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Dashti Ali , Aras Asaad , Maria-Jose Jimenez , Vidit Nanda , Eduardo Paluzo-Hidalgo ,
and Manuel Soriano-Trigueros
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Abstract—Attempts to incorporate topological information in
supervised learning tasks have resulted in the creation of several
techniques for vectorizing persistent homology barcodes. In this
paper, we study thirteen such methods. Besides describing an
organizational framework for these methods, we comprehensively
benchmark them against three well-known classification tasks. Sur-
prisingly, we discover that the best-performing method is a simple
vectorization, which consists only of a few elementary summary
statistics. Finally, we provide a convenient web application which
has been designed to facilitate exploration and experimentation
with various vectorization methods.

Index Terms—Barcodes, persistent homology, topological data
analysis, vectorization methods.

I. INTRODUCTION

PROPELLED by deep theoretical foundations and a host
of computational breakthroughs, topological data analysis

emerged roughly three decades ago as a promising method for
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Fig. 1. An increasing family of cell complexes built around a point cloud
dataset; the associated barcode in dimensions 0 (blue) and 1 (red) catalogues the
connected components and cycles respectively.

extracting insights from unstructured data [1], [2], [3], [4]. The
principal instrument of the enterprise is persistent homology;
this consists of three basic steps, each relying on a different
branch of mathematics.

1) Metric geometry: construct an increasing family {Xt} of
cell complexes around the input dataset X , where the
indexing t is a scale parameter in R≥0.

2) Algebraic topology: compute the d-th homology vector
spaces Hd(Xt) for scales t in R≥0 and dimensions d in
Z≥0.

3) Representation theory: decompose each family of vector
spaces {Hd(Xt) | t ≥ 0} into irreducible summands, thus
producing a barcode.

The resulting barcodes are finite multisets of real intervals
[p, q] ⊂ R, which admit concrete geometric interpretations in
low dimensions — see Fig. 1. The ultimate goal is to infer the
coarse geometry of X across various scales by examining the
longer intervals in its barcodes. Crucially, once the method for
constructing {Xε} from X has been fixed, the entire persistent
homology pipeline is unsupervised: one requires neither labelled
data nor hyperparameter tuning to produce barcodes from X .

At the other end of the data analysis spectrum lies supervised
machine learning using contemporary neural networks, which
are replete with billions of tunable parameters and gargantuan
training datasets [5]. The practical aspects of deep neural net-
works appear to be light years ahead of the underlying theory. It
nevertheless remains the case that machine learning has driven
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astonishing progress in the systematic automation of several
important classification tasks. One direct consequence of these
success stories is the irresistible urge to combine topological
methods with machine learning. The most common avenue for
doing so is to turn barcodes into vectors (lying in a convenient
euclidean space) which then become input for suitably-trained
neural networks.

The good news, at least from an engineering perspective, is
that barcodes are inherently combinatorial objects, and as such,
they are remarkably easy to vectorize. Several dozen vectoriza-
tion methods have been proposed across the last decade, and new
ones continue to appear with alarming frequency and increasing
complexity — the reader will encounter thirteen of them here.
The bad news, on the other hand, comes in the form of three
serious challenges which must be confronted by those who build
or use such vectorizations:

1) Given the large number of options, even established prac-
titioners are not aware of all the vectorization techniques;
similarly, knowledge of which vectorizations are suitable
for which types of data is difficult – if not impossible – to
glean from the published literature.

2) There is a natural metric between barcodes called the
bottleneck distance; when it is endowed with this metric,
the space of barcodes becomes infinite-dimensional and
highly nonlinear. As such, it does not admit any faithful
embeddings into finite-dimensional vector spaces.

3) Even the stable vectorizations, which preserve distances
by mapping barcodes into infinite-dimensional vector
spaces, may suffer from a lack of discriminative power
in practice: by design, they are poor at distinguishing
between datasets whose coarse structures are similar and
whose differences reside in finer scales.

A. In This Paper

Here we seek to comprehensively describe, catalogue and
benchmark vectorization methods for persistent homology bar-
codes. The first contribution of this paper is the following
taxonomy of the known methods, which we hope will serve as a
convenient organizational framework for beginners and experts
alike —

1) Statistical vectorizations: these summaries consist of ba-
sic statistical quantities;

2) Algebraic vectorizations: these are generated from poly-
nomials;

3) Curve vectorizations: these come from maps R → H ,
where H is a vector space;

4) Functional vectorizations: these are maps of the form
X → H for X �= R;

5) Ensemble vectorizations: these are generated from collec-
tions of training barcodes.

There are unavoidable overlaps between these five categories.
When such an overlap occurs, we have placed the given vec-
torization technique in the earliest relevant category among
those in the list above; thus, an algebraic vectorization given
by polynomial functions of basic statistical quantities will be
placed in category 1) rather than category 2). The reader might

claim, quite reasonably, that category 3) should be subsumed
into category 4). However, the sheer number of curve-based
vectorizations compelled us to set them apart.

The second contribution of this paper is a comprehen-
sive benchmarking of thirteen vectorization techniques across
these five categories on three well-known image classification
datasets. These datasets were selected to simultaneously a)
provide an increasing level of difficulty for topological methods,
and b) to be instantly recognizable for the broader machine learn-
ing community. These are: the Outex texture database [6], the
SHREC14 shape retrieval dataset [7], and the Fashion-MNIST
database [8]. Surprisingly, the best-performing vectorization in
all three cases is a rather naïve one obtained by collecting basic
statistical quantities associated to (the multiset of) intervals in a
given barcode.

Our third contribution is a companion web application which
computes and visualizes all thirteen vectorization techniques
which have been investigated in this paper. In addition to running
online,1 this web app can also be downloaded2 and run locally
on more challenging datasets.

B. Not in This Paper

Vectorization methods form but a small part of the ever
expanding interface between topological data analysis and ma-
chine learning. As such, there are several related techniques
which are not benchmarked here. The precise inclusion criteria
for our study in this paper are as follows.

1) We restrict our attention to those methods which produce
genuine vectors from barcodes. In particular, kernel meth-
ods [9], [10] are beyond the scope of this paper.

2) We only consider those vectorizations that are either
straightforward for us to implement, or have an easily
accessible and trusted implementation. For instance, path
signature based vectorizations [11], [12] are excluded.

3) We do not compare machine learning architectures de-
signed for the explicit purpose of inferring (persistent)
homology [13], [14], [15].

4) We do not touch upon various attempts to design or
study neural networks using tools from topological data
analysis [16], [17].

5) Finally, even among methods which satisfy the first four
criteria, we have discarded techniques which regularly
obtained a classification accuracy below fifty percent.

C. Similar Efforts

The authors of [18] have summarised – but not compared –
several vectorization and kernel methods for barcodes. Another
summary (sans comparison) may be found in [19], with em-
phasis on metric aspects of the chosen vectorizations. The work
of [20] describes a common overarching framework for what
we have called curve vectorizations here. More recently, [21]
and [22] have described and compared five and four vectoriza-
tion methods respectively.

1[Online]. Available: https://persistent-homology.streamlit.app
2[Online]. Available: https://github.com/dashtiali/vectorisation-app

https://persistent-homology.streamlit.app
https://github.com/dashtiali/vectorisation-app
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D. Outline

Notation and preliminaries involving barcodes are established
in Section II. In Sections III and IV we introduce the thirteen
vectorizations (suitably organised into our taxonomy) and the
three datasets. Section V contains the results of our experiments
whose finer details have been relegated to Appendices A and
B, available online. We provide a description of the web app in
Section VI and some brief concluding remarks in Section VII.

II. PERSISTENCE BARCODES FROM DATA

At its core, persistent homology studies sequences of finite-
dimensional vector spaces V = {Vi | 0 ≤ i ≤ n} and linear
maps a = {ai : Vi−1 → Vi | 1 ≤ i ≤ n}:

V0
a1−−−−−→ V1

a2−−−−−→ · · · an−−−−−→ Vn.

Such sequences (V, a) are called persistence modules. Among
the simplest examples are interval modules — for each pair of
integers p ≤ q with [p, q] ⊂ [0, n], the corresponding interval
module (I [p,q], c[p,q]) has

dim I
[p,q]
i =

{
1 if p ≤ i ≤ q
0 otherwise;

similarly, the map c[p,q]i is the identity whenever p+ 1 ≤ i ≤ q
and zero otherwise.

A. Structure and Stability

Every persistence module decomposes into a direct sum of
interval modules. In particular, we have the following structure
theorem [23], [24].

Theorem 2.1: For every persistence module (V, a), there ex-
ists a unique set Bar(V, a) of subintervals of [0, n] along with
a unique function Bar(V, a) → Z>0 denoted [p, q] �→ μp,q for
which we have an isomorphism

(V, a) �
⊕

[p,q]∈Bar(V,a)

(
I [p,q], c[p,q]

)μp,q

.

Thus, the algebraic object (V, a) may be fully recovered (up
to isomorphism) from purely combinatorial data consisting of
the set of intervals Bar(V, a) and the multiplicity function μ.
Alternately, one may view Bar(V, a) itself as a multiset with
μp,q copies of each interval [p, q]. This multiset is called the
barcode of (V, a). It is often useful in applications to let the
vector spacesVi be indexed by real numbers rather than integers.
With this modification in place, Bar(V ) becomes a collection
of real intervals [p, q] ⊂ R.

The most important property of persistence modules, beyond
the structure theorem, is their stability [24]. There is a natural
metric on the set of persistence modules called the interleaving
distance and a metric on the set of barcodes called the bottleneck
distance.

Theorem 2.2: The assignment (V, a) �→ Bar(V, a) is an
isometry from the space of persistence modules (with interleav-
ing distance) to the space of barcodes (with bottleneck distance).

The advantage of this theorem is that barcodes remain robust
to (certain types of) perturbations of the original dataset, thus

conferring upon the topological data analysis pipeline a degree
of noise-tolerance. The significant difficulty from a statistical
perspective, however, is that the metric space of persistence
barcodes with bottleneck distance is nonlinear — even averages
can not be defined for arbitrary collections of barcodes [25],
[26], [27].

B. Barcodes From Data

Persistence modules arise naturally from a wide class of
datasets. The first step in topological data analysis involves
imposing the structure of a filtered cell complex – either sim-
plicial [28, Chapter 8] or cubical [29] – from the data [1], [2],
[3]. The two most prominent examples of filtered cell complex
structures arising from data are as follows.

1) Given a finite point cloudX ⊂ Rn, one constructs a family
of increasing simplicial complexes {Sε | ε ≥ 0} defined
as follows. A collection {x0, . . . , xk} forms a k-simplex
in Sε if and only if the (euclidean) distance between
xi and xj is no larger than ε for all i, j in {0, . . . , k}.
Since there are only finitely many ε values at which new
simplices are introduced, the filtration is indexed by a
subset of the natural numbers. The collection Sε is called
the Vietoris-Rips filtration of X . These filtrations can be
similarly defined for any metric space.

2) Consider a grayscale image I , given in terms of m× n
pixels with intensity values in the set {0, 1, . . . , 255}.
This naturally forms a two-dimensional cubical complex,
which can be endowed with the upper-star filtration by
intensity values. In particular, each elementary cube of di-
mension<2 appears at the smallest intensity encountered
among the 2-dimensional cubes in its immediate neigh-
bourhood. Higher-dimensional cubical filtrations may be
similarly generated from higher-dimensional pixel grids.

There are several other filtration types which may be used to
model point and image datasets. Once the data has been suitably
modeled by a filtered simplicial or cubical complex, persistence
modules are obtained by computing homology groups with
coeffiecients in a field. In general, these homology groups are not
invariant to the choice of filtration. The reader who is interested
in the definition and computation of homology is urged to either
consult standard algebraic topology references such as [30, Ch
2] or see the more recent [3], [4], [31], [32].

A substantial difficulty in topological data analysis is that
although persistent homology barcodes can be readily associated
with a large class of datasets, the space of all such barcodes is
notoriously unpleasant to encounter from a statistical perspec-
tive. Fortunately, barcodes are combinatorial objects which can
be mapped to Hilbert spaces in a plethora of reasonable ways.
Indeed, across the last decade, such vectorization methods have
been proposed by various authors, and our main purpose in this
work is to benchmark many of these methods against standard
classification tasks.

III. VECTORIZATION METHODS FOR BARCODES

Throughout this section, we assume knowledge of the barcode
B := Bar(V, a) of an R-indexed persistence module along with
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its multiplicity function μ : B → Z>0. We note that for each
interval [p, q] in B the numbers p and q are called its birth and
death respectively, and the length q − p is called its lifespan.

A. Statistical Vectorizations

The first and simplest category of vectorizations considered in
this paper are generated from basic statistical quantities associ-
ated to the given barcode. Variants of the following vectorization
have been defined and used on several occasions — see for
instance [33, sec 2.3], [20, Sec 6.2.1] and [18, Sec 4.1.1].

Definition 3.1: The persistence statistics vector of μ : B →
Z>0 consists of:

1) the mean, the standard deviation, the median, the in-
terquartile range, the full range, the 10th, 25th, 75th and
90th percentiles of the births p, the deaths q, the midpoints
p+q
2 and the lifespans q − p for all intervals [p, q] in B

counted with multiplicity;
2) the total number of bars (again counted with multiplicity),

and
3) the entropy of μ, defined as the real number

Eμ := −
∑

[p,q]∈B
μp,q ·

(
q − p

Lμ

)
· log

(
q − p

Lμ

)
,

where Lμ is the weighted sum

Lμ :=
∑

[p,q]∈B
μp,q · (q − p). (1)

The entropy from Definition III.1(3) was introduced in [34],
[35]. Our second statistical vectorization is from [36], where
entropy has been upgraded to a real-valued piecewise constant
function rather than a single number.

Definition 3.2: The entropy summary function of μ : B →
Z>0 is the map Sμ : R → R given by

Sμ(t) = −
∑

[p,q]∈B
1p≤t<q · μp,q ·

(
q − p

Lμ

)
· log

(
q − p

Lμ

)
.

Here 1• is the indicator function — it equals 1 when the con-
ditional • is true and it equals 0 otherwise. The number Lμ

appearing in the expression above is defined in (1).
The entropy summary function has also been called the life

entropy curve, e.g., in [20].

B. Algebraic Vectorizations

The vectorizations in this category are generated using poly-
nomial maps constructed from the barcode μ : B → Z>0.

The first example considered here is from [37]. It becomes
convenient, for the purpose of defining it, to arbitrarily order the
intervals in B as {[pi, qi] | 1 ≤ i ≤ n} with the understanding
that each [p, q] occurs μp,q times in this ordered list.

Definition 3.3: The ring of algebraic functions on μ :
B → Z>0 consists of all those R-polynomials f in variables
{x1, y1, . . . , xn, yn} for which the following property holds:
there exist polynomials {gi | 1 ≤ i ≤ n} satisfying

∂f

∂xi
+
∂f

∂yi
= (xi − yi) · gi.

(Here ∂f/∂xi indicates the partial derivative of f with respect
to xi, and so forth).

The desired vectorization is obtained by selecting finitely
many algebraic functions from this ring and evaluating them
at xi = pi and yi = qi for all i. The feature maps generated by
making such choices are sometimes called Adcock-Carlsson co-
ordinates — see for instance [38]. Letting qmax be the maximum
death-value encountered among the intervals in B, four of the
most widely-used algebraic functions are:

f1 =
∑
i

pi(qi − pi) f2 =
∑
i

(qmax − qi) (qi − pi)

f3 =
∑
i

p2i (qi − pi)
4 f4 =

∑
i

(qmax − qi)
2 (qi − pi)

4

Small changes in the barcode (in terms of bottleneck distance)
are liable to create large fluctuations in the associated algebraic
functions. The methods of tropical geometry were used in [39]
to address the bottleneck instability of algebraic functions. In
this setting, the standard polynomial operations (+,×) are sys-
tematically replaced by (max,+). To define the resulting vec-
torization, we once again use an ordering {[pi, qi] | 1 ≤ i ≤ n}
of the intervals in B.

Definition 3.4: A tropical coordinate function for μ : B →
Z>0 is a function F of variables {x1, y1, . . . , xn, yn} which is
both tropical and symmetric as described below.

1) Tropical: there is an expression for F which uses only the
operations max, min, + and − on the variables {xi} and
{yi}.

2) Symmetric: any permutation of {1, . . . , n}, when applied
to both {xi} and {yi}, leaves F unchanged.

Let λi be the lifespan qi − pi of the i-th interval in B. To
generate feature maps from the tropical coordinate functions
described above, one simply evaluates them at xi = λi and yi
equal to eithermax(rλi, pi)ormin(rλi, pi) for a positive integer
parameter r. Examples of such tropical coordinate features
include:

F1 = max
i

λi

F2 = max
i<j

(λi + λj)

F3 = max
i<j<k

(λi + λj + λk)

F4 = max
i<j<k<l

(λi + λj + λk + λl)

F5 =
∑
i

λi

F6 =
∑
i

min(rλi, pi),

and the somewhat more complicated

F7 =
∑
j

[
max

i
(min(rλi, pi) + λi)− (min(rλj , pj) + λj)

]
.

These seven tropical coordinates were used in [39] for perform-
ing classification on the MNIST database, with r = 28.
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The third and final algebraic vectorization considered here
is generated by extracting complex polynomials from bar-
codes [40], [41]. In what follows, the symbol i should be
interpreted as

√−1 (and not as an index for the intervals in B).
Consider the three continuous maps R,S, T : R2 → C defined
as follows:

R(x, y) = x+ iy

S(x, y) =

{ y−x

α
√
2
· (x+ iy) if (x, y) �= (0, 0)

0 otherwise

T (x, y) =
y − x

2
· [(cosα− sinα) + i(cosα+ sinα)] ,

where α is the norm
√
x2 + y2.

Definition 3.5: Given a barcodeμ : B → Z>0, letX : R2 →
C be any one of the three functions R,S, T defined above. The
complex polynomial vectorization ofμ of typeX is the sequence
of coefficients of the complex polynomial in one variable z given
by

CX(z) :=
∏

[p,q]∈B
[z −X(p, q)]μp,q .

In practice, it is customary to either take only the first few
highest degree coefficients of CX(z) or to multiply it by a
suitable power of z. This is done to guarantee that the feature
vectors assigned to a collection of barcodes all have the same
dimension.

Other Algebraic Vectorizations: In the subsequent section, we
describe how to extract vectorizations by using barcode data to
build curves which take values in a vector space. Once such a
curve has been extracted, one can compute its path signature via
iterated integrals [42]. The path signature resides in the tensor
algebra of the target vector space; elements of the tensor algebra
are equivalent to coefficients of non-commuting polynomials,
and hence constitute algebraic vectorizations of barcodes —
see [11], [12] for examples of this approach.

C. Curve Vectorizations

There are several interesting ways of turning barcodes into one
or more curves, which for our purposes here mean (piecewise)
continuous maps from R to a convenient vector space. Feature
vectors can then be constructed by sampling the given curve at
finite subsets of R. Perhaps the simplest and most widely used
curve-based vectorization is the following.

Definition 3.6: The Betti curve of μ : B → Z>0 is the curve
βμ : R → R given by

βμ(t) =
∑

[p,q]∈B
1p≤t<q · μp,q.

Here 1• is the indicator function as described in Definition 3.2,
so this function counts the number of intervals (with multiplicity)

in B which contain t. Very similar in spirit (and formula) to the
Betti curve is the following vectorization from [20].

Definition 3.7: The lifespan curve ofμ : B → Z>0 is the map
Lμ : R → R given by

Lμ(t) =
∑

[p,q]∈B
1p≤t<q · μp,q · (q − p).

It is not difficult to create very different-looking Betti and
lifespan curves from two barcodes which have arbitrarily small
bottleneck distance — we can always add lots of very small
intervals to a given barcode without changing its bottleneck dis-
tance by a significant amount. One way to rectify the bottleneck
instability of Betti and lifespan curves is to test the containment
not only of t in each interval [p, q] ∈ B, but rather of the largest
subinterval of the form [t− s, t+ s]. This modification leads
to one of the oldest and best-known stable curve vectoriza-
tions [43], [44], as defined below.

Definition 3.8: The persistence landscape of the barcode μ :
B → Z>0 is a sequence of curves {Λμ

i : R → [−∞,∞] | i ∈
Z>0} defined as follows. The image Λμ

i (t) of each t in R equals

sup

⎧⎨
⎩s ≥ 0

∣∣∣
⎛
⎝ ∑

[p,q]∈B
1[t−s,t+s]⊂[p,q] · μp,q

⎞
⎠ ≥ i

⎫⎬
⎭ .

By convention, the supremum over the empty set is zero.
Moreover, since our barcode B is assumed to be finite, the
landscape functions Λμ

i become identically zero for sufficiently
large i. An alternate approach to defining persistence landscapes
comes from the function Δ : B × R → R, given by

Δ([p, q], t) := max (min(t− p, q − t), 0) . (2)

For each i ∈ Z>0, the curve Λμ
i from Definition 3.8 equals the

i-th largest number in the multiset that contains μp,q copies of
Δ([p, q], t) for each interval [p, q] in B. The fourth and final
curve vectorization that we consider here was introduced in [45],
and it is also defined in terms of the functions Δ from (2).

Definition 3.9: Letw : B → R>0 be any function, which we
will denote [p, q] �→ wp,q . The w-weighted persistence silhou-
ette of μ : B → Z>0 is the map φwμ : R → R defined as the
weighted average

φwμ (t) :=

∑
wp,q · μp,q ·Δ([p, q], t)∑

wp,q · μp,q
.

Here both sums on the right are indexed over all [p, q] ∈ B, and
Δ is defined in (2).

Reasonable choices of weight functions are provided by set-
ting wp,q = (q − p)α for a real-valued scale parameter α ≥ 0.
For small α, the shorter intervals dominate the value of the
silhouette curve, whereas for large α it is the longer intervals
which play a more substantial role — see [45, Sec 4] for details.

Other Curve Vectorizations: See the envelope embedding
from [11], the accumulated persistence function in [46], and
the persistent Betti function of [47]. In [48], the persistent
Betti function is decomposed along the Haar basis to produce a
vectorization. More recently, [20] provides a general framework
for constructing several different curve vectorizations.
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D. Functional Vectorizations

Here we catalogue those barcode vectorizations which are
given by maps from spaces other than R. The first, and perhaps
most prominent member of this category is the following vector-
ization from [49]. Its definition below makes use of two auxiliary
components besides the given barcodeμ : B → Z>0. The first is
a continuous, piecewise-differentiable function f : R2 → R≥0

satisfying f(x, 0) = 0 for all x ∈ R. And the second is a col-
lection of smooth probability distributions Ψ := {ψp,q | [p, q] ∈
B} where ψp,q has mean (p, q − p).

Definition 3.10: The persistence surface of μ : B → Z>0

with respect to f and Ψ (as described above) is the function
R2 → R given by

ρμf,Ψ(x, y) =
∑

[p,q]∈B
μp,q · f(p, q − p) · ψp,q(x, y).

The persistence image Iμf,Φ of μ with respect to (f,Φ) assigns
a real number to every subset Z ⊂ R2; this number is given by
integrating the persistence surface over Z:

Iμf,Ψ(Z) =

∫∫
Z

ρμf,Ψ(x, y) dx dy.

In order to obtain a vector from the persistence image, one
lets Z range over grid pixels in a rectangular subset of R2 and
renormalizes the resulting array of numbers, thus producing a
grayscale image. Standard choices of f and Ψ = {ψp,q} are:

f(x, y) =

⎧⎨
⎩

0 t ≤ 0
t/λmax 0 < t < λmax

1 t > λmax

ψp,q(x, y) =
1

2πσ2
· exp

(
− (x− p)2 + (y − (q − p))2

2σ2

)
.

Here λmax is the largest lifespan max[p,q]∈B(q − p) encountered
among the intervals in B, and σ is a user-defined parameter
which forms the common standard deviation of every ψp,q in
sight.

The second and final functional vectorization which we will
examine was introduced in the paper [38]. Set W := {(x, y) ∈
R2 | y > 0}, and note that points (x, y) ∈ W parameterize
intervals [x, x+ y] ⊂ R of strictly positive length that could
possibly lie in a given barcode. Let Cc(W ) be the set of all con-
tinuous functions f : W → R with compact support.3 The given
barcodeμ : B → Z>0 induces a function Vμ : Cc(W ) → R via

Vμ(f) =
∑

[p,q]∈B
μp,q · f(p, q − p). (3)

A subset T of Cc(W ) is called a template system if for any
distinct pair μ1 : B1 → Z>0 and μ2 : B2 → Z>0 of barcodes,
there exists at least one f ∈ T so that Vμ1

(f) �= Vμ2
(f).

Definition 3.11: Fix an integer n > 0 and let Subn(T ) be
the collection of all size n subsets of a template system T
as described above. The template function vectorization of

3In other words, Cc(W ) contains those continuous real-valued functions on
W which evaluate to 0 outside the intersection of a sufficiently large rectangle
with W in R2.

μ : B → Z>0 with respect to T is the map τ : Subn(T ) → Rn

defined as follows. Given f = {f1, . . . , fn} in Subn(T ), the
associated vector in Rn is

τμ(f) := (Vμ(f1), . . . , Vμ(fn)) ,

where Vμ(fi) is as defined in (3).
Two convenient choices of T , called tent functions and in-

terpolating polynomials, have been highlighted in [38]. Tent
functions are indexed by points (u, v) ∈ R2 and require an
additional parameter δ > 0; they have the form

gδu,v(x, y) = max

(
1− 1

δ
·max(|x− u|, |y − v|), 0

)
(4)

By construction, each such function is supported on the square
of side length 2δ around the point (u, v) in the birth-lifespan
plane. The normal pipeline for selecting finitely many template
functions requires covering a sufficiently large bounded subset
of W with a square grid and then selecting the appropriate tent
functions supported on grid cells. We direct interested readers
to [38, Sections 6 and 7] for details on interpolating polynomials
and for suggestions on how one might select suitable n and
f ∈ Subn(T ) for a given classification task.

Other Functional Vectorizations: See the generalised persis-
tence landscape in [50] and the crocker stacks of [51].

E. Ensemble Vectorizations

Our last category contains two methods which require access
to a sufficiently large collection of training barcodes μi : Bi →
Z>0 in order to generate a vectorization. The first of these
methods, introduced in [52], [53], is a modification of the
template system vectorization from Definition 3.11. We recall
that W ⊂ R2 is defined as {(x, y) | 0 ≤ x < y} and that every
barcode B is identified with a subset P (B) ⊂ W via the map
that sends intervals [p, q] of positive length to points (p, q).

Definition 3.12: The adaptive template system induced by
a collection of barcodes {μi : Bi → Z>0} is obtained via the
following two steps. Letting P ⊂ W be the union

⋃
i P (Bi),

one
1) identifies finitely many ellipses Ej ⊂ W which tightly

contain P , and then
2) constructs suitable functions gj supported on Ej , as de-

scribed in (5) below.
The desired vectorization of a new barcode μ : B → Z>0 is

now obtained by using these gj , rather than tent functions, as
template functions in Definition 3.11. Three different methods
for finding the Ej can be found in [52, Sec 3]. Let v∗ denote the
transpose of a given vector v in R2. Now each ellipse E with
centre x = (x1, x2)

∗ corresponds to a symmetric 2× 2 matrix
A satisfying

E =
{
z ∈ R2 | (z − x)∗A(z − x) = 1

}
.

Setting h(z) := (z − x)∗A(z − x), the adaptive template func-
tion g supported on E is

g(z) =

{
1− h(z) h(z) < 1
0 otherwise.

(5)
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The second instance of an ensemble vectorization framework
which we benchmark in this paper is from [54]. Let μi : Bi →
Z>0 be a collection of training barcodes as before, and fix a
dimension parameter b ∈ Z>0. Much like the adaptive template
systems of Definition 3.12, the automatic topology-oriented
learning (ATOL) vectorization is a two-step process for mapping
each Bi to a vector space, which in this instance is always Rb.

Definition 3.13: The ATOL contrast functions corresponding
to the collection of barcodes {μi : Bi → Z>0} and parameter
b ∈ Z>0 are obtained as follows:

1) Treating the point clouds

Pi :=
{
(p, q) ∈ R2 | [p, q] ∈ Bi and q > p

}
as discrete measures on R2, one estimates their average
measure E.

2) Let z := (z1, z2, . . . , zb) be a point sample in R2 drawn
(in independent, identically distributed function) alongE.
Define the real numbers σi(z) for 1 ≤ i ≤ b by

σi(z) :=
1

2
max
j �=i

‖zj − zi‖2,

where ‖ • ‖2 denotes the usual euclidean norm on R2.
The contrast functions {Ωi : R2 → R | 1 ≤ i ≤ b} are now

given by

Ωi(x) = exp

(
−‖x− zi‖

σi(z)

)
.

The reader is directed to [54, Algorithm 1] for further details.
Once the contrast functions have been produced in the manner
described above, the corresponding ATOL vectorization of a
given barcode μ : B → Z>0 equals (Ωμ

1 , . . . ,Ω
μ
b ), where

Ωμ
i :=

∑
[p,q]∈B

μp,q · Ωi(p, q).

Other Ensemble Vectorizations: The persistence codebooks ap-
proach from [55] proposes three different types of barcode
vectorizations; these are based on bag-of-word embeddings,
VLAD (vector of locally aggregated descriptors), and Fisher
Vectors respectively.

IV. DATASETS

The vectorization methods described in the preceding section
have been benchmarked against three standard datasets; these are
described below and arranged in increasing order of difficulty
for topological methods. All three of them have been used in the
past for comparing vectorizations (or kernels) for persistence
barcodes [9], [10], [11], [38], [52], [56].

A. Outex

Outex is a database of images developed for the assessment of
texture classification algorithms [6] — see Fig. 2, right-bottom,
for some samples of textures from the 68 categories. Each texture
class contains 20 images of size 128× 128 pixels, which results
in 1,360 images in total. We designed a reduced version of the
experiment by randomly selecting 10 of the total 68 classes
in the dataset, which we refer to as Outex10 below. The full

Fig. 2. Samples from datasets used in our experiments.

classification is referred to as Outex68. In both cases, a train/test
split of 70/30 has been applied.

We treat each image as a cubical complex; the filtration is
induced by considering the pixel intensity on the 2-dimensional
cells, which is inherited by other cells via the lower-star and
upper-star filtrations. Persistent homology barcodes are com-
puted in dimensions 0 and 1 using the GUDHI library [57]. No
pre-processing has been applied to the images.

B. SHREC14

The Shape Retrieval of a non-rigid 3D Human Models dataset,
usually abbreviated SHREC14 [7], is designed to test shape clas-
sification and retrieval algorithms. It contains real and synthetic
human shapes and poses stored as 3D meshes (which are already
simplicial complexes). We use the synthetic part of the dataset;
this constitutes a classification task with 15 classes (5 men, 5
women and 5 children), each one with 20 different poses — see
the upper-right corner of Fig. 2.

We apply the Heat Kernel Signature (HKS) to obtain filtra-
tions [9], [58]. For a fixed real parameter t > 0, this filtration
assigns to each mesh point x the value

HKSt(x) =
∞∑
i=0

e−λit · φi(x)2 (6)

Here λi and φi are eigenvalues and corresponding eigenfunc-
tions of (a discrete approximation to) the Laplace-Beltrami
operator of the given mesh. Every simplex of dimension > 0
is assigned the largest value of HKSt encountered among its
vertices. We used the pre-computed barcodes (for such filtrations
across a range of t-values) which have been provided in the
repository4 accompanying [21]. Of the 300 samples, 70% were
used for training and the other 30% for testing.

4https://github.com/barnesd8/machine_learning_for_persistence

https://github.com/barnesd8/machine_learning_for_persistence
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TABLE I
OUTEX10 RESULTS. THE RELEVANT PARAMETER VALUES ARE

C1 = 936.5391, γ1 = 0.0187, C2 = 914.9620, γ2 = 0.0061,
C3 = 86.0442, AND C4 = 998.1848

C. FMNIST

The Fashion-MNIST (FMNIST) database contains 28× 28
grayscale images (7,000 images per class, with 10 classes) —
see the left side of Fig. 2 for some sample images. We split this
dataset into 60,000 training and 10,000 testing images.

The filtration used for generating barcodes is as follows:
we performed padding, median filter, and shallow thresholding
before computing canny edges [59]. Then each pixel is given
a filtration value equalling its distance from the edge-pixels.
Finally, all other cells inherit filtration values from the top pixels
via the lower star filtration rule.

V. RESULTS

Here we report the classification accuracy of the thirteen
vectorization methods from Section III on each of the three
datasets from Section IV. Implementation details and parameter
choices are provided in Appendix A, available online. The
source code is available at the following GitHub repository:
https://github.com/Cimagroup/vectorization-maps.

A. Outex

Table I displays the classification accuracy for the smaller
(and easier) experiment on 10 classes. As one might expect, all
techniques perform rather well, with Persistence Statistics and
Algebraic Functions sharing the best performance with 99.2%
accuracy each, followed closely by Persistent Silhouettes with
98.3% each.

Results from the full experiment with 68 classes are contained
in Table II; as one might expect, the performance of every single
vectorization degrades in the passage from Outex10 to Outex68.
Here Persistence Statistics is the clear winner by a significant
margin, earning 93.4% accuracy. Tropical Coordinates ranks
second with 88.7%. Setting aside the outstanding performance
of Persistence Statistics, it appears clear from these results that
the algebraic vectorizations perform far better on Outex68 than
the vectorizations from the other categories.

We note that the authors of [20] have also used Outex to
compare the performance of various curve vectorizations, with

TABLE II
OUTEX68 RESULTS. THE OPTIMAL PARAMETER VALUES ARE

C1 = 936.5391, γ1 = 0.0187, C2 = 957.5357, γ2 = 0.0120,
C3 = 914.9620, γ3 = 0.0061, C4 = 998.1848, C5 = 884.1255,

C6 = 143.1201 AND C7 = 494.0596

TABLE III
BEST PERFORMANCE OF EACH METHOD ON SHREC14. THE PARAMETERS

ARE C1 = 835.6257, γ1 = 0.0002, C2 = 212.6281, γ2 = 0.0031,
C3 = 879.1425, γ3 = 0.0010, C4 = 936.5391, γ4 = 0.0187,

C5 = 141.3869, C6 = 625.0300, C7 = 998.1848, C8 = 274.500

Persistence Statistics being used as a baseline. They also ob-
tained their best results with Persistence Statistics.

B. SHREC14

We used 10 different t-values t1 < t2 < · · · < t10, as in [9],
[38], [52], for generating filtrations via the heat kernel from (6).
At t10 we found several sparse or empty barcodes, which led
us to discard that classification problem. Table III collects the
best performance for each method across the first 9 values of t;
it also contains values of the optimal parameters (see Appendix
A, available online) and the optimal values of t.

Persistence Statistics yielded the best classification accuracy
of 94.7%, followed closely by Template Functions at 94.4%.
One remarkable feature of these results is that the dataset does
not appear to favour any one category of vectorizations over the
other — it is possible to achieve over 88% accuracy by using
a suitable statistical, algebraic, curve, functional or ensemble
vectorization. In fact, only the curve-based vectorizations failed
to achieve over 90% accuracy on this dataset. The variation
of classification accuracy with the heat kernel parameter t is
discussed in Appendix B, available online.

https://github.com/Cimagroup/vectorization-maps
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TABLE IV
FMNIST RESULTS. ALL THE SCORES HAVE BEEN ACHIEVED FOR RANDOM

FOREST CLASSIFIER WITH 100 TREES

C. FMNIST

The results of our experiments on FMNIST are recorded in
Table IV. We note that these experiments only used information
contained in the 0-dimensional barcodes and that the SVM
classifier was not used. The classification accuracy of all the
methods is much lower than the corresponding figures for the
two preceding datasets. Once more, the Persistence Statistics
vectorization takes the top spot with 74.9% and Template Func-
tions are slightly behind at 74.7%

One rather surprising aspect of these results is the fact that
Adaptive Template Systems performed far worse than ordinary
Template Functions despite having recourse to 60,000 training
barcodes. We do not have a clear explanation for this phe-
nomenon, particularly in light of a fairly competitive perfor-
mance from ATOL (which was also exposed to the same training
data).

VI. WEB APPLICATION

In order to illustrate and visualize the vectorization methods
described here, we have built an interactive web application
Brava that runs on any modern browser; it is available at

https://persistent-homology.streamlit.app/
The app has been built in Python using the Streamlit library

along with several existing Python libraries. The sidebar con-
tains options for selecting different types of input data and
displays several options for data visualization. One sample
image/point-cloud from each of the three datasets used in this
paper has been pre-loaded, but the user is free to upload their own
data. Specifications, formatting guidelines, and downloading
instructions are available in our GitHub repository:

https://github.com/dashtiali/vectorisation-app
All of the barcode vectorization methods considered in this pa-

per can be computed and visualized in different formats (tables,
bar graphs, scatter plots), depending on the type of vectorization
being invoked. Barcodes are computed by default in dimensions
0 and 1, depicted as in Fig. 4.

The vectorizations are depicted in Brava as follows.
1) The Persistence Statistics vectorization is numerical, so

we show its values in a table, as in Fig. 5.

Fig. 3. Screenshot of the web app.

Fig. 4. Intervals in barcodes of dimensions 0 and 1 as displayed by the
web app.

Fig. 5. Persistence Statistics vectorization as shown in the web app.

2) Algebraic vectorizations are illustrated as bar graphs. In
Fig. 6, for instance, one finds bars whose heights corre-
spond to values attained by the 7 chosen tropical coordi-
nate polynomials on the input barcodes.

3) Curve vectorizations, such as persistence landscapes, are
depicted via piecewise-linear graphs (see Fig. 7). Sliders
have been provided to set the resolution parameter.

https://persistent-homology.streamlit.app/
https://github.com/dashtiali/vectorisation-app
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Fig. 6. Visualization of the Tropical Coordinates vectorization from the web
app.

Fig. 7. Persistence landscapes in the web app.

Fig. 8. Persistence images as shown in the web app.

Fig. 9. Web app visualization of template functions.

4) Persistence images are displayed as heat maps — see
Fig. 8.

5) Template Functions, their adaptive version, and ATOL are
all displayed as bar graphs with heights of bars indicating
the values of the selected functions. Fig. 9, for instance,
depicts Template Functions.

It is our hope that users will benefit from the ability to generate
these visualizations without having to write any code of their
own. In order to facilitate downstream analysis, the web app
also provides the ability to download the vectors generated by
each vectorization method.

VII. CONCLUSION

At the time of writing, it remains difficult to accurately pin-
point those attributes which might make a given vectorization
method a good choice for a particular classification problem.
There are no powerful theorems or immutable doctrines avail-
able to guide scientists who wish to incorporate topological
information into machine learning pipelines. In the absence
of such theoretical foundations, the best that one can expect
are principled heuristics supported by reproducible empirical
evidence. This paper is an outcome of our efforts to provide
such evidence. En route, we have organized thirteen available
vectorization methods into five categories in Section III and
provided a web application which will allow others to conduct
their own experiments involving these methods.

One possible conclusion that may be drawn from the results
of Section V is that we can dispense with sophisticated vec-
torization techniques and only use (some variant of) Persistence
Statistics. We do not necessarily suggest such a course of action.
While it is certainly true that Persistence Statistics earned top
honors in all of our experiments and is much faster to compute
than the alternatives, there are other factors to consider. In partic-
ular, no comparative study such as ours can be truly exhaustive.
There is always the chance that making different choices – for
instance, using another dataset for classification, or adding some
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new polynomials to one of the algebraic vectorizations – could
dramatically update our priors about which methods perform
best.
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