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Abstract

We count primitive lattices of rank d inside ℤn as their covolume tends to infinity, with respect 
to certain parameters of such lattices. These parameters include, for example, the subspace that a 
lattice spans, namely its projection to the Grassmannian; its homothety class and its equivalence 
class modulo rescaling and rotation, often referred to as a shape. We add to a prior work of Schmidt 
by allowing sets in the spaces of parameters that are general enough to conclude the joint equidis-
tribution of these parameters. In addition to the primitive d-lattices Λ themselves, we also consider 
their orthogonal complements in ℤn, Λ⟂, and show that the equidistribution occurs jointly for Λ
and Λ⟂. Finally, our asymptotic formulas for the number of primitive lattices include an explicit 
bound on the error term.

1. Introduction

The aim of this paper is to extend classical counting and equidistribution results for primitive vec-
tors to their higher-rank counterparts: primitive lattices. A primitive vector is an n-tuple of integers 
(a1,… ,an) with gcd(a1,… ,an) = 1, and the set of primitive vectors in ℝn is denoted by ℤn

prim. We can 
associate with each vector 0 ≠ v ∈ ℝn the discrete subgroup that it spans, ℤv; following this logic, a 
rank d (1 ≤ d ≤ n) analogue for a vector is a lattice of rank d in ℝn, namely 

Λ = ℤv1 ⊕⋯⊕ℤvd ,

where v1,… ,vd ∈ ℝn are linearly independent. We will refer to it briefly as a d-lattice. We say that 
a d-lattice Λ is integral if Λ ⊂ ℤn and primitive if Λ = V ∩ℤn, where V is a d-dimensional rational 
subspace of ℝn. For example, a primitive 1-lattice is simply all the integral points on a rational line, 
or, equivalently, ℤv where v is a primitive vector.

Questions about counting primitive vectors date back to the days of Gauss and Dirichlet, for 
example with the Gauss Class Number problem. In the 20th century, questions about equidistribution 
of integral vectors began to arise, with the principle example being Linnik-type problems [10, 13–16,
19, 34]. These questions and others generalize naturally to primitive lattices, as we now describe.
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1254 T. HORESH AND Y. KARASIK

The Primitive Circle Problem.

The well-known Gauss circle problem concerns the asymptotic number of integral vectors with 
(Euclidean) norm at most X > 0. The analogous question for primitive vectors, namely the asymp-
totic amount of primitive vectors up to norm X, is often referred to as the primitive circle problem
[38, 47, 48]. In lattices, the role of a norm is played by the covolume: the covolume of Λ, denoted 
covol(Λ), is the volume of a fundamental parallelopiped for Λ in the linear space 

VΛ := Λ⊗ℝ = spanℝ(Λ).

Thus, the primitive circle problem for lattices is to estimate the asymptotics of 

#{primitive d− lattices in ℝn of covolume up to X} (1.1)

as X →∞. Note that for 1-lattices, the notions of norm and covolume coincide: covol(ℤv) = ‖v‖, 
hence when d = 1 the above recovers the ‘original’ primitive circle problem. Schmidt [44] showed 
that the amount in (1.1) equals 

cd,nXn + O(Xn−max{ 1
d , 1

n−d }), (1.2)

where 

cd,n =
1
n

(n
d
) ⋅

∏n

i=n−d−1
𝔙(i)

∏d

j=1
𝔙(j)

⋅
∏d

i=2
ζ (i)

∏n

j=n−d+1
ζ (j)

,

and 𝔙(i) the Lebesgue volume of the unit ball in ℝi. Thunder [46, Thm. 5] proved a variation on 
this result for lattices over a general number field that trivially intersect a certain subspace, and Kim
[31, Thm. 1.3] has found a more concrete presentation for the error term in Schmidt’s result. We 
remark that the optimal exponent in the error term of the circle problem (primitive or not) is estab-
lished only in dimensions n ≥ 4 and that this case (d = 1, n ≥ 4) is the only case where an optimal 
error exponent is known for the lattice circle problem (primitive or not).

Linnik-type problems.

This is a unifying name for questions on the distribution of the projections of integral vectors to the 
unit sphere, that is of v/‖v‖ when v ∈ ℤnor ℤn

prim. Viewing the unit sphere as the space of oriented 
lines in ℝn, the analogous object when considering d-lattices would be the Grassmannian of oriented 
d-dimensional subspaces in ℝn, denoted Gr(d,n) (see Section 2). Accordingly, we will view our 
lattices as carrying an orientation, which simplifies our discussion on the technical level but has no 
effect on the results. In particular, the two-to-one correspondence between primitive vectors and 
primitive 1-lattices (arising from the fact that v and −v span the same lattice) becomes a one-to-
one correspondence between primitive vectors and oriented primitive 1-lattices. The average Linnik 
problem for primitive lattices is to study the distribution of the (oriented) spaces VΛ in Gr(d,n) as 
covol(Λ) ≤ X →∞. Note that VΛ are exactly the rational subspaces in Gr(d,n).
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EQUIDISTRIBUTION OF PRIMITIVE LATTICES IN ℝn 1255

Shapes of orthogonal lattices.

More recently, with the rise of dynamical approaches in number theory, another type of equidistri-
bution questions for primitive vectors arose. To a primitive vector v we associate the (n− 1)-lattice 
v⟂ ∩ℤn, referred to as the orthogonal lattice of v, where v⟂ is the orthogonal hyperplane to v. Sev-
eral recent papers (by Marklof [37], Aka Einsiedler and Shapira [2, 1], Einsiedler, Mozes, Shah 
and Shapira [18] and Einsiedler Rühr and Wirth [20]) studied the equidistribution of shapes of the 
orthogonal lattices to primitive vectors as their norm tends to infinity, where the shape of a lattice 
is its similarity class modulo rotation and homothety. The space of shapes of d-lattices is a dou-
ble coset space of SLd(ℝ), denoted 𝒳d  and defined explicitly in Section 2, and the aforementioned 
papers show that the shapes of the orthogonal lattices to v ∈ ℤn

prim equidistribute in 𝒳n−1 as ‖v‖ →∞
with respect to the uniform measure arriving from the Haar measure on SLn−1(ℝ). In the works of 
Einsiedler et al., they in fact show that the shapes of v⟂ ∩ℤn equidistribute in 𝒳n−1 jointly with the 
directions v/‖v‖ in 𝕊n−1.

Just like for (primitive) vectors, orthogonal lattices can be defined for (primitive) lattices as well: 
for a primitive d-lattice Λ, we let: 

Λ⟂ := V⟂
Λ ∩ℤn,

where V⟂
Λ  is the orthogonal complement of VΛ in ℝn. Note that Λ⟂ is primitive by definition and has 

rank n − d. Also note that Λ↦ Λ⟂ defines a bijection between primitive lattices of ranks d and n − d. 
This bijection extends to a bijection between oriented lattices, with a natural choice of orientation 
on the orthogonal lattice (Def@. 2.2).

One could then ask about the equidistribution of shapes of the orthogonal lattices Λ⟂ to prim-
itive lattices Λ, where the one-dimensional case Λ = ℤv recovers the question studied in the 
aforementioned papers about the equidistribution of shapes of v⟂ ∩ℤn.

Equidistribution of a sequence in a finite-volume space can be deduced from counting in ‘suffi-
ciently general’ subsets of this space. Indeed, we will count in subsets that have controlled boundary
(Def. 3.1), which is a notion that generalizes the property of having a C1 boundary. We denote by 
‖μ‖ the total mass of a finite measure ν.

Theorem 1.1 Let n ≥ 3 and 1 ≤ d < n and assume that Φ ⊆ Gr(d,n) and ℰ×ℱ ⊆ 𝒳d ×𝒳n−d  have 
controlled boundary. Then, the number of primitive d-lattices Λ with covol(Λ) ≤ X, VΛ ∈ Φ and 
(shape(Λ),shape(Λ⟂)) ∈ ℰ×ℱ is 

cd,n ⋅
vol𝒳d

(ℰ)
‖vol𝒳d

‖
vol𝒳n−d

(ℱ)
‖vol𝒳n−d

‖
volGr(d,n)(Φ)
‖volGr(d,n)‖

⋅Xn + Oϵ(Xn−κ+ϵ)

for every ϵ> 0, where

κ = {
Xn− 1

2n(n+1) +ϵ when both ℰ,ℱ are bounded,

X
n− 1

4n(n2−1)
+ϵ

otherwise.

In this theorem, volspace stands for the standard uniform measure on the relevant space (indepen-
dent of the normalization), so it implies the joint uniform distribution of the directions and shapes 
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1256 T. HORESH AND Y. KARASIK

of the orthogonal lattices of primitive lattices as their covolume tends to infinity. In particular, it is 
interesting to observe that the shapes of Λ and of Λ⟂ are independent parameters, meaning that there 
is no way to know the shape of Λ⟂ given the shape of Λ, even though the latter lattice determines 
the first.

The strength of Theorem 1.1 compared to previous work about counting and equidistribution of 
d-lattices lies both in being the first to consider the shapes of lattices in parallel to the shapes of 
their orthogonal lattices and in the quality of the error term in the bounded case. A non-quantitative 
version of Theorem 1.1 (for Λ only) was obtained by Schmidt in [45], and prior to that, for d = 2,
by Maass [35, 36] and Roelcke [42] (who considered integral lattices without restricting to primitive 
ones). The case of d = n− 1 was handled using a dynamical approach by Marklof in [37], as well as 
by the authors in [27]. Almost 50 years after the result in (1.2), Schmidt proved yet another effective 
result for primitive d-lattices that project to certain Φ ⊆ Gr(d,n) and ℰ ⊂ 𝒳d , but the admissible Φ,ℰ
were not general enough to achieve equidistribution (more on that later). The error term there is 
≪ Xn− 1

d , upon which the error term in Theorem 1.1 improves where ℰ is bounded (and otherwise 
it is of similar quality). In addition, the counting in Theorem 1.1 allows sets Φ,ℰ that are general 
enough to deduce equidistribution, as we now turn to describe.

Equidistribution.

Theorem 1.1 can also be formulated in terms of convergence of measures, namely that for every 
compactly supported Lipschitz functions f1 ∈ CC(𝒳d), f2 ∈ CC(𝒳n−d), f3 ∈ CC(Gr(d,n)) one has 
that 

1
#|Λprimitive : covol(Λ)≤X|

∑
Λ

f1(shape(Λ))f2(shape(Λ⟂))f3(VΛ)

converges as X →∞ to 

1
‖vol𝒳d

‖
(∫ f1d vol𝒳d

) ⋅ 1
‖vol𝒳n−d

‖
(∫ f2d vol𝒳n−d

) ⋅ 1
‖volGr(d,n)‖

(∫ f3d volGr(d,n)).

But in fact, a stronger statement holds.

Theorem 1.2 For every compactly supported function f ∈ CC(𝒳d ×𝒳n−d ×Gr(d,n)) one has that 

1
#|Λprimitive : covol(Λ)≤X|

∑
Λ

f (shape(Λ),shape(Λ⟂),VΛ)

converges as X →∞ to 

1
‖vol𝒳d

‖‖vol𝒳n−d
‖‖volGr(d,n)‖

⋅∫ fd vol𝒳d
d vol𝒳n−d

d volGr(d,n) .

In principle, the above equidistribution can be made effective when the function f  is Lipschitz, 

where in accordance with Theorem 1.1, the rate of convergence would be ≪ϵ X− 1
2n(n+1) +ϵ . Indeed, 

the proofs for the counting results in this paper rely on the work [25] of Gorodnik and Nevo, which 
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EQUIDISTRIBUTION OF PRIMITIVE LATTICES IN ℝn 1257

produces effective counting results ‘for sets rather than for functions’ (namely, for counting the 
number of lattice points in a given set rather than summing the values of a given function on these 
points); while it is possible to extend their work for the functions setting (see [29, proof of Cor. 1.2]), 
it has not been done anywhere.

There are two types of equidistribution statements: one is ‘on level sets’, for example where 
covol(Λ) = X and X →∞, and the other is ‘on average’, for example where covol(Λ) ≤ X and 
X →∞. Theorem 1.2 clearly belongs to the second type, where indeed results often appear in the 
formulation of counting. Results of the first type are in a sense more delicate, but in many cases they 
do not imply, nor follow from, counting (however, such an implication is proved in the appendix of 
[3]). Equidistribution of shapes for lattices of covolume X (namely equidistribution of the first type) 
was obtained for the case d = n− 1 in [1, 2, 7, 18, 20], and recently (while a previous version of 
the present work was already available) for a general d by Aka, Musso and Wieser in [4]. The latter 
includes the conjecture that the equidistribution in Theorem 1.1 occurs also when covol(Λ) = X and 
not just on average, namely that a Linnik-type phenomenon occurs for lattices.

Counting d-lattices: Beyond shapes.

There exists a wide body of work on equidistribution problems in the space 

ℒn := SLn(ℝ)/SLn(ℤ),

which is the space of unimodular (that is with covolume one and positive orientation) full lattices in 
ℝn, as well as in the space 𝒳n of their shapes. The restriction to covolume one is necessary because the 
space ℒn (and therefore 𝒳n) has finite volume, while the space of all lattices, GLn(ℝ)/GLn(ℤ), does 
not. Comparing the spaces ℒn and 𝒳n, the space ℒn naturally contains ‘more information’ than 𝒳n, 
which is obtained by modding ℒn by rotations. This brings up the question of whether one can define 
a space of ‘unimodular d-lattices in ℝn’ so as to consider the unimodular d-lattices in ℝn without 
modding out by rotations. In Section 2 we introduce two such spaces, which are homogeneous spaces 
of SLn(ℝ). We will prove a stronger statement than Theorem 1.1, namely Theorem 3.2, where we 
count primitive d-lattices according to their projections to these more refined spaces.

Organization of the paper and strategy of proof.

The paper is organized as follows: In Section 2 we define the two aforementioned spaces that project 
to the product space 𝒳d ×Gr(d,n). In Section 3 we state our main result, Theorem 3.2, which con-
cerns counting primitive d-lattices w.r.t. their projections to these two spaces. We explain how this 
theorem implies Theorems 1.1 and 1.2, and then the rest of the paper is devoted to proving The-
orem 3.2, where the strategy is to translate counting primitive d-lattices to counting points of the 
lattice SLn(ℤ) inside an increasing family of subsets in SLn(ℝ). In order to define these subsets—
namely, sets in SLn(ℝ) that capture the integral matrices corresponding to d-lattices with a certain 
shape, covolume, etc.—we define in Section 4 a refinement of the Iwasawa coordinates on SLn(ℝ). 
In Section 5, we reduce Theorem 3.2 (and therefore Theorems 1.1 and 1.2) to one of the four state-
ments in Theorem 3.2—the one which concerns counting d-lattices in the most refined space (the 
one that projects to all the others). In Section 6, we make explicit the translation of our results to 
a problem of counting SLn(ℤ) elements in SLn(ℝ), by associating with each primitive d-lattice a 
unique element in SLn(ℤ). In Section 7, we describe a method developed by Gorodnik and Nevo in 
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1258 T. HORESH AND Y. KARASIK

[25] for counting lattice points in semi-simple Lie groups, which will be our main tool in approach-
ing the counting problem at hand. However, this method cannot be applied directly to our counting 
problem, since the sets in SLn(ℝ) that we are concerned with are not well rounded. Our solution is 
to split each set into a well-rounded part and a ‘tail’: in Section 8 we show that the ‘tails’ contribute 
a negligible amount of points, and in Section 9 we apply the method from [25] for the counting in 
the well-rounded subsets, hence completing the proof of Theorem 3.2. This article also includes an 
appendix, in which we expand upon the spaces that are introduced in Section 2, prove some auxiliary 
claims that are needed throughout the paper and put together some useful facts about lattices in ℝn

that are known but do not appear in the literature.

2. Spaces of lattices

We begin by explicitly defining the spaces 𝒳d  and Gr(d,n) appearing in Theorem 1.1. An oriented 
subspace on ℝn is a subspace with a sign attached, and the Grassmannian Gr(d,n) is the set of all 
d-dimensional oriented subspaces of ℝn. It can also be defined as the following quotients: 

Gr(d,n) = SOn (ℝ)/{[SOd(ℝ) 0d,n−d
0n−d,d SOn−d(ℝ)]} = SLn (ℝ)/{[ g1 ℝd,n−d

0n−d,d g2
] : det(g1g2) = 1} .

A coset in SOn (or SLn) represents an oriented d-dimensional subspace V if the first d columns of 
the matrices in this coset span V with the right orientation.

Recall that the shape of (an oriented) lattice is its equivalent class modulo homothety and rotation. 
The space of shapes of (oriented) d-lattices is 

𝒳d = SOd (ℝ)\SLd (ℝ)/SLd (ℤ) .

Each of the above spaces is equipped with a natural measure that is unique up to rescaling, and 
although these measures are rather standard, we recall their definition. In general, there is a natural 
way to define a measure on the space of orbits of a unimodular group:

Theorem ([30, Thm. 2.2]). Let G be a unimodular Radon lcsc group, which acts on an lcsc space 
Y strongly properly. Assume that μG is a Haar measure on G and that μY is a G-invariant Radon 
measure on Y. Then there exists a unique Radon measure μG\Y  on G\Y such that for all f ∈ L1 (Y ,ν), 

∫
Y

f (y)dμY (y) = ∫
G\Y

(∫
G

f (gy)dμG (g))dμG\Y (Gy) . (2.1)

For a measure on the Grassmannian, take (in the notations of (2.1)) Y = SOn (ℝ) and G =
SOd (ℝ)×SOn−d (ℝ) to obtain a unique SOn– invariant measure volGr(d,n) on the quotient which 
satisfies 

‖volGr(d,n)‖ =
Haar(SOn (ℝ))

Haar(SOd (ℝ)) ⋅Haar(SOn−d (ℝ))
=

2n!
d!(n− d)!

⋅
∏n

i=1
i𝔙(i)

∏d

i=1
i𝔙(i) ⋅∏n−d

i=1
i𝔙(i)

. (2.2)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/74/4/1253/7191043 by Institute of Science and Technology Austria user on 02 January 2024



EQUIDISTRIBUTION OF PRIMITIVE LATTICES IN ℝn 1259

For a measure on the space of shapes, use (2.1) to obtain an SLd (ℝ)-invariant measure on 
SOd (ℝ)\SLd (ℝ) and then let vol𝒳d

 be its restriction to a fundamental domain of SLd(ℤ), nor-
malized such that 

‖vol𝒳d
‖ =

d

∏
i=2

ζ (i)/ϒ(d), (2.3)

where 

ϒ(d) =
d!
2 ∏

d

i=1
𝔙(i)

#|Z (SOd (ℝ))|
(2.4)

(here the denominator is the cardinality of the center of SOd (ℝ), which is 2 if d is even and 1 if d is 
odd).

We now proceed to define a space of d-lattices in ℝn that encodes both their shapes and their 
directions (that is their projections to the Grassmannian).

2.1. Space of homothety classes of d-lattices

A unimodular lattice is an oriented lattice with positive orientation and covolume one. Recall our 
notation for the space of rank n unimodular lattices 

ℒn = SLn(ℝ)/SLn(ℤ),

where a matrix in SLn (ℝ) lies in the coset that represents a full unimodular lattice in ℝn if its columns 
span this lattice. This space is equipped with a natural left SLn(ℝ) invariant measure, which is the left 
Haar measure on SLn(ℝ) restricted to a fundamental domain of SLn(ℤ). The typical normalization 
of this Haar measure is 

‖volℒn
‖ =

n

∏
i=2

ζ (i) . (2.5)

As the space of shapes 𝒳n is obtained from ℒn via modding by SOn, the space ℒn is more refined, 
containing not only the information about the shape of a lattice but also about its position in ℝn. To 
define the analogous space for d-lattices in ℝn, notice that since ℒn consists of a unique representative 
from any equivalence class of n-lattices in ℝn modulo homothety, one can identify ℒn with the space 
of such equivalence classes. The space of homothety classes of oriented d-lattices inside ℝn is 

ℒd,n := SLn (ℝ)/([SLd(ℤ) ℝd,n−d

0n−d×d SLn−d(ℝ)]×{[ α
1
d Id 0d×n−d

0n−d×d α−
1

n−d In−d

] : α > 0}) ,

where a matrix in SLn (ℝ) lies in the coset that represents an equivalence class of a d-lattice in 
ℝn if and only if its first d columns span a positive scalar multiplication of this lattice, with the 
corresponding orientation. The need to mod out by the block-scalar group follows from the fact that 
the first d columns of a matrix in SLn span a lattice that is hardly ever of covolume one, so one 
needs to divide by the covolume (hence an element in this quotient space is an equivalence class 

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/74/4/1253/7191043 by Institute of Science and Technology Austria user on 02 January 2024



1260 T. HORESH AND Y. KARASIK

of d-lattices up to homothety). However, modding out the block-scalar group comes with a price, 
which is that the space ℒd,n does not carry an SLn(ℝ)-invariant measure since the acting group is 
not unimodular. To fix this flaw, let us consider a different presentation of ℒd,n. Notice that for every 
d-lattice Λ there exist (non-unique) gd ∈ SLd(ℝ), k ∈ SOn(ℝ) and (a unique) α > 0 such that 

Λ = α 1
d k−1(gdℤd × {0n−d}).

The element gd  can be replaced by any other element in gd SLd(ℤ), and the element k can be replaced 
by any other element in (SOd(ℝ)× In−d)k, if the element gd  is adjusted accordingly. As a result, 
where by SOd(ℝ)diag we mean the diagonal embedding of SOd(ℝ) in SOn(ℝ)×SLd(ℝ), in which 

 
the embedding in SLd(ℝ) is the identity map, and the embedding in SOn(ℝ) is SOd(ℝ)× In−d . 
Then (2.1) allows us to define a measure on the manifold SOd(ℝ)diag\SOn(ℝ)×SLd(ℝ), and volℒd,n

is the restriction of this measure to a fundamental domain of SLd(ℤ), normalized such that

‖volℒd,n
‖ = ‖volGr(d,n)‖‖volℒd

‖ (2.7)

(this normalization is natural in view of Proposition 2.5). Note that we would not have gotten a finite 
volume space had we considered the space of d-lattices on ℝn without ‘modding out the covolume’, 
just like in the case of ℒn.

2.2. Factor lattices and the space of pairs

Recall that an integral lattice Λ is primitive if it is of the form Λ = ℤn ∩VΛ; this is equivalent to the fact 
that any basis of Λ can be completed to a basis of ℤn. Theorem 1.1 consists of a joint equidistribution 
result for primitive lattices Λ and their orthogonal complements Λ⟂ = ℤn ∩V⟂

Λ . It is a consequence 
of the stronger Theorem 3.2, in which Λ⟂ is replaced by another (n− d)-lattice in the space V⟂

Λ :

Definition 2.1 The factor lattice Λπ  of a primitive d-lattice Λ is the orthogonal projection of ℤn to 
V⟂
Λ .

The factor lattice Λπ  is isometric to the quotient ℤn/Λ (Prop. B.3), so one should think of Λπ  as a 
realization of ℤn/Λ inside ℝn. Notice that, like Λ⟂, Λπ  is a full lattice inside V⟂

Λ , and in particular is 
of rank n − d. The relation between Λ⟂ and Λπ  is that they are dual to one another (for the definition 
of dual lattices, see [11, I.5], or Appendix A in the present paper; for the duality of Λ⟂ and Λπ , see 
Claim B.5). It holds that 

covol(Λπ) = covol(Λ)−1 = covol(Λ⟂)−1

([43, 44]; see also Prop. B.4 and Cor. B.6 in the Appendix). Since we view d-lattices as carrying an 
orientation, we need to define an orientation on Λπ  and Λ⟂, which is done as follows:
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EQUIDISTRIBUTION OF PRIMITIVE LATTICES IN ℝn 1261

Definition 2.2 Let L be a full lattice in V⟂
Λ . A basis C for L is positively oriented if det(B|C) = 1

for a positively oriented basis B of Λ.

The last space we introduce is the space of pairs of oriented lattices (Λ,L) such that (i) Λ is a d-
lattice, (ii) L is a full lattice in V⟂

Λ  (hence is of rank n − d and its orientation is given in Definition 2.2) 
and (iii) covol(Λ)covol(L) = 1. In fact, it is the space of homothety classes of such pairs, where (Λ,L)
is equivalent to (α 1

d Λ,α− 1
n−d L) for every α > 0. This space is given as the quotient 

𝒫d,n := SLn (ℝ)/([SLd(ℤ) ℝd,n−d

0n−d×d SLn−d(ℤ)]×{[ α
1
d Id 0d×n−d

0n−d×d α−
1

n−d In−d

] : α > 0}) ,

where a matrix g ∈ SLn(ℝ) lies in the coset that represents the homothety class of (Λ,L) if and only 
if the lattice Λ′ spanned by the first d columns of g and the lattice L′ which is the projection of gℤn

onto V⟂
Λ  satisfy that (Λ′,L′) and (Λ,L) are in the same homothety class. Note the similarity to the 

definition of ℒd,n above; here also, modding out the block-scalar group results in having no SLn(ℝ)-
invariant measure, and it is preferable to present this space as a quotient of a manifold by a discrete 
group. For every pair (Λ,L) as above there exist (non-unique) gd ∈ SLd(ℝ), gn−d ∈ SLn−d(ℝ), k ∈
SOn(ℝ) and (a unique) α > 0 such that 

Λ = α 1
d k−1(gdℤd × {0n−d}), L = α− 1

n−d k−1({0d}× gn−dℤn−d).

For similar considerations as in the case of ℒd,n, 

 
where SOd(ℝ)diag is the diagonal embedding of SOd(ℝ) in SOn(ℝ)×SLd(ℝ) (as in (2.6)) and 
SOn−d(ℝ)diag is the analogous diagonal embedding of SOn−d(ℝ) in SOn(ℝ)×SLn−d(ℝ). Then we 
may apply (2.1) to define a measure on the manifold that is the left quotient in (2.8) and set vol𝒫d,n

as the restriction of this measure to a fundamental domain of SLd(ℤ)×SLn−d(ℤ), normalized such 
that 

‖vol𝒫d,n
‖ = ‖volℒd,n

‖‖volℒn−d
‖

(this normalization is natural in view of Proposition 2.5). More details on dual lattices and factor 
lattices can be found in the Appendix.

2.3. Relation between the spaces of lattices and their measures

While the spaces ℒd , 𝒳d  and Gr(d,n) are well known, the spaces ℒd,n and 𝒫d,n, as far as we are 
aware, make their first appearance here (at least for the case d > 1; the case d = 1 was introduced in 
[27] and later appeared in [7]). It therefore seems appropriate to explain how ℒd,n and 𝒫d,n add to the 
more ‘familiar’ spaces ℒd , 𝒳d  and Gr(d,n). The relation between all the different spaces is that they 
naturally project to one another as depicted in the following commutative diagram:  Let π𝒴→𝒵 denote 
the projection from a space 𝒴 to a space 𝒵. All the projections except for πℒd,n→ℒd

 and π𝒫d,n→ℒn−d
 are 
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1262 T. HORESH AND Y. KARASIK

 
of the form G/H1 → G/H2 with H1 < H2 and are therefore well defined and continuous. However, 
the projections into ℒd  and ℒn−d  are not canonical, as they depend on a choice of coordinates on the 
d-dimensional (resp. n − d dimensional) vector spaces in ℝn. We will fix a choice of coordinates in 
Section 4.1 and define these maps explicitly in Section 5.1; meanwhile, we state the following for 
future reference:

Notation 2.3 Given an oriented d-lattice Λ < ℝn we denote its homothety class by [Λ] ∈ ℒd,n, and 
its shape by shape(Λ) ∈𝒳d . Given a pair (Λ,L) of lattices in orthogonal subspaces where Λ is 
primitive of rank d, we denote its homothety class by [(Λ,L)] ∈ 𝒫d,n. The image of Λ in ℒd  (resp. of 
L in ℒn−d) is denoted [[Λ]] (resp. [[L]]).

Proposition 2.4 The projections in Diagram (2.9) are well defined and given by

 
All the maps, except for the ones with the dotted arrows, are continuous. The maps from ℒd  and 

ℒd,n to 𝒳d , the map from ℒn−d  to 𝒳n−d  and the map from 𝒫d,n to 𝒳d ×𝒳n−d  are proper (namely, 
they have the property that the preimage of a bounded set is bounded).

Proof. The projections are the obvious ones; for example, π𝒫d,n→ℒd,n
 is the projection from (2.8) 

to the two left components, (2.6), π𝒫d,n→Gr(d,n) is the projection to the most left component, 

(SOd(ℝ)diag ×SOn−d(ℝ)diag)\SOn(ℝ), composed with the inverse map k ↦ k−1, etc. Notice 
that π𝒫d,n→ℒd×ℒn−d

, namely the projection from (2.8) to the two right components SLd(ℝ)×
SLn−d(ℝ)/SLd(ℤ)×SLn−d(ℤ) is not well defined unless a choice of a section of (SOd(ℝ)diag ×
SOn−d(ℝ)diag)\SOn(ℝ) is fixed. This projection is therefore not canonical and a priori not
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EQUIDISTRIBUTION OF PRIMITIVE LATTICES IN ℝn 1263

continuous. Same holds for πℒd,n→ℒd
. The fact that the maps into the spaces of shapes are proper 

is clear, since they are obtained by projecting modulo a compact component.

Proposition 2.5 Considering the projections from Proposition 2.4, the following maps are one to 
one 

(π𝒫d,n→ℒd,n
,π𝒫d,n→ℒn−d

) : 𝒫d,n → ℒd,n ×ℒn−d ,

(πℒd,n→ℒd
,πℒd,n→Gr(d,n)) : ℒd,n → ℒd ×Gr(d,n),

and each satisfies that the measure on the range is the pullback of the measure on the domain. 
Moreover, the map πℒn→𝒳n

 satisfies that the volume of the preimage of a subset ℰ ⊆ 𝒳n is 
vol𝒳n

(ℰ)ϒ(n).

The proof of Proposition 2.5 is in Section 5.1.

3. Counting lattices: Main theorem

The goal of this section is to introduce our main result, Theorem 3.2, which implies Theorems 1.1 
and 1.2. Counting results always assume a certain regularity condition on the sets in question, and 
indeed we require that [(Λ,Λπ)] and all the other parameters of Λ from Notation 2.3 fall in sets that 
satisfy the following property:

Definition 3.1 A subset B of an orbifold ℳ will be called a boundary controllable set, or BCS, if for 
every x ∈ℳ there is an open neighborhood Ux of x such that Ux ∩𝜕B is contained in a finite union of 
embedded C1 submanifolds of ℳ, whose dimension is strictly smaller than dimℳ. In particular, B is 
a BCS if its (topological) boundary consists of finitely many subsets of embedded C1 submanifolds.

Theorem 3.2 Let n ≥ 3 and assume that Φ ⊆ Gr(d,n), ℰ×ℱ ⊆ 𝒳d ×𝒳n−d , ̃ℰ × ℱ̃ ⊆ ℒd ×ℒn−d , 
Ψ ⊆ ℒd,n and Ξ ⊆ 𝒫d,n are boundary controllable. Then:

1. The number of primitive d-lattices Λ of covolume at most X with VΛ ∈ Φ and 
(shape(Λ),shape(Λπ)) ∈ ℰ×ℱ is 

vol𝒳d
(ℰ)vol𝒳n−d

(ℱ)volGr(d,n)(Φ)
n∏n

i=2
ζ (i)

ϒ(d)ϒ(n− d) ⋅Xn + error term.

2. The number of primitive d-lattices Λ of covolume at most X with VΛ ∈ Φ and ([[Λ]], [[Λπ ]]) ∈
̃ℰ × ℱ̃ is 

volℒd
( ̃ℰ)volℒn−d

(ℱ̃)volGr(d,n)(Φ)
n∏n

i=2
ζ (i)

⋅Xn + error term.

3. The number of primitive d-lattices Λ of covolume at most X with [Λ] ∈ Ψ and [[Λπ ]] ∈ ℱ̃ is 

volℒd,n
(Ψ)volℒn−d

(ℱ̃)
n∏n

i=2
ζ (i)

⋅Xn + error term.
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1264 T. HORESH AND Y. KARASIK

4. The number of primitive d-lattices Λ of covolume at most X with [(Λ,Λπ)] ∈ Ξ is 

vol𝒫d,n
(Ξ)

n∏n

i=2
ζ (i)

⋅Xn + error term.

For τn = (4n2 ⌈(n− 1)/2⌉)−1
 and every ϵ > 0, the error term is ≪ϵ Xn(1−τn+ϵ) < Xn− 1

2n(n+1) +ϵ  when 

the sets in question (ℰ,ℱ, ̃ℰ, ℱ̃,Ψ,Ξ) are bounded, and ≪ϵ Xn(1− τn
2n−2 )+ϵ ≤ X

n− 1
4n(n2−1)

+ϵ
 when they are 

not.

Remark 3.3

1. It can be easily shown that the leading constants in any of the part of Theorem 3.2 can also be 
written as 

2cd,n ⋅ product of probability measures of the sets involved,

where cd,n is Schmidt’s constant; for example, the leading constant in part (4) is 

2cd,n ⋅
vol𝒫d,n

(Ξ)
vol𝒫d,n

(𝒫d,n)
.

Below we demonstrate this computation for part (1) of the theorem, where we prove The-
orem 1.1 based on Theorem 3.2. The 2 factor is due to the fact that we count lattices with 
orientation, so every non-oriented lattice is counted twice.

2. Again comparing to the work of Schmidt, we note that a boundary controllable set is Jordan 
measurable, and indeed Schmidt (in [45]) provides an example for how the asymptotic formula 
for number of d-lattices with shapes in ℰ fails when ℰ is not Jordan measurable.

3. Primitive d-lattices are in one-to-one correspondence with rational subspaces in ℝn. These 
spaces are the rational points on the Grassmanian variety: the projective variety consisting of all 
the d– dimensional spaces in ℝn. Therefore, the aforementioned result of Schmidt can be read 
as the counting of rational points up to a bounded height in the Grassmannian variety (the height 
being the covolume of the unique primitive lattice in the space). As such, it provides yet another 
example where the Manin conjecture [22, 39] on counting rational points in varieties holds. The 
more refined counting we suggest in Theorem 3.2 (Part (4)) plays a key role in the intensive study 
of rational points on the Grassmannian conducted in [8]. In that paper, the authors confirm a 
modification to the Manin conjecture suggested by Peyre [40] and obtain an equidistribution 
result for the integral lattices in the rational tangent bundle of the Grassmannian.

In order to deduce Theorems 1.1 and 1.2 from Theorem 3.2, we need to reformulate the latter 
with Λ⟂ instead of Λπ . As we have already mentioned, these lattices are dual to one another; denote 
the dual of a lattice Λ by Λ*.

Theorem 3.4 A version of Theorem 3.2 holds when replacing (Λ,Λπ) by each of (Λ,Λ⟂), (Λ*,Λ⟂)
and (Λ*,Λπ).
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EQUIDISTRIBUTION OF PRIMITIVE LATTICES IN ℝn 1265

Indeed, note that in all of the pairs above, the right-hand lattice spans the orthogonal subspace 
to the one spanned by the left-hand lattice. In other words, their homothety classes are elements in 
𝒫d,n.

Proof of Theorem 3.4. Observe that the three pairs (Λ,Λ⟂), (Λ*,Λ⟂) and (Λ*,Λπ) are obtained from 
the pair (Λ,Λπ) in Theorem 3.2 by taking the dual of Λ, of Λπ , or of both. According to Propositions 
A.7 and A.8, passing to the dual in either of the lattices is a measure preserving auto-diffeomorphism 
of 𝒫d,n. 

We can now prove the theorems from the introduction.

Proof of Theorem 1.1 based on Theorem 3.2. By Theorem 3.4 and part (1) of Theorem 3.2, the number 
of oriented primitive d-lattices Λ of covolume at most X with VΛ ∈ Φ and (shape(Λ),shape(Λ⟂)) ∈
ℰ×ℱ is asymptotic to 

vol𝒳d
(ℰ)vol𝒳n−d

(ℱ)volGr(d,n)(Φ)ϒ(d)ϒ(n− d)
n ⋅ vol(ℒn)

⋅Xn,

where a bound on the error term is provided in Theorem 3.2. It is only left to show that the leading 
constant above coincides twice with the one in Theorem 1.1, namely 

2cd,n ⋅
vol𝒳d

(ℰ)
‖vol𝒳d

‖
⋅
vol𝒳n−d

(ℱ)
‖vol𝒳n−d

‖
⋅
volGr(d,n)(Φ)
‖volGr(d,n)‖

.

Notice first that, by (2.2) and (2.3), 

cd,n =
‖volGr(d,n)‖

2n
⋅
‖volℒd

‖‖volℒn−d
‖

‖volℒn
‖

.

Now, 

ϒ(d)ϒ(n− d)
n ⋅ ‖volℒn

‖
=

=
1
n

‖volℒd
‖‖volℒn−d

‖
‖volℒn

‖
⋅
ϒ(d)
‖volℒd

‖
⋅
ϒ(n− d)
‖volℒn−d

‖
.
‖volGr(d,n)‖

2
⋅

2
‖volGr(d,n)‖

= 2cd,n ⋅
1

‖vol𝒳d
‖
⋅

1
‖vol𝒳n−d

‖
⋅

1
‖volGr(d,n)‖

.

To prove Theorem 1.2 from Theorem 3.2, we need the following claim, which is a follow-up to 
Proposition 2.5.
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1266 T. HORESH AND Y. KARASIK

Proposition 3.5 The three maps from Proposition 2.5 have the property that the preimage of a 
boundary controllable set is also boundary controllable.

The proof is in Section 5.2.

Proof of Theorem 1.2 based on Theorem 3.2 and Proposition 3.5. In light of Propositions 2.5 and 
3.5, it is sufficient to prove equidistribution in the space 𝒫d,n, namely that 

1
#|Λprimitive : covol(Λ)≤X|

⋅ ∑
{Λ:covol(Λ)≤X}

f ([(Λ,Λπ)])
⟶

X →∞
1

‖vol𝒫d,n
‖
⋅∫ fd vol𝒫d,n

,

for every f ∈ CC(𝒫d,n). Given such f, it is uniformly continuous, and hence for every ϵ > 0 there exists 
δ > 0 such that if two points x,y ∈ 𝒫d,n are of Riemannian distance at most δ, then | f (x)− f (y)| < ϵ. 
Fix ϵ and the associated δ and consider a finite cover {Bi} of supp(f ) by balls of radius δ/2. By 
letting Ui = Bi −∪j>iBj for every i, we obtain that {Ui} is a finite disjoint cover of supp(f ). For a 
choice of xi ∈ Ui, notice that for every x ∈ supp(f ) there exists a unique i such that x ∈ Ui and in 
particular x is δ-close to xi. Thus, |f (x)− f (xi)| < ϵ. It follows that 

f = ∑
i

f (xi)1Ui
+ Of (ϵ),

and it is therefore sufficient to prove the claim for f = 1U  with U ∈ {Ui}. Clearly 

1
#|Λprimitive : covol(Λ)≤X|

∑
{Λ:covol(Λ)≤X}

1U([(Λ,Λπ)]) =

#|Λprimitive : covol(Λ)≤X, [(Λ,Λπ)]∈U|
#|Λprimitive : covol(Λ)≤X|

.

Notice that the boundary of U ⊂ 𝒫d,n is a finite union of boundary pieces of balls, so U is boundary 
controllable. Thus, by part (4) of Theorem 3.2, the above converges as X →∞ to 

vol𝒫d,n
(U)

‖vol𝒫d,n
‖

=
∫1Ud vol𝒫d,n

‖vol𝒫d,n
‖

.

4. Refined Iwasawa components of SLn (ℝ)

4.1. Refining the Iwasawa decomposition of SLn (ℝ)

Set G = Gn := SLn (ℝ) and let G = KAN be the Iwasawa decomposition of G, meaning that K = Kn
is SOn (ℝ), A = An is the diagonal subgroup in G with positive entries and N = Nn is the sub-
group of upper unipotent matrices. We also let Pn = AnNn, the group of upper triangular matrices 
of determinant one with positive diagonal entries. Consider the following isomorphic copy of 
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SLd (ℝ)×SLn−d (ℝ) inside G, 

G′′ := [ Gd 0d,n−d

0n−d,d Gn−d
] = [ SLd (ℝ) 0d,n−d

0n−d,d SLn−d (ℝ) ] .

Write G′′ = K ′′A′′N ′′ for the Iwasawa decomposition of G′′, namely 

K ′′ := K ∩G′′ = [ Kd 0d,n−d

0n−d,d Kn−d
] = [ SOd (ℝ) 0d,n−d

0n−d,d SOn−d (ℝ) ] ,

A′′ := A∩G′′ = [ Ad 0d,n−d

0n−d,d An−d
] ,

N ′′ := N ∩G′′ = [ Nd 0d,n−d

0n−d,d Nn−d
] .

Let 

P′′ := A′′N ′′ and Q := KP′′

(note that Q is not a group, but it is a smooth manifold). To conclude the definition of the refined 
Iwasawa decomposition, we define K ′,A′,N ′ that complete K ′′,A′′,N ′′ to K, A and N, respectively. 
Let 

N ′ := [ Id ℝd,n−d

0n−d,d In−d
] , A′ := [ a

1
d Id 0d,n−d

0n−d,d a−
1

n−d In−d

] ,

and observe that N = N ′′N ′, A = A′′A′, and that A′ is a one-parameter subgroup of A which commutes 
with G′′. Often we would like to restrict to the upper d × d (resp. lower (n− d)× (n− d)) block of 
G′′, hence we denote 

G′′
d := [ Gd 0d,n−d

0n−d,d In−d
] = [ SLd (ℝ) 0d,n−d

0n−d,d In−d
]

(resp. G′′
n−d := [ Id 0d,n−d

0n−d,d Gn−d
]). Similarly for K ′′, P′′ and A′′.

Fix a transversal (Borel measurable set of representatives) K ′ of the diffeomorphism K/K ′′ →
Gr(d,n), meaning that K = K ′K ′′; by [27, Lem. 3.4 (ii)], it is possible to choose K ′ such that if 
Φ ⊆ Gr(d,n) and ℬ ⊆ K ′′ are boundary controllable, and K ′

Φ is the image of Φ in K ′, then K ′
Φℬ ⊆ K

is boundary controllable in K. Note that Q is also K ′G′′, and we let 

Qd := K ′G′′
d .

Note that Q = QdG′′
n−d  and that Qd  is not a manifold. Then the refined Iwasawa (or RI, for short) 

decomposition is given by

G = K ′K ′′A′′A′N ′′N ′ = K ′G′′A′N ′ = KP′′A′N ′ = QA′N ′ = QdG′′
n−dA′N ′. (4.1)
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1268 T. HORESH AND Y. KARASIK

4.2. Refined Iwasawa decomposition of the Haar measure

It is well known (for example [32, Prop. 8.43]) that a Haar measure μ on SLn (ℝ) can be decomposed 
w.r.t. the Iwasawa components of SLn (ℝ): 

μ = μK × μA × μN

(K = Kn, A = An, N = Nn), where μK  and μN  are Haar measures on K and N, and μA is absolutely 
continuous w.r.t. the Haar measure on A. Specifically, it is given by 

μA = μAn
=

n

∏
j=1

e−hj dhj,

where for h = (h1,… ,hn−1) ∈ ℝn−1 we let 

ah = (e−h1/2,e(h1−h2)/2,… ,e(hn−2−hn−1)/2,ehn−1/2) ∈ A.

In this subsection, we extend the decomposition of μ to the RI coordinates. Set 

μA′ = entdt,

where for t ∈ ℝ we let 

a′t = [ e
t
d Id 0

0 e−
t

n−d In−d

] ,

and let μA′′ = μAd
× μAn−d

= μA′′d
× μA′′n−d

. Then μA satisfies 

μA = μA′ × μA′′ ,

where neither of these measures is Haar. Let μN , μN′ , μNi
 and μN′′  be the Lebesgue measures on the 

associated spaces ℝdimN , ℝdimN′
, etc. Then, 

μN = μN′′ × μN′ .

Setting Ki = SOi(ℝ), we let μKi
 for i = n,d,n− d be the Haar measure on K i satisfying 

‖μKi
‖ =

i−1

∏
j=1

Leb(𝕊j) =
i!
2

i

∏
i=1

𝔙(i), (4.2)

where Leb is the Lebesgue measure and 𝕊j is the unit sphere in ℝj+1. In particular, ‖μK′′‖ =
‖μKd

‖‖μKn−d
‖. Since K ′ parameterizes Gr(d,n) = K/K ′′, we can endow it with a measure μK′  that 

is the pullback of a K-invariant Radon measure on Gr(d,n) so that μK = μK′ × μK′′ . All in all, our 
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choices of μK ,μN  determine μ, and similarly the choices of μK′′ ,μA′′  determine the Haar measure 
μG′′ : 

μG′′ = μK′′ × μA′′ × μN′′ = μG′′
d
× μG′′

n−d
, where μG′′

i
= μGi

= μKi
× μAi

× μNi
,

and therefore also 

μ = μK′ × μG′′ × μA′ × μN′ .

Naturally, μP = μA × μN  and μP′′ = μA′′ × μN′′ = μP′′d
× μP′′n−d

, where the measures on the Borel 
subgroups are right Haar measures.

It is left to determine the measures μQ and μQd
. Since Q = KP′′, we endow it with the measure 

μQ = μK × μP′′ . As μK = μK′ × μK′′ , μP′′ = μA′′ × μN′′  and μG′′ = μK′′ × μA′′ × μN′′ , we also have that 
μQ = μK′ × μG′′ . Since Qd = K ′G′′

d , we endow it with the measure μQd
= μK′ × μG′′

d
. All in all, we 

have that 

μ = μQ × μA′ × μN′ = μQd
× μG′′

n−d
× μA′′ × μN′′ ,

meaning that the measure μ decomposes in a manner that it compatible with (4.1).

4.3. RI components and parameters of lattices

The RI components of an element g ∈ SLn (ℝ) encode certain information regarding the lattices 
spanned by its columns, as explained in the proposition below. To state it, we extend the definition 
of primitiveness and of factor lattices from d-lattices inside ℤn, to d-lattices inside any full lattice of 
ℝn.

Definition 4.1 Assume that a d-lattice Λ is contained inside a full lattice Δ < ℝn. We say that Λ is 
primitive inside Δ if Λ = Δ∩VΛ—in other words, if there is no subgroup of Δ that lies inside VΛ and 
properly contains Λ. Given a d-lattice Λ that is primitive inside Δ, we define the factor lattice of Λ
(w.r.t. Δ), denoted Λπ,Δ, as the orthogonal projection of Δ into the space (VΛ)⟂. When Λ is primitive 
inside ℤn, we omit the explicit mentioning of ℤn and say just that Λ is primitive. Accordingly, we 
denote its factor lattice in ℤn by just Λπ  and say that it is the factor lattice of Λ.

Let us also introduce the following notation:

Notation 4.2 For g ∈ SLn (ℝ) and d ∈ {1,… ,n− 1}, let Λg denote the lattice spanned by the 
columns of g and let Λd

g  denote the lattice spanned by the first d columns of g. Let Λg
d ⃮ denote the 

lattice spanned by the last d columns of Λg. Finally, given a lattice Λ in ℝn, recall that VΛ denotes 
the linear space spanned by Λ.

Proposition 4.3 Let g ∈ SLn (ℝ) and 1 ≤ d ≤ n− 1. Denote Λ = Λd
g , the lattice spanned by the first 

d columns of g, and Λ♯ = Λπ,Λg , the factor lattice of Λ w.r.t. Λg. Write g = kan = qa′t n
′ with q = k′Ug′′ =

k′Uk′′a′′s,wn′′, where a′′s,w = [ ad∈Ad 0
0 an−d∈An−d

] and k′U  is the image of U ∈ Gr(d,n). Let g′′ = [ gd 0
0 gn−d

], 
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1270 T. HORESH AND Y. KARASIK

g′′d = [ gd 0
0 In−d

] and g′′n−d = [ Id 0
0 gn−d

], and similarly for a′′ and p′′. The RI components of g represent 
parameters related to Λ in the following way: 

(i) U = VΛ (i)♯ U⟂ = VΛ♯

(ii) et = covol(Λ) (ii)♯ e−t = covol(Λ♯)
(iii) e

it
d −

si
2 = covol(Λi) (iii)♯ e−

jt
n−d −

wj
2 = covol((Λ♯)

j
)

(iv) [Λd
q ] = [Λk′g′′d

] = [Λ] (iv)♯ [Λn−d⃮
q ] = [Λ♯]

(v) [[Λgd
]] = [[Λ]] (v)♯ [[Λgn−d

]] = [[Λ♯]]
(vi) shape(Λpd

) = shape(Λ) (vi)♯ shape(Λpn−d
) = shape(Λ♯)

for every 1 ≤ i ≤ d and 1 ≤ j ≤ n− d, and (vii) [(Λd
q ,Λn−d⃮

q )] = [(Λd
g ,(Λd

g)π,Λg)].

Proof. Since the columns of k are obtained by performing the Gram–Schmidt orthogonalization 
procedure on the columns of g, we have that the first d columns of k span VΛ. Since k′ = k (k′′)−1

where k′′ ∈ [SOd(ℝ) 0
0 SOn−d(ℝ)], the first d columns of k′ span (and are in fact an orthonormal basis 

to) the same space as the first d columns of k, which is VΛ. This proves (i) and (i)♯, by definition of 
orientation on V⟂

Λ .
Write g(n′)−1(a′)−1 = k′g′′ = q; right multiplication by an element of N ′ does not change the first 

d columns of g, and right multiplication by (a′)−1 multiplies each of these columns by e−
t
d . This 

means that e−
t
d Λ = Λd

q , proving (iv), and (v), (vi) directly follow. Also, notice that Λd
q  has covolume 

one, since it is a rotation of the unimodular Λd
g′′d

; then, by considering the covolumes of the lattices 

on both sides, we obtain e−t covol(Λ) = 1, proving (ii).
Considering g′′, it is clear that the lattice Λgn−d

 is the factor lattice of Λgd
 w.r.t. Λg′′ . Rotating 

it by left multiplication by k′, we have that the lattice Λn−d⃮
q  is the factor lattice of Λd

q  w.r.t. Λq. 

But since q = g(n′)−1(a′)−1, we may also say that Λn−d⃮
q  is the factor lattice of Λd

g(n′)−1(a′)−1 < VΛ

w.r.t. Λg(n′)−1(a′)−1 , namely it is the projection of Λg(n′)−1(a′)−1  to V⟂
Λ . Noticing that this projection 

kills the contribution of (n′)−1, as well as the first d columns of g(n′)−1(a′)−1, we remain only 
with the projection of the lattice spanned by the last n − d columns of g, on which (a′)−1 acts as 

multiplication by e−
t

n−d . In other words, Λn−d⃮
q  is in fact e−

t
n−d Λ♯. This proves (iv)♯, from which 

(v)♯ and (vi)♯ follow, and then similarly to how we proved (ii) we also obtain (ii)♯ (The fact that 
covol(Λ♯) = covol(Λg)/covol(Λ) is also proved in the Appendix, Proposition B.4). Since Λd

q  and 

Λn−d⃮
q  span orthogonal subspaces and are both unimodular, then (iv) and (iv)♯ imply (vii). It is 

well known that if g = kan and a = diag(α1,… ,αr), then ∏i
1
αj = covol(Λi

g). Since the lattice Λd
g′′d

is a rotation of e−t/dΛ, it has the same covolume and partial covolumes; writing g′′d = k′′d a′′d n′′d , 
we have that the product of the first 1 ≤ i ≤ d entries of a′′d  is e−

it
d covol(Λi

g′′d
) = e−

it
d covol(Λi

g). 

On the other hand, since we have a′′d = diag(e−
s1
2 ,e

s1−s2
2 ,… ,e

sd−2−sd−1
2 ,e

sd−1
2 ,1,… ,1), comparing the 

products of the first i elements implies covol(Λi) ⋅ e− it
d = e−

si
2  and proves (iii). Doing the same for 

a′′n−d = diag(1,… ,1,e−
w1
2 ,e

w1−w2
2 ,… ,e

wn−d−2−wn−d−1
2 ,e

wn−d−1
2 ), while recalling that Λn−d⃮

g′′n−d
 is a rotation 

of e
t

n−d Λ♯, implies e
jt

n−d covol((Λ♯)j) = e−
wj
2  for every 1 ≤ j ≤ n− d and proves (iii)♯. 
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5. Spaces of lattices and their sets of representatives

The spaces 𝒳d  and ℒd , as well as ℒd,n (by (2.6)) and 𝒫d,n (by (2.8)), are quotients of smooth mani-
folds by discrete subgroups and can therefore be represented by fundamental domains for the action 
of these discrete groups on the said manifolds. In this section we will establish that these manifolds 
correspond (through a diffeomorphism, except for the case of ℒd,n) to certain RI components in 
SLn(ℝ), implying that the spaces in question can be identified with ‘fundamental domains’ inside 
the associated RI components. In other words, we shall identify the spaces 𝒳d , ℒd , etc. with nice 
measurable subsets lying inside the RI components of SLn(ℝ), and this will allow us to translate the 
proof of Theorem 3.2 into a problem of counting integral matrices in SLn(ℝ). Moreover, this iden-
tification will allow us to interpret the projections from Prop. 2.4 very concretely, thus completing 
the analysis of the interactions between the spaces 𝒫d,n, ℒd,n, ℒd , 𝒳d  and Gr(d,n): we will finally 
be able to prove Propositions 2.5 and 3.5 and then reduce the proof of Theorem 3.2 to proving only 
its fourth part.

5.1. Constructing fundamental domains

Consider the smooth manifolds 

ℳ𝒳i
:= SOi (ℝ)\SLi (ℝ) , ℳℒd,n

:= SOd(ℝ)diag\SOn(ℝ)×SLd(ℝ)

and 

ℳ𝒫d,n
:= SOd(ℝ)diag ×SOn−d(ℝ)diag\SOn(ℝ)×SLd(ℝ)×SLn−d(ℝ).

As we have seen in Section 2, each of the spaces 𝒳i, ℒd,n and 𝒫d,n is the orbit space of a discrete group 
in the associated manifold. It is not hard to see (but yet we prove in Prop. 5.1) that these manifolds 
are identified with certain RI components of SLn(ℝ)—ℳ𝒳i

 with Pi (group of unimodular upper 
triangular matrices), ℳℒd,n

 with Qd  and ℳ𝒫d,n
 with Q. Moreover, the measures on these manifolds 

that were defined in 2 using (2.1) correspond to the measures μPi
, μQd

 and μQ, respectively. As a 
result, the action of the discrete groups on the manifolds ℳ can be pushed to the corresponding RI 
components, thus representing the spaces 𝒳i, ℒd,n and 𝒫d,n with fundamental domains inside Pi, Qd
and Q, respectively.

As a first step, let us recall the standard construction for fundamental domains of SLi(ℤ) inside 
SLi(ℝ) and in SOi(ℝ)\SLi(ℝ) ≃ Pi. The one in Pi is essentially due to Siegel and is made explicit in 
[26, 28, 45Sec. 7]. We will not require the exact definition but just mention the fact that boundary of 
Fi is a finite union of (strict) submanifolds of Pi ([45, pp. 48–49]), making it boundary controllable, 
and that in the case of i = 2, where P2 is diffeomorphic with the hyperbolic upper half plane and F2
is the well-known subset depicted in Fig. 1. 

From Fi, construct a fundamental domain for SLi (ℤ) in SLi (ℝ) as follows: Let 

F̃i = ⋃
z∈Fi

Kz ⋅ z (5.1)

([28, Thm. 7.10 and Prop. 7.13]), where for every z ∈ Fi, Kz ⊂ SOi (ℝ) is a boundary controllable 
fundamental domain for Sym+(Λz), the finite group of rotations that preserve Λz (the lattice spanned 
by the columns of z). There is a finite number of possible symmetry groups up to conjugation, and for 
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1272 T. HORESH AND Y. KARASIK

Figure 1. F2, a fundamental domain for SL2 (ℤ) in P2 (the hyperbolic upper half plane).

every z ∈ int(Fi) this group is the center, Z(SOi (ℝ)) [45]. Denote the generic fiber (above int(Fi)) 
by Kgen. Then 

F̃i = Kgen ⋅ int(Fi)∪
κ(n)

⋃
j=1

Kzj
⋅ {z ∈ 𝜕Fn : Sym+(Λz) = Sym+(Λzj

)}. (5.2)

Now we are ready to prove that the spaces appearing in Theorem 3.2 are represented by fundamental 
domains in the corresponding RI components.

Proposition 5.1 The following are measurable sets of representatives for the corresponding spaces:

• Fi ⊂ Pi for the spaces 𝒳i.
• F̃i ⊂ Gi for the spaces ℒi.
• K ′F̃d ⊂ Qd  for the space ℒd,n.

• K ′(F̃d × F̃n−d) ⊂ Q for the space 𝒫d,n.

The measures volspace defined on these spaces in Section 2 are pushforwards of the measures 
μcomponent  defined in Section 4.2 on the ambient RI component, restricted to the corresponding set of 

representatives. (For example, vol𝒫d,n
 is the pullback of μQ restricted to K ′(F̃d × F̃n−d)). Moreover, 

the projections from Diagram (2.9) correspond to the projections between these sets of represen-
tatives (For example, π𝒫d,n→ℒd,n

 corresponds to k′g′′d g′′n−d ↦ k′g′′d  from K ′(F̃d × F̃n−d) → K ′F̃d  or 

πℒd,n→𝒳d
 corresponds to k′g′′d = k′k′′d p′′d ↦ p′′d  from K ′F̃d → Fd , etc.).

Recall that μK′  is by definition the pullback of volGr(d,n), so the statement about the measures from 
Proposition 5.1 is valid also for K ′ and Gr(d,n).

Proof. The manifolds ℳ𝒳i
, ℳℒd,n

 and ℳ𝒫d,n
 are easily identified with the RI components Pi, Qd

and Q, respectively. The identifications ℳ𝒳i
↔ Pi and ℳ𝒫d,n

↔ Q are diffeomorphisms, and the 
identification ℳℒd,n

↔ Qd  is a Borel bijection (it cannot be a homeomorphism since Qd  is not a 
manifold). We claim that under the said identifications, the measures on the manifolds ℳ (as defined 
in Section 2) correspond to the measures on the associated RI components. For example, the measure 
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EQUIDISTRIBUTION OF PRIMITIVE LATTICES IN ℝn 1273

on ℳ𝒳i
= SOi (ℝ)\SLi (ℝ) was defined as the unique (up to rescaling) measure on ℳ𝒳i

 that satis-
fies (2.1) with Y = SLi (ℝ) and G = SOi (ℝ) and the associated Haar measures; but, since μPi

 satisfies 
μSLi(ℝ) = μSOi(ℝ) × μPi

, μPi
 (or rather, its pushforward to ℳ𝒳i

) must be a positive scalar multiple of 
the invariant measure on ℳ𝒳i

. Similar considerations apply for ℳℒd,n
 with μQd

 and ℳ𝒫d,n
 with μQ. 

To see that the scalars equal one, we must show that the normalizations correspond, namely that 
μPi

(Fi) = ‖vol𝒳i
‖, μGi

(F̃i) = ‖volℒi
‖, μQd

(K ′F̃d) = ‖volℒd,n
‖ and μQ(K ′(F̃d × F̃n−d)) = ‖vol𝒫d,n

‖. For 

F̃i, we refer to [23] for a computation showing that 

μGi
(F̃i) =

d−1

∏
i=1

Leb(𝕊i) ⋅
d

∏
i=2

ζ (i)/μSOi(ℝ)(SOi (ℝ)).

Then by our choice (4.2) of μKi
= μSOi(ℝ) we have that 

μGi
(F̃i) =

d

∏
i=2

ζ (i) ,

corresponding to ‖volℒi
‖ by (2.5). For Fi, we have from (5.2) that 

μSLn(ℝ)(F̃i) = μPi
(Fn) ⋅ μSOi(ℝ)(SOi(ℝ))/[Z(SOi(ℝ)) : SOi(ℝ)],

coinciding with ‖vol𝒳i
‖ by (2.3). For K ′F̃d , we have that μQd

= μK′ × μGd
 and therefore 

μQd
(K ′F̃d) = μK′(K ′)μGd

(F̃d).

Since ‖μK′‖ is the volume of Gr(d,n), the above agrees with ‖volℒd,n
‖ by (2.7). The proof for 

K ′(F̃d × F̃n−d) is similar.
The fact that the projections between the spaces (Diagram (2.9)) correspond to the projections 

between the fundamental domains is a consequence of Prop. 4.3. 

The fundamental domains corresponding to the spaces Gr(d,n), 𝒳d , ℒd , ℒd,n and 𝒫d,n allow us 
to complete the analysis of the interactions between these spaces, by proving Propositions 2.5 and 
3.5. Let us introduce a notation for the image of a subset of any of these spaces in the associated set 
of representatives: 

QΞ ⊆ K ′(F̃d × F̃n−d) ⊂ Q is the image of Ξ ⊆ 𝒫d,n,
(Qd)Ψ ⊆ K ′(F̃d × In−d) ⊂ Qd is the image of Ψ ⊆ ℒd,n,

G′′
ℰ̃×ℱ̃

⊆ F̃d × F̃n−d ⊂ G′′ is the image of ̃ℰ × ℱ̃ ⊆ ℒd ×ℒn−d ,
P′′
ℰ×ℱ ⊆ Fd ×Fn−d is the image of ℰ×ℱ ⊆ 𝒳d ×𝒳n−d ,

K ′
Φ ⊆ K ′ is the image of Φ ⊆ Gr(d,n).

Proof of Proposition 2.5. The fact that the maps from ℒd,n and 𝒫d,n are one to one and pushforward, 
the measures is a consequence of Prop. 5.1. As for the map πℒn→𝒳n

, let ̃ℰ ⊆ ℒn be the inverse image 
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1274 T. HORESH AND Y. KARASIK

of ℰ ⊆ 𝒳n, and let G = PK where G = SLn(ℝ), P = Pn the subgroup of upper triangular matrices, and 
K = SOn(ℝ). By the construction (5.1) of F̃n from Fn, we have that 

Gℰ̃ = ⋃
z∈Pℰ⊆Fn

Kz ⋅ z,

and as a result (similarly to (5.2)), 

Gℰ̃ = Kgen ⋅ (Pℰ ∩ int(Fn))∪
κ(n)

⋃
i=1

Kzi
⋅ {z ∈ Pℰ ∩𝜕Fn : Sym+(Λz) = Sym+(Λzi

)}.

Apart from the first set in the union they all have measure zero, and therefore, using μG = μK × μP, 

μG(Gℰ̃) = μK(Kgen) ⋅ μP(Pℰ ∩ int(Fn)) = μK(K)μP(Pℰ)/#|Z(K)| .

This concludes the proof, since from Prop. 5.1 we have that volℒn
( ̃ℰ) = μG(Gℰ̃) and vol𝒳n

(ℰ) =
μP(Pℰ). 

5.2. Reduction to the space of pairs

The goal of this section is to reduce the proof of Theorem 3.2 to its fourth part, the one about equidis-
tribution in 𝒫d,n. The main ingredient is Proposition 3.5, which we now prove. The proof will make 
use of the following:

Lemma 5.2 The image of a BCS in any of the spaces appearing in Proposition 5.1 inside the asso-
ciated set of representatives is also a BCS. The opposite holds as well (For example, Ξ ⊆ 𝒫d,n is 
boundary controllable if and only if QΞ  is).

The proof is not hard, and we omit it (for a proof in much greater generality, see [28, Prop. 6.5 
and 6.7]).

Proof of Proposition 3.5. We begin with the map πℒn→𝒳n
. Let ̃ℰ ⊆ ℒn be the preimage of ℰ ⊆ 𝒳n and 

then, as in the proof of Proposition 2.5, 

Gℰ̃ = Kgen ⋅ (Pℰ ∩ int(Fn))∪
κ(n)

⋃
i=1

Kzi
⋅

Pℰ(i)

⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞{z ∈ Pℰ ∩𝜕Fn : Sym+(Λz) = Sym+(Λzi
)}.

We claim that Gℰ̃ is a BCS. First of all, every Pℰ(i) is contained in 𝜕Fn and is therefore a BCS of 
measure zero in P. Moreover, int(Fn) is a BCS, because Fn is, and Pℰ is a BCS by Lemma 5.2, hence 
Pℰ ∩ int(Fn) is a BCS. As every Kz (including Kgen) is a BCS, we have that the image of Gℰ̃ in K × P
under the diffeomorphism 

g = kp ↦ (k,p)

is boundary controllable, as a finite union of direct product of such. Hence Gℰ̃ is boundary 
controllable, which by Lemma 5.2 means that ̃ℰ is also.
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EQUIDISTRIBUTION OF PRIMITIVE LATTICES IN ℝn 1275

We proceed to consider the map (πℒd,n→ℒd
,πℒd,n→Gr(d,n)) : ℒd,n →ℒd ×Gr(d,n). Assume that Ψ ⊆

ℒd,n is the inverse image of ̃ℰ ×Φ, which (by Prop. 5.1) means that 

(Qd)Ψ = K ′
Φ(G′′

d )ℰ̃.

Let ℰ = π−1
ℒn→𝒳n

( ̃ℰ) ⊆𝒳d . Then 

K ′
Φ(G′′

d )ℰ̃ = K ′
Φ ⋅ ⋃

z∈Pℰ

Kz ⋅ z = K ′
ΦKgen ⋅ (Pℰ ∩ int(Fn))∪

κ(n)

⋃
i=1

K ′
ΦKzi

⋅Pℰ(i).

The sets K ′
ΦKz are boundary controllable in K, by [27, Lem. 3.4 (ii)] (See also [28, Prop. 6.15 (ii)], 

which roughly says that the ‘product’ of a BCS in a subgroup L < H with a BCS in the space H/L is 
a BCS in H); from here we proceed as in the case of the first map. The map (π𝒫d,n→ℒd,n

,π𝒫d,n→ℒn−d
) :

𝒫d,n →ℒd,n ×ℒn−d  is handled similarly.

We are now ready for the first step in the proof of Theorem 3.2, which is reducing to proving only 
the last part of this theorem.

Proof of parts (1), (2), (3) of Theorem 3.2 from part (4). Let us first see how part (1) of the theorem 
follows from part (2). Assume Φ ⊆ Gr(d,n) and ℰ×ℱ ⊆ 𝒳d ×𝒳n−d  are boundary controllable, and 
let ̃ℰ × ℱ̃ ⊆ ℒd ×ℒn−d  be the inverse image of ℰ×ℱ under the projection ℒd ×ℒn−d →𝒳d ×𝒳n−d . 
By Proposition 3.5, ̃ℰ × ℱ̃ is also boundary controllable, and by Proposition 2.5

volℒd
( ̃ℰ)volℱ̃(ℱ̃) = vol𝒳d

(ℰ)vol𝒳n−d
(ℱ)ϒ(d)ϒ(n− d).

Part (2) of the theorem has that the number of Λ with VΛ ∈ Φ and ([[Λ]], [[Λπ ]]) ∈ ̃ℰ × ℱ̃ is asymptotic 
to 

vol( ̃ℰ)vol(ℱ̃)vol(Φ)
n ⋅∏n

i=2
ζ (i)

⋅Xn =
vol𝒳d

(ℰ)vol𝒳n−d
(ℱ)vol(Φ)

n ⋅∏n

i=2
ζ (i)

⋅ϒ(d)ϒ(n− d) ⋅Xn,

hence we are done. Similarly, part (2) of Theorem 3.2 follows from part (3) thereof, and part (3) 
follows from part (4). 

6. Correspondence between integral matrices and primitive lattices

The goal of this section is to translate Theorem 3.2 (or rather, its part (4), since we have reduced to 
proving only this statement) into a counting problem of integral matrices. The first step is to establish 
a correspondence between primitive d-lattices and integral matrices in a fundamental domain of the 
following discrete group of SLn(ℝ): 

Γ′ := (N ′⋊G′′)(ℤ) = [ SLd (ℤ) ℤd,n−d

0 SLn−d (ℤ) ] .

Proposition 6.1 There exists a bijection Λ↔ γΛ between oriented primitive d-lattices and integral 
matrices in a fundamental domain of SLn (ℝ) ↶ Γ′, where γΛ is the unique integral matrix in the 
fundamental domain whose first d columns span Λ.
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1276 T. HORESH AND Y. KARASIK

Proof. Let Ω ⊂ SLn(ℝ) be any fundamental domain for Γ′. The direction ⇐ is simple: given γ ∈
Ω∩SLn (ℤ), its columns span ℤn, hence by definition its first d columns span a primitive d– lattice. 
In the opposite direction, let B be the basis for Λ. Since Λ is primitive, B can be completed to a basis 
of ℤn; let γ ∈ SLn (ℤ) be a matrix having this basis in its columns, with B in the first d columns. The 
orbit γ ⋅Γ, whose elements consist of integral matrices having a basis for Λ in their first d columns, 
meets Ω in a single point, γΛ. 

Let us construct an explicit fundamental domain for Γ′. Denote 

� := the unit cube(−1/2,1/2]d(n−d),

and then a fundamental domain for the right action of Γ′ on SLn (ℝ) is 

Ω := K ′G′′
F̃d×F̃n−d

A′N ′
�, (6.1)

where N ′
� is the image of � under a natural diffeomorphism ℝd(n−d) → N ′.

By Proposition 6.1, the integral matrices γΛ in Ω correspond to the primitive d-lattices Λ spanned 
by the first d columns of the matrix. But Proposition 4.3 teaches us that the properties (shape, 
covolume, etc.) of Λ are encoded in the RI components of γΛ. We combine the two to obtain:

Corollary 6.2 Consider the correspondence Λ↔ γΛ between primitive d– lattices and matrices 
in Ω∩SLn (ℤ). For Ξ ⊆ 𝒫d,n and T > 0, let 

ΩT (Ξ) = Ω ∩ {g = qa′n′ : q ∈ QΞ ,a′ ∈ A′
[0,T ],n

′ ∈ N ′
�} = QΞA′

[0,T ]N
′
�.

Then 

ΩT (Ξ)∩SLn (ℤ) = {γΛ : covol(Λ) ≤ eT , [(Λ,Λπ)] ∈ Ξ}.

We conclude with the following computation.

Lemma 6.3 For a measurable Ξ ⊆ 𝒫d,n and T > 0, 

μ(ΩT (Ξ)) = n−1 vol𝒫d,n
(Ξ)(enT − 1).

Proof. Since ΩT (Ξ) = QΞA′
[0,T ]N

′
� and μ = μQ × μA′ × μN′ , 

μ(ΩT (Ξ)) = μQ(QΞ)μA′((A′)TμN′(N ′
�).

By definition of μN′ , μN′(N ′
�) = Leb(�) = 1, and by Proposition 5.1, μQ(QΞ) = vol𝒫d,n

(Ξ). By 
definition of μA′ , 

μA′((A′)T = ∫
T

0

entdt = n−1(enT − 1).
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7. Ergodic method to count lattice points

We are now at the point where we have reduced the proof of Theorem 3.2 to a problem of counting 
integral matrices inside the subsets of SLn (ℝ) that are defined in Corollary 6.2. This counting prob-
lem will be approached using an ergodic method that was developed by Gorodnik and Nevo in [25] 
and whose roots lie in the celebrated work of Eskin and McMullen [17]. This section is devoted to 
describing it.

Every counting result assumes a certain regularity condition on the sets in which the counting 
takes place. In the classical setting of counting integral points in ℝn, one always assumes that the 
boundaries of the sets in question satisfy some level of smoothness; however, in the semisimple 
setting (semisimple Lie groups and their homogeneous spaces), the boundary presents a fundamen-
tally different behavior, and the notion of regularity of the sets should be defined accordingly. Eskin 
and McMullen have coined the term well roundedness for this type of regularity; here is how it was 
defined in [25]:

Definition 7.1 Let G be a Lie group with a Borel measure μ, and let {𝒪ϵ}ϵ>0 be a family of identity 
neighborhoods in G. Assume {ℬT }

T>0
⊂G is a family of measurable domains and denote 

ℬ+
T (ϵ) := 𝒪ϵℬT𝒪ϵ = ⋃

u,v∈𝒪ϵ

uℬT v,

ℬ−
T (ϵ) := ⋂

u,v∈𝒪ϵ

uℬT v.

The family {ℬT } is Lipschitz well-rounded (or LWR) with (positive) parameters (𝒞,T0) if for every 
0 < ϵ < 1/𝒞 and T > T0: 

μ(ℬ+
T (ϵ)) ≤ (1 +𝒞ϵ) μ(ℬ−

T (ϵ)) . (7.1)

The parameter 𝒞 is called the Lipschitz constant of the family {ℬT }.

A lattice subgroup Γ of a locally compact second countable group is a discrete subgroup whose 
space of cosets has finite volume w.r.t. to the Haar measure on the ambient group. In certain Lie 
groups, among which are algebraic simple non-compact Lie groups G, there exists p ∈ ℕ for which 
the matrix coefficients ⟨π0

G/Γ(g)u,v⟩ are in Lp+ϵ (G) for every ϵ > 0, with u,v lying in a dense subspace 
of L2

0 (G/Γ) (see [24, Thm. 5.6]). (In other words, the unitary representation π0
G/Γ is 2

p -tempered). 
Let p(Γ) be the smallest among these p’s, and denote 

m(Γ) = {1 if p = 2,

2⌈p(Γ)/4⌉ otherwise.

Define: 

τ (Γ) =
1

2m(Γ)(1 + dimG)
∈ (0,1) .
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Then τ (Γ) is a parameter that depends on the rate of decay of the matrix coefficients of the G-
representation on L2

0 (G/Γ), and specifically it is larger when the decay is faster. We remark that for 
Γ = SLn (ℤ) and n ≥ 3 it was estimated in [33, 12] that p(Γ) = 2n− 2, and therefore τ (SLn (ℤ)) =
(4n2 ⌈ n−1

2 ⌉)−1. For Γ = SL2 (ℤ), it is known that p(Γ) = 2 and therefore τ (SL2 (ℤ)) = 1/8.

Theorem 7.2 ([25, Thm. 1.9, Thm. 4.5 and Rem. 1.10]). Let G be an algebraic simple Lie group 
with Haar measure μ, and let Γ <G be a lattice subgroup. Assume that {ℬT } ⊂G is a family of finite-
measure domains which satisfy μ(ℬT ) →∞ as T →∞. If the family {ℬT } is LWR with parameters 
(Cℬ,T0), then ∃T1 > 0 such that for every δ > 0 and T > T1: 

#(ℬT ∩Γ)− μ(ℬT )/μ(G/Γ) ≪G,Γ,δ (C
dimG

1+dimG
ℬ ⋅ μ(ℬT )1−τ(Γ)+δ),

where μ(G/Γ) is the measure of a fundamental domain of Γ in G and the parameter T1 is such that 
T1 ≥ T0 and such that for every T ≥ T1

C
dimG

1+dimG
ℬ ≪G,Γ (μ(ℬT )τ(Γ)). (7.2)

However, our goal of counting in {ΩT (Ξ)}T>0 cannot be approached in its current form by Theo-
rem 7.2, since the sets ΩT (Ξ) are not (Lipschitz) well rounded and in fact may not even be compact. 
This issue is handled in the next section.

8. Neglecting lattices up the cusp: reducing to well-rounded sets

This section is devoted to handling the obstacle arising from the fact that the sets ΩT (Ξ) are (mostly) 
not LWR and in fact not necessarily compact. Their compactness is equivalent to the compactness of 
Ξ, which is equivalent to the compactness of A′′ ∩QΞ . To overcome this, we will reduce to counting 
in compact subsets of ΩT (Ξ), namely subsets that are obtained by truncating the A′′ coordinate of 
QΞ , and hence of ΩT (Ξ).

Remark 8.1 Geometrically, matrices in SLn(ℝ) with a very large A′′ coordinate (where ‘very large’ 
means comparable with the covolume of the d-lattice that they span) correspond to d-lattices which 
have a very small successive minimum (if the large A′′ coordinate is among the first d − 1 ones), or 
their factor lattice has a very large successive minimum (if the large coordinate is among the last 
n− d− 1 ones). Namely, d-lattices whose shape is ‘up the cusp’ of the space 𝒳d , or that the shape 
of their factor lattice lies ‘up the cusp’ of 𝒳n−d .

 For every 

S = (S1,… ,Sd) > 0, W = (W1,… ,Wn−d) > 0 (8.1)

and a subset ℬ ⊂ G, let ℬS,W  denote the set 

ℬ∩ {g : a′′ = a′′s,w with si ≤ Si, wj ≤ Wj ;∀i, j},

where a′′ is the A′′ component of g.
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Recall the fundamental domain Ω ⊂ G for Γ′ appearing in (6.1). Accordingly with Notation 8.2, 
we let 

ΩS,W
T := K ′ [ F̃d

S

F̃n−d
W ]A′

T N ′
�.

We claim that 

μ(ΩT −Ω
S,W
T ) ≪ (enT−min{Smin,Wmin}) (8.2)

with Smin = minj Sj and Wmin = minj Wj; indeed, let Z = (S,W) namely Zj = Sj for 1 ≤ j ≤ d and Zj =
Wj−d  for d + 1 ≤ j ≤ n. Then 

μ(ΩT −Ω
Z
T ) ∼ (∫

[0,T ]
dμA′)⎛⎜

⎝
∫

[0,∞)n−2−∏d
j=1

[0,Zj]
dμA′′

⎞⎟
⎠

≤ enT ⋅
n−2

∑
j=1

∫
(Z,j≤zj<∞)×∏

i≠j
(0≤zi<∞)

dz1⋯dzn−2

ez1+⋯zn−2

∼ enT (e−Z1 +⋯+ e−Zn−2)

≤ enT ⋅ e−minj{Zi,}.

The goal of this section is to prove the following (a similar claim appears in [27, Prop. 6.2]):

Proposition 8.3 Let Ω be as in (6.1), and let σ = (σ1,… ,σd−1), ω = (ω1,… ,ωn−d−1) where 0 <
σi,ωi < 1 ∀i. Then for every ϵ> 0 

#||(ΩT −Ω
σT ,ωT
T )∩SLn (ℤ)|| ≪ϵ (eT(n−min{σmin,ωmin}+ϵ)) ,

where σmin = minσi, ωmin = minωi.

Proof. Let γΛ = ka′′s,wa′t n ∈ΩT ∩SLn (ℤ). In what follows, Λi is the lattice spanned by the first i
columns of γΛ, (Λπ)j < Λπ  is the lattice spanned by the first j columns of the n× (n− d) matrix 

obtained by projecting the columns of γΛ to V⟂
Λ , and (Λ⟂)k < Λ⟂ is the lattice spanned by the first k

columns of the matrix that represents Λ⟂ inside F̃n−d .
Recall that γΛ ∈ΩT −Ω

σT ,∞
T  if and only if ∃i ∈ {1,… ,d− 1} for which si ≥ σiT . This implies 

(using Proposition 4.3 and the fact that Λi is integral) that

1 ≤ covol(Λi) = e
it
d −

si
2 ≤ e

it
d −

σit
2 ≤ e( i

d −
σi
2 )T .

For the remaining i ≠ i′ ∈ {1,… ,d− 1}, 1 ≤ covol(Λi′) = e
it
d ≤ e

i
d T .
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1280 T. HORESH AND Y. KARASIK

By [27, Prop. 6.4], the number of such possible lattices Λ is eT(n−σ+ϵ) where σ = ∑σi. Thus, the 
number of SLn (ℤ) elements γ in ΩT −Ω

σT ,∞
T  is bounded by 

#( ⋃
u=(u1,…,ud−1)
∈{0,1}d−1−{0}

{Λ : ∀i, covol(Λi
v) ∈ [1,eT( i

d −
σiui

2 )])}

= ∑
u∈{0,1}d−1−{0}

Oϵ(eT(n−σ+ϵ)) = Oϵ(eT(n−σmin+ϵ)),

where σmin = min{σi}, as ϵ is arbitrary.
Now recall that γΛ ∈ΩT −Ω

∞,ωT
T  if and only if ∃j ∈ {1,… ,n− d− 1} for which wj ≥

ωjT . By Lemma A.13 and Proposition B.5, covol((Λπ)j) is proportional to the quotient 
covol((Λ⟂)n−d−j)/covol(Λ), with a positive constant that depends only on d and n. Then, by 
Proposition 4.3 and Lemma A.13, 

C̃e−t ⋅ covol((Λ⟂)n−d−j) = C̃ ⋅
covol((Λ⟂)n−d−j)

covol(Λ)
≤ covol((Λπ)j) = e−

jt
n−d −

wj
2 ,

where C̃ > 0. Hence, up to an additive constant that becomes negligible when t is large, wj ≥ ωjT
implies

1 ≤ covol((Λ⟂)n−d−j) ≤ et− jt
n−d −

wj
2 ≤ eT(1− j

n−d −
ωj
2 ).

For the remaining j ≠ j′ ∈ {1,… ,n− d− 1}, 

1 ≤ covol(Λn−d−j′) ≤ et(1− j′
n−d ) ≤ eT(1− j′

n−d ).

By [27, Cor. 6.4], the number of such possible lattices Λ is eT(n−ω+ϵ) where ω = ∑ωi. Thus, by similar 
considerations, the number #|(ΩT −Ω

∞,ωT
T )∩SLn (ℤ)| is in O(eT(n−ωmin+ϵ)), where ωmin = minωi. 

9. Proof of the Theorem 3.2

For the sets ΩS,W
T (Ξ), we can use the method described in Section 7 to produce the following counting 

statement:

Proposition 9.1 Let n ≥ 2 and Γ < SLn (ℝ) a lattice subgroup with τ = τ (Γ). Set λn = n2

2(n2−1) . Let 

S,W as in (8.1), and 

S = sum of components of S, W = sum of components of W .

Let S(T),W(T) denote vectors like S,W, but with components that depend on T, and let S(T) ,W(T)
be their sums of components. If Ξ ⊆ 𝒫d,n has controlled boundary, then the following holds for every 
0 < ϵ < τ:
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1. For T ≥ S+W
nλnτ

+ OΞ(1): 

#(ΩS,W
T (Ξ)∩Γ) =

μ(ΩS,W
T (Ξ))

μ(G/Γ)
+ OΞ,ϵ(e(S+W)/λnenT(1−τ+ϵ)).

2. Let n ≥ 3. For every δ ∈ (0,τ − ϵ), T ≥ OΞ(1), S (T) and W (T) such that S(T) +W(T) ≤
nδλnT + OΞ(1): 

#(ΩS(T),W(T)
T (Ξ)∩Γ) =

μ(ΩS(T),W(T)
T (Ξ))
μ(G/Γ)

+ OΞ,ϵ(enT(1−τ+δ+ϵ)).

When only S is bounded the condition on S(T) +W(T) becomes W(T) ≤ nδλnT + OΞ(1), and 
when only W is bounded the condition becomes S(T) ≤ nδλnT + OΞ(1).

We will prove this proposition at the end of the section, by showing the sets ΩS,W
T (Ξ) are Lipschitz 

well rounded.
Proposition 9.1 counts SLn (ℤ) elements in ΩS(T),W(T)

T , while Proposition 8.3 counts SLn (ℤ) ele-

ments in the complement of ΩS(T),W(T)
T  inside ΩT (Ξ). combining the two, we obtain counting in 

ΩT (Ξ), thus proving Theorem 3.2. Here are the details:

Proof of Theorem 3.2 assuming Proposition 9.1. Recall that it is sufficient to prove part (4) of the 
theorem. By Corollary 6.2, when setting T = logX, the quantity we seek to estimate in this part is the 
amount of SLn (ℤ) elements inside ΩT (Ξ). Suppose first that Ξ is bounded. Then, by the properness 
of π𝒫d,n→𝒳d×𝒳n−d

 from Proposition 2.4, there exist S = SΞ  and W = WΞ  such that Ξ = ΞS,W , namely 

ΩT (Ξ) = ΩS,W
T (Ξ). Then, by part (i) of Proposition 9.1, 

#(ΩS,W
T (Ξ)∩SLn (ℤ)) =

μ(ΩS,W
T (Ξ))

μ(SLn (ℤ)\SLn (ℝ))
+ OΞ,ϵ(enT(1−τn+ϵ))

for T large enough, where 

τn = τ(SLn (ℤ)).

Taking into account Lemma 6.3 and the volume of F̃n, this equals 

vol𝒫d,n
(Ξ)

n ⋅∏n

i=2
ζ (i)

enT + OΞ,ϵ(enT(1−τn+ϵ))

and the proof of this case is completed.
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Assume now that Ξ is not bounded. Let 0 < ϵ < τn and 0 < δ < τn − ϵ, and recall λn = n2

2(n2−1)  and 

τn = (4n2 ⌈(n− 1)/2⌉)−1. Set 

σ
d

=
δnλn − ϵ

n− 2
⋅ 1

d−1
. ∈ ℝd−1,

ω
n−d

=
δnλn − ϵ

n− 2
⋅ 1

n−d−1
.

If S(T) = σ
d
T  and W(T) = ω

n−d
T , then (in the notation of Prop. 9.1, where S(T) is the sum of 

coordinates of S(T) and W(T) is the sum of coordinates of S(T)), for sufficiently large T 

S(T) +W(T) = (δnλn − ϵ)T ≤ δnλnT + O(1). (9.1)

Since ΩT (Ξ) equals 

ΩT (Ξ) = ΩσdT ,ωn−dT
T (Ξ)⊔(ΩT (Ξ)−ΩσdT ,ωn−dT

T (Ξ)) ,

then the amount of lattice points in the left-hand side (LHS) is the sum of lattice points in the sets on 
the right-hand side (RHS). Considering the first set on the RHS: by (the second part of) Proposition 
9.1, which we may use thanks to (9.1), 

#(SLn (ℤ)∩ΩσdT ,ωn−dT
T (Ξ)) =

μ(ΩσdT ,ωn−dT
T (Ξ))

μ(SLn (ℤ)\SLn (ℝ))
+ OΞ,ϵ(enT(1−τn+δ+ϵ)).

By (8.2) and Lemma 6.3, this equals 

=
vol𝒫d,n

(Ξ)
n ⋅∏n

i=2
ζ (i)

enT + O(enT(1− 1
n min{σmin,ωmin}+ϵ)) + OΞ,ϵ(enT(1−τn+δ+ϵ)).

As for the second set on the RHS, by Proposition 8.3, 

#(SLn (ℤ)∩ (ΩT (Ξ)−ΩσdT ,ωn−dT
T (Ξ))) ≪ϵ enT(1− 1

n min{σmin,ωmin}+ϵ)

≤ e
nT(1− δλn

n−2 +ϵ)
,

and therefore 

#(SLn (ℤ)∩ΩT (Ξ)) =
vol𝒫d,n

(Ξ)
n ⋅∏n

i=2
ζ (i)

enT + OΞ,ϵ(enT(1−τn+δ+ϵ)) + Oϵ (e
nT(1− δλn

n−2 +ϵ)) .

Finally, we choose δ that will balance the two error terms above, that is δ that satisfies: 1− τn + δ =
1− δλn

n−2 . This δ is 

δ = τn ⋅ (1−
λn

n− 2 + λn
) = τn ⋅ (1−

n2

2(n− 2)(n2 − 1) + n2
) ≤ τn ⋅ (1−

1
2n− 2

),
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hence we get an error term of 

≪Ξ,ϵ enT(1−(τn−δ)+ϵ) ≪Ξ,ϵ (enT(1− τn
2n−2 +ϵ)).

This concludes the proof of the case where Ξ is not bounded.

We conclude by proving Proposition 9.1.

Proof of Proposition 9.1. To prove part 1 of the proposition using Theorem 7.2, we must show that 
the family {Ω(S,W)

T (Ξ)}T>0 is LWR. Consider the map which projects to the RI coordinates, 

r : SLn (ℝ) → K ×A′ ×A′′ ×N ′′ ×N ′

g = ka′a′′n′′n′ ↦ (k,a′,a′′,n′′,n′) .

In [27, Cor. 10.5] we have shown that the well roundedness of Ω(S,W)
T (Ξ) relates to the well round-

edness of its image under r in the following manner. If each of the components of the image is LWR 
with T0 and a Lipschitz constant that do not depend on S, W, then Ω(S,W)

T (Ξ) is also LWR, with T0
that does not depend on S, W, and a Lipschitz constant that is of order OΞ(e2(S+W)). Clearly, 

r(ΩS,W
T (Ξ)) = r(QΞS,W )×A′

[0,T ] ×N ′
�

with r(QΞS,W ) ⊂ K ×A′′ ×N ′′. Each of the three factors in the above direct product is LWR with a 
Lipschitz constant that is O(1): N ′

� is LWR since it is diffeomorphic to a cube in ℝd(n−d), and A′
[0,T ]

is LWR by [27, Prop. 9.6]. As for r(QΞS,W ), notice that QΞ  is boundary controllable, by Lemma 5.2. 
Then, by [27, Lem. 11.1] (This lemma is actually for d = n− 1, but the proof is valid for any 1 <
d < n), r(QΞS,W ) is LWR in K ×A′′ ×N ′′ with parameters that do not depend on S,W . Therefore, 

Ω(S,W)
T (Ξ) is LWR with Lipschitz constant that is of order OΞ(e2(S+W)).

The claimed error term is obtained from Theorem 7.2, while recalling that the volume of Ω(S,W)
T (Ξ)

in SLn(ℝ) is of order enT . The lower bound on T is obtained from substituting the LWR parameters 
of Ω(S,W)

T (Ξ) into (7.2).
For the proof of the second part, let us compute a bound on S,W for which the error term estab-

lished in part 1 of the proposition remains smaller than the main term. Namely, that there exists 
γ ∈ (0,1) for which 

(S+W)/λn + (1− τ + ϵ) ⋅ nT = γ ⋅ nT .

If δ denotes the number γ + τ − ϵ− 1, we have that γ = δ + 1 + ϵ− τ. Then γ < 1 if and only if δ < τ − ϵ, 
where τ − ϵ is positive since τ > ϵ. We conclude that for 0 < δ < τ − ϵ and S+W = S(T) +W(T) <
δλnnT , the counting applies with an error term of order eγnT = enT(1−τ+δ+ϵ). As for the lower bound 
T1 on T, in part 1 we got S+W ≤ nλnτT + OΞ (1); so, combining both bounds on S+W we get 

S+W ≤min{nλnδT , nλnτT} + OΞ (1) = nλnδT + OΞ (1)

for T large enough and δ ∈ (0,τ − ϵ). This completes the proof.
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Appendix: Dual lattices, factor lattices

This appendix, which is independent from the paper, has two goals. The first is to further investigate 
the spaces 𝒫d,n and ℒd,n, especially from the differential perspective of smooth maps between spaces, 
hence proving some claims that have been used throughout the paper; the second is to be a source of 
facts about dual lattices and factor lattices that are not necessarily hard, but cannot be found in the 
literature (at least not easily). By that, we hope to assist future authors.

In what follows, if the columns of a matrix B = Bn×d  span a d-lattice Λ < ℝn (resp. a subspace 
V < ℝn), we say that B is a basis for the lattice Λ (resp. the subspace V). Recall that the covolume of 
a d-lattice Λ, which is the volume of the fundamental parallelopiped for Λ in the linear subspace that 
it spans, equals (|det(BtB)|)1/2 where B is (any) a basis for Λ. We will use an underscore to denote 
that an object is being spanned by a set, so that ΛB is the lattice spanned (over ℤ) by B, VΛ is the 
linear space spanned (over ℝ) by Λ, etc.

Appendix A: Dual lattices

The claims A.1 until A.3 can be found in the book by Cassels [11] (where dual lattices are referred 
to as polar lattices), or in the helpful notes [41].

Given a d-lattice Λ < ℝn, we define the dual lattice of Λ to be 

Λ* = {y ∈ spanℝ(Λ) : ∀x ∈ Λ,⟨x,y⟩ ∈ ℤ} .

Note that it is contained in VΛ and that a priori, it is unclear that Λ* is indeed a lattice.

Proposition A.1 The matrix Dn×d := B(BtB)−1 is basis for Λ*.

This proposition motivates the notation D = B* for D as above, as well as the name the dual basis
of B.

Proof. Since (BtB)−1 ∈ GLd(ℝ), we have that spanℝ(D) = spanℝ(B) = VΛ. For the inclusion 
spanℤ(D) ⊆ Λ*, take v ∈ ℤd  and we want to show that Dv ∈ Λ*, namely that ⟨Bw,Dv⟩ℝn ∈ ℤ for 
every w ∈ ℤd . Indeed, 

⟨Bw,Dv⟩ℝn = ⟨Bw,B(BtB)−1v⟩
ℝn

= ⟨w,BtB(BtB)−1v⟩
ℝd

= ⟨w,v⟩ℝd ∈ ℤ.

But this inclusion is in fact an equality, since according to the above ⟨Bw,Dv⟩ℝn = ⟨w,v⟩ℝd , and this 
value is integral for every w ∈ ℤd  if and only if v ∈ ℤd , namely if and only if the element Dv of VΛ
is in fact in Λ*. 
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EQUIDISTRIBUTION OF PRIMITIVE LATTICES IN ℝn 1285

Corollary A.2 The dual lattice Λ* is a d-lattice, and VΛ* = VΛ.

Corollary A.3 One has that (Λ*)* = Λ, and covol(Λ*) = covol(Λ)−1.

Proof. Check that D(DtD)−1 = B and that (|det(DtD)|)1/2 = 1/(|det(BtB)|)1/2. 

Example A.4 The dual of ℤn is ℤn, but in general the dual of an integral (and even primitive) lattice 
must not be integral. For example, the dual of ℤ(1,1) is ℤ( 1

2 , 1
2 ). More generally, when Λ < ℤn, the 

entries of Λ* are in the ring ℤ[ 1
covol(Λ)2 ]. To see this, recall that (Proposition A.1) if B is a basis for 

Λ, then B(BtB)−1 is a basis for Λ*. Since (BtB)−1 = adj(BtB)/det(BtB) = adj(BtB)/covol(Λ)2

where adj(BtB) is the adjucate matrix of B, and since adj(BtB) is integral when B is, we get that 

the entries of (BtB)−1 (and therefore also the entries of B(BtB)−1) are in ℤ[ 1
covol(Λ)2 ].

Consider the following two spaces: 

ℒ̃d,n := GLn (ℝ)/([GLd(ℤ) ℝd,n−d

0n−d×d GLn−d(ℝ)]) = space of d−lattices inside ℝn,

𝒫d,n := GLn (ℝ)/([GLd(ℤ) ℝd,n−d

0n−d×d GLn−d(ℤ)]) =
space of pairs (Λ,L)whereΛad− latticeinℝn

and L is an n− dlattice in V⟂
Λ

.

Let us justify why these quotients are indeed the spaces of lattices we claim they are. A coset of a 
group element g inside ℒ̃d,n corresponds to the d-lattice spanned by the first d columns of g. A coset 

of a group element g inside 𝒫d,n corresponds to the pair (Λ,L), where Λ is the d-lattice spanned 
by the first d columns of g and L is the lattice spanned by the orthogonal projections of the last 
n − d columns of g to V⟂

Λ . Note that since the columns of g are independent and the first d columns 
span VΛ, the projections of the last n − d columns to V⟂

Λ  must be independent; in particular, L is 
an (n− d)-lattice. Proving that these two identifications are well defined and bijective is an easy 
exercise.

The spaces ℒ̃d,n and 𝒫d,n can be described more geometrically as follows: Since for every d-lattice 
Λ < ℝn there exists a (non-unique) k ∈ SOn(ℝ) which rotates VΛ to the space spanℝ(e1,… ,ed), then 
Λ is of the form 

Λ = k−1 ( gd
0n−d×d

)( ℤd

0n−d×1
)

for some gd ∈ GLd(ℝ). The element gd  can be replaced by any other element in the coset gd GLd(ℤ), 
and the element k can be replaced by any other element in (SOd(ℝ)× In−d)k, if the element gd
is adjusted accordingly. As a result, where SOd(ℝ)diag is the diagonal embedding of SOd(ℝ) in 
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1286 T. HORESH AND Y. KARASIK

SOn(ℝ)×GLd(ℝ). Similarly, every full lattice L in V⟂
Λ  can be written as 

L = k−1 ( 0d×n−d
gn−d

)( 0d×1
ℤn−d ) ,

where gn−d  can be replaced by any other element in the coset gn−d GLn−d(ℤ), and the element k can 
be replaced by any other element in (Id ×SOn−d(ℝ))k, if the element gn−d  is adjusted accordingly. 
As a result, where SOd(ℝ)diag is as before, and SOn−d(ℝ)diag is the analogous diagonal embedding 

 
of SOn−d(ℝ) in SOn(ℝ)×GLn−d(ℝ). The spaces ℒ̃d,n and 𝒫d,n are equipped with natural measures 

that are induced by the chosen Haar measures on the ambient groups (SOn(ℝ)×GLd(ℝ) for ℒ̃d,n

and SOn(ℝ)×GLd(ℝ)×GLn−d(ℝ) for 𝒫d,n)). With the presentations in (A1) and (A2), the map that 
sends a lattice to its dual has the geometric interpretation of being induced by the Cartan involution 
on GL(ℝ):

Lemma A.5 The map Λ↦ Λ* from ℒ̃d,n to itself descends from the involution (k,gd) ↦ (k,g−t
d ) of 

SOn(ℝ)×GLd(ℝ), where ℒ̃d,n is viewed as the quotient (A1).

Proof. This is a consequence of (A1) along with Proposition A.1, which says that a basis to the dual 
basis to the lattice spanned by the columns of gd  is g−t

d . 

The following two propositions are a consequence of this lemma:

Proposition A.6 The map Λ↦ Λ* is a measure preserving diffeomorphism from ℒ̃d,n to itself.

Proof. By Lemma A.5, the map Λ↦ Λ* descends from a map that is the identity on SOn(ℝ) and 
the Cartan involution on GLd(ℝ)—both are (Haar) measures preserving diffeomorphisms.

Proposition A.7 The three maps 

(Λ,L) ↦ (Λ*,L) , (Λ,L) ↦ (Λ,L*) , (Λ,L) ↦ (Λ*,L*)

from 𝒫d,n to itself are measures preserving diffeomorphisms.

Proof. Similarly to Lemma A.5, when considering (A2), the three maps in the statement descend 
from the following involutions of SOn(ℝ)×GLd(ℝ)×GLn−d(ℝ): 

(k,gd ,gn−d) ↦(k,g−t
d ,gn−d),

(k,gd ,gn−d) ↦(k,gd ,g−t
n−d),

(k,gd ,gn−d) ↦(k,g−t
d ,g−t

n−d),
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respectively. These involutions all consist of combinations of the identity map and the Car-
tan involution on the groups involved and are therefore diffeomorphisms that preserve the Haar
measure.

Spaces of unimodular lattices

The space ℒd,n = SLn (ℝ)/([SLd(ℤ) ℝd,n−d

0n−d×d SLn−d(ℝ)]×A′), where 

A′ = {[ α
1
d Id 0d×n−d

0n−d×d α−
1

n−d In−d

] : α > 0} ,

is the space of oriented d-lattices in ℝn, up to homothety. Similarly, the space 𝒫d,n =

SLn (ℝ)/([SLd(ℤ) ℝd,n−d

0n−d×d SLn−d(ℤ)]×A′) is the space of pairs (Λ,L) of oriented lattices satisfying 

covol(Λ)covol(L) = 1, where Λ is a d-lattice and L is an (n− d)-lattice in V⟂
Λ . More accurately, 

it is the space of equivalence classes of such pairs, modulo the equivalence relation (Λ′,L′) ∼ (Λ,L)
if and only if there exists α > 0 such that (Λ′,L′) = (α 1

d Λ,α− 1
n−d L). In analogy with (A1) and (A2), 

the spaces ℒd,n and 𝒫d,n can be presented as and  The spaces ℒd,n and 𝒫d,n, unlike ℒ̃d,n and 𝒫d,n, 

 

 
have finite volume.

Proposition A.8 Propositions A.6 and A.7 hold also when replacing ℒ̃d,n and 𝒫d,n by ℒd,n and 
𝒫d,n.

Proof. The dual of a unimodular lattice is also unimodular, by Corollary A.3; so the map Λ↦ Λ* is 
an involution of ℒd,n, and similarly the maps in Proposition A.7 are involutions of 𝒫d,n. The proofs 
for the adaptations of Propositions A.6 and A.7 to unimodular lattices are obtained by adjusting the 
proofs of these propositions: the appearances of GL are replaced by SL. 

Since the spaces ℒd,n and 𝒫d,n are unbounded but of finite volume, it is desirable to have a criterion 
for determining when a set is compact, or alternatively, when does a sequence of elements in the space 
diverge to infinity. For the more familiar space of full unimodular lattices in ℝd , SLd (ℝ)/SLd (ℤ), 
which is also non-compact but of finite measure, the answer is provided by Mahler’s compactness 
criterion [9, V.3]. The latter states that a set is compact if and only if there exists δ > 0 such that 
all the lattices in this set have shortest non-zero vector of length > δ. Equivalently, a sequence of 
lattices {Λm} diverges if and only if the lengths of the shortest vectors in {Λm} is a sequence of 
positive real numbers that converges to zero. The purpose of the following is to state an analogous 
criterion for compactness in the spaces ℒd,n and 𝒫d,n. For every equivalence class [Λ0] ∈ ℒd,n (resp. 
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[(Λ0,L0)] ∈ 𝒫d,n), a unimodular representative is the unique representative Λ ∈ [Λ0] of covolume 
one (resp. (Λ,L) ∈ [(Λ0,L0)] such that Λ and L are of covolume one).

Proposition A.9 A subset Ψ of ℒd,n is bounded iff there is some δ > 0 such that for every [Λ0] ∈ Ψ, 
its unimodular representative Λ ∈ [Λ0] has the property that the shortest vector of Λ is of length ≥ δ.

Similarly, subset Ξ of 𝒫d,n is bounded iff there is some δ > 0 such that for every [(Λ0,L0)] ∈ Ξ, its 
unimodular representative (Λ,L) ∈ [(Λ0,L0)] has the property that both shortest vectors of Λ and L 
are of length ≥ δ.

Proof. We will prove the claim for 𝒫d,n, since the case of ℒd,n is similar. The projection 
(π𝒫d,n→𝒳d

,π𝒫d,n→𝒳n−d
) : 𝒫d,n →𝒳d ×𝒳n−d  is continuous and proper, by Proposition 2.4. Hence, a 

set Ξ in 𝒫d,n is bounded if and only if its image under this projection is bounded. Also by Proposition 
2.4, the image of an element [(Λ,L)] ∈ 𝒫d,n under π𝒫d,n→𝒳d

 is shape(Λ) ∈𝒳d , and the image of this 
element under π𝒫d,n→𝒳n−d

 is shape(L) ∈𝒳n−d . Hence, Ξ is bounded iff for all [(Λ,L)] ∈ Ξ we have 
that shape(Λ) is restricted to a bounded set in 𝒳d , and shape(L) is restricted to a bounded set in 
𝒳n−d . Now Mahler’s compactness criterion completes the proof.

Connection between the shape of a lattice and of its dual

A shape of a lattice (sometimes referred to as a type of a lattice) is its similarity class modulo rotation 
and rescaling. It is a very common parameter to study in the context of lattices and appears for 
example in crystallography and the theory of periodic tilings. Naturally, the shape of a lattice is 
connected to its symmetries, namely the set of orthogonal transformations of ℝn under which the 
lattice is preserved.

Definition A.10 Let 1 ≤ d ≤ n, and a d-lattice Λ. The finite group Sym(Λ) :=
{g ∈ O(VΛ) : gΛ = Λ} is called the symmetry group of Λ.

If two lattices in ℝn have the same shape, then in particular their group symmetries are conjugated. 
The opposite does not hold, for example the lattices ℤe1 ⊕ℤαe2 and ℤe1 ⊕ℤβe2 for 1 < α < β have 
different shapes, but their symmetries are identical: ± [ 1 0

0 1 ] ,± [ 1 0
0 −1 ] ∈ O2 (ℝ). Below we observe 

the surprising fact that even though a lattice and its dual in general do not have the same shape (for 
example, ℤe1 ⊕ℤαe2 and ℤe1 ⊕ℤe2/α are dual), they do share the same group of symmetries.

Claim A.11. The symmetry groups of Λ and Λ* are identical.

Proof. To show Sym(Λ) ⊆ Sym(Λ*), take γ ∈ Sym(Λ) and we need to show that γy ∈ Λ* for every 
y ∈ Λ*. Since Sym(Λ) ⊂ On(ℝ), we have γt = γ−1 ∈ Sym(Λ), and therefore γtx ∈ Λ for every x ∈
Λ. Thus, 

⟨x,γy⟩ = ⟨γtx,y⟩ ∈ ℤ,

which proves γy ∈ Λ*. Equality follows from the fact that (Λ*)* = Λ (Cor. A.3). 

We conclude our introduction to dual lattices with a short discussion on the successive minima of 
the dual lattice.
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Theorem A.12 ([5, Thm. 2.1], see also [11, VIII.5, Thm. VI]). If λ1,… ,λk  are the successive minima 
of a k-lattice and λ*

1,… ,λ*
k  of its dual, then 1 ≤ λjλ*

k−j+1 ≤ k for every 1 ≤ j ≤ k.

From this theorem, we conclude the following lemma. By Minkowski’s second theorem
[11, VIII.2, Thm. 1], if L is a k-dimensional lattice with successive minima λ1,… ,λk  then 

1
k!
λ1⋯λk ≤ covol(L) ≤ λ1⋯λk . (A3)

Keeping the notation from the proof of Prop. 8.3, we let Lj for 1 ≤ j ≤ k denote the lattice spanned 
by the first j columns of the matrix in F̃k  that represents L and let (L*)k−j

 denote the lattice spanned 
by the first k − j elements in the basis that is dual to the columns of this matrix.

Lemma A.13 Let L be a k-lattice in ℝn, with 1 ≤ k ≤ n− 1. Then for every 1 ≤ j ≤ k, 

covol(Lj)
(k− j)!kj

≤
covol((L*)k−j)

covol(L*)
≤ j!k!covol(Lj).

Proof. If L is spanned by B = [v1…vk] ∈ F̃k , and for every 1 ≤ j ≤ k the projection of vj to the orthog-
onal complement of spanℝ(v1,… ,vj−1) has length aj ≠ 0, then it is well known that aj ≍ λj(L) (see 
for example [21]), and more specifically aj ≤ λj(L) ≤ jaj (This is essentially because B is reduced 

in the sense of Korkine–Zolotarev). Since Lj is spanned by v1,… ,vj then covol(Lj) = ∏j

i=1
ai and 

therefore we obtain that, similarly to A3, 

λ1(L)⋯λj(L)
j!

≤ covol(Lj) ≤ λ1(L)⋯λj(L).

Using this, Theorem A.12 and A3, we have that for every 1 ≤ j ≤ k, 

covol(Lj) ≤ λ1⋯λj ≤
kj

λ*
k ⋯λ*

k−j+1

≤
kj

λ*
k ⋯λ*

k−j+1

⋅
λ*

1⋯λ*
k

covol(L*)
= kj ⋅

λ*
1⋯λ*

k−j

covol(L*)
≤

kj ⋅ (k− j)!covol((L*)k−j)
covol(L*)

,

which proves the LHS inequality in the statement of the lemma. The RHS inequality is proved 
similarly.

Appendix B: Factor lattices

The term factor lattice was coined by Schmidt in [44], and we extend it from integral lattices to 
general lattices. For this, we begin by extending the definition of primitiveness to lattices that are not 
necessarily integral.
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Definition B.1 Assume Δ is a full lattice in ℝn, and Λ is a d-lattice that is contained in Δ. We say 
that Λ is primitive inside Δ if Λ = Δ∩VΛ.

Note that when Δ = ℤn, this definition agrees with the standard definition of a primitive lattice. 
Indeed, in this case, we will call Λ primitive (and omit the ‘w.r.t. ℤn’).

Definition B.2 Given a d-lattice Λ that is primitive inside Δ, define the factor lattice of Λ (w.r.t. 
Δ), denoted Λπ,Δ, as the orthogonal projection of Δ into the space (spanℝ(Λ))⟂. When Λ is primitive 
inside ℤn, we omit the ‘w.r.t. ℤn’ from the name and the notation: we denote Λπ  and refer to it as the 
factor lattice of Λ.

For example, the factor lattice of ℤ(1,−1) is ℤ( 1
2 , 1

2 ). The following proposition reveals the moti-
vation behind defining the factor lattice, which is that it represents the quotient lattice Δ/Λ. It also 
ensures that Λπ,Δ is indeed a lattice, also this is not hard to show.

Proposition B.3 For a d-lattice Λ that is primitive inside a full lattice Δ, consider the inner product 
on the quotient ℝn/VΛ: 

⟨x + VΛ,y + VΛ⟩ℝn/VΛ
:= ⟨π(x),π(y)⟩ ,

where π : ℝn → V⟂
Λ  is the orthogonal projection and ⟨⋅, ⋅⟩ is the standard inner product on ℝn. Then 

the quotient lattice Δ/Λ with ⟨⋅, ⋅⟩ℝn/VΛ
 is isometric to the factor lattice Λπ,Δ with ⟨⋅, ⋅⟩.

Proof. The group isomorphism x +Λ↦ π(x) from Δ/Λ to Λπ,Δ is an isometry by definition.

Then Λπ,Δ is a lattice, because it is isometric to one. The above also demonstrates that it is 
necessary to require that Λ is primitive inside Δ; otherwise, Δ/Λ (and therefore Λπ,Δ) has torsion.

Proposition B.4 covol(Λπ,Δ) = covol(Δ)/covol(Λ).

Proof. Since covolumes do not change under rotations, we may assume that VΛ = 𝔼d :=
spanℝ(e1,… ,ed), where d = rank(Λ). Let Bd×n be a basis for Λ; by primitiveness, it can be 
completed to a basis g := [B|C] of Δ, where g ∈ GLn (ℝ). Since B ⊂ 𝔼d , the matrix g is of the 
form g = [ g1 *

0 g2
] with g1 ∈ GLd (ℝ) and g2 ∈ GLn−d (ℝ). Clearly Λ = [g1|0d×n]ℤn and therefore 

covol(Λ)2 = det([ g1 0d×n−d ] [ g1
0n−d×d

]) = det(g1)2, so covol(Λ) = det(g1). Note that the projection of 

g to 𝔼⟂d  is [ 0d×n−d
g2

], so the projection of Λg = Δ to 𝔼⟂d = V⟂
Λ  is the lattice spanned by [ 0d×n−d

g2
]. By 

definition, this lattice is Λπ,Δ. We conclude that covol(Λπ,Δ)2 = det([ 0d×n−d
g2

] [ 0n−d×d g2 ]) = det(g2)2, 
namely covol(Λπ,Δ) = det(g2). Finally, covol(Δ) = det(g) = det(g1) ⋅ det(g2). 

In the case where Δ = ℤn, namely of primitive integral lattices, the concepts of a dual and a factor 
lattice are related in the following way: Given a primitive d-lattice Λ < ℤn, we define the orthogonal 
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lattice of Λ to be 

Λ⟂ = ℤn ∩V⟂
Λ

(see for example [11, 6]). Note that, by definition, Λ⟂ < ℤn is a primitive n − d-lattice.

Proposition B.5 ([45]). For Λ primitive, (Λπ)* = Λ⟂.

Proof. Let π : ℝn → (VΛ)⟂ denote the orthogonal projection; then Λπ = π(ℤn). Notice that for every 
x ∈ (VΛ)⟂ and z ∈ ℤn, 

⟨x,π(z)⟩ℝn = ⟨πt(x),z⟩
ℝn

= ⟨π(x),z⟩ℝn = ⟨x,z⟩ℝn .

Then x ∈ (Λπ)* if and only if ⟨x,z⟩ℝn ∈ ℤ for every z ∈ ℤn, which holds if and only if x ∈
ℤn—namely, x ∈ ℤn ∩ (VΛ)⟂ = Λ⟂. 

Corollary B.6 For Λ primitive, covol(Λ⟂) = covol(Λ).

Proof. This is a direct consequence of Corollary A.3, Proposition B.4 and Proposition B.5, while 
noticing that covol(ℤn) = 1. 

Remark B.7 One could wonder if the result of Proposition B.5 can be extended to d-lattices Λ < ℤn

that are not necessarily primitive, or even to d-lattices Λ < Δ where Δ is not ℤn. Indeed, it is quite 
natural to extend the definition of Λ⟂ to general lattices Λ such that if Λ is primitive inside any full 
lattice Δ, then the orthogonal lattice to Λ with respect to Δ is Λ⟂,Δ = Δ∩V⟂

Λ . Then the question 
becomes, is it true that the dual of Λπ,Δ is Λ⟂,Δ. The answer to this is no! Let us consider two counter 
examples.

1. Consider the lattice Δ spanned by [ 1
√

2
0 1

], and the lattice Λ = spanℤ([ 1
0 ]) which is primitive 

inside it. Then by definition Λ⟂,Δ = Δ∩V⟂
Λ = Δ∩ spanℝ([ 0

1 ]) = {0} .
2. Take Δ := ℤe1 ⊕ℤαe2 for some α > 0. Clearly Δ has covolume α. The lattice Λ = ℤe1 is 

primitive inside Δ and has covolume 1. Then Λ⟂,Δ = ℤαe2 has covolume α, and in partic-
ular it cannot be that Λ⟂,Δ is the dual of Λπ,Δ, because otherwise it would have covolume 
(covol(Δ)/covol(Λ))−1 = α−1.

The first example shows that the definition of Λ⟂,Δ is in a sense meaningless; the second example 
shows us that Λ⟂,Δ being the dual of Λπ,Δ fails even when Δ is integral (which happens when we 
take α ∈ ℤ in the second example), unless it is the whole of ℤn.

References

1. M. Aka, M. Einsiedler and U. Shapira, Integer points on spheres and their orthogonal grids, J. 
London Math. Soc. 93 no. 2 (2016), 143–158. 10.1112/jlms/jdv065.

2. M. Aka, M. Einsiedler and U. Shapira, Integer points on spheres and their orthogonal lattices, 
Invent. Math. 206 no. 2 (2016), 379–396. 10.1007/s00222-016-0655-7.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/74/4/1253/7191043 by Institute of Science and Technology Austria user on 02 January 2024

https://doi.org/10.1112/jlms/jdv065
https://doi.org/10.1007/s00222-016-0655-7


1292 T. HORESH AND Y. KARASIK

3. M. Aka, M. Einsiedler and A. Wieser, Planes in four-space and four associated CM points, Duke 
Math. J. 171 no. 7 (2022), 1469–1529. 10.1215/00127094-2021-0040.

4. M. Aka, A. Musso and A. Wieser, Equidistribution of rational subspaces and their shapes, 
preprint, arXiv:2103.05163, 2021.

5. W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers, Math. 
Ann. 296 no. 1 (1993), 625–635. 10.1007/BF01445125.

6. D. Bertrand, Duality on tori and multiplicative dependence relations, J. Aust. Math. Soc. 62 no. 
2 (1997), 198–216. 10.1017/S1446788700000768.

7. M. Bersudsky, On the distribution of primitive subgroups of ℤd  of large covolume, preprint, 
arXiv:1908.07165, 2019.

8. T. Browning, T. Horesh and F. Wilsch, Equidistribution and freeness on Grassmannians, 
preprint, arXiv:2102.11552, 2021.

9. M. B. Bekka and M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on 
Homogeneous Spaces, Vol, 269, Cambridge University Press, Springer Verlag, London,2000.

10. Y. Benoist and H. Oh, Effective equidistribution of s-integral points on symmetric varieties 
[ ́equidistribution effective des points S-entiers des vari ́et ́es sym ́etriques], Ann. Inst. Fourier 62
no. 5 (2012), 1889–1942. 10.5802/aif.2738.

11. J. W. S. Cassels, An introduction to the geometry of numbers, Springer Science & Business 
Media, Berlin Heidelberg, 1971.

12. W. Duke, Z. Rudnick and P. Sarnak, Density of integer points in affine homogeneous varieties, 
Duke Math. J. 71 no. 1 (1993), 143–179. 10.1215/S0012-7094-93-07107-4.

13. W. Duke. Rational points on the sphere. Number Theory and Modular Forms, Springer, 
Berlin,Germany, 2003, 235–239.

14. W. Duke. An introduction to the Linnik problems. Equidistribution in number theory, an 
introduction, Springer, Berlin,Germany, 2007, 197–216.

15. P. Erdös and R. R. Hall, On the angular distribution of Gaussian integers with fixed norm, 
Discrete Math. 200 no. 1-3 (1999), 87–94. 10.1016/S0012-365X(98)00329-X.

16. M. Einsiedler, E. Lindenstrauss, P. Michel and A. Venkatesh, Distribution of peri-
odic torus orbits and Duke’s theorem for cubic fields, Ann. Math. (2011) 173 no.2, 
815–885. 10.4007/annals.2011.173.2.5.

17. A. Eskin and C. McMullen, Mixing, counting and equidistribution in Lie groups, Duke Math. 
J. 71 no. 1 (1993), 181–209. 10.1215/S0012-7094-93-07108-6.

18. M. Einsiedler, S. Mozes, N. Sha and U. Shapira, Equidistribution of primitive ratio-
nal points on expanding horospheres, Compos. Math. 152 no. 4 (2016), 667–692. 
10.1112/S0010437X15007605.

19. J. Ellenberg, P. Michel and A. Venkatesh, Linnik’s ergodic method and the distribution 
of integer points on spheres, Automorphic Representations and L-functions 22 (2013), 
119–185. 10.48550/arXiv.1001.0897.

20. M. Einsiedler, R. Rühr and P. Wirth, Distribution of shapes of orthogonal lattices, Ergod. Theory 
Dyn. Syst. (2017) 39 no. 6, 1–77. 10.1017/etds.2017.78.

21. M. Einsiedler, and T. Ward, Homogeneous Dynamics and Applications, Draft version, available 
in http://cims.nyu.edu/textasciitilde, https://tbward0.wixsite.com/books/homogeneous, 2018 
(January 1, 2019).

22. J. Franke, Y. Manin and Y. Tschinkel, Rational points of bounded height on Fano varieties, 
Invent. Math. 95 no. 2 (1989), 421–435. 10.1007/BF01393904.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/74/4/1253/7191043 by Institute of Science and Technology Austria user on 02 January 2024

https://doi.org/10.1215/00127094-2021-0040
https://doi.org/10.1007/BF01445125
https://doi.org/10.1017/S1446788700000768
https://doi.org/10.5802/aif.2738
https://doi.org/10.1215/S0012-7094-93-07107-4
https://doi.org/10.1016/S0012-365X(98)00329-X
https://doi.org/10.4007/annals.2011.173.2.5
https://doi.org/10.1215/S0012-7094-93-07108-6
https://doi.org/10.1112/S0010437X15007605
https://doi.org/10.48550/arXiv.1001.0897
https://doi.org/10.1017/etds.2017.78
http://cims.nyu.edu/textasciitilde
https://tbward0.wixsite.com/books/homogeneous
https://doi.org/10.1007/BF01393904


EQUIDISTRIBUTION OF PRIMITIVE LATTICES IN ℝn 1293

23. P. Garrett, Volume of SLn(ℤ) ⧵ SLn(ℝ) and Spn(ℤ) ⧵ Spn(ℝ), Available in http://www.math.
umn.edu/textasciitildegarrett/m/v/volumes.pdf, (April 20, 2014).

24. A. Gorodnik and A. Nevo. The ergodic theory of lattice subgroups. Vol, 172, Annals of 
Mathematics Studies, Princeton University Press, Princeton, NJ, 2009.

25. A. Gorodnik and A. Nevo, Counting lattice points, J. für die Reine und Angewandte Mathematik
2012 no. 663 (2012), 127–176. 10.1515/CRELLE.2011.096.

26. D. Grenier, On the shape of fundamental domains in GL(n,ℝ)/O(n), Pac. J. Math. 160 no. 1 
(1993), 53–66. 10.2140/pjm/1102624564.

27. T. Horesh and Y. Karasik, Equidistribution of primitive vectors in ℤn, and the shortest solutions 
to their gcd equations, preprint, arXiv:1903.01560, 2019.

28. T. Horesh and Y. Karasik, A practical guide to well roundedness, preprint, arXiv:2011.12204, 
2020.

29. T. Horesh and A. Nevo, Horospherical coordinates of lattice points in hyperbolic space: 
effective counting and equidistribution, preprint, arXiv:1612.08215, 2016.

30. D. Jüstel, The Zak transform on strongly proper G-spaces and its applications, J. London Math. 
Soc. 97 no. 1 (2018), 47–76. 10.1112/jlms.12097.

31. S. Kim, Counting rational points on a Grassmannian, preprint, arXiv:1908.01245, 2019.
32. A. W. Knapp, Lie Groups: Beyond an Introduction. Birkh ̈auser Basel, 2002.
33. J. -S. Li. The minimal decay of matrix coefficients for classical groups. Harmonic analysis in 

China, Springer, Berlin, Germany, 1995, 146–169.
34. Y. V. Linnik. Ergodic Properties of Algebraic Fields. Vol, 45, Ergebnisse der Mathematik und 

ihrer Grenzgebiete., Springer-Verlag, Berlin Heidelberg, 1968.
35. H. Maass, Spherical functions and quadratic forms, J. Indian Math. Soc. 20 no. 1-3 (1956), 

117–162. 10.18311/jims/1956/16988.
36. H. Maass, Über die verteilung der zweidimensionalen untergitter in einem euklidischen gitter, 

Math. Ann. 137 no. 4 (1959), 319–327. 10.1007/BF01360968.
37. J. Marklof, The asymptotic distribution of Frobenius numbers, Invent. Math. 181 no. 1 (2010), 

179–207. 10.1007/s00222-010-0245-z.
38. W. G. Nowak, Primitive lattice points in rational ellipses and related arithmetic functions, 

Monatsh. für Math. 106 no. 1 (1988), 57–63. 10.1007/BF01501488.
39. E. Peyre, Hauteurs et mesures de Tamagawa sur les vari ́et ́es de Fano, Duke Math. J. 79 no. 1 

(1995), 101–218. 10.1215/S0012-7094-95-07904-6.
40. E. Peyre, Libert ́e at accumulation, Doc. Math. 22 no. 1 (2017), 1615–1659. 10.4171/dm/606.
41. O. Regev, Lattices in computer science. Lecture notes for a course taught at Tel Aviv University, 

available in http://cims.nyu.edu/textasciitilderegev/teaching/lattices_fall_2004/index.html, 
2004 (January, 1 2019).
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