume to be the
same across loci; the marginal relative fitnesses are 1 : esi , and fitnesses multiply across
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loci. Under soft selection, loci evolve independently, and so it would be straightforward to
extend to allow variation in selection across loci.

We assume linkage equilibrium (LE), and apply the Wright-Fisher model to each locus
independently. After selection, allele frequencies are p∗

i,k = ji,k/ ((N − ji,k) e−si + ji,k),
and after migration, p**

i,k = m p̄k + (1 −m)p∗
i,k where p̄k is the frequency averaged across

all demes of the metapopulation. The new population in deme i consists of N individuals,
the number of allele copies at locus k being binomially sampled with frequency p**

i,k. This
procedure is accurate provided that s is not too large (< 0.2, say), so that recombination
shuffles genes faster than selection, drift, or migration build up associations between them
(Szép et al.., 2021, SI C).

A Mathematica notebook containing the simulation code can be found in Barton and
Olusanya (2022).

Diffusion approximation

The diffusion approximation to this model describes the evolution of the joint distribution
of allele frequencies across different demes, conditional on the mean allele frequency across
the metapopulation (Barton and Rouhani, 1993). A single deme follows a stochastic path
governed by this distribution, whilst an infinite metapopulation represents the whole
distribution, which evolves deterministically at the level of the metapopulation. The
diffusion depends only on scaled parameters Ns, Nm.

Wright (1937a,b) gave an explicit solution for the stationary distribution of allele frequen-
cies:

Ψ [p | p ] = 1
Z

L∏︂
k=1

p
2N mp̄k−1
k q

2N mq̄k−1
k e2Nspk (2.1)

where Z is a normalising constant and q = 1 − p. Under this simple model of directional
selection, allele frequencies evolve independently across demes and across loci, conditional
on the mean allele frequencies, p̄k. Equation (2.1) applies to a single deme; the subscript
i was dropped for clarity. All demes that share the same parameters will follow the same
distribution, in a given habitat, and so we can integrate over the distribution, and sum
over habitats, to find the mean p̄k. This allows us to solve fully for the stationary state.

Fixed-state approximation

If the number of incoming alleles is small (Nm ≪ 1) then the distribution of allele
frequencies will be sharply peaked around 0 and 1. To a good approximation, populations
are near fixation for one or other allele, and their state is determined by the rates of
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substitution in either direction. Since we will later be considering the stationary state of
a finite metapopulation, we must include mutation, which we assume to be symmetric
at rate µ. Then, the rate at which demes currently fixed for allele 0 substitute allele 1,
λ0→1 (or vice versa, λ1→0) is the product of the number of ‘1’ (or ‘0’) alleles entering the
population, and their individual fixation probability (see SM for details). Thus:

λ0→1 = 2s (Nµ+Nmp̄)
1 − e−2N s

, λ1→0 = 2s (Nµ+Nmq̄)
e2N s − 1 (2.2)

Different loci evolve independently, conditional on the numbers of migrants coming into the
deme (Nmp̄), (Nmq̄). Note that when Ns and Nm are small, these rates are proportional
to m in the neutral limit.

For an infinite metapopulation, and two habitats with selection s1, s2, with deme sizes
fixed at N (i.e., soft selection), we can just follow the proportion of demes fixed for the
‘1’ allele in each habitat, P1, P2. Neglecting mutation, the rates given by eq. (2.2) lead
immediately to:

∂tP1 = 2s1 Nm

1 − e−2N s1

(︂
p̄Q1 − q̄e−2Ns1P1

)︂
∂tP2 = 2s2 Nm

1 − e−2Ns2

(︂
p̄Q2 − q̄e−2Ns2P2

)︂
(2.3)

p̄ = ρP1 + (1 − ρ)P2

The first two equations involve the difference in net rates of substitution in each direction,
where Q, P are the fraction of loci near fixation for 0, 1; p̄, q̄ are the fraction of migrants
with allele 1 vs 0, which can contribute to a substitution; and the fixation probabilities
in each direction are in the ratio 1 : e−2Ns1 . Finally, the mean allele frequencies are a
weighted average across habitats, which are in the proportions ρ : 1 − ρ.

These equations apply separately to each locus, but for simplicity, in numerical examples
we will assume symmetric initial conditions, so that the proportion of demes fixed for the
1 allele in each habitat, P1, P2 are the same for all loci, and correspond to the proportion
of loci fixed for the ‘1’ allele in each deme.

If the ‘1’ allele is favoured in habitat 1, but disfavoured in habitat 2 (i.e. s2 < 0 < s1), and
if neither habitat is too rare, then polymorphism is possible, with equilibrium frequency
given by:

p̄ =
ρ
(︂
e2N(s1−s2) − 1

)︂
−
(︂
e−2Ns2 − 1

)︂
(e2Ns1 − 1) (e−2Ns2 − 1) ,

e−2Ns2 − 1
e2N(s1−s2) − 1 < ρ <

(︂
e−2Ns2 − 1

)︂
e2N(s1−s2) − 1e

2Ns1 , (2.4)

(as derived from eq. (2.2); see SM). If selection is weak relative to drift, polymorphism
is possible only for a very narrow range of habitat proportions (see left of fig. A.1 in
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Appendix A), whereas if it is strong, polymorphism is possible over a wide range (right of
fig. A.1 in Appendix A).

Suppose now that there are a finite number of demes, with di having habitat i. At any
one locus, the state of the metapopulation is described by the number of demes fixed
for the ‘1’ allele, 0 ≤ ki ≤ di. For example, with two habitats, there are (d1 + 1) (d2 + 1)
possible values for the state {k1, k2}. The probability of transitions between these states
depends on the mean allele frequency across the metapopulation. With soft selection,
where all demes have the same size N , this mean is just p̄ =(k1 + k2) / (d1 + d2). We
can therefore calculate the transition matrix that governs the stochastic evolution of the
metapopulation; the stationary state is given by the leading eigenvector of this matrix.
With soft selection, each locus evolves independently, governed by this matrix, and so we
can easily calculate the stochastic evolution of the metapopulation.

In Appendix B, we examine the accuracy of the fixed-state approximation under soft
selection. This approximation applies in the limit of low migration, and identifies the
failure of adaptation due to random drift.

2.3 Results

2.3.1 Evolution of a single deme

Consider a metapopulation, where Nm is small enough that populations are near fixation.
If Ns1 = 1 in a rare habitat, represented in ρ = 0.2 of the demes, and Ns2 = −2 in
the common habitat, then polymorphism will be maintained with p̄ = 0.079 overall
(eq. (2.4)). We begin by considering how a single deme responds to changes in its local
conditions, for fixed p̄, and so in fact, all that matters is the value of p̄. In the focal
deme, allele frequencies will be in the ratio q̄ : p̄e2Ns1 when Nm ≪ 1, since that is the
ratio of substitution rates in either direction; hence, the expected allele frequency in the
rare habitat is 0.386 (lhs of fig. 2.1a). As Nm increases, the expected allele frequency
decreases, approaching p̄ = 0.079 (rhs of fig. 2.1a). For given Nm, the expected allele
frequency in the focal deme increases with Ns1 from p̄ to 1, as selection becomes more
effective (fig. 2.1b).

Figure 2.2a shows how the distribution of allele frequencies changes as Nm changes. If all
loci start close to the frequency in the gene pool (p̄ = 0.079) then with a low migration
rate (Nm = 0.05), even weak selection (Ns = 1) can raise the mean substantially, to
0.355. However, this increase is slow, taking ∼ 5000 generations, because it occurs
through occasional substitutions, at a rate proportional to m = 5 × 10−4 (eq. (2.3)).
The population does mostly flip between fixation of one or other allele, giving a U-
shaped frequency distribution (e.g. grey trajectory in fig. 2.2), and so the fixed-state
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approximation is quite close to the exact mean (orange vs. red at left). However, the
average across even 100 loci fluctuates substantially (blue), implying that population
fitness will fluctuate randomly, even when adaptation is highly polygenic.
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Figure 2.1: (a). Expected allele frequency vs Nm with p̄ = 0.079, Ns1 = 1. (b). Expected allele frequency
vs. Ns, for Nm = 0.1, 1, 10 (black, blue, purple).

At 20, 000 generations, the number of migrants increases to Nm = 1, and the mean allele
frequency is quickly pulled down towards that in the gene pool, to 0.155. The fixed-state
approximation is the limit of low migration, and so is independent of Nm (see fig. A.2).
Indeed, allele frequencies are now often intermediate, and so this approximation fails
(orange vs. red, fig. 2.2, middle). Nevertheless, it does give the important intuition
that rates of change are proportional to migration, which is now m = 0.01, implying
a 1/m ∼ 100 generation timescale for response of the population mean. In this model,
variance is maintained by migration, and so the response to selection is proportional to m:
we can see this in eq. (2.3), where rates of change are proportional to m, for given Ns.
After Nm returns to the original low value at 30, 000 generations, there is a slow return
to the original bimodal distribution, again captured by the fixed-state approximation
(orange vs red at right of fig. 2.2).

Figure 2.2b shows the response to changes in Ns, which could arise through changes
in selection strength, and/or changes in local effective population size. In this example,
Nm = 0.05 throughout, and so the fixed-state approximation is accurate (orange vs red
curves). The timescale is again set by m, which determines the rate at which variation is
introduced into local demes. Since m = 5 × 10−4, it takes thousands of generations for
the proportion of loci fixed for the ‘1’ allele to respond to changes in selection strength.
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Figure 2.2: (a) Evolution of a single deme as Nm changes; Ns = 1, p̄ = 0.079, L = 100 loci. Initially,
Nm = 0.05, and all loci are at p̄. After 20, 000 generations, Nm increases to 1, and after another 10, 000
generations, it returns to Nm = 0.05. The grey line shows allele frequency at a single locus, and the blue
line shows the average over 100 loci. The red curve is the mean of the probability distribution, calculated
exactly using the Wright-Fisher transition matrix. The orange curve is the fixed-state approximation (eq.
(2.3)), which is accurate only for Nm ≪ 1. (b) The same as (a), but for Ns changing from 1 to 10 at
20, 000 generations, and then to 0.1 at 30, 000 generations; Nm = 0.05 throughout.

Figure 2.3 shows the time taken for a population to respond to changes in Nm (fig. 2.3a)
or Ns (fig. 2.3b), as a function of the other parameter. In each figure, the two curves
show the time to respond to changes in either direction. As we saw in fig. 2.2a, an
increase in Nm (lower plot of fig. 2.3a) causes a much faster response than a decrease
(upper plot of fig. 2.3a), simply because high gene flow introduces more genetic variance.
However, if selection is very strong, the response time becomes similar in either direction,
and decreases in proportion to Ns (right of fig. 2.3a). The response to changes in Ns

take somewhat longer for an increase than a decrease (compare upper vs lower plot of fig.
2.3b), but the main pattern here is that the response time decreases in proportion to Nm.
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Figure 2.3: The time to make half of the response to a change in parameters. For both plots, p̄ = 0.079.
Values were calculated using a transition matrix with N = 100. Details of the calculation are in the SM.
(a) Nm shifts from 0.05 to 1 or from 1 to 0.05 (lower, upper curves, resp.), for varying Ns. (b) Ns shifts
from 0.1 to 1 or from 1 to 0.1 (upper, lower curves, resp.) for varying Nm.

2.3.2 Evolution of a metapopulation

We begin by considering the stationary state of a metapopulation, extending Szép et al.
(2021) by allowing a finite number of demes – in which case, a low rate of mutation is
required to maintain variation in the long term. We then give an example that shows how
variation is lost, as loci fix across the whole metapopulation. Finally, we give examples
(analogous to fig. 2.2), showing the response when parameters change across the whole
metapopulation.

Stationary state of a finite metapopulation in the limit of small Nm

Szép et al. (2021, Fig. 2) show that with soft selection, polymorphism can be maintained in
an infinite metapopulation, provided that selection is sufficiently strong. With symmetric
selection (s1 = s2), this requires Ns > Nscrit = 1/2 log

[︂
1−ρ
ρ

]︂
+ Nm(1 − 2ρ); the first

term is derived from the fixed-state approximation, in the limit Nm ≪ 1, and the second
from the deterministic model, which requires s > m(1 − 2ρ) for polymorphism (see Szép
et al. 2021, immediately above “Hard selection”). In a metapopulation with a finite
number of demes, variation must ultimately be lost: we must include mutation to allow
a non-trivial stationary state. In this section, we examine how the outcome depends on
the relative rates of selection and drift (Ns) and on the relative rates of mutation and
migration (µ/m). In particular, we show that with sufficiently many demes, the outcome
is insensitive to the mutation rate.
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Figure 2.4: The fraction of demes in each of the two habitats (rare habitat – blue, common habitat –
red) that are fixed, as a function of selection strength (Ns, top row) and the rate of mutation, relative to
migration (µ/m, bottom row). The focal allele is favoured by selection Ns1 in 20% of demes (i.e. in the
rare habitat – blue), and disfavoured by selection Ns2 = −2Ns1 in the remaining 80% of demes (i.e. in
the common habitat – red). In each plot, equilibria for 50, 100, 200 and 400 demes are superimposed
(solid, dashed, dotted and dot-dashed lines), together with the limit for an infinite metapopulation (solid
purple and orange lines indicated by arrows).

Figure 2.4 shows the stationary state in the limit of small Nm, derived using the fixed-
state approximation. The top row of fig. 2.4 shows how the fraction of demes fixed
at equilibrium in a rare and common habitat (i.e. E[k1/n1] and E[k2/n2] respectively)
depend on the strength of selection when mutation is appreciable (fig. 2.4a) compared
to when it is weak (fig. 2.4b), where ki, i = 1, 2, are as defined earlier, n1 and n2 are
the total number of demes in the rare and common habitats respectively, n = n1 + n2 is
the total number of demes in the metapopulation and mutation is assumed symmetric.
Out of all demes, n, in the metapopulation, the focal allele is favoured in 20% of demes
(constituting the rare habitat) so that n1 = 0.2 n, and disfavored twice as strongly in
the remaining 80% of demes (constituting the common habitat) so that n2 = 0.8 n. The
blue (red) color represents dynamics in the rare (common) habitat when we have a finite
metapopulation (i.e. n = 50, 100, 200, and 400 demes represented by the solid, dashed,
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dotted and dot-dashed lines respectively). Whereas, the purple (orange) color represent
dynamics in the rare (common) habitat when we have an infinite metapopulation.

When mutation is appreciable (µ/m = 0.05, fig. 2.4a), the focal allele is unlikely to be
lost by chance (blue colors). Furthermore, the equilibrium is insensitive to the number
of demes, and close to the solution for an infinite population (as can be seen from the
indistinguishability of the various lines for different N). When selection is strong (right of
fig. 2.4a, all demes are fixed for the favoured allele, whereas when selection is negligible,
on average half of the demes are fixed for each allele. In-between (i.e. 0.1 < Ns < 1),
the allele favoured in the rare habitat becomes rare, being pulled to low frequency by
migration from the commoner habitat, where it is more strongly disfavoured. When
mutation is weak relative to migration (as is likely in nature, i.e. µ/m = 0.0005; fig.
2.4b), this pattern is exaggerated. Above a critical value, Nscrit ∼ (1/2) log

[︂
1−ρ
ρ

]︂
∼ 0.7,

polymorphism can be maintained by divergent selection, despite drift and gene flow.
The equilibrium for an infinite population (purple solid line, indicated by arrow) gives
an upper bound, but stochastic loss from a finite set of demes reduces the expected
frequency, and increases the critical Nscrit (solid, dashed, dotted and dot-dashed blue
lines around Ns ∼ 1, for 50, 100, 200 and 400 demes respectively). There is a wide region
(0.03 < Ns < 0.7) where the allele is almost absent, being swamped by gene flow. However,
for very weak selection (fig. 2.4b, lhs), the frequency of the allele increases towards the
symmetric neutral equilibrium i.e. 0.5. In this regime, the frequencies in the two habitats
are almost identical, and cannot be distinguished in the figure. Furthermore, in this regime
(left of fig. 2.4a), although selection is negligible within demes (Ns < 0.1), migration is
much faster than mutation, and so selection over the whole metapopulation is effective in
eliminating the allele that is deleterious in most demes. Therefore in this scenario where
mutation is rarer than migration, and selection is weak relative to drift within a single
deme (i.e. µ ≪ m, Ns < 0.1), selection is nevertheless still effective at the level of the
whole metapopulation and is especially so in the habitat which has more demes (left of
fig. 2.4a).

The bottom row of fig. 2.4 shows the dependence on the relative rates of mutation
versus migration, µ/m. With high mutation rates, the equilibrium approaches a fraction
E[k/n] = 1/(1 + e−2Ns), given by the ratio of fixation probabilities (eq. (2.2)) in the
fixed-state approximation. There is strong divergence when Ns1 = 1 (right of fig. 2.4c),
and weaker divergence when selection is weak (fig. 2.4d, Ns1 = 0.1). With moderately
strong selection (fig. 2.4c), the allele that is less favoured overall is lost from the common
habitat, independent of the number of demes and mutation rate (orange line with arrow
head). In the rare habitat, with weak mutation (left of fig. 2.4c), the locally favoured allele
can be fixed in nearly half the demes in an infinite metapopulation (purple solid line with
arrow head), but tends to be lost by chance from finite metapopulations, even with several
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hundred demes (solid, dashed and dotted blue lines). When selection is weak relative to
local deme size (fig. 2.4d), selection can still be effective over the whole metapopulation,
eliminating the allele that is disfavoured overall (left of fig. 2.4d). However, when mutation
becomes comparable with migration, polymorphism is maintained by mutation pressure,
with some bias between habitats caused by weak selection (right of fig. 2.4d).

We focus on the regime where selection is comparable to drift (Ns1 ∼ 1), and mutation
is weak. This corresponds to the right half of fig. 2.4b (0.1 < Ns1), and the middle of
fig. 2.4c (10−4 < µ/m < 0.1). Then, as long as mutation is not extremely small, and
there are enough demes, the stationary state is close to that in an infinite metapopulation
(compare blue dashed and dotted lines with purple line in fig. 2.4c). However, note that
with weak mutation (µ/m ∼ 10−4 − 10−3, say), the locally favoured allele tends to be
lost even when there are several hundred demes.

Loss of diversity in a finite metapopulation

When deme sizes are fixed, and numbers of migrants are low enough that loci are typically
fixed for one or other allele, the state of the metapopulation at each locus can be described
by the number of demes, ki, in each habitat, i, that are fixed for the ‘1’ allele. The
distribution of ki evolves according to a transition matrix, and each locus follows an
independent realisation of the same stochastic process. Figure A.3 and A.4 in Appendix C
compares the dynamics of the fixed-state approximation with simulations, to illustrate its
accuracy. For Nm = 0.05 (fig. A.3), there is reasonable agreement between simulations
and the fixed state approximation and for lower Nm (i.e. Nm = 0.01), agreement is
even more close (fig. A.4). In both cases, variation is lost faster than predicted by the
fixed-state approximation (compare red and black lines of fig. A.3a and A.4a), because
migration tends to swamp adaptive divergence. The timescale is inversely proportional to
m, and is therefore slow. Here, we are focusing on the slow loss of adaptation through
random drift in small populations; with higher migration rates, swamping by gene flow
causes additional, faster, degradation.

Note that because the number of demes is limited, and because each deme flips between
fixation for alternative alleles, there is substantial variability in average allele frequency
between loci (grey lines). Therefore, adaptation is lost slightly faster in a finite than
in an infinite metapopulation (compare black and magenta lines in both fig. A.3a and
A.3b, which both derive from the fixed-state approximation). Nevertheless, the overall
mean, averaged over 40 loci, changes smoothly and predictably (red curves in fig. A.3
and A.4). We assume no mutation, and so all variation will inevitably be lost. However,
because the total population is large (i.e. 100 demes × 50 individuals per deme = 5000
individuals), and because very low migration rate increases the effective size of the whole
metapopulation, loss across the whole metapopulation is extremely slow: none of the 40

36



loci fix during the 104 generations shown in fig. A.3 and A.4 (grey lines).

Response to changing conditions across the metapopulation

Figure 2.5 shows some examples of the response to a change in conditions when parameters
change gradually in all demes of the rare habitat. We focus on the rarer habitat since we
are mostly concerned with adaptation in the rare habitat and its degradation by gene
flow.
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Figure 2.5: (A)-(C) Response of a metapopulation to changing conditions. Grey lines show the allele
frequencies, averaged over the 20 demes in the rare habitat, at each 40 loci; the red lines show the
overall mean in the rare habitat. The black line shows the prediction in the limit of small Nm (i.e. the
fixed state approximation). In figure A. Nm is kept fixed at 0.05 and Ns1 is increased gradually from
1 → 1.5 → 2 → 3 → 6 with Ns2 fixed at 2. In figure B., we have the reverse of figure A. where Nm is again
kept fixed at 0.05, Ns2 kept fixed at 2 and Ns1 is now decreased gradually from 6 → 3 → 2 → 1.5 → 1.
In figure C. Ns1 and Ns2 are kept fixed (at 10 and −20 respectively) and Nm is gradually increased
from 0.05 → 1 → 2 → 4 → 8 → 16. (D)-(F) Plot of p against the changing parameter. (G)-(I) Plot
of T1/2 (i.e. half time to reach the new equilibrium p) as a function of the changing parameter. Each
point in fig. 2.5d – 2.5i is based on a single replicate. For all plots, simulations are run with 100 demes,
N = 50, L = 40 loci and ρ = 0.2.

Figure 2.5a, 2.5d and 2.5g respectively show the consequence of a gradual increase in
Ns1 on the distribution of allele frequencies in the rare habitat, the equilibrium allele
frequency, p (averaged across all demes in the rare habitat) and the half time, T1/2, taken
to reach this equilibrium mean frequency. We begin initially with selection comparable to
drift (Ns = 1) and with a fraction of demes fixed for the locally favored allele, in the
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proportions predicted by an infinite metapopulation. After several thousand generations
when the local allele has reached an equilibrium, we gradually increase Ns1 until a new
equilibrium is obtained and do this continuously until all loci in the rare habitat reach
(near) perfect adaptation (fig. 2.5a, grey lines). With selection comparable to drift,
there is a substantial variation across loci with the 40 individual loci following markedly
different paths and a chance loss of 6 of the loci (due to the effect of drift). As selection
becomes stronger, the remaining polymorphic loci rise in frequency. Although there is still
considerable variation in the rates of increase across loci (20,000 – 50,000 generations, fig.
2.5a), the overall mean, p is approached quite smoothly (red lines). These new equilibrium
mean values have a positive dependence on Ns1 (fig. 2.5d) and it takes a shorter time to
reach a new equilibrium with stronger selection (fig. 2.5g).

Figure 2.5b, 2.5e and 2.5h correspondingly show a similar scenario as the above but with
Ns1 now changing in the opposite direction (i.e. from high to low value). Initially, with
selection much stronger than drift, all 40 loci are at a considerably high frequency (near
1) with less variability amongst them (lhs of fig. 2.5b, grey lines) so that the equilibrium
mean allele frequency ∼ 1 (fig. 2.5e, rhs). Also, because of this strong selection, the
new equilibrium is approached rather fast (fig. 2.5h, rhs). As Ns1 declines, there is an
apparent increase in the variability amongst loci so that with Ns1 = 1 drift becomes
sufficient enough to cause the loss of three quarters of the loci (rhs of fig. 2.5b, grey lines).
Because only 10/40 of the loci remain polymorphic, the overall mean is ∼ 0.1 (fig. 2.5e,
lhs).

Figure 2.5c, 2.5f and 2.5i show the response (of the distribution of allele frequency,
the equilibrium mean frequency, p and the half time to p) to an increase in Nm with
Ns1, Ns2 = 10, −20 throughout. Since selection is generally strong relative to drift
(Ns ≫ 1) and gene flow is initially low (Nm = 0.05, fig. 2.5c, lhs), the rare habitat
is initially perfectly adapted with p ∼ 0.99 (fig. 2.5f, lhs). However, as Nm increases,
gene flow gradually degrades adaptation as the focal allele is rapidly swamped until it
is lost from the population after ∼ 13, 000 generations (fig. 2.5c, rhs). Since 0 loci
remain polymorphic at this point, p ∼ 0 (fig. 2.5f, rhs). The half time to reach the new
equilibrium values depend non-monotonically on Nm.

In fig. 2.5a – 2.5c, the dynamics are closely predicted by the small Nm limit (compare
red and black curves) which is based simply on the rates of substitution in both direction.

2.4 Discussion

Our analysis uses simulation, the diffusion approximation and the “fixed-state” approxi-
mation to understand how drift degrades adaptation in a finite metapopulation as well as
how a finite metapopulation changes through time, as it responds to changes in both local
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and global conditions. The “fixed state” approximation applies either where variation is
due to mutation (when it is plausible that Nµ < 1 within local demes, or even at the level
of the whole population), or when variation is maintained by divergent selection across
the whole metapopulation, but migration is low relative to drift (Nm < 1).

Using the fixed-state approximation, it was shown that when selection is weaker than drift
(i.e. Ns < 1), polymorphism can only be maintained for a very narrow range of habitat
proportions (fig. A.1). However with strong selection, this range becomes much wider.
Also, using both simulations and the fixed state approximation, we showed that when
conditions in a single deme of the metapopulation change, the population responds on a
short time scale of order 1/m, simply because in the regime we study, local genetic variance
is maintained by migration. Variation may be temporarily lost as local conditions change,
but can quickly be recovered. On the other hand, when conditions change across the whole
metapopulation, variation that was maintained by divergent selection can be permanently
lost, and is only slowly recovered by mutation. Even under constant conditions, variation
at a locus can be lost by chance, unless there are a very large number of demes.

To simplify our analysis, we assumed an island model, with a large number of spatially
equivalent demes (i.e. soft selection). This is unlikely to be the case in nature, but may
nevertheless capture the behaviour of spatially extended populations if there is long-range
migration, which can introduce locally adaptive alleles from a distant habitat. It may be
that a leptokurtic dispersal distribution can allow efficient adaptation, if locally favoured
alleles are not swamped, and yet can be recovered by occasional long-range migration
(Atkinson et al., 2002; Fric and Konvicka, 2007).

Our analysis can however be further extended to hard selection, by including explicit density
regulation; Szép et al. (2021) showed that one can still apply the diffusion approximation,
provided that growth rates are not too high. With hard selection, substitution rates
now depend on deme size through Ns, and through the number of immigrant alleles,
mNp, mNq. This dependence can be approximated by assuming that the population size
is determined by the genetic load. Sachdeva et al. (2022) and Szép et al. (2021) refer
to this as the “semi-deterministic” approximation which is accurate when demographic
stochasticity is weak. One can apply the “fixed-state” approximation by further assuming
that there are enough loci that the mean load is proportional to the mean across loci of
the number of demes fixed for one or the other allele. The transition matrix can then be
calculated as before, but is now a function of the population sizes in the two habitats,
{N1, N2} which both depend on the current state via the load. The key assumption here
is that with enough loci, the population sizes change almost deterministically, following
the distribution of states across loci. One complication with hard selection however is the
existence of multiple stable equilibria: changing conditions would not just cause equilibria
to shift but also changes the rates of transitions between equilibria.
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A key assumption in our analysis is that selection is directional: in a given environment,
alleles experience a fixed selection pressure, which tends to drive out variation. More often,
selection may favour an intermediate optimum for a quantitative trait (i.e., stabilizing
selection), such that when the mean is well-adapted, alleles are close to neutral. Our
modelling framework can describe this case, but it is much more complex, since many
different allele combinations can achieve the same optimum. However, if selection on each
allele is weak (Ns < 1), then the infinitesimal model (Barton et al., 2017) applies, and can
also describe the population dynamics (Barton and Etheridge, 2018). Local adaptation
may be possible under higher migration rates in such a regime.

We have shown that it is very difficult for directional selection to maintain local adaptations
when selection is weak, relative to deme size (Ns ∼ 1). Migration must also be weak if it
is not to swamp adaptation, in which case alleles are typically near to fixation, limiting
the genetic variance available for adaptation, and preventing the recovery of variation
lost to random drift. This contrasts with global adaptation: selection can be effective
across the whole metapopulation, even if selection is weaker than drift within local demes
(Ns < 1), provided that there is sufficient gene flow (Nm > 1) (Barton and Rouhani,
1993). Thus, we expect local adaptation to depend on relatively more strongly selected
alleles than global adaptations (Yeaman, 2015).

In this work, we have also introduced a novel approach to understanding the dynamical
evolution of metapopulations. Although the full behaviour requires simulation, the
diffusion approximation allows the stationary state to be calculated, and identifies the
key dimensionless parameters. Moreover, when migration is rare, we can use a fixed state
approximation that connects population genetics with models of adaptive walks (Orr,
1998).

Our work suggests several open questions that invite theoretical study. First, although we
show that local adaptation requires that directional selection be stronger than drift within
demes, that may not be the case with stabilizing selection. Under the infinitesimal model
(Barton et al., 2017), genetic variance may be due to weakly selected alleles (Ns < 1),
and yet can still sustain adaptation of polygenic traits. Second, local adaptation may
be greatly impeded by hard selection: if maladapted populations collapse, they cannot
be the site of future adaptation. Testing the theory in nature is challenging, because it
requires measurement of fitness as well as genetic data. Nevertheless, it might be possible
to find how manipulation of local deme size and gene flow (or natural variation in these
parameters) alters fitness. If we know of loci responsible for local adaptation (e.g Pfeifer
et al. (2018); Jones et al. (2012)), then the theory developed here can be applied more
directly, though in practice it would need to be modified to account for actual spatial
structure.
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In conclusion, the methods introduced in this study allow us to explore how species adapt
to diverse environments: we can find how organisms expand their range to a wider span of
environments, through local adaptation that is sustained by variation maintained across
the whole metapopulation. Many questions remain to be studied within this framework: for
example, how populations adapt to large numbers of diverse habitats; whether population
regulation (“hard selection”) leads to a feedback that impedes adaptation; and whether
genetic variation can be better sustained under stabilizing selection towards a varying
optimum, rather than the directional selection studied here. We believe that, despite
the absence of explicit spatial structure, this approach will be a fruitful way to better
understand what limits the range of environments that a species can occupy.
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Chapter 3

Local adaptation in a metapopulation - a
multi-habitat perspective

Oluwafunmilola Olusanya, Nick Barton, Jitka Polechova

Abstract

This research extends previous soft selection models of local adaptation in metapopulations
containing two habitats to a multi-habitat scenario where each habitat experiences distinct
selection pressures. In particular, we focus on a three-habitat example where selection
favors an allele A in habitat 1, disfavors it in habitat 3 and A is either favored or disfavored
in habitat 2 depending on the locus under consideration. Employing the diffusion and
fixed state approximations while assuming linkage equilibrium, we explore the conditions
for the persistence of a polymorphism and derive analytical formulae for critical thresholds
required for such persistence. Our findings reveal that the range of polymorphism is
notably wider under conditions of restricted gene flow between demes and this is more
pronounced when the habitat where the allele is favored is similar in proportion to the
habitat where it is maladaptive. Furthermore, we demonstrate that the maintenance of
polymorphism is significantly shaped by the balance between selection and migration, with
strong selection relative to migration being a key driver for continued persistence. Overall,
this study sheds light into how the interplay between migration, selection, drift and habitat
proportions shape polymorphism in metapopulations, providing insights into evolutionary
mechanisms that drive and sustain genetic diversity in fragmented populations.

Keywords: metapopulation, local adaptation, polymorphism, selection, gene flow, migra-
tion load, drift.
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3.1 Introduction

In evolutionary biology, local adaptation refers to the process by which populations evolve
unique traits and genetic variations to better suit their respective habitats (Williams,
2018). These adaptations can encompass changes in an organism’s physiology (e.g.,
metabolic rate), morphology (e.g., body size) or other attributes. Local adaptation
plays an important role in the evolution and survival of populations in heterogeneous
environments. It can be a driver for speciation (i.e., the formation of new species)
when populations become increasingly specialized to their local conditions and lose their
capacity to interbreed with individuals from other populations (Gavrilets, 2003). On the
contrary, its loss can have serious consequences for species and for the ecosystem they
inhabit (Walters and Berger, 2019). For example, it can lead to increased vulnerability
to environmental changes and extinction risks as well as the disruption of ecological
interactions (Frankham et al., 2017; Urban, 2015). Therefore, understanding the dynamics
and factors that promote or constrain such adaptations is crucial for conservation and
management efforts. This understanding can help in designing strategies to preserve
genetic diversity within metapopulations and further help to predict the response of
populations to changing environmental conditions such as climate change and habitat
fragmentation.

Local adaptation typically emerges from complex interactions between ecological and
evolutionary processes. Ecological processes constitute the interactions between organisms
and their environment. When populations are distributed through space (as a result of
either natural or human-induced activities, like habitat fragmentation), they are exposed
to different environmental conditions such as variations in abiotic factors like temperature,
resource availability, climate, etc., or biotic factors like predation and competition. These
environmental differences can engender variation in the selective pressures faced by these
populations, promoting the emergence of local adaptations and genetic differentiation
among them. A typical example of this are metapopulations of pocket gopher (Thomomys
spp) in the Great Basin region of North America (Rogers, 1991) where populations residing
in meadow habitats characterised by depressions (or valleys) with high water availability,
have evolved narrower skulls and longer claws for burrowing through soft, moist soils.
Whereas, those residing in the sagebrush steppe in more arid regions, have evolved broader
skulls and shorter claws to help them traverse drier, more compact soils. These adaptations
have enhanced survival and reproduction within each local gopher population.

Evolutionary forces also greatly influence local adaptation. These forces include natural
selection, mutation, recombination, gene flow (due to migration) and genetic drift. Strong
selection pressures enhance the spread and accumulation of locally beneficial mutations
within sub-populations, increasing fitness as a whole. Mutations generate the novel genetic
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variants needed for adaptation, and recombination rearranges genetic material, providing
novel allelic combinations that can contribute to such adaptations. Migration plays an
integral role as it connects demes or sub-populations within a metapopulation. It can
however have discordant consequences (Blanquart et al., 2012; Sachdeva et al., 2022) – it
can engender genetic diversity thereby facilitating adaptation through the proliferation
of advantageous traits across the metapopulation, yet can nevertheless also lead to the
introduction of maladapted alleles to an otherwise perfectly adapted deme, thus disrupting
the local gene pool, and reducing fitness. This “migration load” may drastically reduce
adaptation, increasing the risk of extinction (Holt and Gomulkiewicz, 1997). Finally,
genetic drift, the random fluctuation in allele frequency within a population also interferes
with local adaptation. This is particularly true in small populations (LaBar and Adami,
2017; Whitlock, 2000) that are more susceptible to chance events which causes the loss or
fixation of particular alleles despite their adaptive value (Blanquart et al., 2012).

Metapopulation models of local adaptation typically distinguish between two modeling
paradigms: hard and soft selection. The hard selection model considers an explicit feedback
between ecological processes (in particular, population size) and evolutionary processes
(allele frequencies at different loci) in shaping metapopulation dynamics and considers the
possibility of both local and global extinction resulting from maladaptation within the
metapopulation (Haldane, 1956; Szép et al., 2021). Whereas, the soft selection model,
which is a useful simplification, ignores this feedback and assumes a constant population
size for each subpopulation over time despite the level of maladaptation. In this work,
we explore the latter kind of model, as this allows us to disentangle the dynamics of
local adaptation and the maintenance of genetic variation from the confounding effects of
demographic fluctuations, thus providing us with a basic understanding of the evolutionary
processes at play as well as insights into the stability of the metapopulation.

An important concern when exploring these models are the assumptions about the
metapopulation landscape. Theoretical models exploring the dynamics of local adaptation
with constant deme sizes have historically focused on the interactions between two
patches or habitats (Hoekstra et al., 1985; Barton and Whitlock, 1997; Lenormand, 2002;
Blanquart et al., 2012; Bolnick and Otto, 2013; Szép et al., 2021; Barton and Olusanya,
2022). However, since nature is more intricate, many species experience environmental
gradients that span more than two distinct environments, which calls for the expansion of
theoretical models to account for more than two habitats simultaneously. This will not only
enable us better capture the more complex nature of adaptation across a heterogeneous
landscape but will also provide insights into the relative significance of local adaptation
versus gene flow in shaping population divergence and maintaining genetic diversity.

In this study, we therefore focus our attention on a metapopulation with more than
two habitats. Specifically, we concentrate on simple soft selection models, aiming to
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identify the key factors or conditions that facilitate the persistence of genetic variation (or
polymorphism) in such metapopulations. To achieve this, we rely solely on mathematical
theory formulated based on the diffusion approximation. This approach allows us to
describe the dynamics of allele frequency under soft selection.

3.2 Model and Methods

We consider an infinite-island metapopulation model (Wright, 1931) where the metapop-
ulation comprises a large number of demes spread across n habitats. Each habitat
(i = 1, . . . , n) exhibits local adaptation via a polygenic trait, Zi (where the subscript, i
is used here to indicate that the same genotype can be associated with different trait
values in the different habitats) and Zi is influenced by l loci. The demes are connected by
migration so that every generation, they each send out migrants at a rate m into a migrant
pool from which these migrants are subsequently redistributed (with equal probability)
to the different demes. Within each deme, individuals are randomly mating haploids,
implying two potential genotypes: A and a per locus, and loci contribute multiplicatively
to individual fitness. We also ignore both forward and backward mutations between A

and a so that populations rely on existing genetic variation for adaptation. This is valid
in the limit where mutations are rare and where there are very many demes (Wright,
1931) so that polymorphism can be maintained by other processes such as migration and
selection even in the absence of new mutations.

Our model incorporates an antagonistic environmental effect, where selection favors
different allelic variants depending on the specific environmental condition. Put simply,
selection pressure varies across the metapopulation, leading to distinct fitness advantages
of Zi := ∑︁l

j=1 si,j in i. Consequently, what may enhance fitness in one habitat could
potentially reduce fitness in another habitat. In particular, we assume that fitness of the
A/a allele at any given locus j (j = 1 . . . , l) follows the ratio esi,j : 1, where s1,j > 0 (i.e.,
A is always favored) in habitat 1, sn,j < 0 (A is always disfavored) in habitat n, and may
have positive or negative values in the other n− 2 habitats so that A can either be favored
or disfavored depending on the locus and habitat.

While our model generalizes to any number of habitats, n, to reduce the complexity of our
analytical derivations, we focus primarily on a specific example involving three habitats
(i.e., i = 1, 2, 3) where each habitat is in proportion, α1, α2 and α3 respectively. First, we
consider a scenario where s1,j = s3,j (in magnitude) and s2,j = 0 (so that selection is neutral
in habitat 2). This implies that the fitness of the A allele at any locus j in the three
habitats are respectively in the ratio esi,j : 1 : e−si,j as illustrated in fig. 3.1 (scenario 1).
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Figure 3.1: Antagonistic environmental effect for the allele A i.e., the strength and direction of selection
for the A allele changes across the metapopulation as we go from one extreme habitat to the other.

Next, we consider a second scenario where s1,j = s3,j (in magnitude) but {s2,1, · · · , s2,j} =
{−1,−1, · · · ,+1,+1} i.e., where the A allele is selectively favored at half the loci in
habitat 2 and maladaptive at the remaining half. This is done to check whether there
exists an advantage to having an actual intermediate habitat. The assumption of symmetry
(i.e., s1,j = s3,j) is later on relaxed.

Within this framework, we adopt a model of soft selection where the population size in
each deme of the metapopulation is equal and constant over time (we denote this as
N). To simplify the model further, we assume linkage equilibrium (LE), disregarding
any nonrandom associations or correlations between loci. This assumption is valid when
evolutionary processes occur slowly relative to the rate of recombination. Under these
assumptions of constant size and LE, allele frequencies at each locus can be assumed to
evolve independently and the problem reduces to that of a single locus, where we need
only know the average allele frequency across all demes at a given locus. Hence, going
forward, we can drop the locus index j and si,j reduces to si.

Diffusion approximation (single locus dynamics - soft selection)

Population genetics relies extensively on the diffusion approximation which establishes a
framework for understanding the distribution of allele frequency across a range of models
which are equivalent if s, 1/N ≪ 1.

In continuous-time and assuming linkage equilibrium, the rate of change in frequency of
the A allele due to selection, migration and drift at any haploid locus, and in any deme in
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habitat i can be written as,

dpi
dt

= piqi
∂ log(W i)

∂pi
+m(p− pi) + σpi

(3.1)

where the direction of evolution as determined by the slope of W i can be obtained using
fig. 3.1. σpi

symbolizes the effect of drift and is a real-valued stochastic process with zero
mean and covariance

⟨︂
σpi

(t)σpi
(t∗)

⟩︂
= pi(t)qi(t)δ(t−t∗)

N
. Finally, p is the frequency of the A

allele averaged across all demes of the metapopulation, is equal to the average in the
migrant pool since migration is uniform, and depends both on the mean frequency of the
A allele in the different habitats as well as the proportion of demes in these habitats i.e.,

p ≡ E[p] = α1 p1 + α2 p2 + α3 p3 with, α1 + α2 + α3 = 1 (3.2)

According to Wright (1937) and Kimura (1955), the stationary distribution of allele
frequency ψ(p) at any locus and in any i can be written as,

ψi[p] = 1
Ci
pi

2Nmp−1(1 − pi)2Nmq−1W
2N
i

where Ci is the normalization constant and q = 1 − p. Using the above, the stationary dis-
tribution in the three habitats (i.e., ψ1[p], ψ2[p] and ψ3[p]) can be obtained by substituting
in i and the corresponding W i (using the values in fig. 3.1) and this will depend on the
parameters Nm and Nsi. One can then numerically integrate over these distributions to
obtain the expectations, p1, p2 and p3, which can now be substituted into eq. (3.2) to get
the mean frequency of the A allele in the metapopulation (using a self-consistent iterative
process).

Fixed-state approximation (limit of low migration - Nm << 1)

The fixed state approximation is a simplification which assumes gene flow is limited (i.e.,
Nm ≪ 1) among the different habitats (see Barton and Olusanya, 2022) so that any deme
is “nearly fixed” for one or other allele with stochastic transitions between them. Under
soft selection, this allows us to characterize the genetic state of habitat i by the rate of
transition (i.e., the rate at which one allele replaces the other in the population) from a

to A (or A to a). The transition rate from a to A (A to a) is simply the product of the
fixation probability of the A (a) allele times the number of new A (a) alleles entering the
population (see equation 2.2 of Barton and Olusanya (2022) where 1 ≡ A and 0 ≡ a here).
Using this approximation, one can then estimate the equilibrium expectation of A (a) in i
by the equilibrium proportion of demes fixed for A (a).

As in Barton and Olusanya (2022), suppose we represent the proportion of demes fixed
for the A allele in habitat i by P i and that fixed for the a allele by Qi then, focusing on
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the A allele, the evolution of P i in any i can be expressed as,

∂tP i = 2siNm

1 − e−2Nsi

(︂
pQi − qe−2NsiP i

)︂
, i = 1, 2, 3 (3.3)

p =
3∑︂
i=1

αiP i, 1 =
3∑︂
i=1

αi (3.4)

This will be used later on to analyze the conditions for a polymorphism.

3.3 Results

We begin by considering the scenario where the A allele is favored in habitat 1 (i.e.,
{s1,1, · · · , s1,j} = {+1, · · · ,+1}), selectively neutral in habitat 2 (i.e., {s2,1, · · · , s2,j} =
{0, · · · , 0}) and maladaptive in habitat 3 ({s3,1, · · · , s3,j} = {−1, · · · ,−1}). Since alleles
evolve independently, we drop the j subscript and focus on dynamics at a single locus
taking s1 = 1, s2 = 0 and s3 = −1 respectively. Our interest is in determining the
conditions that favour the persistence of a polymorphism under such a scenario. In
particular, we derive critical selection and migration thresholds that allows for such
persistence. But first, let us explore the role of gene flow.

3.3.1 Role of gene flow

Figure 3.2 shows how the expected frequency of the A allele in habitats 1, 2 and 3
respectively (i.e., E1[p], E2[p] and E3[p]) depend on the average allele frequency, p, in the
migrant pool given different levels of gene flow, Nm. The results are obtained numerically
using the diffusion approximation.

2[p]

1[p]

3[p]

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

Ns = 6

Nm = 0 Nm = 1 Nm = 3

Figure 3.2: Dependence of the expected frequencies of the A allele in the three habitats on p for different
levels of gene flow (Nm) and with fixed Ns. Black arrows pointing towards E2[p] indicate that gene
flow pushes the allele frequencies in the extreme habitats (i.e., in i = 1 and i = 3) towards E2[p] which
coincides with the average, p in the migrant pool. Results are obtained numerically using the diffusion
approximation.
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In the absence of gene flow (i.e., Nm = 0), the extreme habitats are fully well adapted to
their local environmental conditions with the frequency of the A allele being 1 in i = 1
(solid blue line) and 0 in i = 3 (dashed blue line; so that the a allele has frequency 1 here).
Increasing gene flow however introduces maladaptation, reducing the frequency of the
favored allele in both habitats and pushing them towards the average in the migrant pool.

3.3.2 Deterministic equilibria.

We obtain the equilibria1 for the system numerically by plotting p− E[p] against p using
eq. (3.2).

We find (fig. 3.3a) that a stable polymorphism (0 ≤ p ≤ 1) always exists for any
combination of α1, α2, α3 provided that selection is strong relative to migration (i.e.,
Ns ≳ Nm, blue line) as can also be seen in fig. 3.3b (black dots). This means that if Ns
is less than a given critical threshold value, which we will denote by Nscr (in this example
Nscr = 3.1, fig. 3.3b), polymorphism will be lost and one of the alleles (in this case the A
allele) would fix throughout the metapopulation (see lhs of fig. 3.3b).

Ns = {5, 0, -5}

Ns = {3, 0, -3}

Ns = {1, 0, -1}
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p

0.02

0.04

0.06

0.08

p - [p]
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{α1, α2, α3} = {0.5, 0.3, 0.2}

(a)
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Ns0
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1[p], 2[p] ≡ p, 3[p]

(b)
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Figure 3.3: (a.) The three possible equilibria 0 ≤ p ≤ 1 for the A allele for a given combination
{α1, α2, α3}. (b.) The stable polymorphism p only exists past a critical threshold, Nscr = 3.1 (c.)-(d.)
Trivial case where the stable polymorphism always exists at p = 0.5 independent of Nm and Ns. Black
dots in figs. (b.) and (d.) represent the average allele frequency p across the metapopulation. Results are
obtained numerically using the diffusion approximation.

1Equilibria are points where the curves intersect the x − axis (see figs. 3.3a and 3.3c).
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A trivial case occurs when the two extreme habitats (α1 and α3) are precisely balanced
(i.e., are equally common or rare), then there would always exist a stable polymorphism
at p = 0.5 independent of Nm and for all values of Ns (as can also be seen in fig. 3.3d).

In this study, we are interested in cases where 0 ≤ p ̸= 0.5 ≤ 1 as this provides a
basis for exploring critical thresholds. In particular, we consider situations where α1 > α3

independent of α2 (i.e., the habitat where the A allele is favored has a larger proportion
of demes compared to the habitat where it is disfavored).

3.3.3 Maintenance of polymorphism and critical thresholds

Here, we consider how the persistence of a polymorphism is influenced by factors such as
migration, selection, demic proportion and drift as well as provide an analytical handle
on thresholds for persistence.
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Figure 3.4: Dependence of the equilibrium average allele frequency on Ns (a.) and Nm (c.). Dashed
lines in (a.) represent the critical selection thresholds, Nscr, above which a polymorphisn is possible and
those in (c.) represent the critical migration threshold, Nmcr below which a polymorphism is possible.
(b.) and (d.) show the mean load in the metapopulation and how it depends on Ns and Nm respectively.
The x − axis is plotted on a log scale to better visualise behaviour at longer ranges. Results are obtained
numerically using the diffusion approximation.

Figure 3.4a shows that when selection is weak (or comparable) relative to migration, allele
A eventually fixes across the metapopulation (hence an initial increase in load fig. 3.4b)
and this load decreases as the intensity of selection increases. Figure 3.4c further shows
that limited migration favors the maintainance of polymorphism as the migration load in
the population is lower in this case (lhs. of fig. 3.4d) due to the lower homogenizing (and
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hence deleterious) effect of migration. With increasing Nm however, the A allele begins
to invade and fixes across the metapopulation with the load converging to the maximum
possible (∼ sp). Interestingly, all that matters here is the ratio of the proportion of demes
where the A allele is favored to that where it is maladaptive i.e., α1/α3, and not the actual
proportions α1 and α3. We call this ratio β (i.e., β = α1/α3). The lower the value of β,
the longer the polymorphism persists, despite increasing Nm, and thus, the higher the
critical migration threshold below which polymorphism is possible. This makes sense as
the potential for swamping increases the more dissimilar the extreme habitats are.

We now investigate whether or not there is an advantage to having a truly intermediate
habitat2. Does this for instance make it easier to maintain polymorphism? In other words,
we consider a scenario where {s2,1, · · · , s2,j} = {−1,−1, · · · ,+1,+1}. However since loci
are decoupled under our model, we can simply follow the dynamics at a single locus
conditioned on p at that locus. Hence, considering the dynamics at locus 1 and dropping
the j index, we have s1 = +1, s1 = −1 and s3 = −1.

From fig. B.1a (and B.1b) in appendix B.0.1, we notice that the critical threshold, Nscr
(and Nmcr) as well as the dynamics past this threshold, i.e., Ns > Nscr (and Nm < Nmcr)
are exactly the same as can be seen in fig. 3.4a (and 3.4c) provided that β is the same
in both scenarios (compare blue and red curves in fig. B.1a and fig. 3.4a as well as in
B.1b and 3.4c). In fig. 3.4a (blue curve), the actual demic combination used to obtain
the plot was {α1, α2, α3} = {0.3, 0.5, 0.2} meaning that the A allele was favored in 30% of
demes, selectively neutral in 50% of demes and disfavored in 20% of demes so that β = 1.5.
However, in fig. B.1a, the combination used was {α1, α2, α3} = {0.6, 0.2, 0.2} meaning
that the A allele was favored in 60% of demes and disfavored in 40% of demes so that β
is again 1.5. In essence, we see that what really matters for the overall dynamics is not
the individual proportion of demes but the value of β. So for a single locus, independent
of whether selection is neutral or disadvantageous in the intermediate habitat, we will
obtain similar dynamics overall provided that β is the same.

In fact, for a single locus, this second scenario considered above, i.e., with s1 = 1, s2 = −1
and s3 = −1 reduces to the two habitat case considered in Szép et al. (2021) where we
only need to know the proportion of demes where the allele is favored i.e., α1 (since the
proportion where it is disfavored can be obtained simply as 1 − α1).

The trivial behaviour observed above can be attributed to the assumptions of our model.
With hard selection (not assumed here), where alleles co-evolve with each other coupled
via N , we would expect to see a non-trivial dynamics.

Next, we direct our attention towards obtaining analytical formulae for critical thresholds
2truly intermediate meaning that half of the loci in this habitat favors the A allele, whereas, it is

disfavored in the remaining half.
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(focusing strictly on the case s1 = 1, s2 = 0, and s3 = −1). To do this, we employ the fixed
state approximation introduced in section 3.2. First, we focus on the critical selection
threshold, Nscr, above which a polymorphism is possible. This can be split into threshold
values when gene flow among the different habitats is limited (Nm ≪ 1) and when it is
abundant (Nm ≫ 1). In the limit of low migration where allele frequency distribution are
bimodal with loci nearly fixed for the A or a allele, the equilibrium mean allele frequency
p across the metapopulation can be obtained by first setting the lhs of eq. (3.3) to 0 and
solving for P1, P2 and P3 respectively. These can now be substituted into eq. (3.4) to
obtain p as,

p = α1 e
2Ns − α3

(e2Ns − 1) (α1 + α3)
, α1 + α2 + α3 = 1 (3.5)

Equation (3.5) can then be solved for Ns yielding Ns = 1
2 log

[︂
α1
α3

]︂
. So, in the limit of low

Nm, we require a selection strength above ((1/2N)log(α1/α3)) to maintain a polymorphism.
To find the threshold value for larger values of Nm, we use a deterministic analysis (see
also soft selection analysis in Szép et al. (2021)). Just above the critical selection threshold,
p1 will be close to 1, p2 = p and the difference between p1 and p3 will be very slight (see
fig. 3.3b for example). Thus, we can set p1 = 1−ϵ1, p1−p3 = ϵ2 and p2 = α1(1−ϵ1)+α3(1−ϵ1−ϵ2)

1−α2
.

Substituting these into eq. (3.1), replacing pi with pi (where i = 1, 2, 3) and setting σpi=0

(since we’re dealing with a deterministic analysis), we obtain differential equations, dp1
dt

,
dp2
dt

and dp3
dt

respectively. Consequently, solving dpi
dt

= 0 for pi (retaining only lower order
terms) gives the deterministic threshold as scr = 1−α2−2α3

1−α2
m ≡ α1−α3

α1+α3
m. Hence, we have,

Nscr ≈

⎛⎝ α1
α3

− 1
α1
α3

+ 1

⎞⎠Nm+ 1
2 log

[︄
α1

α3

]︄
≡
(︄
β − 1
β + 1

)︄
Nm+ 1

2 log(β) (3.6)

In a similar fashion, using eq. (3.6), we obtain an analytical expression for the critical
migration threshold, Nmcr as,

Nmcr ≈
(︄
β + 1
β − 1

)︄(︃
Ns− 1

2 log(β)
)︃
. (3.7)

Equations (3.6) and (3.7) are approximate equations obtained by adding together the
Nm → 0 (i.e., fixed state) threshold and the deterministic threshold.

Interestingly, both equations (i.e., eq. (3.6) and (3.7)) depend only on β (i.e., α1/α3) and
not on α2 implying that in this case, having an intermediate habitat makes no difference
to critical selection and migration thresholds.

A comparison of these two equations (i.e., eq. (3.6) and (3.7)) with numerically obtained
values from the diffusion approximation (see fig. B.4b in appendix B.0.4) shows quite
a good fit between our derived formulae and the numerical expectation. In particular,
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as the rate of gene flow (Nm) increases (fig. B.4a), we observe a corresponding rise
in Nscr (the critical selection threshold) due to heightened migration load within the
population resulting from increased gene flow. Consequently, a greater selection strength is
necessary to counteract this effect. Nscr is also higher with higher β := α1/α3 allowing for
polymorphism in a restricted range of selection intensity when the two extreme habitats
are more dissimilar in proportion. Furthermore, with increasing Ns, (fig. B.4b) we observe
an increase in the critical migration threshold, Nmcr as stronger selection reduces the
tolerance for the coexistence of both alleles (the A and a allele). Consequently, higher
levels of migration are needed to counteract the loss of genetic diversity and maintain
polymorphism within the metapopulation. This effect is amplified when the proportion of
demes favoring the A allele is lower than the proportion disfavoring it as in this case, the
A allele faces a greater challenge in spreading and persisting across the metapopulation
because it encounters more demes where it is at a disadvantage.

So far, we have established that in the symmetric case (s1 = s3 = s), the intermediate
habitat (i.e., where s2 = 0) makes no difference to critical migration and selection
thresholds (see also (3.6) and (3.7)). To check whether this habitat matter in any other
way (i.e., past critical thresholds), we compare the dynamics of p past the threshold values
i.e., at Nm < Nmcr (Ns > Nscr) for two metapopulations with equal β and different α2.
In particular, for the two metapopulations, we use the demic proportions {0.2, 0.7, 0.1}
and {0.4, 0.4, 0.2} respectively. Our results, fig. B.2a (fig. B.3), show similar dynamics
(divergence) for p for Nm < Nmcr (Ns > Nscr) for both metapopulations suggesting the
independence of these results on α2. We furthermore check if this conclusion holds true
with asymmetric selection (i.e., with s1 ≠ s3) and find that even under the assumption of
asymmetry, α2 has no influence on critical migration thresholds for polymophism or on
the divergence of p at Nm < Nmcr (see fig. B.2b).

Finally, we quantify the effect of drift (finite deme sizes) on the maintenance of polymor-
phism and how this depends on habitat proportions (fig. 3.5a and 3.5b) while also relaxing
the assumption of symmetric selection. To do this, we consider the s1, s3 region within
which a polymorphism persists and explore its dependence on different deme sizes N
(starting from larger N to lower N). Although what really matters for polymorphism are
the scaled parameters Ns1, Ns3 and Nm, plotting this way allows us to easily draw com-
parison and identify whether for a given s1, s3 value, polymorphism is better maintatined
in a metapopulation with larger or smaller deme sizes.

We see from fig. 3.5a and 3.5b that increasing drift (i.e., increasing 1/N) reduces the overall
genetic diversity in the metapopulation and constrains the region for which polymorphism
is possible. This is because with increasing drift, certain alleles become more or less
common purely by chance, leading to a decrease in the overall number of the two alleles
segregating in the population. This reduction in genetic diversity consequently limits the
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potential for polymorphism. We also observe that this behaviour is more pronounced with
higher β (i.e., with α1 ≫ α3).

We further explore the effect of drift on the critical migration threshold. We see from
fig. 3.5c that genetic drift substantially reduces the critical migration threshold required
for a polymorphism so that relatively low levels of gene flow can have a large impact in
preventing genetic differentiation resulting from drift.
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Figure 3.5: (a.)-(b.) Effect of drift on s1/s3 region for which polymorphism is possible (s1 and s3 are the
strength of selection for and against the A allele in habitats 1 and 3 respectively). We have also relaxed
the assumption of symmetric selection here (c.) Effect of drift on the critical migration threshold below
which polymorphism is possible. (a).-(b.) are obtained from the diffusion approximation. (c.) is obtained
using eq. (3.7).

3.4 Discussion

The preservation of genetic ploymorphisms within metapopulations has been a topic of
significant interest in population genetics. Our work builds upon previous research on local
adaptation in a metapopulation involving two habitats, extending the analysis to a three-
habitat scenario. Our findings offer insights into the interplay between selection, migration,
drift and habitat proportions in maintaining genetic diversity within metapopulations.

One key finding of our study is the notable increase in the range of polymorphism
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with limited migration between demes. This is consistent with previous research (albeit
involving two habitats) where reduced gene flow is found to enhance local adaptation
and promote genetic diversity within metapopulations. Constrained gene flow fosters the
persistence of polymorphism by preventing the rapid homogenization of alleles across
habitats. This reinforces the fact that in nature, factors such as dispersal barriers or other
mechanisms that hinder gene flow could be vital in preserving genetic diversity within
metapopulations. For a given Nm, we also find that the range of polymorphism is further
increased if the habitat where the allele is well adapted and maladaptive respectively are
in roughly equal proportions. This suggests that when selective pressures in these habitats
are evenly matched, this creates an environment where polymorphism can thrive. This
may arise from a dynamic equilibrium in which opposing selection strengths sustain a
stable polymorphic state, thereby preventing the complete fixation of one allele over the
other.

Our study also highlights the crucial role of selection relative to migration (Ns ≳ Nm)
in driving the persistence of polymorphism. Strong selection counteracts the homoge-
nizing effect of gene flow ensuring the coexistence of both alleles in the metapopulation.
Conversely, genetic drift constrains the region within which polymorphism is possible.

Under our (single locus) model of soft selection, we found no clear advantage for the
maintenance of polymorphism when there is an intermediate habitat where alleles are
selectively neutral and this holds true away from critical thresholds (i.e., for Ns > Nscr

and Nm < Nmcr) and with asymmetric selection (i.e., with s1,j ̸= s3,j). Instead, our
findings emphasize that what really matters for the persistence of polymorphism is the
relative balance of favorable and maladaptive habitats. Specifically, the ratio of the
proportion of demes where the allele is favored to where it is maladaptive (i.e., β) emerges
as an important parameter driving the dynamics of polymorphism. This result however
holds under the infinite island model assumed in this work. With finite islands, genetic
variation (and hence polymorpgism) could be lost by chance (see chapter 2) and a low
amount of mutation may therefore be required to maintain variation in the long term.

Finally, we derived analytical formulas for the critical selection and migration thresholds
for polymorphism in the three-habitat case. These formulas can provide useful insights
into the parameter ranges where a polymorphism is possible.

While this study represents a step forward in understanding local adaptation and the
maintenance of polymorphism in metapopulations with more than two habitats, several
avenues for future research remain open. Investigating the dynamics of adaptation under
a model of hard selection (where we account for changes in population size via allele
frequency changes and vice versa i.e., explicit eco-evo feedback) are promising directions
for further exploration. In this case having an intermediate habitat where the A allele
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is at a selective advantage at half the loci and at a disadvantage at the remaining half
(or any other complex architecture) could produce interesting dynamics and reveal novel
insights into local adaptation and the maintenance of polymorphism.

Secondly, relaxing the assumption of linkage equilibrium and exploring the role of non-
random associations or interference between loci could provide a more realistic depiction
of genetic interactions within metapopulations. In this case, the net effect of other loci on
any selected locus can be captured using the effective migration approximation3 (Sachdeva,
2022)).

Another compelling avenue for future exploration would be to consider explicit spatial
structure. Incorporating explicit spatial configuration or arrangement of populations into
our framework may enable a more precise investigation into the role of the parameter
β for the maintenance of variation and how this is influenced by habitat connectivity.
It may also provide a more nuanced understanding of how gene flow, genetic drift and
spatial heterogeneity influences the stability and maintenance of polymorphism, offering
a more realistic perspective on the mechanisms that shape the genetic composition of
natural populations.

Finally, exploring the impact of various ecological factors such as variation in carrying
capacities across the different habitats could offer a richer understanding of the interplay
between genetic and ecological dynamics in shaping and sustaining genetic diversity within
fragmented landscapes.
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Chapter 4

Genetic load and extinction in peripheral
populations: the roles of migration, drift and

demographic stochasticity1

Himani Sachdeva, Oluwafunmilola Olusanya, Nick Barton

Abstract

We analyse how migration from a large mainland influences genetic load and population
numbers on an island, in a scenario where fitness-affecting variants are unconditionally
deleterious, and where numbers decline with increasing load. Our analysis shows that
migration can have qualitatively different effects, depending on the total mutation target
and fitness effects of deleterious variants. In particular, we find that populations exhibit
a genetic Allee effect across a wide range of parameter combinations, when variants are
partially recessive, cycling between low-load (large-population) and high-load (sink) states.
Increased migration reduces load in the sink state (by increasing heterozygosity) but
further inflates load in the large population state (by hindering purging). We identify
various critical parameter thresholds at which one or other stable state collapses, and
discuss how these thresholds are influenced by the genetic versus demographic effects of
migration. Our analysis is based on a ‘semi-deterministic’ analysis, which accounts for
genetic drift but neglects demographic stochasticity. We also compare against simulations
which account for both demographic stochasticity and drift. Our results clarify the
importance of gene flow as a key determinant of extinction risk in peripheral populations,
even in the absence of ecological gradients.

1This work has been published at https://royalsocietypublishing.org/doi/10.1098/
rstb.2021.0010
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Keywords: deleterious variants, genetic load, extinction, migration, demographic stochas-
ticity, semi-deterministic approximation

4.1 Introduction

Most outcrossing populations carry a substantial masked mutation load owing to recessive
variants, which can contribute significantly to inbreeding depression in peripheral isolates
or after a bottleneck. The extent to which the increased segregation (or fixation) of
deleterious mutations due to drift (drift load) exacerbates extinction risk in isolated
populations has been a subject of long-standing interest (Lande, 1994; Lynch et al., 1995;
Frankham, 2005; O’Grady et al., 2006). Theory predicts that moderately deleterious
mutations contribute the most to genetic load and extinction in small populations (Lynch
et al., 1995; Higgins and Lynch, 2001); however, the prevalence of such deleterious variants
of mild or moderate effect and their dominance values remain poorly characterised, except
for a few model organisms (Agrawal and Whitlock, 2011; Huber et al., 2018).

The relative risks posed by mutation accumulation and demographic stochasticity to a
population depend crucially on its size, with some theory suggesting that these may be
comparable for populations in their thousands (Lande, 1994). Additionally, environmental
stochasticity — catastrophic events, as well as fluctuations in growth rates and carrying
capacities, may dramatically lower extinction times (Lande, 1993). Both demographic and
environmental fluctuations, in turn, reduce the effective size of a population, making it
more prone to fix deleterious alleles; the consequent reduction in fitness further depresses
size, pushing populations into an ‘extinction vortex’, which is often characterised by a
complex interaction between the effects of genetic drift, demographic stochasticity and
environmental fluctuations (Lande, 1988).

Peripheral populations at the edges of species’ ranges receive dispersal from the core to an
extent which varies over space and time. Moreover, ranges may be fragmented owing to
habitat loss and individual sub-populations connected to each other via low and possibly
declining levels of migration. Under what conditions are such extinction vortices arrested
by migration, and what are the genetic and demographic underpinnings of this effect,
when it occurs?

Migration boosts numbers, mitigating extinction risk owing to demographic and environ-
mental stochasticity, or at the very least, allows populations to regenerate after chance
extinction. The demographic consequences of migration are especially important in frag-
mented populations with many small patches (Ovaskainen and Hanski, 2003): above a
critical level of migration, the population may survive as a whole over long timescales even
if individual patches frequently go extinct (Gyllenberg and Hanski, 1992; Lande et al.,
1998).
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Migration also influences extinction risk by shifting the frequencies of fitness-affecting
variants: the resultant changes in fitness may decrease or increase population size, thus
further boosting or depressing the relative contribution of migration to allele frequency
changes within a population, setting in motion a positive feedback which may culminate
in extinction (when gene flow is largely maladaptive; e.g., (Ronce and Kirkpatrick, 2001;
Szép et al., 2021)) or evolutionary rescue (e.g., if gene flow supplies variation necessary
for adaptation to local conditions, or reduces inbreeding load; e.g., (Higgins and Lynch,
2001; Bell and Gonzalez, 2011; Uecker et al., 2014)).

The maladaptive consequences of migration have largely been explored for extended
populations under spatially varying environments: here, gene flow typically hinders local
adaptation, especially at range limits, leading to ‘swamping’ and extinction (Bridle and
Vines, 2007). However, the consequences of gene flow for fitness, and consequently survival,
are not always intuitive when the fitness effects of genetic variants are uniformly deleterious
(or beneficial) across populations. For example, while gene flow may alleviate inbreeding
load by preventing the fixation of deleterious alleles in small populations, it may also
render selection against recessive mutations less effective by increasing heterozygosity. A
striking consequence is that under a range of conditions, the fitness of metapopulations is
maximised at intermediate levels of migration (Whitlock, 2002) and more generally, at
intermediate levels of population structure (Roze, 2015).

A key consideration is whether or not gene flow is symmetric, i.e., whether some sub-
populations are merely influenced by the inflow of genes from the rest of the habitat
or if all sub-populations influence the genetic composition of the population as a whole
(Lenormand, 2002). Asymmetric dispersal is common at the geographic peripheries of
species’ ranges or on islands. Moreover, populations occupying small patches within
a larger metapopulation with a wide distribution of patch sizes, or sub-populations
with lower-than-average fitness (and consequently, atypically low numbers) may also
experience predominantly asymmetric inflow of genes. Asymmetric gene flow allows
for allele frequency differences across the range of a population even in the absence
of environmental heterogeneity, e.g., when population sizes (and hence the efficacy of
selection relative to drift) vary across the habitat. This, in turn, may generate heterosis
or outbreeding depression across multiple loci, when individuals from different regions
hybridize.

From a conceptual viewpoint, the consequences of asymmetric gene flow are typically
simpler to analyse as we can focus on a single population, while taking the state of
the rest of the large habitat as ‘fixed’. Such analyses are key to understanding more
general scenarios where genotype frequencies and population sizes across different regions
co-evolve.
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Here, we analyse the eco-evolutionary dynamics of a single island subject to migration
from a larger mainland population in a scenario with uniform selection across the two
populations, i.e. where fitness is affected by a large number of variants that are uncondi-
tionally deleterious. We ask: under what conditions can migration from the mainland
alleviate inbreeding load, thus preventing ‘mutational meltdown’ and extinction of the
island population? Further, how are the effects of migration mediated by the genetic
architecture of load, i.e., by the genome-wide mutation target and fitness effects of delete-
rious variants? A key focus is to understand the coupled evolution of allele frequencies
(across multiple loci) and population size: to this end, we consider an explicit model of
population growth with logistic regulation, where growth is reduced by an amount equal
to the genetic load.

While the effects of maladaptive gene flow on marginal populations have been studied under
various models (Kawecki, 2008; Barton and Etheridge, 2018), there has been little work
(under genetically realistic assumptions) on the (possibly) beneficial effects of migration
on inbreeding load and survival. In particular, modelling the polygenic nature of fitness
variation is crucial, as changes in load (e.g. owing to migration) at any locus can affect
all other loci by effecting changes in population size, which in turn influences the efficacy
of selection across the genome.

4.2 Model and Methods

Consider a peripheral island population subject to one-way migration from a large mainland.
Individuals are diploid and carry L biallelic loci that undergo bidirectional mutation
between the wild-type and deleterious state at rate u per generation per individual per
locus in either direction. Mutations have the same fitness effects on the mainland and
island, i.e. there is no environment-dependent fitness component.

Deleterious variants at different loci affect fitness multiplicatively (no epistasis): individual
fitness is given by e−

∑︁L

j=1 sj(Xj+hjYj), where Xj (Yj) equals 1 if the jth locus is homozygous
(heterozygous) for the deleterious allele, and is zero otherwise. Here, sj is the homozygous
selective effect and hj the dominance coefficient for the deleterious allele at locus j. We
assume 0 ≤ hj ≤ 1/2, so that deleterious alleles are always (partially) recessive. In
individual-based simulation, we use the form (1 − hs)n(1 − s)m1m′ (which is equivalent to
the above fitness function for small s) where n represents the number of heterozygous loci,
m represents the number of loci homozygous for the deleterious allele and m′ represents
the number of homozygous loci for the wild-type allele with n+m+m′ = L.

In each generation, a Poisson-distributed number of individuals (with mean m0) migrate
from the mainland to the island. For simplicity, we assume that the mainland population
is large enough that deleterious allele frequencies among migrants (denoted by {p(m)

j })
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are close to the deterministic predictions for a single locus under mutation-selection
equilibrium.

We assume density-independent selection on individuals on the island and density-
dependent population growth with logistic regulation, where the baseline growth rate is
reduced by the genetic load: the population size nt in any generation t is then Poisson-
distributed with mean equal to nt−1 exp[r0(1 − nt−1/K)]W , where nt−1 is the population
size in the previous generation, r0 the baseline growth rate, K the carrying capacity,
and W the mean genetic fitness. The nt individuals in the tth generation are formed
by randomly sampling 2nt parents (with replacement) from the nt−1 individuals in the
previous generation with probabilities equal to their relative fitnesses, followed by free
recombination between parental haplotypes to create gametes. Diploid offspring are then
formed by randomly pairing gametes.

Simulations. We carry out two kinds of simulations: individual-based simulations that
explicitly track multi-locus genotypes of all individuals on the island, and simulations that
assume LE (linkage equilibrium) and neglect inbreeding. The latter kind of simulations
are computationally less intensive as they only track allele frequencies at the L loci and
the size of the population. However, they make two simplifying assumptions: first, that
genotypes at any locus are in Hardy–Weinberg proportions (i.e. no inbreeding); second,
that any statistical associations, e.g., between the allelic states of different loci (linkage
disequilibria or LD) or between the probability of identity by descent, and consequently
homozygosity, at different loci (identity disequilibria or ID) — are negligible. Then,
individual genotypes are simply random assortments of deleterious and wildtype alleles,
and can be generated, e.g., in a simulation, by independently assigning alternative allelic
states to different loci with probabilities equal to the allele frequencies. Details of the two
kinds of simulations are provided in the supplementary material, Appendix A.

Because selection pressures are identical on the mainland and island, any systematic
differences in allele frequencies or homozygosity between the two populations across
multiple loci (which would generate LD and ID respectively) must arise solely due to
differences in population size, which would cause the efficacy of selection to be different
on the mainland and island. In general, we expect LD and ID to be negligible when
all ecological and evolutionary processes are slower than recombination (Szép et al.,
2021): this may not hold, however, when populations are small (and drift significant),
making it necessary to evaluate how statistical associations between deleterious variants
affect extinction thresholds. In the rest of the paper, we will only show results of the
allele frequency simulations (assuming LE and zero inbreeding); we compare these with
individual-based simulations and discuss how LD and ID affect population outcomes in
the supplementary material, Appendix B.
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Joint evolution of allele frequencies and population size. Assuming LE and
no inbreeding, the evolution of the island population is fully specified by how allele
frequencies {pj} and the population size n co-evolve in time t. If all evolutionary and
ecological processes (except recombination) are slow, we can describe this co-evolution
in continuous time. We rescale all rates by the baseline growth rate r0 and population
sizes by the carrying capacity K. This yields the following dimensionless parameters:
τ = r0t, S = s/r0, M0 = m0/(r0K), U = u/r0, Nt = nt/K and an additional parameter
ζ = r0K which governs the strength of demographic fluctuations. The joint evolution of
allele frequencies {pj} and the scaled population size N in continuous time is described
by the following equations:

dpj
dτ

= −pjqj
2

∂Rg

∂pj
+ U(qj − pj) + M0

N
(p(m)
j − pj) + λpj

dN

dτ
= N [1 −N −Rg] +M0 + λN where Rg =

L∑︂
j=1

Sjpj(2hjqj + pj)
(4.1)

The random processes λN and λpj
satisfy E[λpj

] = E[λn] = 0, E[λN (t)λN (t′)] = N(t)
ζ
δ(t−t′)

and E[λpj
(t)λpj

(t′)] = 1
ζ

pj(t)qj(y)
N(t) δ(t− t′).

The four terms in the first equation correspond (in order of appearance) to changes in
allele frequency due to selection, mutation, migration and drift. Note that the strength of
migration is inversely proportional to population size N , reflecting the stronger (relative)
effect of migration on the genetic composition of smaller, as opposed to larger, island
populations. The second equation describes the evolution of population size N : the first
term describes changes in N under logistic growth, where the growth rate is reduced by a
factor proportional to the log mean fitness (i.e., the genetic load); the second term captures
the effect of migration; the third term corresponds to demographic fluctuations (whose
variance is proportional to N , the size of the population). These equations captures a
key feature of polygenic eco-evolutionary dynamics — namely, that the evolution of allele
frequencies at different loci is coupled via their dependence on a common N , which in turn
is influenced by the degree of maladaptation at all loci via Rg. Thus, allele frequencies
do not evolve independently, even though allelic states at different loci are statistically
independent at any instant (under LE).

For fixed N and under LE and IE, the joint distribution of allele frequencies at mutation-
selection-migration-drift equilibrium is a product of the single-locus distributions. This
was given by Wright (1937), and for a given locus j is (in terms of scaled parameters):

ψ(pj|N) ∝ p
4ζNU+4ζM0p

(m)
j −1

j (1 − pj)4ζNU+4ζM0(1−p(m)
j )−1e−2ζNSpj [pj+2h(1−pj)] (4.2)
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Integrating over this distribution yields the expected allele frequency E(pj|N) and the
expected heterozygosity E(2pjqj|N) at any locus, and thence the expected total load
E(Rg|N) = ∑︁

j Sj[E(pj|N) − (1/2 − h)E(2pjqj|N))] (scaled by the baseline growth rate
r0) for fixed N .

However, in reality, N is not fixed and will fluctuate — both due to random fluctuations in
fitness (due to the underlying stochastic fluctuations of {pj} at equilibrium) as well as in
the reproductive output of individuals (demographic stochasticity). Thus, N itself follows
a distribution. While we can write down an equation for the stochastic co-evolution of
N and {pj}, no explicit solution for the joint equilibrium distribution is possible unless
mutation rates are strictly zero (as assumed by Szép et al. (2021)). Thus, we must employ
various approximations to describe the coupled dynamics of N and {pj}.

Approximate semi-deterministic analysis. We expect the population size distribu-
tion to be sharply peaked around one or more values {N∗} if demographic fluctuations
are weak (i.e., for high values of ζ = r0K) and if fluctuations in mean fitness are also
weak (i.e., for large L). Such sharply-peaked distributions correspond to populations
that transition only rarely between alternative peaks, i.e., where the alternative peaks
{N∗} of the size distribution represent ‘metastable’ states, allowing allele frequencies
sufficient time to equilibrate at any N∗. Then the genetic load would be close to the
expected value E(Rg|N∗) under mutation-selection-drift-migration balance (given N∗)
when populations are in one of the alternative metastable states, though not necessarily
while they transition between states. In order to determine {N∗}, we postulate that these
must represent stable equilibria of the population size dynamics, neglecting demographic
stochasticity and assuming that mean fitness (given N∗) is close to the expectation under
mutation-selection-drift-migration balance for that N∗. Then we have:

0 = N∗ (1 −N∗ − E[Rg|N∗]) +M0 1 − 2N∗ − E[Rg|N∗] −N∗
dE[Rg]
dN

⃓⃓⃓⃓
⃓
N=N∗

< 0 (4.3)

The equality follows from eq. (4.1), by setting the third (noise) term to zero and assuming
that Rg is close to its equilibrium expectation E(Rg|N∗) given N∗. The second inequality
is the condition for N∗ to be a stable equilibrium: this means that populations starting at
an arbitrary N in the vicinity of N∗ would evolve towards this equilibrium size. Equation
(4.3) can be solved numerically to obtain the equilibria {N∗}, which, under the above
assumptions, will be close to the peaks of the population size distribution. As we see
below, depending on the parameter regime, there may be one or two stable equilibria of
eq. (4.3), corresponding to population size distributions that are unimodal or bimodal.
Bifurcations (i.e., critical parameter thresholds where one of the two stable equilibria
vanishes) thus correspond to qualitative transitions in the state of the population.
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We will refer to the analysis above as a ‘semi-deterministic analysis’ as it accounts for
the stochastic effects of genetic drift on allele frequencies and load (via the expecta-
tion E[Rg|N∗]) but neglects demographic stochasticity. In general, we expect the semi-
deterministic analysis to become more accurate for large enough L (so that fluctuations
in the load about the deterministic expectation can be neglected) and for larger ζ = r0K

(see also Appendix C.2), since increasing ζ, which implies higher number of births per
generation, results in weaker demographic fluctuations (Szép et al., 2021).

4.3 Results

4.3.1 Metastable populations and extinction times in the
absence of migration

We first consider peripheral populations in the absence of migration. Such populations
necessarily become extinct in the long run: however, depending on the mutation target
for deleterious mutations (relative to the baseline growth rate r0), the fitness effects of
mutations and the carrying capacity of the island, extinction times may be very long and
populations metastable.

We can use eq. (4.3) to gain intuition for the conditions for metastability under zero
migration. Setting M0 = 0, it follows that there is always an equilibrium at N = 0
(corresponding to extinction): this equilibrium is stable for L(S/2) > 1 where S = s/r0,
and unstable otherwise (see appendix C.2 for details). There may exist another equilibrium
at N∗ = 1 − E[Rg|N∗,M0 = 0]; the population size N∗ is positive (i.e., the population is
not extinct) only if E[Rg|N∗,M0 = 0] < 1, i.e., the equilibrium genetic load is lower than
the baseline growth rate.

Because the equilibrium load E[Rg|N∗,M0 = 0] depends on four independent parameters
(which we can choose as ζS = Ks, ζU = Ku, h and 2LU = 2L(u/r0)), mapping
the conditions for metastability boils down to asking: in the absence of demographic
fluctuations, where in this four-dimensional parameter space, can we find populations
with a non-zero equilibrium size or sufficiently low load (fig. 4.1a)? In reality, there
is a fifth parameter ζ = r0K, which governs demographic stochasticity: thus, all other
parameters being equal, extinction times will be longer when demographic stochasticity is
weaker, i.e., r0K larger (fig. 4.1b).

For simplicity, we assume that deleterious alleles anywhere on the genome have the same
selective effects and dominance coefficients; this assumption is relaxed in Appendix C.4. We
use Ksc to denote the critical selection strength per homozygous deleterious allele (scaled
by the carrying capacity K), such that a non-zero equilibrium N∗ exists for Ks > Ksc

but not for Ks < Ksc. Figure 4.1a shows Ksc as a function of 2LU = 2L(u/r0), the
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total mutation rate relative to the baseline growth rate, for different Ku (different colors)
for nearly recessive (h = 0.02; solid lines) and additive (h = 0.5; dashed lines) alleles.
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Figure 4.1: Population outcomes with zero migration. (A) Scaled critical selection threshold Ksc, above
which populations are metastable, as a function of the scaled mutation target 2LU = 2L(u/r0) for
different values of Ku (different colors) for nearly recessive (h = 0.02; solid lines) and additive (h = 0.5;
dashed lines) alleles. A non-zero equilibrium population size N∗ = 1 − E[Rg|N∗] exists for Ks > Ksc

but not for Ks < Ksc. This selection threshold is calculated using eq. (4.3) by neglecting demographic
stochasticity, and thus strictly provides a criterion for stable populations in the limit ζ = r0K → ∞. (B)
The scaled extinction half-time T1/2 = r0t1/2 (see text for definition) as a function of 2LU for various
K (different colors) for nearly recessive (h = 0.02; main plot) and additive alleles (inset). (C) The
average scaled population size N = n/K of metastable populations versus 2LU for various K (different
colours) along with the semi-deterministic prediction N∗ = 1 − E[Rg|N∗] (dashed black line) for nearly
recessive (h = 0.02; main plot) and additive alleles (inset). In both (B) and (C), the carrying capacity is
increased while proportionately decreasing s, u and increasing L, such that Ks = 25, Ku = 0.01 and
2LU = 2L(u/r0) remain unchanged; increasing K thus has the sole effect of weakening demographic
stochasticity. Extinction times and the average population sizes in the metastable state are computed
from allele frequency simulations (under LE and IE) of 1000 replicates with r0 = 0.1.

For populations to be metastable, the total genetic load must be less than the baseline
growth rate. The total load scales with the mutation target L; the load per locus is
approximately 2u for strongly deleterious variants (u/hs ≪ 1 and Ks ≫ 1). For smaller
Ks, drift will typically inflate load above this deterministic expectation when deleterious
alleles are additive (h ∼ 1/2) but may also reduce load (via more efficient purging) when
alleles are recessive (h ∼ 0). This is reflected in figure 4.1a: the threshold Ksc required to
maintain metastable populations is higher for additive deleterious alleles (dashed lines)
than recessive alleles (solid lines). Moreover, because genetic load in this drift-dominated
regime depends only weakly on the mutational input Ku, the threshold Ksc is largely
independent of Ku (different colors). Finally, for all parameter combinations, the threshold
Ksc increases as the mutation target becomes larger: this simply reflects the fact that
for the total load to be less than the baseline growth rate, the load per locus must be
lower (requiring stronger selection) if deleterious variants segregate at a greater number
of loci. Accordingly, for very large mutation targets 2LU = 2L(u/r0) ≳ 1, the total load
will exceed r0 (and populations will fail), irrespective of the strength of selection against
deleterious mutations.

The critical selection thresholds for metastability shown in fig. 4.1a are computed by
neglecting demographic stochasticity, i.e., by assuming ζ = r0K to be very large. However,
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for moderate ζ, stochastic fluctuations in reproductive output from generation to generation
may accelerate extinction: this effect can be especially significant in smaller populations
as these tend to fix more deleterious alleles, which further reduces fitness and size, thus
rendering populations even more vulnerable to stochastic extinction.

To investigate how demographic stochasticity contributes to extinction, we simulate
populations residing on islands with different carrying capacities K, but characterized by
the same values of Ks, Ku, 2LU = 2L(u/r0) and h. Mathematically, this involves taking
the limit s → 0, u → 0, K → ∞, L → ∞, while holding Ks, Ku, 2LU constant: then,
increasing K has the sole effect of weakening demographic stochasticity (by increasing
r0K). Populations are initially perfectly fit, but accumulate deleterious variants over
time, eventually becoming extinct owing to the combined effects of genetic load and
demographic stochasticity. Figure 4.1b shows the extinction ‘half-time’ T1/2 = r0t1/2

(scaled by the baseline growth rate r0) — the time by which precisely half of all 1000
simulation replicates are extinct, as a function of 2LU for various K for nearly recessive
(main plot) and additive alleles (inset). All results are from allele frequency simulations
(assuming LE and zero inbreeding). Dashed vertical lines indicate the threshold 2LU
above which metastable populations (with N∗ = 1 −E[Rg|N∗] > 0) cannot exist (even for
large r0K).

We find that extinction times increase with increasing K for all parameters. However, for
parameter combinations that correspond to extinction in the large r0K limit (i.e., to the
right of the dashed lines), this increase is approximately linear in K, while for parameters
leading to metastability in the large r0K limit (left of dashed lines), this increase is faster
than linear. In fact, in the metastable regime, even with a carrying capacity K of a few
thousand individuals, demographic stochasticity will be sufficiently weak and extinction
times large enough that isolated populations can persist over geological timescales: for
these parameter regimes, it is environmental fluctuations (which our model ignores), rather
than mutation load or demographic stochasticity, that will be the main determinant of
extinction risk.

We also compute the average (scaled) population size N = n/K in the metastable state
(4.1c). This declines with increasing 2LU , i.e., as we approach the threshold for loss of
metastability, and is close to the semi-deterministic prediction (dashed black lines) for all
values of K.

4.3.2 Effect of migration on equilibrium population sizes and
genetic load

We now consider how migration from a large mainland influences population dynamics on
the island, for different genetic architectures of load, i.e., given certain selective effects
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and dominance coefficients of deleterious alleles. As before, we assume that all deleterious
alleles have equal selective effects and dominance values, relegating the discussion of more
general scenarios, where alleles with different fitness effects segregate, to Appendix C.4.
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Figure 4.2: Effect of migration on equilibrium population sizes and load for weakly deleterious (Ks < Ksc;
left column), moderately deleterious (Ks ≳ Ksc; middle) and strongly deleterious (Ks ≫ Ksc; right)
alleles. (A)-(C) Population size (main plots) and genetic load (inset), corresponding to one or more stable
equilibria, vs. m0, the number of migrants per generation. Equilibria are obtained by numerically solving
eq. (4.3) (semi-deterministic predictions). Blue lines represent the sink equilibrium (with an associated
population size that tends to zero as m0 → 0); red lines represent the large-population equilibrium (with
non-zero population size in the m0 → 0 limit). The thresholds mc,2 (2B) and mc,1 (2C) represent critical
migration thresholds at which the large-population or the sink equilibrium vanishes. The threshold mc,3
(2B) is the critical migration level at which the (scaled) load associated with the sink state becomes less
than 1. (D)-(F) Equilibrium probability distributions of the scaled population size N = n/K for various
values of m0, as obtained from simulations (under LE and IE) in the three parameter regimes. The filled
and empty triangles indicate the population sizes corresponding to alternative equilibria as predicted by
the semi-deterministic analysis. (G)-(I) Time series N(t) vs. t over an arbitrary period after equilibration
in the three regimes. All plots show results for: Ku = 0.01, 2LU = 2L(u/r0) = 0.5, ζ = r0K = 50,
h=0.02 and Ks = 5, 20, 50 for the left, middle and right columns respectively (the critical threshold is
Ksc ∼ 7.65). In addition, for the simulations (plots D-I), we use r0 = 0.1.

We first identify critical parameter thresholds associated with qualitative changes in
population outcomes for the two extremes: nearly recessive (h = 0.02 in fig. 4.2) and
additive (h = 0.5) alleles. We then consider how these thresholds depend on the level of
dominance of deleterious alleles (fig. 4.3).
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Figure 4.2 illustrates the effect of migration on population sizes and load on the island
for three parameter combinations, corresponding to weakly deleterious (Ks < Ksc; left
column), moderately deleterious (Ks ≳ Ksc; middle) and strongly deleterious (Ks ≫ Ksc;
right) nearly recessive alleles (h = 0.02). Recall that Ksc is the selection threshold
(obtained by neglecting demographic stochasticity) such that populations rapidly go
extinct in the absence of migration for Ks < Ksc, but can be metastable (even without
migration) for Ks > Ksc and r0K → ∞ (fig. 4.1).

Figure 4.2a-4.2c show population sizes corresponding to stable equilibria of eq. (4.3) versus
m0, the number of migrants per generation, for Ks < Ksc, Ks ≳ Ksc and Ks ≫ Ksc.
The insets show the equilibrium load versus m0. Since these equilibria are calculated by
numerically solving eq. (4.3), they represent semi-deterministic predictions, i.e., they
neglect demographic stochasticity but account for the effects of drift, assuming that
populations spend enough time in any metastable state that the distribution of allele
frequencies can equilibrate. Figure 4.2d-4.2f shows the stochastic distribution of the scaled
population size N = n/K, as obtained from allele frequency simulations (assuming LE
and zero inbreeding) after the population has equilibrated, for various m0, in the three
parameter regimes. Figures 4.2g-4.2i show the corresponding time series N(t) over an
arbitrary period, after equilibration, for a single randomly chosen stochastic realization.

Weakly deleterious recessive alleles. For Ks < Ksc, there exists a single stable
equilibrium at all migration levels (fig. 4.2a), with the corresponding population size
approaching zero as migration becomes rarer. Accordingly, the stochastic distribution
of N exhibits a single peak for all m0 (fig. 4.2d). An increase in migration causes
the genetic load to decrease (inset, fig. 4.2a) and the population size to increase. The
stochastic distribution of population sizes is approximately exponentially distributed for
low values of m0 (corresponding to a sink state), but shifts towards higher values of
N as m0 increases, and is approximately normally distributed about the deterministic
equilibrium N∗ (indicated by empty triangles in fig. 4.2d) for large m0.

Increasing migration has two effects in this case: it reduces genetic load, typically by
reducing homozygosity— a genetic effect, but also increases population numbers— a
demographic effect. The genetic effect of migration, i.e., the dependence of the expected
load E(Rg|N) = ∑︁

j Sj [E(pj|N) − (1/2 −h)E(2pjqj|N)] on m0, can be further decomposed
into effects on the expected frequencies E(pj|N) and expected heterozygosity E(2pjqj|N)
of deleterious alleles. For weakly deleterious recessive alleles, the expected frequency
decreases with increasing migration for low m0, is minimum at intermediate m0, and
then increases as m0 increases further (not shown). However, genetic load still decreases
monotonically with increasing migration (inset, fig. 4.2a), due to the much sharper
increase in heterozygosity with migration.
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Strongly deleterious recessive alleles. For Ks ≫ Ksc, there exist two stable
equilibria of the semi-deterministic population size dynamics (eq. (4.3)) at low levels of
migration: population sizes and values of load corresponding to these two equilibria are
shown in blue and red in fig. 4.2c. One equilibrium (blue lines in fig. 4.2c) corresponds to
a sink state with the associated population size approaching zero as m0 → 0. The other
equilibrium (depicted in red) corresponds to a large population, which can persist at finite
fraction of carrying capacity even as migration becomes exceedingly rare, i.e., has size N∗,
which approaches 1 − E[Rg|N∗,M0 = 0] > 0 as m0 → 0.

The existence of two stable equilibria at low m0 translates into bimodal population size
distributions (in black and brown in fig. 4.2f), with one peak close to extinction and the
other at the semi-deterministic N∗ (depicted by filled triangles). Population size N(t)
also exhibits characteristic dynamics (see time series in black and brown in fig. 4.2i):
populations tend to remain ‘stuck’ in either the sink state or the large-population state for
long periods of time, typically exhibiting rather small fluctuations about the characteristic
sizes associated with either state, and only transitioning rarely between states.

The sink state and large-population state can also be thought of as “high-load” (i.e.,
genetic load greater than the baseline growth rate r0) and “low-load” (genetic load less
than r0) states. Thus, in this parameter regime, populations exhibit a genetic Allee effect,
wherein load is sufficiently low and net growth rates positive only above a threshold
population size: therefore starting from an initially empty island, populations cannot
grow deterministically (and persist instead as migration-fed sinks), even though large
populations can maintain themselves, at least in the absence of demographic fluctuations.
Transitions between the sink (high-load) and large-population (low-load) states are thus
inherently stochastic, arising owing to demographic fluctuations (which are aided by higher
levels of migration) rather than owing to a systematic drive towards the alternative state.

Changes in m0 have qualitatively different effects on the two states: at low m0, increasing
migration reduces load and thus increases numbers in the sink state (blue curve), but has
the opposite effect on the large-population equilibrium (red curves). This is due to the
non-monotonic dependence of the frequency of deleterious recessive alleles on population
size: increasing size causes drift to become weaker relative to selection but also reduces
homozygosity, so that fewer deleterious alleles are exposed to selection; frequencies are
thus minimum at intermediate population sizes, reflecting the tension between these
two opposing effects. In small sink populations, migration from the continent reduces
homozygosity as well as deleterious allele frequencies, thus reducing load. However, in
larger populations, increasing migration reduces the homozygosity but raises the frequency
of deleterious alleles (since deleterious alleles are purged less efficiently in very large
mainland populations than in intermediate-sized or large island populations); the overall
effect of migration is thus to increase load in the large-population state.
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Above a critical migration threshold, which we denote by mc,1, the sink equilibrium
vanishes. Thus, for m > mc,1, populations always have a positive growth rate and reach a
finite fraction of carrying capacity, regardless of starting size. As before, this qualitative
change in the (semi-deterministic) population size dynamics at a critical migration level
has its analog in a qualitative change in the stochastic distribution of population sizes (fig.
4.2f): increasing migration causes the population size distribution to change from bimodal
to unimodal (with a sole peak at the large-population equilibrium N∗ = 1−E[Rg|N∗])). At
higher migration rates, i.e., as we approach the critical migration threshold mc,1 starting
from low m0, turnover between the sink and large-population states becomes more rapid—
note the shorter intervals between transitions in the brown vs. black time series in fig.
4.2i.

Moderately deleterious recessive alleles. Consider now the case where selection
is stronger than the threshold Ksc but not too strong, i.e., Ks ≳ Ksc (middle column
in fig. 4.2). As in the Ks ≫ Ksc case, there exist two alternative stable equilibria at
low migration levels, one corresponding to the sink state (blue lines in fig. 4.2b) and the
other to the large-population state (red lines). As before, increasing migration alleviates
inbreeding load and increases population size in the sink state but elevates load (by
hindering purging) and decreases population size in the large-population state. Unlike in
the Ks ≫ Ksc state, the latter effect is much stronger: thus, above a critical migration
threshold, which we denote by mc,2, it is the large-population equilibrium that vanishes,
so that there is only a single (sink) equilibrium for m > mc,2.

The analogous change in the population size distribution with increasing migration (fig.
4.2e) is somewhat subtle: for the lowest value of m0 (black), the distribution is clearly
bimodal, with most of the weight close to N = 0 (sink state) and a very small peak
at the large-population equilibrium. As migration increases, the distribution of sizes
associated with the sink state widens, while the peak corresponding to the large-population
equilibrium shifts towards lower N (e.g., brown plot). At high migration levels (orange
and blue plots), there is no longer a distinct second peak and only the sink state persists.
In this state, the genetic load exceeds r0 on average; however, its distribution and the
corresponding distribution of N is quite wide.

If migration increases further, then the average load associated with the sink state continues
to fall, until at a third threshold (denoted by mc,3, here ∼ 1.33), the load again becomes
lower than the baseline growth rate r0 or, alternatively, scaled load Rg = rg/r0 less than
1 (depicted by a dashed line in fig. 4.2b). Thus, for m0 > mc,3, populations can grow,
starting from small numbers, and reach a finite fraction of carrying capacity. However,
unlike the large-population state that emerges at higher Ks, in this case, populations
are highly dependent on migration and would rapidly collapse (owing to the fixation of
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deleterious alleles) if cut off from the mainland population.

Population size dynamics (fig. 4.2h) are characterised, as in the Ks ≫ Ksc case, by
occasional transitions between the sink state and the large-population state for low values
of m0 (black), with transitions becoming more frequent with increasing m0 (orange).
Transition times are much longer than in the Ks ≫ Ksc case (note the values on the
x-axis); thus transitions are unlikely to occur over realistic timescales, and populations will
typically be observed in the sink state. At higher migration levels, there are no obvious
transitions, with population sizes and load fluctuating (with some skew) about a mean
value.

Additive alleles. With additive effects (h ∼ 0.5), any deleterious allele experiences
the same selective disadvantage, irrespective of whether it appears in the heterozygous or
homozygous state: thus, there is no purging in smaller populations (which have higher
homozygosity) and allele frequencies decrease monotonically with increasing population
size. As a result, migration from the larger mainland population always decreases load (by
decreasing the deleterious allele frequency) and increases the size of the island population.

This implies that there are only two qualitatively distinct regimes: with weakly deleterious
alleles (Ks less than the corresponding Ksc; see fig. 4.1a), populations tend to extinction
as migration declines. There is a single equilibrium of the semi-deterministic population
size dynamics for all m0 or analogously, a single peak of the stochastic population size
distribution, which shifts towards higher sizes as m0 increases.

For strongly deleterious alleles (Ks > Ksc), population size N and load Rg are largely
insensitive to migration, since populations can always grow, starting from small numbers,
at least when demographic stochasticity is unimportant (i.e., for r0K ≫ 1). With smaller
r0K, population sizes and load depend weakly on migration since demographic stochasticity
may depress N and inflate the effects of drift (even with Ks > Ksc). Moreover, in this
regime, populations are also prone to stochastic extinction for m0 < 1/2 (Szép et al.,
2021), such that the distribution of N is inherently bimodal. Thus, where demographic
stochasticity is significant, a low level of migration may be needed for stable populations
even with strong selection against additive alleles.

This analysis outlined here (based on eq. (4.3)) also applies to a distribution of effects
across loci. In Appendix C.4, we consider examples where a fraction of deleterious
mutations are additive and the remaining fraction recessive. We also compare the results
of allele frequency simulations with those of individual-based simulations with unlinked
loci (Appendix C.3). These show fairly close agreement, suggesting that LD and ID
do not significantly affect allele frequency dynamics, at least for the typical parameter
values considered here: this is also consistent with earlier work, which suggests only a
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modest effect of disequilibria on background selection in sub-divided populations under
soft selection (Roze, 2015).

4.3.3 Disentangling genetic vs. demographic effects of
migration on recessive alleles.

In summary, given a mutation target 2LU ≲ 1 and assuming equal-effect loci, there is
a critical selection threshold Ksc such that large populations are metastable in m0 → 0
for Ks > Ksc but not for Ks < Ksc. For Ks > Ksc, there is a genetic Allee effect
at low migration levels and with partially recessive alleles: populations cannot grow
after recolonization of an initially empty island, and persist only as demographic sinks
until a chance fluctuation increases numbers sufficiently that load can be purged and
the alternative (large-population) equilibrium attained; such large populations can then
be maintained over long periods of time (fig. 4.2i). For very low dominance values
(h ≲ 0.15), there is a second threshold Ksc,2 with Ksc,2 > Ksc (see below), which
separates parameter regimes characterised by qualitatively different effects of migration
on population outcomes: for Ks > Ksc,2, increasing migration destabilizes the sink state,
so that only the large-population state persists above a migration threshold mc,1, whereas
for Ksc < Ks < Ksc,2, increasing migration destabilizes the large-population state, so
that only the sink state persists above a threshold mc,2. However, such migration-fed sink
populations can be quite large: above a third threshold mc,3, populations may even have
sufficient heterozygosity to again attain a low-load (rg < r0) state.

To what extent can we attribute such qualitative changes in population outcomes to the
genetic versus demographic effects of migration? As before, one approach is to compare
critical thresholds for populations with the same scaled parameters Ks, Ku, 2LU =
2L(u/r0) and h, while increasing the carrying capacity K (simultaneously increasing L
and lowering u, s). Then as K increases, the demographic effects of migration (which
depend on the dimensionless parameter M0 = m0/(r0K); see eq. (4.1)) can be neglected,
while its genetic effects on load (which depend on Ks, Ku and m0) remain important.

Figure 4.3 shows these comparisons for two dominance values — h = 0.02 (figs. 4.3a,
4.3b) and h = 0.1 (figs. 4.3c, 4.3d). Note that we only consider predictions of the
semi-deterministic analysis (eq. (4.3)), which assumes that population sizes are sharply
clustered around the peaks of the distribution and transitions between peaks are infrequent.
This assumption clearly breaks down close to transition thresholds (e.g., see figs. 4.2e, 4.2f);
thus, thresholds observed in simulations may differ somewhat from semi-deterministic
predictions (details in Appendix C.2). Moreover, the semi-deterministic analysis neglects
all demographic stochasticity, and thus does not account for the fact that changes in K will
affect not just the (systematic) demographic effect of migration but also the (stochastic)
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effect of demographic fluctuations. Nevertheless, the semi-deterministic analysis is useful
as it allows us to explore qualitative dependencies of critical thresholds on the underlying
parameters without resorting to time-consuming simulations.
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Figure 4.3: Semi-deterministic predictions for critical thresholds with and without accounting for
demographic effects of migration. (A) and (C): Critical selection thresholds Ksc (dashed line) and
Ksc,2 (solid lines) as a function of the scaled mutation target 2LU = 2L(u/r0) with (A) h = 0.02 and
(C) h = 0.1, for r0K = 50, r0K = 100 and for r0K → ∞ (in which limit migration has negligible
demographic effects). The parameter r0K, which governs the magnitude of the demographic effect of
migration (via the term M0 = m0/(r0K)) is varied by changing K, while simultaneously varying s, u and
L such that Ks, Ku and 2LU = 2L(u/r0) are constant (so that the genetic effects of migration remain
unchanged). The threshold Ksc is such that populations rapidly go extinct for Ks < Ksc in the limit
of zero migration, but are metastable for Ks > Ksc, if starting from large but not small sizes (so that
there is a genetic Allee effect). The second threshold Ksc,2 is such that increasing migration destabilizes
the sink state for Ks > Ksc,2, but destabilizes the large-population state for Ksc < Ks < Ksc,2. The
threshold Ksc is independent of migration, but Ksc,2 increases as r0K increases, i.e., as the demographic
effect of migration becomes weaker. (B) and (D) The critical migration thresholds mc,1 (solid lines),
mc,2 (dashed lines) and mc,3 (dotted lines) vs. 2LU = 2L(u/r0) with (B) h = 0.02 and (D) h = 0.1,
for various r0K for Ks = 50. The threshold mc,1, which separates parameter regimes with bimodal
population size distributions (characterised by alternation between the sink state and the large-population
state) and unimodal size distributions (populations always in the large-population state) increases with
increasing r0K. The threshold mc,2, which separates parameter regimes with bimodal size distributions
and unimodal distributions (populations always in the sink state) decreases with increasing r0K. The
threshold mc,3, which separates parameter regimes with load greater than or less than the baseline growth
rate r0, increases with increasing r0K. All predictions are for Ku = 0.01.

Figures 4.3a and 4.3c show the critical selection thresholds Ksc (as in fig. 4.1a) and
Ksc,2 versus the scaled mutation target 2LU = 2L(u/r0) for the two values of h, for
various carrying capacities (with Ks, Ku, 2LU = 2L(u/r0) held constant, as K is varied).
The threshold Ksc, which relates to population outcomes in the zero migration limit,

79



is (by definition) independent of K in the semi-deterministic setting, as increasing K

merely weakens the demographic effects of migration. The threshold Ksc,2 decreases as K
decreases, i.e., as the demographic effects of migration become stronger. This means that
when alleles are moderately deleterious, i.e., characterised by a certain intermediate value
of Ks, populations are stabilized (i.e., rescued from recurrent collapse into the high-load
sink state) by increasing migration more easily on smaller islands, where the demographic
effects of migration are stronger.

Figure 4.3b and 4.3d show the critical migration thresholds mc,1, mc,2 and mc,3 vs. 2LU
for a given Ks value (chosen to be 50). Here, with h = 0.02 for example (fig. 4.3b),
increasing migration causes the sink state to vanish for 2LU ≲ 0.5, but degrades the
large-population (low-load) state for 2LU ≳ 0.5. The threshold mc,1 (solid lines) is highly
sensitive to K: populations can be stabilized at a finite fraction of carrying capacity
at much lower levels of migration on smaller islands (given Ks, Ku), suggesting a key
role of the demographic effects of migration. We can obtain an explicit expression for
the threshold mc,1 in the limit K → ∞ (so that M0 = m0/(r0K)), which governs the
demographic effects of migration, is negligible):

mc,1 = LSp(m) − 1
4[1 − LSp(m)(p(m) + 2h(1 − p(m)))] as K → ∞ (4.4)

Interestingly, this threshold depends only on the load, LSp(m)(p(m) + 2h(1 − p(m))), and
breeding value, LSp(m), among migrants, and is independent of Ks and Ku: this simply
reflects the fact that the growth rate of a very small population (just after recolonization)
depends primarily on the genetic composition of founders, (and not selection on their
subsequent descendants). Thus, the critical level of migration required to prevent a genetic
Allee effect in the limit of very large carrying capacities is also independent of Ks and
Ku.

The threshold mc,2, which signals the collapse of the large-population state, is less sensitive
to K: this is consistent with our expectation that demographic effects of migration
should be less important when numbers are larger. There is, nevertheless, a moderate
decrease in mc,2 with K, which can be rationalised as follows: the (detrimental) genetic
effects of migration on the large-population state are more effectively compensated by
its demographic effects when islands are smaller (lower carrying capacity), allowing the
large-population state to persist despite higher levels of migration on such islands. Finally,
the third threshold mc,3, which signals the emergence of a migration-dependent low-load
state (at large 2LU) is also highly sensitive to the demographic effects of migration, and
becomes unrealistically high in the large K limit, where increasing migration can only
shift allele frequencies but has little effect on population numbers (relative to carrying
capacity).
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A comparison of the top and bottom rows in fig. 4.3, which correspond respectively
to h = 0.02 and h = 0.1, shows that as deleterious alleles become less recessive (larger
h), the parameter regime in which increasing migration eliminates the large-population
equilibrium shrinks drastically, and only emerges for very high genome-wide mutation
rates — with h = 0.1, the second threshold Ksc,2 exists only for 2LU ≳ 0.8 in fig. 4.3c.
This is consistent with the fact that purging of recessive mutations in smaller populations
(which allows them to evolve significantly lower load than mainland populations) is only
effective for very low h; thus, gene flow from the mainland becomes less detrimental to
the large-population equilibrium in island populations for less recessive alleles. In fact, for
h ≳ 0.15, increasing migration always causes the sink equilibrium to vanish, irrespective
of Ks. Moreover, the migration threshold mc,1 at which the sink state vanishes falls with
increasing h (compare figs. 4.3b and 4.3d). Thus, we observe a genetic Allee effect only
at very low migration rates for moderately recessive alleles. This is consistent with the
fact that inbreeding load in small populations (owing to excess homozygosity) becomes
lower as alleles becomes less recessive, and is alleviated by even low levels of migration.

4.4 Discussion

A key parameter governing the fate of peripheral populations is 2LU = 2L(u/r0), the
genome-wide deleterious mutation rate relative to the baseline rate of population growth:
low-load (large-population) states are possible only for 2LU ≲ 1, provided selection
against deleterious variants is sufficiently strong and/or migration high. Conversely, for
2LU ≳ 1, populations exist only as demographic sinks, irrespective of selection strength.
The parameter 2LU is a measure of the ‘hardness’ of selection and can be small either if
the total mutation rate 2Lu (which determines total load in the absence of drift) is small
or, more realistically, if the growth rate r0 i.e., the logarithm of the baseline fecundity is
high (corresponding to the soft selection limit).

Our analysis highlights qualitatively different effects of migration on population outcomes,
depending on fitness effects and the total mutation target of deleterious variants (figs.
4.2 and 4.3). For example, with 2LU = 0.5 (which corresponds to a ≈ 50% reduction
in growth rate owing to genetic load in a deterministic population), typical values of
Ks must be at least approximately 5 for recessive and approximately 10 for additive
alleles (reflecting the twofold difference in load between recessive vs additive alleles),
if populations are to be metastable in the absence of migration. For weaker selection,
gene flow from the mainland is beneficial, and aids population survival by hindering the
fixation of deleterious alleles. However, for stronger selection and with recessive alleles, the
fitness and size of ‘low-load’ island populations actually declines with increasing migration
from the mainland (due to higher deleterious allele frequencies in the latter). In the
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most extreme scenario, where load is primarily owing to segregation of recessive alleles
of moderate effect, intermediate levels of migration may actually increase load so much
that populations degenerate into high-load demographic sinks (fig. 4.2b and fig. C.4 (in
appendix C.4)).

We identify two regimes in which peripheral populations can maintain stable numbers at
a substantial fraction of carrying capacity, with qualitatively different roles of migration
in the two. When selection is strong, i.e., Ks ≫ Ksc (for additive alleles) or Ks > Ksc,2

(for recessive alleles) for a given 2LU , genetic load is low and populations stable, largely
independent of migration. In this case, low levels of migration (typically ≲ 1 migrant per
generation; note typical values of mc,1 in fig. 4.3) are sufficient to prevent a genetic Allee
effect, should demographic stochasticity or chance fluctuations in load drive population
numbers down. On the other hand, with weakly or moderately deleterious alleles, stable
populations rely on rather high levels of migration (≫ 1 migrant per generation; note
typical mc,3 in fig. 4.3) and are only weakly differentiated with respect to the mainland.
Here, migration is essential for maintaining heterozygosity and preventing fixation of
deleterious alleles, even though numbers are relatively large.

Both classical quantitative genetics and analyses of allele frequency spectra suggest that
most mutation load is owing to weakly deleterious alleles (Charlesworth, 2015, 2018).
The weak selection on deleterious mutations may be strong relative to random drift in
the species as a whole (Charlesworth, 2015), but is likely to be dominated by random
drift within local demes (i.e., Ks < 1 in our notation). If this is so, then extinction
can be avoided only if many migrants enter demes in each generation. Fortunately, this
is generally the case: FST is typically small (King et al., 2001), implying that m0 is
between 0.5 and 5 (note that m0 is the number of migrant genes, corresponding to 2Nm
in the usual diploid notation). Thus, while selection can act effectively to suppress the
mutation load in a well-connected metapopulation, demes that receive few migrants will
be vulnerable to the accumulation of load due to weakly selected mutations. Moreover,
when fitness has additional environment-dependent components, local adaptation must
depend on alleles of intermediate effect and is hindered by high migration, especially for
marginal habitats within the metapopulation. (Szép et al., 2021).

What implications might our work have for the conservation of natural populations?
Provided that several migrants are exchanged per generation, selection against deleterious
alleles can be effective across the whole population. Indeed, subdivision into small
subpopulations can help purge deleterious recessives, making selection more effective
than with panmixia. Thus, random drift would lead to a severe load only if local demes
are highly isolated–in which case environmental fluctuations are more likely to cause
extinction than the gradual accumulation of weakly deleterious mutations (Lande, 1988).
Our work implies that an intermediate rate of migration minimizes mutation load, by
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preventing extinction of local populations, and yet still allowing some purging. However,
the extinction risk arising from environmental fluctuations (which we underestimate by
including only demographic stochasticity) favours higher migration. Conversely, local
adaptations require selection that is stronger than drift within local demes (Ks > 1) (Szép
et al., 2021); if this is a concern, then substantial deme sizes are required in the long term.

Our model makes various assumptions: first, we take mutation rates to and from the
deleterious state to be equal. Asymmetry in mutation rates would not qualitatively
alter our conclusions as long as there is even weak migration (m0 ≳ 0.1), as load is
then alleviated primarily by migration rather than reverse mutation. However, with zero
migration and no reverse mutation, selection must be strong enough to prevent long-term
ratchet-like accumulation of deleterious variants, resulting in a much higher threshold
Ksc for metastability.

Second, we assume deleterious allele frequencies on the mainland to be close to determinis-
tic. This assumption is not crucial: our qualitative conclusions remain unaltered as long as
mainland frequencies are much lower than typical island frequencies. However, if mainland
populations are small enough to harbour deleterious alleles at high frequencies at a subset
of loci (which would, in general, be different from the loci fixed for deleterious alleles on
the island), then we expect heterosis and the beneficial effects of migration to be weaker
(with one-way migration between the mainland and island). More generally, extending
this analysis to the co-evolution of load and population sizes in a metapopulation, where
each sub-population may be close to fixation for different deleterious alleles, remains an
interesting direction for future work.

Third, we assume a rather simple genetic architecture of load: loci are assumed to be
unlinked, and load additive across loci. Deviations from additivity, e.g. synergistic epistasis
between deleterious variants can lower load (Kimura and Maruyama, 1966; Kondrashov,
1988), and may arise, for example, if multiple traits are under stabilizing selection. However,
linkage between deleterious variants can inflate load by compromising selection efficacy
at individual loci via Hill–Robertson interference (Hill and Robertson, 1966), making it
difficult to arrive at general predictions for the effects of selective interference (owing
to linkage and epistasis between selected variants) on the eco-evolutionary dynamics of
marginal populations. Fourth, we ignore environmental stochasticity and demographic
Allee effects, which may strongly influence outcomes (Lande, 1993; Courchamp et al.,
2008), especially in parameter regimes where mutation accumulation and demographic
stochasticity in themselves are unlikely to cause extinction.

Finally, our ananlysis relies on a semi-deterministic analysis, which accounts for genetic
drift but neglects demographic stochasticity: while this approximation captures various
qualitatively different population states across parameter space, it gives little insight
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into the dynamics. In particular, where alternative — low-load and high-load states
are possible, the key assumption underlying the semi-deterministic analysis — namely,
that allele frequencies have sufficient time to equilibrate at any given population size, is
satisfied only when populations are in one or other state, and not while they transition
between states. This makes it challenging to describe the rather complex co-evolution of
load and population size during transitions and arrive at a complete understanding of the
factors governing transition timescales.

Our aim has been to base our analysis on as few parameters as possible, in the hope that
these can be related to observations from nature. We have reasonably good estimates of
the fitness effects of deleterious mutations, and their degree of dominance – albeit largely
from Drosophila (Charlesworth, 2015). We also now have accurate measures of the total
mutation rate; the total rate of deleterious mutations is still uncertain (Graur et al., 2013),
but may be substantial in complex organisms (Böndel et al., 2019). Population structure
is less well understood: we have very many estimates of FST (Morjan and Rieseberg, 2004),
which reflects the numbers of incoming migrants, but local effective deme size is harder
to estimate, even if demes can be defined at all. However, the common observation of
heterosis implies that different deleterious recessives are common in different populations,
suggesting a substantial drift load.

The rather complex effects of migration that emerge even in this relatively simple model
with unconditionally deleterious alleles suggest that a comprehensive understanding of
the effects of gene flow on eco-evolutionary dynamics at range limits must account for
both environment-dependent (local) and environment-independent (global) components of
fitness. These may be influenced by (partially) overlapping sets of genetic variants, so that
genetic load is shaped fundamentally by pleiotropic constraints. Such extended models
are key to understanding when, for example, assisted gene flow is beneficial, and whether
its mitigatory effect on inbreeding depression may be outweighed by any outbreeding
depression that it might generate.

From a conceptual viewpoint, our analysis highlights the importance of considering
explicit population dynamics when analysing the influence of gene flow on the efficacy of
selection in small or sub-divided populations. Simple predictions, e.g., that a sub-divided
population under hard selection should behave as a single population with an inbreeding
coefficient equal to FST (Caballero et al., 1991; Whitlock, 2002), may break down when
sub-populations can undergo local extinction. In this case, purging may be ineffective
and the efficacy of selection reduced relative to undivided populations, in contrast to
standard predictions that subdivision always reduces load when selection is hard. We
regard the framework presented here as a starting point for detailed studies in specific
metapopulations, which take into account the joint evolution of population size and
mutation load.
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Chapter 5

Genetic load, eco-evolutionary feedback and
extinction in a metapopulation1

Oluwafunmilola Olusanya, Khudiakova Kseniia, Himani Sachdeva

Abstract

Fragmented landscapes pose a significant threat to the persistence of species as they
are highly susceptible to heightened risk of extinction due to the combined effects of
genetic and demographic factors such as genetic drift and demographic stochasticity. This
paper explores the intricate interplay between genetic load and extinction risk within
metapopulations with a focus on understanding the impact of eco-evolutionary feedback
mechanisms. We distinguish between two models of selection: soft selection, characterised
by subpopulations maintaining carrying capacity despite load, and hard selection, where
load can significantly affect population size. Within the soft selection framework, we
investigate the impact of gene flow on genetic load at a single locus, while also considering
the effect of selection strength and dominance coefficient. We subsequently build on this
to examine how gene flow influences both population size and load under hard selection as
well as identify critical thresholds for metapopulation persistence. Our analysis employs
the diffusion, semi-deterministic and effective migration approximations. Our findings
reveal that under soft selection, even modest levels of migration can significantly alleviate
the burden of load. In sharp contrast, with hard selection, a much higher degree of gene
flow is required to mitigate load and prevent the collapse of the metapopulation. Overall,
this study sheds light into the crucial role migration plays in shaping the dynamics of

1This work can be found online at https://www.biorxiv.org/content/10.1101/2023.12.
02.569702v1
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genetic load and extinction risk in fragmented landscapes, offering valuable insights for
conservation strategies and the preservation of diversity in a changing world.

Keywords: population fragmentation, genetic load, extinction, migration, soft selection,
hard selection.

5.1 Introduction

The long held belief that ecological (eco) and evolutionary (evo) processes occur on too
different timescales to influence each other has fallen under scrutiny as many studies
(Thompson, 1998; Hairston Jr et al., 2005) have documented that these timescales can be
comparable: this can be the case when selection varies sharply over space and time, or
when populations are too small to adapt efficiently, resulting in rapid loss in fitness (e.g.,
due to the accumulation of deleterious alleles).

Such eco-evolutionary feedback is particularly important in fragmented landscapes with
small-sized patches, where mating between genetically related individuals within patches
(i.e., inbreeding) as well as stochastic changes in genetic composition (due to genetic drift)
can compromise the efficiency of natural selection. As a consequence, populations in
such landscapes may become more susceptible to fixing deleterious mutations, resulting
in an increase in genetic load and a decline in population numbers, which can further
exacerbate both genetic drift and inbreeding. The resultant positive feedback loop between
increasing load and falling population sizes may drive populations towards extinction
through a process termed mutational meltdown (Lynch et al., 1995b). Evidence of such
extinction events have been found in plant populations (Matthies et al., 2004) and in
some vertebrate (Fagan and Holmes, 2006) and invertebrate (see M. cinxia) populations
(Saccheri et al., 1998). This kind of feedback may be further aggravated by demographic
and environmental stochasticity, both of which can limit the potential of populations
to adapt to changing conditions. However, despite some understanding of individual
factors contributing to extinction risk, a comprehensive picture of how deterministic and
stochastic processes together structure genetic diversity and influence the persistence
of populations remains lacking. This understanding is crucial for formulating effective
conservation strategies that can safeguard biodiversity and promote long-term survival
of endangered species (Lande, 1993; Frankham, 1998) particularly as human activities
continue to exert significant pressures on natural environments. Gaining such quantitative
understanding requires us to consider how fragmented the landscape is: how many local
populations they contain, what their sizes are, to what extent they are connected by gene
flow, etc.

Migration can affect various aspects of the eco-evo feedback loop, in essence homogenizing
both genetic composition and population density across fragmented populations. Investi-

90



gations of natural populations yield examples of both the beneficial and deleterious effects
of migration. For instance, Finger et al. (2011) demonstrated how augmented gene flow
reduced the negative effects of inbreeding in a critically endangered and isolated jellyfish
tree (Medusagyne oppositifolia) population. Similarly, Land and Lacy (2000) showed
that introducing eight wild-caught Texan female panthers into a small isolated Florida
panther population caused a tripling of its size, bringing it back from near extinction
within just 12 years of re-introduction. In contrast, Herman et al. found that gene
flow between surface and cave populations of Mexican tetra, Astyanax mexicanus, had
a swamping effect on cave-related traits. These examples show how migration can have
very complex effects - they can have a ‘rescue effect’ when migrants are introduced into a
vulnerable population or they can have negative consequences or generally engender a
tension between inbreeding and outbreeding depression, in particular, when migration
occurs between populations that are adapted to different environmental conditions or
happens between distinct species (Frankham et al., 2011; Edmands, 2007; Templeton,
1986)). These varied effects of migration introduce complexities to practical decisions in
conservation such as those concerning assisted gene flow (Aitken and Whitlock, 2013),
underscoring the need for a more quantitative and theoretical understanding of gene flow
in fragmented landscapes.

Migration can have rather intricate effects on genetic diversity even when there is no local
adaptation i.e., when different local populations are subject to uniform selection pressures,
e.g., due to purifying selection against unconditionally deleterious alleles. Small and
somewhat isolated local populations may be nearly fixed for deleterious alleles at different
loci; migration between such populations can result in hybrid offspring of increased vigour
due to masking of recessive (deleterious) mutations. Migration can also increase fitness
variation, which has two competing effects - it may alleviate drift load by preventing
fixation of deleterious alleles (especially at low levels of migration), but also prevent
purging of recessive alleles by increasing heterozygosity (at higher levels of migration)
(Glémin et al., 2003).

The effect of migration on genetic diversity and adaptation in structured populations
depends crucially on whether selection is “soft” or “hard”, i.e., whether different local
populations contribute equally to the next generation regardless of fitness, or if the
contribution of fitter populations is higher (e.g., when these are larger and send out more
migrants). In the latter case, adaptation is expected to be most efficient at intermediate
migration rates (Uecker et al., 2014; Gomulkiewicz et al., 1999), i.e., when gene exchange
between demes is sufficiently low so as not to displace exceptionally fit local populations
from the highest “adaptive peaks”, but high enough to eventually cause the entire
population to move towards these peaks (Wright, 1931; Rouhani and Barton, 1993).

However, most work on hard vs. soft selection in subdivided populations assumes a rather

91



specialised life cycle in which all (adult or juvenile) individuals across all demes join a
common pool prior to reproduction, followed by uniform redistribution of zygotes back
into demes (Levene, 1953; Christiansen, 1975; Ravigné et al., 2004), making it difficult to
assess the role of limited dispersal. In particular, models of hard selection typically assume
that while different local demes can vary in size and thus contribute differentially to the
common pool of reproducing adults, the metapopulation as a whole is under global density
regulation and is moreover at carrying capacity (see, e.g., Whitlock (2002)). This makes it
difficult to use such models to assess how genetic load can decrease local populations over
multiple generations due to the positive feedback between declining population size and
increasing load (or vice versa) and to what extent this kind of meltdown may be arrested
by (limited) dispersal between populations– questions that are crucial for a quantitative
understanding of how migration ameliorates extinction risk in fragmented populations.
This therefore calls for more realistic models that allow for variation in both local and
global population sizes and explicitly incorporate eco-evolutionary feedback.

Lynch et al.(1995a; 1995b) considered such a model where load due to deleterious mutation
accumulation leads to increased extinction risk. Using extensive computer simulations,
they showed that populations with low effective size (typically less than 100 individuals)
are at a significant risk of extinction via mutational meltdown within only about 100
generations (Lynch et al., 1995a); a conclusion with potential implications for management
programs such as captive breeding programs. However, their analysis was limited to single
randomly mating populations. Higgins and Lynch (2001) went beyond this to consider
the dynamics of a metapopulation. Using metapopulation simulations with global and
nearest-neighbour dispersal, they demonstrated that the eventual fate of a metapopulation
(as measured by the median time to extinction) is critically dependent on the number of
demes or metapopulation patches (see also Lande et al. (2003), Ch 4, Table. 4.1) as well
as on the dispersal neighbourhood. Their analysis however primarily focused on extinction
times and was restricted to scenarios where patch sizes were relatively small resulting
in early population extinctions. Furthermore, their study was entirely simulation-based,
making it hard to generalize their conclusions.

Going beyond simulations, Szép et al. (2021) introduced a stochastic polygenic model,
that explicitly captures the coupling between population size and allele frequency at
multiple loci and investigated how this influences local adaptation and extinction in
metapopulations, as well as the role of gene flow and stochastic events i.e., demographic
stochasticity and drift. They found that the extinction risk of metapopulations is higher
when population sizes are small and the coupling between population size and allele
frequency is strong. They also showed that local adaptation is more difficult under hard
selection and if locally adaptive traits are more polygenic, causing populations to become
extinct under much lower levels of gene flow than would be expected from single-locus
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theory. However, their conclusions beg the question of how these results change when
selection is uniform across space. Using a similar theoretical model, but with spatially
uniform selection, Sachdeva et al. (2022) investigated whether or not asymmetric gene
flow (from a mainland to an island) can help arrest mutational-meltdown due to eco-evo
feedback and thus prevent extinction of the island population. They found that migration
can have qualitatively different effects on the island; having a positive effect (i.e., reducing
load and thus the risk of extinction) when the island population is small and isolated (i.e.,
in a sink state) and having an opposite effect (i.e., increasing load by hindering purging)
when it is large and connected.

However, beyond marginal populations that are plagued by asymmetric gene flow from
central populations, it is important to understand how eco-evo feedback influences extinc-
tion risk and load in a metapopulation where migration is random and where the different
islands (demes) can fix for different subsets of deleterious alleles that mask one another.
We therefore extend the work of Sachdeva et al. (2022) to explore the eco-evolutionary
dynamics of a metapopulation made up of a large number of demes exchanging migrants
at random (i.e., under the island model). Our goal is to investigate the effect of gene flow
on equilibrium load and population size, as well as the critical thresholds required for the
persistence (i.e., for non-extinction) of the metapopulation. We further analyse how these
thresholds are influenced by the architecture of load (the genomewide deleterious mutation
rate and the distribution of selective effects and dominance coefficients of deleterious
mutations) as well as features of the metapopulation landscape (carrying capacities and
baseline growth rate of local demes). As we see below, a key parameter that determines
the fate of the metapopulation is the total mutation rate relative to the baseline growth
rate, which determines the extent to which genetic load depresses population growth and
can thus be considered a proxy for the “hardness of selection”. Besides the advantage of
explicitly incorporating the relationship between population size and load, our theoretical
approach explicitly accounts for the indirect coupling between the dynamics of different
loci: a small increase in drift load at very many weakly selected loci can have rather
strong effects on total load which can further exacerbate the effects of drift per locus,
resulting in an indirect coupling between different loci even in the absence of epistasis. This
indirect coupling adds more complexity to the eco-evo dynamics and can have significant
implications for population fitness and evolutionary outcomes in the metapopulation. We
later go on to discuss the application of our results to conservation issues.

5.2 Model and Methods

We consider a metapopulation with nD (i = 1 · · · , nD) local populations or patches all
connected to each other via migration. In each patch i, mating occurs randomly and adult
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individuals are allowed to undergo only one breeding season per generation. Individuals
are diploid and subject to deleterious mutations at L unlinked loci at a rate u per haploid
locus, resulting in a genome-wide deleterious mutation rate of 2Lu. We also allow for
mutations in the reverse direction at rate v. The fitness of an individual is multiplicative
across loci where at any locus the wild-type has fitness 1, the heterozygote has fitness e−hs

and the mutant has fitness e−s respectively, with h representing the dominance coefficient
and s, the strength of selection against the mutant allele. We assume here that s and
h are the same across all loci, a gross simplification that is relaxed in appendix D.0.7.
Patches are also allowed to have different population sizes and mean fitness.

In each generation, a fraction m of individuals in each patch i migrate into a common pool
and individuals from this pool are then evenly dispersed back to the patches. We assume
that all patches experience the same environment, so that the fitness of any genotype is
independent of the patch. We further assume a logistic model of population growth in each
i i.e., ni(t+ 1) = ni(t) Exp[r0(1 − ni(t)/K))]Wi, where the population size, ni(t+ 1) in i
after reproduction and density regulation depends on its previous size ni(t), its carrying
capacity K, the baseline growth rate, r0 as well as on the mean fitness, Wi of individuals
(hard selection) in i which holds true in a number of natural populations. Note that the
carrying capacity K and the baseline growth rate, r0 are assumed to be the same across
all patches.

The parameters of our model are therefore, the number of loci L, the rate of mutation
v = g u (where g represents the degree of mutational bias; we mostly assume g = 1), the
strength of selection s, the dominance coefficient, h, the migration rate, m, the baseline
growth rate, r0 in each patch and the carrying capacity K. As will be argued below, the
behaviour of our model is governed largely by composite parameters Km (which represents
the strength of migration scaled by the carrying capacity), Ks (which represents the per
locus strength of selection scaled by the carrying capacity), Ku (which is the deleterious
mutation rate scaled by the carrying capacity), h, 2LU = 2Lu/r0 (which is a measure of
the hardness of selection) and r0K (whose inverse represents the strength of demographic
fluctuations).

To guide the choice of parameter ranges, we look to some estimates in the literature.
For example, estimates of the frequency at which deleterious mutations appear in the
genome per individual per generation has been documented to be of the order of 0.1 − 1
in multicellular eukaryotes (Lynch et al., 1999), 1.2 − 1.4 in Drosophila (Haag-Liautard
et al., 2007), 0.25 − 2.5 for C. elegans (Denver et al., 2004) and 2.2 for humans (Keightley,
2012), the latter being an unusually high value. Similarly, data on the distribution of
fitness effects remain controversial as different studies have generated varied selection
estimates on phenotypic traits. Although some experimental studies have shown that
a sizeable fraction (< 15%) of mutations are likely to be lethal (Mukai et al., 1972;

94



Eyre-Walker et al., 2006), there is consensus that small effect mutations (with effect < 5%
on quantitative traits) have higher densities (Mukai, 1964; Mukai et al., 1972; Lyman
et al., 1996; Lynch et al., 1999). Dominance coefficients are harder to estimate for weakly
deleterious mutations but may be ∼ 0.2 for moderately deleterious variants (Charlesworth
and Charlesworth, 1987). In addition, several studies point to a negative relationship
between s and h, with mutations of small effect being almost additive and those of large
effect being almost recessive (Greenberg and Crow, 1960; Simmons and Crow, 1977; Lynch
et al., 1999; Gillespie, 2004). With regards to the baseline growth rate, r0, this is a very
challenging parameter to estimate as it can fluctuate due to a multitude of interrelated
factors. Statistical and mathematical models that incorporate factors like the carrying
capacity of the population in question, birth and death rates as well as other ecological
parameters are often used to predict r0 but they can only provide an approximation at
best due to the complexities involved.

Finally, indirect measures (e.g, FST ) have reported moderate to high levels of gene flow in
plants and mammals with typical values between closely related species being of the order
0.05−0.2. For example, FST is ∼ 0.099 between North American and Eurasian populations
of gray wolf and ∼ 0.018 between gray and red wolf populations which corresponds roughly
to 2 and 14 migrants respectively per generation between local populations. Similarly,
average FST was found to be ∼ 0.07 in a study of 12 populations of Camelina sativa and
∼ 0.077 in 337 species of seed plants (Gamba and Muchhala, 2020). Studies have however
found that these FST values are higher in plants with limited dispersal mechanism such
as those that are self-pollinated or wind-dispersed. For instance, Hamrick et al. (1990)
found FST values to be of the order of 0.32 in a population of trees that dispersed their
seeds by gravity and of the order of 0.15 in those that dispersed their seeds by wind;
corresponding to approximately 5 and 14 migrants every ten generations. It is important
to note that in populations that are on the verge of extinction, gene flow may be much
less than this (Frankham et al., 2002; Casas-Marce et al., 2013; Szczecińska et al., 2016)
and indeed one of the goals of this study is to identify critical levels of migration required
to prevent population collapse. Thus, most of the study will focus on low to moderate
levels of gene flow. In addition, we will consider a genome-wide mutation rate (scaled
relative to the growth rate), 2LU < 1 (which corresponds to < 63% reduction in fitness),
otherwise, populations will not grow. We will also consider both recessive and additive
alleles and growth rates of the order of 0.1.

Given this set-up, we are generally interested in understanding the varied effects migration
has on populations outcomes and the role parameters such as dominance, selective effects
and mutational bias play in this. Using simulations and analytical approximations, we
explore this problem from two different angles.

First, we consider a soft selection model where the maximum possible genetic load, 2Lu
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in any deme is much less than the intrinsic growth rate (i.e., 2Lu/r0 ≪ 1) so that demic
population size (and hence that of the metapopulation) is always constant over time (even
at high levels of maladaptation) thus ignoring the possibility of local extinctions. With
this model, we explore the effect of gene flow on load due to a single locus and how this
depends on the selection strength and dominance coefficient at the given locus.

Secondly, we also consider a hard selection model where the maximum possible genetic
load in a population or deme is appreciable relative to the intrinsic growth rate (i.e.,
2Lu/r0 ≳ 1) so that population size now depends on the degree of maladaptation through
load. This model therefore takes into account the interplay between population size and
allele frequency, thus accounting for the possibility of local (and by extension global)
extinction. Also, since population size differences exist among demes under this kind of
model, larger and more fit islands would contribute more to the migrant pool and would
be less influenced by incoming migrants. Using this model, we focus on understanding how
migration influences population size and load (and hence metapopulation persistence);
how it impacts critical extinction thresholds; and finally what the role of the hardness of
selection is (where hardness of selection is simply a measure of the reduction in the growth
rate of a population due to load and is quantified by the value of 2LU = 2Lu/r0; the
larger this value, the more strongly is growth rate reduced, resulting in harder selection).

To gain insight into the above questions, we make use of a number of analytical approxi-
mations which are described below. First, we assume the diffusion approximation upon
which we base our soft selection analysis. This will be used to obtain the equilibrium
distribution of allele frequency at any given locus in any deme conditional on the mean
allele frequency across the entire metapopulation (Wright, 1937).

In using the diffusion approximation (Wright, 1937), we make a simplifying assumption
that alleles at different loci evolve independently (which is valid when all evolutionary and
ecological processes are much weaker than the strength of recombination). However, to
account for the effect of multilocus LD on load, we will consider a diffusion approximation
with effective migration rates me called the ‘effective migration approximation’ (Sachdeva,
2022).

Under hard selection, population sizes can vary between demes and also within a deme
over time, so that the metapopulation is characterised by a distribution of population sizes
and we hence need to follow the joint distribution of population size and allele frequencies
in any given deme. It turns out that the diffusion approximation cannot be used to obtain
an explicit solution for such a joint distribution in the presence of mutation. Hence, to
make analytical progress we look to a different approximation - the semideterministic
approximation (see also section 4.2). This assumes that the population size of any deme is
reduced with respect to carrying capacity by an amount that depends on the genetic load
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and is thus determined by load, rather than following a distribution. It further assumes
that the load is that expected at mutation-selection-migration-drift equilibrium for the
population size, allowing us to solve self-consistently for the population size (and load).
Over the time scale required to reach such equilibrium, population size remains relatively
constant due to weak demographic fluctuations and thus the approximation accounts for
genetic drift but not demographic stochasticity.

The different approximations are discussed below. First we describe the dynamics of the
joint evolution of population size and allele frequencies.

5.2.1 Evolution of allele frequencies and population sizes in
continuous time

If ecological and evolutionary processes are weak relative to recombination so that they
cause only minor changes per generation, and if in addition, we ignore non-random
associations and correlations among loci, then one can describe the dynamics of allele
frequency, pi,j, at any locus j and population size, Ni, in any deme i in continuous time
as,

dpi,j
dτ

= −pi,jqi,j
2

∂Rg,i

∂pi,j
+ Ui(qi,j − pi,j) +M

N

Ni

(︄
Npj
N

− pi,j

)︄
+ λpi,j

qi,j = 1 − pi,j

(5.1)
dNi

dτ
= Ni(1 −Ni −Rg,i) +M(N −Ni) + λNi

where Rg,i =
L∑︂
j=1

S pi,j(2hi,jqi,j + pi,j)

(5.2)

where Rg,i is the load in deme i obtained as the sum of the load due to all j loci.

Equation (5.1) and (5.2) are non-dimensional equations that have been obtained by re-
scaling population size, n relative to carrying capacity, K (i.e., N = n/K), re-scaling load,
Rg relative to the rate of increase in the population from low numbers - the characteristic
growth rate, r0 (i.e., Rg = rg/r0) as well as re-scaling all other parameters relative to r0

i.e., S = s/r0, U = u/r0, M = m/r0 and τ = r0 t. qi,j = 1 − pi,j, N is the population
size averaged across all demes of the metapopulation and Npj is the allele copy number
at locus j averaged across all demes of the metapopulation. Finally λpi,j

and λNi
are the

stochastic parts of the equations. λpi,j
represents the processes of drift (i.e., the stochastic

fluctuations in allele frequencies due to random mating) and has mean, E[λpi,j
] = 0

and variance, E[λpi,j
(t) λpi,j

(t′)] = ((pi,j(t)qi,j(t)) δ(t− t′)) / (ξ Ni(t)). λNi
represents

demographic stochasticity (population size fluctuations due to randomness in birth and
death) and has mean, E[λNi

] = 0 and variance, E[λNi
(t) λNi

(t′)] = (Ni(t)δ(t− t′)) /ξ.
Note that ξ = r0 K (its inverse determines the strength of demographic fluctuations).
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5.2.2 The diffusion approximation for allele frequencies

The diffusion approximation has a long history in population genetics, being an effective
mathematical tool for understanding how the long term behaviour of populations are
shaped by evolutionary (ecological) processes.

Under soft selection, each deme is at carrying capacity such that population size in each
deme is n = K and is not impacted by load, hence, we can ignore eq. (5.2). The third
term in eq. (5.1) then depends only on the scaled migration rate, M , the allele frequency
at locus j and the mean allele frequency at j (i.e., averaged across all demes of the
metapopulation). We can now write down equations for the time evolution of the joint
distribution, Ψ(p1, . . . , pL|p) of allele frequencies for a fixed N (i.e., under soft selection).
In the spirit of Wright, and under soft selection one can find an equilibrium solution for
Ψ(p1, p2, . . . , pL|p),

Ψ (p1, p2, . . . , pL|p) =
L∏︂
j=1

ψ
(︂
pj|pj

)︂
with, (5.3)

ψ
(︂
pj|pj

)︂
∝ p

4Ku+4Kmpj−1
i (1 − pj)4Ku+4Kmqj−1e−2Ks(p2

j +2hpjqj); qj = 1 − pj, qj = 1 − pj

(5.4)

where ψ is the marginal distribution at j. The expected allele frequency E[pj|pj] and
heterozygosity, E[pjqj|pj ] at any locus j in the population can be obtained by numerically
integrating over eq. (5.4) i.e.,

E[pj|pj] =
∫︁ 1

0 pj ψ(pj|pj)dp∫︁ 1
0 ψ(pj|pj)dp

, E[pjqj|pj, N ] =
∫︁ 1

0 pjqj ψ(pj|pj)dp∫︁ 1
0 ψ(pj|N, pj)dp

. (5.5)

The expected load, E[Rg] in the population can then be obtained as the sum,

E[Rg] =
L∑︂
j=1

S (E[pj] + (2h− 1)E[pjqj]) (5.6)

Under hard selection, however, we cannot find a direct solution for the joint distribution of
population size and allele frequency with mutation. Hence, we resort to a semi-deterministic
approximation as described below.

5.2.3 The semi-deterministic approximation

As stated earlier, under the model of hard selection and in the presence of mutation,
the diffusion approximation introduced above does not give an explicit formula for the
equilibrium population size and load in any deme of a metapopulation. Hence, we
introduce here a new approximation - the semi-deterministic approximation (Szép et al.,
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2021; Sachdeva et al., 2022).

This allows us to get straightforward and accurate solutions for the expected size and
load in any population at equilibrium. It is called semi-deterministic because it takes into
consideration one kind of stochasticity (genetic drift) but ignores the other (demographic
stochasticity). It assumes that allele frequencies in a population change rather slowly
and that demographic fluctuations in the population are very weak (implying a fairly
steady size), so that at equilibrium, the load can be approximated by the expectation at
mutation-migration-selection-drift balance and population size can then be calculated by
a simple expression that depends on the load.

Mathematically, this can be obtained by setting the l.h.s. of eq. (5.2) to zero and
assuming that at selection-mutation-migration-drift equilibrium, Rg ∼ E[Rg|N∗] where
N∗ represents the equilibrium population size. If we further assume that population sizes
are roughly similar across patches (so that no island acts as a demographic source or
sink), then population size on any island is just reduced (w.r.t. carrying capacity) by an
amount proportional to load, i.e., N∗ ∼ 1 − E[Rg|N∗]. This together with the equilibrium
expression for E[Rg|N∗] (given in eq. (5.5)) allows us to solve for N∗.

The above assumptions imply that we account for the genetic effects of migration on load
but ignore its demographic effects which can be important in source-sink dynamics (i.e.,
when population sizes differ across demes). Our approximation is thus limited in this
respect. The situation is however not too dire as we shall later on see in the result section,
even in scenarios with source-sink dynamics, our approximation accurately predicts the
population sizes of the non-extinct patches, though it fails to predict the proportion that
are extinct.

There are five important parameters that arise from our semi-deterministic approximation.
They are, the dominance coefficient, h, that determines the degree of dominance or
recessiveness of an allele; the selection strength scaled by the carrying capacity, Ks, that
determines the strength of selection against deleterious homozygote at a locus relative to
local drift when demes are at carrying capacity; the mutation rate scaled by the carrying
capacity, Ku; the migration rate scaled by the carrying capacity, Km, that determines the
degree of subdivision and finally, the geneomewide mutation rate relative to the baseline
growth rate, 2LU = 2Lu/r0, that determines the hardness of selection (see Sachdeva et al.
(2022)). 2LU = 0 is equivalent to pure soft selection and 2LU = 1 represents selection
that is very hard.

We now describe our simulation setup.
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5.2.4 Simulations

We run individual-based simulations only for soft selection to identify regimes in which
multilocus interactions are important and also to test the validity of approximations based
on effective migration rates, me (i.e., the effective migration approximation). However, for
hard selection, we perform allele frequency simulations (that assume linkage equilibrium)
since in general, multilocus interactions only have limited effects which are captured
reasonably well by simple extensions of the diffusion approximation, that include me. We
describe the allele frequency simulation below.

Under soft selection, since population size is always constant, we only follow allele
frequencies, pi,j at all L loci (i.e., j = 1, . . . , L) and in all nD demes (i.e., i = 1, . . . , nD)
of the metapopulation. Whereas, under hard selection, where population size vary across
patches, we follow both the size, Ni and allele frequencies pi,j in all patches of the
metapopulation.

The simulation is initialized such that the patches comprising the metapopulation are
initially perfectly fit (i.e., the mutant allele is assumed to be absent so that its frequency
in each patch is initially zero) and individuals then gradually accumulate deleterious
mutations over time. In each generation or time step, allele frequencies (under soft
and hard selection) and population size (under hard selection) undergo changes due
to processes of migration, mutation, selection, and stochastic events (i.e., drift and
demographic stochasticity) as described in Appendix D.0.1. The metapopulation is
allowed to equilibrate and the equilibrium load and population size (under hard selection)
are then computed.

The simulation was implemented in Fortran (see Olusanya et al. (2023) for code).

5.3 Soft selection

We first consider soft selection, where each subpopulation has a fixed number K of
individuals, regardless of mean fitness. Assuming loci evolve independently (i.e., under
linkage and identity equilibrium), the distribution ψ[p|p] of allele frequencies (at a given
locus) within subpopulations at mutation-drift-selection-migration equilibrium depends
only on the scaled parameters Ks, Ku, Km and the dominance coefficient h, and is
given by eq. (5.4) (where n ≡ K), conditional on p, the mean allele frequency across
all subpopulations (where p can be obtained self-consistently by numerically solving
p =

∫︁
dp pψ[p|p]).

The soft selection model has been analysed in earlier studies that assume either very weak
or strong selection, i.e., Ks ≪ 1 (Whitlock, 2002), or Ksh+Km at least 5 (Glémin et al.,
2003; Roze, 2015). These limits are useful to consider as they yield simpler intuition and
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allow for explicit analytical results: for instance, when selection on deleterious homozygote
is much weaker than local drift (i.e., Ks ≪ 1), probabilities of identity by descent
involving two or more genes can be approximated by their expectation under the neutral
island model, allowing one to solve explicitly for p in terms of (essentially) neutral higher
cumulants of the allele frequency distribution (Whitlock, 2002). In this limit, selection
is only efficient at the level of the population as a whole and not within local demes,
some of which may be nearly fixed for the deleterious allele (if Km is small enough).
By contrast, for large Ksh, deleterious alleles segregate at low frequencies within any
deme and the allele frequency distribution is concentrated about p. Thus, in this limit,
gene flow only serves to further narrow the distribution of allele frequencies, i.e., further
increase the effective size of local demes (Glémin et al., 2003; Roze, 2015). Here we focus
on moderately deleterious alleles with Ks ∼ 1 (which contribute the most to drift load
in a single isolated deme). As we argue in Appendix D.0.2, in this regime, selection has
more subtle effects, which are not captured by either intuitive description above.

Beyond these more conceptual issues, the concrete question we address here is: how much
gene flow between subpopulations is required to alleviate load at a single locus under soft
selection, and how does this depend on the (scaled) selection strength Ks and dominance
coefficient h at the locus? We then ask: to what extent is load per locus affected by
multilocus associations when multiple unlinked loci across the genome are under selection?
In the next section, we build upon this to investigate similar questions for the case of
hard selection, where positive feedback between increasing drift load at large numbers of
loci and declining local deme sizes can drive the entire metapopulation to extinction.

To begin with, consider the case of fully isolated demes (Km = 0). For Ku ≪ 1, any
deme will be close to fixation for one or other allele at any locus. Under this “fixed
state approximation” (see also Szép et al. (2021)), the probability that the deme is

nearly fixed for the wildtype allele is proportional to:
1/2∫︁
p=0

dp p4Ku−1 ≈ 1
4Ku , while the

corresponding probability for the deleterious allele is proportional to:
1∫︁

p=1/2
dp e−2Ks (1 −

p)4Ku−1 ≈ e−2Ks

4Ku , regardless of h. Thus, for Ku ≪ 1, the expected deleterious allele
frequency is E[p] ≈ e−2Ks

1+e−2Ks , and the expected load G (scaled by the deterministic
expectation 2u) is: G

2u = Ks
2Ku (E[p] − (1 − 2h)E[pq]) ≈ Ks

2Ku
e−2Ks

1+e−2Ks , assuming E[pq] ≈ 0.
It follows from this that the maximum contribution to load is from loci with Ks ≈ 0.64,
independent of h, with load per locus being G

2u ≈ 0.139
2Ku for this value of Ks: thus drift can

inflate the load associated with moderately selected loci by a factor of several hundreds or
thousands in an isolated population (see also Kondrashov (1995)).

Let us now consider how gene flow changes these simple expectations: fig. 5.1a shows load
per locus (scaled by 2u) as a function of Km for Ks = 0.64 for various values of h; the
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inset shows the expected deleterious allele frequency vs. Km. Symbols depict predictions
of the full diffusion approximation (eqs. (5.4)-(5.6), j = 1). In addition, we also show
predictions of a simpler ‘moderate selection’ approximation (lines), details of which are
outlined in Appendix D.0.2.
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Figure 5.1: Mutation-selection-drift-migration equilibrium at a single locus under the infinite-island
model with soft selection. (a) Main plot and inset show respectively the expected per locus load G
(scaled by 2u) and the mean deleterious allele frequency p vs. Km, the number of migrants per deme per
generation, for various values of h, for Ks = 0.64 (which is the Ks value for which load is maximum in an
isolated population). Symbols depict results of the diffusion approximation (eq. (5.6), j = 1), while lines
represent predictions of the ‘moderate selection’ approximation (eq. (D.7a), Appendix D.0.2). Arrows on
the y-axis represent the corresponding diffusion predictions for Km = 0. (b) The fraction of total load
that is due to alleles with frequency in the interval between p and p + ∆p (with ∆p = 0.05) for various
values of Km (solid, dashed and dotted lines), for weakly selected (Ks = 0.64; red) and strongly selected
(Ks = 6.4; blue) loci. Predictions are based on the diffusion approximation, i.e., obtained by integrating
over the allele frequency distribution in eq. (5.4). (c) Expected per locus load G (scaled by 2u) vs. Ks,
the homozygous selective effect scaled by drift, for various values of Km (different colours) for h = 0.5
(filled symbols) and h = 0.02 (open symbols). (d) Mean deleterious allele frequency p (main plot) and
the expected FST at the selected locus (inset) vs. Ks, for various Km (different colours) for h = 0.5
(filled symbols) and h = 0.02 (open symbols). In both (c) and (d), symbols depict results of the diffusion
approximation (eq. (5.6)) and lines represent the approximate ‘moderate selection’ predictions. All plots
are with Ku = 0.001.

Figure 5.1a shows that a very low level of gene flow (Km ∼ 0.1) is enough to dramatically
reduce drift load, regardless of dominance. For instance, G/(2u) falls from 140 at Km = 0
to 4 − 5 at Km = 0.1 for both nearly recessive (h = 0.02) and co-dominant (h = 0.5)
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deleterious alleles, for Ku = 0.001. In both cases, the expected allele frequency p declines
from 0.22 at Km = 0 to ∼ 0.01 at Km = 0.1 (inset), while heterozygosity hardly increases
(from ∼ 0.002 to 0.003 − 0.004). Thus the reduction in load at low levels of migration is
almost entirely due to the decline in the number of fixed deleterious alleles, with little to
no change in the number of segregating alleles.

A further increase in migration further reduces load, though in the case of recessive alleles,
this is partially offset by an increase in heterozygosity (resulting in less efficient purging).
Thus, for recessive alleles, load is minimum at Km ≈ 4 and rises again as Km increases
further, approaching the level expected in a panmictic population at large Km. For the
parameters shown in fig. 5.1a, the reduction in load due to purging at intermediate Km is
rather modest and hardly visible on the scale of the plot; purging has a more substantial
effect when u/(hs) and Ks are smaller, and provided h < 1/4 (Whitlock, 2002).

Increasing gene flow also shifts the frequency spectrum of alleles that contribute to load –
for Ks ≲ 0.1, the predominant contribution at Km = 0.1 is from fixed or nearly fixed
alleles; however, one migrant per deme per generation (Km = 1) is already enough to
prevent fixation of deleterious alleles, so that load is entirely due to alleles segregating at
intermediate frequencies at this higher migration level (dashed vs. dotted red curves in
fig. 5.1b). As expected, gene flow has a much weaker effect at strongly selected loci: for
Ks = 6.4, load is entirely due to segregating alleles regardless of Km (blue curves). Thus,
increasing gene flow reduces load only very weakly at strongly selected loci (fig. 5.1c), and
may even be detrimental if it hinders purging (in the case of recessive deleterious alleles).

Moreover, even low levels of gene flow tend to “even out” the contributions of alleles with
different selection coefficients to load, so that moderately deleterious alleles no longer
contribute disproportionately (as in isolated populations). For instance, with Km = 0.1,
load is maximum for Ks ≈ 0.1 (regardless of h), for which it is only about ∼ 3 times
larger than the deterministic expectation (fig. 5.1c); by contrast, in isolated populations,
it may be several hundred or thousand times larger (see above). With modest levels of
gene flow (Km = 0.5), there is an even weaker inflation of load for intermediate Ks, while
≳ 2 migrants per generation are enough for load to be more or less independent of Ks as
in a large, essentially panmictic population.

One can ask further: are the processes underlying this dramatic reduction in load (even with
low levels of gene flow) qualitatively different for alleles with different selective effects? More
concretely, expressing load as G

2u = Ks
2Ku [p− (1 − 2h) pq] ≡ Ks

2Ku [p− (1 − 2h)p q(1 − FST )],
it follows that for recessive alleles (h < 1/2), load declines if the mean deleterious allele
frequency p and/or FST at the selected locus decrease. A decline in FST (for a fixed p), in
turn, reflects a change in the allele frequency distribution from a more U -shaped (wherein
a fraction p of demes are nearly fixed for the deleterious allele) to a more unimodal or
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concentrated distribution (wherein the deleterious allele segregates at a low frequency
close to p in almost all demes). Thus, in effect, we ask: to what extent is the reduction
in the mean allele frequency across the entire population (as measured by p) and/or the
reduction in probability of local fixation of the deleterious alleles (as measured by FST )
sensitive to the selection coefficient of the deleterious allele?

Figure 5.1d shows p vs. Ks (main plot) and FST vs. Ks (inset), for various values
of Km, for co-dominant and nearly recessive alleles (filled vs. open symbols). Note
that while selection is quite efficient in reducing the mean number of deleterious alleles
already for Ks ≳ 0.05 (say, under low gene flow, i.e., Km = 0.1), it has little effect on
FST (i.e., on the probability of local fixation within demes, given p) unless Ks ≳ 0.5.
For example, FST is reduced by only about 15% with respect to its neutral value for
alleles with Ks = 0.5, but by > 50% for Ks = 2, for both values of h. Thus, selection
for increased heterozygosity within demes (as reflected in a decrease in FST ) does not
markedly influence the evolutionary dynamics of alleles with Ks ≲ 1 (which suffer the
most severe inflation of load in isolated populations) but can be important for moderately
deleterious alleles with 1 ≲ Ks ≲ 5 (which may still contribute substantially to load).

In Appendix D.0.2, we introduce a ‘moderate selection’ approximation, which allows FST
to be affected by selection, but assumes that the relationship between (appropriately
scaled) higher cumulants of the allele frequency distribution and FST is the same as
under the neutral island model. The predictions of this approximation are shown by lines
in fig. 5.1a, 5.1c and 5.1d, and appear to match the full diffusion (symbols) quite well
for 0.5 ≲ Ks ≲ 5. This suggests that moderate selection essentially changes pairwise
coalescence times (to different extents within and between demes), without appreciably
affecting other statistical properties of the genealogy, e.g., the degree to which branching
is skewed or asymmetric, at loci subject to purifying selection (see also Appendix D.0.2).

Effect of multilocus interactions on load. So far, we have considered the equilibrium
load at a single locus, neglecting linkage and identity disequilibrium between deleterious
alleles segregating across multiple loci in the genome. These may be substantial if, for
instance, different subpopulations are nearly fixed for partially recessive deleterious alleles
at very many different loci, so that F1 offspring of migrants and residents (and their
descendants) have higher fitness than residents, giving rise to heterosis. In such a scenario,
the extent of gene flow at any one locus depends not only on Km, the average number of
migrants exchanged between demes, but also on their relative fitness, which may differ
significantly from that of residents if deleterious alleles segregate at multiple loci in the
population as a whole (i.e., if 2Lu is large and Ks small), allele frequencies differ markedly
between subpopulations (migration is low or FST high), and alleles are recessive (h is
small).
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More specifically, heterosis implies that deleterious alleles that enter a given deme on a
migrant genetic background are more likely to be transmitted to the next generations
than deleterious alleles on resident backgrounds, resulting in an effective migration rate
that is higher than the raw migration rate (see also Ingvarsson and Whitlock (2000)). For
a genome with L equal-effect unlinked loci with selective effect s and dominance h per
locus, and assuming weak selective effects (s ≪ 1), the effective migration rate at any
locus is shown by Zwaenepoel et al. (2023) to be approximately:

me

m
≈ e2Ls(1−2h)p qFST (5.7)

Following Sachdeva (2022) and Zwaenepoel et al. (2023), we can incorporate the effects of
multi-locus heterosis by assuming that allele frequencies at any locus follow the equilibrium
distributon in eq. (5.4), but with the raw migration rate replaced by an effective migration
rate which itself depends on the expected allele frequency p and the expected heterozyosity
E[pq] within demes (or equivalently, p and FST ). As before, this allows for a numerical
solution, yielding the theoretical predictions (solid lines) in fig. 5.2.
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Figure 5.2: Effects of selective interference on load. Load per locus (scaled by 2u) vs. Ks in a population
with recurrent deleterious mutations at L biallelic equal-effect loci with (a) h = 0.02 and (b) h = 0.2, for
Km = 0.1. Symbols depict results of individual-based simulations, which are carried out for two values of
total mutation rate 2Lu and two values of L for each total mutation rate: L = 1000, u = 0.0001 (red
circles) and L = 2000, u = 0.00005 (red triangles) both of which correspond to 2Lu = 0.2; L = 2500,
u = 0.0001 (blue circles) and L = 5000, u = 0.00005 (blue triangles) which correspond to 2Lu = 0.5.
For each value of L and u, the carrying capacity K and migration rate m are chosen such that scaled
parameters are Ku = 0.01 and Km = 0.1; for a given K, the scaled selective effect Ks is varied by varying
s. Dashed curves depict single-locus predictions in the absence of multilocus interactions (obtained using
eq. (5.6)). Solid curves show predictions that account for interference via effective migration rates; these
are independent of L for a fixed Lu, u/s, Ks and Km. The reduction in load per locus due to selective
interference between loci is most significant for intermediate Ks, small h and large values of Lu.

Figure 5.2 shows load per locus scaled by 2u as a function of Ks for low migration
(Km = 0.1), for two values of the total mutation rate (2Lu = 0.2 in red and 2Lu = 0.5 in
blue) and two dominance coefficients (h = 0.02 in fig. 5.2a and h = 0.2 in fig. 5.2b). For
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each value of 2Lu, we further simulate with two values of L, scaling down s, u and m, and
scaling up K as we increase L, so that Ks, Km, Ku and Ls remain constant. Symbols
depict results of individual-based simulations for a metapopulation with 100 demes; dashed
curves show single-locus predictions (obtained using eq. (5.6)) that do not account for
multilocus heterosis; solid curves represent predictions that account for interference via
effective migration rates: note that these depend on L only via the combination Ls

(or alternatively, Lu for a given u/s). As expected, there is better agreement between
simulations and theory for smaller values of s (or alternatively, larger L), for a given total
mutation rate, as the expression for effective migration rate in eq. (5.7) becomes more
accurate as s → 0. As can be seen in fig. 5.2, load per locus is most strongly reduced by
multilocus heterosis when 2Lu is large, and for loci with small h and intermediate Ks.
Moreover, the effects of multilocus heterosis become weaker with increasing migration
(which corresponds to lower FST ) which reduces allele frequency differences across demes
and consequently the extent of heterosis (see also Roze, 2015).

5.4 Hard selection

In our soft selection analysis, we showed that the load in a metapopulation can be quite
significant (l.h.s. of fig. 5.1a) when migration is limited, in particular, when Km < 1).
We also demonstrated that a minimal amount of gene flow (e.g., Km = 0.1 in fig. 5.1a)
is enough to purge or alleviate such load (by about 96% in fig. 5.1a) irrespective of the
value of h. This holds true even for moderately deleterious alleles that would otherwise
contribute disproportionately to load. This purging advantage however decreases as Km
becomes very large (for example, Km > 4 in fig. 5.1a). Here, we would like to understand
how this changes under hard selection where there is a feedback between population size
and genetic load so that population sizes are not fixed at K but decline with increasing
load, placing populations burdened by high load at an increased risk of extinction.

More concretely, we aim to understand the impact of gene flow on drift load and purging
in the context of hard selection and what the attendant consequences of these are for
metapopulation outcomes, for example, on critical extinction thresholds. We also aim to
understand the role of dominance and how critical thresholds are influenced by the strength
of eco-evo feedback. The strength of such feedback depends largely on 2LU = 2L(u/r0)
which is the expected load (in the absence of drift) divided by the baseline growth rate.
If 2LU = 0.5 for example, this indicates a 50% reduction in growth rate due to genetic
load (assuming load is primarily deterministic), we therefore take 2LU as a measure of
the hardness of selection.

For simplicity, our analysis will focus on scenarios where loci have equal effects; more
complicated but realistic scenarios involving a distribution of fitness effects are explored
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in Appendix D.0.7. As introduced in section 5.2.3, the scaled effect per locus is denoted
by Ks and gives the strength of selection at a deleterious homozygous locus relative to
local drift, when population sizes are at carrying capacity K. However in general, under
hard selection and depending on parameter values, population sizes will be less than K,
so that drift will usually be stronger relative to selection, than indicated by the value of
Ks (or Ksh).

The rest of this section is organised as follows, first we will identify critical migration
thresholds for extinction by exploring how metapopulation outcomes as measured by the
mean equilibrium average population size per island scaled by the carrying capacity K

(i.e., N) depend on the magnitude of gene flow (as measured by Km). We will then test
the validity of the semi-deterministic approximation by contrasting semi-deterministic
results of N , (under different Km values) with outcomes derived from our simulations,
distinguishing between two simulation runs, each with different strengths of demographic
fluctuations, while keeping other (scaled) parameters, Ks, Km, Ku fixed. We do this to
see how well the results from our simulations converge to the semideterministic results
as demographic fluctuations become weaker (i.e., as r0K increases, since the strength of
demographic fluctuation scales as 1/(r0K)); our expectation is that the semi-deterministic
approximation should be good enough in the limit r0K → ∞. We will later build on this
in a more general way to explore how the thresholds depend on homozygous selective
effects relative to drift, dominance and the ‘hardness’ of selection. Finally, we will explore
parameter regimes which allow for the metapopulation to persist (i.e., avoid extinction)
and explore how equilibrium load and population size per deme in this regime depend on
various parameters.

5.4.1 Extinction thresholds with low gene flow

Figure 5.3a shows the mean population size across the metapopulation vs. Km (the
average number of migrants exchanged between any deme and the metapopulation, when
all demes are at carrying capacity). This is shown for Ks = 1 and Ks = 10 (fig. 5.3a and
5.3b respectively) and for both recessive and additive alleles assuming fairly hard selection
(i.e., 2LU = 0.6). The solid lines are results from the semi-deterministic approximation
and the symbols connected by dashed lines are results from simulations. Keeping all other
scaled parameters fixed, simulations are run for various values of r0K (where r0 is fixed
at 0.1 and K is varied) to see the impact of the strength of demographic stochasticity.
Circular symbols denote simulations run with a higher K (here, K = 3000) and triangles
denote simulations run with a lower K (here, K = 500). Note that to keep Ks fixed,
increasing (decreasing) K would mean reducing (increasing) s.
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Figure 5.3: Mean population size across the metapopulation plotted against Km for (a.) Ks = 1 and
(b.) Ks = 10 and for different dominance levels. Solid lines are results from the semi-deterministic
approximation. Symbols connected by dashed lines represent simulation results (using allele frequency
simulations) - triangles and circles represent simulation results with carrying capacity per island, K equal
to 500 and 3000 respectively. (c.)-(d.) Equilibrium distribution of population sizes (with h = 0.02) for
different values of K and at low Km. (c.) is a plot for Ks = 1 and with Km = 1.1 and (d.) is a plot for
Ks = 10 and with Km = 0.5. The black vertical dashed line represents the semi-deterministic prediction.
Simulation results were obtained using 100 demes and all plots are obtained using r0 = 0.1.

Let us first concentrate on the analytical semi-deterministic prediction (solid lines).
Figure 5.3a and 5.3b show that there exist a critical Km threshold (which we will call
Kmc) below which the metapopulation collapses (i.e., below which N = 0) and this
threshold is highest for additive alleles (blue vs red colors). We call this a critical threshold
because it represents a tipping point in the fate of the metapopulation wherein a slight
variation (for example the introduction of an additional migrant) can change the expected
metapopulation outcome. The extinction of the metapopulation occurs at very low Km

values because such low values typically imply very little gene flow among the different
patches. As such, these isolated patches rapidly dwindle in size (due to inbreeding) at
a faster rate than can be rescued by migration, thus leading to their extinction and the
collapse of the metapopulation. However, for Ks = 1 fig. 5.3a, the situation is less gloomy
for patches with recessive alleles (red solid line) because they are are able to purge some
of their load, thereby requiring less migration to escape extinction; we will come to this
later in more detail.
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An important aspect to focus on in figs. 5.3a and 5.3b is the disparity between the critical
threshold, Kmc, observed in simulations compared to our analytical approximation (sym-
bols vs solid lines) – Kmc from simulations are lower compared to semi-deterministic out-
comes. However, it is worth noting that these thresholds approach the semi-deterministic
expectation as the parameter K (and consequently r0K (for fixed r0)) increases, suggesting
that our analytical approximation remains valid when demographic fluctuations become
less pronounced.

Interestingly, we observe two qualitatively different behaviours for Ks = 1 (fig. 5.3a) and
Ks = 10 (fig. 5.3b). In the case of Ks = 1 (fig. 5.3a), we observe that for low Km, near
the semi-deterministic threshold, the mean population size, N is higher and the critical
migration threshold lower when K is smaller (K = 500 here; represented by triangles with
dashed lines) compared to when we have a higher value of K (K = 3000 - represented
by circles with dashed lines). To illustrate this point, fig. 5.3c shows the equilibrium
distribution of deme sizes for different values of K just at the semi-deterministic threshold
(Km = 1.1). At this value of Km, we see that large-sized patches (K = 2000; black line)
are extinct whereas patches with smaller sizes (e.g., K = 250; blue line) are still able to
avoid extinction. This observation is puzzling as it indicates that smaller patches are more
stable, requiring fewer migrants per generation (i.e., lower Km) to prevent extinction (all
other parameters in particular Ks, the strength of selection relative to drift, remaining
constant). Usually, we would expect an opposite outcome since larger patches would
be imagined to be less prone to the effects of demographic stochasticity (hence more
stable than small-sized patches). This unusual result however highlights the role of the
demographic effect of migration in small-sized patches where a few migrants (say, 1 per
generation) can go a long way in preventing extinction (see also figs. 4.3b and 4.3d).

In contrast, for larger Ks, we observe the more expected behaviour where mean sizes are
higher for higher K (compare red triangles and circles). Figure 5.3d further illustrates
this point, where at low K (e.g. K = 250 (blue line)) we have a bimodal distribution of
population sizes with a fraction of demes close to extinction and the remaining fraction
peaked at a stable non-zero N . With increasing K however, there is a reduction in the
weight of the distribution near extinction due to a decline in demographic fluctuations
which then further narrows the distribution around N . With K = 2000, we obtain a
unimodal distribution where the population peaks at N = 0.55 which coincides with the
semi-deterministic approximation (dashed vertical black line). Similar figures are shown
in Appendix D.0.3 for h = 0.5 (fig. D.1a and D.1b). Hereon we will only show results
from the semideterministic approximation with the understanding that these should be
accurate if r0K is sufficiently large.

Now we investigate what determines the thresholds discussed above. In particular, we
explore how the selection strength per locus influences the critical migration rates, Kmc,
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below which the entire metapopulation collapses, starting from a state in which it is stable,
i.e., where all demes are at the stable population equilibrium. We then build on this to
understand the role of dominance and the sensitivity of the thresholds to the hardness of
selection. It is important to note that the corresponding thresholds for the population to
grow starting from a state where there are only a small number of individuals could be
much more stringent because small populations suffer from genetic Allee effects (see also
Sachdeva et al., 2022).
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Figure 5.4: (a.)-(b.) Critical migration thresholds (below which the metapopulation goes extinct) as a
function of Ks as obtained from the semi-deterministic approximation. Figure 5.4 (a) shows plot with
moderately hard selection i.e, 2LU = 0.4 and 5.4 (b) shows plot with much harder selection, 2LU = 0.8.
(c.) Critical migration threshold below which the metapopulation collapses as a function of the hardness
of selection 2LU . (d.) Load at Kmc for different 2LU . Solid and dashed lines in 5.4 (c.) and figure
5.4 (d.) represent results with Ks = 1 and Ks = 5 respectively.

For simplicity, we begin by assuming equal effect loci; scenarios involving a distribution of
fitness effects are explored in Appendix D.0.7. Figure 5.4a and 5.4b show that there is a
non-monotonic relationship between Kmc (the critical migration threshold required to
prevent a complete meltdown of the metapopulation) and the scaled strength of selection,
Ks. In particular, when Ks is low, the fitness differences between genotypes in each
subpopulation is minimal so that low rates of migration are sufficient to maintain diversity
and prevent extinction. As Ks increases from low values, the fitness differences between
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genotypes become more pronounced and the fitness cost of carrying harmful mutations
becomes higher (as was also seen in the soft selection results; figs. 5.2a and 5.2b).
Consequently, a higher migration is necessary to counteract this accumulation of load and
prevent extinction leading to a rise in Kmc until a maximum value at intermediate Ks.
Beyond this peak, as Ks increases further, selection becomes strong enough to eliminate
individuals with high load so that we again require less migration to prevent extinction.

When alleles are at least (partially) recessive, it is much easier to maintain the metapopu-
lation as load in each subpopulation is lower, due to more efficient purging of deleterious
recessives alleles. Furthermore, we see that when selection is moderately hard (i.e.,
2LU = 0.4 in fig. 5.4a), critical migration thresholds are much lower compared to when
selection is much harder emphasizing the impact of the strength of the coupling between
population size and load. In addition, we see that the metapopulation never collapses
beyond Kmc = 1 (corresponding here to NKm ∼ 1 i.e., one migrant per generation). On
the other hand, with harder selection (i.e., 2LU = 0.8 in fig. 5.4b), we require very high
migration between subpopulations to prevent the metapopulation from going extinct. In
essence, we see that the conditions for metapopulation persistence for both recessive and
additive alleles are much more stringent as selection gets harder (compare gray region in
5.4a and 5.4b). It is important to emphasize that these results however assume equal effect
loci and equal forward and backward mutation rates between deleterious and wild-type
alleles. We explore the role of asymmetric mutation rates in Appendix D.0.6.

The relatively small difference in load per locus between co-dominant and recessive alleles
that we observe at a given level of migration under soft selection (fig. 5.1c) can translate
into rather different critical migration thresholds (depending on whether load is primarily
due to recessive or additive alleles) for metapopulation persistence under hard selection.
This is especially marked when selection is harder (fig. 5.4b) as a small increase in load
(e.g., due to a small decline in gene flow) can set in motion a very strong positive feedback
between increasing load and declining population size (which results in stronger drift),
culminating in extinction.

To further quantify the role of the hardness of selection, we look at the dependence of
the critical migration threshold on the type of selection going from very soft to very hard
selection (i.e., as 2LU increases). We see clearly from fig. 5.4c that the critical migration
threshold above which populations go extinct due to high load (fig. 5.4d) is always higher
when selection is hard. This holds true for both additive and recessive alleles with the
threshold for recessive alleles lower than that for additive alleles as drift always increases
load with additive alleles. In addition, when selection is soft and per locus strength of
selection is stronger (compare dashed lines corresponding to Ks = 5 with solid lines
corresponding to Ks = 1), populations are a bit more stable, having a lower load (lhs of
fig. 5.4d) and hence, requiring a lower Kmc (lhs of fig. 5.4c) to prevent extinction.
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Finally, for a metapopulation to persist (i.e., for N = 1 −E[Rg] > 0), fig. D.6 (in appendix
D.0.8) show that we need a reasonable amount of gene flow (Km > 0.2) and under this
level of gene flow, moderately deleterious alleles contribute most to load. Albeit, this
is numerically only a very modest (5 − 10%) effect (see also fig. 5.2). This makes sense
due to the simple fact that large effect alleles, though having the potential to drastically
increase load, are less likely to fix. Small effect alleles on the other hand, which are more
likely to fix, have less effect on load when they do fix.

5.4.2 Load and population size under high gene flow

Having analysed the low Km behaviour, we now consider the behaviour of large Km.
Going back to figs. 5.3a and 5.3b, we observe that above the critical migration threshold,
Kmc and in particular for large Km, our simulation results depend only weakly on K. For
example, for Ks = 1 (fig. 5.3a) and with h = 0.02 and Km = 2, K = 500 is already
sufficient for our simulations to match the semi-deterministic approximation. To further
investigate this, we explore the behaviour of the equilibrium distribution of deme sizes for
different values of K and for h = 0.02. We do this with Ks = 1 (and Km = 2.0; fig. D.2a
in appendix D.0.4) as well as with Ks = 10 (and Km = 5.0; fig. D.2b in appendix D.0.4).
The peaking of these distributions at the semideterministic expectation for K ∼ 250 − 500
further confirms the weak dependence of our simulation results on K.

In addition to the above, beyond Kmc, there exists only a weak dependence of population
size on Km, especially when alleles are recessive (fig. 5.3a), with load close to the
deterministic prediction above Kmc (fig. 5.5b). This is contrary to previous findings
(Whitlock, 2002) where low gene flow is thought to substantially reduce load, due to
increased expression and consequently stronger purging of deleterious alleles in more
isolated populations. To better understand our results, we look at how the equilibrium
allele frequency in the metapopulation (relative to that in an undivided population) as well
as how the equilibrium mean load (relative to the deterministic load) depend on the level
of gene flow (i.e., Km) as shown in figs. 5.5a and 5.5b respectively. The solid lines are
results from the semi-deterministic approximation and colored circles represent simulation
results. Here, we have obtained the deterministic expectation of allele frequency, pdet,
at any given locus and load, Rg,det, in an undivided population by respectively solving
eq. (5.1) at equilibrium and plugging the result into Rg,i in eq. (5.2) to get Rg,det; this
is as opposed to assuming pdet ∼ u/hs and Rg,det ∼ 2Lu which both overestimate the
expectation when alleles are nearly fully recessive.

We see from fig. 5.5a that when alleles are (partially) recessive, there is a decrease in
the frequency of the deleterious allele (as migration decreases) due to purging. However,
fig. 5.5b shows that this purging effect is not strong enough to counter the negative effect
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of inbreeding as load on the whole increases2 with decreasing migration (solid lines and
circles), hence the low population size observed at low Km in fig. 5.3a. Similar analysis
for strongly selected alleles (Ks = 10) are shown in Appendix D.0.5.
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Figure 5.5: (a.) and (b.) are respectively the equilibrium allele frequency and load (relative to that in an
undivided population) plotted against Km. Filled circles show simulation results (using allele frequency
simulations) and solid lines show results from our semi-deterministic approximation. Simulations are run
with 100 demes, with K = 3000, L = 90000 and r0 = 0.1.

5.5 Discussion

In this study, we have explored the varied roles of gene flow, selective effects and dominance
on load and extinction dynamics in a metapopulation, explicitly capturing the interaction
between population size (in each patch) and allele frequencies at multiple loci. In particular,
we distinguished between two models of selection: a soft selection model, which holds true
when the total deleterious mutation rate in a population is much less than the baseline
growth rate (i.e., 2LU ≪ 1) and size of each subpopulation is assumed to always be at
carrying capacity, and a hard selection model (with 2LU ∼ 1), that captures the feedback
between population size and allele frequency. Our results provide useful insights into the
intricate relationship between genetic diversity, eco-evolutionary processes and the long-
term persistence of populations, thus contributing to our understanding of biodiversity
and conservation in fragmented landscapes.

Under the soft selection model, we showed that independent of the dominance of deleterious
alleles, very little migration (as little as one migrant per approximately ten generations,
Km = 0.1) between a set of interconnected patches is enough to reduce the load due
to slightly deleterious mutations (i.e., those with Ks < 1) by a factor of 100, bringing
it close to the deterministic expectation. We show that this reduction happens due to
decrease in the fixation probability of deleterious alleles. With one migrant per generation
(Km = 1) and for partially recessive mutations, load is reduced below this deterministic

2We see a slight non-monotonic behaviour with h = 0.02 but this is essentially negligible.
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limit and is only due to alleles segregating at intermediate frequencies. Our findings are
consistent with those of Whitlock (2002) who demonstrated that at an intermediate level
of migration, characterized by medium variance among local populations, load would
be lowest under soft selection when mutations are partially recessive and exhibit mildly
deleterious effects. This is also corroborated by Roze and Rousset (2004), who similarly
observed minimum load at intermediate migration rates due to the purging of weakly
deleterious and partially recessive mutations (see also Zhou and Pannell (2010)).

It has long been recognized that the reduction in the mean population fitness due to
weakly deleterious mutatations (Ks ∼ 1) reaching high frequencies or even fixation just
by chance greatly exceeds the reduction due to strongly deleterious mutations that are
efficiently kept at deterministic mutation-selection balance frequencies (Kimura et al.,
1963; Kondrashov, 1995). Our result suggests that as long as soft selection operates, in
order for drift load to be a real issue, populations have to be very strongly fragmented
(Km < 0.1).

Soft selection models are interesting for two reasons. Firstly, some fitness components
affect population size more than others (adult viability versus male mating success, say).
Secondly, the estimates of load obtained under the soft selection model can be an upper
bound to the load in real populations, answering the following question: if the effective
population size stays the same, what fraction of offspring will fail to survive under the
predicted burden of deleterious mutations?

In reality however, the accumulation of deleterious mutations is likely to decrease the
size of the population, or even lead to its extinction (Kondrashov, 1995). Soft selection
models do not take into account the complete positive feedback loop when the population
size decreases due to genetic load, which in turn leads to further increase in genetic load.
Therefore, extinction due to drift load is not possible under soft selection (Charlesworth
2013; Keightley and Eyre-Walker 2010), and we must explicitly model hard selection
(where population size declines with increasing load) to investigate how much gene flow is
required to prevent metapopulation collapse. Such a feedback loop has been studied in
the mutational meltdown literature (e.g., Lynch et al. 1995a,b). In the second part of the
paper, we therefore extended our results by considering hard selection.

Under hard selection (i.e., when the intrinsic growth rate is comparable to the total
deleterious mutation rate) and when local deme sizes (and hence typical values of Ks) are
small, we find that much more gene flow is required to ensure persistence. In this case, one
may need as many as ∼ 2 and 5 migrants per generation for recessive and additive alleles
respectively to ensure metapopulation persistence. These thresholds are highly sensitive
to 2LU (a proxy for the hardness of selection) with higher values of 2LU necessitating
higher thresholds. Such higher migration thresholds, Kmc, are typical of metapopulations
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with small local population sizes as dynamics in these populations are largely driven by
stochastic events (drift and demographic stochasticity) resulting in a positive feedback
between population size and load (via allele frequency changes at different loci) which
exacerbates extinction risk. What insights might we glean from these high threshold
values? These underscore the importance of preserving connectivity (and hence genetic
diversity) within metapopulations and the necessity of increased conservation measures to
ensure/maintain the viability of such populations.

A second interesting result we found was that the range of Kmc below which extinction
is possible is highest for intermediate values of Ks (∼ 1). Moreover, with much harder
selection, the condition for the metapopulation to persist becomes more restrictive as
total load (due to a large number of loci) is higher in this case and hence a higher
rate of migration is required to counteract the negative effect of deleterious mutation
accumulation.

Bimodal distributions (see figs. 5.3c and 5.3d) where some demes teeter on the brink
of extinction while others thrive with larger populations often emerge naturally close
to critical migration thresholds even in the absence of heterogeneity (i.e., when patch
qualities and carrying capacities are uniform) due to the stochasticity inherent in our
model. Such bimodality can serve as an important signal of impending population collapse,
where minor variations in migration rate or external factors can push some demes past
the point of no return, causing local extinctions and possibly cascading towards a collapse
of the metapopulation (Scheffer et al., 2001; Drake and Griffen, 2010).

Overall, we identified several parameters that govern the fate of a metapopulation. One
such key parameter is the genome-wide mutation rate scaled by the intrinsic growth rate,
2Lu/r0 which is a measure of the hardness of selection. How might one estimate such a
parameter? To do this, we would need to know the total deleterious mutation rate, 2Lu
in the population (some estimates of which exist in the literature) as well as the intrinsic
growth rate r0, which is a much harder parameter to estimate.

Our findings, while intuitive, often become obscured by the prevailing confusion surround-
ing the concept of “hard selection”. This term is invoked in two distinct classes of eco-evo
models. The first category of models meticulously track the coevolution of population size
and allele frequencies, and account for the positive feedback between increasing load and
declining numbers (Szép et al. (2021)) while the second class of models primarily focus on
the consequences of frequency and/or density-dependent selection for the preservation of
genetic diversity (Whitlock, 2002). In the latter class of models, hard vs. soft selection
(which refers to whether or not local populations contribute to the next generation in
proportion to their fitness) is often confounded with local vs. global density regulation
(which determines, among other factors, whether changes in deleterious allele frequency can
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accumulate over multiple generations within local populations). Moreover, these models
assume that populations are consistently at their carrying capacity (Whitlock, 2002),
thereby neglecting any influence of genetic load on total population size and consequently,
on the extent of drift. It is these complexities that underscore the need for models that
explicitly incorporate eco-evolutionary feedback and allow for changes in both local and
global population sizes. These models not only provide a fresh perspective but also yield
distinct results that diverge from the existing body of research. For example, we showed
that under such a model with explicit regulation, beyond a critical threshold, reduced
Km has only a slight effect on metapopulation outcomes (causing a minor decline in
average size); a result contrary to results from constant metapopulation size models where
reduced gene flow is thought to be beneficial for metapopulations (Whitlock, 2002).

How might the results of our analysis compare with results from models that account for
the explicit arrangement of patches (and hence different migration patterns) such as the
one and two dimensional stepping-stone models? Bascompte and Solé (1996) posited that
metapopulations with explicit spatial considerations might exhibit heightened vulnerability
to habitat fragmentation compared to their spatially implicit counterparts suggesting that
non-spatial models such as the one considered in this study may tend to underestimate
critical thresholds and the impact of fragmentation on metapopulation persistence. This
begs the question of the role of different spatial configurations or arrangements on critical
thresholds for persistence; are there specific arrangements that prove to be more efficient
than others? In general, since the amount of habitat loss that a population can withstand
may depend on its spatial distribution, it will be interesting in future to extend our model
to incorporate more complex effects of landscape structure and habitat configurations
(such as habitat corridors and stepping stone habitats (Bennett, 1999)). Such models may
not only provide a more realistic depiction of how fragmentation affect populations but
may also play a crucial role in moderating its impacts on the long-term persistence of
metapopulations.

What are some of the limitations of our study? Our theoretical framework is based on
the infinite island model. Although this is a useful simplification that ensures analytical
tractability, in reality, no natural population is truly infinite. Our analysis may there-
fore benefit from considering finite size populations as this may provide us with better
theoretical insights (see Barton and Olusanya (2022)).

Secondly, in our analysis, we make the simplifying assumption that all demes of the
metapopulation are at one equilibrium state N∗ so that N = N∗ in eq. (5.2). We
therefore fail to account for scenarios where the different demes can end up in different
equilibrium states so that N −N∗ ̸= 0 (the bimodality we saw in fig. 5.3c and fig. 5.3d
were obtained in the absence of this heterogeneity and such bimodality occur close to
critical threshold for extinction). In addition to this, we defined load as Rg = 1 − W
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where we have essentially assumed that the optimal genotype in a population is one with
fitness 1. Although, this is a theoretically sound way to think about the problem, however,
in reality, we cannot always measure the perfect genotype.

There are other extensions to our model that can be considered in the future. For one,
we can explore the role of negative epistasis which may help reduce load (Kimura and
Maruyama, 1966). The idea behind this being that with such negative epistasis, the more
deleterious mutation an individual has, the less and less fit it becomes just because each
mutation becomes worse in the presence of the other. Thus, as individuals die out, they
take with them a lot of deleterious mutations which consequently helps to reduce load.

Secondly, in this work, we have assumed that offspring gametes are formed merely by
freely recombining parental gametes i.e., assuming a recombination rate, r = 0.5. Such
high rates of recombination can be more potent at disrupting the linkage between genetic
loci, fostering the formation of novel allelic combinations. This can lead to a more rapid
reduction in load, as deleterious mutations are more likely to be separated and ultimately
purged from the population (Kimura and Maruyama, 1966; Crow, 1970, 2017). How might
this change with lower rates of recombination or if recombination is allowed to vary across
the genome and how much more will load be exacerbated in this case? Providing answers
to these questions may further contribute to our understanding of the maintenance of
genetic variation and the adaptation of populations to changing environmental conditions.

In addition, we can also extend the investigation of the role of multilocus interactions (i.e.,
linkage and identity disequilibrium) on load to the case of hard selection using the effective
migration approximation. However, validating this with individual-based simulations
would be computationally intensive.

Finally, we have assumed a metapopulation landscape where selection is uniform across
space. It would be interesting to extend our framework to explore what happens when
some loci are under spatially heterogeneous selection (as in Szép et al. (2021)) while others
are subject to unconditionally deleterious mutation. What would be the impact of gene
flow under such scenarios? While gene flow may potentially swamp local adaptation, it
could also concurrently alleviate the burden of deleterious mutations. Determining the
relative strengths of these contrasting effects under realistic parameter regimes remains a
crucial endeavor worth exploring.
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General discussion

A comprehension of the profound impact of evolutionary processes on genetic diversity is
of paramount importance when seeking to unravel the mysteries of the natural world and
predict how species might respond to changes in their environment. This principle, which
lies at the heart of evolutionary biology, holds important implications for biodiversity
and conservation. Over the last century, climate change and human-induced activities
such as pollution, habitat destruction, and modifications in land use have had profound
effects on the demographics of many species (Shivanna, 2022). While some have already
gone extinct, some others are teetering on the brink due to declining population sizes and
shrinking habitats. If species cannot keep pace with shifting climate and evolving land
use patterns, the future prospects of many such species become yet bleak.

This threat to biodiversity is a stark reminder of the complex interplay between ecology,
evolution, and environmental shifts. We find ourselves in a compelling race between the
rate at which environments transform and the ability of species to adapt genetically. It is
a race with incredibly high stakes as species extinction resulting from failure to adapt can
reverberate through ecosystems, impacting essential functions like nutrient cycling and
pollination.

Efforts to understand how evolutionary and ecological forces interact to shape genetic
diversity have been a subject of inquiry for several decades. Ecologists and geneticists
have employed various approaches including phylogenetics, population genetics, and
genomics to unravel these intricate relationships. Recent advancements in genomics (and
computational approaches) have for example improved our capacity to explore these
dynamics, shedding light on the genetic consequences of changing conditions (Matthews
et al., 2018; Rodríguez-Verdugo et al., 2017). For instance, studies have revealed how
certain genes associated with response to pollutants and temperature tolerance have
evolved in response to different environmental stressors (Fisher and Oleksiak, 2007; Chen
et al., 2018; Elakhdar et al., 2023). Through whole-genome sequencing, one can now
explore genetic variation at unprecedented scales, uncovering insights into selected genomic
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regions and genes (Lappalainen et al., 2019; Satam et al., 2023). While these approaches
have offered valuable insights, a comprehensive theoretical understanding is still lacking
and many questions remain unanswered.

The work done in this thesis seeks to fill this gap by providing a theoretical understanding
of how ecological (population dynamics) and evolutionary processes shape genetic diversity
and eventual outcomes in fragmented populations (modelled here as metapopulations
consisting of many connected subpopulations).

This theoretical exploration begins in chapter 2, where we investigate how well a population
inhabiting a heterogeneous landscape adapts to changes in both local and global conditions.
We assumed a soft selection metapopulation model where the metapopulation is made
up of two habitats each adapted to differing local conditions and each having different
proportions of demes (ρ and 1 − ρ respectively). Our modelling framework was based on
the diffusion approximation (Barton and Rouhani, 1993; Banglawala, 2010; Szép et al.,
2021) and fixed state approximation (which holds true in the limit of limited migration i.e.,
Nm ≪ 1). Our results revealed that when selection is weak relative to drift, polymorphism
under this framework is only possible for a narrow range of habitat proportions. We
further found that when conditions change locally (i.e., in a single deme), it takes the
population a time of order ∼ m−1 to reach a new equilibrium. However, this rate of
convergence is much faster when conditions change across the metapopulation.

In chapter 3, we extended the two-habitat soft selection metapopulation model to a
multi-habitat case, focusing on a three-habitat example. We explored the conditions for
the maintenance of polymorphism under this framework and how this depends on factors
such as the rate of migration, selection, drift, and habitat proportions. Our findings
showed that strong selection and limited migration favor the maintenance of a wider
range of polymorphism (in particular Ns ≳ Nm). We also found that an important
determinant for the maintenance of polymorphism is the ratio, β, of the proportion of
demes that favor an allele to the proportion where it is disfavored. The proportion of
demes in an intermediate habitat where alleles are neither favoured nor disfavoured makes
little difference.

In chapter 4 and 5, we shifted our attention from spatially heterogeneous populations
(considered in 3) to one where selection is uniform across space. In chapter 4 we explored
how asymmetric migration from a large mainland to an island influences load and the
eventual outcome of the island population as well as the impact of eco-evo feedback. Our
analysis was based on the semi-deterministic approximation which ignores fluctuations in
population size due to randomness in birth and death (i.e., demographic stochasticity)
but accounts for genetic drift. The important conclusion here is that migration can have
different effects on the outcome of peripheral isolates - it can result in an increase in load

125



in a large-population state (by preventing purging) and reduce the load in a sink state
(through an increase in heterozygosity). The actual effect of migration however depends
crucially on the specific parameters involved such as the total genomic mutation rate as
well as the fitness effects of deleterious variants.

Chapter 5 wraps up the thesis by extending the mainland-island analysis of chapter 4 to a
metapopulation with very many demes connected by migration and explores the role of gene
flow on load (under both soft and hard selection) and metapopulation persistence (under
hard selection). We again make use of the diffusion and semi-deterministic approximation
for our analysis. However, in addition, we also utilize the effective migration approximation
to examine the role of multilocus effects (i.e., selective interference) on load due to a
single locus (and under soft selection). Our results showed that similar to previous work
(Whitlock, 2002; Roze and Rousset, 2004), a little migration is enough to substantially
offset load under soft selection. Interestingly, with hard selection, one would require
much more gene flow to ensure metapopulation persistence. We further identified critical
thresholds for metapopulation persistence and demonstrated that thresholds are more
stringent as selection becomes harder.

The studies conducted in this thesis are not without their limitations. One such limitation
is our focus on simple spatially implicit models - the mainland-island and many island
model of population structure. Although these are useful simplifications of spatially
extended populations, nature is far more complex. In light of this, future studies should
employ more sophisticated models of subdivision and explore how different patterns of
migration and interactions within the metapopulation landscape might influence the
conclusions of this studies. For example, we could consider the one (or two) dimensional
model where demes are connected linearly (or on a lattice) and migration occurs between
neighboring demes (stepping stone models) or is defined via some Gaussian dispersal kernel,
approximating diffusive dispersal (see Polechová, 2018). We can also look into models
with truly continuous space, e.g., models of isolation by distance (IBD), which assume
that genetic differentiation among populations increases with increasing dispersal distance.
These models may better capture the complexities inherent in real-world systems and
could therefore provide a better understanding into the dynamics of adaptation, genetic
load and extinction in fragmented populations.

A second limitation of the study is that the models considered here assume linkage
equilibrium, LE (i.e., that alleles at different loci are associated randomly with each other),
while this holds true in the limit of weak selection relative to the rate of recombination.
With strong selection however, gene combinations that offer a certain fitness advantage
can buildup in the population at a faster rate than can be broken down by recombination,
leading to a departure from LE and the need to account for linkage disequilibrium (LD).
Hence, future exploration should incorporate such non-random associations (as well as
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varying recombination rates). The effect of LD at a single locus can for instance be
captured using the effective migration approximation as discussed in Zwaenepoel et al.
(2023) (also see Petry (1983); Sakamoto and Innan (2019); Sachdeva (2022)) which accounts
for how the net effect of selection at other loci influence gene flow.

Thirdly, in our analysis, we assumed simple patterns of selection. For example in chapter 2,
we assumed directional selection favoring alternative alleles in the two habitats considered
and in chapter 3, we assumed an antagonistic environmental effect where selection for
a given trait varies in magnitude and direction as we move from one habitat to another
across the metapopulation. However, genetic variation underlying many traits is often
governed by stabilizing selection (Kingsolver et al., 2001; Hunt et al., 2007; Sanjak et al.,
2018; Holand et al., 2020), in which close adaptation of a population to a given optimum
is achieved by different allelic combinations. Such selection, when it occurs, is expected to
decrease a population’s genetic variance as it favors only average phenotypes and selects
against extreme variants. Future research can therefore extend the current framework to
stabilizing selection and explore the dynamics of adaptation and maintenance of genetic
variation under such a model. We would expect this to be an interesting albeit challenging
endeavor because of the presence of multiple adaptive peaks under such a model.

Furthermore, chapter 4 and 5 explored the effects of selection on multiple loci. Extending
this to a highly polygenic architecture in terms of the infinitesimal model (Barton and
Keightley, 2002; Barton et al., 2017) where load depends on infinitely many loci each with
small effect would be an important contribution. Not only might this allow for a more
accurate reflection of the complexity of real-world genetic systems, it may also provide a
more comprehensive understanding of the impact of deleterious mutation accumulation
on metapopulation viability and long-term persistence.

Despite the above limitations, this research provides us with a fundamental understanding
of eco-evolutionary dynamics in fragmented landscapes and can help in predicting the
long-term effects of habitat fragmentation on the adaptability and continued existence of
species. For instance, the theoretical understanding of critical thresholds for persistence
provided in chapter 5 may be useful in identifying tipping points in ecosystems, thereby
providing crucial insights into the management and protection of vulnerable species
across fragmented habitats. Secondly, an understanding of the factors that promote the
persistence of polymorphisms can inform strategies to enhance genetic variation within
populations and the ability of such populations to thrive despite changing conditions. Our
study therefore has an important bearing to conservation and biodiversity efforts.
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Appendix A

The response of a metapopulation to a
changing environment

A.1 Range of habitat proportions for which
polymorphism is possible

0 1 2
Ns10

0.5

1

ρ

Figure A.1: Bounds on the proportions of habitat 1, ρ, between which polymorphism is possible, as a
function of the strength of selection in that habitat, Ns1. For a given Ns1, ρ has to lie between the two
curves for polymorphism to be maintained. The three sets of bounds correspond to Ns2/Ns1 = 0.5, 1, 2
(black, blue and purple respectively). These results apply in the limit of low migration, and soft selection.

A.2 Accuracy of the fixed-state approximation

Here, we compare the the mean allele frequency in an infinite metapopulation under the
diffusion approximation with the fixed-state approximation for different Nm values. As
expected, the accuracy of the fixed state approximation holds only for small Nm.

131



0.01 0.1 1 10
Nm

0.1

0.2

p

Figure A.2: The mean allele frequency in an infinite metapopulation, plotted against Nm; ρ = 0.2,
Ns1, Ns2 = 1, −2 (lower curve) 2, −4 (middle curve) or 10, −20 (upper curve). The fixed-state
approximation, which applies for small Nm, is shown by the red lines.

A.3 Loss of diversity in a finite population
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(a)

5000 10000
time

0.01

0.02

0.03

k/n

(b)

Figure A.3: Loss of diversity in a metapopulation of 100 demes, which is initially perfectly adapted. (a)
Mean allele frequency is plotted against time, in the 20 demes where the focal allele is favoured and, (b)
in the 80 demes where it is not. Thin grey lines show allele frequencies at 40 loci, averaged over demes;
the red line shows the overall mean. The black curve shows the fixed-state approximation, for a finite
metapopulation, and the magenta line, for an infinite metapopulation. Simulations are for N = 50,
Nm = 0.05, s1,2 = {0.02, −0.04}; thus, Ns1,2 = {1, −2}, so that selection and drift are of similar
magnitude.
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Figure A.4: This is identical to fig. A.3, except that Nm = 0.01, and the timescale is correspondingly
longer. The fixed-state approximation is more accurate with a lower number of migrants.

A.4 Distribution of mean allele frequency
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Figure A.5: The distribution of allele frequencies, averaged over the 20 demes in the rare habitat,
conditional on polymorphism, and accumulated over generations 8, 000 and 8, 100, to 10, 000.
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Appendix B

Local adaptation in a metapopulation - a
multi-habitat perspective

B.0.1 Maintenance of polymorphism and critical thresholds for
the case X1 = 1, X2 = −1, and X3 = −1
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Figure B.1: Critical: (a.) Ns threshold above which and (b.) Nm threshold below which a polymorphism
is possible.

B.0.2 Critical migration threshold for polymorphism with
similar β but different α2 values. X1 = 1, X2 = 0, X3 = −1
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Figure B.2: (a.) Symmetric selection Ns1 = Ns3 (in magnitude). (b.) Asymmetric selectiom.
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B.0.3 Critical selection threshold for polymorphism with
similar β but different α2 values. X1 = 1, X2 = 0, X3 = −1
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Figure B.3

B.0.4 Comparing Nscr and Nmcr with numerical solution from
the diffusion approximation
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Figure B.4: Critical: (a.) Ns threshold above which and (b.) Nm threshold below which a polymorphism
is possible. The different colors represent different {α1, α2, α3} combinations. Dotted lines are numerical
solutions from the diffusion approximation and solid lines results from eq. (3.6).
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B.0.5 Effect of drift on the maintenance of a polymorphism
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Figure B.5: Drift constrains the region within which a polymorphism is possible.
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B.0.6 Further plots showing α2 does not matter for a
polymorphism even with drift.
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Figure B.6: (a.) and (b.) show the effect of drift for the maintenance of a polymorphism using similar
values of β but different α2 values: (a.) β = 2, α2 = 0.1; (b.) β = 2, α2 = 0.4.
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Appendix C

Genetic load and extinction in marginal
populations: the role of migration, drift and

demographic stochasticity

C.1 Description of simulations

We carry out two kinds of simulations: simulations assuming LE (linkage equilibrium)
and zero inbreeding, which only track allele frequencies at the L loci and population size
N as a function of time; and individual-based simulations, which make no simplifying
assumptions and track whole diploid genomes (with L loci) of all individuals present in
the island population.

Simulations assuming LE and zero inbreeding. If recombination is faster than all
ecological and evolutionary processes, then statistical associations between allelic states
at different loci (linkage disequilibria or LD) can be neglected. In addition, if there is
no significant inbreeding, then the probability of identity by descent at a locus, and
correlations between identity by descent across loci (identity disequilibria or ID) are also
negligible. Then, individual genotypes are simply random assortments of deleterious and
wildtype alleles, and can be generated by independently assigning alternative allelic states
to different loci with probabilities equal to the allele frequencies, allowing us to only track
allele frequencies (instead of genotypes).

We initiate simulations by assuming that there are K individuals on the island and that
the deleterious allele at each locus is absent. We then evolve the population in discrete
time by updating allele frequencies and population size in each generation to reflect the
effects of migration, mutation, selection and reproduction, and genetic drift. Starting

138



with frequencies {pj(t)} and size n(t) at the end of generation t, we first implement
migration in generation t + 1 by sampling the number of migrants m from a Poisson
distribution with mean m0. The population size and allele frequencies are then updated
as: p′

j = n(t) pj(t)+mp
(m)
j

n(t)+m and n′ = n(t) +m. Here, p(m)
j are the corresponding frequencies

on the mainland.

Mutation has no effect on population size: n′′ = n′; allele frequencies are changed as:
p′′
j = (1 − µ)p′

j + µ(1 − p′
j).

The effects of selection and reproduction are then captured by changing allele frequencies
according to: p′′′

j = p′′
j + p′′

j [p′′
j e

−s+q′′
j e

−hs]
wj

, where wj = q′′ 2
j + 2p′′

j q
′′
j e

−hs + p′′ 2
j e

−s and
q′′
j = 1 − p′′

j . This is the standard equation relating allele frequencies before and after
selection; it assumes that loci evolve independently (no indirect selection due to LD and
ID), and that there is no inbreeding. The new population size n′′′ after selection and
reproduction is generated by drawing a Poisson-distributed random variable with mean
n′′er0(1−n′′/K)W , where the mean population fitness W is calculated by multiplying the
marginal mean fitnesses of all loci: W =

L∏︁
j=1

wj. Note that sampling the population size

from a Poisson distribution (rather than simply choosing it to be equal to the mean of
the distribution) introduces demographic stochasticity into the simulation.

The new population size at the end of generation t+1 is just: n(t+1) = n′′′. The new allele
frequencies {pj(t+ 1)} are generated by drawing Binomially distributed random variables
{Xj} with corresponding parameters n(t+ 1) and {p′′′

j } and then setting {pj(t+ 1)} =
{Xj/n(t+ 1)}. This last step, which amounts to standard Wright-Fisher sampling of the
new allele frequencies based on the new population size n(t + 1) and the deterministic
allele frequencies p′′′

j , ‘adds’ the random effects of genetic drift on to the systematic effects
of migration, mutation and selection (which are already captured by p′′′

j ).

The procedure described above updates {pj} and n over discrete generations by implement-
ing the effects of migration, mutation, selection and drift in each generation sequentially.
An alternative would be to numerically integrate the continuous time equations (eq. 1 in
the main text). This is, however, prone to numerical error, and is computationally far more
intensive. Both procedures are expected to yield very similar results if m0/n, µ, s, r0 ≪ 1.

While the allele frequency simulations described here are fast, a fundamental limitation
is that the underlying assumptions (i.e., no significant inbreeding, and effects of drift
and migration weaker than those of recombination) must break down close to extinction
thresholds. Thus, we also carry out individual-based simulations (described below), that
make no such assumptions and capture the evolution of all multi-locus associations.

Individual-based simulations. In this bottom-up simulation approach, we track
eco-evolutionary dynamics in peripheral populations by explicitly following individuals,
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recording their allelic states and population numbers from one generation to another.
Besides the advantage that comes from the inclusion of individual variations and interac-
tions, this modeling framework allows us track the evolution of each locus as well as all
the associations among loci (i.e. LD and ID).

We simulate a sexually reproducing population with random mating and non-overlapping
discrete generations. At the start of the simulation, the island population is assumed
to consist of N diploid individuals where the fitness of each individual is determined
by l loci with two possible allelic state per locus coded by 1’s and 0’s. The 1 allele is
considered the wildtype and the 0 allele the recessive deleterious variant so that the fitness
of the three possible genotypes (11, 10 and 00) at each locus are respectively in the ratio
1 : 1 − hs : 1 − s where s is the homozygous selective effect and h is the dominance
coefficient affecting the expression of the deleterious allele. We assume multiplicative
fitness across loci (i.e. no epistasis) so that the fitness of an individual with n heterozygous
loci, m homozygous loci for the deleterious allele and m′ homozygous loci for the wild
type allele can be expressed as (1 − hs)n(1 − s)m where n+m+m′ = l. The simulation is
initialized by assuming that individuals are initially perfectly fit (i.e are composed of only
the 0 allelic state) so that the frequency of the deleterious variant at each locus is 0. The
order of events in the life cycle of individuals in each generation is taken as, mutation
→ migration → reproduction (meiosis and genetic recombination)+ density-dependent
survival. These would be explained in a little more detail below.

Mutation: We model both forward and backward mutation rates i.e. with probability µ,
there is a shift from an allelic state 1 to 0 and with probability ν there is a shift in the
opposite direction. In this work, we assumed µ = ν although this is not true in general.

Migration: the migration step is implemented by choosing a random number, of individuals
(drawn from a Poisson distribution with rate m0) to be migrants from a fixed mainland
pool assumed to be in deterministic mutation-selection balance. Allelic states are then
randomly assigned to each migrant locus such that the frequency of the deleterious variants
(among migrants) at each locus are close to the deterministic predictions for a single locus
under mutation-selection balance. Following migration, both the frequency at each locus
as well as the population size on the island change.

Reproduction+density dependent survival: This phase of the simulation involves gamete
formation (through the process of meiosis and genetic recombination) as well as a decision
as to how many offspring survive to be parents in the next generation. The latter is done

by sampling an integer number, l say, from a Poisson distribution with rate N ′We
r0

(︂
1− N′

K

)︂
where K is the carrying capacity of the population, N ′ is the population size after
migration, W is the mean fitness of the population and r0 the population growth rate.
Once this is determined, l pairs of parents are then selected (with replacement) from the
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population in proportion to their fitness to form offspring individuals. Each offspring
gamete is formed by assuming that the allelic state contributed to the gamete at any
given locus is sampled from the same or alternative chromosome in both parents with
probability 0.5 (i.e. free recombination).

C.2 Semi-deterministic approximation

The semi-deterministic approximation outlined in the main text applies when the distri-
bution of population sizes is sharply peaked around one or more values. For a given set of
parameters Ks, Ku, h, 2LU = 2L(u/r0), and m0, we expect the peaks of the distribution
to become sharper and the predictions of the semi-deterministic approximation to become
more accurate for larger r0K (corresponding to weaker demographic fluctuations) and
larger L (corresponding to weaker fluctuations in genetic load). Figure C.1a illustrates
this by plotting the distribution P (N) (as obtained from allele frequency simulations) for
various values of r0K (which is changed by changing K). Note that in increasing K, while
holding Ks, Ku and 2L(u/r0) constant, we must simultaneously lower s and u, while
increasing L proportionately.
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Figure C.1: (A) Distribution of population sizes P (N) integrated over intervals of size ∆N = 0.004 for
r0K = 25, 50, 100 (blue, orange, red), where r0K is varied by changing K (along with s, u, L), while
keeping Ku, Ks, 2LU = 2L(u/r0) and r0 constant. Inset: Psink, the probability that the population
is in the sink state, vs. m0, the number of migrants per generation. Vertical dashed lines represent
semi-deterministic predictions for the critical threshold mc,1, at which the sink equilibrium vanishes.
Psink is calculated by integrating the distribution P (N) from 0 to the minimum of the distribution (which
lies between the sink and large-population equilibrium). (B) Average load R

(N)
g =

∫︁
RgP [Rg, N ] dRg at a

given N (points; different colours correspond to different r0K) and the expected load under mutation-
selection-drift equilibrium for that N (dashed line) as a function of N . Average load equals the equilibrium
expectation at the predicted large-population equilibrium (indicated by vertical dashed lines) for all
r0K; the two quantities also match closely near N = 0 for larger values of r0K. All results (solid
lines in A and points in B) are from allele frequency simulations; dashed lines indicate various semi-
deterministic predictions (as described above). Parameter values: Ku = 0.01, Ks = 50, h = 0.02,
2LU = 2L(u/r0) = 0.5 and r0 = 0.1.

As expected, the peak corresponding to the large-population equilibrium becomes narrower,
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i.e., typical fluctuations in N about the average (in that state) become smaller, as r0K

increases. The distribution of population sizes in the sink state also becomes more sharply
clustered around 0, and the valley separating the large-population equilibrium from the
sink state becomes deeper as r0K increases.

We then ask whether the basic approximation underlying the semi-deterministic analysis–
that genetic load is close to its equilibrium expectation under drift-mutation-migration-
selection balance when populations are in one or other metastable state– becomes
increasingly accurate for larger r0K. Figure C.1b shows the average load R

(N)
g =∫︁

RgP [Rg, N ] dRg at a given N (as obtained from allele frequency simulations), as a
function of N for various r0K. The average load (points) is different from the load
expected under mutation-selection-drift-migration balance E[Rg|N ] (black line) except
under two conditions: first, the average load equals the equilibrium expectation near the
large-population equilibrium (indicated by vertical dashed lines) for all values of r0K

(different colours); second, the average load also matches the equilibrium expectation in
the vicinity of N = 0 for large r0K.

These observations are consistent with the general expectation that allele frequencies and
genetic load will equilibrate only if population sizes remain roughly constant over the
time scales required to reach mutation-selection-drift-migration balance: this condition
can only be satisfied close to the peaks of the distribution (which correspond to equilibria
of the semi-deterministic population size dynamics) and will typically not hold while
populations transition between equilibria. A priori, it is unclear whether this condition is
even satisfied in the sink state, in which N exhibits fluctuations that are large (relative to
the mean) and characterised by significant skew towards small sizes. Figure C.1b suggests
that it may nevertheless be reasonable to approximate the average load in the sink state
by the equilibrium expectation, at least for large values of r0K.

Accordingly, we note that the accuracy of the semi-deterministic prediction for the critical
migration threshold, mc,1, at which the sink state vanishes, improves with increasing
r0K. This is illustrated in the inset of fig. C.1a, which shows Psink, the probability
that the population is in the sink state (as observed in simulations) against m0. The
semi-deterministic prediction for mc,1 (vertical dashed lines) approaches the corresponding
threshold in simulations (where Psink goes to 0) as r0K increases.

Semi-deterministic prediction for equilibrium population size in the absence
of migration. In the absence of migration (i.e., with M0 = 0), there is always an
equilibrium at N = 0. From eq. (4.3) of the main text, it follows that this equilibrium is
stable of 1 − E[Rg|N∗,M0 = 0] < 0. To compute the expected load in the N → 0 limit,
note that the expected frequency and the expected heterozygosity are respectively 1/2
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and 0 in this limit, so that E[Rg|N∗,M0 = 0] = L(S/2). Thus, the extinction equilibrium
is stable if L(S/2) > 1

There may exist a second equilibrium at N∗ = 1 − E[Rg|N∗,M0 = 0]; the population size
N∗ is positive (i.e., the population not extinct) only if E[Rg|N∗,M0] < 1 for some N∗ > 0,
i.e., if the equilibrium genetic load is lower that the baseline growth rate.

Semi-deterministic prediction for mc,1 in the r0K → ∞ limit. In order to obtain
the semi-deterministic prediction for the population size, genetic load and expected allele
frequencies at one or more equilibria, we numerically solve for the {N∗} satisfying:

N∗ (1 −N∗ − E[Rg|N∗])+M0 = 0 where E[Rg|N∗] =
∑︂
j

Sj[E(pj|N∗)+(2hj−1)E(pjqj|N∗))]

(C.1)
where the expectations are obtained by integrating over the equilibrium allele frequency
distributions (eq. (4.2) of the main text). The equation above is the same as (4.3) of the
main text. An equilibrium N∗ is a stable equilibrium if the function N (1 −N − E[Rg|N ])+
M0 has a negative derivative with respect to N at N = N∗.
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Figure C.2: (A)-(B) Rate of change of population size N under the semi-deterministic approximation
(eq. (C.1)) as a function of N (A) in the r0K → ∞ limit (where the demographic effects of migration,
represented by the M0 term, can be neglected) (B) for finite r0K (i.e., including the M0 term). Equilibria
correspond to points at which the curves cross the horizontal (zero growth rate axis); stable equilibria are
those for which the curves have a negative slope at the point of zero crossing. Parameter values (Ks = 50,
Ku = 0.01, 2LU = 0.4 and h = 0.02 in A and B; r0K = 50 in B) correspond to a regime where increasing
migration causes the extinction fixed point to become unstable (in the r0K → ∞ limit; fig. A) or the
sink fixed point to vanish (for finite r0K; fig B).

In the limit r0K → ∞, L → ∞, s → 0, u → 0, with m0, Ks, Ku and 2LU = 2L(u/r0)
constant, the demographic contributions of migration, represented by the M0 = m0/r0K

term in the above equation, can be neglected, yielding N∗ (1 −N∗ − E[Rg|N∗]) = 0. This
function (which must be zero at equilibrium) is plotted as a function of population size
in fig. C.2a for three different levels of migration (which influence the function via the
term E[Rg|N∗]). There is always an equilibrium (N = 0) at extinction; this equilibrium
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is stable if the curve is downward sloping at N = 0, i.e., if 1 − lim
N∗→0

E[Rg|N∗] < 0. In
addition, there may be two other equilibria— one stable and the other unstable— satisfying
N∗ = 1 − E[Rg|N∗]. For low 2LU and/or h not too low, an increase in migration causes
the sink equilibrium to become unstable, so that above a critical migration threhsold mc,1,
only a single, stable ‘large-population’ equilibrium exists.

In the limit r0K → ∞, the change in the stability properties of the sink equilibrium
occurs at the migration rate for which lim

N∗→0
E[Rg|N∗] = 1. Since lim

N∗→0
E[Rg|N∗], the

expected load in the limit N∗ → 0, depends only on the neutral allele frequency and
neutral heterozygosity under migration-drift balance, we can obtain an explicit expression
that depends on LS, h, p(m) and m0. Finally, setting lim

N∗→0
E[Rg|N∗] = 1 and solving for

the number of migrants per generation yields:

mc,1 = LSp(m) − 1
4[1 − LSp(m)(p(m) + 2h(1 − p(m)))] (C.2)

which is eq. (4.4) of the main text.

In order to illustrate the effects of the demographic term on equilibria and their stability
properties, we also plot N (1 −N − E[Rg|N ]) +M0 (eq. (C.1) including the M0 term) as
a function of N (fig. C.2b). At low migration levels, there is a sink equilibrium (with N∗

close to but not equal to zero) and a large-population equilibrium. Increasing migration
now causes the sink equilibrium to vanish, rather than rendering it unstable. The critical
threshold mc,1 in this case is significantly lower than the r0K → ∞ prediction above (see
also fig. 4.3b of the main text), highlighting how, migration can influence population
outcomes via both genetic and demographic effects.

C.3 Comparison of individual-based simulations
with simulations under LE and IE

Here we compare results from the two simulation approaches by looking at the effect of
migration on the mean population size and mean genetic load at equilibrium (fig. C.3a –
C.3c) as well as on the stochastic distribution of population size (fig. C.3d – C.3f) on the
island under different genetic architectures i.e. for weakly deleterious alleles (Ks < Ks;
left column), mildly or moderately deleterious alleles (Ks ≳ Ksc; middle column) and
strongly deleterious alleles (Ks ≫ Ksc; right column).
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Figure C.3: (A)-(C) Mean population size (main figure) and mean genetic load (inset) at equilibrium
plotted against m0 (the number of migrants per generation) for weakly deleterious (Ks < Ksc; left
column), mildly deleterious (Ks ≳ Ksc; middle column) and strongly deleterious (Ks ≫ Ksc; right
column) nearly recessive alleles. Solid lines represent result obtained from allele frequency simulations
(assuming LE and zero inbreeding) while dots represent result from individual-based simulations. (D)-(F)
Equilibrium probability distribution of scaled population sizes N = n/K for various values of m0, as
obtained from simulations assuming LE and IE (solid lines) as well as from individual based simulations
(dots) under the three parameter regimes.

Weakly deleterious nearly recessive alleles (left column of fig. C.3): For
Ks < Ksc, the population approaches extinction for low migration. However, increasing
migration causes an increase in the size of the island population (main plot of fig. C.3a)
as well as a corresponding decrease in the genetic load (inset). This is true for both
types of simulations although the individual based simulation (dots) produces slightly
higher population numbers with increasing m0. Looking at the stochastic distribution of
population size (fig. C.3d), populations exhibit a single stable equilibrium for all migration
rates and shift to the right towards increasing N (following a Gaussian distribution
centered around the stable equilibrium) as m0 increases. As noticed in fig. C.3a, there
exists a slight difference between both simulation approaches, namely that the individual
based simulation produces slightly higher numbers (see dotted plots in fig. C.3d). This
suggests that LD can cause a somewhat higher increase in population size by its purging
effect on sets of locally maladapted alleles.

Moderately deleterious nearly recessive alleles (middle column of fig. C.3):
Just as with weakly deleterious alleles, an increase in migration increases the population
size (main plot of fig. C.3b) and reduces the genetic load (inset) on the island, although
we observe a higher load for low values of migration in the individual based simulation.
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Looking at fig. C.3e, the individual based simulation breaks down for very low migration
rates as it requires extremely long simulation runs (both time and memory consuming)
to observe the peak at the large population state equilibrium (see LE simulations - solid
lines).

Strongly deleterious nearly recessive alleles (right column of fig. C.3): For
Ks ≫ Ksc, we observe an initial sharp increase in population size with m0. Beyond
m0 = 1, the population size increases further but with a less steep slope. Similarly, for very
low m0, the genetic load in the population increases initially and then falls sharply with
increasing m0 after which it approaches a steady value. Interestingly, for low migration
rates, individual based simulations slightly diminish the population size and increase the
load (see blue dots) suggesting a negative effect of LD on strongly deleterious alleles when
migration is low. From fig. C.3f, we observe a bimodal distribution of population size
(with one peak close to extinction and the other close to the deterministic equilibrium)
when migration is rare. However, with increasing migration, there is a shift from the
bimodal to a unimodal population size distribution.

C.4 Evolutionary outcomes with a distribution of
fitness effects

In the main text, we analyse scenarios where all deleterious variants have equal selective
effects and dominance coefficients, and illustrate how migration may have qualitatively
different effects, depending on the magnitude of the homozygous selection coefficient,
dominance coefficient and the total mutation rate.

Here, we ask: what is the effect of migration on population outcomes when the genetic
load is due to loci with a distribution of fitness effects? For the purposes of illustration,
we consider a somewhat artificial distribution where a fraction α of loci are subject to
deleterious mutations that are nearly recessive (hR = 0.02) with scaled selection coefficient
KsR, and the remaining fraction 1 − α are additive (hA = 0.5) with scaled selective
coefficient KsA. Thus, the mutation targets for the two types of deleterious variants are
2LαU and 2L(1 − α)U respectively.

If recessive variants are weakly deleterious (KsR less than the corresponding critical
threshold Ksc), then their contribution to genetic load will decrease with increasing
migration. Since migration always reduces additive load (though only marginally for
KsA ≫ 1), the net effect of increasing migration in this case is to reduce load and increase
the equilibrium population size (results not shown). We thus focus on recessive alleles
with moderate or strongly deleterious effects (KsR > Ksc), where an increase in recessive
load with increasing migration can potentially counteract a reduction in additive load.
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Figures C.4a-C.4c show semi-deterministic predictions for equilibrium population sizes
versus m0 for various combinations of KsA and KsR for α = 0.1 (predominantly additive
load), 0.5 (nearly equal contributions of additive and recessive alleles to load) and 0.9
(load primarily due to recessive alleles). Where two stable equilibria exist, these are shown
by solid and dashed lines (of the same color).
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Figure C.4: (A)-(C) Semi-deterministic predictions for population size(s) at equilibrium vs. m0, the
number of migrants per generation. Different colors correspond to different values of KsA and KsR, the
(scaled) homozygous selection coefficients for the additive (h = 0.5) and nearly recessive (h = 0.02) alleles
(see legend of fig. A). We depict cases where a fraction α of alleles have nearly recessive effects and the
remaining fraction 1 − α additive effects, for α = 0.1 (left), α = 0.5 (middle) and α = 0.9 (right). Where
two alternative equilibria exist, these are shown by solid and dashed lines (of the same color). (D)-(F)
Semi-deterministic predictions for the fraction of the total load that is due to recessive alleles vs. m0,
for parameter combinations where the total load is less then r0, i.e., where the population is not a sink.
Where two equilibria with load less than r0 exist, the fractions corresponding to each are depicted by
solid and dashed lines. All figures show results for: Ku = 0.01, 2LU = 0.5, r0K = 50.

We observe a genetic Allee effect (characterised by the co-existence of alternative ‘sink’
and ‘large-population’ equilibria) at low migration rates for all parameter combinations,
except when load is primarily due to weakly deleterious additive alleles (red and brown
curves in fig. C.4a). Increasing migration tends to destabilize the sink state in all cases,
except where load is largely due to recessive alleles with moderately deleterious effects
(red and blue curves in fig. C.4c): in this extreme limit, it is the large-population state
that vanishes at high migration levels (see also fig. 4.2b, main text). The critical migration
threshold at which the sink state vanishes (and Allee effects no longer occur) is higher
when the contribution of recessive alleles to total load is higher (α larger) and homozygous
effects associated with recessive alleles more moderate. The population size associated
with the large-population equilibrium increases marginally with increasing migration for
small α (as expected when load is predominantly additive), decreases with increasing
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migration for large α (as expected when load is predominantly recessive), and exhibits
a weak, non-monotonic dependence on m0 for intermediate α (reflecting the opposing
effects of migration on additive and recessive alleles).

We also track how the relative contributions of additive and recessive alleles to total load
change with increasing migration. Figures C.4d-C.4f shows the fraction of total load that
is due to recessive alleles vs. m0, for parameter combinations where the population is not
a sink, i.e., where the total load is less than the baseline growth rate r0. This fraction
increases with increasing m0 in all cases (except when the population is close to a sink state,
i.e., Rg ∼ 1), with the most significant increase occurring for α = 0.5, and where additive
alleles have weak effects and recessive alleles moderate effects. Under these conditions,
smaller isolated populations (with low migration) can more efficiently purge recessive load,
but maintain higher levels of additive load. An increase in migration tends to decrease
the additive load and increase the recessive load by pushing the frequencies of deleterious
additive and recessive alleles closer to the mainland values (that are respectively lower
and higher than those on the island).

Note that in this case, the total load and population size do not change significantly with
migration (because of the opposing effects of migration on the two components of load).
The change in the relative contributions of different kinds of alleles may nevertheless
have significant consequences, by making populations with higher levels of migration (and
accordingly, a greater number of segregating recessive alleles) more vulnerable to future
extinction, e.g., in the event of a bottleneck.
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Appendix D

Genetic load, eco-evolutionary feedback and
extinction in a metapopulation

D.0.1 How events in the life cycle of individuals change patch
size and load.

To account for the effect of migration on population size, we first determine the net number
of migrants, netM(t) (i.e., the difference between the total number of immigrants and
emigrants in a given patch) and add this to the existing patch size. Under soft selection,
we assume a zero net migration rate (i.e., a balance between the number of immigrants
and emigrants) so as to keep the patch size fixed. However, under hard selection, the net
number of migrant is assumed non-negative. Migration therefore changes the population
size according to N ′

i(t) = Ni(t) (under soft selection) and N ′
i(t) = Ni(t) + netM(t) (under

hard selection). Similarly, to account for the effect of migration on allele frequencies in
any patch, we add the net number of migrant alleles, netp(t) to the existing allele copy
number in the patch and divide this by the population size N ′

i(t). In essence, migration
changes allele frequencies according to p′

i,j(t) = (Nip
′
i,j(t) + netp(t))/N ′(t).

With regards to the effect of mutation, we assume equal mutation rate to and from
the deleterious allele so that mutation changes allele frequency according to p′′

i,j(t) =
p′
i,j(t) + µ(1 − 2p′

i,j(t)). However, mutation has no effect on population size (under hard
selection) so that N ′′

i (t) = N ′
i(t).

Following mutation, adults in each patch mate to produce offspring that survive to be
next generation parents. Under soft selection, the mating process in each patch involves
sampling with replacement, Ni(t) pair of individuals based on their fitness and freely
recombining their gametes to form offspring gametes. This means that we do not explicitly
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distinguish between the male and female sexes and there is also the possibility of self mating.
Under hard selection on the other hand, load and density-dependent regulation changes
population size according to N ′′′

i (t) = N ′′
i (t)e1−N ′′

i (t)−Rg and demographic stochasticity
(randomness in birth and death) is further imposed on the population to determine how
much survivable offspring, N ′′′′

i (t) can be formed. The latter is achieved by sampling from
a Poisson distribution with parameter N ′′′

i (t). Offspring are then formed by choosing with
replacement N ′′′′

i (t) pairs of parents also based on their fitness and freely recombining their
gametes. For both soft and hard selection, selection changes allele frequency according to
p′′′
i,j(t) = (p′′

i,j(t) e−s + q′′
i,j(t) e−hs)/w where w = p′′

i,j(t)2 e−s + 2p′′
i,j(t) q′′

i,j(t) e−hs + q′′
i,j(t)2

is the mean fitness in the ith patch and q′′
i,j(t) = 1 − p′′

i,j(t).

Finally, the allele frequency at the end of the generation, i.e., p′′′′
i,j(t) is obtained by sampling

p′′′
i,j(t) from a Binomial distribution with parameters, N ′′′′(t), p′′′

i,j(t) thus accounting for
genetic drift.

D.0.2 ‘Moderate selection’ approximation under soft selection

In principle, any quantity such as load, FST , etc. for a single locus can be computed
from the equilibrium allele frequency distribution ψ[p|p], by first numerically solving
p =

∫︁
p ψ[p|p] dp to obtain the mean allele frequency p, then plugging this into the

equilibrium distribution and finally integrating over the distribution to obtain higher
moments. However, it is also useful to consider an alternative approach based on equations
for moments (or cumulants) of the allele frequency distribution.

In general, any moment will depend on higher moments, resulting in a set of recursions
that is not closed. Approximations thus rely on closing this set of recursions in different
ways, depending on assumptions about the relative magnitudes of Ks (or Ksh) and
Km (Whitlock (2002); Glémin et al. (2003); Roze (2015)). Here, we introduce another
such moment closure approximation, which applies also for recessive (h = 0) alleles and
intermediate selection coefficients (Ks ∼ 1). We also attempt to discuss the biological
meaning of the underlying assumptions.

As in the main text, let p denote the frequency of the deleterious allele at a given locus in
a given deme and p the mean across all demes in the population. We denote the expected
change in allele frequency per unit time by M(p) and the variance of the change by V (p).
These are:

M(p) = −s(hp+ (1 − 3h)p2 − (1 − 2h)p3) + u(1 − 2p) +m(p− p) (D.1a)

V (p) = p(1 − p)
2K (D.1b)

where K is the number of individuals per deme. Under the diffusion approximation, the
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expectation (denoted by Eψ[...]) of any function f(p) of the allele frequency p over the
allele frequency distribution ψ[p] satisfies (see also Ohta and Kimura (1971)):

d Eψ[ f(p) ]
d t

= Eψ
[︃
M(p)f ′(p) + 1

2V (p) f ′′(p)
]︃

(D.2)

Setting f(p) to be p and p2 yields the following equations for the first and second moments
of the allele frequency distribution respectively (see also Whitlock (2002); Glémin et al.
(2003)):

dE[ p ]
d t

= −s
(︂
hE[p] + (1 − 3h)E[p2] − (1 − 2h)E[p3]

)︂
+ u (1 − 2E[p]) (D.3a)

dE[ p2 ]
d t

= −s
(︂
hE[p2] + (1 − 3h)E[p3] − (1 − 2h)E[p4]

)︂
+ u

(︂
E[p] − 2E[p2]

)︂
+m

(︂
E[p] p− E[p2]

)︂
+ E[p] − E[p2]

4K (D.3b)

It will be useful to express the above equations in terms of appropriately scaled cumulants
(rather than moments) of the allele frequency distribution:

FST = E[p2] − p2

p(1 − p) γ = E[p3] − 3pE[p2] + 2p3

p− 3p2 + 2p3 κ = E[p4] − 4pE[p3] + 6p2 E[p2] − 3p4

p− 4p2 + 6p3 − 3p4

(D.4)
Here, FST , γ and κ denote respectively the variance, skew and kurtosis of the frequency
distribution within any deme, scaled by the corresponding cumulant calculated for the
distribution of alleles across the entire population.

At equilibrium, moments of the allele frequency distribution are constant in time, i.e.,
dE[ p ]/dt = dE[ p2 ]/dt = 0; further, E[p] = p. Combining equations (D.3) and (D.4),
and assuming deleterious alleles to be sufficiently rare overall in the population that O[p2]
terms can be neglected, we have at equilibrium:

0 = u

s
− [ h+ FST (1 − 3h) − γ(1 − 2h) ] p (D.5a)

0 = [1 − FST (1 + 4Km) − 4Ks(hFST + (1 − 3h)γ − (1 − 2h)κ]p (D.5b)

This pair of equations is underdetermined as it involves four variables p, FST , γ and κ.
To obtain an approximate solution, we further assume that third and higher cummulants
of the allele frequency distribution, i.e., the skew and kurtosis are related to FST as in the
neutral infinite-island model. Note that FST itself is not taken to be neutral (or unaffected
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by selection), as is assumed by Whitlock (2002), but only that:

γ = 2F 2
ST

1 + FST
κ ≈ 6F 3

ST

(1 + FST )(1 + 2FST ) + O(p) (D.6)

Substituting into eq. (D.5) and expressing load as G = s[p − (1 − 2h)(1 − FST )p q] ≈
sp[2h+ (1 − 2h)FST ], we obtain:

p = u

s

1 + FST
(1 − FST )(h+ (1 − h)FST ) G = u

(1 + FST )(2h+ (1 − 2h)FST )
(1 − FST )(h+ (1 − h)FST ) (D.7a)

where (1+FST )(1+2FST )(1−FST (1+4Km))−4KsFST (1−FST )(h+2FST (1−h)) = 0
(D.7b)

Equation (D.7b) is cubic in FST and can be solved (e.g., numerically); this solution for FST
can then be substituted into eq. (D.7a) to obtain the average deleterious allele frequency
p and load G. Thus, in essence, our approximation allows for selection that is strong
enough to change FST but not the relationship between higher cummulants (γ, κ etc.)
and FST .

It is useful to juxtapose this approximation with those used in earlier work. Whitlock
(2002) assumes that not just the relationship between higher cummulants (γ, κ etc.)
and FST , but also FST is unaffected by selection and is essentially neutral, i.e., equal to
1/(1 + 4Km), where K is the population size per deme. Thus, his is a weak selection
approximation and applies when Ks ≪ 1, so that the term involving Ks in eq. (D.7b)
(or equivalently in eq. (D.5b)) can be neglected. On the other extreme, Roze (2015) and
Glémin et al. (2003) consider a parameter regime where the local deme size K is large
enough that allele frequency distributions are essentially concentrated around the mean
p, which is relatively low. In practice, this means that FST is small enough that O(F 2

ST )
terms in eq. (D.7b) can be neglected, which gives: FST ≈ 1

4Km+4Khs . Theirs is thus a
strong selection, strong migration approximation; in practice, it applies for Ksh+Km

greater than 5. By contrast, the approximation for FST introduced above applies also
for intermediate Ks (see fig. 5.1d) and is thus a moderate selection approximation: in
essence, it captures the key effect of selection which is to change coalescence times within
and between demes (to different extents) without necessarily changing the extent to
which the branching structure of genealogies is (a-)symmetric. This is, however, only a
rough interpretation, and a more rigorous analysis will be required to fully justify such
approximations and more generally understand intermediate Ks regimes where neither
selection nor drift can be treated as minor perturbations (to neutral or deterministic
predictions respectively).
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Relaxing the low mean allele frequency (p ≪ 1) assumption. All the approxima-
tions described above assume that the expected deleterious allele frequency is sufficiently
low (i..e, deleterious alleles are very far from global fixation) that O(p2) terms can be
neglected. When this is no longer true (but if (D.6) still applies, i.e., if third and higher
cumulants depend on FST as in the neutral model), equations (D.3), (D.4) and (D.6)
together yield a cubic equation for p:

u

s

(︃1 + FST
1 − FST

)︃
=
[︂
FST + h(1 − FST ) + 2u

s

(︃1 + FST
1 − FST

)︃ ]︂
p+ [1 − 2FST − 3h(1 − FST )]p2

−(1 − FST )(1 − 2h)p3 (D.8)

Since deleterious allele frequencies are expected to be high only for very weak selection,
we can typically neglect the effects of selection on FST in this parameter regime, and
simply solve equation (D.8) for p under the assumption FST ≈ 1

1+4Km .

D.0.3 Demographic effect of migration in small and large
patches and dependence on Ks
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Figure D.1: Equilibrium distribution of population sizes with additive alleles (h = 0.5) for different values
of K and near Kmc. (a.) represents Km = 2.0 and Ks = 1 (b.) represents Km = 1.0 and Ks = 10. The
black vertical line represents the semi-deterministic prediction.

Just like for recessive alleles (i.e., h = 0.02 in fig. 5.3c and fig. 5.3d), we see that with
Ks = 1 (fig. D.1a, small-sized patches (e.g., K = 250) benefit from the demographic effect
of migration and are more stable. With increasing K, we observe a bimodal distribution
of population sizes with most of the weight close to N = 0 (e.g., see K = 2000 (black
line)) as many of the patches are already extinct and the remaining non-extinct patches
lie at a fraction of carrying capacity. With much larger K however, e.g., K = 3000 (brown
line) all the demes already go extinct. In the case of Ks = 10, larger populations are
more stable.
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D.0.4 Weak dependence of simulation results on K beyond Kmc

K = 250
K = 500
K = 1000
K = 2000

Semi-deterministic prediction

0. 0.2 0.4 0.6 0.8 1.
10-4

10-3

10-2

N

P
(N

)

h = 0.02 Km = 2.0 Ks = 1 2LU = 0.6 Ku = 0.001

(a)

K = 250
K = 500
K = 1000
K = 2000

Semi-deterministic prediction

0. 0.2 0.4 0.6 0.8 1.
10-4

10-3

10-2

N

P
(N

)

h = 0.02 Km = 5.0 Ks = 10 2LU = 0.6 Ku = 0.005

(b)

Figure D.2: Beyond the critical migration threshold Kmc, in particular for large Km population size
distribution peaks at the semideterministic expectation even for low K. (a.) Ks = 1 and Km = 2.0 (b.)
Ks = 10 and Km = 5.0.

D.0.5 Effect of gene flow on equilibrium allele frequency and
equilibrium mean load for Ks = 10.
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Figure D.3: (a.) and (b.) are respectively the equilibrium allele frequency and load (relative to that in an
undivided population) plotted against the level of gene flow, Km. Filled circles show our simulation results
(using allele frequency simulations) and solid lines show results from our semi-deterministic approximation.
Simulations are run with 100 demes, with K = 2000, L = 12000 and r0 = 0.1.
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D.0.6 Exploring the role of asymmetric mutation on critical
migration thresholds
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Figure D.4: Critical migration thresholds below which the metapopulation goes extinct accounting for
asymmetric mutation rates and for 2LU = 0.4.

Here, we explore the effect of asymmetric mutation (i.e., mutation biased towards gener-
ating more deleterious alleles) on the critical migration threshold necessary to prevent the
extinction of the metapopulation. We do this for additive alleles (i.e., h = 0.5) and with
2LU = 0.4. Looking at fig. D.4, we observe some interesting dynamics. First, we see that
for weak to mildly deleterious effects (Ks ≤ 1), the critical migration threshold is higher
with increasing degree of mutational bias (lhs of fig. D.4). This makes sense as the more
mutation is biased towards the formation of deleterious alleles, the more the number of
deleterious alleles we have segregating in the population and the higher the load. Thus,
a higher migration rate is needed to bring in new variation and alleviate this burden of
load. In contrast, with moderate to strong selective effects, this difference in the critical
migration threshold owing to mutational bias disappears.

D.0.7 Distribution of fitness effects and dominance coefficient

Here, we explore the impact of gene flow on the mean population size in the metapopulation
when we have a distribution of fitness effects and dominance coefficients. To do this,
we assume that a fraction a of loci are additive and have fitness effects KsA and the
remaining fraction, (1 − a) of loci are recessive with fitness effects KsR as shown below,
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Figure D.5: Average population size across the metapopulation plotted against Km with (a.) a = 0.2 i.e.,
20% of loci are additive and 80% are recessive (b.) a = 0.5 i.e., with equal proportion of additive and
recessive alleles (c.) a = 0.8 i.e., with 80% of loci being additive and 20% recessive.

We see from fig. D.5a - D.5c that independent of the value of a, when additive alleles are
nearly neutral and recessive alleles are non-neutral, increasing the selective effect of the
recessive alleles, i.e., making them more strongly deleterious has little or no effect on the
critical migration threshold above which the metapopulation survives. This also holds for
the case where the additive alleles are mildly deleterious and occupy a higher proportion
of loci (dashed lines in fig. D.5c). On the other hand, when additive alleles occupy a lower
or equal proportion of loci as the recessive alleles, we see a somewhat different dynamics.
We observe a (slightly) higher critical migration threshold when additive and recessive
alleles are mildly deleterious (black dashed line in fig. D.5a and D.5b). As the recessive
alleles become moderately deleterious, the threshold reduces and increasing the selective
effect further makes little or no effect on the threshold migration rate (compare blue and
red dashed lines in both fig. D.5b and D.5c). Finally, for all KsA, KsR combinations
considered, we see the critical migration threshold at least doubling as a increases.
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D.0.8 Alleles that contribute most to load
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Figure D.6: Plot of scaled load against Ns for (a.) recessive alleles (b.) additive alleles. Solid lines
represent the semi-deterministic prediction and filled circles represent simulation results.

The above plot shows that under our model of hard selection, when we have intermediate
levels of connection in the metapopulation (i.e., with Km = 2, orange color), alleles with
mildly deleterious effects contribute most to load.
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