
11

On Lexicographic Proof Rules for Probabilistic Termination

KRISHNENDU CHATTERJEE, IST Austria, Austria

EHSAN KAFSHDAR GOHARSHADY, Ferdowsi University of Mashhad, Iran

PETR NOVOTNÝ and JIŘÍ ZÁREVÚCKY, Masaryk University, Czech Republic

ÐORÐE ŽIKELIĆ, IST Austria, Austria

We consider the almost-sure (a.s.) termination problem for probabilistic programs, which are a stochastic
extension of classical imperative programs. Lexicographic ranking functions provide a sound and practical
approach for termination of non-probabilistic programs, and their extension to probabilistic programs is
achieved via lexicographic ranking supermartingales (LexRSMs). However, LexRSMs introduced in the previ-
ous work have a limitation that impedes their automation: all of their components have to be non-negative
in all reachable states. This might result in a LexRSM not existing even for simple terminating programs. Our
contributions are twofold. First, we introduce a generalization of LexRSMs that allows for some components
to be negative. This standard feature of non-probabilistic termination proofs was hitherto not known to be
sound in the probabilistic setting, as the soundness proof requires a careful analysis of the underlying sto-
chastic process. Second, we present polynomial-time algorithms using our generalized LexRSMs for proving
a.s. termination in broad classes of linear-arithmetic programs.

CCS Concepts: • Software and its engineering→ Formal software verification; Software verification;
Automated static analysis; • Mathematics of computing → Probability and statistics; • Theory of

computation→ Program analysis;

Additional Key Words and Phrases: Probabilistic programs, termination, martingales

ACM Reference format:

Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiří Zárevúcky, and Ðorđe Žikelić. 2023.
On Lexicographic Proof Rules for Probabilistic Termination. Form. Asp. Comput. 35, 2, Article 11 (June 2023),
25 pages.
https://doi.org/10.1145/3585391

1 INTRODUCTION

The extension of classical imperative programs with randomization gives rise to probabilistic pro-
grams (PPs) [Gordon et al. 2014] that are used in numerous applications, including stochastic
network protocols [Baier and Katoen 2008; Foster et al. 2016; Kwiatkowska et al. 2011; Smolka

The preliminary version of this article has been published in Chatterjee et al. [2021a].
This research was partially supported by the ERC CoG (grant no. 863818; ForM-SMArt), the Czech Science Foundation
(grant no. GA21-24711S), and the European Union’s Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie Grant Agreement No. 665385.
Authors’ addresses: K. Chatterjee and Ð. Žikelić, IST Austria, Am Campus 1, Klosterneuburg, 3400, Austria; emails:
{krishnendu.chatterjee, djordje.zikelic}@ist.ac.at; E. K. Goharshady, Ferdowsi University of Mashhad, Azadi Square,
9177948974, Mashhad, Iran; email: e.kafshdargoharshady@mail.um.ac.ir; P. Novotný and J. Zárevúcky, Masaryk Univer-
sity, Žerotínovo nám. 617/9, Brno, 601 77, Czech Republic; emails: {petr.novotny, xzarevuc}@fi.muni.cz.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
0934-5043/2023/06-ART11 $15.00
https://doi.org/10.1145/3585391

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.

https://orcid.org/0000-0002-4561-241X
https://orcid.org/0000-0002-8595-0587
https://orcid.org/0000-0002-5026-4392
https://orcid.org/0000-0002-6615-7460
https://orcid.org/0000-0002-4681-1699
https://doi.org/10.1145/3585391
https://doi.org/10.1145/3585391
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3585391&domain=pdf&date_stamp=2023-06-23


11:2 K. Chatterjee et al.

et al. 2017], randomized algorithms [Dubhashi and Panconesi 2009; Motwani and Raghavan 1995],
security [Barthe et al. 2016b, c], machine learning, and planning [Claret et al. 2013; Ghahramani
2015; Gordon et al. 2013; Kaelbling et al. 1996; Roy et al. 2008; Ścibior et al. 2015; Thrun 2002]. The
analysis of PPs is an active research area in formal methods [Agrawal et al. 2018; Chakarov and
Sankaranarayanan 2013; Chatterjee et al. 2016, 2018; Esparza et al. 2012; Kaminski et al. 2018b, a;
Ngo et al. 2018; Olmedo et al. 2016; Wang et al. 2018]. PPs can be extended with nondeterminism
to allow over-approximating program parts that are too complex for static analysis [Cousot and
Cousot 1977; McIver and Morgan 2005].

For non-probabilistic programs, the termination problem asks whether a given program al-

ways terminates. While the problem is well known to be undecidable over Turing-complete
programs, many sound automated techniques that work well for practical programs have been
developed [Cook et al. 2006, 2011]. Such techniques typically seek a suitable certificate of termina-
tion. Particularly relevant certificates are ranking functions (RFs) [Bradley et al. 2005; Colón and
Sipma 2001; Floyd 1967; Podelski and Rybalchenko 2004a, b; Sohn and Gelder 1991], mapping pro-
gram states into a well-founded domain, forcing a strict decrease of the function value in every
step. The basic ranking functions are 1-dimensional, which is often insufficient for complex control-
flow structures. Lexicographic ranking functions (LexRFs) are multidimensional extensions of RFs
that provide an effective approach to termination analysis [Alias et al. 2010; Bradley et al. 2005;
Brockschmidt et al. 2013, 2016; Cook et al. 2013; Gonnord et al. 2015]. The literature typically re-
stricts to linear LexRFs for linear-arithmetic (LA) programs, as LA reasoning can be more efficiently
automated compared with non-linear arithmetic.

For probabilistic programs, the termination problem considers aspects of the probabilistic be-
haviors as well. The most fundamental is the almost-sure (a.s.) termination problem, which asks
whether a given PP terminates with probability 1. One way of proving a.s. termination is via a
probabilistic analogue of ranking functions named ranking supermartingales (RSMs) due to the
connection with (super)martingale stochastic processes [Williams 1991]. There is a rich body of
work on 1-dimensional RSMs whereas the work by Agrawal et al. [2018] introduces lexicographic
RSMs. In probabilistic programs, a transition τ available in some state s yields a probability dis-
tribution over the successor states. The conditions defining RSMs are formulated in terms of the
expectation operator Eτ of this distribution. In particular, lexicographic ranking supermartingales

(LexRSMs) of Agrawal et al. [2018] are functions f mapping program states to Rd , such that for
each transition τ there exists a component 1 ≤ i ≤ d , satisfying, for any reachable state s at which
τ is enabled, the following conditions P-RANK and S-NNEG (with fi the i-component of f and
s |= G (τ ) denoting the fact that s satisfies the guard of τ ):

(1) P-RANK( f ,τ ) ≡ s |= G (τ ) ⇒
(
E

τ [fi (s ′)] ≤ fi (s ) − 1 and Eτ [fj (s ′)] ≤ fj (s ) for all 1 ≤ j < i
)
.

(2) S-NNEG( f ,τ ) ≡ s |= G (τ ) ⇒
(
fj (s ) ≥ 0 for all 1 ≤ j ≤ d

)
.

(We use the standard primed notation from program analysis, that is, s ′ is the probabilistically
chosen successor of s when performing τ .) The P-RANK condition enforces an expected decrease
in lexicographic ordering, while S-NNEG stands for “strong non-negativity.” Proving the soundness
of LexRSMs for proving a.s. termination is highly non-trivial and requires reasoning about complex
stochastic processes [Agrawal et al. 2018]. Apart from the soundness proof, Agrawal et al. [2018]
also presents an algorithm for the synthesis of linear LexRSMs.

While LexRSMs improved the applicability of a.s. termination proving, their usage is impeded
by the restrictiveness of strong non-negativity due to which a linear LexRSM might not exist even
for simple a.s. terminating programs. This is a serious drawback from the automation perspective,
since even if such a program admits a non-linear LexRSM, efficient automated tools that restrict
to linear-arithmetic reasoning would not be able to find it.

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



On Lexicographic Proof Rules for Probabilistic Termination 11:3

Fig. 1. Motivating examples. Norm(μ,σ ) samples from the normal distribution with mean μ and standard
deviation σ . Uni[a,b] samples uniformly from the interval [a,b]. Location labels are the “�i ”: one location per
loop head and one additional location in (b) to have one assignment per transition (a technical requirement
for our approach). In addition, the location label “�out” denotes the terminal location in each program. A
formal representation of the programs via probabilistic control flow graphs is presented later, in Section 4.

Consider the program in Figure 1(a). By employing simple random-walk arguments, we can
manually prove that the program terminates a.s. A linear LexRSM proving this needs to have a
component containing a positive multiple of x at the head of the inner while-loop (�1). However,
due to the sampling from the normal distribution, which has unbounded support, the value of x
inside the inner loop cannot be bounded from below. Hence, the program does not admit a linear
LexRSM. In general, the existing 1-dimensional variants of ranking supermartingales [Chakarov
and Sankaranarayanan 2013; Huang et al. 2019] as well as LexRSMs with strong non-negativity
do not handle programs with unbounded-support distributions well, as they all require their com-
ponents to be non-negative in all reachable states at which some transition is enabled. The strong
non-negativity condition is too restrictive for automated methods that reason over linear arith-
metic, and existing methods that reason over linear arithmetic cannot prove even that the inner
loop of the program in Figure 1(a) (also shown in Figure 2) terminates a.s.

Now, consider the program in Figure 1(b). Again, it can be shown that this PP terminates a.s.
However, this cannot be witnessed by a linear LexRSM: to rank the “if-branch” transition, there
must be a component with a positive multiple ofy in �0. However,y can become arbitrarily negative
within the else branch and cannot be bounded from below by a linear function of x .

Contributions. The contributions of this work are as follows:

(1) Generalized Lexicographic RSMs. In the non-probabilistic setting, strong non-negativity can
be relaxed to partial non-negativity (P-NNEG), in which only the components to the left of the
“ranking component” i (inclusive) need to be non-negative (Ben-Amram–Genaim RFs [Ben-
Amram and Genaim 2015]). We show that in the probabilistic setting, the same relaxation is
possible under additional expected leftward non-negativity constraint (EXP-NNEG). Formally,
we say that f is a generalized lexicographic ranking supermartingale (GLexRSM) if for any
transition τ there is 1 ≤ i ≤ d such that for any reachable state s at which τ is enabled we
have P-RANK( f ,τ ) ∧ P-NNEG( f ,τ ) ∧ EXP-NNEG( f ,τ ), where

P-NNEG( f ,τ ) ≡ s |= G (τ ) ⇒
(
fj (s ) ≥ 0 for all 1 ≤ j ≤ i

)

EXP-NNEG( f ,τ ) ≡ s |= G (τ ) ⇒
(
E

τ [fj (s ′) · I<j (s ′)] ≥ 0 for all 1 ≤ j ≤ i
)
,

with I<j being the indicator function of the set of all states in which a transition ranked by
a component < j is enabled.

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



11:4 K. Chatterjee et al.

Fig. 2. A simple loop that terminates almost-surely and that involves sampling from the standard normal
distribution, which has unbounded support. However, no existing martingale-based method that reasons
over linear arithmetic can prove a.s. termination of this loop.

We first formulate GLexRSMs as an abstract proof rule for general stochastic processes. We
then instantiate them into the setting of probabilistic programs and define GLexRSM maps,

which we prove to be sound for proving a.s. termination. These results are general and not

specific to linear-arithmetic programs.
(2) Polynomial Algorithms for Linear GLexRSMs. We present two algorithms:

(a) For linear-arithmetic PPs in which sampling instructions use bounded-support distribu-
tions, we show that the problem LinGLexPP of deciding whether a given PP with a given
set of linear invariants admits a linear GLexRSM is decidable in polynomial time. Also,
our algorithm computes the witnessing linear GLexRSM whenever it exists. Our approach
proves the a.s. termination of the program in Figure 1(b).

(b) Building on the results of item 1, we construct a sound polynomial-time algorithm for
a.s. termination proving in PPs that do perform sampling from unbounded-support distri-
butions. The algorithm proves a.s. termination for our motivating example in Figure 1(a).

(3) First linear-arithmetic martingale-based method for unbounded-support distributions. Finally,
while the focus of our work is on relaxing the restrictive strong non-negativity assump-
tion of LexRSMs, we remark that our theoretical and algorithmic results also yield the first
automated method that operates over linear arithmetic and can prove a.s. termination in
probabilistic programs in which termination depends on sampling instructions from double-

sided unbounded support probability distributions. For instance, termination behavior of the
simple loop in Figure 2 is determined by values sampled from the standard normal distri-
bution. Any linear-arithmetic martingale-based certificate admitted by this program would
need to have a vanishing linear coefficient of the sampled variable for the certificate to be
non-negative. Hence, this program does not admit any martingale-based certificate that im-
poses the strong non-negativity condition. To the best of our knowledge, the only exception
is the descent supermartingale maps (DSMs) of Huang et al. [2019], which replace the strong
non-negativity assumption by the bounded difference condition that requires bounded max-
imal change in value at every program state. However, the program in Figure 2 does not
admit a linear-arithmetic DSM either, as the sampled value from the standard normal dis-
tribution is unbounded; therefore, the linear coefficient of the sampled variable in the DSM
would need to be 0. Since our method relaxes the strong non-negativity assumption while
not introducing the bounded difference condition, it presents the first method that operates
over linear arithmetic and can prove a.s. termination of the PP presented in Figure 2.

Related work. Martingale-based termination literature mostly focused on 1-dimensional RSMs
[Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2016, 2018, 2017; Fioriti and Hermanns
2015; Fu and Chatterjee 2019; Giesl et al. 2019; Huang et al. 2018; McIver and Morgan 2016; McIver
et al. 2018; Moosbrugger et al. 2021]. RSMs themselves can be seen as generalizations of Lyapunov
ranking functions from control theory [Bournez and Garnier 2005; Foster 1953]. Recently, the
work [Huang et al. 2019] pointed out the unsoundness of the 1-dimensional RSM-based proof rule
in Fioriti and Hermanns [2015] due to insufficient lower bound conditions and provided a corrected

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



On Lexicographic Proof Rules for Probabilistic Termination 11:5

version. On the multidimensional front, it was shown in Fioriti and Hermanns [2015] that requiring
components of (lexicographic) RSMs to be non-negative only at points where they are used to rank
some enabled transition (analogue of Bradley-Manna-Sipma LexRFs [Bradley et al. 2005]) is un-
sound for proving a.s. termination. This illustrates the intricacies of dealing with lower bounds in
the design of a.s. termination certificates. Lexicographic RSMs with strong non-negativity were in-
troduced in Agrawal et al. [2018]. The work of Chen and He [2020] produces anω-regular decompo-
sition of a program’s control-flow graph, with each program component ranked by a different RSM.
This approach does not require a lexicographic ordering of RSMs. However, each component in the
decomposition must be ranked by a single-dimensional non-negative RSM. RSM approaches were
also used for cost analysis [Avanzini et al. 2020b; Ngo et al. 2018; Wang et al. 2019] and additional
liveness and safety properties [Barthe et al. 2016a; Chakarov et al. 2016; Chatterjee et al. 2022, 2017].

Logical calculi for reasoning about properties of PPs (including termination) were studied
in Feldman [1984], Feldman and Harel [1982], and Kozen [1981, 1983] and extended to programs
with non-determinism in Gretz et al. [2014], Kaminski et al. [2018b], McIver and Morgan [2004,
2005], and Olmedo et al. [2016]. McIver and Morgan [2004, 2005] and McIver et al. [2018] for-
malize RSM-like proof certificates within the weakest pre-expectation (WPE) calculus [Morgan and
McIver 1999; Morgan et al. 1996]. The power of this calculus allows for reasoning about complex
programs [McIver et al. 2018, Section 5]; however, the proofs typically require human input. The-
oretical connections between martingales and the WPE calculus were recently explored in Hark
et al. [2020]. There is also a rich body of work on analysis of probabilistic functional programs, in
which the aim is typically to obtain a general type of system [Avanzini et al. 2019; Dal Lago et al.
2021; Kobayashi et al. 2020; Lago and Grellois 2019] for reasoning about termination properties
(automation for discrete probabilistic term rewrite systems is shown in Avanzini et al. [2020a]).

As for other approaches to a.s. termination, for finite-state programs with nondeterminism a
sound and complete method was given in Esparza et al. [2012], while [Monniaux 2001] consid-
ers a.s. termination proving through abstract interpretation. The work of Kaminski et al. [2018a]
shows that proving a.s. termination is harder (in terms of arithmetical hierarchy) than proving
termination of non-probabilistic programs.

The computational complexity of the construction of lexicographic ranking functions in non-
probabilistic programs was studied in Ben-Amram and Genaim [2013, 2015].

New Material. This article is an extended version of the article [Chatterjee et al. 2021a] with the
following additional material:

• The current article provides much more technical detail, with proof overviews followed
by detailed proofs. We include proofs of Lemma 6.1, Theorem 6.2, and a sketch proof of
Lemma 6.4 that underline the soundness of our automated approach. These proofs also show
why our automated approach is restricted to linear-arithmetic programs and what would be
the challenges in automating the synthesis of GLexRSMs for programs with non-linear arith-
metic, which is an interesting direction of future work.
• We provide further details on constraint encoding in Section 6 that were omitted from the

conference version, and we provide a pseudocode for Algorithm 1.
• We expand Section 5 with the statements of Proposition 5.5 and Definition 5.6. These are two

results on probabilistic programs with non-determinism that we established in the proof of
Theorem 5.4 but that were hitherto not studied in the PP analysis literature. In the conference
version, we only briefly mentioned these results. Here, we state them formally and present
the key ideas behind the proof of Proposition 5.5.
• Finally, we emphasize the applicability of our method to PPs with sampling instructions

from double-sided unbounded support probability distributions, which was not sufficiently

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



11:6 K. Chatterjee et al.

discussed in the conference version, and we provide an example program in Figure 2 to
demonstrate this contribution. Our algorithm for synthesizing linear GLexRSMs provides
the first automated martingale-based method that operates over linear arithmetic and can
prove a.s. termination of the simple loop in Figure 2.

Article organization. The article is split into two parts: the first is “abstract,” with mathematical
preliminaries (Section 2) and definition and soundness proof of abstract GLexRSMs (Section 3). We
also present an example showing that GLexRSMs without the expected leftward non-negativity
constraint are not sound. The second part covers application to PPs: preliminaries on the program
syntax and semantics (Section 4), a GLexRSM-based proof rule for a.s. termination (Section 5), and
the outline of our algorithms (Section 6).

2 MATHEMATICAL PRELIMINARIES

We use boldface notation for vectors, for example, x, y, and so on, and we denote an i-th component
of a vector x by x[i]. For an n-dimensional vector x, index 1 ≤ i ≤ n, and number a, we denote by
x(i ← a) a vector y such that y[i] = a and y[j] = x[j] for all 1 ≤ j ≤ n, j � i . For two real numbers
a and b, we use a · b to denote their product.

We assume familiarity with basics of probability theory [Williams 1991]. A probability space is
a triple (Ω,F ,P), where Ω is a sample space, F is a sigma-algebra of measurable sets over Ω, and
P is a probability measure on F . A random variable (r.v.) R : Ω → R ∪ {±∞} is an F -measurable

real-valued function (i.e., {ω | R (ω) ≤ x } ∈ F for all x ∈ R); we denote by E[R] its expected

value. A random vector is a vector whose every component is a random variable. We denote by
X[j] the j-component of a random vector X. A (discrete time) stochastic process in a probability
space (Ω,F ,P) is an infinite sequence of random vectors in this space. We will also use random
variables of the form R : Ω → A for some finite or countable set A, which easily translates to the
real-valued variables.

Let (Ω,F ,P) be a probability space and let X be a random variable. A conditional expectation of
X given a sub-sigma algebra F ′ ⊆ F is any real-valued random variable Y such that (i) Y is F ′-
measurable and (ii) for each setA ∈ F ′ it holds that E[X ·I(A)] = E[Y ·I(A)]. Here, I(A) : Ω → {0, 1}
is an indicator function of A, that is, function returning 1 for each ω ∈ A and 0 for each ω ∈ Ω \A.

It is known from Ash and Doléans-Dade [2000] that a random variable satisfying the properties
of conditional expectation exists whenever (a) E[|X |] < ∞, that is, X is integrable, or (b) X is real
valued and non-negative (though these two conditions are not necessary). Moreover, whenever
the conditional expectation exists, it is also known to be a.s. unique. We denote this a.s. unique
conditional expectation by E[X |F ′]. It holds that for any F ′-measurable bounded r.v. Z , we have
that E[X · Z |F ′] = E[X |F ′] · Z whenever the former conditional expectation exists [Williams
1991, Theorem 9.7(j)].

A filtration in (Ω,F ,P) is an increasing (with regard to set inclusion) sequence {Ft }∞t=0 of sub-
sigma-algebras of F . A stopping time with regard to a filtration {Ft }∞t=0 is a random variable T
taking values in N ∪ {∞} such that for every t the set {T = t } = {ω ∈ Ω | T (ω) = t } belongs to Ft .
Intuitively, T returns a timestep in which some process should be “stopped.” The decision to stop
is made solely on the information available at the current step.

3 GENERALIZED LEXICOGRAPHIC RANKING SUPERMARTINGALES

In this section, we introduce generalized lexicographic ranking supermartingales (GLexRSMs): an
abstract concept that is not necessarily connected to PPs, but which is crucial for the soundness
of our new proof rule for a.s. termination.

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



On Lexicographic Proof Rules for Probabilistic Termination 11:7

Definition 3.1 (Generalized Lexicographic Ranking Supermartingale). Let (Ω,F ,P) be a probabil-
ity space and let (Ft )∞t=0 be a filtration of F . Suppose that T is a stopping time with regard to
F . An n-dimensional real-valued stochastic process (Xt )∞t=0 is a generalized lexicographic ranking

supermartingale for T (GLexRSM) if:

(1) For each t ∈ N0 and 1 ≤ j ≤ n, the random variable Xt [j] is Ft -measurable.
(2) For each t ∈ N0, 1 ≤ j ≤ n, and A ∈ Ft+1, the conditional expectation E[Xt+1[j] · I(A) | Ft ]

exists.
(3) For each t ∈ N0, there exists a partition of the set {T > t } into n subsets Lt

1, . . . ,L
t
n , all of

them Ft -measurable (i.e., belonging to Ft ), such that for each 1 ≤ j ≤ n
• E[Xt+1[j] | Ft ](ω) ≤ Xt [j](ω) for each ω ∈ ∪n

j′=jL
t
j′ ,

• E[Xt+1[j] | Ft ](ω) ≤ Xt [j](ω) − 1 for each ω ∈ Lt
j ,

• Xt [j](ω) ≥ 0 for each ω ∈ ∪n
j′=jL

t
j′ ,

• E[Xt+1[j] · I(∪j−1
j′=0L

t+1
j′ ) | Ft ](ω) ≥ 0 for each ω ∈ ∪n

j′=jL
t
j′ , with Lt+1

0 = {T ≤ t + 1}.

Intuitively, we may think of each ω ∈ Ω as a trajectory of process that evolves over time (in
the second part of our article, this will be a PP run). Then, Xt is a vector function depending on
the first t timesteps (each Xt [j] is Ft -measurable), while T is the time at which the trajectory is
stopped. Then, in point 3 of the definition, the first two items encode the expected (conditional)
lexicographic decrease of Xt , the third item encodes non-negativity of components to the left
(inclusive) of the one that “ranks” ω in step t , and the last item encodes the expected leftward
non-negativity (sketched in Section 1). For each 1 ≤ j ≤ n and timestep t ≥ 0, the set Lt

j contains
all ω ∈ {T > t } that are “ranked” by the component j at time t . An instance of an n-dimensional
GLexRSM {Xt }∞t=0 is a tuple (X∞t=0, {Lt

1, . . . ,L
t
n }∞t=0), where the second component is a sequence of

partitions of Ω satisfying the condition in Definition 3.1. We say that ω ∈ Ω has level j in step t of
the instance ((Xt )∞t=0, (L

t
1, . . . ,L

t
n )∞t=0) if T (ω) > t and ω ∈ Lt

j . If T (ω) ≤ t , we say that the level of
ω at step t is 0.

We now state the main theorem of this section, which underlies the soundness of our new
method for proving a.s. termination.

Theorem 3.2. Let (Ω,F ,P) be a probability space, (Ft )∞t=0 a filtration of F , andT a stopping time

with regard to F . If there is an instance ((Xt )∞t=0, (L
t
1, . . . ,L

t
n )∞t=0) of a GLexRSM over (Ω,F ,P) for

T , then P[T < ∞] = 1.

In Agrawal et al. [2018], a mathematical notion of LexRSMs is defined and a result for LexRSMs
analogous to our Theorem 3.2 is established. Thus, the first part of our proof mostly resembles
the proof of Theorem 3.3. in Agrawal et al. [2018], up to the point of defining the stochastic pro-
cess (Yt )∞t=0 in Equation (1). After that, the proof of Agrawal et al. [2018] crucially relies on non-
negativity of each Xt [j] and Yt at every ω ∈ Ω that is guaranteed by LexRSMs, and it cannot be
adapted to the case of GLexRSMs. Below, we first show that, for GLexRSMs, E[Yt ] ≥ 0 for each
t ≥ 0; then, we present a very elegant argument via the Borel-Cantelli lemma [Williams 1991,
Theorem 2.7] that shows that this boundedness of expectation is sufficient for the theorem claim
to hold.

Proof of Theorem 3.2. We proceed by contradiction. Suppose that there exists an instance of
a GLexRSM but that P[T = ∞] > 0. First, we claim that there exists 1 ≤ k ≤ n and s,M ∈ N0

such that the set B of all ω ∈ Ω for which the following properties hold has positive measure, that
is, P[B] > 0: (1) T (ω) = ∞; (2) Xs [k](ω) ≤ M ; (3) for each t ≥ s , the level of ω at step t is at least
k ; and (4) the level of ω equals k infinitely many times.

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



11:8 K. Chatterjee et al.

The claim is proved by several applications of the union bound. For each ω ∈ Ω, we define
minlev(ω) to be the smallest 0 ≤ j ≤ n such that the level ofω is equal to j in infinitely many steps
i . Let Bk = {ω ∈ Ω | T (ω) = ∞∧min-lev (ω) = k } for each 1 ≤ k ≤ n. Then,

{ω ∈ Ω | T (ω) = ∞} =
n⋃

k=1

Bk .

Thus, by the union bound, there exists 1 ≤ k ≤ n for which P[Bk ] > 0. We may express Bk as a
union of events over the time of the last visit to some Li

j with j < k . If we write Bs
k
= {ω ∈ Ω |

T (ω) = ∞ ∧ (i ≥ s ⇒ ω ∈ ∪n
j=k

Li
j } for each s ∈ N0, we have that Bk = ∪s≥0B

s
k

. As by the union

bound P[Bk ] ≤ ∑∞s=0 P[B
s
k

], there exists s ∈ N0 for which P[Bs
k

] > 0. Now, for each M ∈ N0, let

Bs,M
k

be defined via

Bs,M
k
=
{
ω ∈ Bs

k
���Xs [k] ≤ M

}
.

Then, Bs
k
= ∪∞M=0B

s,M
k

. By the union bound, we have that P[Bs
k

] ≤ ∑∞M=0 P[B
s,M
k

], and there exists

M ∈ N0 such that P[Bs,M
k

] > 0. The set B = Bs,M
k

satisfies the conditions of the claim.
Since B is defined in terms of tail properties of ω (“level is at least k infinitely many times”), it

is not necessarily Ft -measurable for any t . Hence, we define a stochastic process (Yt )∞t=0 such that
each Yt is Ft -measurable, and which satisfies the desirable properties of (Xt [k])∞t=0 on B.

Let D = {ω ∈ Ω | Xs [k](ω) ≤ M ∧ ω ∈ ∪n
j=k

Ls
j }. Note that D is Ft -measurable for t ≥ s .

We define a stopping time F with regard to (Ft )∞t=0 via F (ω) = inf {t ≥ s | ω � ∪n
j′=k

Lt
j′ }, then a

stochastic process (Yt )∞t=0 via

Yt (ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if ω � D,
M, if ω ∈ D, and t < s,

Xt [k](ω), if ω ∈ D, t ≥ s and F (ω) > t ,

XF (ω )[k](ω), else.

(1)

A straightforward argument (presented in the extended version of the paper [Chatterjee et al.
2021b]) shows that for each t ≥ s we have that E[Yt+1] ≤ E[Yt ]− P[Lt

k
∩D ∩ {F > t }]. By a simple

induction, we obtain that

E[Ys ] ≥ E[Yt ] +
t−1∑

r=s

P

[
Lr

k ∩ D ∩ {F > r }
]
. (2)

Now, we show that E[Yt ] ≥ 0 for each t ∈ N0. The claim is clearly true for t < s; thus, suppose
that t ≥ s . We can then expand E[Yt ] as follows:

E[Yt ] = E[Yt · I(F = s )] +
t∑

r=s+1

E[Yt · I(F = r )] + E[Yt · I(F > t )]

(Ys ≥ 0 as D ⊆ ∪n
j=kL

s
j and Yt (ω) ≥ 0 whenever F (ω) > t )

≥
t∑

r=s+1

E[Yt · I(F = r )] =
t∑

r=s+1

E[Yt · I({F = r } ∩ D)]

(Yt (ω) = XF (ω )[k](ω) whenever ω ∈ D, t ≥ s and F (ω) ≤ t )

=

t∑

r=s+1

E

⎡⎢⎢⎢⎢⎢⎣
Xr [k] · I ���

k−1⋃

j=0

Lr
j
��
�· I({F > r − 1} ∩ D)

⎤⎥⎥⎥⎥⎥⎦
(properties of cond. exp. & I({F > r − 1} ∩ D) is Fr−1-measurable)

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



On Lexicographic Proof Rules for Probabilistic Termination 11:9

=

t∑

r=s+1

E

⎡⎢⎢⎢⎢⎢⎢⎣
E

⎡⎢⎢⎢⎢⎢⎣
Xr [k] · I ���

k−1⋃

j=0

Lr
j
��
�
������Fr−1

⎤⎥⎥⎥⎥⎥⎦
· I({F > r − 1}

⋂
D)

⎤⎥⎥⎥⎥⎥⎥⎦
≥ 0

���
�
E

⎡⎢⎢⎢⎢⎢⎣
Xr [k] · I ���

k−1⋃

j=0

Lr
j
��
�
������Fr−1

⎤⎥⎥⎥⎥⎥⎦
(ω) ≥ 0 forω ∈ {F > r − 1} ⊆ ∪n

j=kL
r−1
j

���
�
.

Plugging into Equation (2) that E[Yt ] ≥ 0, we get that E[Ys ] ≥ ∑t−1
r=s P[L

r
k
∩ D ∩ {F > r }] for each

t ≥ s . By letting t → ∞, we conclude that E[Ys ] ≥ ∑∞r=s P[L
r
k
∩ D ∩ {F > r }]. As Ys ≤ M and

Ys = 0 outside D, we know that E[Ys ] ≤ M · P[D]. We get that
∞∑

r=s

P

[
Lr

k ∩ D ∩ {F = ∞}
]
≤
∞∑

r=s

P

[
Lr

k ∩ D ∩ {F > r }
]
≤ M · P[D] < ∞.

By the Borel-Cantelli lemma, P[Lr
k
∩ D ∩ {F = ∞} for infinitely many r ] = 0. However, the event

{Lr
k
∩D∩ {F = ∞} for infinitely many r } is precisely the set of all runsω ∈ Ω for which (1)T (ω) =

∞ (as ω never has level zero by ω ∈ Lr
k

for infinitely many k), (2) Xs [k](ω) ≤ M , (3) for each
r ≥ s the level of ω at step t is at least k , and (4) the level of ω is k infinitely many times. Hence,
B = {Lr

k
∩ D ∩ {F = ∞} for infinitely many r } and P[B] = 0, a contradiction. �

GLexRSMs would be unsound without the expected leftward non-negativity.

Example 3.3. Consider a one-dimensional stochastic process (Yt )∞t=0 such that Y0 = 1 with prob-
ability 1 and then the process evolves as follows: in every step t , if Yt ≥ 0, then with probability
pt =

1
4 ·

1
2t we put Yt+1 = Yt − 2

pt
and with probability 1 − pt we put Yt+1 = Yt +

1
1−pt

. If Yt < 0,
we put Yt+1 = Yt . The underlying probability space can be constructed by standard techniques
and we consider the filtration (Ft )∞t=0 such that Ft is the smallest sub-sigma-algebra making Yt

measurable. Finally, consider the stopping time T returning the first point in time when Yt < 0.
Then, T < ∞ if and only if the process ever performs the update Yt+1 = Yt − 2

pt
. However, the

probability that this happens is bounded by 1
4 +

3
4 ·

1
8 +

3
4 ·

7
8 ·

1
16 + · · · <

1
4

∑∞
t=0

1
2t =

1
2 < 1. At the

same time, putting Lt
1 = {Yt ≥ 0}, we get that the tuple ((Yt )∞t=0, (L

t
1)∞t=0) satisfies all conditions of

Definition 3.1 apart from the last bullet of point 3.

4 PROGRAM-SPECIFIC PRELIMINARIES

Arithmetic expressions in our programs are built from constants, program variables, and standard
Borel-measurable [Billingsley 1995] arithmetic operators. We also allow sampling instructions to
appear on right-hand sides of variable assignments as linear terms. An expression with no such
terms is called sampling free. We allow sampling from both discrete and continuous distributions.
We denote by D the set of distributions appearing in the program, with each d ∈ D assumed to
be integrable, that is, EX∼d [|X |] < ∞. We write X ∼ d to denote that X is a random variable with
probability distribution d . This is to ensure that the expected value of each d over any measurable
set is well defined and finite.

A predicate over a set of variables V is a Boolean combination of atomic predicates of the form
E ≤ E ′, where E, E ′ are sampling-free expressions whose variables are all from V . We denote by
x |= Ψ the fact that the predicate Ψ is satisfied by substituting values of x for the corresponding
variables in Ψ.

We represent PPs via the standard concept of probabilistic control flow graphs (pCFGs) [Agrawal
et al. 2018; Chatterjee et al. 2018, 2017]. Formally, a pCFG is a tuple C = (L,V ,Δ,Up,G ), where

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



11:10 K. Chatterjee et al.

Fig. 3. The pCFGs of the programs presented in Figure 1. Guards are shown in the rounded boxes (absence
of a box = guard is true). The update tuples are shown using variable aliases instead of indexes for better
readability. On the left, we have that u1 = y,u2 = x − 1 + Norm(0, 1), and u3 = y − 1. On the right, we have
that u1 = y + Uni[−7, 1],u2 = x + Uni[−7, 1], and u3 = y + Uni[−7, 1].

L is a finite set of locations; V = {x1, . . . ,x |V | } is a finite set of program variables; and Δ is a finite
set of transitions, that is, tuples of the form τ = (�,δ ), where � is a location and δ is a distribu-
tion over successor locations. Δ is partitioned into two disjoint sets: ΔP B of probabilistic branching
transitions for which |supp(δ ) | = 2, and ΔN P B of remaining transitions for which |supp(δ ) | = 1.
Next, Up is a function assigning to each transition in ΔN P B either the element ⊥ (representing no
variable update) or a tuple (i,u), where 1 ≤ i ≤ |V | is a target variable index and u is an update

element, which can be either an expression (possibly involving a single sampling instruction), or a
bounded interval R ⊆ R representing a nondeterministic update. Finally,G is a function assigning
a predicate (a guard) over V to each transition in ΔN P B . Figure 3 presents the pCFGs of our two
motivating examples in Figure 1.

Transitions in ΔP B correspond to the “probabilistic branching” specified by the
if prob(p) then . . . else . . . construct in imperative-style source code [Agrawal et al. 2018].
A program (pCFG) is linear (or affine) if all its expressions are linear, that is, of the form
b +
∑n

i=1 ai · Zi for constants a1, . . . ,an ,b and program variables/sampling instructions Zi . We
assume that parameters of distributions are constants; thus, they do not depend on program vari-
able values, a common assumption in martingale-based automated approaches to a.s. termination
proving [Agrawal et al. 2018; Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2018; Chen
and He 2020; Huang et al. 2019].

A state of a pCFG C is a tuple (�, x), where � is a location of C and x is a |V |-dimensional vector
of variable valuations. A transition τ is enabled in (�, x) if τ is outgoing from � and x |= G (τ ).

The nondeterminism in programs is resolved via schedulers. A scheduler is a function σ assign-
ing (i) to every finite path ending in a state s , a probability distribution over transitions enabled in
s; and (ii) to every finite path that ends in a state in which a transition τ with a nondeterministic up-
date Up(τ ) = (i,R) is enabled, an integrable probability distribution over R. To make the program
dynamics under a given scheduler well defined, we restrict ourselves to measurable schedulers.
This is standard in probabilistic settings [Neuhäußer and Katoen 2007; Neuhäußer et al. 2009] and,
hence, we omit the formal definition.

A state c ′ = (�′, x′) is a successor of a state c = (�, x) if it can result from c by performing
a transition τ enabled in c . Formally, (�′, x′) is a successor of (�, x) under transition τ if �′ is the
successor location of � under τ and x′ relates to x in one of these ways depending on (i,u) = Up(τ ):

• If u = ⊥, then x′ = x.
• If u is an expression, then for the sampling instruction in the expression (if it exists) we

sample from the respective distribution and replace the instruction with the sampled value.
We then evaluate the resulting expression into a number A and put x′ = x(i ← A).

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



On Lexicographic Proof Rules for Probabilistic Termination 11:11

• Ifu is an interval R, then we sample a valueA from the distribution prescribed by a scheduler
σ for πi and τ ; we then put x′ = x(i ← A).

A finite path of length k in C is a finite sequence (�0, x0) · · · (�k , xk ) of states such that �0 = �init

and, for each 0 ≤ i < k , the state (�i+1, xi+1) is a successor of (�i , xi ). A run in C is an infinite
sequence of states whose every finite prefix is a finite path. We denote by FpathC and RunC the
sets of all finite paths and runs in C, respectively. A state (�, x) is reachable if there is, for some
xinit , a finite path starting in (�init , xinit ) and ending in (�, x).

We use the standard Markov Decision Process (MDP) semantics of pCFGs [Agrawal et al. 2018;
Chatterjee et al. 2018; Kaminski et al. 2018b]. Each pCFG C induces a sample space ΩC = RunC
and the standard Borel sigma-algebra FC over ΩC . Moreover, a pCFG C together with a scheduler
σ , initial location �init , and initial variable valuation xinit uniquely determine a probability mea-
sure Pσ

�init,xinit
in the probability space (ΩC,FC,Pσ

�init,xinit
), capturing the rather intuitive dynamics

of the program’s execution: we start in state (�init , xinit ) and, in each step, a transition τ enabled in
the current state is selected (using σ if multiple transitions are enabled). If Up(τ ) = (i,u), then
the value of variable xi is changed according to u. The formal construction of Pσ

�init,xinit
proceeds

via the standard cylinder construction [Ash and Doléans-Dade 2000, Theorem 2.7.2]. We denote by
E

σ
�init,xinit

the expectation operator in the probability space (ΩC,FC,Pσ
�init,xinit

).
We stipulate that each pCFG has a special terminal location �out whose all outgoing transitions

must be self-loops. We say that a run ϱ terminates if it contains a configuration whose first compo-
nent is �out . We denote by Terminates the set of all terminating runs in ΩC . We say that a program
represented by a pCFG C terminates almost-surely (a.s.) if for each measurable scheduler σ and
each initial variable valuation xinit it holds that Pσ

�init,xinit
[Terminates] = 1.

5 GLEXRSMS FOR PROBABILISTIC PROGRAMS

In this section, we define a syntactic proof rule for a.s. termination of PPs, showing its soundness
via Theorem 3.2. In what follows, let C be a pCFG.

Definition 5.1 (Measurable Map). An n-dimensional measurable map (MM) is a vector η =
(η1, . . . ,ηn ), where eachηi is a function mapping each location � to a real-valued Borel-measurable
function ηi (�) over program variables. We say that η is a linear expression map (LEM) if each ηi is
representable by a linear expression over program variables.

The notion of pre-expectation was introduced in Kozen [1983], was made syntactic in the Di-
jkstra wp-style in Morgan and McIver [1999], and was extended to programs with continuous
distributions in Chakarov and Sankaranarayanan [2013]. It formalizes the “one-step” expectation
operator Eτ we used on an intuitive level in the introduction. In what follows, we generalize the
definition of pre-expectation presented in Chakarov and Sankaranarayanan [2013] in order to al-
low taking expectation over subsets of successor states C (a necessity for handling the EXP-NNEG

constraint). We say that a set S of states in C is measurable if for each location � in C we have
that {x ∈ R |V | | (�, x) ∈ S } ∈ B (R |V | ), that is, it is in the Borel sigma-algebra of R |V | . Further-
more, we also differentiate between the maximal and minimal pre-expectation, which may differ
in the case of nondeterministic assignments in programs and intuitively are equal to the maximal
respective minimal value of the next-step expectation over all nondeterministic choices. Let η be
a 1-dimensional MM, τ = (�,δ ) a transition, and S be a measurable set of states in C. We denote
by max-preτ

η,S (s ) the maximal pre-expectation of η in τ given S (i.e., the maximal expected value of

η after making a step from s computed over successor states belonging to S). Similarly, we denote
by min-preτ

η,S the minimal pre-expectation of η in τ given S .

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



11:12 K. Chatterjee et al.

Definition 5.2 (Pre-expectation). Let η be a 1-dimensional MM, τ = (�,δ ) a transition, and S be a
measurable set of states in C. A maximal pre-expectation ofη in τ given S is the function max-preτ

η,S

assigning to each state (�, x) the following number:

• if τ ∈ ΔP B is a transition of probabilistic branching, then max-preτ
η,S (�, x) =

∑
�′ ∈L δ (�′) ·

η(�′, x) · I(S ) (�′, x);
• otherwise, max-preτ

η,S (�, x) = A�′ , where �′ is the unique successor location of τ and A�′ is
defined as follows:
(1) if Up(τ ) = ⊥, then A�′ = η(�′, x) · I(S ) (�′, x)
(2) if Up(τ ) = (j,u) andu is an expression over program variables and sampling instructions,

then A�′ = η(�′, x(j ← A)), where A is the expected value of u · I(S ) (�′,u) under valuation
x (i.e., integration of u is performed only over the set of states at �′ that belong to S ; the
integral is well defined and finite since {x ∈ R |V | | (�′, x) ∈ S } ∈ B (R |V | ) and any
distribution appearing in variable updates is integrable);

(3) if Up(τ ) = (j,u) and u is an interval I denoting a nondeterministic assignment, then
A�′ = supy∈I∧(�′,x(j←y ))∈S η(�′, x(j ← y)).

A minimal pre-expectation is denoted by min-preτ
η,S and is defined analogously, with the only

difference being that in point 3 we use inf instead of sup. We omit the subscript S when S is the
set of all states of C.

As in the case of non-probabilistic programs, termination certificates are supported by program
invariants over-approximating the set of reachable states. An invariant in C is a function I which
assigns a Borel-measurable set I (�) ⊆ R |V | to each location � of C such that for any state (�, x)
reachable in C, it holds that x ∈ I (�). If each I (�) is given by a conjunction of linear inequalities
over program variables, we say that I is a linear invariant.

GLexRSM-Based Proof Rule for Almost-Sure Termination. Given n ∈ N, we call a map lev : Δ →
{0, 1, . . . ,n} a level map. For τ ∈ Δ, we say that lev(τ ) is its level. The level of a state is the largest
level of any transition enabled at that state. We denote by S ≤j

lev the set of states with level ≤ j.

Definition 5.3 (GLexRSM Map). Let η be an n-dimensional MM and I an invariant in C. We say
that η is a generalized lexicographic ranking supermartingale map (GLexRSM map) supported by I ,
if there is a level map lev : Δ → {0, 1, . . . ,n} such that lev(τ ) = 0 iff τ is a self-loop transition at
�out , and for any transition τ = (�,δ ) with � � �out the following conditions hold:

(1) P-RANK(η,τ ) ≡ x ∈ I (�)∩G (τ ) ⇒ (max-preτ
ηlev(τ )

(�, x) ≤ ηlev(τ ) (�, x)−1∧max-preτ
ηj

(�, x) ≤
ηj (�, x) for all 1 ≤ j < lev(τ ));

(2) P-NNEG(η,τ ) ≡ x ∈ I (�) ∩G (τ ) ⇒ (ηj (�, x) ≥ 0 for all 1 ≤ j ≤ lev(τ ));
(3) EXP-NNEG(η,τ ) ≡ x ∈ I (�) ∩G (τ ) ⇒ min-preτ

ηj ,S
≤j−1
lev

(�, x) ≥ 0 for all 1 ≤ j ≤ lev(τ ).

A GLexRSM map η is linear (or LinGLexRSM map) if it is also an LEM.

Theorem 5.4 (Soundness of GLexRSM-maps for a.s. Termination). Let C be a pCFG and I
an invariant in C. Suppose that C admits an n-dimensional GLexRSM map η supported by I , for some

n ∈ N. Then, C terminates a.s.

Theorem 5.4 instantiates Theorem 3.2 to probability spaces of pCFGs. Its proof can be found in
the the extended version of the paper [Chatterjee et al. 2021b]. We stress that the instantiation is not

straightforward. In proving it, we establish two interesting results on probabilistic programs with
nondeterminism that were hitherto not studied in the probabilistic program analysis literature. In
the rest of this section, we discuss these results in more detail. The proof of Theorem 5.4 uses these

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



On Lexicographic Proof Rules for Probabilistic Termination 11:13

results to prove that a GLexRSM map induces a GLexRSM as in Definition 3.1 in the probability
space over the set of runs defined by the pCFG C.

To ensure that a scheduler cannot “escape” ranking by intricate probabilistic mixing of tran-
sitions, we show that in order to prove a.s. termination, it is sufficient to consider deterministic

schedulers, which do not introduce randomization among transitions. This statement is formal-
ized in the following proposition.

Proposition 5.5. Let C be a pCFG and suppose that there exist a measurable scheduler σ and an

initial configuration (�init , xinit ) such that Pσ
�init,xinit

[Term = ∞] > 0. Then, there exists a measurable

scheduler σ ∗, which is deterministic in the sense that to each finite path it assigns a single transition

with probability 1, such that Pσ ∗

�init,xinit
[Term = ∞] > 0.

The proof of Proposition 5.5 proceeds by constructing a sequence σ = σ0,σ1,σ2, . . . of sched-
ulers, where for each i ∈ N0 we have that σi+1 and σi agree on histories of length at most i − 1,
and σi+1 “refines” σi on histories of length i in such a way that

• σi+1 is deterministic on histories of length at most i;
• σi+1 is measurable; and
• Pσi+1 [Term = ∞] ≥ Pσi [Term = ∞].

Then, we define the scheduler σ ∗ as σ ∗ (ρ) = σi (ρ) whenever the length of a finite history ρ
is i . The construction of each σi+1 requires care as it needs to ensure that the newly constructed
scheduler is measurable, that it satisfies Pσi+1 [Term = ∞] ≥ Pσi [Term = ∞], and that the resulting
scheduler σ ∗ is measurable. The fact that Pσ ∗

�init,xinit
[Term = ∞] > 0 follows by the application of

the Monotone Convergence Theorem [Williams 1991]. The construction is highly non-trivial and
uses advanced results from probability and measure theory. We provide it in the extended version
of the paper [Chatterjee et al. 2021b].

Also, previous martingale-based certificates of a.s. termination [Agrawal et al. 2018; Chatterjee
et al. 2018; Fioriti and Hermanns 2015; Fu and Chatterjee 2019] often impose either non-negativity
or integrability of random variables defined by measurable maps in programs to ensure that their
conditional expectations exist. We show that these conditional expectations exist even without
such assumptions and in the presence of nondeterminism, and that they can be explicitly expressed
by extending the definition of pre-expectation in Chakarov and Sankaranarayanan [2013] to also
depend on a fixed scheduler that is used to resolve nondeterminism. This generalizes the result
of Chakarov and Sankaranarayanan [2013] to PPs with nondeterminism.

Definition 5.6 (Pre-expectation with Respect to a Scheduler). Let S be a set of measurable states
in C. The pre-expectation with respect to a scheduler σ of an MM η given S is a map preσ ,η,S :
FpathC → R defined as follows. Let ρ ∈ FpathC be a finite path ending in (�, x). Let σ (ρ) denote
the distribution over transitions enabled in (�, x) defined by the scheduler, and for each transition
τ = (�,δ ) ∈ supp(σ (ρ)) with the update element being a nondeterministic assignment from an
interval, let dσ (ρ,τ ) be a distribution over the interval defined by σ . Then,

preσ ,η,S (ρ) =
∑

τ=(l,δ )∈supp(σ (ρ ))

σ (ρ) (τ ) · preτ
σ ,η,S (�, x),

where preτ
σ ,η,S is defined in the same way as the standard pre-expectation preτ

η,S , except for the

case in which τ = (�,δ ) carries a nondeterministic assignment, that is, u (τ ) = (j,u), with u being
an interval. In such a case, we put preτ

σ ,η (�, x) =
∑

�′ ∈L δ (�′) · η(�′, x(j ← E[dσ (ρ,τ ) · I(S )]).

Intuitively, preσ ,η,S takes a finite path ρ ∈ FpathC as an input, and returns the expected value of
η in the next step when the integration is performed over program states in S given the program

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



11:14 K. Chatterjee et al.

run history and the choices of the scheduler σ . In the proof of Theorem 5.4, we show that, for any
scheduler σ , all conditional expectations whose existence is required in order to define a GLexRSM
as in Definition 3.1 in the probability space over the set of runs defined by the pCFG C and the
scheduler σ indeed exist and can be expressed via pre-expectations with respect to the scheduler σ .

Remark 5.1 (Comparison with Huang et al. [2019]). The work of Huang et al. [2019] considers
a modular approach. Given a loop whose body has already been proved a.s. terminating, they
show that the loop terminates a.s. if it admits a 1-dimensional MM satisfying P-RANK for each
transition in the loop, P-NNEG for the transition entering the loop, and the “bounded expected

difference” property for all transitions. Hence, their approach is suited mainly for programs with
incremental variable updates.

Modularity is also a feature of the approaches based on the weakest pre-expectation calcu-
lus [McIver and Morgan 2004, 2005; McIver et al. 2018].

6 ALGORITHM FOR LINEAR PROBABILISTIC PROGRAMS

We now present two algorithms for proving a.s. termination in linear probabilistic programs
(LinPPs). The first algorithm considers LinPPs with sampling from bounded-support distributions.
We show that the problem of deciding the existence of LinGLexRSM maps for such LinPPs is de-
cidable. Our second algorithm extends the first algorithm into a sound a.s. termination prover for
general LinPPs. In what follows, let C be a LinPP and I a linear invariant in C.

6.1 Linear Programs with Distributions of Bounded Support

Restricting to linear arithmetic is standard in automated a.s. termination proving, allowing one
to encode the existence of the termination certificate into systems of linear constraints [Agrawal
et al. 2018; Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2018; Chen and He 2020]. In the
case of LinGLexRSM maps, the difficulty lies in encoding the EXP-NNEG condition, as it involves
integrating distributions in variable updates that cannot always be done analytically. We show
that for LinPPs with bounded-support sampling, we can define another condition that is easier
to encode and can replace EXP-NNEG. Formally, we say that a distribution d ∈ D has a bounded

support if there exists N (d ) ≥ 0 such that PX∼d [|X | > N (d )] = 0. Here, we use PX∼d to denote
the probability measure induced by a random variable X with the probability distribution d . We
say that a LinPP has the bounded support property (BSP) if all distributions in the program have
bounded support. For instance, the program in Figure 1(b) has the BSP, whereas the program in
Figure 1(a) does not. Using the same notation as in Definition 5.3, we put:

W-EXP-NNEG(η,τ ) ≡ x ∈ I (�) ∩G (τ ) ⇒ ∀1 ≤ j ≤ lev(τ ) min-preτ
ηj

(�, x) ≥ 0.

(The W stands for “weak.”) Intuitively, EXP-NNEG requires non-negativity of the expected value
of ηj when integrated over successor states of level smaller than j, whereas the condition
W-EXP-NNEG requires non-negativity of the expected value of ηj when integrated over all suc-
cessor states. Since ηj is non-negative at successor states of level at least j, this new condition is
weaker than EXP-NNEG. Nevertheless, the following lemma shows that in order to decide the exis-
tence of LinGLexRSM maps for programs with the BSP, we may without loss of generality replace
EXP-NNEG by W-EXP-NNEG for all transitions but for those of probabilistic branching.

Lemma 6.1. Let C be a LinPP with the BSP and I be a linear invariant in C. If a LEM η satis-

fies conditions P-RANK and P-NNEG for all transitions, EXP-NNEG for all transitions in ΔP B and

W-EXP-NNEG for all other transitions, then η may be increased pointwise by a constant value in

order to obtain a LinGLexRSM map.

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



On Lexicographic Proof Rules for Probabilistic Termination 11:15

Proof. To prove the lemma, we need to show that there exists K > 0 such that the LEM η′

of the same dimension as η, and defined via η′j (�, x) = ηj (�, x) + K for each component j and
state (�, x), is a LinGLexRSM map in C supported by I (with the level map being the same as
for η).

Note that increasingη pointwise by a constantK > 0 preserves the P-NNEG, P-RANK conditions
for each transition in C, as well as EXP-NNEG for each transition of probabilistic branching. Hence,
we are left to show that there exists K > 0 such that for any transition τ that is not a transition of
probabilistic branching we have that

EXP-NNEG(η′,τ ) ≡ x ∈ I (�) ∩G (τ ) ⇒ min-preτ

η′
j
,S
≤j−1
lev

(�, x) ≥ 0 for all 1 ≤ j ≤ lev(τ ).

Since the LinPP that induces C satisfies the BSP property and since all nondeterministic assign-
ments are defined by closed intervals, there exists N > 0 such that PX∼d [|X | > N ] = 0 for each
distribution d ∈ D and [a,b] ⊆ [−N ,N ] for each interval [a,b] appearing in nondeterministic
assignments.

We claim that K = 2 · N · max-coeff(η) satisfies the claim, where max-coeff(η) is the maximal
absolute value of a coefficient appearing in any expression η(�′) for any location �′.

To prove this, let τ be a transition that is not a transition of probabilistic branching, and let �
and �1 be its source and target location, respectively. Let x ∈ I (�) ∩G (τ ) and let 1 ≤ j ≤ lev(τ ). In
order to prove that min-preτ

η′
j
,S
≤j−1
lev

(�, x) ≥ 0 holds, we distinguish between three cases:

(1) Up(τ ) = ⊥ or Up(τ ) = (i,u), where u is a linear expression with no sampling instruction.
Then, (�, x) has a single successor state (�1, x1) upon executing τ .
• If the level of (�1, x1) is at least j, then S ≤j−1

lev contains no successor states and we have that
min-preτ

η′
j
,S
≤j−1
lev

(�, x) = 0 as the integration is performed over the empty set.

• Otherwise, S ≤j−1
lev contains (�1, x1) and

min-preτ

η′
j
,S
≤j−1
lev

(�, x) = η′j (�1, x1) = ηj (�1, x1) + K = min-preτ
ηj

(�, x) + K ≥ 0,

where the inequality min-preτ
ηj

(�, x) ≥ 0 holds since W-EXP-NNEG(η,τ ).
(2) If Up(τ ) = (i,u), where u is a linear expression that contains sampling from a distribution

d ∈ D, we may write u = u ′ + X , where u ′ is the linear expression part of u with no
distribution samplings and X ∼ d . Then,

min-preτ

η′
j
,S
≤j−1
lev

(�, x) = EX∼d [η′j (�1, x[i ← u ′ + X ]) · I(next state has level ≤ j − 1)]

= EX∼d [(ηj (�1, x[i ← u ′]) + K + coeff[i] · X ) · I(next state has level ≤ j − 1)]

= EX∼d [(ηj (�1, x[i ← u ′]) + coeff[i] · E[X ]) · I(next state has level ≤ j − 1)]

+ EX∼d [(K − coeff[i] · E[X ] + coeff[i] · X ) · I(next state has level ≤ j − 1)]

≥ EX∼d [min-preτ
ηj

(�, x) · I(next state has level ≤ j − 1)]

+ EX∼d [(K − 2 · N ·max-coeff(η)) · I(next state has level ≤ j − 1)]

≥ 0,

(3)

where min-preτ
ηj

(�, x) ≥ 0 holds since W-EXP-NNEG(η,τ ), and E[X ] ≥ −N holds and X ≥
−N holds almost-surely since PX∼d [|X | > N ] = 0 by the definition of N . Here, coeff[i]
denotes the linear coefficient in ηj of the i-th variable in the variable valuation x.

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



11:16 K. Chatterjee et al.

ALGORITHM 1: Synthesis of LinGLexRSM Maps in LinPPs with the BSP Property

Input : A LinPP C with the BSP property, linear invariant I .
Output : LinGLexRSM map supported by I if it exists, otherwise “No LinGLexRSM map”

1 T ←− all transitions in C; d ←− 0

2 while T is non-empty do

3 d ←− d + 1

4 construct LPT
5 if LPT is feasible then

6 ηd ←− LEM defined by the optimal solution of LPT
7 T ←− T \{τ ∈ T | τ is 1-ranked by ηd }
8 else return No LinGLexRSM map

9 max←− max-coeff(η)

10 N ←− constant such that all distributions and intervals supported in [−N ,N ]

11 for 1 ≤ j ≤ d do

12 ηj ←− ηj + 2 · N ·max

13 return (η1, . . . ,ηd )

(3) If Up(τ ) = (i,u), where u is an interval [a,b] defining a nondeterministic assignment, then

min-preτ

η′
j
,S
≤j−1
lev

(�, x) = inf
X ∈[a,b]∧(�1,x(i←X ))∈S≤j−1

lev

[
η′j (�1, x[i ← X ])

]

≥ inf
X ∈[a,b]

[
η′j (�1, x[i ← X ])

]
= min-preτ

ηj
(�, x) + K ≥ 0,

where min-preτ
ηj

(�, x) ≥ 0 holds since W-EXP-NNEG(η,τ ) and K ≥ 0 by definition. �

Observe that the proof of Lemma 6.1 in item (2) essentially depends on the assumption that we
work over linear arithmetic. Indeed, the second expected value in the first inequality in Equation (3)
might not be possible to be bounded from below by 0 for any value of K > 0 if we allowed non-
linear arithmetic and program variable values that are not bounded.

Algorithmic Results. Let LinGLexPPbounded be the set of pairs (C, I ) of a pCFG C representing a
LinPP with the BSP and a linear invariant I in C such that C admits a LinGLexRSM map supported
by I .

Theorem 6.2. There is a polynomial-time algorithm deciding whether a tuple (C, I ) belongs to the

set LinGLexPPbounded. Moreover, if the answer is yes, the algorithm outputs a witness in the form of

a LinGLexRSM map of minimal dimension.

The algorithm behind Theorem 6.2 is a generalization of algorithms in Alias et al. [2010] and
Agrawal et al. [2018] finding LinLexRFs in non-probabilistic programs and LinLexRSM maps in
PPs, respectively. The pseudocode is shown in Algorithm 1. Suppose that we are given a LinPP
C = (L,V ,Δ,Up,G ) with the BSP and a linear invariant I . Our algorithm stores a set T initialized
to all transitions in C. It then proceeds in iterations to compute new components of the witness.
In each iteration, it searches for a LEM η that is required to

(1) be non-negative on each τ = (�,δ ) ∈ T , that is, ∀x. x ∈ I (�) ∩G (τ ) ⇒ η(�, x) ≥ 0;
(2) be unaffecting on each τ = (�,δ ) ∈ T , that is,∀x. x ∈ I (�)∩G (τ ) ⇒ max-preτ

η (�, x) ≤ η(�, x);
(3) have non-negative minimal pre-expectation for each τ = (�,δ ) ∈ T \ΔP B , that is, ∀x. x ∈

I (�) ∩G (τ ) ⇒ min-preτ
η (�, x) ≥ 0;

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



On Lexicographic Proof Rules for Probabilistic Termination 11:17

(4) if S is the set of states in C whose all enabled transitions have been removed from T in the
previous algorithm iterations, ∀τ = (�,δ ) ∈ T ∩ΔP B , ∀x. x ∈ I (�)∩G (τ ) ⇒ preτ

η,S (�, x) ≥ 0;
and

(5) 1-rank the maximal number of transitions in τ ∈ T , ithat is, ∀x. x ∈ I (�) ∩ G (τ ) ⇒
max-preτ

η (�, x) ≤ η(�, x) − 1 for as many τ = (�,δ ) as possible.
This is done by fixing an LEM template for each location � in C and converting these constraints
to an equivalent linear program LPT in template variables via Farkas’s lemma (FL). The FL con-
version (and its extension to strict inequalities [Chatterjee et al. 2018]) is standard in termination
proving, and encoding conditions 1 to 3 and 5 is analogous to Agrawal et al. [2018] and Alias et al.
[2010]; hence, we omit the details. To encode condition 4, let τ = (�,δ ) ∈ T be a transition of
probabilistic branching. Then, supp(δ ) = (�1, �2) and Up(τ ) = ⊥. Thus, for any x ∈ I (�) ∩G (τ ), we
have that

preτ
η,S (�, x) = δ (�1) · η(�1, x) · I(S ) (�1, x) + δ (�2) · η(�2, x) · I(S ) (�2, x),

that is, we include the term δ (�i ) · η(�i , x) for i ∈ {1, 2} whenever (�i , x) ∈ S . Hence, to encode
condition 4 for τ , defineG1 = ¬(∨τ ′=(�1,_)∈TG (τ ′)) andG2 = ¬(∨τ ′=(�2,_)∈TG (τ ′)), and encode the
following 3 conditions:

• ∀x. x ∈ I (�) ∩G (τ ) ∩G1 ∩G2 ⇒ δ (�1) · η(�1, x) + δ (�2) · η(�2, x) ≥ 0,
• ∀x. x ∈ I (�) ∩G (τ ) ∩G1 ∩ ¬G2 ⇒ δ (�1) · η(�1, x) ≥ 0, and
• ∀x. x ∈ I (�) ∩G (τ ) ∩ ¬G1 ∩G2 ⇒ δ (�2) · η(�2, x) ≥ 0.

Each condition can be encoded via linear constraint as in Agrawal et al. [2018] and Alias et al.
[2010]. Clearly, the size of the encoding is polynomial. An important thing to note is that the
negations inG1 andG2 might result in strict inequalities appearing in these constraints. However,
it was shown in Chatterjee et al. [2018] that this is not an issue for the FL conversion. Lemma 1
in Chatterjee et al. [2018] shows that, whenever a system of linear inequalities on the left-hand
side of a constraint is feasible, the strict inequalities may without loss of generality be replaced
by non-strict inequalities. On the other hand, Lemma 2 in Chatterjee et al. [2018] shows that this
feasibility check can be done in polynomial time.

In each algorithm iteration, all transitions that have been 1-ranked are removed from T and
the algorithm proceeds to the next iteration. If all transitions are removed from T , the algorithm
concludes that the program admits a LinGLexRSM map (obtained by increasing the constructed
LEM by a constant defined in the proof of Lemma 6.1). If in some iteration a new component that
1-ranks at least 1 transition in T cannot be found, the program does not admit a LinGLexRSM
map.

We show that Algorithm 1 satisfies the claim of Theorem 6.2.

Proof of Theorem 6.2. We first prove that the algorithm is sound: that η = (η1, . . . ,ηd ) com-
puted by Algorithm 1 is a LinGLexRSM map supported by I and, thus, that C is a.s. terminating.
We define the level map lev : Δ→ {0, 1 . . . ,d } with the self loop at �out having level 0, and for any
other transition τ we define lev(τ ) as the index of algorithm iteration in which it was removed from
T . The fact that η computed in lines 1 to 8 in Algorithm 1 satisfies P-NNEG, P-RANK, EXP-NNEG

for transitions of probabilistic branching and W-EXP-NNEG for all other transitions then easily
follows from conditions imposed by the algorithm in each iteration. From the proof of Lemma 6.1,
it then follows that η obtained upon increasing each component by a constant term in lines 9 to
13 satisfies EXP-NNEG for every transition. Hence, η is a LinGLexRSM map supported by I . This
concludes the soundness proof.

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



11:18 K. Chatterjee et al.

The proofs of completeness and of the minimality of dimension are similar in spirit to the
completeness proofs for the algorithm of Alias et al. [2010] for computing LinLexRFs in non-
probabilistic programs and for the algorithm of Agrawal et al. [2018] for computing LinLexRSMs
in probabilistic programs. First, we observe that a pointwise sum of two LinGLexRSM maps sup-
ported by I is also a LinGLexRSM map supported by I . This follows by linearity of integration
and, therefore, the pre-expectation operator. The argument is straightforward; thus, we omit it.
However, this simple observation will be central in the rest of the proof.

Suppose first that the program admits a LinGLexRSM η′ = (η′1, . . . ,η
′
m ) supported by I . We

show that Algorithm 1 then finds one such LinGLexRSM map (up to a constant term). Hence,
the algorithm is complete. We prove this by contradiction. Suppose that the algorithm stops
after the d-th iteration, after having computed (η1, . . . ,ηd ) but with T still containing at least one
transition. Then, (η1, . . . ,ηd ) does not rank every transition in the pCFG. Thus, η′ ranks strictly
more transitions than (η1, . . . ,ηd ). We distinguish two cases:

(1) There exists the smallest 1 ≤ j ≤ min{d,m} such that
• for each 1 ≤ j ′ < j, ηj′ and η′j′ would rank exactly the same set of transitions if computed

by the algorithm in the j ′-th iteration, but
• η′j ranks a transition that is not ranked by ηj in the j-th iteration of the algorithm.
Then, the algorithm could have ranked strictly more transitions by computing ηj +η

′
j instead

of ηj , which contradicts the maximality condition for computing new components imposed
by the algorithm.

(2) There is no such index. But then, since η′ = (η′1, . . . ,η
′
m ) is the LinGLexRSM supported by

I , it must follow thatm > d and that η′
d+1 would satisfy all of the conditions imposed by the

algorithm in the (d + 1)-st iteration and it would rank at least 1 new transition. Thus, the
algorithm could not terminate after iteration d .

In both cases we reach contradiction, and the completeness claim on Algorithm 1 holds.

Minimality of dimension is proved analogously, by contradiction. If there exists a LinGLexRSM
map with regard to S supported by I of dimension strictly smaller than that found by the algorithm,
we can use it analogously as above to show that at some iteration the algorithm could have ranked
a strictly larger number of transitions, contradicting the maximality condition for computing new
components that is imposed by the algorithm. Thus, the minimality of dimension claim follows.

�

We conclude by showing that our motivating example in Figure 1(b) admits a LinGLexRSM map
supported by a very simple linear invariant. Thus, by completeness, our algorithm is able to prove
its a.s. termination.

Example 6.3. Consider the program in Figure 1(b) with a linear invariant I (�0) = true, I (�1) =
x ≥ −7. Its a.s. termination is witnessed by a LEM η(�0, (x ,y)) = (1,x + 7,y + 7), η(�1, (x ,y)) =
(1,x +8,y+7) and η(�out , (x ,y)) = (0,x +7,y+7). Since ΔP B = ∅ here, and since P-RANK, P-NNEG

and W-EXP-NNEG are satisfied by η, by Lemma 6.1, C admits a LinGLexRSM map supported by I .

6.2 Algorithm for General LinPPs

While imposing W-EXP-NNEG lets us avoid integration in LinPPs with the BSP, this is no longer
the case if we discard the BSP.

Intuitively, the problem in imposing the condition W-EXP-NNEG instead of EXP-NNEG for
LinPPs without the BSP is that the set of states of smaller level over which EXP-NNEG performs in-
tegration might have a very small probability. However, the value of the LinGLexRSM component
on that set is negative and arbitrarily large in absolute value. Thus, a naïve solution for general

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



On Lexicographic Proof Rules for Probabilistic Termination 11:19

LinPPs would be to “cut off” the tail events in which the LinGLexRSM component can become
arbitrarily negative and over-approximate them by a constant value in order to obtain a piecewise
linear GLexRSM map. However, this might lead to the jump in maximal pre-expectation and could
violate P-RANK.

In what follows, we consider a slight restriction on the syntax of LinPPs and introduce a new
condition on LEMs that allows the over-approximation trick mentioned earlier while ensuring
that the P-RANK condition is not violated. We consider the subclass LinPP∗ of LinPPs in which no
transition of probabilistic branching and a transition with a sampling instruction share a target
location. This is a very mild restriction (satisfied, e.g., by our motivating example in Figure 1(b)),
which is enforced for technical reasons arising in the proof of Lemma 6.4. Each LinPP can be
converted to satisfy this property by adding a skip instruction in the program’s source code where
necessary. Second, using the notation of Definition 5.3, we define the new condition UNBOUND

as follows:

UNBOUND(η,τ ) ≡ if Up(τ ) = (i,u) with u containing a sampling from a dis-

tribution of unbounded support, and �′ is the target location of τ , then the

coefficient of the variable with index i in ηj (�′) is 0 for all 1 ≤ j < lev(τ ).

The following technical lemma is an essential ingredient in the soundness proof of our algorithm
for programs in LinPP∗. Its proof can be found in the extended version of the paper [Chatterjee
et al. 2021b].

Lemma 6.4. Let C be a LinPP∗ and I be a linear invariant in C. If a LEM η satisfies P-RANK and

P-NNEG for all transitions, EXP-NNEG for all transitions of probabilistic branching, W-EXP-NNEG for

all other transitions, as well as UNBOUND, then C admits a piecewise linear GLexRSM map supported

by I .

Proof. Analogously, as in the proof of Lemma 6.1, we may increase η by a constant term in
order to ensure that all transitions satisfy EXP-NNEG, except for maybe those that in the variable
update involve sampling from a distribution of unbounded support. Thus, without loss of general-
ity, assume that η satisfies EXP-NNEG for all other transitions. Denote the set of all transitions in
C that involve sampling from distributions of unbounded support by �→unb.

As before, denote by max-coeff(η) the maximal absolute value of a coefficient appearing in η.
Also, define N analogously as in the proof of Lemma 6.1, that is, for all distributions of bounded
support that appear in sampling instructions and for all bounded intervals appearing in nondeter-
ministic assignments, we have that they are supported in [−N ,N ]. Finally, since we assume that
each distribution appearing in sampling instructions is integrable, for each d ∈ D we have that
EX∼d [|X |] < ∞. Thus, by triangle inequality, we also have that EX∼d [|X − E[X ]|] < ∞. Hence, as
EX∼d [|X −E[X ]| ·I( |X −E[X ]| < k )]→ EX∼d [|X −E[X ]|] as k → ∞ by the Monotone Convergence
Theorem [Williams 1991], for each d ∈ D there exists k (d ) ∈ N such that

EX∼d [|X − E[X ]| · I( |X − E[X ]| ≥ k )] <
1

2 ·max-coeff(η)
,

for all k ≥ k (d ). Define K = maxd ∈D k (d ), which is finite as D is finite.
Next, define the set U ⊆ {1, 2, . . . , dim(η)} × L of pairs of indices of components of η and

locations in C as follows:

U = {(j, �′) | ∃τ ∈�→unb s.t. lev(τ ) = j and �′ is the target location of τ }.

Thus,U is the set of pairs of indices of components of η and locations in C on which the condition
UNBOUND imposes additional template restrictions.

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



11:20 K. Chatterjee et al.

ALGORITHM 2: Algorithm for Proving a.s. Termination in LinPP∗

Input : A LinPP∗ C, linear invariant I .
Output : An LEM satisfying the conditions of Lemma 6.4, if it exists

1 T ←− all transitions in C; d ←− 0

2 while T is non-empty do

3 construct LPunb
T

4 if LPunb
T is feasible then

5 d ←− d + 1; ηd ←− LEM defined by the optimal solution of LPunb
T

6 T ←− T \{τ ∈ T | τ is 1-ranked by ηd }
7 else

8 found←− false

9 for τ0 ∈�→unb ∩T do

10 construct LPτ0,unb
T

11 if LPτ0,unb
T is feasible then

12 d ←− d + 1; found←− true

13 ηd ←− LEM defined by the optimal solution of LPτ0,unb
T

14 T ←− T \{τ ∈ T | τ is 1-ranked by ηd }

15 if not found then return No LEM as in Lemma 6.4

16 return (η1, . . . ,ηd )

We define an LEM η′ that is of the same dimension as η, and for each component η′j we define

η′j (�, x) =
⎧⎪⎨⎪⎩

0 if (j, �) ∈ U and ηj (�, x) < −C,
2 · ηj (�, x) + 2 ·C otherwise,

where C > 0 is a constant to be determined. We claim that there exists C > 0 for which η′ is
a piecewise linear GLexRSM map supported by I (with the level map being the same as for η).
The fact that η′ is piecewise linear for every C > 0 is clear from its definition. Thus, we are left
to verify that there exists C > 0 for which P-NNEG(η′,τ ), P-RANK(η′,τ ), and EXP-NNEG(η′,τ )
hold for each transition τ . A careful analysis, which can be found in the extended version of the
paper [Chatterjee et al. 2021b], shows that C = (2N + K ) · max-coeff(η) + 1 satisfies the claim.
Hence, C admits a piecewise linear GLexRSM map supported by I . �

Algorithm. The new algorithm shares an overall structure with the algorithm from Section 6.1.
Thus, we only give a high level overview and focus on novel aspects. The algorithm pseudocode
is presented in Algorithm 2.

The condition UNBOUND is encoded by modifying the templates for the new LEM components.
Let �→unb be the set of transitions in C containing sampling from unbounded support distributions,
and for any such transition τ , let �′τ be its target location. Then, for any set of transitions T ,
construct a linear program LPunb

T analogous to LPT in Section 6.1, additionally enforcing that
for each τ ∈ �→unb ∩ T , the coefficient of the variable updated by τ in the LEM template at �′τ
is 0. Algorithm 2 first tries to prune as many transitions as possible by repeatedly solving LPunb

T
and removing ranked transitions from T ; see lines 3 to 6. Once no more transitions can be ranked,
the algorithm tries to rank new transitions by allowing non-zero template coefficients previously
required to be 0 while still enforcing UNBOUND. For a set of transitions T and for τ0 ∈ �→unb ∩ T ,
we construct a linear program LPτ0,unb

T analogous to LPunb
T but allowing a non-zero coefficient

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



On Lexicographic Proof Rules for Probabilistic Termination 11:21

of the variable updated by τ0 at �′τ0
. However, we further impose that the new component 1-ranks

any other transition in �→unb ∩ T with the target location �′τ0
. This new linear program is solved

for all τ0 ∈ �→unb∩ T and all 1-ranked transitions are removed from T , as in Algorithm 2, lines 7 to
15. The process continues until all transitions are pruned from T or until no remaining transition
can be 1-ranked, in which case no LEM as in Lemma 6.4 exists.

Theorem 6.5. Algorithm 2 decides in polynomial time whether a LinPP∗ C admits an LEM that

satisfies all conditions of Lemma 6.4 and that is supported by I . Thus, if the algorithm outputs an LEM,

then C is a.s. terminating and admits a piecewise linear GLexRSM map supported by I .

The proof of Theorem 6.5 uses Lemma 6.4. The completeness argument is similar to that in the
proof of Theorem 6.2; thus, we omit the details. The full proof can be found in the extended version
of the paper [Chatterjee et al. 2021b]. We conclude this section by showing that Algorithm 2 can
prove a.s. termination of our motivating example in Figure 1(a) and the simple loop in Figure 2.

Example 6.6. Consider the program in Figure 1(a) with a linear invariant I (�0) = true, I (�1) =
y ≥ 0. The LEM defined via η(�0, (x ,y)) = (1, 2y + 2,x + 1), η(�1, (x ,y)) = (1, 2y + 1,x + 1) and
η(�out , (x ,y)) = (0, 2y + 2,x + 1) satisfies P-RANK, P-NNEG, and W-EXP-NNEG, which is easy to
check. Furthermore, the only transition containing a sampling instruction is the self-loop at �1,
which is ranked by the third component of η. As the coefficients of x of the first two components
at �1 are equal to 0, η also satisfies UNBOUND. Hence, η satisfies all conditions of Lemma 6.4 and
Algorithm 2 proves a.s. termination.

Example 6.7. Consider now the simple loop in Figure 2 with a linear invariant I (�0) = true. The
LEM defined via η(�0,x ) = (1,x + 1), and η(�out ,x ) = (0,x + 1) satisfies P-RANK, P-NNEG, and
W-EXP-NNEG, which is easy to check. The only transition containing a sampling instruction is the
self-loop at �0, which is ranked by the second component of η, and the coefficient of x of the first
components at �0 is equal to 0. Hence, η also satisfies UNBOUND. Hence, η satisfies all conditions
of Lemma 6.4 and Algorithm 2 proves a.s. termination.

7 CONCLUSION

In this work, we consider lexicographic termination certificates in probabilistic programs. We show
how the strong non-negativity condition imposed by the lexicographic ranking supermartingales
(LexRSMs) of Agrawal et al. [2018] can be relaxed so that it does not require all components to be
non-negative, leading to generalized LexRSMs (GLexRSMs). We prove that GLexRSMs are sound
for a.s. termination analysis in probabilistic programs. While such a result is standard in the litera-
ture on termination analysis in non-probabilistic programs, it was hitherto not known to hold for
probabilistic programs. We then present two polynomial-time algorithms for the synthesis of lin-
ear GLexRSMs in probabilistic programs with linear arithmetic. Finally, we demonstrate that our
algorithms can compute linear GLexRSMs for two linear arithmetic probabilistic programs whose
a.s. termination cannot be witnessed by linear LexRSMs. In particular, we show that our GLexRSMs
can even tackle programs that contain sampling instructions from probability distributions of un-
bounded support, whose termination analysis is not handled well by the existing 1-dimensional
variants of ranking supermartingales as well as LexRSMs. There are several interesting directions
of future work. The expected leftward non-negativity condition of GLexRSMs does not allow for
a fully compositional a.s. termination analysis. Thus, it would be interesting to consider further
relaxation of the conditions imposed by GLexRSMs in order to derive a compositional proof rule
for a.s. termination. An interesting algorithmic problem would be to automate the synthesis of
GLexRSMs for programs with non-linear arithmetic.

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.



11:22 K. Chatterjee et al.

REFERENCES

Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. 2018. Lexicographic ranking supermartingales: An efficient
approach to termination of probabilistic programs. PACMPL 2, POPL (2018), 34:1–34:32.

Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. 2010. Multi-dimensional rankings, program termination,
and complexity bounds of flowchart programs. In Proceedings of the 17th International Conference on Static Analysis

(Perpignan, France) (SAS’10). Springer, Berlin, 117–133. http://dl.acm.org/citation.cfm?id=1882094.1882102.
R. B. Ash and C. Doléans-Dade. 2000. Probability and Measure Theory. Harcourt/Academic Press.
M. Avanzini, U. Dal Lago, and A. Ghyselen. 2019. Type-based complexity analysis of probabilistic functional programs.

In 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’19). 1–13. https://doi.org/10.1109/LICS.2019.
8785725

Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. 2020a. On probabilistic term rewriting. Science of Computer Program-

ming 185 (2020), 102338. https://doi.org/10.1016/j.scico.2019.102338
Martin Avanzini, Georg Moser, and Michael Schaper. 2020b. A modular cost analysis for probabilistic programs. Proceedings

of the ACM on Programming Languages 4, OOPSLA (2020), 1–30. https://doi.org/10.1145/3428240
Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. The MIT Press, Cambridge, Massachusetts.
Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu. 2016a. Synthesizing probabilistic invariants via

Doob’s decomposition. In Proceedings of the 28th International Conference on Computer Aided Verification (CAV’16), Part

I, Toronto, ON, Canada, July 17-23, 2016, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing,
43–61. https://doi.org/10.1007/978-3-319-41528-4_3

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016b. Proving differential privacy
via probabilistic couplings. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (New
York, NY, USA) (LICS’16). ACM, New York, NY, 749–758. https://doi.org/10.1145/2933575.2934554

Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin Pierce. 2016c. Programming language techniques for differential
privacy. ACM SIGLOG News 3, 1 (Feb. 2016), 34–53. https://doi.org/10.1145/2893582.2893591

Amir M. Ben-Amram and Samir Genaim. 2013. On the linear ranking problem for integer linear-constraint loops. In Pro-

ceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy)
(POPL’13). ACM, New York, NY, 51–62. https://doi.org/10.1145/2429069.2429078

Amir M. Ben-Amram and Samir Genaim. 2015. Complexity of Bradley-Manna-Sipma lexicographic ranking functions. In
Proceedings of the 27th International Conference on Computer Aided Verification (CAV’15, San Francisco, CA, July 18-24,

2015, Daniel Kroening and Corina S. Păsăreanu (Eds.). Springer International Publishing, 304–321. https://doi.org/10.
1007/978-3-319-21668-3_18

P. Billingsley. 1995. Probability and Measure (3rd ed.). Wiley.
Olivier Bournez and Florent Garnier. 2005. Proving positive almost-sure termination. In RTA. 323–337.
Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. Linear ranking with reachability. In Proceedings of the 17th

International Conference on Computer Aided Verification (CAV’05), Edinburgh, Scotland, UK, July 6-10, 2005. 491–504.
https://doi.org/10.1007/11513988_48

Marc Brockschmidt, Byron Cook, and Carsten Fuhs. 2013. Better termination proving through cooperation. In Proceedings

of the 25th International Conference on Computer Aided Verification (CAV’13), Saint Petersburg, Russia, July 13-19, 2013.
413–429. https://doi.org/10.1007/978-3-642-39799-8_28

Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir Piterman. 2016. T2: Temporal property verifica-
tion. In Proceedings of the 22nd International Conference on Tools and Algorithms for the Construction and Analysis

of Systems(TACAS’16), Held as Part of the European Joint Conferences on Theory and Practice of Software (ETAPS’16),

Eindhoven, The Netherlands, April 2-8, 2016, Marsha Chechik and Jean-François Raskin (Eds.). Springer, Berlin, 387–393.
https://doi.org/10.1007/978-3-662-49674-9_22

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic program analysis with martingales. In CAV 2013.
511–526.

Aleksandar Chakarov, Yuen-Lam Voronin, and Sriram Sankaranarayanan. 2016. Deductive proofs of almost sure persistence
and recurrence properties. In Proceedings of the 22nd International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS’16), Held as Part of the European Joint Conferences on Theory and Practice of Software

(ETAPS’16), Eindhoven, The Netherlands, April 2-8, 2016, Marsha Chechik and Jean-François Raskin (Eds.). Springer, Berlin,
260–279. https://doi.org/10.1007/978-3-662-49674-9_15

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2016. Termination analysis of probabilistic programs
through positivstellensatz’s. In CAV. 3–22.

Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. 2018. Algorithmic analysis of qualitative
and quantitative termination problems for affine probabilistic programs. ACM Transactions on Programming Languages

and Systems 40, 2 (2018), 7:1–7:45. https://doi.org/10.1145/3174800

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.

http://dl.acm.org/citation.cfm?id=1882094.1882102
https://doi.org/10.1109/LICS.2019.8785725
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/3428240
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1145/2893582.2893591
https://doi.org/10.1145/2429069.2429078
https://doi.org/10.1007/978-3-319-21668-3_18
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/978-3-642-39799-8_28
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1145/3174800


On Lexicographic Proof Rules for Probabilistic Termination 11:23

Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Dorde Zikelic. 2022. Sound and complete
certificates for quantitative termination analysis of probabilistic programs. In Proceedings of the 34th International Con-

ference on Computer Aided Verification (CAV’22), Haifa, Israel, August 7-10, 2022, Part I (Lecture Notes in Computer Science),

Vol. 13371, Sharon Shoham and Yakir Vizel (Eds.). Springer, Berlin, 55–78. https://doi.org/10.1007/978-3-031-13185-1_4
Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiri Zárevúcky, and Dorde Zikelic. 2021a. On lexico-

graphic proof rules for probabilistic termination. In Proceedings of the 24th International Symposium on Formal Methods

(FM’21), Virtual Event, November 20-26, 2021 (Lecture Notes in Computer Science), Vol. 13047, Marieke Huisman, Corina S.
Pasareanu, and Naijun Zhan (Eds.). Springer, Berlin, 619–639. https://doi.org/10.1007/978-3-030-90870-6_33

Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiří Zárevúcky, and Dorde Zikelic. 2021b. On Lexico-
graphic Proof Rules for Probabilistic Termination. arXiv:2108.02188 [cs.PL] https://arxiv.org/abs/2108.02188.

Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. 2017. Stochastic invariants for probabilistic termination. In Pro-

ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL’17). ACM,
New York, NY, 145–160. https://doi.org/10.1145/3009837.3009873

Jianhui Chen and Fei He. 2020. Proving almost-sure termination by omega-regular decomposition. In Proceedings of the

41st ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI’20), London,

UK, June 15-20, 2020. 869–882. https://doi.org/10.1145/3385412.3386002
Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Johannes Borgström. 2013. Bayesian infer-

ence using data flow analysis. In Joint Meeting on Foundations of Software Engineering. ACM, 92–102.
Michael Colón and Henny Sipma. 2001. Synthesis of linear ranking functions. In Proceedings of the 22nd International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’01) Held as Part of the Joint

European Conferences on Theory and Practice of Software (ETAPS’01) Genova, Italy, April 2-6, 2001. 67–81. https://doi.org/
10.1007/3-540-45319-9_6

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Termination proofs for systems code. ACM SIGPLAN Notices

41, 6 (June 2006), 415–426. https://doi.org/10.1145/1133255.1134029
Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2011. Proving program termination. Communications of the ACM

54, 5 (2011), 88–98. https://doi.org/10.1145/1941487.1941509
Byron Cook, Abigail See, and Florian Zuleger. 2013. Ramsey vs. lexicographic termination proving. In Proceedings of the 19th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Rome, Italy) (TACAS’13).
Springer, Berlin, 47–61. https://doi.org/10.1007/978-3-642-36742-7_4

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Conference Record of the 4th ACM Symposium on Principles of Programming

Languages, Los Angeles, CA, January 1977. 238–252. https://doi.org/10.1145/512950.512973
Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca. 2021. Intersection types and (positive) almost-sure

termination. Proceedings of the ACM on Programming Languages 5, POPL, Article 32 (Jan. 2021), 32 pages. https:
//doi.org/10.1145/3434313

Devdatt Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms

(1st ed.). Cambridge University Press, New York, NY.
Javier Esparza, Andreas Gaiser, and Stefan Kiefer. 2012. Proving termination of probabilistic programs using patterns. In

CAV 2012. 123–138.
Yishai A. Feldman. 1984. A decidable propositional dynamic logic with explicit probabilities. Information and Control 63, 1

(1984), 11–38. https://doi.org/10.1016/S0019-9958(84)80039-X
Yishai A. Feldman and David Harel. 1982. A probabilistic dynamic logic. In Proceedings of the 14th Annual ACM Symposium

on Theory of Computing. ACM, 181–195.
Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic termination: Soundness, completeness, and composi-

tionality. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

(POPL’15), Mumbai, India, January 15-17, 2015. 489–501. https://doi.org/10.1145/2676726.2677001
Robert W. Floyd. 1967. Assigning meanings to programs. Mathematical Aspects of Computer Science 19 (1967), 19–33.
F. G. Foster. 1953. On the stochastic matrices associated with certain queuing processes. The Annals of Mathematical Statis-

tics 24, 3 (1953), 355–360.
Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva. 2016. Probabilistic NetKAT. In

ESOP’16. Springer, 282–309.
Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of nondeterministic probabilistic programs. In Proceedings of the

20th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’19), Cascais, Portugal,

January 13-15, 2019 (Lecture Notes in Computer Science), Vol. 11388, Constantin Enea and Ruzica Piskac (Eds.). Springer,
Berlin, 468–490. https://doi.org/10.1007/978-3-030-11245-5_22

Zoubin Ghahramani. 2015. Probabilistic machine learning and artificial intelligence. Nature 521, 7553 (2015), 452–459.

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.

https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-030-90870-6_33
http://arxiv.org/abs/2108.02188
https://arxiv.org/abs/2108.02188
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3385412.3386002
https://doi.org/10.1007/3-540-45319-9_6
https://doi.org/10.1145/1133255.1134029
https://doi.org/10.1145/1941487.1941509
https://doi.org/10.1007/978-3-642-36742-7_4
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/3434313
https://doi.org/10.1016/S0019-9958(84)80039-X
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1007/978-3-030-11245-5_22


11:24 K. Chatterjee et al.

Jürgen Giesl, Peter Giesl, and Marcel Hark. 2019. Computing expected runtimes for constant probability programs. In
Automated Deduction (CADE 27), Pascal Fontaine (Ed.). Springer International Publishing, Cham, 269–286.

Laure Gonnord, David Monniaux, and Gabriel Radanne. 2015. Synthesis of ranking functions using extremal counterex-
amples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Portland, OR) (PLDI’15). ACM, New York, NY, 608–618. https://doi.org/10.1145/2737924.2737976
Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgstrom, Guillaume Claret, Thore Graepel, Aditya V. Nori, Sriram K.

Rajamani, and Claudio Russo. 2013. A model-learner pattern for Bayesian reasoning. ACM SIGPLAN Notices 48, 1 (2013),
403–416.

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic programming. In
Proceedings of the on Future of Software Engineering. ACM, 167–181.

Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. 2014. Operational versus weakest pre-expectation semantics
for the probabilistic guarded command language. Performance Evaluation 73 (2014), 110–132. https://doi.org/10.1016/j.
peva.2013.11.004

Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2020. Aiming low is harder: Induction for
lower bounds in probabilistic program verification. Proceeding of the ACM on Programming Languages 4, POPL (2020),
37:1–37:28. https://doi.org/10.1145/3371105

Mingzhang Huang, Hongfei Fu, and Krishnendu Chatterjee. 2018. New approaches for almost-sure termination of proba-
bilistic programs. In Programming Languages and Systems, Sukyoung Ryu (Ed.). Springer International Publishing, Cham,
181–201.

Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2019. Modular verification for
almost-sure termination of probabilistic programs. Proceeding of the ACM on Programming Languages 3, OOPSLA (2019),
129:1–129:29. https://doi.org/10.1145/3360555

L. P. Kaelbling, M. L. Littman, and A. W. Moore. 1996. Reinforcement learning: A survey. Journal of Artificial Intelligence

Research 4 (1996), 237–285.
Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018b. Weakest precondition

reasoning for expected runtimes of randomized algorithms. Journal of the ACM 65, 5 (2018), 30:1–30:68. https://doi.org/
10.1145/3208102

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2018a. On the hardness of analyzing probabilistic
programs. Acta Informatica (2018), 1–31.

Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. 2020. On the termination problem for probabilistic higher-order
recursive programs. Logical Methods in Computer Science 16, 4 (2020). https://lmcs.episciences.org/6817.

Dexter Kozen. 1981. Semantics of probabilistic programs. Journal of Computer and System Sciences 22, 3 (1981), 328–350.
https://doi.org/10.1016/0022-0000(81)90036-2

Dexter Kozen. 1983. A probabilistic PDL. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing

(STOC’83). ACM, New York, NY, 291–297. https://doi.org/10.1145/800061.808758
Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of probabilistic real-time systems.

In CAV’11 (Lecture Notes in Computer Science), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Vol. 6806, Springer,
Berlin. 585–591.

Ugo Dal Lago and Charles Grellois. 2019. Probabilistic termination by monadic affine sized typing. ACM Transactions on

Programming Languages and Systems 41, 2 (2019), 10:1–10:65. https://doi.org/10.1145/3293605
Annabelle McIver and Carroll Morgan. 2004. Developing and reasoning about probabilistic programs in pGCL. In PSSE.

123–155.
Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer.
Annabelle McIver and Carroll Morgan. 2016. A new rule for almost-certain termination of probabilistic and demonic pro-

grams. CoRR abs/1612.01091 (2016). http://arxiv.org/abs/1612.01091.
Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A new proof rule for almost-

sure termination. Proc. ACM Program. Lang. 2, POPL (2018).
David Monniaux. 2001. An abstract analysis of the probabilistic termination of programs. In Proceedings of the 8th Interna-

tional Symposium on Static Analysis (SAS’01), Paris, France, July 16-18, 2001 (Lecture Notes in Computer Science), Vol. 2126,
Patrick Cousot (Ed.). Springer, Berlin, 111–126. https://doi.org/10.1007/3-540-47764-0_7

Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. 2021. Automated termination analysis of poly-
nomial probabilistic programs. In Programming Languages and Systems - Proceedings of the 30th European Symposium

on Programming (ESOP’21), Held as Part of the European Joint Conferences on Theory and Practice of Software (ETAPS’21),

Luxembourg City, Luxembourg, March 27 - April 1, 2021 (Lecture Notes in Computer Science), Vol. 12648, Nobuko Yoshida
(Ed.). Springer, Berlin, 491–518. https://doi.org/10.1007/978-3-030-72019-3_18

Carroll Morgan and A McIver. 1999. pGCL: Formal reasoning for random algorithms. (1999).

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.

https://doi.org/10.1145/2737924.2737976
https://doi.org/10.1016/j.peva.2013.11.004
https://doi.org/10.1145/3371105
https://doi.org/10.1145/3360555
https://doi.org/10.1145/3208102
https://lmcs.episciences.org/6817
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1145/800061.808758
https://doi.org/10.1145/3293605
http://arxiv.org/abs/1612.01091
https://doi.org/10.1007/3-540-47764-0_7
https://doi.org/10.1007/978-3-030-72019-3_18


On Lexicographic Proof Rules for Probabilistic Termination 11:25

Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic predicate transformers. ACM Transactions on Pro-

gramming Languages and Systems 18, 3 (1996), 325–353.
Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press, New York, NY.
Martin R. Neuhäußer and Joost-Pieter Katoen. 2007. Bisimulation and logical preservation for continuous-time Markov

decision processes. In International Conference on Concurrency Theory (CONCUR’07). Springer, 412–427.
Martin R. Neuhäußer, Mariëlle Stoelinga, and Joost-Pieter Katoen. 2009. Delayed nondeterminism in continuous-time

Markov decision processes. In Proceedings of the 12th International Conference of Foundations of Software Science and

Computational Structures (FOSSACS’09), Held as Part of the Joint European Conferences on Theory and Practice of Software

(ETAPS’09), York, UK, March 22-29, 2009. 364–379. https://doi.org/10.1007/978-3-642-00596-1_26
Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded expectations: Resource analysis for probabilistic

programs. In PLDI 2018. 496–512.
Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about recursive

probabilistic programs. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (New York,
NY) (LICS’16). ACM, New York, NY, 672–681. https://doi.org/10.1145/2933575.2935317

Andreas Podelski and Andrey Rybalchenko. 2004a. A complete method for the synthesis of linear ranking functions. In
Proceedings of the 5th International Conference of Verification, Model Checking, and Abstract Interpretation (VMCAI’04),

Venice, January 11-13, 2004. 239–251. https://doi.org/10.1007/978-3-540-24622-0_20
Andreas Podelski and Andrey Rybalchenko. 2004b. Transition invariants. In Proceedings of the 19th Annual IEEE Symposium

on Logic in Computer Science (LICS’04). IEEE Computer Society, Washington, DC, 32–41. https://doi.org/10.1109/LICS.
2004.50

D. M. Roy, V. K. Mansinghka, N. D. Goodman, and J. B. Tenenbaum. 2008. A stochastic programming perspective on non-
parametric Bayes. In Nonparametric Bayesian Workshop, International Conference on Machine Learning, Vol. 22. 26.

Adam Ścibior, Zoubin Ghahramani, and Andrew D. Gordon. 2015. Practical probabilistic programming with monads. ACM

SIGPLAN Notices 50, 12 (2015), 165–176.
Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva. 2017. Cantor meets Scott: Semantic foun-

dations for probabilistic networks. In POPL’17. 557–571.
Kirack Sohn and Allen Van Gelder. 1991. Termination detection in logic programs using argument sizes. In Proceedings

of the 10th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 29-31, 1991, Denver, CO.
216–226. https://doi.org/10.1145/113413.113433

Sebastian Thrun. 2002. Probabilistic robotics. Communications of the ACM 45, 3 (2002), 52–57.
Di Wang, Jan Hoffmann, and Thomas W. Reps. 2018. PMAF: An algebraic framework for static analysis of probabilistic

programs. In PLDI’18. 513–528.
Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin, and Wenjun Shi. 2019. Cost

analysis of nondeterministic probabilistic programs. In PLDI’19. 204–220.
D. Williams. 1991. Probability with Martingales. Cambridge University Press, Cambridge, UK. 251 pages.

Received 31 March 2022; revised 20 December 2022; accepted 7 February 2023

Formal Aspects of Computing, Vol. 35, No. 2, Article 11. Publication date: June 2023.

https://doi.org/10.1007/978-3-642-00596-1_26
https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1109/LICS.2004.50
https://doi.org/10.1145/113413.113433

