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Many coupled evolution equations can be described via 2 × 2-
block operator matrices of the form A =

[
A B
C D

]
in a 

product space X = X1 × X2 with possibly unbounded 
entries. Here, the case of diagonally dominant block operator 
matrices is considered, that is, the case where the full operator 
A can be seen as a relatively bounded perturbation of its 
diagonal part with D(A) = D(A) ×D(D) though with possibly 
large relative bound. For such operators the properties of 
sectoriality, R-sectoriality and the boundedness of the H∞-
calculus are studied, and for these properties perturbation 
results for possibly large but structured perturbations are 
derived. Thereby, the time dependent parabolic problem 
associated with A can be analyzed in maximal Lp

t -regularity 
spaces, and this is applied to a wide range of problems such 
as different theories for liquid crystals, an artificial Stokes 
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system, strongly damped wave and plate equations, and a 
Keller-Segel model.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
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1. Introduction

In this article the abstract Cauchy problem{
∂tx(t) + Ax(t) = f(t), t > 0,

x(0) = x0,
(1.1)

is studied for a block operator matrix

A =
[
A B
C D

]
in the product space X = X1 ×X2, where X1, X2 are Banach spaces, and

A : D(A) ⊆ X1 → X1, and D : D(D) ⊆ X2 → X2,

B : D(B) ⊆ X2 → X1, and C : D(C) ⊆ X1 → X2

are possibly unbounded linear operators with domains D(A), D(D), D(B), and D(C), 
respectively. Such block operator matrices arise in a wide range of coupled evolution 
equations including mixed-order systems. In Section 7 liquid crystal models, an artificial 
Stokes system, strongly damped wave and plate equations, and a Keller-Segel model are 
discussed as applications of the general theory presented here. The recurrent theme and 
main question of this article is to ask under which conditions operator theoretical prop-
erties of the diagonal operators can be transferred to the full operator. Thus, the starting 
point is to assume that the uncoupled problem associated with the diagonal operator 
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is well-understood and to interpret the coupled equations as off-diagonal perturbation, 
that is,

A = D + B with D =
[
A 0
0 D

]
and B =

[
0 B
C 0

]
. (1.2)

This viewpoint is captured by the assumption of the diagonal dominance of A which re-
quires that D(A) = D(D) and that B is relatively bounded with respect to D though with 
possibly large relative bound, see Section 3 below for the precise setting. For such diag-
onally dominant block operator matrices A the properties of sectoriality, R-sectoriality, 
and the boundedness of the H∞-calculus are studied assuming that the respective prop-
erties hold for the diagonal operator D.

These operator theoretical properties are closely related to the solution theory of the 
time-dependent problem (1.1). Namely, R-sectoriality implies in UMD-spaces X maximal 
Lp
t -regularity for p ∈ (1, ∞), that is, there exists a constant C > 0 such that if in (1.1)

the right hand side satisfies f ∈ Lp(0, ∞; X) and x0 = 0, then there is a unique solution 
x to (1.1) satisfying the maximal regularity estimate

‖∂tx‖Lp(0,∞;X) + ‖Ax‖Lp(0,∞;X) ≤ C‖f‖Lp(0,∞;X),

see e.g. [25,74,96,113] for overviews on this subject. The corresponding notion of stochas-
tic maximal regularity is not equivalent to the deterministic notion, but it is implied for 
instance by the boundedness of the H∞-calculus, see e.g. [4,94] and the references given 
therein for details on this theory. Moreover, sectoriality, R-sectoriality, and the bounded-
ness of the H∞-calculus give information on the fractional powers of A. Also, the domains 
and ranges of the fractional powers of A induce scales of extrapolation spaces and thereon 
consistent families of operators, compare e.g. [43]. Amongst others, this is helpful in the 
analysis of many quasi- or semi-linear problems, compare e.g. [5,6,61,80,93,95,96] just to 
give a small sample of the literature in this direction.

The classical perturbation theorems for sectoriality, R-sectoriality, and the bound-
edness of the H∞-calculus deal with smallness conditions often expressed in form of 
small relative bounds, relative compactness or lower order perturbations, compare e.g. 
[8,24,25,73]. The aim here is to complement these classical results for general additive 
perturbations by perturbation theorems for off-diagonal perturbations in the diagonally 
dominant case. In this situation it turns out that the smallness or lower order pertur-
bation conditions can be imposed on objects describing the coupling rather than on the 
full additive perturbation. Moreover, assuming that off-diagonal perturbations preserve 
a certain structure by perturbing “in the right direction”, one can omit even any kind of 
smallness conditions, see Section 4 below. Also, many assumptions imposed on the gen-
eral setting can be weakened for the case of off-diagonal perturbations. For instance, for 
the classical perturbation results for sectoriality and R-sectoriality on relative bounded 
perturbations with small relative bound, there is no straightforward counterpart for the 
bounded H∞-calculus. The available perturbation results for the H∞-calculus require 
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further assumptions in addition to the smallness conditions. Here we have been able to 
show a result of this type although only for the case of some off-diagonal perturbations 
behaving well in some extrapolation scales induced by D, compare Section 5 below.

The approach developed here is based in spirit on a combination of the theory by 
Kalton, Kunstmann and Weis relating R-sectoriality and the boundedness of the H∞-
calculus, see [57,75], with concepts for diagonally dominant block operator matrices 
pioneered by Nagel in [90] for C0-semigroups. This synthesis opens a new perspective on 
coupled systems in Lp-spaces and is illustrated in the subsequent example and also by a 
number of applications in Section 7.

1.1. An example

As illustration one can consider the following model case inspired by the linearization 
of the Beris-Edwards model for liquid crystals. For p ∈ (1, ∞) let X = H−1,p(Rd) ×
Lp(Rd)d and

A def=
[
1 − Δ div(1 − Δ)
∇ 1 − Δ

]
with D(A) = H1,p(Rd) ×H2,p(Rd)d.

The actual linearization of the Beris-Edwards model for liquid crystals – where the first 
component describes the fluid-like behavior and the second component the orientation of 
the crystal-like rods – has a similar mixed order structure. However, this simplified Beris-
Edwards-type model allows for more direct computations, and therefore it seems better 
suited as illustrative example, see Subsection 7.6 and 7.7 for a discussion of both models. 
Here, one directly observes that A is diagonally dominant, but classical perturbation 
results are not applicable since the off-diagonal part is neither small nor of lower order. 
However, this case can be treated within the theory presented here by studying the 
coupling of the diagonal and the off-diagonal part as will be explained in the subsequent 
Subsection 1.2.

Special types of diagonally block operator matrices which appear in many applications 
are of the form

A =
[
A B
0 D

]
or A =

[
0 B
C D

]
.

In these situations results on R-sectoriality and boundedness of the H∞-calculus are 
obtained in Subsection 7.1. Concrete examples such as the simplified Erickson-Leslie 
model for liquid crystals, the classical Keller-Segel system, the artificial Stokes system 
and second order problems with strong damping are discussed in Subsections 7.2–7.5.

1.2. Sectoriality and R-sectoriality for block operator matrices

A key tool in our analysis of sectoriality and R-sectoriality is the factorization for 
diagonally dominant operators
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λ−A = M(λ)(λ−D) with M(λ) =
[

1 −B(λ−D)−1

−C(λ−A)−1 1

]
,

where the inverse of M(λ) can be described by the inverse of one of the operators

M1(λ) def= 1 −B(λ−D)−1C(λ−A)−1 for λ ∈ ρ(A) ∩ ρ(D),

M2(λ) def= 1 − C(λ−A)−1B(λ−D)−1 for λ ∈ ρ(A) ∩ ρ(D),

which encode the coupling of the off-diagonal and the diagonal part. This factorization 
has been studied already in the work [90] by Nagel in the context of C0-semigroups, 
and it is discussed in Section 3. Thus sectoriality and R-sectoriality can be traced back 
to the corresponding estimates on one of the two operator families M1(·) and M2(·) – 
without smallness conditions – assuming that the diagonal operator has these properties, 
compare Theorem 4.1 and the other statements in Section 4. For the case of the example 
discussed above in Subsection 1.1 one has for instance

M1(λ) = 1 − div(1 − Δ)(λ− 1 + Δ)−1∇(λ− 1 + Δ)−1

= 1 − Δ(1 − Δ)(λ− 1 + Δ)−2 for λ ∈ C \ [0,∞)

which can be analyzed explicitly.
Moreover, by this factorization one can derive perturbation results which do not im-

pose the classical smallness conditions on B as compared to D, see for instance [73] for 
perturbation results with such smallness conditions. Instead – taking into account the 
block structure – the smallness is assumed on the coupling expressed by one of the op-
erators Mj(λ), j ∈ {1, 2}, see Corollaries 4.4 and 4.9, and Proposition 4.8. Here, as in 
the classical case, behind the smallness assumption lurks the Neumann series.

1.3. Bounded H∞-calculus for block operator matrices

The boundedness of the H∞-calculus implies R-sectoriality on Banach space X with 
the relatively weak property (Δ) (or triangular contraction property), which holds in 
particular for UMD spaces, cf. [59] or [50, Theorem 10.3.4(2)], and for general X almost 
R-sectoriality is implied, see [57, Proposition 3.2], but the converse is in general not 
true. This has been shown for instance by the example constructed by McIntosh and 
Yagi in [86] where block operator matrices make a cameo since the example relies on 
block triangular operator matrices, the spectrum of which is determined by the diagonal 
part, however its norm is heavily influenced by the off-diagonal part, cf. also [36] for 
another counterexample. The question how close R-sectorial operators are to having a 
bounded H∞-calculus has been addressed in detail for many situations by Kunstmann, 
Kalton and Weis in [57,75]. Here, we translate their results to the case of block operator 
matrices, and we obtain two types of results. First, adding conditions on the orders 
and on the relations of the blocks A, B, C, D encoded in terms of fractional powers, one 
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can show that R-sectoriality implies boundedness of the H∞-calculus. This is discussed 
in Section 5, where also results for small couplings are presented. Second, considering 
interpolation scales and consistent families of operators thereon, results for certain points 
in the scale carry over to the full scale or at least to a part of it, compare Section 6. In 
particular the case of Hilbert spaces is considerably easier to access, and under certain 
conditions this carries over to scales of Banach spaces. In fact the interpolation results 
for the H∞-calculus on different scales from [57] play a key role in the proofs in both 
Section 5 and 6. Note that in general R-sectoriality or boundedness of the H∞-calculus 
does not extrapolate as shown by Fackler in [34], however, for the situations considered 
here it does.

In the literature there is a large body of works on perturbation theory for the bound-
edness of the H∞-calculus. Many of these treat additive perturbations A = A0 + B, 
compare for instance [24,43,74]. A special case is the situation where the perturbative 
term admits a factorization B = TS for some operators T and S acting on extrapolation 
scales induced by A0, see [9,42]. For the particular situation of block operator matrices 
(1.2), it seems that there is no application of this except when the blocks B and C
already satisfy such factorizations.

1.4. Literature on block operator matrices and coupled parabolic systems

There is a great interest and an extensive literature related to block operator matrices 
and their applications in the context of spectral and semigroup theory, see e.g. the 
monographs by Tretter [111] and Jeribi [55]. This subject is also related to the study of 
mixed order systems, see e.g. the book by Denk and Kaip [27] and the references therein, 
the elliptic case has been discussed e.g. also in the classical article by Douglis, Agmon 
and Nirenberg [2]. It seems however, to the best of our knowledge, that so far, there has 
been no study on R-sectoriality and the boundedness of the H∞-calculus for a general 
class of diagonally dominant block operator matrices.

The theory presented here has an overlap with the study of mixed order systems as 
for instance the example given above in Subsection 1.1 can also be treated as a parabolic 
mixed order system. The maximal regularity results for mixed order systems as discussed 
in [27] rely on Fourier multiplier techniques. The approach presented here is however more 
operator theoretical in spirit. This is of particular advantage when considering scales of 
spaces and operators thereon including weak settings, and such situations appear in 
many applications, see e.g. [97] for the scalar case. Also, the approach presented here 
evades in some situations laborious localization procedures. In comparison, the Newton 
polygon method presented in [27] allows one to treat not only non-homogeneous orders in 
space but even in space and time, while the approach given here is restricted to problems 
of first order in time.

Also, there is an extensive literature on maximal Lp
t -regularity for particular block 

operators of mixed order arising from parabolic plate and wave equations with damp-
ing. In these areas maximal Lp

t -regularity and the boundedness of the H∞-calculus are 
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usually proven via multiplier and localization methods rather than by general operator 
theoretical considerations, compare e.g. [26,28,29,35,104,105] and the references therein 
which is only a small selection of the literature in this direction. These results cover a 
wide range of dampings and couplings while the diagonally dominant case discussed here 
occurs only for certain strong dampings. Note that R-sectoriality is discussed also for 
other very particular block operators as for instance in [12].

In the context of semigroup theory, one of the starting points for the systematic study 
of diagonally dominant block operator matrices and evolution equations is the work by 
Nagel [90]. This has been extended by Engel and Nagel in [31,91], respectively, and 
subsequent works. Early works in this direction are [32,92,115,116] with focus on C0-
semigroups generated by block operator matrices. Along these lines, the case of Hilbert 
spaces and sesquilinear forms with a block structure have been investigated in [17] and 
[84], the question of m-sectorial block operator matrices is discussed in [10], second order 
Cauchy problems for block triangular generators are studied in [89], and special classes 
of block operator matrices are treated in [1], see also the references in these works.

From the viewpoint of spectral theory different questions have been addressed, see 
[111] for an overview, and works in this direction deal with the essential spectrum [13,14,
18,51–54], adjoints of block operator matrices [88], closedness and self-adjointness [102], 
invertibility of block operator matrices [49], the quadratic numerical range [77], or the 
operator Ricatti equation [70], where the given references are just samples and far from 
being complete. In most cases 2 × 2-block operator matrices are discussed where 2 × 2-
matrices serve as an inspiration. For many applications this is sufficient, and some larger 
block operator matrices can be treated iteratively by different 2 ×2-block decompositions. 
However, also larger block structures such as 3 × 3- or general n × n-block operator 
matrices have been studied as well, see [15] and also [111, Section 1.11], respectively. 
Spectral problems for block operator matrices and corresponding sesquilinear forms are 
discussed in many works, just to mention a few see [40,41,68–70,85,98,101] and also the 
references therein.

We start by recapitulating some basic notions and facts in Section 2, and in the 
subsequent Section 3 the setting for diagonally dominant block operator matrices is made 
precise. The main results are contained in Sections 4–6 and applications are discussed in 
Section 7.

2. Sectoriality, R-sectoriality and the bounded H∞-calculus

2.1. Notation

The solution theory of the abstract Cauchy problem

{
∂tx(t) + T x(t) = f(t), t > 0,

x(0) = x ,
(2.1)
0
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for a linear unbounded operator T in a Banach space X over C is closely related to the 
location of the spectrum of T and resolvent estimates in a sector of the complex plane 
and its complement,

Σψ
def= {z ∈ C \ {0} : | arg z| < ψ}, and �Σψ

def= C \ Σψ for ψ ∈ (0, π),

respectively, where we follow the notation in [50]. We will keep this notation through-
out this paper and denote by σ(T ) and ρ(T ) the spectrum and the resolvent set of T , 
respectively, where we always consider spaces over C. If real spaces are needed, these 
can be obtained for the relevant examples by restriction. By D(T ), R(T ), and N(T ) we 
denote the domain, the range, and the kernel of an operator T , respectively. We denote 
by 1 the identity map on X and also write to make it short λ − T instead of λ1− T for 
λ ∈ C.

In examples and applications we denote as usual for a domain O ⊆ Rd by Lp(O) for 
p ∈ [1, ∞] the Lebesgue spaces. For s > 0 and p ∈ (1, ∞) we denote by Hs,p(Rd) the 
Bessel potential space and set

Hs,p(O) def=
{
f ∈ D′(O) : F |O = f for some F ∈ Hs,p(Rd)

}
,

Hs,p
0 (O) def= C∞

0 (O)
Hs,p(O)

and H−s,p(O) def= (Hs,p′

0 (O))∗ where 1
p + 1

p′ = 1,

and where X∗ denotes the dual space of a Banach space X. For s ∈ N we also use 
the notation W s,p = Hs,p, W s,p

0 = Hs,p
0 , and W 1,∞(O) denotes the space of Lipschitz-

continuous functions on O. In the case p = 2 we simply write Hs = Hs,2 for s ∈ R. If not 
indicated otherwise, all functions in these spaces are complex valued. For vector valued 
function spaces we denote for a Banach space X by Lp(O; X) the usual Bochner spaces 
and by Hs,p(O; X) the corresponding Bessel potential spaces. We identify Lp(O)m =
Lp(O; Cm) and Hs,p(O)m = Hs,p(O; Cm) for m ∈ N, and correspondingly for other 
functions spaces.

The real and imaginary part of a complex number λ ∈ C are denoted by 
λ and �λ, 
respectively. By a � b for a, b ∈ R we mean that there is a constant C > 0 independent 
of a, b such that a ≤ Cb, and by � we mean that � and � hold. Finally, we set a ∨ b =
max{a, b} and a ∧ b = min{a, b}.

2.2. Sectorial operators

We say that the operator

T : D(T ) ⊆ X → X

with range R(T ) ⊆ X is a sectorial operator on the Banach space X provided there exists 
ω ∈ (0, π) such that
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σ(T ) ⊆ Σω, D(T ) = R(T ) = X, and sup
λ∈�Σω

‖λ(λ− T )−1‖L (X) < ∞, (2.2)

and the infimum over all such ω ∈ (0, π) is called the angle of sectoriality ω(T ) of T . By 
[50, Proposition 10.1.7(3)], such T is injective. The operator T is called pseudo-sectorial
if the assumption D(T ) = R(T ) = X in (2.2) is dropped, cf. e.g. [96, Definition 3.1.1]. If T
is sectorial of angle smaller than π/2, then −T is the generator of an analytic semigroup.

2.3. Fractional powers and scales of sectorial operators

For a sectorial operator T on a Banach space X fractional powers T γ with domain 
D(T γ) ⊆ X for γ ∈ R can be defined, see e.g. [25, Section 2.2] and [43, Chapter 3]
for a basic construction and also [62–67] for a detailed study of fractional powers. One 
can show that T γ is also injective on X, compare e.g. [74, Theorem 15.15]. Then, the 
corresponding homogeneous space is defined by

Ḋ(T γ) def=
(
D(T γ), ‖T γ · ‖X

)∼ for γ ∈ R, (2.3)

where ∼ denotes the completion. In [57] these spaces are denoted by Ẋγ,T = Ẋγ = Ḋ(T γ). 
One can check that (see [43, Lemma 6.3.2 a)])

D(T γ) = Ḋ(T γ) ∩X for γ ≥ 0, (2.4)

and in particular if 0 ∈ ρ(T ), then D(T γ) = Ḋ(T γ) for γ ≥ 0.
Following [57, Section 2] or [43, Subsection 6.3], let us recall that T uniquely induces 

an operator on Ḋ(T γ) for all γ ∈ R. Indeed, it is easy to check that T γ : D(T γ) → R(T γ)
extends to an isomorphism T̃ γ : Ḋ(T γ) → X the inverse of which (T̃ γ)−1 is an extension 
of T−γ : R(T γ) → D(T γ). Note that in general (T̃ γ)−1 �= (T̃−γ) since these operators 
might act on different spaces. For any γ ∈ R we define the operator Ṫγ on Ḋ(T γ) by

X ⊇ D(T ) X

Ḋ(T γ) ⊇ D(Ṫγ) Ḋ(T γ)

T

(̃Tγ)−1
T̃γ

Ṫγ

that is

Ṫγ
def= (T̃ γ)−1T T̃ γ , with domain D(Ṫγ) = Ḋ(T γ+1) ∩ Ḋ(T γ). (2.5)

In particular, Ṫγ is similar to T and therefore it has the same spectral properties as T . 
For future convenience, let us note that for all γ ∈ R and λ ∈ ρ(T ) = ρ(Ṫγ), one has 
(λ − Ṫγ)−1 = (T̃ γ)−1(λ − T )−1T̃ γ and therefore

(λ− Ṫγ)−1|Ḋ(Tγ)∩X = (λ− T )−1|Ḋ(Tγ)∩X . (2.6)
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Extrapolation scales play an important role in the proofs in Sections 5 and 6, and they 
have been used also in perturbation theory presented in [9,42,57,71].

2.4. R-boundedness and maximal Lp-regularity

A family J ⊆ L (E, F ) is Rademacher- or R-bounded with R-bound R(J ) < ∞ if 
for any sequence (εn) of Rademacher variables, i.e., {+1, −1}-valued independent random 
variables on a probability space (Ω, A , P ) with mean zero, one has for all T1, . . . , Tm ⊆ J

and x1, . . . , xm ∈ E that

E
∥∥∥ m∑

n=1
εnTnxn

∥∥∥2
F
≤ R(J )2E

∥∥∥ m∑
n=1

εnxn

∥∥∥2
E
,

where the expectation in (Ω, A , P ) is denoted by E, cf. e.g. [50, Chapter 8]. In case 
J = {Jλ : λ ∈ Λ} for some index set Λ is R-bounded, we write R(Jλ : λ ∈ Λ) < ∞
instead of R({Jλ : λ ∈ Λ}) < ∞.

A sectorial operator T in X is called R-sectorial if for some σ ∈ (ω(T ), π) the family

{λ(λ− T )−1 : λ ∈ �Σσ}

is R-bounded. The angle of R-sectoriality of T is

ωR(T ) def= inf
{
σ ∈ (ω(T ), π) : {λ(λ− T )−1 : λ ∈ �Σσ} is R-bounded

}
,

compare e.g. [50, Definition 10.3.1].
An operator T in a Banach space X has maximal Lp-regularity for p ∈ (1, ∞) on [0, τ)

with τ ∈ (0, ∞] if T is closed and densely defined and for f ∈ Lp(0, τ ; X), u0 = 0 the 
solution to the abstract Cauchy problem (2.1) is differentiable almost everywhere and
there exists a constant Cp > 0 such that for all such f

‖∂tu‖Lp(0,τ ;X) + ‖Tu‖Lp(0,τ ;X) ≤ Cp‖f‖Lp(0,τ ;X),

cf. e.g. [74, Section 1.3]. Note that if T has maximal Lp-regularity, then −T generates 
an analytic semigroup, see [22]. In a UMD space X, a closed densely defined operator T
has maximal Lp-regularity for p ∈ (1, ∞) if and only if it is R-sectorial of angle smaller 
than π/2, compare [113, Theorem 4.2].

2.5. Bounded H∞-calculus

For any ψ ∈ (0, 2π), we denote by H∞
0 (Σψ) the set of all holomorphic functions 

f : Σψ → C such that |f(z)| � |z|ε/(1 + |z|)−2ε for all z ∈ Σψ and some ε > 0. For a 
sectorial operator T and all f ∈ H∞

0 (Σψ) where ψ > ω(T ) the Dunford integral
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f(T ) def= 1
2πi

∫
∂Σσ

f(λ)(λ− T )−1 dλ, (2.7)

is absolutely convergence and independent of σ ∈ (ω(T ), ψ). We say that T has a bounded 
H∞(Σψ)-calculus for ψ ∈ (ω(T ), π) if there exists C > 0 such that

‖f(T )‖L (X) ≤ C‖f‖H∞(Σψ) for all f ∈ H∞
0 (Σψ),

where ‖f‖H∞(Σψ)
def= supz∈Σψ

|f(z)|, and the H∞-angle of T is

ωH∞(T ) def= inf{ψ ∈ (ω(T ), π) : T has a bounded H∞(Σψ)-calculus},

compare e.g. [50, Definition 10.2.10]. Finally, we say that T has a bounded H∞-calculus 
provided T has a bounded H∞(Σσ)-calculus for some σ ∈ (0, π).

For an UMD space X, one has the inclusions

H∞(X) ⊆ SMR(X) ⊆ S(X) and H∞(X) ⊆ R(X) ⊆ S(X),

where H∞(X), SMR(X), R(X), and S(X) stand for the classes of operators in a UMD 
space X having a bounded H∞-calculus, admitting stochastic maximal Lp-regularity, 
being R-sectorial and sectorial, respectively, compare e.g. [25, Equation (2.15) and The-
orem 4.5], [4,94] and [3, Section 6].

By holomorphy, one can check that if T has a bounded H∞-calculus, then the same 
holds for μ +T where μ > 0. The following is a partial converse of the latter observation 
which follows from [43, Corollary 5.5.5].

Proposition 2.1 (H∞-calculus for shifted operators). Let T be a linear operator. Assume 
that μ0 +T has a bounded H∞-calculus for some μ0 > 0. Suppose that ρ(T ) ⊇ {0} ∪{z ∈
C : | arg z| ≥ σ} for some σ > ωH∞(μ0 + T ). Then T has a bounded H∞-calculus of 
angle ≤ σ.

Proof. Let us begin by proving that T is sectorial of angle ω(T ) ≤ σ. It is enough to 
show that T is sectorial of angle ω(T ) ≤ ψ where ψ > σ is arbitrary. The sectoriality of 
μ0 + T implies that ρ(T ) ⊇ −μ0 + �Σφ for all φ ∈ [ψ, ωH∞(μ0 + T )). Fix such φ and 
note that �Σψ \ (−μ0 + �Σφ) is compact and it is contained in {z ∈ C : | arg z| ≥ σ}. 
Therefore ρ(T ) ⊇ �Σψ and the estimate

sup
λ∈�Σψ

‖λ(λ− T )−1‖L (X) < ∞

follows from the one of μ0 + T using [50, Lemma 10.2.4]. Now, applying [43, Corollary 
5.5.5] with A = T + μ0 and B = −μ0, the statement follows. �
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3. Block operator matrices

3.1. Diagonal dominance

The standing assumption throughout this note is

Assumption 3.1 (Diagonal dominance). Let X1, X2 be Banach spaces, and

A : D(A) ⊆ X1 → X1, and D : D(D) ⊆ X2 → X2,

B : D(B) ⊆ X2 → X1, and C : D(C) ⊆ X1 → X2

be linear operators with domains D(A), D(D), D(B), and D(C), respectively, where

(1) A : D(A) ⊆ X1 → X1 and D : D(D) ⊆ X2 → X2 are closed linear operators with 
dense domains;

(2) D(D) ⊆ D(B), D(A) ⊆ D(C), and there exist cA, cD, L ≥ 0 such that

‖Cx‖X2 ≤ cA‖Ax‖X1 + L‖x‖X1 for all x ∈ D(A),

‖By‖X1 ≤ cD‖Dy‖X2 + L‖y‖X2 for all y ∈ D(D).

With this assumption one sets

X
def= X1 ×X2 and D(A) def= D(A) × D(D),

compare [111, Equation (2.2.3)], and

A : D(A) ⊆ X → X with A
[
x
y

]
def=
[
A B
C D

] [
x
y

]
, for all

[
x
y

]
∈ D(A).

The operator A is called diagonally dominant if Assumption 3.1 holds. Here, compared 
to [111, Definition 2.2.1], closedness of A and D is assumed for simplicity instead of 
closability, see also [90, Assumption 2.2] for a similar definition including closedness of 
A. For A diagonally dominant we also write A = D + B, where

D def=
[
A 0
0 D

]
and B def=

[
0 B
C 0

]
with D(D) = D(B) = D(A). (3.1)

A diagonally dominant A is then obtained from the diagonal part D by the relatively 
bounded perturbation B. In particular its domain is already determined by the diagonal 
part D which determines the “degree of unboundedness” of A as formulated in [90, 
Assumption 2.2 f.].
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Remark 3.2 (Boundedness of B(λ − D)−1 and C(λ − A)−1). By Assumption 3.1

B(λ−D)−1 : X2 → X1 if λ ∈ ρ(D) �= ∅

is bounded, since for all y ∈ X2

‖B(λ−D)−1y‖X1 ≤ cD‖D(λ−D)−1y‖X2 + L‖(λ−D)−1y‖X2

≤ cD(1 + ‖λ(λ−D)−1‖L (X2)‖y‖X2 + L‖(λ−D)−1‖L (X2)‖y‖X2 ,

and analogously, if λ ∈ ρ(A) �= ∅, then C(λ − A)−1 : X1 → X2, is bounded. If D is 
injective with dense range, and if Assumption 3.1 holds with L = 0, then

‖BD−1y‖X2 ≤ cD‖y‖X2 for all y ∈ R(D),

and since R(D) ⊆ X2 is dense, BD−1 has a unique continuous extension in L (X2, X1), 
and similarly for CA−1 in L (X1, X2) if A is injective with dense range.

3.2. A factorization of diagonally dominant operators

For A diagonally dominant and λ ∈ ρ(A) ∩ ρ(D) = ρ(D) �= ∅, one sets

M(λ) def= (λ−A)(λ−D)−1. (3.2)

The operators defined by

S1(λ) def= (λ−A) −B(λ−D)−1C for λ ∈ ρ(D),

S2(λ) def= (λ−D) − C(λ−A)−1B for λ ∈ ρ(A),

are called Schur-complements of A, see e.g. [111, Definition 2.2.12], and they serve in the 
theory of block operator matrices as a substitute to the determinant of 2 × 2-matrices. 
Factoring out (λ −A) and (λ −D) respectively, one obtains the pair of operators

M1(λ) def= 1 −B(λ−D)−1C(λ−A)−1 for λ ∈ ρ(A) ∩ ρ(D),

M2(λ) def= 1 − C(λ−A)−1B(λ−D)−1 for λ ∈ ρ(A) ∩ ρ(D).
(3.3)

These are the main building blocks in the following factorization, where M1(λ) and 
M2(λ) encode the interaction of the different blocks of A. These operators have been 
introduced in the context of the spectral theory of block operator matrices, see [90, 
Lemma 2.1] for the case of bounded block operator matrices, [91, Theorem 2.4] for the 
unbounded diagonally dominant triangular case, and also e.g. [111, Proposition 2.3.4 ff.]
for the general diagonally dominant case.
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Proposition 3.3 (Factorization of diagonally dominant A). Let Assumption 3.1 be satis-
fied, and let λ ∈ ρ(A) ∩ ρ(D) �= ∅. Then the following hold:

(a) One has

λ−A = M(λ)(λ−D) and M(λ) =
[

1 −B(λ−D)−1

−C(λ−A)−1 1

]
.

(b) The operators M1(λ), M2(λ), and M(λ) are bounded on X1, X2, and X, respectively.
(c) The following are equivalent:

(1) λ ∈ ρ(A);
(2) M(λ) is boundedly invertible;
(3) M1(λ) is boundedly invertible;
(4) M2(λ) is boundedly invertible.

(d) If one of the previous conditions in (c) is satisfied, then

(λ−A)−1 = (λ−D)−1M(λ)−1

where M(λ)−1 has the block matrix representations

M(λ)−1 =
[

M1(λ)−1 M1(λ)−1B(λ−D)−1

M2(λ)−1C(λ−A)−1 M2(λ)−1

]
=
[
1 B(λ−D)−1M2(λ)−1

0 M2(λ)−1

] [
1 0

C(λ−A)−1 1

]
=
[

M1(λ)−1 0
C(λ−A)−1M1(λ)−1 1

] [
1 B(λ−D)−1

0 1

]
.

Proof of Proposition 3.3. The factorization and the block representation in (a) can be 
verified in a straightforward way on D(A) = D(D) using the block representations of 
λ −A and (λ −D)−1.

To prove (b), note that by Remark 3.2 the operators M1(λ) and M2(λ) are bounded 
if A is diagonally dominant. Similarly, using the block matrix representation in (a) of 
M(λ) it follows that M(λ) is bounded.

The statement of (c) is essentially given in [111, Corollary 2.3.5], see also [90, Lemma 
2.1] for the case of bounded operators and [91, Theorem 2.4] for block triangular operator 
matrices. For the sake of completeness the proof is given here. The implication (c1)⇒(c2)
follows since for λ ∈ ρ(A) ∩ ρ(D), (a) implies that M(λ) is invertible and

M(λ)−1 = (λ−D)(λ−A)−1 (3.4)

is bounded. Note that by a row reduction one obtains the following factorizations
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M(λ) =
[

1 0
−C(λ−A)−1 1

] [
1 −B(λ−D)−1

0 M2(λ)

]
=
[
1 −B(λ−D)−1

0 1

] [
M1(λ) 0

−C(λ−A)−1 1

]
.

(3.5)

From (3.5) one sees also that (c2), (c3) and (c4) are equivalent. From (a) it follows that 
if one of the conditions (c2), (c3) or (c4) holds for λ ∈ ρ(D), then λ − A is boundedly 
invertible and hence λ ∈ ρ(A).

Part (d) follows from (a) and the representation (3.5). �
3.3. Comparison to further factorizations

In [31] also the operators

N1(λ) def= 1 − (λ−A)−1B(λ−D)−1C for λ ∈ ρ(A) ∩ ρ(D),

N2(λ) def= 1 − (λ−D)−1C(λ−A)−1B for λ ∈ ρ(A) ∩ ρ(D)

have been introduced by Engel which give rise to a factorization of the type

λ−A = (λ−D)N (λ), where N (λ) = (λ−D)−1(λ−A),

and its inverse can be represented in terms of N1(λ) and N2(λ). Both factorizations are 
equivalent for the setting discussed here, since for λ ∈ ρ(A) ∩ ρ(D)

M1(λ) = (λ−A)N1(λ)(λ−A)−1 and M2(λ) = (λ−D)N2(λ)(λ−D)−1.

A technical advantage of the factorization λ −A = M(λ)(λ −D) used here is that M(λ)
is a bounded operator in X.

Furthermore, the Frobenius-Schur factorization is a classical factorization for block 
operator matrices. Under the general assumptions D(A) ⊆ D(C), ρ(A) �= ∅, and that, 
for some (and hence for all) λ ∈ ρ(A), the operator (λ − A)−1B is bounded on D(B), 
one has – assuming here for simplicity that A is closed – that

λ−A =
[

1 0
C(λ−A)−1 1

] [
λ−A 0

0 S2(λ)

] [
1 (λ−A)−1B
0 1

]
,

compare [111, Theorem 2.2.14]. If A is diagonally dominant, then D(S2(λ)) = D(D) for 
λ ∈ ρ(A), cf. [111, Rem. 2.2.13]. Analogous statements hold for S1(λ). For A satisfying 
Assumption 3.1, λ ∈ ρ(D), and Sj(λ) closed for j ∈ {1, 2}, one has that bounded 
invertibility of Mj(λ) and Sj(λ) are equivalent. On the one hand, if for instance M1(λ)
is boundedly invertible, then S1(λ)−1 = (λ −A)−1M1(λ)−1 is bijective and bounded. On 
the other hand, if S1(λ) is boundedly invertible, then M1(λ) = S1(λ)(λ −A)−1 is closed 
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and bijective, and hence boundedly invertible. The analogous argument applies to the 
case j = 2.

The factorization in Subsection 3.2 is valid only for diagonally dominant operators 
with non-empty resolvent set, whereas the Frobenius-Schur decomposition applies to 
a general class of block operator matrices. The Frobenius-Schur decomposition needs 
the assumption that (λ − A)−1B is bounded on D(B), and this is quite restrictive for 
the purpose of the analysis presented below, and it does not hold automatically for 
diagonally dominant operators as discussed in the following Example 3.4. The condition 
that (λ −A)−1B is bounded on D(B) is related to the orders of A, D and B. Heuristically, 
since B(λ −D)−1 is bounded for A diagonally dominant the order of B is at most the 
order of D, and similarly, that (λ −A)−1B is bounded implies that the order of B is at 
most the order of A.

Example 3.4 (The condition on (λ − A)−1B). In Lp(Rd) × Lp(Rd) for p ∈ (1, ∞)

Aα =
[
−Δ (−Δ)α
0 (−Δ)α

]
with D(Aα) = H2,p(Rd) ×H2α,p(Rd), α > 0

is diagonally dominant for all α > 0, but for α > 1

(λ−A)−1B = (λ + Δ)−1(−Δ)α, λ ∈ ρ(−Δ) = C \ [0,∞)

does not extend to a bounded operator on Lp(Rd). Nevertheless in this situation the 
factorization given in Subsection 3.2 applies.

4. Sectoriality and R-sectoriality for block operator matrices

In this section we present our main results concerning the sectoriality and R-
sectoriality of block operator matrices. Further perturbation results for block operators 
with smallness conditions are given in Subsection 4.1. The proofs of Theorem 4.1, Corol-
lary 4.4, and Proposition 4.5 will be given in Subsection 4.2 below.

Theorem 4.1 (Characterization of sectoriality and R-sectoriality). Suppose that Assump-
tion 3.1 with L = 0 holds and that

‖Dx‖X � ‖Ax‖X for all x ∈ D(D) = D(A). (4.1)

(a) If A and D are sectorial operators, then for each ψ ∈ [ω(A) ∨ω(D), π) the following 
are equivalent:

(1) A is sectorial of angle ψ;
(2) R(A) = X, and for all φ > ψ and for one j ∈ {1, 2}

Mj(λ)−1 ∈ L (Xj) for all λ ∈ �Σφ, and sup{‖Mj(λ)−1‖ : λ ∈ �Σφ} < ∞.
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(b) If A and D are R-sectorial operators, then for each ψ ∈ [ωR(A) ∨ ωR(D), π) the 
following are equivalent:

(1) A is R-sectorial of angle ψ;
(2) R(A) = X, and for all φ > ψ and for one j ∈ {1, 2}

Mj(λ)−1 ∈ L (Xj) for all λ ∈ �Σφ, and R(Mj(λ)−1 : λ ∈ �Σφ) < ∞.

(c) Finally, if X is reflexive, then the condition R(A) = X in (a2) and (b2) can be 
removed.

Remark 4.2 (Optimality of the angle). If C = B = 0, then A = D and therefore (in 
general) the inequalities ω(A) ≥ ω(A) ∨ ω(D) = ω(D) and ωR(A) ≥ ωR(A) ∨ ωR(D) =
ωR(D) cannot be improved.

Remark 4.3 (Closedness of A). The closedness of A does not follow from Assumption 3.1. 
In fact, it can be characterized by the Schur complements, cf. [111, Theorem 2.2.14], and 
there seems to be no such characterization by the operators M1(·) and M2(·) besides that 
A is closed if one of the conditions in Proposition 3.3 (c) holds. However, (4.1) together 
with Assumption 3.1 implies that

‖Ax‖X + ‖x‖X � ‖Dx‖X + ‖x‖X for all x ∈ D(A) = D(D),

and hence together with the closedness of D, the closedness of A follows. In particular 
Proposition 4.5 below implies already the closedness of A. For further conditions ensuring 
the closedness of A see also [111, Theorem 2.2.8].

Corollary 4.4 (Characterization of sectoriality and R-sectoriality for invertible D). Let 
Assumption 3.1 be satisfied, and assume that A and D are boundedly invertible.

(a) If A and D are sectorial operators, then for each ψ ∈ [ω(A) ∨ω(D), π) the following 
are equivalent:

(1) A is an invertible sectorial operator of angle ψ;
(2) For all φ > ψ and for one j ∈ {1, 2}

Mj(λ)−1 ∈ L (Xj) for all λ ∈ �Σφ ∪ {0}, and sup{‖Mj(λ)−1‖ : λ ∈ �Σφ} < ∞.

(b) If A and D are R-sectorial operators, then for each ψ ∈ [ωR(A) ∨ ωR(D), π) the 
following are equivalent:

(1) A is an invertible R-sectorial operator of angle ψ;



18 A. Agresti, A. Hussein / Journal of Functional Analysis 285 (2023) 110146
(2) For all φ > ψ and for one j ∈ {1, 2}

Mj(λ)−1 ∈ L (Xj) for all λ ∈ �Σφ ∪ {0}, and R(Mj(λ)−1 : λ ∈ �Σφ) < ∞.

Paraphrasing the above results one has that sectoriality and R-sectoriality for angle 
larger than ω(A) ∨ω(D) and ωR(A) ∨ωR(D), respectively, of a block operator matrix A
is solely determined by one of the bounded operators Mj(λ) in Xj for j ∈ {1, 2} defined 
in (3.3), and by (3.5) one sees that if the condition holds for one of the operators Mj(λ), 
j ∈ {1, 2}, then it also holds for the other.

In the study of long-time behavior of solutions to nonlinear partial differential equa-
tions, see e.g. [96, Section 5.3], the assumption 0 ∈ ρ(A) ∩ ρ(D) in Corollary 4.4 is too 
restrictive, though it simplifies the formulation of the statement considerably, and in fact 
it would exclude even cases such as the Laplace operator on Rd. To avoid this limitation, 
we assumed in Theorem 4.1 instead condition (4.1). Next, we give sufficient conditions 
for (4.1) to hold.

Proposition 4.5 (Criteria for condition (4.1)). Let Assumption 3.1 be satisfied with L = 0, 
and assume that R(A) = X1 and R(D) = X2. Then set

G
def= CA−1 ∈ L (X1, X2) and H

def= BD−1 ∈ L (X2, X1), (4.2)

and if one of the operators

1 −HG and 1 −GH

is boundedly invertible, then (4.1) holds. In particular, (4.1) holds if for ε > 0

sup{‖B(t + D)−1C(t + A)−1‖ : t ∈ (0, ε)} < 1, or

sup{‖C(t + A)−1B(t + D)−1‖ : t ∈ (0, ε)} < 1.

Remark 4.6 (Density of R(A)). By (4.2) the operator M(0) def= AD−1 extends to a 
bounded linear operator on X, and a factorization analogous to the one in Proposi-
tion 3.3 (d) holds also for λ = 0. Then the condition that one of the operators 1 −HG

and 1 − GH is boundedly invertible implies that M(0) is boundedly invertible. Thus 
R(A) = R(M(0)D) and R(A) = X in case R(D) = X.

The next proposition can be seen as a variation of [96, Theorem 4.4.4] and [113, 
Theorem 4.2] where R-bounds on the relevant operators appear only on subsets

�θ
def= {reiθ : r > 0} ∪ {re−iθ : r > 0} ⊆ �Σψ ⊆ C for θ ∈ (0, π) and ψ ∈ (0, θ).
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Proposition 4.7. Let Assumption 3.1 be satisfied and A, D be R-sectorial. Fix θ ∈
(ωR(A) ∨ ωR(D), π), and a ∈ (1, ∞). Assume that for one j ∈ {1, 2} and for each 
λ ∈ �Σθ, Mj(λ) is boundedly invertible, and

sup
λ∈�Σθ

‖Mj(λ)−1‖L (Xj) < ∞. (4.3)

Then there exists ξ ∈ (ωR(A) ∨ ωR(D), θ) for which the following hold.

(1) Mj(λ) is invertible for all λ ∈ �Σξ and supλ∈�Σξ
‖Mj(λ)−1‖L (Xj) < ∞.

(2) R(Mj(λ)−1 : λ ∈ �Σξ) < ∞ provided

sup
λ∈�θ

R
(
Mj(akλ)−1 : k ∈ Z

)
< ∞. (4.4)

Note that if (4.4) holds for one j ∈ {1, 2}, (4.1) holds, and R(A) = X, then Theo-
rem 4.1 and Proposition 4.7 ensure that A is R-sectorial of angle < θ. Here the condition 
R(A) = X is redundant if X is reflexive, and if 0 ∈ ρ(A) then one can also remove the 
condition (4.1). In applications one typically checks the stronger condition

R(Mj(λ)−1 : λ ∈ �θ) < ∞

instead of (4.4). Thus to prove R-sectoriality of A one needs to show R-bounds on �θ
instead of the much larger set �Σθ. In applications to parabolic problems, the choice 
θ = π

2 is particularly handy.

Proof of Proposition 4.7. Fix j ∈ {1, 2}. Up to the choice of a smaller ξ, (2) follows from
(1) and [50, Proposition 8.5.8(2)] applies (up to a rotation) to the holomorphic function 
M−1

j : �Σξ → L (Xj). Therefore, it remains to prove (1).
Let ψ ∈ (θ, π). Due to our assumptions and (4.3), it remains to show that there exists 

ε > 0 independent of ψ such that Mj(λ) is invertible for all

λ ∈ Lψ(ε), where Lψ(ε) def= {z ∈ C \ {0} : | arg(z) − ψ| < ε}.

To prove the above claim, we employ a Neumann series argument. To this end, let 
δ ∈ (0, ψ − ωR(A) ∨ ωR(D)). Note that the rotation map

Ψδ : Lψ(δ) → Σδ ∪ (−Σδ), λ �→ e−iψλ

is a bi-holomorphism. Below we prove the claim for Lψ(δ) replaced by L±
ψ (δ) =

Ψ−1
δ (±Σδ), the general case follows similarly. For notational convenience, we let M1(λ) =

1 − Te−iψλ on L+
ψ (δ) where

Tλ : Σδ → Σδ with Tλ
def= B(λeiψ −D)−1C(λeiψ −A)−1.
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Next we prove that 1 − Tλ is invertible for all λ ∈ Σ2ε where ε > 0 is independent of ψ. 
Fix λ ∈ Σ2ε and let t = 
λ. Let cθ be the supremum in (4.3). If

‖Tt − Tλ‖L (X1) < c−1
θ , (4.5)

then we can write

(1 − Tλ)−1 = (1 − Tt)−1(1 + (1 − Tt)−1(Tt − Tλ))−1

= (1 − Tt)−1
∑
k≥0

(−1)k(1 − Tt)−k(Tt − Tλ)k.

To check (4.5), one can argue as follows. By the assumption in (4.3) one has ‖(1 −
Tλ)−1‖L (X1) ≤ cθ and, for each λ, μ ∈ �Σψ,

B(λ−D)−1C(λ−A)−1 −B(μ−D)−1C(μ−A)−1

= B(λ−D)−1C[(λ−A)−1 − (μ−A)−1] −B[(λ−D)−1 − (μ−D)−1]C(μ−A)−1

= λ− μ

μ

[
B(λ−D)−1C(λ−A)−1[μ(μ−A)−1]

−B(λ−D)−1[μ(μ−D)−1]C(μ−A)−1
]
,

where we used the resolvent identity. Applying the previous with μ = t and using secto-
riality of A and D as well as Assumption 3.1 for L = 0 one gets ‖Tt−Tλ‖L (X1) ≤ K |t−λ|

t

where K depends only on the sectoriality constants of A, D on �Σθ. Since |t−λ|
t ≤ tan(2ε), 

(4.5) follows by choosing ε 
def= 1

2 arcsin( cθK ) which is independent of ψ. �
4.1. Perturbative type results for block operators

In this subsection, as a consequence of Theorem 4.1 and Corollary 4.4, employing per-
turbative arguments we show sectoriality and R-sectoriality of block operator matrices 
if the coupling is small, this holds in particular if C is small enough, while B can be 
large. Therefore, this goes beyond the standard perturbation theory.

Proposition 4.8 (Sectoriality and R-sectoriality for small couplings). Let Assumption 3.1
be satisfied with L = 0.

(a) Let A, D be sectorial operators, ψ ∈ (ω(A) ∨ ω(D), π), and assume that

sup{‖B(λ−D)−1C(λ−A)−1‖ : λ ∈ C \ Σψ} < 1 or

sup{‖C(λ−A)−1B(λ−D)−1‖ : λ ∈ C \ Σψ} < 1.

Then A is sectorial on X of angle ω(A) ≤ ψ.
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(b) Let A, D be R-sectorial operator, ψ ∈ (ωR(A) ∨ ωR(D), π), and

R(B(λ−D)−1C(λ−A)−1 : λ ∈ C \ Σψ) < 1 or

R(C(λ−A)−1B(λ−D)−1 : λ ∈ C \ Σψ) < 1

Then A is R-sectorial on X of angle ωR(A) ≤ ψ.

Proof. To prove the claim in (b) we check the condition in Theorem 4.1 (b2). First note 
that by Proposition 4.5 condition (4.1) holds and by Remark 4.6 R(A) ⊆ X is dense.

We provide the required estimate for M1(·), the one for M2(·) being similar. Having

R(B(λ−D)−1C(λ−A)−1 : λ ∈ C \ Σψ) < 1, (4.6)

by a Neumann series argument one obtains that

M1(λ)−1 =
∑
n≥0

[B(λ−D)−1C(λ−A)−1]n for all λ ∈ C \ Σψ,

where the series converges absolutely in L (X1). The previous expression implies

R(M1(λ)−1 : λ ∈ C \ Σψ) ≤
∑
n≥0

[
R(B(λ−D)−1C(λ−A)−1 : λ ∈ C \ Σψ)

]n
< ∞,

where in the last inequality we have used (4.6). The claim in (a) follows analogously 
replacing R-bounds by norm-bounds. �

As usual, the condition L = 0 in Proposition 4.8 can be removed up to a shift. For a 
sectorial operator T on a Banach space X we set

NS
ψ (T ) def= sup{‖T (λ− T )−1‖ : λ ∈ �Σψ} for ψ > ω(T ),

and for an R-sectorial operator T

NR
ψ (T ) def= R

(
T (λ− T )−1 : λ ∈ �Σψ

)
for ψ > ωR(T ). (4.7)

Corollary 4.9 (Sectoriality and R-sectoriality for small C). Let Assumption 3.1 be sat-
isfied, and let cA and cD be the relative bounds in Assumption 3.1.

(a) If A and D are sectorial, then for any ψ ∈ (ω(A) ∨ ω(D), π) there are

ε0(cD,NS
ψ (A),NS

ψ (D)) > 0 and ν0(cD,NS
ψ (A),NS

ψ (D), L) > 0

such that if ν > ν0 and cA < ε0, then ν + A is sectorial on X of angle ≤ ψ.
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(b) If A and D are R-sectorial, then for any ψ ∈ (ωR(A) ∨ ωR(D), π) there are

ε0(cD,NR
ψ (A),NR

ψ (D)) > 0 and ν0(cD,NR
ψ (A),NR

ψ (D), L) > 0

such that if ν > ν0 and cA < ε0, then ν + A is R-sectorial on X of angle ≤ ψ.

In particular, if C ∈ L (D(Aγ), X2) for some γ ∈ (0, 1), then there are ε0 > 0 and ν0 > 0
such that in the situations of (a) and (b) the conditions on cA are satisfied.

Remark 4.10. Let us stress that ε0 does not depend on L > 0 which will become clear 
from (4.11) below. The conditions in Proposition 4.8 (a) and (b) hold provided that

cA <
1

cDNS
ψ (A)NS

ψ (D)
and cA <

1
cDNR

ψ (A)NR
ψ (D)

, (4.8)

respectively, that is if L = 0, then ν = 0, and the above estimates give lower bounds on ε0. 
However, the more general assumptions in Proposition 4.8 as compared to Corollary 4.9
are useful as well. For instance consider a diagonally dominant block operator A on 
X = X1×X2 with X2 = X1

2 ×X2
2 , B12 : D(D22) ⊆ X2

2 → X1 and C21 : D(A) ⊆ X1 → X1
2

of the form

A =
[

A 0 B12
C21 D11 0
0 0 D22

]
=
[
A B
C D

]
.

Then cA can be larger than ε0, but for λ ∈ ρ(D)

B(λ−D)−1C(λ−A)−1 = [0 B12 ]
[
(λ−D11)−1 0

0 (λ−D22)−1

] [
C21
0

]
(λ−A11)−1

= 0.

Proof of Corollary 4.9. The idea is to apply Proposition 4.8 by checking the condition 
(4.8) with A and D replaced by ν + A and ν + D. Let us begin by noticing that, for all 
ν > 0,

N ∗
ψ(ν + A) ≤ N ∗

ψ(A) and N ∗
ψ(ν + D) ≤ N ∗

ψ(D), ∗ ∈ {S,R}, (4.9)

and by Assumption 3.1 for all y ∈ X2

‖B(ν + D)−1y‖X1 ≤ CB‖D(ν + D)−1y‖X2 + L‖(ν + D)−1y‖X1 .

In particular, for all ν > 0 and x ∈ D(D), there is a y ∈ X2 with x = (ν + D)−1y and 
hence

‖Bx‖X1 ≤
(
CBN ∗

ψ(D) + (1 + N ∗
ψ(D))L

)
‖(ν + D)x‖X2 . (4.10)
ν
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Next, set

ν′0
def= L

CB

(
1 + 1

N ∗
ψ(D)

)
,

and note that the constant on the right hand side of (4.10) is less than 2CBN ∗
ψ(D)

provided ν ≥ ν′0. Analogously, for all ν > 0 and x ∈ D(A),

‖Cx‖X2 ≤
(
εN ∗

ψ(A) + (1 + N ∗
ψ(A))L

ν

)
‖(ν + A)x‖X1 .

By (4.9), (4.10) and Proposition 4.8, the claim follows provided ν0 ≥ ν′0 and ε0 > 0
satisfy

ε0N ∗
ψ(A) + (1 + N ∗

ψ(A)) L
ν0

≤ 1
2CBN ∗

ψ(D)N ∗
ψ(A)N ∗

ψ(D)
def= R,

and a possible choice is given by

ε0 = R

N ∗
ψ(A) , and ν0 = ν′0 ∨

(L
R

(1 + N ∗
ψ(A))

)
. (4.11)

It remains to prove the last statement. Thus, we assume that C ∈ L (D(Aγ), X2) for 
some γ ∈ (0, 1). Under this assumption by the Young and moment inequality (see e.g. 
[96, Theorem 3.3.5]) for any ε > 0 there is an Cε,γ > 0 such that

‖Cx‖X2 ≤ ε‖Ax‖X1 + Cε,γ‖x‖X1 for all x ∈ D(A),

and in particular there exists ε0 > 0 such that cD < ε0. �
4.2. Proofs of Theorem 4.1, Corollary 4.4, and Proposition 4.5

Proof of Theorem 4.1. For part (b), let ψ ∈ (ωR(A) ∨ ωR(D), π) be fixed.
(b1)⇒(b2): Fix φ > ψ. Since φ > ωR(A) ∨ ωR(D), we have ρ(A) ∩ ρ(D) ⊇ �Σφ. 

By Proposition 3.3 and our assumptions, we have that the representations in Proposi-
tion 3.3(d) hold for all λ ∈ �Σφ. We claim that

R(M(λ)−1 : λ ∈ �Σφ) < ∞ (4.12)

where M(λ) is defined in (3.2). Note that (4.12) is in fact stronger than (b2).
Next we prove (4.12). Note that by (3.2)

M(λ)−1 = (λ−D)(λ−A)−1 for all λ ∈ �Σφ. (4.13)
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Recall that D is injective since A, D (and thus D) are sectorial operators. By (4.1) and 
D(D) = D(A), it follows that A is injective as well. In particular, A−1 : R(A) → D(A) is 
well-defined and ‖DA−1x‖X � ‖x‖X for all x ∈ R(A). By R(A) = X we infer

DA−1 def= K ∈ L (X) and D = KA on D(A).

Combining the latter with (4.13),

M(λ)−1 = λ(λ−A)−1 −KA(λ−A)−1 for all λ ∈ �Σφ.

By (b1) and the previous identity, we get (4.12), and by Proposition 3.3 (d) the claim 
follows, where one uses that for λ0 ∈ ρ(A) ∩ ρ(D)

R(C(λ−A)−1 : λ ∈ �Σφ) ≤ ‖C(λ0 −A)−1‖R
(
(λ0 −A)(λ−A)−1 : λ ∈ �Σφ

)
< ∞,

R(B(λ−D)−1 : λ ∈ �Σφ) ≤ ‖B(λ0 −D)−1‖R
(
(λ0 −D)(λ−D)−1 : λ ∈ �Σφ

)
< ∞.

(b2)⇒(b1): Let φ > ψ. Note that ρ(D) ⊇ �Σφ and one has the representations in 
Proposition 3.3 (d). Due to the R-sectoriality of A, D and the choice of φ, it remains to 
prove that R(M(λ)−1 : λ ∈ �Σφ) < ∞. By (b2), the latter holds provided

R(B(λ−D)−1 : λ ∈ �Σφ) < ∞ and R(C(λ−A)−1 : λ ∈ �Σφ) < ∞.

Again, these bounds follow from the R-sectoriality of A and D, the choice of φ and 
Assumption 3.1 with L = 0.

Part (a) follows analogously, replacing R-bounds by norm-bounds.
Proof of part (c): If X is reflexive, then X = N(T ) ⊕R(T ), for any (pseudo-) sectorial 

operator T (see [50, Proposition 10.1.9]). Reasoning as in the implication (b1)⇒(b2), 
(4.1) yields N(A) = {0} and therefore R(A) = X. �
Proof of Corollary 4.4. The claim follows by Theorem 4.1, noticing that if 0 ∈ ρ(A)
then (4.1) follows from D(A) = D(D) and that Assumption 3.1 with L = 0 holds since 
0 ∈ ρ(A) ∩ ρ(D). �
Proof of Proposition 4.5. This proof resembles the one of Proposition 3.3. The operators 
H and G are well-defined and bounded by Remark 3.2. By (4.2), we have

A = M(0)D, where M(0) =
[

1 H
G 1

]
(4.14)

as in Remark 4.6. To fix the idea, we assume that 1−HG is invertible. Reasoning as in 
the proof of Proposition 3.3, one can check that M(0) is invertible with inverse given by

M(0)
−1

=
[

(1 −HG)−1 0
−G(1 −HG)−1 1

] [
1 −H
0 1

]
∈ L (X).
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Thus (4.14) gives D = M(0)
−1A and therefore ‖Dx‖X ≤ ‖M(0)

−1‖L (X)‖Ax‖X for 
x ∈ D(D), as desired.

It remains to prove the last assertion, where it suffices to show in the first case that 
sup{‖B(t +D)−1C(t +A)−1‖ : t ∈ (0, ε)} < 1 implies ‖HG‖L (X1) < 1. This follows since 
for all x ∈ X

lim
t↓0

B(t + D)−1C(t + A)−1x = lim
t↓0

HD(t + D)−1GA(t + A)−1x = HGx

by [50, Proposition 10.1.7 (2)], and the other case follows similarly. �
5. H∞-calculus for block operator matrices

In this section we give some sufficient condition to check the boundedness of the 
H∞-calculus for block operator matrices A. These results will be formulated using

Assumption 5.1. Let Assumption 3.1 be satisfied. Suppose that A and D are sectorial 
operators.

(+) We say that Assumption 5.1(+) holds if there exists δ ∈ (0, 1) such that

C(D(A1+δ)) ⊆ D(Dδ) and ‖DδCx‖X2 � ‖A1+δx‖X1 for all x ∈ D(A1+δ),

B(D(D1+δ)) ⊆ D(Aδ) and ‖AδBy‖X1 � ‖D1+δy‖X2 for all y ∈ D(D1+δ).

(−) We say that Assumption 5.1(−) holds if there exists δ ∈ (0, 1) such that

R(C) ⊆ R(Dδ) and ‖D−δCx‖X2 � ‖A1−δx‖X1 for all x ∈ D(A),

R(B) ⊆ R(Aδ) and ‖A−δBy‖X1 � ‖D1−δy‖X2 for all y ∈ D(D).

Remark 5.2. If 0 ∈ ρ(A), then R(Aδ) = X1 for δ > 0. Thus the condition R(B) ⊆ R(Aδ)
in Assumption 5.1(−) becomes redundant in this case. A similar consideration holds for 
R(C) ⊆ R(Dδ) if 0 ∈ ρ(D).

Having in mind applications to differential operators, Assumption 3.1 implies a rela-
tion between the orders of C and A, and the orders of B and D. Assumptions 5.1(±)
now impose additional relations between the orders of C, D and A, and the orders of B, 
A and D. This is illustrated by the following

Example 5.3. Consider in Lp(Rd) × Lp(Rd) for p ∈ (1, ∞) the operator

Aα =
[
−Δ + 1 −(−Δ + 1)α
−Δ + 1 (−Δ + 1)α

]
with D(Aα) = H2,p(Rd) ×H2α,p(Rd), α > 0.
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It is easy to see that Aα is diagonally dominant and satisfies Assumption 3.1 for all α > 0. 
However, in the case (+), using that D(Aγ) = H2γ,p(Rd) and D(Dγ) = H2αγ,p(Rd) for 
γ ≥ 0,

C(D(A1+δ)) = H2δ,p(Rd) ⊆ D(Dδ) = H2αδ,p(Rd) only if α ≥ 1,

B(D(D1+δ)) = H2αδ,p(Rd) ⊆ D(Aδ) = H2δ,p(Rd) only if α ≤ 1,

and hence the inclusions Assumption 5.1(+) holds only for α = 1. The same argument 
also proves that Assumption 5.1(−) holds only for α = 1. Hence, Assumption 5.1 requires 
that A and D have the same orders.

We begin by providing a sufficient condition for the boundedness of the H∞-calculus 
of A. For the notion of the type of a space we refer to [50, Chapter 7] recapped here in 
the Appendix A. In particular Lp-spaces with p ∈ (1, ∞) and their closed subspaces have 
non-trivial type. Note that spaces of non-trivial type are exactly the K-convex spaces by 
Pisier’s theorem, see e.g. [50, Theorem 7.4.23] and also [50, Section 7.4] for the definition 
and properties of K-convex spaces.

Theorem 5.4 (Boundedness of the H∞-calculus for R-sectorial A). Suppose that X1 and 
X2 are reflexive Banach spaces with non-trivial type. Let Assumption 3.1 with L = 0, 
estimate (4.1), and Assumption 5.1 (+) and (−) be satisfied. Then the following impli-
cation holds:

If A and D have a bounded H∞-calculus of angle ωH∞(A) and ωH∞(D), respectively, 
and A is R-sectorial on X with angle ωR(A), then A has a bounded H∞-calculus of 
angle ωH∞(A) = ωR(A).

Proof. This follows directly from the more general transference result Theorem A.1 – 
given in the appendix – applied with T = D and S = A, where the assumption (A.2)
translates into the Assumptions 5.1(±). �

Having only one of the two Assumptions 5.1 (+) and (−), one can still prove the 
boundedness of the H∞-calculus, where as in Proposition 4.8, we only require the cou-
pling to be small. The proofs of Theorem 5.5 and Theorem 5.6 will be given in Subsection 
5.2 below.

Theorem 5.5 (Boundedness of the H∞-calculus for small couplings). Let Assumption 3.1
be satisfied with L = 0, and assume that Assumption 5.1 (+) or Assumption 5.1 (−)
holds. Let A and D have a bounded H∞-calculus and fix ψ ∈ (ωH∞(A) ∨ ωH∞(D), π). 
Assume that X1 or X2 has non-trivial type and

cR1
def= R(B(λ−D)−1C(λ−A)−1 : λ ∈ �Σψ) < 1/KX1 or

cR2
def= R(C(λ−A)−1B(λ−D)−1 : λ ∈ �Σψ) < 1/KX2 ,

(5.1)
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receptively, where KXj
are the K-convexity constants of Xj for j ∈ {1, 2}, then A has a 

bounded H∞-calculus on X of angle ωH∞(A) < ψ.

The geometric conditions on X1, X2 can be avoided assuming a particular smallness 
condition on C which allows one to interpolate pairs of operators rather than R-bounded 
sets. Recall that NR

ψ is defined in (4.7).

Theorem 5.6 (Boundedness of the H∞-calculus in space of trivial type and small C). 
Let Assumption 3.1 be satisfied with L = 0. Assume that A and D have a bounded H∞-
calculus and that Assumption 5.1(−) or Assumption 5.1(+) holds. Fix ψ ∈ (ωH∞(A) ∨
ωH∞(D), π). If for cA and cD, the relative bounds in Assumption 3.1, one has

cA <
1

cDNR
ψ (A)NR

ψ (D)
, (5.2)

then A has a bounded H∞-calculus on X of angle ωH∞(A) < ψ.

Again, arguing as in the proof of Corollary 4.9, we may allow lower order terms at 
the expense of a shifting. Note that Corollary 5.7 goes beyond the well-known lower 
order perturbation theorems for the H∞-calculus, cf. e.g. [8, Theorem 2.4]. The results 
presented in this section admit even perturbations of the same order, and even if C is 
of lower order B can be of the same order as A and D. General perturbations of the 
same order under additional assumptions on mapping properties in domains of fractional 
powers of the unperturbed operator are discussed in [24, Theorem 3.2] and [57, Section 5].

Corollary 5.7 (Boundedness of the H∞-calculus of A for small C). Let Assumption 3.1
be satisfied, and assume that Assumption 5.1 (+) or Assumption 5.1 (−) holds. If A and 
D have a bounded H∞-calculus, then for any ψ ∈ (ωH∞(A) ∨ ωH∞(D), π) there exist

ε0 = ε0(cD,Nψ(A),Nψ(D)) > 0 and ν0 = ν0(cD,Nψ(A),Nψ(D), L) > 0

such that if cA < ε0 and ν > ν0, then ν + A has a bounded H∞-calculus on X of angle 
ωH∞(A) ≤ ψ. In particular, if C ∈ L (D(Aγ), X2) for some γ ∈ (0, 1), then there exists 
ε0 > 0 and ν0 > 0 such that the conditions on cA are satisfied.

Remark 5.8 (Assumptions 5.1(±) are sufficient but not necessary). On the one hand, 
the Assumptions 5.1(±) cannot be avoided in general even for the triangular case with 
C = 0. A counterexample for the triangular case is constructed by McIntosh and Yagi in 
the proof of [86, Theorem 3]. On the other hand, there are block operator matrices with 
bounded H∞-calculus which violate both Assumptions 5.1(±). Considering for instance 
a diagonally dominant A with A = 1, then this already implies that C is bounded. 
Now, in Assumptions 5.1(+) the inclusion C(D(A1+δ)) ⊆ D(Dδ) would be violated for C
surjective and D unbounded. In (−) the estimate ‖A−δBy‖X2 � ‖D1−δy‖X2 would fail 



28 A. Agresti, A. Hussein / Journal of Functional Analysis 285 (2023) 110146
if B is of the order of D. So, considering for instance in Lp(Rd) ×Lp(Rd) for p ∈ (1, ∞)
the operator

Aμ =
[
μ + 1 Δ

1 μ− Δ

]
with D(Aμ) = Lp(Rd) ×H2,p(Rd), μ > 0,

then this is diagonally dominant, but it violates both Assumptions 5.1(±). Nevertheless, 
it is shown in Corollary 7.2 below, that Aμ has a bounded H∞-calculus for μ > 0
sufficiently large.

5.1. Fractional powers

One of the advantages of the H∞-calculus is that it implies the boundedness of imagi-
nary powers (BIP) and therefore allows for a complete description of D(Aθ) for θ ∈ (0, 1), 
cf. e.g. [25, Sections 2.3 and 2.4]. The description of the fractional powers of negative 
orders is more delicate (although sometimes useful in applications to nonlinear (stochas-
tic) partial differential equations, see e.g. [5]). For further results in this direction we 
refer to Proposition 5.14 and Theorem 6.9 below.

Proposition 5.9 (Fractional powers of A and D). Let Assumption 3.1 be satisfied. Suppose 
that A and D have a bounded H∞-calculus and that (4.1) holds. Then for all θ ∈ (0, 1)

D(Aθ) = D(Dθ) and ‖Dθx‖X � ‖Aθx‖X for all x ∈ D(Dθ).

In particular Ḋ(Aθ) = Ḋ(Dθ) for all θ ∈ (0, 1).

Proof. Since A has a bounded H∞-calculus and D(D) = D(A), we have D(Aθ) = D(Dθ)
and Ḋ(Aθ) = Ḋ(Dθ) for all θ ∈ [0, 1], compare [57, Proposition 2.2]. Here, in the second 
identification we have also used that (4.1) holds. The remaining estimate follows from 
these identifications and the definition of these spaces in (2.3). �
5.2. Proofs of Theorem 5.5 and Theorem 5.6

We begin by proving the following key lemma.

Lemma 5.10. Assume that operators S and T have a bounded H∞-calculus on Banach 
spaces E and F , respectively. Fix σ > ωH∞(S) ∨ ωH∞(T ) and let J : C \Σσ → J be a 
strongly continuous map where J ⊆ L (E, F ) is assumed to be an R-bounded set. Then, 
for each f ∈ H∞

0 (Σσ),∥∥∥ ∫
Γ

f(λ)T δ(λ− T )−1J (λ)S1−δ(λ− S)−1 dλ
∥∥∥

L (E,F )
� R(J )‖f‖H∞(Σσ),

where δ ∈ (0, 1) and Γ = ∂Σθ with θ ∈ (ωH∞(S) ∨ ωH∞(T ), σ).
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The proof of Lemma 5.10 is based on standard randomization techniques, see e.g. [96, 
Theorem 4.5.6]. For the reader’s convenience, we provide some details.

Proof. Set Γ± def= {re±iθ : r > 0}, then Γ = Γ+ ∪Γ−, and we prove the claimed estimate 
for Γ replaced by Γ+, the one for Γ− follows similarly. For notational convenience, we 

set Jf (λ) def= f(λ)J (λ). Note that

∫
Γ+

f(λ)T δ(λ− T )−1J (λ)S1−δ(λ− S)−1 dλ

= lim
N↑∞

N−1∑
j=−N

2j+1∫
2j

T δ(reiθ − T )−1Jf (reiθ)S1−δ(reiθ − S)−1 dr

= lim
N↑∞

N−1∑
j=−N

2j+1∫
2j

(T
r

)δ(
eiθ − T

r

)−1
Jf (eiθr)

(S
r

)1−δ(
eiθ − S

r

)−1 dr
r

= lim
N↑∞

2∫
1

N−1∑
j=−N

( T

t2j
)δ(

eiθ − T

t2j
)−1

Jf (eiθt2j)
( S

t2j
)1−δ(

eiθ − S

t2j
)−1 dt

t

= lim
N↑∞

2∫
1

N−1∑
j=−N

hδ(2jtT )Jf (eiθ2jt)h1−δ(2jtS) dt
t
,

(5.3)

where hρ(z) = zρ(eiθ − z)−1. We estimate the operators appearing in the above integral 
by standard randomization techniques. To this end, let us note that, by the contraction 
principle (see e.g. [50, Theorem 6.1.13 (ii)]),

R(Jf (reiθ) : r > 0) ≤ π
2 ‖f‖H∞(Σσ)R(J ). (5.4)

Since each S and T has a bounded H∞-calculus and hρ(z) = zρ(eiθ − z)−1 defines a 
function in H∞

0 (Σσ′) for all ρ ∈ (0, 1) and σ′ ∈ (ωH∞(S) ∨ωH∞(T ), θ), by [50, Proposition 
10.2.20 and Lemma 10.3.8(1)] there exists a constant C such that for all finite collections 
of scalars (αk)k∈Z, (βk)k∈Z such that |αk|, |βk| ≤ 1,

sup
t>0

(∥∥∥ N−1∑
j=−N

βkhδ(2jtT ∗)
∥∥∥

L (F∗)
+
∥∥∥ N−1∑

j=−N

αkh1−δ(2jtS)
∥∥∥

L (E)

)
≤ C. (5.5)

Here C is a constant independent of t and N (see also below Definition 10.2.12 and 
Proposition H.2.3 in [50]). Let (εj)j∈Z be a Rademacher sequence, see Subsection 2.4. 
Then, for any x ∈ E and y∗ ∈ F ∗ we have
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∣∣∣ N−1∑
j=−N

〈y∗, hδ(2jtT )Jf (eiθ2jt)h1−δ(2jtS)x〉
∣∣∣

=
∣∣∣ N−1∑
j=−N

〈hδ(2jtT ∗)y∗,Jf (eiθ2jt)h1−δ(2jtS)x〉
∣∣∣

(i)=
∣∣∣E〈 N−1∑

j=−N

εjhδ(2jtT ∗)y∗,
N−1∑

n=−N

εnJf (eiθ2nt)h1−δ(2ntS)x
〉∣∣∣

≤
∥∥∥ N−1∑

j=−N

εjhδ(2jtT ∗)y∗
∥∥∥
L2(Ω;F∗)

∥∥∥ N−1∑
j=−N

εjJf (eiθ2jt)h1−δ(2jtS)x
∥∥∥
L2(Ω;E)

(ii)
≤ π

2C
2‖f‖H∞(Σσ)R(J )‖y∗‖F∗‖x‖E ,

where in (i) we used E[εjεn] = δj,n, here δj,n denotes Kronecker’s delta, and in (ii) the 
Equations (5.4) and (5.5). Hence,

∥∥∥ N−1∑
j=−N

hδ(2jtT )Jf (eiθ2jt)h1−δ(2jtS)
∥∥∥

L (E,F )
≤ π

2C
2‖f‖H∞(Σσ)R(J ).

Combining the latter with (5.3), one gets the desired estimate. �
Proof of Theorem 5.5 in case that Assumption 5.1(−) holds. Let us begin by collect-
ing some useful facts. By Proposition 4.8, A is R-sectorial of angle < ψ. Fix φ ∈
(ωH∞(A), ψ). Then, by Theorem 4.1, for all | argλ| > ωR(A) the resolvent (λ −A)−1 is 
given by the factorization in Proposition 3.3 (d) with M1(λ) and M2(λ) as in (3.3).

Next we look at the functional calculus. Fix f ∈ H∞
0 (Σφ). Consider w.l.o.g. the case 

where X1 has non-trivial type and cR1 < 1/KX1 , then one has to estimate

I11
def=
∥∥∥∫

Γ

f(λ)(λ−A)−1M1(λ)−1dλ
∥∥∥

L (X1)
, (5.6)

I21
def=
∥∥∥∫

Γ

f(λ)(λ−D)−1C(λ−A)−1M1(λ)−1dλ
∥∥∥

L (X1,X2)
, (5.7)

I12
def=
∥∥∥∫

Γ

f(λ)(λ−A)−1M1(λ)−1B(λ−D)−1dλ
∥∥∥

L (X2,X1)
, (5.8)

I22
def=
∥∥∥∫

Γ

f(λ)(λ−D)−1 [1 + C(λ−A)−1M1(λ)−1B(λ−D)−1]dλ∥∥∥
L (X2)

(5.9)

by � ‖f‖H∞(Σψ), where the implicit constants depend only on the R-bound cR1 in (5.1)
and the constants of the H∞-calculus of A, D. We split the proof into three steps.
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Step 1: Assumption 5.1(−) implies that C and B extend uniquely to bounded linear 
operators

Cδ ∈ L (Ḋ(A1−δ), Ḋ(D−δ)) and Bδ ∈ L (Ḋ(D1−δ), Ḋ(A−δ)).

Reasoning as in the proof of Proposition 5.9, by complex interpolation one has for all 
η ∈ [0, δ] that C and B induce uniquely the operators

Cη ∈ L (Ḋ(A1−η), Ḋ(D−η)) and Bη ∈ L (Ḋ(D1−η), Ḋ(A−η)), (5.10)

satisfying Cηx = Cx and Bηy = By for all (x, y) ∈ D(A) × D(D). Hence, using [74, 
Theorem 15.14 b)], we have for all η ∈ [0, δ], x ∈ D(A) ∩ R(A) and y ∈ D(D) ∩ R(D),

‖D−ηCAη−1x‖X2 � ‖x‖X1 and ‖A−ηBDη−1y‖X1 � ‖y‖X2 .

Since D(A) ∩ R(A) ↪→ X1 and D(D) ∩ R(D) ↪→ X2 are dense (see e.g. [96, Theorem 
3.1.2(iv)]), this ensures that D−ηCAη−1 and A−ηBDη−1 admit a unique extension to 
bounded operators, namely

Gη
def= A−ηBDη−1 ∈ L (X2, X1) and Hη

def= D−ηCAη−1 ∈ L (X1, X2). (5.11)

Step 2: The estimate (5.1) ensures that

M1(λ)−1 =
∑
n≥0

[B(λ−D)−1C(λ−A)−1]n

convergences absolutely in L (X1), because KX1 ≥ 1 for any K-convex space, and that 
{M1(λ)−1 : λ ∈ C \ Σψ} is R-bounded. Next we rewrite the series conveniently. Note 
that, for η ∈ [0, δ] and on R(Aη),

T (λ) def= B(λ−D)−1C(λ−A)−1

= Aη(A−ηBDη−1)D1−η(λ−D)−1Dη(D−ηCAη−1)A1−η(λ−A)−1

= AηGηD(λ−D)−1HηA(λ−A)−1A−η

= AηSη(λ)A−η,

where Sη(λ) def= GηD(λ − D)−1HηA(λ − A)−1 ∈ L (X1). Hence T (λ) extends to an 
operator Tη(λ) ∈ L (Ḋ(A−η)) and since {Sη(λ) : λ ∈ C \ Σψ} is R-bounded in L (X1), 
also

{Tη(λ) : λ ∈ C \ Σψ} ⊆ L (Ḋ(A−η)) satisfies cRTη

def= R
(
Tη(λ) : λ ∈ C \ Σψ

)
< ∞.
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By [50, Proposition 8.4.4] R-boundedness interpolates assuming K-convexity. Here, by 
assumption, X1 is K-convex and since Ḋ(A−η) is isomorphic to X1 it is also K-convex. 
Hence by complex interpolation for η = θδ and θ ∈ (0, 1)

cRTθδ
≤ K1−θ

Ḋ(A−η)K
1−θ
X1

(cRT0
)θ(cRTδ

)1−θ,

where KḊ(A−η) and KX1 are the K-convexity constants of the spaces Ḋ(A−η) and X1, 
respectively. Since cRT0

= cR1 < 1/KX1 , there exists an η ∈ (0, δ] with cRTη
< 1. In 

particular for this η the series

U(λ) def=
∑
n≥0

Sη(λ)n = A−η
(∑

n≥0
Tη(λ)n

)
Aη

converges absolutely in L (X1) and {U(λ) : λ ∈ C \ Σψ} is R-bounded.
Step 3: Finally we can estimate (5.6)–(5.9). Using the above argument, one can check 

that

(λ−A)−1M1(λ)−1 = (λ−A)−1 + Aη(λ−A)−1J11(λ)A1−η(λ−A)−1,

where {J11(λ) : λ ∈ C \ Σψ} is R-bounded and

J11(λ) def=
(∑

n≥2
Sη(λ)n

)(
GηD(λ−D)−1Hη

)
.

Thus, (5.6) follows by Lemma 5.10 applied with S = T = A and the assumption on A.
To show (5.7), we write similar to the above

(λ−D)−1C(λ−A)−1M1(λ)−1 = (λ−D)−1DηJ21(λ)A1−η(λ−A)−1,

where {J21(λ) : λ ∈ C \Σψ} is R-bounded for J21(λ) def= Hη +HηA(λ −A)−1J11(λ), so 
that Lemma 5.10 applies with T = D and S = A.

For (5.8) we rewrite

(λ−A)−1M1(λ)−1B(λ−D)−1 = (λ−A)−1AηJ12(λ)D1−η(λ−D)−1

where {J12(λ) : λ ∈ C \ Σψ} is R-bounded with J12(λ) def= Gη + J11(λ)A(λ −A)−1Gη.
In (5.9) the first addend can be estimated by the assumption on D and for the second 

we write using the previous computation

(λ−D)−1C(λ−A)−1M1(λ)−1B(λ−D)−1 = (λ−D)−1DηJ22(λ)D1−η(λ−D)−1,

where J22(λ) def= HηA(λ −A)−1J12(λ) and {J22(λ) : λ ∈ C \ Σψ} is R-bounded. �
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Proof of Theorem 5.5 for the case of Assumption 5.1(+). Following [57, Corollary 6.5], 
we prove the claim by employing a shift argument on a scale of spaces and Theorem 5.5
for the already proven case with Assumption 5.1(−).

By Proposition 4.8, A is R-sectorial with angle ωR(A) < ψ. Below we use the no-
tation introduced in Subsection 2.2. In particular Ȧδ and Ḋδ are sectorial operators 
with bounded H∞-calculus on Ḋ(Aδ) and Ḋ(Dδ), respectively, which follows by simi-
larity from the Definition in (2.5). Moreover, Assumption 5.1(+) ensures that B and C
uniquely induce operators

Bδ : Ḋ(D1+δ) → Ḋ(Aδ), with Bδ|Ḋ(D1+δ)∩D(D) = B, and

Cδ : Ḋ(A1+δ) → Ḋ(Dδ), with Cδ|Ḋ(A1+δ)∩D(A) = C.

By density of D(A) ⊆ Ḋ(A) and D(D) ⊆ Ḋ(D), Assumption 3.1 implies that also

‖B0y‖ ≤ cD‖y‖Ḋ(D) for all y ∈ Ḋ(D), and ‖C0x‖ ≤ cA‖x‖Ḋ(A) for all x ∈ Ḋ(A)

hold. By interpolation for η ∈ (0, δ)

‖Bη‖ ≤ c
η/δ
D ‖Bδ‖1−η/δ and ‖Cη‖ ≤ c

η/δ
A ‖Cδ‖1−η/δ.

So we may assume, at the expense of choosing δ ∈ (0, 1) small enough,

‖Cδx‖Ḋ(Dδ) ≤ c′A‖Ȧδx‖Ḋ(Aδ), and ‖Bδy‖Ḋ(Aδ) ≤ c′D‖Ḋδy‖Ḋ(Dδ), (5.12)

for all x ∈ Ḋ(A1+δ) and y ∈ Ḋ(D1+δ), and some c′D ≥ cD and c′A ≥ cA, respectively.
Consider then the block operator matrix

Âδ
def=
[
Ȧδ Bδ

Cδ Ḋδ

]
: Ḋ(D1+δ) ∩ Ḋ(Dδ) ⊆ Ḋ(Dδ) → Ḋ(Dδ), Ḋ(Dδ) = Ḋ(Aδ) × Ḋ(Dδ).

By (5.12) Âδ satisfies Assumption 3.1 with L = 0 for X1 = Ḋ(Aδ) and X2 = Ḋ(Dδ). 
Note that a priori Âδ is not equal to the extrapolated operator Ȧδ, since the state space 
for Âδ is Ḋ(Dδ) which may differ from the state space of Ȧδ, that is Ḋ(Aδ). The relative 
bounds in Assumption 3.1 for A imply for Bδ and Cδ that

‖(Ḋδ)−δCδx‖Ḋ(Dδ) ≤ cA‖(Ȧδ)1−δx‖Ḋ(Aδ), x ∈ D(A1+δ),

‖(Ȧδ)−δBδy‖Ḋ(Aδ) ≤ cD‖(Ḋδ)1−δy‖Ḋ(Dδ), y ∈ D(D1+δ),
(5.13)

which is the estimate in Assumption 5.1(−) for Âδ, and the range conditions hold by 
construction. Consider w.l.o.g. the case where cR1 < 1/KX1 . Then

cR1,δ
def= R(Bδ(λ− Ḋδ)−1Cδ(λ− Ȧδ)−1 : λ ∈ C \ Σψ) < ∞ (5.14)
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and by repeating the interpolation argument used in Step 2 in the proof of the case of 
Assumption 5.1(−) above, at the expense of choosing δ ∈ (0, 1) small enough, we may 
assume that cR1,δ < 1/KX1 . Hence Theorem 5.5 for the case of Assumption 5.1(−), which 

has been proven already, ensures that Âδ has a bounded H∞-calculus of angle < ψ.
Next, let us point out the relation between Âδ and A. To this end, let us recall that 

by (5.1), the fact that KX1 ≥ 1 and the last claim in Lemma 4.5,

D(A) = D(D) and Ḋ(A) = Ḋ(D). (5.15)

By construction we have Âδ|D(D1+δ) = A|D(D1+δ), and by the Proposition 3.3

(λ− Âδ)−1 =[
(λ− Ȧδ)−1 0

0 (λ− Ḋδ)−1

] [
M̂1,δ(λ)−1 0

Cδ(λ− Ȧδ)−1M̂1,δ(λ)−1 1

] [
1 Bδ(λ− Ḋδ)−1

0 1

]
,

where M̂1,δ(λ) = 1 −Bδ(λ − Ḋδ)−1Cδ(λ − Ȧδ)−1 and since cR1,δ < 1/KX1 one has

M̂1,δ(λ)−1 =
∑
n≥0

[Bδ(λ− Ḋδ)−1Cδ(λ− Ȧδ)−1]n.

Using the mapping properties of Ȧδ, Ḋδ, Bδ, Cδ, it follows that (λ −Âδ)−1 restricts to an 
operator on D(Dδ) = Ḋ(Dδ) ∩X and (λ − Âδ)−1D(Dδ) ⊆ Ḋ(D1+δ) ∩ D(Dδ) = D(D1+δ)
(cf. (2.4)). Hence, for all x ∈ D(Dδ),

(λ−A)−1x = (λ−A)−1(λ− Âδ)(λ− Âδ)−1x

= (λ−A)−1(λ−A)(λ− Âδ)−1x = (λ− Âδ)−1x.

Since D(A) (5.15)= D(D) ↪→ D(Dδ), the previous display yields

(λ− Âδ)−1|D(A) = (λ−A)−1|D(A)
(2.6)= (λ− Ȧ1)−1|D(A) for all λ ∈ �Σψ. (5.16)

Next, we prove that

Ḋ(Âδ) = Ḋ(D1+δ), and ‖Âδx‖Ḋ(Dδ) � ‖x‖Ḋ(D1+δ) (5.17)

for all x ∈ Ḋ(D1+δ) ∩ Ḋ(Dδ). By Assumption 5.1(+) we have

‖DδAx‖X � ‖D1+δx‖X for all x ∈ D(D1+δ).

Thus Ḋ(D1+δ) ↪→ Ḋ(Âδ). The reverse inclusion follows from the last claim in Lemma 4.5
applied with A replaced by Âδ and X = Ḋ(Dδ) using that cR1,δ < 1 by assumption.
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Note that (Âδ)˙
1−δ has a bounded H∞-calculus on Ḋ((Âδ)1−δ) since it is similar to 

Âδ. By [57, Proposition 2.2] and (5.17),

Ḋ((Âδ)1−δ) = [Ḋ(Dδ), Ḋ(D1+δ)]1−δ = Ḋ(D) (5.15)= Ḋ(A). (5.18)

Since D(A) ⊇ D(D1+δ) d
↪→ Ḋ((Âδ)1−δ), we also have

(λ− (Âδ)˙
1−δ)−1|D(A)

(2.6)= (λ− Âδ)−1|D(A).

By D(A) d
↪→ Ḋ(A), (5.16) and (5.18), we infer that Ȧ1 has a bounded H∞-calculus. 

Therefore A has a bounded H∞-calculus on X by similarity with Ȧ1. �
Proof of Theorem 5.6. The proof is almost analogous to the proof of Theorem 5.5. 
The necessary modifications are in Step 2 and 3 of the part of the proof with 
Assumption 5.1(−). There, one has that Cδ ∈ L (Ḋ(A1−δ), Ḋ(D−δ)) and Bδ ∈
L (Ḋ(D1−δ), Ḋ(A−δ)), and then by interpolation C and B extend for η ∈ [0, δ] to oper-
ators

Cη ∈ L (Ḋ(A1−η), Ḋ(D−η)) with ‖Cη‖ ≤ c
1−η/δ
A ‖Cδ‖η/δ,

Bη ∈ L (Ḋ(D1−η), Ḋ(A−η)) with ‖Bη‖ ≤ c
1−η/δ
D ‖Bδ‖η/δ.

By assumption one has for η by choosing δ ∈ (0, 1) small enough

‖D−ηCηx‖X2 ≤ c′A‖A1−ηx‖X1 , and ‖A−ηBy‖X1 ≤ c′D‖D1−ηy‖X2 , (5.19)

for all x ∈ D(A) and y ∈ D(D), and some c′D ≥ cD and c′A ≥ cA, respectively, with

c′A <
1

c′DNR
ψ (A)NR

ψ (D)
.

Since D(A) ∩ R(A) ↪→ X1 and D(D) ∩ R(D) ↪→ X2 are dense, one has from the above 
that D−ηCAη−1 and A−ηBDη−1 admit unique extensions

G
def= A−ηBDη−1 ∈ L (X2, X1) and H

def= D−ηCAη−1 ∈ L (X1, X2),

where by (5.19)

‖G‖L (X2,X1) ≤ c′D and ‖H‖L (X1,X2) ≤ c′A. (5.20)

By assumption one has absolute convergence in L (X1) of

M1(λ)−1 =
∑

[B(λ−D)−1C(λ−A)−1]n.

n≥0
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Next, we rewrite the series conveniently using that

B(λ−D)−1C(λ−A)−1 = AηGD(λ−D)−1HAη−1(λ−A)−1,

and iterating the above argument, one can check that, for any n ≥ 1,

(λ−A)−1[B(λ−D)−1C(λ−A)−1]n

= Aη(λ−A)−1[GD(λ−D)−1HA(λ−A)−1]n−1[GD(λ−D)−1H]A1−η(λ−A)−1.

Therefore

(λ−A)−1M1(λ)−1 = (λ−A)−1 + Aη(λ−A)−1S(λ)A1−η(λ−A)−1, (5.21)

where

S(λ) def=
(∑

n≥0
[GD(λ−D)−1HA(λ−A)−1]n

)
[GD(λ−D)−1H].

Reasoning as in the proof of Proposition 4.8, one can check that (5.20) implies that the 
above series expansion is absolutely convergent in L (X1) and

R(S(λ) : λ ∈ C \ Σψ) < ∞. (5.22)

Thus, (5.6) follows from (5.21), (5.22) and Lemma 5.10 applied with S = T = A. The 
rest of the proof is as in the one of Theorem 5.5. The modifications above interpolate 
operators rather than R-bounded sets, and thereby the K-convexity assumption has 
been avoided. �
5.3. H∞-calculus on Hilbert spaces

In this subsection we investigate the boundedness of the H∞-calculus assuming that 
X is a Hilbert space, which we emphasize by writing H, H1 and H2 instead of X, X1 and 
X2, where the respective scalar products are denoted by (·|·)H , (·|·)H1 , and (·|·)H2 .

It is known that if −T generates a C0–semigroup of contractions on a Hilbert space, 
then T has a bounded H∞-calculus. The latter result is optimal if −T generates an 
analytic semigroup. Indeed, a sectorial operator T of angle smaller than π/2 on a Hilbert 
space has a bounded H∞-calculus if and only if −T generates a contraction semigroup 
w.r.t. an equivalent Hilbertian norm (see e.g. [50, Theorem 10.4.22]). In light of the 
Lumer-Phillips Theorem, compare e.g. [50, Corollary G.4.5], we get the following criteria.

Proposition 5.11 (Generation of C0–semigroups of contractions). Let Assumption 3.1 be 
satisfied. Suppose that −A and −D generate C0–semigroup of contractions. Let −1 ∈
ρ(A). Suppose that there exists γ ∈ (0, ∞) such that
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γ 
(Bh2|h1)H1 + 
(Ch1|h2)H2 ≥ −γ 
(Ah1|h1)H1 −
(Dh2|h2)H2 (5.23)

for all h = (h1, h2) ∈ D(A). Then −A generates a C0–semigroup of contractions on H. 
In particular, A has a bounded H∞-calculus of angle ωH∞(A) = ω(A) ≤ π

2 .

Proof. Proposition 5.11 follows from the Lumer-Phillips Theorem because (5.23) implies


(Ah|h)H,γ ≥ 0 for all h ∈ H

where (h|k)H,γ
def= γ(h1|k1)H1 + (h2|k2)H2 for h = (h1, h2), k = (k1, k2) ∈ H. The 

statement on the bounded H∞-calculus follows by [50, Theorem 10.2.24]. �
Remark 5.12. If A and D are dissipative operators, then (5.23) holds provided

γ 
(By|x)H1 + 
(Cx|y)H2 = 0 for all (x, y) ∈ D(A).

The block operator matrix A is J -symmetric if JA is symmetric, cf. [111, Section 
2.6], where

J def=
[
1 0
0 −1

]
.

For J -symmetric operators A one has C ⊆ −B∗, compare [111, Proposition 2.6.1]. 
Combining this with Remark 5.12 and Proposition 5.11 one gets the following

Corollary 5.13 (Bounded H∞-calculus for J -symmetric operators). If A satisfies As-
sumption 3.1, A = A∗, D = D∗, and it is J -symmetric, then A has a bounded 
H∞-calculus with ωH∞(A) = ω(A) ≤ π

2 .

The following proposition describes negative fractional powers of A in terms of the 
ones of D. Below in Section 6, it will also be used to extrapolate the H∞-calculus in an 
Lq–setting.

Proposition 5.14 (Negative fractional powers of A and D). Let Assumption 3.1 be sat-
isfied. Suppose that (4.1) holds. Assume that −D and −A generate C0–semigroups of 
contraction. Then

R(Aβ) = R(Dβ) and ‖A−βh‖H � ‖D−βh‖H for all h ∈ R(Dβ)

for all β ∈ [0, 12 ). In particular Ḋ(Dγ) = Ḋ(Aγ) for all γ ∈ (−1
2 , 0].

Proof. Let β ∈ [0, 12 ). By [60, Theorem 1.1], D((A∗)β) = D(Aβ) and D((D∗)β) = D(Dβ)
with corresponding homogeneous estimates, namely
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‖Dβh‖H � ‖(D∗)βh‖H and ‖Aβh‖H � ‖(A∗)βh‖H

for all h ∈ H. Combining the latter with Proposition 5.9, one has D((A∗)β) = D((D∗)β)
with a corresponding homogeneous estimate ‖Aβh‖H � ‖(D∗)βh‖H for all h ∈ D((A∗)β). 
The claim now follows from [76, Proposition 11]. �
6. Extrapolation for consistent families of block operators

In applications to (stochastic) partial differential equations many relevant operators 
can be studied not only in one setting but in a range of spaces. These typically depend on 
several parameters, e.g. integrability powers and/or Sobolev smoothness. Often there are 
certain special values of such parameters for which R-sectoriality and the boundedness 
of the H∞-calculus are easier to investigate than for the general case. In this section 
we provide results which allow to extrapolate R-sectoriality and the boundedness of the 
H∞-calculus knowing the corresponding property for certain values of the parameters.

6.1. Assumptions and consistency

We begin by introducing the concept of a consistent family of operators. Let S and 
T be sectorial operators on Y and Z, respectively. The operators S, T are said to be 
consistent if (Y, Z) is an interpolation couple, i.e. Y ↪→ V and Z ↪→ V where V is a 
topological vector space, cf. e.g. [112], and

(λ− S)−1|Y ∩Z = (λ− T )−1|Y ∩Z for all λ < 0.

A family of sectorial operators (Tθ)θ∈I on a family of Banach spaces (Yθ)θ∈I , where 
I ⊆ R is an interval, is consistent if Tθ and Tϕ are consistent for all θ, ϕ ∈ I.

Remark 6.1. In case that Y ↪→ Z, then S and T are consistent provided S = T |D(S). This 
follows by noticing that by D(S) = {x ∈ D(T ) ∩ Y : Tx ∈ Y } one has D(S) ∩D(T ) =
D(S) and (λ − T )−1|Y = (λ − S)−1.

The following assumption is in force throughout this section.

Assumption 6.2. Let I = [α, β] for −∞ < α < β < ∞.

(1) Let (Xi,θ)θ∈I for i ∈ {1, 2} be a family of Banach spaces such that Xi,α have non-
trivial type for all θ ∈ I and i ∈ {1, 2}. Moreover, for i ∈ {1, 2} assume that for the 
complex interpolation spaces

[Xi,θ, Xi,ϕ]γ = Xi,(1−γ)θ+γϕ for all ϕ, θ ∈ I and γ ∈ (0, 1).

(2) For each θ ∈ I the following hold:
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• Aθ and Dθ are sectorial operators on X1,θ and X2,θ, respectively;
• Cθ : D(Cθ) ⊆ X1,θ → X2,θ and Bθ : D(Bθ) ⊆ X2,θ → X1,θ are linear operators 

with D(Aθ) ⊆ D(Cθ) and D(Dθ) ⊆ D(Bθ) and there exist cD,θ, cA,θ, Lθ ≥ 0 such 
that

‖Cθx‖X2,θ ≤ cA,θ‖Aθx‖X1,θ + Lθ‖x‖X1,θ for all x ∈ D(Aθ),

‖Bθy‖X1,θ ≤ cD,θ‖Dθy‖X2,θ + Lθ‖y‖X2,θ for all y ∈ D(Dθ).

(3) (Aθ)θ∈I , (Dθ)θ∈I are consistent families of operators.
(4) For all θ1, θ2 ∈ I, x ∈ D(Aθ1) ∩ D(Aθ2) and y ∈ D(Dθ1) ∩ D(Dθ2),

Bθ1y = Bθ2y, Cθ1x = Cθ2x.

In this subsection, we extend our standard notation as follows: For each θ ∈ I set 
Xθ

def= X1,θ ×X2,θ, D(Dθ) = D(Aθ) = D(Aθ) × D(Dθ),

Dθ
def=
[
Aθ 0
0 Dθ

]
and Aθ

def=
[
Aθ Bθ

Cθ Dθ

]
.

Remark 6.3. Assumption 6.2(1) says that the families (Xθ)θ∈I and (Xi,θ)θ∈I , i ∈ {1, 2}, 
are complex interpolation scales, compare e.g. [7, Section V.1]. Assumption 6.2(2) implies 
that Aθ, Bθ, Cθ and Dθ satisfy Assumption 3.1 for all θ ∈ I, and Assumption 6.2(3)
ensures that (Dθ)θ∈I is a consistent family of operators.

Next we provide a sufficient condition for the consistency of (Aθ)θ∈I in terms of the 
operators extending (3.3), where we set for all θ ∈ (0, 1) and λ ∈ ρ(Aθ) ∩ ρ(Dθ)

M1,θ(λ) def= 1 −Bθ(λ−Dθ)−1Cθ(λ−Aθ)−1 ∈ L (X1,θ),

M2,θ(λ) def= 1 − Cθ(λ−Aθ)−1Bθ(λ−Dθ)−1 ∈ L (X2,θ).
(6.1)

Lemma 6.4 (Consistency of (Aθ)θ∈I). Let Assumptions 6.2 be satisfied. Assume that Aθ

is sectorial for all θ ∈ I, and that

‖Dθx‖Xθ
�θ ‖Aθx‖Xθ

for all x ∈ D(Dθ) and θ ∈ I. (6.2)

Then, for all θ1, θ2 ∈ I, λ < 0 and j ∈ {1, 2},

Mj,θ1(λ)|Xj,θ1∩Xj,θ2
= Mj,θ2(λ)|Xj,θ1∩Xj,θ2

. (6.3)

Moreover the family (Aθ)θ∈I is consistent if one of the following holds:
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(1) For all λ < 0, j ∈ {1, 2} and θ1, θ2 ∈ I,

Mj,θ1(λ)−1|Xj,θ1∩Xj,θ2
= Mj,θ2(λ)−1|Xj,θ1∩Xj,θ2

.

(2) For one j ∈ {1, 2} and for all θ1, θ2 ∈ I

Xθ1,j ↪→ Xθ2,j or Xθ2,j ↪→ Xθ1,j .

Recall that Mj,θ(λ) is invertible for all λ < 0 in case that Aθ is sectorial by Corol-
lary 4.4. In particular, the inverse in (1) is bounded. Condition (2) can be easily checked 
in case that Xi,θ is an Lp-space on a finite measure space. Note that (2) does not follow 
from Remark 6.1 since the claimed condition holds only for one j ∈ {1, 2}.

Remark 6.5 (Optimality of (1) in Lemma 6.4). If (Aθ)θ∈I is consistent and

Aθ1 |D(Aθ1 )∩D(Aθ2 ) = Aθ2 |D(Aθ1 )∩D(Aθ2 ), Dθ1 |D(Dθ1 )∩D(Dθ2 ) = Dθ2 |D(Dθ1 )∩D(Dθ2 ),

then (1) in Lemma 6.4 holds. The claim follows from the identity Mj,θ(λ)−1 = rj(λ −
Dθ)(λ −Aθ)−1ej , compare Proposition 3.3, where ej : Xj → X and rj : X → Xj are the 
extension and restriction operators, respectively.

Remark 6.6 (Extrapolation of (6.2)). The condition in (6.2) is the analogue of (4.1). 
If (6.2) holds for some θ = θ� ∈ [α, β] (e.g. if 0 ∈ ρ(Aθ
)), then it also holds for all 
θ ∈ [α, β] ∩ (θ� − ε, θ� + ε) where ε > 0 is small. This follows from Assumption 6.2, 
Lemma 4.5 and Sneiberg’s lemma, cf. [103]. For more details we refer to the proof of 
Theorem 6.7 where a similar situation appears.

Proof of Lemma 6.4. We begin by proving (6.3), where it is enough to show that, for all 
λ < 0,

Cθ1(λ−Aθ1)−1|X1,θ1∩X1,θ2
= Cθ2(λ−Aθ2)−1|X1,θ1∩X1,θ2

, (6.4)

Bθ1(λ−Dθ1)−1|X2,θ1∩X2,θ2
= Bθ2(λ−Dθ2)−1|X2,θ1∩X2,θ2

. (6.5)

Note that, for all λ < 0

(λ−Aθ1)−1x = (λ−Aθ2)−1x ∈ D(Aθ1) ∩ D(Aθ2) for x ∈ X1,θ1 ∩X1,θ2 ,

by consistency of (Aθ)θ∈I . Therefore, by Assumption 6.2(4),

Cθ1(λ−Aθ1)−1x = Cθ1(λ−Aθ2)−1x = Cθ2(λ−Aθ2)−1x for x ∈ X1,θ1 ∩X1,θ2

which proves (6.4), and (6.5) follows similarly.
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Statement (1) holds due to Proposition 3.3(d) for A = Aθ, the claim follows from the 
assumption, the consistency of (Aθ)θ∈I , (Dθ)θ∈I , (6.4), and (6.5).

To prove (2) we check the condition in (1). Fix λ < 0 and j ∈ {1, 2} and θ1, θ2 ∈ I

with θ1 < θ2. For simplicity assume the first case, that is, Xj,θ1 ∩ Xj,θ2 = Xj,θ1 , the 
second case follows similarly. Thus, by (6.3), we have Mj,θ1(λ) = Mj,θ2(λ)|Xj,θ1

. Since 
Aθi is sectorial, Mj,θi(λ) is invertible by Theorem 4.1 and therefore

Mj,θ2(λ)−1|Xj,θ1
= Mj,θ1(λ)−1. (6.6)

Again, using that Xj,θ1 ∩Xj,θ2 = Xj,θ1 , the claim follows from (6.6) and (1). �
6.2. Extrapolation results

Here we list the main results of this section, the proof will be given in Subsection 6.3
below. We begin by analyzing R-sectoriality.

Theorem 6.7 (Extrapolation of R-sectoriality). Let Assumption 6.2 with Lθ = 0 be sat-
isfied for all θ ∈ I. Suppose that the following are satisfied for some ψ ∈ (0, 2π):

(a) Dθ is R-sectorial of angle < ψ for all θ ∈ (α, β);
(b) There exists a γ ∈ (α, β) such that Aγ is R-sectorial of angle < ψ;
(c) R(Aθ) = Xθ for all θ ∈ I.

Then there exists ε > 0 such that

Aθ is R-sectorial of angle ≤ ψ for all |θ − γ| < ε.

Finally, if Xj,α, Xj,β are reflexive for j ∈ {1, 2}, then condition (c) can be omitted.

Remark 6.8. Fackler showed in [34, Corollary 6.4] that in general R-sectoriality does not
extrapolate. Therefore Theorem 6.7 is somewhat surprising, and it heavily relies on the 
block structure of the operator Aθ and the assumptions on Dθ.

Next we turn our attention to the H∞-calculus. In contrast to Theorem 6.7 the 
following result requires conditions on the angle. Fortunately, this is always the case 
in applications with ωH∞(A) ∨ ωH∞(D) < π/2 (see [50, Theorem 10.4.22]).

Theorem 6.9 (Extrapolation of the H∞-calculus). Let Assumption 6.2 be satisfied. As-
sume that Xi,α is a Hilbert space for i ∈ {1, 2}. Suppose that (Aθ)θ∈I is a consistent 
family of sectorial operators and that

‖Dθx‖Xθ
� ‖Aθx‖Xθ

for all x ∈ D(Aθ) and θ ∈ {α, β}. (6.7)

Let the following be satisfied:
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(a) Dα and Dβ have a bounded H∞-calculus.
(b) −Aα generates a C0-semigroup of contractions.
(c) Aβ is R-sectorial.

Then for all θ ∈ [α, β) the following hold.

(1) Aθ has a bounded H∞-calculus of angle

ωH∞(Aθ) ≤
( β − θ

β − α

)
ω(Aα) +

( θ − α

β − α

)
ωR(Aβ).

(2) for all δ ∈ (0, 12
β−θ
β−α ), one has R(Aδ

θ) = R(Dδ
θ) and

‖A−δ
θ x‖Xθ

� ‖D−δ
θ x‖Xθ

for all x ∈ R(Dδ
θ).

In particular Ḋ(A−δ
θ ) = Ḋ(D−δ

θ ) for all δ ∈ (0, 12
β−θ
β−α ).

A condition for a block operator matrix to generate a C0-semigroup of contractions 
has been discussed in Subsection 5.3. Conditions for the consistency of the family (Aθ)θ∈I

have been given in Lemma 6.4. Note that Theorem 6.9(2) complements Propositions 5.9
and 5.14 since it also holds in a non-Hilbertian setting.

Corollary 6.10 (Extrapolation of H∞-calculus for small θ). Let Assumption 6.2 be satis-
fied with Lθ = 0. Suppose that (Aθ)θ∈I is a consistent family of sectorial operators and 
that (6.7) holds. Let the following be satisfied for some γ ∈ I and ψ ∈ (0, π2 ]:

(a) Dθ has a bounded H∞-calculus of angle < ψ for all θ ∈ I;
(b) Xi,γ is a Hilbert space for i ∈ {1, 2};
(c) −Aγ generates a C0-contraction semigroup;
(d) Aγ is sectorial of angle < ψ.

Then there exists ε > 0 such that, for all |θ − γ| < ε, the operator Aθ has a bounded 
H∞-calculus of angle ωH∞(Aθ) ≤ ψ.

Proof. By Theorem 6.7, Aθ is R-sectorial for all |γ − θ| < ε for some ε > 0. Set γ±
def=

γ ± ε
2 . The claim follows by applying Theorem 6.9 to the families (Aθ)θ∈[γ,γ+) and 

(A−θ)θ∈[−γ,−γ−). �
6.3. Proof of Theorems 6.7 and 6.9

An important ingredient for our proofs here is Sneiberg’s lemma, cf. [103] and [106, 
Theorem 2.3 and Theorem 3.6]. It has been used already in the context of Lp-theory to 
extrapolate R-sectoriality, see [72].
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Proof of Theorem 6.7. Let us begin by noticing that, up to replacing (Aθ)θ∈I by 
(Âη)η∈[0,1] with Âη = Aα+η(β−α), we may assume I = [0, 1]. Then, one has for Mj,θ

defined in (6.1) that for all λ ∈ �Σψ, θ1, θ2 ∈ (0, 1) and j ∈ {1, 2},

Mj,θ1(λ)x = Mj,θ2(λ)x for all x ∈ Xj,θ1 ∩Xj,θ2 . (6.8)

To see this, recall that, by Lemma 6.4, (6.8) holds for all λ < 0. Thus, by the holomor-
phicity of the maps �Σψ � λ �→ Mj,θi(λ)x ∈ Xj,θ1 + Xj,θ2 for all x ∈ Xj,θ1 ∩Xj,θ2 and 
i ∈ {1, 2}, (6.8) holds even for all λ ∈ �Σψ.

To prove R-sectoriality by Theorem 4.1 it is enough to show the existence of ε ∈ (0, 1)
such that for j ∈ {1, 2}

for all |θ − γ| < ε, Mj,θ(λ) is invertible and R
(
Mj,θ(λ)−1 : λ ∈ �Σψ

)
< ∞. (6.9)

By assumption, the above statement holds for θ = γ. For θ �= γ, we use Sneiberg’s 
lemma, see [103], and here we will employ its quantitative version given in [106, Theorem 
2.3 and Theorem 3.6] (see also [30, Subsection 1.3.5]). To this end, fix N ≥ 1, and for a 
Banach space Y and a Rademacher sequence (εj)j≥1 we denote by εN (Y ) the space Y N

endowed with the norm

‖(xj)Nj=1‖εN (Y )
def= E

∥∥∥ N∑
j=1

εjxj

∥∥∥
Y
. (6.10)

By [50, Theorem 7.4.16], 
(
εN (Xθ)

)
θ∈[0,1] is a complex scale, i.e.

[εN (Xθ1), εN (Xθ2)]δ = εN (Xθ1(1−δ)+δθ2) for all θ1, θ2 ∈ [0, 1], δ ∈ (0, 1). (6.11)

By K-convexity of X0 and X1, and the fact that X(θ) = [X0, X1]θ, the constants in the 
above identification are independent of N ≥ 1.

Next fix (λk)Nk=1 ⊆ �Σψ and j ∈ {1, 2}. Let

Tj : εN (Xj,0) + εN (Xj,1) → εN (Xj,0) + εN (Xj,1)

be given by

Tjx =
(
Mj,0(λk)xk,0 + Mj,1(λk)xk,1

)N
k=1 (6.12)

where x = (xk)Nk=1, xk = xk,0 + xk,1 and xk,0 ∈ Xj,0, xk,1 ∈ Xj,1. By (6.8), the right 
hand side in (6.12) does not depend on the decomposition xk = xk,0 +xk,1 and therefore 
Tj is well defined.

Since Tjx =
(
M

(i)
j (λk)x(i)

k

)N
k=1 for all x = (xk)Nk=1 ∈ εN (X(i)

j ) and D is R-sectorial of 
angle ≤ ψ,
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‖Tj‖L (εN (Xj,i)) ≤ 1 + cAcDNR
ψ (Ai)NR

ψ (Di), for all i ∈ {0, 1}, (6.13)

where we also used Assumption 6.2 with Lθ = 0.
By complex interpolation and (6.11), there exists C > 0 independent of N ≥ 1, the 

choice of (λk)Nk=1 ⊆ �Σψ and θ ∈ (0, 1) such that∥∥∥Tj |εN (Xj,θ)

∥∥∥
L (ε(Xj,θ)

≤ C. (6.14)

By (6.8) and the density of the embedding Xj,0 ∩Xj,1 ↪→ [Xj,0, Xj,1]θ,

Tj |ε(Xj,θ)x =
(
M

(θ)
j (λk)xk)Nk=1 for all x = (xk) ∈ εN (Xj,θ) and θ ∈ (0, 1). (6.15)

Combining (6.15), Theorem 4.1 and the R-sectoriality of Aγ , one can check that Tj |ε(Xj,γ)
is invertible and the norm of its inverse is independent of N ≥ 1 and the choice of 
(λk)Nk=1 ⊆ �Σψ. Thus, by Sneiberg’s lemma and (6.14), there exist ε ∈ (0, 1), C ′ > 0
independent of N ≥ 1 and the choice of (λk)Nk=1 ⊆ �Σψ such that Tj |εN (Xj,θ) is invertible 
for all |θ − γ| < ε and the norm of its inverse is ≤ C ′.

By (6.15), the arbitrariness of N ≥ 1 and (λk)Nk=1, one can check that Mj(λ) is 
invertible for all λ ∈ �Σψ and (6.9) holds. �
Proof of Theorem 6.9. As in the proof of Theorem 6.7, we may assume I = [0, 1].

(1): Fix θ ∈ (0, 1). It is enough to show that Aθ has a bounded H∞-calculus. The 
bound on the angle follows from [57, Corollary 3.9] and the fact that ωR(A0) = ω(D)
since X0 is a Hilbert space. The idea is to apply [76, Theorem 1] to Dθ and Aθ extending 
the argument in [76, Corollary 7]. Note that, by the consistency of (Dθ)θ∈I and the fact 
that Dk has a bounded H∞-calculus for k ∈ {0, 1}, it follows that Dθ has a bounded 
H∞-calculus as well (cf. [57, Proposition 4.9]).

Let ϕ(z) = ψ(z) = z(1 + z)−2 and fix γ ∈ (0, 12 ). By Propositions 5.9, 5.14 and [76, 
Proposition 3], for all � ∈ Z,

sup
s,t∈[1,2]

sup
j∈Z

∥∥∥ϕ(s2j+�A0)ψ(t2jD0)
∥∥∥
X0

� 2−γ|�|,

sup
s,t∈[1,2]

sup
j∈Z

∥∥∥ψ(t2jD0)ϕ(s2j+�A0)
∥∥∥
X0

� 2−γ|�|,
(6.16)

where we also used that X0 is a Hilbert space.
By [57, Lemma 3.3] and the R-sectoriality of D1 and A1 we get

sup
�∈Z

sup
s,t∈[1,2]

R
(
ϕ(s2j+�A1)ψ(t2jD1) : j ∈ Z

)
< ∞,

sup sup R
(
ψ(t2jD1)ϕ(s2j+�A1) : j ∈ Z

)
< ∞.

(6.17)
�∈Z s,t∈[1,2]
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Reasoning as in the proof of Theorem 6.7, by consistency of (Aθ)θ∈I and the Dunford 
representation of φ(ξA), ϕ(ηB) for η, ξ > 0 (see (2.7)), one can check that the operators 
ϕ(s2j+�Ak)ψ(t2jDk) and ϕ(s2j+�Ak)ψ(t2jDk) for k ∈ {0, 1} coincide on X0 ∩X1, and 
therefore we can interpolate the bounds (6.16)-(6.17) obtaining

sup
s,t∈[1,2]

R
(
ϕ(s2j+�Aθ)ψ(t2jDθ) : j ∈ Z

)
� 2−γ(1−θ)|�|, (6.18)

sup
s,t∈[1,2]

R
(
ψ(t2jDθ)ϕ(s2j+�Aθ) : j ∈ Z

)
� 2−γ(1−θ)|�|, (6.19)

where we have used [50, Proposition 8.4.4] and the fact that X0, X1 have non-trivial type 
and therefore are K-convex due to Pisier’s theorem (see e.g. [50, Theorem 7.4.23]). By 
K-convexity of Xk for k ∈ {0, 1}, (6.19) and [50, Proposition 8.4.1] we also get

R
((

ϕ(s2j+�Aθ)
)∗(

ψ(t2jDθ)
)∗ : j ∈ Z

)
� 2−γ(1−θ)|�|. (6.20)

Recall that Dθ has a bounded H∞-calculus. By (6.18) and (6.20), Aθ has a bounded 
H∞-calculus due to [76, Theorem 1].

(2): [76, Theorem 1] and (6.18), (6.20) also yield, for all δ ∈ (0, γ(1 − θ)),

R(Aδ
θ) = R(Dδ

θ) and ‖A−δ
θ x‖Xθ

� ‖D−δ
θ x‖Xθ

for all x ∈ R(Dδ
θ).

The conclusion follows by letting γ ↑ 1
2 and recalling that α = 0, β = 1. �

7. Applications

The analysis of quasi- or semi-linear problems in maximal Lp
t -regularity spaces typi-

cally comes in two steps: First a linearization is considered for which one has to prove 
maximal Lp

t -regularity. Then, as a second step, Lipschitz estimates on the non-linearities 
are needed in certain interpolation spaces to apply Banach’s fixed point theorem, see e.g. 
[5,6,61,80,95,96]. In this section we focus on properties of the linearized problems which 
are relevant to characterize the relevant interpolation spaces, and which are also helpful 
for the stability analysis for the non-linear problem.

We begin by deriving some consequences of our results for triangular matrices. These 
results are used in Subsections 7.2–7.5.

7.1. The block triangular case

In this subsection we consider a block triangular diagonally dominant operator matrix 
A, this means that C = 0, then the statements in Sections 4 and 5 simplify con-
siderably. Using classical results for bounded perturbations, one can include the case 
C ∈ L (X1, X2) as well.
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Corollary 7.1. Let

A =
[
A B
0 D

]
, with B : D(D) ⊆ X2 → X1, and ‖By‖X1 � ‖Dy‖X2 y ∈ D(D).

(1) If A and D are sectorial with angles ω(A) and ω(D), respectively, then A is sectorial 
with angle ω(A) ≤ ω(A) ∨ ω(D).

(2) If A and D are R-sectorial with angles ωR(A) and ωR(D), respectively, then A is 
R-sectorial with R-sectoriality angle ωR(A) ≤ ωR(A) ∨ ωR(D).

(3) If A and D have a bounded H∞-calculus of angle ωH∞(A) and ωH∞(D), respectively, 
and there exist δ > 0, such that

R(B) ⊆ R(Aδ) and ‖A−δBy‖X1 � ‖D1−δy‖X2 for all x ∈ D(D), or

B(D(D1+δ)) ⊆ D(Aδ) and ‖AδBy‖X1 � ‖D1+δy‖X2 for all y ∈ D(D1+δ).

Then A has a bounded H∞-calculus on X of angle ≤ ωH∞(A) ∨ ωH∞(D).

Proof. In the situation of Corollary 7.1 Assumption 3.1 holds with L = 0. Statements
(1) and (2) follow from Proposition 4.8, and statement (3) follows from Theorem 5.6, 
where one has in each case ε = 0. �

The diagonally dominant case with A = 0 has also a particular structure, that is,

A =
[

0 B
C D

]
,

where by a bounded perturbation argument one can include also A ∈ L (X1). Appli-
cations for this case are the artificial Stokes system in Subsection 7.4 and second order 
Cauchy problems with strong damping in Subsection 7.5.

Corollary 7.2. Let A be bounded, D be a sectorial operator, and A satisfy Assumption 3.1. 
Then the following hold.

(1) For all ψ ∈ (ω(D), π), there exists ν ≥ 0 such that ν + A is sectorial with angle 
ω(ν + A) ≤ ψ.

(2) If D is R-sectorial (resp. has a bounded H∞-calculus), then (1) holds with ω(ν +A)
replaced by ωR(ν + A) (resp. ωH∞(ν + A)).

Remark 7.3. The condition A ∈ L (X1) together with A diagonally dominant implies 
already that C : D(A) = X1 → X2 is bounded, while B can be unbounded. Note that, 
comparing Corollary 7.2(2) with ω replaced by ωH∞ and the results in Section 5, then 
one observes that for A′ below Assumptions 5.1(+) trivially holds while A can violate 
both Assumptions 5.1(±), compare Remark 5.8.
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Proof. By assumption A ∈ L (X1), and by Remark 7.3 we infer C ∈ L (X1, X2). Con-
sidering

A′ def=
[
0 B
0 D

]
,

by Remark 7.3 one can apply Corollary 7.1. The statement follows since A is a bounded 
perturbation of A′. �
7.2. Simplified Ericksen–Leslie model for nematic liquid crystals

The continuum theory of liquid crystals was developed by Ericksen [33] and Leslie [81]. 
A simplified model has been introduced by Lin and Liu [82], and here we consider the 
following simplified model normalizing all constants to one⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu + (u · ∇)u− Δu + ∇π = −div([∇d]�∇d) in R+ ×O,

∂td + (u · ∇)d = Δd + |∇d|2d in R+ ×O,

divu = 0 in R+ ×O,

u = 0 and ∂nd = 0 in R+ × ∂O,

(7.1)

with initial data u(0) = u0 and d(0) = d0. Here u : R+ × O → R3 denotes the velocity 
field of the fluid, π : R+ × O → R the pressure, and d : R+ × O → R3 denotes the 
molecular orientation of the liquid crystal at the macroscopic level referred to as the 
director field. This physical interpretation of d imposes the condition |d| = 1 in R+ ×O. 
Recent developments and the literature on this subject are discussed by Hieber and Prüss 
in the survey [45].

The simplified Ericksen-Leslie model (7.1) has been investigated by Hieber, Nesen-
sohn, Prüss, and Schade in [44] as a quasi-linear evolution equation in maximal Lq

t -Lp
x-

regularity spaces for a smooth bounded domain O ⊆ R3, see also e.g. [21] for a semilinear 
approach where the term div([∇d]�∇d) is estimated as non-linear right hand side in a 
negative Sobolev space. To define the relevant operator introduced in [44] to linearize 
(7.1) we need some preparations and we assume that O ⊆ R3 is a bounded C2-domain. 
Let p ∈ (1, ∞), and set

Lp
σ(O) def= {u ∈ Lp(O)3 : divu = 0 in D′(O) and n · u|∂O = 0},

where n denotes the exterior normal vector field on ∂O. Recall also that n · u ∈ D′(∂O)
as divu = 0, see e.g. [38, Theorem III.2.2]. Then we denote by Pp : Lp(O)3 → Lp

σ(O)
the Helmholtz projection, and by the PpΔp the Stokes operator, i.e.

D(PpΔp)
def= {u ∈ H2,p(O)3 ∩ Lp

σ(O)3 : u = 0 on ∂O},
PpΔp : D(PpΔp) ⊆ Lp

σ(O) → Lp
σ(O), u �→ Pp(Δu),
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see e.g. [96, Section 7.3]. Also, we define the Neumann Laplacian ΔN,p on Lp(O)3 as the 
operator u �→ Δu with domain

D(ΔN,p)
def= {u ∈ H2,p(O)3 : ∂nu|∂O = 0},

compare e.g. [96, Section 7.4]. Noticing that [div([∇d]�∇d)]i = (∂id�)Δd�+(∂kd�)(∂2
i,kd�)

(here, the summation over repeated indexes is employed), the linearization of (7.1) for 
fixed d is given by

AEL
p (d) =

[
−PpΔp PpB(d)

0 −ΔN,p

]
, [B(d)u]i = (∂id�)Δu� + (∂kd�)(∂2

i,ku�), (7.2)

for i ∈ {1, 2, 3} on

X = Lp
σ(O) × Lp(O)3 with domain D(AEL

p (d)) = D(PpΔp) × D(ΔN,p).

The main result of this subsection reads as follows.

Proposition 7.4. Let O ⊆ R3 be a bounded C2-domain. Let p ∈ (1, ∞) and AEL
p (d) be as 

in (7.2). Then for all ν > 0 the following hold.

(1) If d ∈ W 1,∞(O)3, then ν + AEL
p (d) is R-sectorial of angle 0.

(2) If d ∈ C1,α(O)3 for some α > 0, then ν + AEL
p (d) has a bounded H∞-calculus of 

angle 0.

The constants in (1) (resp. (2)) depend on d only through ‖d‖W 1,∞ (resp. ‖d‖C1,α).

Remark 7.5. For the deterministic setting in [44] it has been sufficient to prove maximal 
Lq
t -Lp

x-regularity for AEL
p (d) to solve the non-linear problem. Proposition 7.4(2) also 

implies stochastic maximal regularity, and therefore the quasilinear approach to (7.1)
developed in [44] – with the regularity assumptions as in [44, Remark 4.2] – can be 
extended to the stochastic setting using the results by Veraar and the first author in 
[5,6] to solve non-linear SPDEs.

Proof of Proposition 7.4. To prove Proposition 7.4(1) we apply Corollary 7.1(2). Note 
that, for all u ∈ D(ΔN,p),

‖PpB(d)u‖Lp
σ(O) � ‖B(d)u‖Lp(O)3 � ‖d‖W 1,∞(O)3

(
sup

i,j∈{1,2,3}
‖∂2

i,ju‖Lp(O)3
)

� ‖d‖W 1,∞(O)3‖(ν − ΔN,p)u‖Lp(O)3 ,

where in the last inequality we have used that ν−ΔN,p is invertible for all ν > 0. Thus, 
ν + AEL(d) is R-sectorial of angle 0 by Corollary 7.1(2).
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To prove Proposition 7.4(2), we apply Corollary 7.1(3) in the (−)-case. Recall that 
PpΔp is invertible and therefore R((−PpΔp)γ) = Lp

σ(O) for all γ ∈ (0, 1). Moreover, since 
O is a C2-domain, (PpΔp)∗ = Pp′Δp′ , where 1

p + 1
p′ = 1, and

Ḋ((−PpΔp)−γ) =
(
Ḋ((−Pp′Δp′)γ)

)∗
=
(
H2γ,p′

(O)3 ∩ Lp′

σ (O)
)∗ for all γ ∈

(
0, 1

2p

)
.

(7.3)

By [57, Proposition 9.14] and interpolation, Pp extends uniquely to a map

Pp : H−2γ,p(O)3 → Ḋ((−PpΔp)−γ) for all γ ∈
(
0, 1

2p

)
(7.4)

where we used that Ḋ((−ΔD,p)−γ) = H−2γ,p(O)3 for all γ ∈ (0, 1
2p ) by [100]. Here, as in 

[57, Proposition 9.14], ΔD,p denotes the Dirichlet Laplacian.
Since D(ν − ΔN,p) ↪→ H2,p(O)3 for all ν > 0,

D((ν − ΔN,p)γ) ↪→ H2γ,p(O)3 for all γ ∈ (0, 1). (7.5)

As above, without loss of generality we assume α ∈ (0, 1p ). With this preparation, for all 
ν > 0 and u ∈ D((ν − ΔN,p)1−β) with β < α

2 , we can estimate

‖(ν − PpΔp)−β [PpB(d)u]‖Lp
σ(O)

� ‖(−PpΔp)−β [PpB(d)u]‖Lp
σ(O)

� ‖PpB(d)u‖Ḋ((−PpΔp)−β)

(7.4)
� ‖B(d)u‖H−2β,p(O)3

(7.5)
� ‖d‖C1,α(O)3‖(ν − ΔN,p)1−βu‖Lp(O)3 ,

(7.6)

where we also used that Cα maps are pointwise multipliers on H−2β,p. Now, Corol-
lary 7.1(3) in the (−)-case ensures that ν + AEL

p (d) has a bounded H∞-calculus for all 
ν > 0 with a corresponding estimate in terms of ‖d‖C1,α(O)3 . �
Remark 7.6. To prove Proposition 7.4(2) one can also employ Corollary 7.1 in the (+)-
case. However, one has then to assume that O is a C2,α-domain for some α > 0. Then, 
by elliptic regularity, one can check that

Pp : Hs,p(O)3 → Hs,p(O)3 ∩ Lp
σ(O) for all s ∈

[
0, 1

p

)
. (7.7)

Without loss of generality, we assume α ∈ (0, 1p ). By Proposition 5.9, for all β ∈ (0, α/2)
and ν > 0,
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D((ν − PpΔp)β) = D((−PpΔp)β) = H2β,p(O)3 ∩ Lp
σ(O), (7.8)

D((ν − ΔN,p)β) = H2β,p(O)3. (7.9)

The former, the fact that O ∈ C2,α and elliptic regularity yield for all β ∈ (0, α2 ),

D((ν − ΔN,p)1+β) =
{
u ∈ H2+2β,p(O)3 : ∂nu|∂O = 0

}
. (7.10)

Thus, for all β ∈ (0, α2 ) and u ∈ D((ν − ΔN,p)1+β),

‖(ν − PpΔp)β [PpB(d)u]‖Lp
σ(O)

(7.8)
� ‖PpB(d)u‖H2β,p(O)3∩Lp

σ(O)

(7.7)
� ‖B(d)u‖H2β,p(O)3

(i)
� ‖d‖C1,α(O)3‖u‖H2+2β,p(O)3

(7.10)
� ‖d‖C1,α(O)3‖(ν − ΔN,p)1+βu‖Lp(O)3

(7.11)

where in (i) we use as before that Cα functions are pointwise multipliers on H2β,p ones. 
The estimate (7.11) ensures that Corollary 7.1 in the (+)-case can be applied.

The argument in the above proof can be extended to prove the boundedness of the 
H∞-calculus for μ +AEL

p (d) for some μ ≥ 0 in case −PpΔp is replaced by −PpAp where 
Ap(x)u =

∑3
i,j=1 a

i,j(x)∂2
i,ju, ai,j ∈ Cα(O)3×3 and ai,j are uniformly elliptic. To see 

this, note that in the above proof the Stokes operator plays a role only through (7.8). 
The latter also holds if −PpΔp is replaced by μ −PpAp provided the latter operator has a 
bounded H∞-calculus for μ large enough. To prove the latter, recall that μ −PpAp is R-
sectorial on Lp

σ(O) of angle < π/2 for μ large enough by [96, Chapter 7]. Thus it also has 
a bounded H∞-calculus by Theorem A.1 applied with A = −PpΔp and B = μ − PpAp

(cf. (7.8), (7.9) and (7.3)).

7.3. The weak Keller-Segel operator

Keller-Segel equations arise in the mathematical modeling of chemotaxis, see e.g. 
[46–48,78] for surveys and further literature. Here, we consider the classical Keller-Segel 
system given by ⎧⎪⎪⎨⎪⎪⎩

∂tu− Δu + ∇ · (u∇v) = 0, in R+ ×O,

∂tv − Δv + v − u = 0, in R+ ×O,

u(0) = u0, v(0) = v0, in R+ ×O,

(7.12)

where u : R+×O → R represents the density of a cell population and v : R+×O → R the 
concentration of a chemoattractant. We complement the above system with non-linear 
boundary conditions
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∂nu− u ∂nv = 0, and v = 0, in R+ × ∂O, (7.13)

where ∂n denotes the outer normal derivative at the boundary.
In applications to (stochastic) partial differential equations, the weak setting has two 

advantages. Firstly, it (typically) requires less regularity assumption on ∂O compared 
to the strong setting, and secondly, in the stochastic framework it also requires minimal 
compatibility conditions for the noise. To obtain the weak formulation of (7.12)-(7.13), 
we multiple the first equation in (7.12) by ϕ ∈ C∞(O). Using that∫

O

[−Δu + ∇ · (u · ∇v)]ϕ dx (7.13)=
∫
O

[∇u · ∇ϕ− u∇v · ∇ϕ] dx,

one can linearize (7.12)-(7.13) in the weak setting by writing for U = (u, v)T

U ′ + AKS
p (u)U = 0, U(0) = U0, where AKS

p (z) def=
[
−Δw

N,p Bp(z)
−1 1 − Δw

D,p

]

on X0 = (W 1,p′(O))∗ × (W 1,p′

0 (O))∗ with D(AKS
p (z)) def= W 1,p(O) ×W 1,p

0 (O). Here, for 
all (u, v), (u′, v′) ∈ W 1,p(O) ×W 1,p

0 (O),

〈u′,Δw
N,pu〉

def= −
∫
O

∇u · ∇u′ dx, 〈v′,Δw
D,pv〉

def= −
∫
O

∇v · ∇v′ dx,

〈u′,Bp(z)v〉 def= −
∫
O

z∇v · ∇u′ dx where z ∈ L∞(O).

Proposition 7.7. For all p ∈ (1, ∞) the following hold.

(1) If O ⊆ Rd is a bounded C1-domain and z ∈ L∞(O), then there exists ν ≥ 0 such 
that ν + AKS

p (z) is R-sectorial of angle 0.
(2) If O is a C1,α-domain and z ∈ Cα(O) for some α > 0, then there exists ν ≥ 0 such 

that ν + AKS
p (z) has a bounded H∞-calculus of angle 0.

The constants in (1) (resp. (2)) depend on z only through ‖z‖L∞(O) (resp. ‖z‖Cα(O)).

Proof. By a standard result for bounded perturbations (see e.g. [96, Corollary 3.3.15 
and Proposition 4.4.3]), it suffices to show (1)-(2) for AKS

p (z) replaced by

Âp(z)
def=
[
1 − Δw

N,p Bp(z)
0 2 − Δw

D,p

]
with D(Âp(z)) = D(AKS

p (z)).

Let us recall that by [11, Theorem 11.5] 1 − Δw
N,p and 2 − Δw

D,p have a bounded H∞-
calculus of angle 0. In particular, they are also R-sectorial of angle 0. So, (1) follows 
immediately from Corollary 7.1(2).
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The claim (2) follows from Theorem 6.9 for p �= 2 if Corollary 7.1(3) applies to 
the case p = 2. Theorem 6.9 is then applicable. Its assumptions are indeed satisfied: 
First, as Âp(z) for p ∈ (1, ∞) is a consistent family of operators, (6.7) holds since 
D̂p = diag{1 − Δw

N,p, 2 − Δw
D,p} and Âp(z) are boundedly invertible. Second, by the 

previous argument Âp(z) is R-sectorial for p ∈ (1, ∞). Third, Corollary 7.1(3) and 
ω(Â2(z)) = 0 imply by e.g. [50, Corollary 10.4.10 and Theorem 10.4.22] that Â2(z)
generates a contraction semigroup w.r.t. an equivalent Hilbertian norm.

To apply Corollary 7.1(3) for p = 2, we check the condition for the (+)-case of (3), 
that is,

B2(z) : D((2 − Δw
D,2)1+β) → D((1 − Δw

N,2)β) is bounded for some β > 0. (7.14)

Since 1−Δw
N,2 has a bounded H∞-calculus and by [16, Theorem 4.6.1 and Corollary 

4.5.2], we have for all γ ∈ (0, 1/2) that

D((1 − Δw
N,2)γ) = [(H1(O))∗, H1(O)]γ

= [(H1(O))∗, L2(O)]2γ
=
(
[H1(O), L2(O)]2γ

)∗ =
(
H1−2γ(O)

)∗
.

Since 2 − Δw
D,2 has a bounded H∞-calculus as well, D((2 − Δw

D,2)γ) = H−1+2γ(O) for 
all γ ∈ (0, 1/2). By elliptic regularity and the fact that O is a C1,α-domain we have, for 
all 2β ∈

(
0, α ∧ 1

2
)
,

D((2 − Δw
D,2)1+β) =

{
v ∈ H1

0 (O) : Δw
Dv ∈ H−1+2β(O)

}
= H1+2β

0 (O).

With this at hand, we prove (7.14). Fix 0 < β < η < α
2 ∧ 1

4 . For any u ∈ H1−2β(O) there 
exists an extension U ∈ H1−2β(Rd) such that U |O = u and ‖U‖H1−2β(Rd) � ‖u‖H1−2β(O)
(with implicit constant independent of u). Similarly, choose Z ∈ Cη(Rd) such that 
Z|O = z and ‖Z‖Cη(Rd) � ‖z‖Cη(O). Let E0 be the extension by 0 outside O. Then, for 
all v ∈ C∞

0 (O) and v as above,

〈u,B2(z)v〉 =
∣∣∣ ∫
O

z∇u · ∇v dx
∣∣∣ = ∣∣∣ ∫

Rd

Z∇U · ∇(E0v) dx
∣∣∣

� ‖Z∇(E0v)‖H2β(Rd)‖U‖H1−2β(Rd)

� ‖z‖Cη(O)‖v‖H1+2β(O)‖u‖H1−2β(O).

By density of C∞
0 (O) in H1+β

0 (O) and taking the supremum over all ‖u‖H1−2β(O) ≤ 1, 
(7.14) follows. �
Remark 7.8. The boundary conditions considered here have been discussed recently in 
[37]. A variety of zero-flux boundary conditions boundary is discussed in [46, Section 2], 



A. Agresti, A. Hussein / Journal of Functional Analysis 285 (2023) 110146 53
and there are also Keller-Segel models with pure Dirichlet or Neumann boundary con-
ditions and combinations of the various cases. It seems that the above proof can be 
adapted to these situations by using different extension operators.

7.4. Artificial compressible Stokes system

The artificial compressible Stokes system has been introduced in the context of steady 
state solutions to the Navier-Stokes equations, see [19,20,107–109]. It is formally given 
by

AAS =
[

0 1
ε2 div

∇ −Δ + vs · ∇ + (∇vs)T
]
, ε > 0, (7.15)

with a given real valued vector field vs. The spectral properties of this operator have 
been investigated recently in detail for the Hilbert space case in [56,110]. However, the 
Lp-theory for this operator has not been studied so far. Therefore, we consider here 
AAS

p = AAS in the space X = X1 ×X2 with

X1 = H1,p(O) and X2 = Lp(O)3

for p ∈ (1, ∞) with domain

D(AAS
p ) = H1,p(O) ×

(
H2,p(O)3 ∩H1,p

0 (O)3
)
.

It turns out that Corollary 7.2 is applicable here, and it guarantees some basic operator 
theoretical properties by purely perturbative methods and properties of the Laplacian in 
Lp-spaces. Using the particular structure of the off-diagonal perturbation more detailed 
properties can be derived as in [56,110] for p = 2.

Proposition 7.9. Let O be a bounded C2 domain in R3. If vs ∈ H1,q(O)3 for p, q ∈ (1, ∞)
with q > 3/2 and q ≥ p, then for each ψ > 0 there exists μ ≥ 0 such that the shifted 
artificial Stokes system μ + AAS

p has a bounded H∞-calculus of angle ≤ ψ.

Remark 7.10. For the case vs ≡ 0 one can consider the operator

M2(λ) = 1 − ε2

λ ∇div(λ− Δ)−1, λ ∈ C \ (σ(−Δ) ∪ {0}).

This is related to the second Schur complement of AAS
p

S2(λ) = (λ− Δ) − ε2

λ ∇div, λ ∈ C \ (σ(−Δ) ∪ {0}), D(S2(λ)) = D(D)

which is in fact – up to a shift – a Lamé operator studied for instance in [23,71,87]. 
Following the proof of [87, Theorem 4.1], S2(λ) is boundedly invertible on Lp(O) for 
λ > 0. Hence M2(λ) = S2(λ)(λ −D)−1 is a closed bijective operator and hence boundedly 
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invertible. In particular, one can choose in this situation any μ > 0. The case with vs ≡ 0
is comparable to the situation analyzed in [39].

Proof of Proposition 7.9. For vs ∈ H1,q(O)3 with q > 3/2 and q ≥ p one has

‖vs · ∇v‖Lp ≤ ‖vs‖Lsp‖v‖H1,rp � ‖vs‖H1,q‖v‖H2−δ,p

using Hölder’s inequality and Sobolev embeddings with

s = 3q
p(3−q) ,

1
s + 1

r = 1, δ = 3
q ,

and

‖(∇vs)T v‖Lp ≤ ‖vs‖H1,sp‖v‖Lrp � ‖vs‖H1,q‖v‖H2−δ,p ,

here using Hölder’s inequality and Sobolev embeddings with

s = p
q ,

1
s + 1

r = 1, δ = 2 − 3
q .

Since the operator D0 = −Δ with D(D0) = H2,p(O)3 ∩H1,p
0 (O)3 has a bounded H∞-

calculus of angle zero, and as shown by the estimate above vs · ∇ + (∇vs)T is a lower 
order perturbation, there exists a μ0 ≥ 0 such that μ0 + D has a bounded H∞-calculus 
of angle zero. Therefore, the operator AAS

p is diagonally dominant as

‖∇p‖Lp(O)3 ≤ ‖p‖H1,p(O)3 and ‖ 1
ε2 div v‖H1,p(O) ≤ 1

ε2 ‖v‖H2,p(O)3 ,

and by Corollary 7.2 it follows that there is a μ ≥ μ0 such that μ + A has a bounded 
H∞-calculus of angle zero. �
7.5. Second order Cauchy problems with strong damping

Second order Cauchy problems of the form

∂2
t u + T∂tu + Su = f, u(0) = u0, ∂tu(0) = v0 (7.16)

for operators S and T in Y can be re-written as a first order Cauchy problem by formally 
setting v = ∂tu to obtain

ASD =
[

0 −1
S T

]
. (7.17)

Classical examples are d’Alembert’s wave equation, where T = 0 and S = −Δ, and the 
beam equation where T = 0 and S = Δ2. These operators are not diagonally domi-
nant and therefore cannot be treated by the methods presented here, and in fact these 
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equations are not parabolic. In [99] for S with D(S) ⊆ Y the case where T = S1/2, 
and X1 = D(S1/2) while X2 = Y is considered. This is parabolic, but not diagonally 
dominant, and most of the damped wave and plate equations are rather lower domi-
nant, that is, D(A) = D(C) × D(D), compare [111, Definition 2.2.1], than diagonally 
dominant. Only when one adds a relatively strong damping such as a Kelvin-Voigt-type 
damping, then one has that T and S are of the same order. The following consequence 
of Corollary 7.2 captures such situations. In the literature there are many works on the 
regularity properties of solutions to plate or wave equations, but there seems to be little 
known about the H∞-calculus of such operators.

Corollary 7.11. Let T and S be operators in a Banach space Y . Assume that T is closed 
and densely defined and let S be T -bounded, i.e. there exist c0, L0 > 0 such that

‖Sy‖Y ≤ c0‖Ty‖Y + L0‖y‖Y for all y ∈ D(T ).

Then the operator ASD with strong damping as in (7.17) on the space

X = D(T ) × Y with D(ASD) = D(T ) × D(T )

is diagonally dominant. Moreover, if T is sectorial, then for all ψ ∈ (ω(T ), π) there exists 
μ ≥ 0 such that ASD + μ is sectorial of angle ≤ ψ. The respective statement holds for 
R-sectoriality and for the boundedness of the H∞-calculus.

Example 7.12. An example is the Kelvin-Voigt plate-like equation

∂2
t u + εΔ2∂tu + Δ2u = f, u(0) = u0, ∂tu(0) = v0, ε > 0,

discussed in [79, Section 5.5]. Setting ∂tu = v, it translates to

ASD =
[

0 −1
Δ2 εΔ2

]
which following Corollary 7.11 can be considered in

H4,p(Rd) × Lp(Rd) with D(ASD) = H4,p(Rd) ×H4,p(Rd).

Moreover, by Corollary 7.11, for each ψ > 0 there exists μ ≥ 0 such that μ + ASD has a 
bounded H∞-calculus of angle ≤ ψ.

Considering a smooth bounded domain, one can still apply Corollary 7.11 as long as 
the boundary conditions assure that the bi-Laplacian Δ2 is sectorial, R-sectorial, or has 
a bounded H∞-calculus, respectively.
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Example 7.13. The strongly damped wave equation given in [79, Section 3.8] is

∂2
t u− εΔ∂tu− Δu = f, u(0) = u0, ∂tu(0) = v0, ε > 0.

This yields to

ASD =
[

0 −1
−Δ −εΔ

]
which by Corollary 7.11 can be considered in

H2,p(Rd) × Lp(Rd) with D(ASD) = H2,p(Rd) ×H2,p(Rd).

Corollary 7.11 also ensures that – up to a shift – ASD has a bounded H∞–calculus of 
arbitrary small angle.

As in Example 7.12, we may also consider smooth domains with suitable boundary 
conditions as long as the corresponding Laplacian −Δ is sectorial, R-sectorial or has 
bounded H∞–calculus with such boundary conditions, respectively.

Example 7.14. Consider a damped thermoelastic plate equation of the type

∂2
t u + εΔ2∂tu + Δ2u + Δθ = f,

∂tθ − Δθ − Δ∂tu = g,

u(0) = u0, ∂tu(0) = v0,

θ(0) = θ0,

where one couples to the Kelvin-Voigt plate-like equation above the temperature similar 
to [79, 3.11.1]. Then one obtains the first order system with

ASD =
[ 0 −1 0

Δ2 εΔ2 Δ
0 −Δ −Δ

]
=
[
A B
C D

]
.

Here, one considers the operators A and D on the diagonal in X1 = H4,p(Rd) ×Lp(Rd)
and X2 = Lp(Rd) with D(A) = H4,p(Rd) ×H4,p(Rd) and D(D) = H2,p(Rd), respectively. 
Therefore, we consider the above operator ASD on the space X = X1×X2 and D(ASD) =
D(A) × D(D). Note that A was studied in Example 7.12.

The block B is D-bounded (more precisely, we have ‖Bv‖X1 � ‖v‖D(D) for all v ∈
D(D)), and the block C given by

∥∥∥ [0 −Δ]
[
u
v

] ∥∥∥
Lp(Rd)

= ‖Δv‖Lp(Rd)
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is a lower order term compared to A, and therefore by Corollary 5.7 – up to a shift 
– the operator A has a bounded H∞-calculus of arbitrarily small angle. Here again 
these operators on domains can also be considered along the same lines provided that 
the boundary conditions guarantee that the operators εΔ2 and −Δ have a bounded 
H∞-calculus.

7.6. Beris-Edwards Q-tensor model for liquid crystals

In the Beris-Edwards model of nematic liquid crystal, the molecular orientation is 
described by a so-called Q-tensor, a function

Q : R+ ×O → Sd
0,C

def= {Q ∈ Cd×d : Q = QT and trQ = 0},

and the fluid properties by the velocity field u : R+×O → R3. The Beris-Edwards model 
has been investigated recently by Wrona in [114] in maximal Lp

t -L2
x-spaces. There, a 

linearization of the full quasi-linear model in the strong setting for fixed Q0 : O → Sd
0,C

in the space

X = Lq
σ(O) ×H1,q(O;Sd

0,C)

is given by the block operator matrix

AEB
q (Q0) =

[
−PqΔ −PdivSξ(Q0)(1 − ΔN,q)

−S̃ξ(Q0)∇ 1 − ΔN,q

]
=
[
A B
C D

]
with domain

D(AEB
q (Q0)) =

(
H1,q

0 (O)3 ∩H2,q
σ (O)3

)
× {Q ∈ H3,q(O;Sd

0,C) : ∂nQ = 0}.

Here ∂nQ denotes the outer normal derivative of Q, Pq denotes the Helmholtz projection 
in Lq(O; R3), and

Sξ(Q)P = [Q,P ] − 2ξ
d P − ξ{Q,P} + 2ξ(Q + 1/d) tr(QP ),

S̃ξ(Q)P = [Q,PW ] − 2ξ
d PD − ξ{Q,PD} + 2ξ(Q + 1/d) tr(QPD),

with [Q, P ] = QP − PQ and {Q, P} = QP + PQ denoting the commutator and the 
anti-commutator, respectively, Q the complex conjugate of Q, and

PD = 1
2 (P + PT ) and PW = 1

2 (P − PT )

the symmetric and anti-symmetric part of P ∈ Sd
0,C respectively. The parameter ξ ∈ R

describes the ration of tumbling and aligning effects. First, we verify that these operators 
fit into the theory presented here.
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Lemma 7.15. Let q ∈ (1, ∞), O ⊆ R3 be a bounded domain with ∂O ∈ C3 and Q0 ∈
W 1,∞(O; Sd

0,C), then AEB
q (Q0) satisfies Assumption 3.1 with L = 0, and it satisfies the 

estimates in Assumption 5.1 (−).

Proof. Diagonal dominance follows from the estimates

‖BQ‖Lq � ‖(divSξ(Q0))(−Δ + 1)Q‖Lq + ‖(Sξ(Q0))div(−Δ + 1)Q‖Lq

� ‖Sξ(Q0)‖W 1,∞‖Q‖H3,q � ‖Q0‖W 1,∞‖DQ‖H1,q ,

‖Cu‖H1,q = ‖S̃ξ(Q0)∇u‖H1,q ≤ ‖S̃ξ(Q0)‖W 1,∞‖u‖H2,q � ‖Q0‖W 1,∞‖Au‖Lq

for u ∈ D(A) and Q ∈ D(D), where one uses that A = −PqΔ and D = 1 − ΔN,q are 
boundedly invertible. �

In [114, Corollary 3.2.7 and Theorem 3.2.16] it is shown that in the Hilbert space 
case q = 2 the operator As

2(Q0) is J -symmetric, sectorial, and it generates a contraction 
semigroup. We summarize this result without proof here.

Proposition 7.16 (The case q = 2). Let O ⊆ Rd be a bounded domain with ∂O ∈ C3 and 
Q0 ∈ W 1,∞(O; Sd

0,C), then AEB
2 (Q0) is an invertible J -symmetric and sectorial of angle 

< π/2.

Corollary 6.10 yields the boundedness of the H∞-calculus for q near 2.

Proposition 7.17 (R-sectoriality and bounded H∞-calculus near q = 2). Let O ⊆ Rd be 
a bounded domain with ∂O ∈ C3 and Q0 ∈ W 1,∞(O; Sd

0,C), then there exists δ > 0 such 
that for all q ∈ (2 − δ, 2 + δ) the operators AEB

q (Q0) are invertible and have a bounded 
H∞-calculus of angle less than π/2. In particular AEB

q (Q0) are R-sectorial of angle less 
than π/2.

Proof. The operators AEB
q (Q0) are a consistent family of operators for q ∈ (1, ∞) by 

Lemma 6.4(2) (note that (6.2) holds for q close to 2 by Remark 6.6). For q = 2 the 
statement follows by Corollary 5.13 and Proposition 7.16. Hence, using Lemma 7.15, one 
can now apply Corollary 6.10, and the statement follows. �
Remark 7.18. One can extend the above argument to prove the boundedness of the 
H∞-calculus for the Beris-Edwards operator on

Hs,q
σ (O) ×H1+s,q(O;Sd

0,C) for all q ∈ (2 − δ, 2 + δ) and s ∈ (−δ, δ),

for some δ > 0 assuming Q0 ∈ C1,α(O) with α > 0.
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7.7. A differential operator of Beris-Edwards type

In this subsection we study the following differential operator on X = H−1,p(Rd) ×
Lp(Rd)d

AΔ
p

def=
[
1 − Δ div(1 − Δ)
∇ 1 − Δ

]
with D(AΔ

p ) = H1,p(Rd) ×H2,p(Rd)d (7.18)

where p ∈ (1, ∞). This differential operator has a structure similar to the one studied in 
Subsection 7.6 which arises in the study of Beris-Edwards model for liquid crystals. In 
contrast to the latter, AΔ

p allows us to give more direct computations and therefore is 
more suited for illustrative purposes.

Let us denote by Δs
p and Δw

p the realization of the Laplace operator on Lp(Rd) and 
H−1,p(Rd), respectively. Thus AΔ

p is a block operator matrix with the choice

A = 1 − Δw
p , B = div(1 − Δs

p), C = ∇, D = 1 − Δs
p,

where Δs
p in the definition of B and D acts component-wise on H2,p(Rd)d.

Proposition 7.19. Let p ∈ (1, ∞). Then AΔ
p has a bounded H∞-calculus of angle 0. 

Moreover, for all β ∈
(
−
(
(1 − 1

p ) ∨ 1
p

)
, 1
]
,

Ḋ((AΔ
p )β) = H−1+2β,p(Rd) ×H2β,p(Rd)d. (7.19)

Proof. It is easy to check that AΔ
p is diagonally dominant, and it does not fit into the 

special cases analyzed in Subsection 7.1. For the reader’s convenience we split the proof 
into several steps.

Step 1: AΔ
p is R-sectorial of angle 0. Fix ψ ∈ (0, π). By Theorem 4.1 and the fact that 

(1 − Δ)s/2 : Hβ+s,p(Rd) → Hβ,p(Rd) is an isomorphism for all s, β ∈ R, it is enough to 
show that

M1(λ) def= 1 − div(1 − Δ)((λ− 1) + Δ)−1∇((λ− 1) + Δ)−1

= 1 − Δ(1 − Δ)((λ− 1) + Δ)−2 ∈ L (Lp(Rd)),

is invertible for all λ ∈ �Σψ and

R(M1(λ)−1 : λ ∈ �Σψ) < ∞. (7.20)

To check (7.20), it is enough to check that the symbol of (M1(λ))−1 satisfies the Lizorkin 
condition (see e.g. [96, Theorem 4.3.9]). Note that (M1(λ))−1 has symbol

m̃λ(ξ) def=
(
1 + |ξ|2(1 + |ξ|2)

2 2

)−1
(λ− 1 − |ξ| )
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= (λ− 1 − |ξ|2)2
(λ− 1 − |ξ|2)2 + |ξ|2(1 + |ξ|2) for all ξ ∈ Rd.

By standard computations, one can check that there exists C > 0 independent of λ, ξ
such that

sup
{
|ξα∂α

ξ m̃λ(ξ)| : α = (α1, . . . , αd) such that αk ∈ {0, 1}
}
≤ C.

Thus (7.20) follows from [96, Theorem 4.3.9].
Step 2: Boundedness of the H∞-calculus. The claim of this step can be proven also 

by employing Theorem 6.9 and Proposition 5.11. Indeed, by Theorem 6.9 and Step 1, 
it is enough to show that AΔ

2 has a bounded H∞-calculus. Note that the consistency 
follows from Lemma 6.4 and Step 1. Since Δw

2 and Δs
2 generate C0–semigroup of con-

tractions, by Theorem 6.9 and Proposition 5.11, it is enough to check skew-symmetry as 
in Remark 5.12 with γ = (4π2)−1, that is for all f ∈ H2(Rd)d and g ∈ H1(Rd),

γ
(div(1 − Δ)f |g)H−1(Rd) + 
(∇g|f)L2(Rd;Rd) = 0. (7.21)

To prove (7.21), we equip the space H−1(Rd) with the inner product

(f |g)H−1(Rd) =
∫
Rd

(1 + |ξ|2)−1f̂(ξ) · ĝ(ξ) dξ, (7.22)

where ĥ(ξ) def=
∫
Rd h(x)e−2πix·ξ dx denotes the Fourier transform of h at ξ ∈ Rd. Since 

the Fourier transform of div(1 − Δ)f is given by −4π2(1 + |ξ|2)(2πiξ · f̂), we have

(
div(1 − Δ)f |g

)
H−1(Rd) = −4π2

∫
Rd

(2πiξ · f̂(ξ))ĝ(ξ) dξ

= −4π2
∫
Rd

f̂(ξ) · ∇̂g(ξ) dξ

= −4π2(f |∇g)L2(Rd)d = −4π2(∇g|f)L2(Rd)d .

This yields (7.21) and therefore AΔ
2 has a bounded H∞-calculus by Proposition 5.11 and 

Remark 5.12.
Step 3: Proof of (7.19). The case β ∈ [0, 1] follows from Proposition 5.9 recalling that, 

for all β ∈ R,

Ḋ((1 − Δs
p)β) = H2β,p(Rd) and Ḋ((1 − Δw

p )β) = Ḋ((−Δs
p)β−1). (7.23)

The case p = 2 follows from Step 2, Proposition 5.14 and (7.23). It remains to study the 
case β < 0 and p �= 2. To this end, we apply Theorem 6.9(2).
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Case p ∈ (2, ∞): Let r ∈ (p, ∞) be arbitrary. For all θ ∈ [0, 1] we set Aθ = AΔ
q where 

1
q = 1−θ

2 + θ
r . By Step 1 and Lemma 6.4, (Aθ)θ∈[0,1] is a consistent family of sectorial 

operators. By Step 2, (7.23) and Theorem 6.9(2),

Ḋ((AΔ
p )−β) = Ḋ((Δw

p )−β) × Ḋ((Δs
p)−β) = Ḣ−1+2β,p(Rd) × Ḣ2β,p(Rd)d (7.24)

for all β ∈ (0, 12 (1 −ϕ)) where ϕ ∈ (0, 1) satisfy 1
q = 1−ϕ

2 + ϕ
r . Since 1 −ϕ = 2

q
r−q
r−2 , (7.24)

holds for all β ∈ (0, 1q
r−q
r−2 ). Thus (7.19) in this case follows by letting r → ∞.

Case p ∈ (1, 2): The argument is similar to the previous case considering Aθ = AΔ
q

where 1
q = 1−θ

r + θ
2 where r ∈ (1, p) is arbitrary and letting r → 1. �
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Appendix A. A transference result for the H∞-calculus

Let X be a Banach space and p ∈ [1, 2], then the space X has type p if there exists a 
constant Cp ≥ 0 such that for all finite sequences x1, . . . , xN in X and ε1, . . . , εN being 
Rademacher sequences on a probability space (Ω, A , P ) one has

E
∥∥∥ N∑

n=1
εnxn

∥∥∥p
X

≤ Cp

N∑
n=1

‖x‖pX ,

and X has non-trivial type if it has type p for some p ∈ (1, 2], compare e.g. [50, Definition 
7.1.1 f.].

Theorem A.1. Assume that X reflexive Banach space with non-trivial type. Let T be a 
linear operator on X with a bounded H∞-calculus and let S be an R-sectorial operator 
on X such that

D(T ) = D(S) and ‖Tx‖X � ‖Sx‖X for all x ∈ D(T ). (A.1)

Suppose that for some δ ∈ (0, 1) one has

S(D(T 1+δ)) ⊆ D(T δ) and ‖T δSx‖X � ‖T 1+δx‖X for all x ∈ D(T 1+δ),

R(S) ⊆ R(T δ) and ‖T−δSx‖ � ‖T 1−δx‖ for all x ∈ D(T ).
(A.2)
X X
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Then S has a bounded H∞-calculus and ωR(S) = ωH∞(S).

The above result is folklore known to experts. For the reader’s convenience we provide 
the proof extending the arguments in [57, Section 9]. It seems that the geometric assump-
tions on X can be removed by using in the proof below the results in [58, Subsection 
5.3], instead of [57, Corollary 7.8].

Proof. Let us begin by collecting some useful facts. By [50, Corollary 10.4.10], it is 
enough to show that S has a bounded H∞-calculus. Recall that (Ḋ(T β))β∈R is a complex 
interpolation scale w.r.t. β, cf. [57, Proposition 2.2], that is

[Ḋ(T β1), Ḋ(T β2)]θ = Ḋ(T β1(1−θ)+β2θ), for all θ ∈ (0, 1), (A.3)

since T has a bounded H∞-calculus and hence bounded imaginary powers. Recall that, 
by the definition of Ḋ(T β) in Subsection 2.3,

D(Tα) ↪→ Ḋ(T β) is dense for all 0 ≤ β ≤ α < ∞. (A.4)

Moreover, the operator T induces operators

Ṫθ : Ḋ(T 1+θ) ∩ Ḋ(T θ) ⊆ Ḋ(T θ) → Ḋ(T θ) for all θ ∈ R, (A.5)

on the Ḋ(T θ)-scale of spaces, compare [57, Proposition 2.1] or Subsection 2.3.
By (A.2), (A.4), δ < 1 and the definition of the homogeneous scale (2.3), the operator 

S extends uniquely to bounded linear operators S̃±δ ∈ L (Ḋ(T 1±δ), Ḋ(T±δ)) satisfying 
S̃±δx = Sx for all x ∈ Ḋ(T 1±δ) ∩D(T ). By restriction, we obtain the following unbounded 
linear operator

S±δ : Ḋ(T 1±δ) ∩ Ḋ(T±δ) ⊆ Ḋ(T±δ) → Ḋ(T±δ),

satisfying S±δx = Sx for all x ∈ Ḋ(T 1±δ) ∩ D(T ).

Similarly, by restriction, interpolation and (A.3), S induced uniquely linear operators

Sθ : Ḋ(T θ+1) ∩ Ḋ(T θ) ⊆ Ḋ(T θ) → Ḋ(T θ) for all θ ∈ [−δ, δ]. (A.6)

Next we will need the following lemma which is proven below.

Lemma A.2. Under the assumptions of Theorem A.1 there exists a δ0 ∈ (0, 1) such that 
S−δ0 is R-sectorial on Ḋ(T−δ0) with angle ≤ ωR(S) ∨ωH∞(T ), and moreover Ḋ(S−δ0) =
Ḋ(T 1−δ0).

To verify that [57, Corollary 7.8] is applicable to S−δ0 one needs that by Lemma A.2
S−δ0 is R-sectorial on Ḋ(T−δ0) and that the spaces Ḋ(T θ) have non-trivial type, which is 
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equivalent to B-convexity, see [50, Proposition 7.6.8]. This follows since Ḋ(T θ) are isomor-
phic to X, compare [57, Section 2]. Next, let 〈·, ·〉θ be the Rademacher interpolation func-
tor introduced in [57, Section 7] (see also [58,83]). By [57, Corollary 7.8], for all θ ∈ (0, 1), 
the operator Sθ−δ0 |〈Ḋ((S−δ0 )0),Ḋ(S−δ0 )〉θ induced by S−δ0 on 〈Ḋ((S−δ0)0), Ḋ(S−δ0)〉θ has a 
bounded H∞-calculus (cf. [74, Proposition 15.24] and [83, Proposition 5.3.5] for similar 
situations). Note that, by using the last assertion of Lemma A.2,

〈Ḋ((S−δ0)0), Ḋ(S−δ0)〉θ = 〈Ḋ(T−δ0), Ḋ(T 1−δ0)〉θ
(i)= [Ḋ(T−δ0), Ḋ(T 1−δ0)]θ = Ḋ(T θ−δ0),

where in (i) we applied [57, Theorem 7.4] to T which guarantees that here the complex 
and the Rademacher interpolation scale agree for T . Collecting the previous facts, we 
have

Sθ−δ0 |Ḋ(T θ−δ0 ) has a bounded H∞-calculus for all θ ∈ (0, 1) on Ḋ(T θ−δ0).

Choosing θ = δ0 < 1 and using that Ḋ(T 0) = X, we obtain that S0 = S has a bounded 
H∞-calculus on X. This completes the proof of Theorem A.1. �
Proof of Lemma A.2. We split the proof into two steps.

Step 1 : There exists δ1 ∈ (0, δ) such that Ḋ(Sθ) = Ḋ(T 1+θ) for all θ ∈ (−δ1, δ1). 
Firstly, let us note that the sectoriality of S and (A.1) imply that S extends to an 
isomorphism S̃ between Ḋ(T ) and X. Secondly, recall that Sθ are defined as explained 
before (A.6) via complex interpolation and restriction. Hence, by (A.3) and the Sneiberg 
lemma (see e.g. [106, Theorem 2.3 and 3.6]) there exists a δ1 ∈ (0, δ) such that S̃θ is an 
isomorphism for all θ ∈ [−δ1, δ1]. In particular

‖S̃θx‖Ḋ(T θ) � ‖x‖Ḋ(T 1+θ) for all θ ∈ [−δ1, δ1].

Now the conclusion follows from the definition of Sθ as the restriction of S̃θ on Ḋ(T θ)
and a density argument (see e.g. [58, Proposition 5.3.1]).

Step 2 : There exists δ0 ∈ (0, 1) such that S−δ0 is R-sectorial on Ḋ(T−δ0) with an-
gle ≤ ωR(S) ∨ ωH∞(T ). Let δ1 ∈ (0, δ) be as in Step 1. We begin by introducing 
suitable spaces of sequences. To this end, let (λj)j≥1 ⊆ �Σφ be a dense subset with 
φ ∈ (ωR(S) ∨ ωH∞(T ), π), and let (εj)j≥1 be a Rademacher sequence over a probability 
space (Ω, A , P ). Then, for θ ∈ [−δ1, δ1], we set

Xθ
def=
{

(xj)j≥1 ⊆ Ḋ(T θ) : E
∥∥∥∑

j≥1
εjxj

∥∥∥
Ḋ(T θ)

< ∞
}
,

Yθ
def=
{

(xj)j≥1 ⊆ Ḋ(T θ+1) ∩ Ḋ(T θ) : E
∥∥∥∑(λj − Ṫθ)εjxj

∥∥∥
Ḋ(T θ)

< ∞
}
,

(A.7)
j≥1
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endowed with the natural norms.
Since X has non-trivial type and Ḋ(T θ) is isomorphic to X, compare [57, Sec-

tion 2], Ḋ(T θ) has non-trivial type as well and therefore, it is K-convex due to [50, 
Theorem 7.4.23]. In particular, (Xθ)θ∈[−δ1,δ1 ] is a complex interpolation scale by [50, 
Theorem 7.4.16(1)] and (A.3). By R-sectoriality of T , the assignment (xj)j≥1 �→(
(λj − Ṫθ)−1xj

)
j≥1 induces an isomorphism between Xθ and Yθ, cf. (2.5). By com-

patibility (2.6) and [57, Proposition 2.1], (Yθ)θ∈[−δ1,δ1] is also a complex scale.
For any sequence x = (xj)j≥1 ∈ Yθ we set

Tθ(x) = ((λj − Sθ)xj)j≥1.

By (A.5)–(A.6) and φ > ωR(S) ∨ ωH∞(T ), we get that

Tθ : Yθ → Xθ is bounded for θ ∈ [−δ1, δ1].

Next we prove that T0 ∈ L (Y0, X0) is an isomorphism with inverse

S0(x) = ((λj − S)−1xj)j≥1,

where S = S0. Clearly, T0S0 and S0T0 are equal to the identity on the subset of finite 
sequences in Y0 and X0, respectively. By density it remains to prove that S0 ∈ L (X0, Y0). 
To this end, recall that D(T ) = D(S) and thus ‖Tx‖X � ‖Sx‖X for all x ∈ D(T ). The 
latter implies

‖S0(x)‖Y0

≤ E
∥∥∥∑

j≥1
εjλj(λj − S)−1xj

∥∥∥
X

+ E
∥∥∥T∑

j≥1
εj(λj − S)−1xj

∥∥∥
X

� E
∥∥∥∑

j≥1
εjλj(λj − S)−1xj

∥∥∥
X

+ E
∥∥∥∑

j≥1
εjS(λj − S)−1xj

∥∥∥
X

(i)
≤ sup

J≥1

(
E
∥∥∥ ∑

1≤j≤J

εjλj(λj − S)−1xj

∥∥∥
X

+ E
∥∥∥ ∑

1≤j≤J

εjS(λj − S)−1xj

∥∥∥
X

)
(ii)
� R(S(λ− S)−1 : λ ∈ Σφ)E

∥∥∥∑
j≥1

εjxj

∥∥∥
X

� ‖x‖X0 ,

(A.8)

where in (i) we used Fatou’s lemma and in (ii) the R-sectoriality of S, (λj)j≥1 ⊆ �Σφ

and φ > ωR(S) ∨ ωH∞(T ). Note that the constants (A.8) are independent of the choice 
of the sequence (λj)j≥1 ⊆ �Σφ.

Similar to Step 1, Sneiberg’s lemma [106, Theorem 2.3 and 3.6] is applicable to Tθ. 
Thus there exists δ0 ∈ (0, δ1), independent of (λj)j≥1 ⊆ �Σφ, such that

Tθ : Yθ → Xθ is boundedly invertible for all θ ∈ [−δ0, δ0] (A.9)
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and

‖T −1
θ ‖L (Xθ,Yθ) ≤ CθR(S(λ− S)−1 : λ ∈ Σφ) def= CS,θ,

where Cθ > 0 is independent of the sequence (λj)j≥1.
Since δ0 < δ < 1, by [58, Proposition 5.3.1] the embedding D(T ) ∩ R(T ) ↪→ Ḋ(T θ) is 

dense for all θ ∈ [−δ0, δ0]. Hence, one can check that T −1
θ : Xθ → Yθ for all θ ∈ [−δ0, δ0]

is given by

T −1
θ (x) def= ((λj − Sθ)−1xj)j≥1.

Since T −1
δ0

∈ L (X−δ0 , Y−δ0), for all finite set J ⊆ Z and finite sequence (xj)#J
j=1 ⊆

Ḋ(T−δ0) we have

E
∥∥∥∑

j∈J

εjλj(λj − S−δ0)−1xj

∥∥∥
Ḋ(T−δ0 )

≤ CS,θ E
∥∥∥∑

j∈J

εjxj

∥∥∥
Ḋ(T−δ0 )

. (A.10)

Recall that (λj)j≥1 ⊇ �Σφ is dense. Equation (A.10) and the continuity of the resol-
vent map λ �→ (λ −S−δ0)−1 ensure that ρ(S−δ0) ⊇ �Σφ and (A.10) holds for all finite set 
(λj)j∈J ⊆ C \Σφ. In particular, S−δ0 is R-sectorial with angle < φ. The arbitrariness of 
φ yields ωR(S−δ0) ≤ ωR(S) ∨ ωH∞(T ). �
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[10] Y. Arlinskĭı, On sectorial block operator matrices, Mat. Fiz. Anal. Geom. 9 (4) (2002) 533–571.
[11] P. Auscher, N. Badr, R. Haller-Dintelmann, J. Rehberg, The square root problem for second-

order, divergence form operators with mixed boundary conditions on Lp, J. Evol. Equ. 15 (1) 
(2015) 165–208.

[12] T. Bárta, On R-sectorial derivatives on Bergman spaces, Bull. Aust. Math. Soc. 77 (2) (2008) 
305–313.

[13] A. Bátkai, P. Binding, A. Dijksma, R. Hryniv, H. Langer, Spectral problems for operator matrices, 
Math. Nachr. 278 (12–13) (2005) 1408–1429.

http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC6DF5BFF31EAF20019FE19685D30856Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC6DF5BFF31EAF20019FE19685D30856Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC9DA6EB6D9CC40A20C8971AE1909C89Cs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC9DA6EB6D9CC40A20C8971AE1909C89Cs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC9DA6EB6D9CC40A20C8971AE1909C89Cs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib42616D7A2A5EC8CDE28230E89F929BF7s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib42616D7A2A5EC8CDE28230E89F929BF7s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibE7A8FDB127EAC9E135A711FBC87A123Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibE7A8FDB127EAC9E135A711FBC87A123Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibF06C9A7DD00225178F00DFF7C3EF542Es1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibF06C9A7DD00225178F00DFF7C3EF542Es1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib52FA8DD4EC3CCF633187839862F47ECFs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib52FA8DD4EC3CCF633187839862F47ECFs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibF07EC1B01555ED1939E25DB154CC4450s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibF07EC1B01555ED1939E25DB154CC4450s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibED6123DEBACFDC851D19588B45CA2E43s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibED6123DEBACFDC851D19588B45CA2E43s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC60909027DDD34BC9D2604FA731CB5AEs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC60909027DDD34BC9D2604FA731CB5AEs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib9B90B4C9B9C50FD2D4C4860C319D5DAAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibDC74646A0F472EA6102D095C85ABB222s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibDC74646A0F472EA6102D095C85ABB222s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibDC74646A0F472EA6102D095C85ABB222s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib611B2AB8B0B827C54A4F4CC43F341D1Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib611B2AB8B0B827C54A4F4CC43F341D1Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib336B0B662AF719F9BCF78E5253D0B4C7s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib336B0B662AF719F9BCF78E5253D0B4C7s1


66 A. Agresti, A. Hussein / Journal of Functional Analysis 285 (2023) 110146
[14] A. Bátkai, P. Csomós, K.-J. Engel, B. Farkas, Stability and convergence of product formulas for 
operator matrices, Integral Equ. Oper. Theory 74 (2) (2012) 281–299.

[15] A. Ben Amar, A. Jeribi, B. Krichen, Essential spectra of a 3 ×3 operator matrix and an application 
to three-group transport equations, Integral Equ. Oper. Theory 68 (1) (2010) 1–21.

[16] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen 
Wissenschaften, vol. 223, Springer-Verlag, Berlin, 1976.

[17] S. Cardanobile, D. Mugnolo, Qualitative properties of coupled parabolic systems of evolution 
equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 7 (2) (2008) 287–312.

[18] S. Charfi, J. Aref, R. Moalla, Essential spectra of operator matrices and applications, Math. Meth-
ods Appl. Sci. 37 (4) (2014) 597–608.

[19] A.J. Chorin, The numerical solution of the Navier-Stokes equations for an incompressible fluid, 
Bull. Am. Math. Soc. 73 (1967) 928–931.

[20] A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput. 22 (1968) 745–762.
[21] A.P. Choudhury, A. Hussein, P. Tolksdorf, Nematic liquid crystals in Lipschitz domains, SIAM J. 

Math. Anal. 50 (4) (2018) 4282–4310.
[22] Thierry Coulhon, Damien Lamberton, Régularité Lp pour les équations d’évolution, in: Séminaire 

d’Analyse Fonctionelle 1984/1985, in: Publ. Math. Univ. Paris VII, vol. 26, Univ. Paris VII, Paris, 
1986, pp. 155–165.

[23] R. Danchin, On the solvability of the compressible Navier-Stokes system in bounded domains, 
Nonlinearity 23 (2) (2010) 383–407.

[24] R. Denk, G. Dore, M. Hieber, J. Prüss, A. Venni, New thoughts on old results of R.T. Seeley, 
Math. Ann. 328 (4) (2004) 545–583.

[25] R. Denk, M. Hieber, J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and 
parabolic type, Mem. Am. Math. Soc. 166 (788) (2003).

[26] R. Denk, F. Hummel, Dispersive mixed-order systems in Lp-Sobolev spaces and application to the 
thermoelastic plate equation, Adv. Differ. Equ. 24 (7–8) (2019) 377–406.

[27] R. Denk, M. Kaip, General Parabolic Mixed Order Systems in Lp and Applications, Operator 
Theory: Advances and Applications, vol. 239, Birkhäuser/Springer, Cham, 2013.

[28] R. Denk, R. Racke, Y. Shibata, Lp theory for the linear thermoelastic plate equations in bounded 
and exterior domains, Adv. Differ. Equ. 14 (7–8) (2009) 685–715.

[29] R. Denk, Y. Shibata, Maximal regularity for the thermoelastic plate equations with free boundary 
conditions, J. Evol. Equ. 17 (1) (2017) 215–261.

[30] M. Egert, On Kato’s conjecture and mixed boundary conditions, PhD thesis, TU Darmstadt, 
Sierke, 2015.

[31] K.-J. Engel, Operator matrices and systems of evolution equations, Habilitationsschrift, Universität 
Tübingen, 1995.

[32] K.-J. Engel, R. Nagel, On the spectrum of certain systems of linear evolution equations, in: Differ-
ential Equations in Banach Spaces, Bologna, 1985, in: Lecture Notes in Math., vol. 1223, Springer, 
Berlin, 1986, pp. 102–109.

[33] J.L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal. 9 (1962) 371–378.
[34] S. Fackler, The Kalton-Lancien theorem revisited: maximal regularity does not extrapolate, J. 

Funct. Anal. 266 (1) (2014) 121–138.
[35] S. Fackler, T. Nau, Local strong solutions for the non-linear thermoelastic plate equation on rect-

angular domains in Lp-spaces, Nonlinear Differ. Equ. Appl. 21 (6) (2014) 775–794.
[36] Stephan Fackler, Regularity properties of sectorial operators: counterexamples and open problems, 

in: Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, 
in: Oper. Theory Adv. Appl., vol. 250, Birkhäuser/Springer, Cham, 2015, pp. 171–197.

[37] J. Fuhrmann, J. Lankeit, M. Winkler, A double critical mass phenomenon in ano-flux-Dirichlet 
Keller-Segel system, arXiv preprint, arXiv :2101 .06748, 2021.

[38] G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-
State Problems, Springer Science & Business Media, 2011.

[39] L. Grubišić, V. Kostrykin, K.A. Makarov, S. Schmitz, K. Veselić, The Tan 2Θ theorem in fluid 
dynamics, J. Spectr. Theory 9 (4) (2019) 1431–1457.

[40] L. Grubišić, V. Kostrykin, K.A. Makarov, K. Veselić, Representation theorems for indefinite 
quadratic forms revisited, Mathematika 59 (1) (2013) 169–189.

[41] L. Grubišić, V. Kostrykin, K.A. Makarov, K. Veselić, The Tan 2Θ theorem for indefinite quadratic 
forms, J. Spectr. Theory 3 (1) (2013) 83–100.

[42] B.H. Haak, M. Haase, P.C. Kunstmann, Perturbation, interpolation, and maximal regularity, Adv. 
Differ. Equ. 11 (2) (2006) 201–240.

http://refhub.elsevier.com/S0022-1236(23)00303-8/bibAB1517D87EB0D5356BB643076F1C30E6s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibAB1517D87EB0D5356BB643076F1C30E6s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib5761026D454C4B399F5A57CC94611018s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib5761026D454C4B399F5A57CC94611018s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib92B1B7DB52E0B9CA2724A2EA75023BC4s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib92B1B7DB52E0B9CA2724A2EA75023BC4s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0AEE1733508FC3E2303AE30AE06E6EACs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0AEE1733508FC3E2303AE30AE06E6EACs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0A03BCB4D5D80C3978E1CDF3966F2308s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0A03BCB4D5D80C3978E1CDF3966F2308s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC0B7EF94BCC8B984157016C5CE56D93Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC0B7EF94BCC8B984157016C5CE56D93Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib8FD7B2E102A073DE25B24497E9D71EC8s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib4D9FAE3842BA182E29D0689EE1478F99s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib4D9FAE3842BA182E29D0689EE1478F99s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib5856AD8C0A8DAC36A5981C835AC4FDE5s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib5856AD8C0A8DAC36A5981C835AC4FDE5s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib5856AD8C0A8DAC36A5981C835AC4FDE5s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibCDEAC78957D3E649E4863E289E9A82C5s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibCDEAC78957D3E649E4863E289E9A82C5s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib886F4677611B74C240C9A5C4639740E9s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib886F4677611B74C240C9A5C4639740E9s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibFCCCB86279EC81D3FA2772A305849222s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibFCCCB86279EC81D3FA2772A305849222s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib55640D5A016DA100417E9BD752DA00DAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib55640D5A016DA100417E9BD752DA00DAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC9348C8C76E831D9D976762A028BCD11s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC9348C8C76E831D9D976762A028BCD11s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib338060772010201226C3BEE53E22C1EAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib338060772010201226C3BEE53E22C1EAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib6FBBB429013CA76B589C17F280FEB216s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib6FBBB429013CA76B589C17F280FEB216s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib7450E259306A63F8E3F5E9A3AC5C54A7s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib7450E259306A63F8E3F5E9A3AC5C54A7s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib81911B1DB1767C3B205EC5648AC7A4F3s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib81911B1DB1767C3B205EC5648AC7A4F3s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibBD2F54E96D7865F6C58A4A0513B7D645s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibBD2F54E96D7865F6C58A4A0513B7D645s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibBD2F54E96D7865F6C58A4A0513B7D645s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib9CFFBF56C7A4D05CA3B411A17EAECA39s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib728759E730A9BB7237035B6F53924F06s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib728759E730A9BB7237035B6F53924F06s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib4C4E3F2247A24954EA6D59F917D6C618s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib4C4E3F2247A24954EA6D59F917D6C618s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib3401C4CB7B5E360E1AA0741A348F28E0s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib3401C4CB7B5E360E1AA0741A348F28E0s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib3401C4CB7B5E360E1AA0741A348F28E0s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibF1CED4A1EABE4DF4B67EFE8FB59BAB93s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibF1CED4A1EABE4DF4B67EFE8FB59BAB93s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibCF08AFB110C107C74FD523632C90F2FFs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibCF08AFB110C107C74FD523632C90F2FFs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib4F62196D9B181D073D7B15E778550559s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib4F62196D9B181D073D7B15E778550559s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib340FFEB1A156B712908374EC2CDAD03As1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib340FFEB1A156B712908374EC2CDAD03As1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC0D188691DB6FEA9A5C85E372AC37294s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC0D188691DB6FEA9A5C85E372AC37294s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0FB6ECAD788308F87E45E7D4410B41CAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0FB6ECAD788308F87E45E7D4410B41CAs1


A. Agresti, A. Hussein / Journal of Functional Analysis 285 (2023) 110146 67
[43] M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Ap-
plications, vol. 169, Birkhäuser Verlag, Basel, 2006.

[44] M. Hieber, M. Nesensohn, J. Prüss, K. Schade, Dynamics of nematic liquid crystal flows: the 
quasilinear approach, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33 (2) (2016) 397–408.

[45] M. Hieber, J. Prüss, Modeling and analysis of the Ericksen-Leslie equations for nematic liquid 
crystal flows, in: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, 
Cham, 2018, pp. 1075–1134.

[46] T. Hillen, K.J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol. 58 (1–2) 
(2009) 183–217.

[47] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, 
I, Jahresber. Dtsch. Math.-Ver. 105 (3) (2003) 103–165.

[48] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, 
II, Jahresber. Dtsch. Math.-Ver. 106 (2) (2004) 51–69.

[49] J. Huang, J. Sun, A. Chen, C. Trunk, Invertibity of 2 ×2 operator matrices, Math. Nachr. 292 (11) 
(2019) 2411–2426.

[50] T.P. Hytönen, J.M.A.M. van Neerven, M.C. Veraar, L. Weis, Analysis in Banach Spaces. Vol. II. 
Probabilistic Methods and Operator Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 
3. Folge, vol. 67, Springer, 2017.

[51] O.O. Ibrogimov, Essential spectrum of non-self-adjoint singular matrix differential operators, J. 
Math. Anal. Appl. 451 (1) (2017) 473–496.

[52] O.O. Ibrogimov, H. Langer, M. Langer, C. Tretter, Essential spectrum of systems of singular 
differential equations, Acta Sci. Math. (Szeged) 79 (3–4) (2013) 423–465.

[53] O.O. Ibrogimov, P. Siegl, C. Tretter, Analysis of the essential spectrum of singular matrix differ-
ential operators, J. Differ. Equ. 260 (4) (2016) 3881–3926.

[54] O.O. Ibrogimov, C. Tretter, Essential spectrum of elliptic systems of pseudo-differential operators 
on L2(RN ) ⊕ L2(RN ), J. Pseudo-Differ. Oper. Appl. 8 (2) (2017) 147–166.

[55] A. Jeribi, Spectral theory and applications of linear operators and block operator matrices, 
Springer, Cham, 2015.

[56] Y. Kagei, T. Nishida, Y. Teramoto, On the spectrum for the artificial compressible system, J. 
Differ. Equ. 264 (2) (2018) 897–928.

[57] N.J. Kalton, P.C. Kunstmann, L. Weis, Perturbation and interpolation theorems for the H∞-
calculus with applications to differential operators, Math. Ann. 336 (4) (2006) 747–801.

[58] N.J. Kalton, E. Lorist, L. Weis, Euclidean Structures and Operator Theory in Banach Spaces, 
2019.

[59] N.J. Kalton, L. Weis, The H∞-calculus and sums of closed operators, Math. Ann. 321 (2) (2001) 
319–345.

[60] T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Jpn. 13 (1961) 246–274.
[61] M. Köhne, J. Prüss, M. Wilke, On quasilinear parabolic evolution equations in weighted Lp-spaces, 

J. Evol. Equ. 10 (2) (2010) 443–463.
[62] H. Komatsu, Fractional powers of operators, Pac. J. Math. 19 (1966) 285–346.
[63] H. Komatsu, Fractional powers of operators. II. Interpolation spaces, Pac. J. Math. 21 (1967) 

89–111.
[64] H. Komatsu, Fractional powers of operators. III. Negative powers, J. Math. Soc. Jpn. 21 (1969) 

205–220.
[65] H. Komatsu, Fractional powers of operators. IV. Potential operators, J. Math. Soc. Jpn. 21 (1969) 

221–228.
[66] H. Komatsu, Fractional powers of operators. V. Dual operators, J. Fac. Sci. Univ. Tokyo, Sect. I 

17 (1970) 373–396.
[67] H. Komatsu, Fractional powers of operators. VI. Interpolation of non-negative operators and imbed-

ding theorems, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 19 (1972) 1–63.
[68] V. Kostrykin, K.A. Makarov, A.K. Motovilov, Perturbation of spectra and spectral subspaces, 

Trans. Am. Math. Soc. 359 (1) (2007) 77–89.
[69] V. Kostrykin, K.A. Makarov, A.K. Motovilov, A generalization of the tan 2Θ theorem, in: Current 

Trends in Operator Theory and Its Applications, in: Oper. Theory Adv. Appl., vol. 149, Birkhäuser, 
Basel, 2004, pp. 349–372.

[70] V. Kostrykin, K.A. Makarov, A.K. Motovilov, On the existence of solutions to the operator Riccati 
equation and the tanΘ theorem, Integral Equ. Oper. Theory 51 (1) (2005) 121–140.

[71] P.C. Kunstmann, M. Uhl, Lp-spectral multipliers for some elliptic systems, Proc. Edinb. Math. 
Soc. (2) 58 (1) (2015) 231–253.

http://refhub.elsevier.com/S0022-1236(23)00303-8/bib7B1793DC8434FBFDCC103F3DF3DDB3C9s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib7B1793DC8434FBFDCC103F3DF3DDB3C9s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibEFFB793FDEEA30D5C622884E44B420D9s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibEFFB793FDEEA30D5C622884E44B420D9s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC6DD8686E7F3B053FC698C9BC2BC14C8s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC6DD8686E7F3B053FC698C9BC2BC14C8s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibC6DD8686E7F3B053FC698C9BC2BC14C8s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib72D6BAF26BBF66C5DDD99D8A96AE0C51s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib72D6BAF26BBF66C5DDD99D8A96AE0C51s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0A2AE758BE3416E66F5F6A778CB0176Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0A2AE758BE3416E66F5F6A778CB0176Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibF86F784846710DD120D8B47B58AAE62Bs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibF86F784846710DD120D8B47B58AAE62Bs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibDE77F1DF581B755537ED7C431E3BD100s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibDE77F1DF581B755537ED7C431E3BD100s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibB05F45DC4FB3CD562E7B4A3BECCD8944s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibB05F45DC4FB3CD562E7B4A3BECCD8944s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibB05F45DC4FB3CD562E7B4A3BECCD8944s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib797B7F4E462BB1B2C899BA396E63F320s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib797B7F4E462BB1B2C899BA396E63F320s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibD64D6408CDF53781E590979ACD5C9633s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibD64D6408CDF53781E590979ACD5C9633s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib474CA09D0F55C95D0890AD66F9AD5859s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib474CA09D0F55C95D0890AD66F9AD5859s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibCD0B0C0F0F279DFCB2CD20AB77B0B090s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibCD0B0C0F0F279DFCB2CD20AB77B0B090s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib1A83367FB717580ECAE508825A2358DDs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib1A83367FB717580ECAE508825A2358DDs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib8FBB3722101F5C248B3C0496E999920Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib8FBB3722101F5C248B3C0496E999920Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibD2BB262795D02EFB8225A6C6FF51EF40s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibD2BB262795D02EFB8225A6C6FF51EF40s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib6DF7846581481AAC4BB15E7FE172F54Es1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib6DF7846581481AAC4BB15E7FE172F54Es1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib90DAE047C4DF92A206D4F80F15AC53AAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib90DAE047C4DF92A206D4F80F15AC53AAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib87380C6485A2E8E6C7C9F0D9726BEE41s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibCE0B131F54092C654D3615A0B79D48E0s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibCE0B131F54092C654D3615A0B79D48E0s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0333C78524FE9550C7DFAEF1D3312F97s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib29E7DACE8D0032714B8345DF3847C9DEs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib29E7DACE8D0032714B8345DF3847C9DEs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibAC839771FD4190CE97B991E72C9A4EEDs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibAC839771FD4190CE97B991E72C9A4EEDs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibCD9D7E1CBCA49C60BEF4D4B0535D40BAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibCD9D7E1CBCA49C60BEF4D4B0535D40BAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib3BAF7C73D0071AD04BAC0151CA7ABD9Es1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib3BAF7C73D0071AD04BAC0151CA7ABD9Es1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib7DD741AC882384171F282C55E699E58Ds1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib7DD741AC882384171F282C55E699E58Ds1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib19E7113E0584F3B711DBDC49FC6B2FB5s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib19E7113E0584F3B711DBDC49FC6B2FB5s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibAD924077C7198D1CC403AD6C86E33378s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibAD924077C7198D1CC403AD6C86E33378s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibAD924077C7198D1CC403AD6C86E33378s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib8D9CBAB205CC5E687A3D2627B442649Bs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib8D9CBAB205CC5E687A3D2627B442649Bs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib29EB5C3488F2CB82FBC2DF6E36C9CE1Bs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib29EB5C3488F2CB82FBC2DF6E36C9CE1Bs1


68 A. Agresti, A. Hussein / Journal of Functional Analysis 285 (2023) 110146
[72] P.C. Kunstmann, On elliptic non-divergence operators with measurable coefficients, in: Nonlin-
ear Elliptic and Parabolic Problems, in: Progr. Nonlinear Differential Equations Appl., vol. 64, 
Birkhäuser, Basel, 2005, pp. 265–272.

[73] P.C. Kunstmann, L. Weis, Perturbation theorems for maximal Lp-regularity, Ann. Sc. Norm. Super. 
Pisa, Cl. Sci. (4) 30 (2) (2001) 415–435.

[74] P.C. Kunstmann, L. Weis, Maximal Lp-regularity for parabolic equations, Fourier multiplier the-
orems and H∞-functional calculus, in: Functional Analytic Methods for Evolution Equations, in: 
Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311.

[75] P.C. Kunstmann, L. Weis, Erratum to: Perturbation and interpolation theorems for the H∞-
calculus with applications to differential operators, Math. Ann. 357 (2) (2013).

[76] P.C. Kunstmann, L. Weis, New criteria for the H∞-calculus and the Stokes operator on bounded 
Lipschitz domains, J. Evol. Equ. 17 (1) (2017) 387–409.

[77] H. Langer, A. Markus, V. Matsaev, C. Tretter, A new concept for block operator matrices: the 
quadratic numerical range, Linear Algebra Appl. 330 (1–3) (2001) 89–112.

[78] J. Lankeit, M. Winkler, Facing low regularity in chemotaxis systems, Jahresber. Dtsch. Math.-Ver. 
122 (1) (2020) 35–64.

[79] I. Lasiecka, R. Triggiani, Control Theory for Partial Differential Equations: Continuous and 
Approximation Theories. I. Abstract Parabolic Systems, Encyclopedia of Mathematics and Its 
Applications, vol. 74, Cambridge University Press, Cambridge, 2000.

[80] J. LeCrone, J. Prüss, M. Wilke, On quasilinear parabolic evolution equations in weighted Lp-spaces 
II, J. Evol. Equ. 14 (3) (2014) 509–533.

[81] F.M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal. 28 (4) 
(1968) 265–283.

[82] F.-H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. 
Pure Appl. Math. 48 (5) (1995) 501–537.

[83] N. Lindemulder, E. Lorist, A discrete framework for the interpolation of Banach spaces, arXiv 
preprint, arXiv :2105 .08373, 2021.

[84] J. Liu, J. Huang, A. Chen, Semigroup generations of unbounded block operator matrices based on 
the space decomposition, Oper. Matrices 14 (2) (2020) 295–304.

[85] K.A. Makarov, S. Schmitz, A. Seelmann, On invariant graph subspaces, Integral Equ. Oper. Theory 
85 (3) (2016) 399–425.

[86] A. McIntosh, A. Yagi, Operators of type ω without a bounded H∞ functional calculus, in: Mini-
conference on Operators in Analysis, Sydney, 1989, in: Proc. Centre Math. Anal. Austral. Nat. 
Univ., vol. 24, Austral. Nat. Univ., Canberra, 1990, pp. 159–172.

[87] M. Mitrea, S. Monniaux, Maximal regularity for the Lamé system in certain classes of non-smooth 
domains, J. Evol. Equ. 10 (4) (2010) 811–833.

[88] M. Möller, F.H. Szafraniec, Adjoints and formal adjoints of matrices of unbounded operators, Proc. 
Am. Math. Soc. 136 (6) (2008) 2165–2176.

[89] D. Mugnolo, Matrix methods for wave equations, Math. Z. 253 (4) (2006) 667–680.
[90] R. Nagel, Towards a “matrix theory” for unbounded operator matrices, Math. Z. 201 (1) (1989) 

57–68.
[91] R. Nagel, Characteristic equations for the spectrum of generators, Ann. Sc. Norm. Super. Pisa, Cl. 

Sci. (4) 24 (4) (1998) 703–717, 1997.
[92] Rainer Nagel, Well-posedness and positivity for systems of linear evolution equations, Conf. Semin. 

Mat. Univ. Bari 203 (1985) 29.
[93] J.M.A.M. van Neerven, M.C. Veraar, L. Weis, Maximal Lp-regularity for stochastic evolution 

equations, SIAM J. Math. Anal. 44 (3) (2012) 1372–1414.
[94] J.M.A.M. van Neerven, M.C. Veraar, L. Weis, Stochastic maximal Lp-regularity, Ann. Probab. 

40 (2) (2012) 788–812.
[95] J. Prüss, G. Simonett, Maximal regularity for evolution equations in weighted Lp-spaces, Arch. 

Math. 82 (5) (2004) 415–431.
[96] J. Prüss, G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Mono-

graphs in Mathematics, vol. 105, Birkhäuser/Springer, 2016.
[97] J. Prüss, G. Simonett, M. Wilke, Critical spaces for quasilinear parabolic evolution equations and 

applications, J. Differ. Equ. 264 (3) (2018) 2028–2074.
[98] S. Schmitz, Representation theorems for indefinite quadratic forms without spectral gap, Integral 

Equ. Oper. Theory 83 (1) (2015) 73–94.
[99] R. Schnaubelt, M. Veraar, Structurally damped plate and wave equations with random point force 

in arbitrary space dimensions, Differ. Integral Equ. 23 (9–10) (2010) 957–988.

http://refhub.elsevier.com/S0022-1236(23)00303-8/bib99CA9B231222DD9052B233B953100761s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib99CA9B231222DD9052B233B953100761s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib99CA9B231222DD9052B233B953100761s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibE443F82FEEC922016D45E93B5B9E5A5Cs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibE443F82FEEC922016D45E93B5B9E5A5Cs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib1801883C3AF92AA4CD5FCDE8FBB6EF65s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib1801883C3AF92AA4CD5FCDE8FBB6EF65s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib1801883C3AF92AA4CD5FCDE8FBB6EF65s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib95D0C5C0BE062E8036BA287F6AE91A31s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib95D0C5C0BE062E8036BA287F6AE91A31s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib494C75F34B48754C9A28701CFCE41FE3s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib494C75F34B48754C9A28701CFCE41FE3s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib05BE55D4FFA7619B3A0E3D3DE5E51A76s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib05BE55D4FFA7619B3A0E3D3DE5E51A76s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibED930108999B612951DB4657967A0E35s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibED930108999B612951DB4657967A0E35s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib12613191B96F709375A5E29ED783DEF3s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib12613191B96F709375A5E29ED783DEF3s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib12613191B96F709375A5E29ED783DEF3s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0C3C35C4EA6F5839DF02C5DEF069BB64s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib0C3C35C4EA6F5839DF02C5DEF069BB64s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib79338F7567ADBD87A70FDACD50A980E0s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib79338F7567ADBD87A70FDACD50A980E0s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib41D2BDDEEF910B3E2FE0F79B74A95C82s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib41D2BDDEEF910B3E2FE0F79B74A95C82s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib1287914D244AEA4F808BB9F638D5ABA4s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib1287914D244AEA4F808BB9F638D5ABA4s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibB3CAC280C62A29F50C72E426951CDC0Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibB3CAC280C62A29F50C72E426951CDC0Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibA9D78784A5C102ABBFDD8FD62C2C96CAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibA9D78784A5C102ABBFDD8FD62C2C96CAs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib62443044D63BAC9AE65228AEB47F35DDs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib62443044D63BAC9AE65228AEB47F35DDs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib62443044D63BAC9AE65228AEB47F35DDs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib587F660617379B3835D113568F002B14s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib587F660617379B3835D113568F002B14s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibBAF0CF98FCA7A4E5A054EC4018D4B4B4s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibBAF0CF98FCA7A4E5A054EC4018D4B4B4s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibBCA71CCE2EFCF1A27593ADDB81584824s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib94BC50C8CDCF9353A058AC849F21A98As1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib94BC50C8CDCF9353A058AC849F21A98As1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibEE4ECDFB5A661398F1CAA763C9A3CAD9s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibEE4ECDFB5A661398F1CAA763C9A3CAD9s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibE172309E113207E1F30296C1EC94050Ds1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibE172309E113207E1F30296C1EC94050Ds1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib8686693C4C4D188E13266AB4DCD215B4s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib8686693C4C4D188E13266AB4DCD215B4s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib1B8454F103BA9E350FCCD1C799BCAC8As1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib1B8454F103BA9E350FCCD1C799BCAC8As1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib8ABD52D7EC394AE6C3A8B0A6345EB757s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib8ABD52D7EC394AE6C3A8B0A6345EB757s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib95E91C05520E97B0E9EBBA281F28EA6Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib95E91C05520E97B0E9EBBA281F28EA6Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib28286ECE59543571C8F10092888D424Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib28286ECE59543571C8F10092888D424Fs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibBA1D5C23847E56613F29BA96D1A2AC02s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bibBA1D5C23847E56613F29BA96D1A2AC02s1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib37F9187DACAFAC560590B0394E03088Cs1
http://refhub.elsevier.com/S0022-1236(23)00303-8/bib37F9187DACAFAC560590B0394E03088Cs1


A. Agresti, A. Hussein / Journal of Functional Analysis 285 (2023) 110146 69
[100] R. Seeley, Interpolation in Lp with boundary conditions, Stud. Math. 44 (1972) 47–60.
[101] A. Seelmann, Notes on the subspace perturbation problem for off-diagonal perturbations, Proc. 

Am. Math. Soc. 144 (9) (2016) 3825–3832.
[102] A.A. Shkalikov, C. Trunk, On stability of closedness and self-adjointness for 2 ×2 operator matrices, 

Mat. Zametki 100 (6) (2016) 932–938.
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