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The hippocampus is central to memory formation, storage and retrieval over many 

timescales. Neurons in this brain area are highly selective to spatial position as well as to many 

other variables of the environment. It is believed that the selectivity patterns of hippocampal 

neurons reflect the structure of tasks an animal performs. However, especially at timescales 

longer than a few minutes or hours it is not fully known how these representations evolve, nor 

how they map to behaviour in the process. In this thesis, I monitored the evolution of 

hippocampal representations in a novel spatial-associative memory task for rats. Reward 

locations were associated with global sensory cues (i.e. context); animals had to remember the 

associations and dig for food in those locations only. I used in vivo electrophysiology to record 

the activity of the hippocampus dorsal CA1 neurons during the learning period of a few days. 

I report here a novel and simple method to classify behaviour performance to account 

for individual variability in learning speed and spurious performance unrelated to true task rule 

learning. Using this classification I was then able to investigate neural responses on different 

stages of learning matched across animals. On the first day of learning, I observed a fast 

formation of single-cell selectivity to task variables which remained stable over days. I also 

observed that reward tuning was not a single process but dependent on task-related cognitive 

load. At the population level, a linear decoding approach revealed a hierarchy in the 

representation of task variables that changed with learning. In the high-dimensional space of 

population activity, the representation of contexts was specific to each position in the maze, and 

could thus be better decoded if the position was known. The decoding of position did not improve 

with knowledge of other variables. As learning progressed, the hippocampal code underwent a 

reorganisation of high-variance directions in population activity, identified by principal 

component analysis. I found that dominant dimensions started carrying increasing amounts of 

information about task context specifically at those positions where it mattered for task 

performance. When I contrasted this with variables less relevant to task performance (e.g. 

movement direction), I did not observe differences in decoding quality over positions nor a 

reduction of dimensionality with learning.  

Overall, the largest changes in CA1 neural response with task learning happened in a 

matter of a few trials; over days, changes undetectable in single-cell statistics were responsible 

for re-structuring the hierarchy of neural representations at the population level; these changes 

were task-specific and reflected different stages of learning. This indicates that complex task 

learning may involve different magnitudes of response modulation in CA1, which happen at 

specific time scales linked to behaviour. 
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The brain can be understood as an information processing network that grants animals 

the ability to generate complex behaviours in response to internal and external inputs. Whilst 

sensory and motor areas can be seen as the two ends of this network, processing layers that lie 

in between them also play a role in shaping behaviour. These layers have an important feature: 

their inputs and outputs are within the network itself, so interpreting their representations of 

the external world is a central challenge in neuroscience. The dynamics of these representations 

and the computations performed on them are believed to underlie learning and memory 

processes. 

In this thesis, I was interested in the hippocampus, one of the brain areas which is 

described neither as sensory nor motor, but involved in cognitive processing. I focused on how 

it represents the external world over the timescale of days, as animals learn associations between 

space and sensory cues. Here I describe previous research into hippocampal anatomy, physiology 

and function. I also highlight previous approaches to studying learning and cognition in rodents 

as well as theoretical models of learning and hippocampal dynamics. Lastly, I discuss the 

unanswered questions in the field I targeted in the present study. 

 

Behaviour tasks to study cognition 

 To understand the tuning of individual neurons and brain areas to the external world, 

they have to be monitored during well-controlled behavioural tasks. Human studies of behaviour 

are largely based on self-reports in tasks tailored to specific human abilities. A common criticism 

of animal studies of cognition is that animals do not possess the same abilities as humans or that 

these abilities cannot be reliably assessed. However, animal models allow the use of a broader 

range of techniques – such as calcium imaging and in vivo electrophysiology – and the 

observation of the activity of individual neurons as they behave. This is only possible in humans 

in exceptional cases. As a result, many works in the past century focused on finding systematic 

ways to measure cognitive and cognitive-like abilities in animal species. In the field of memory 

research in rodents, a large set of behavioural paradigms are now well established and have 

elucidated mechanisms of memory formation, consolidation and retrieval. 

 One of the first well-described mazes for rodents was developed by the American 

psychologist Edward C. Tolman and it took the form of a relatively complex labyrinth (Figure 

1.1a (Tolman & Honzik, 1930). Without any cues inside, the navigation of this maze relies on the 

animal’s capability of remembering the position of rewards and the path to them. It also contains 

many bifurcation points, where hypotheses about the decision-making can be tested, especially 

if parts are altered, e.g. by blocking passages and making forced choices. 



 

 Decades after the Tolman maze was invented, Professor Richard Morris invented another 

navigation and memory-based maze in a much less complex form. It involved a pool of turbid 

water – so that animals could not see inside – and a hidden platform just below water level. 

Animals were placed in it to swim until they found the platform (R. G. M. Morris, 1981). This 

paradigm has the advantage of not relying on the animal’s hunger or thirst as motivation. Many 

manipulations of the brain have been studied with this maze, e.g. lesions and pharmacological 

interventions, but the presence of water precluded its use with certain techniques, such as 

electrophysiology. A dry version of the maze was later invented for that purpose, called a 

cheeseboard maze. In this case, a large surface is used, containing small, evenly spaced holes for 

hiding food (Kesner et al., 1991). 

 The Morris Water Maze has led to findings about the role of neurotransmitters and 

receptors in the different stages of memory formation and recall (R. K. McNamara & Skelton, 

1993). The cheeseboard maze (Figure 1.1b) allowed for hippocampus findings in the field of sleep 

and memory replay, through the tracking of the activity of single cells (Dupret et al., 2010; 

Gridchyn et al., 2020). Other mazes containing a T-junction (Figure 1.1c) were pivotal for the 

findings in terms of decision-making during navigation (Johnson & Redish, 2007; Singer et al., 

2013; Wood et al., 2000). More recently, virtual mazes together with calcium-imaging allowed 

for the live recording of large populations of neurons in environments that can be easily and 

quickly manipulated. This enabled, for example, the study of statistical and topological 

properties of neural populations in the hippocampus (J. S. Lee et al., 2020; Nieh et al., 2021). 

 
Figure 1.1. Examples of mazes for rats. In all mazes, the start position of the animal is indicated by a triangle and example 

reward locations are marked by blue circles. a) Tolman maze (Image adapted from Tolman & Honzik, 1930). In this maze the 

animal has to navigate through several junctions to reach the reward. Dotted lines indicate movable barriers. The experimenter 

can change the position of the barriers to investigate if the animal remembers the absolute position of the reward or only a 
sequence of turns associated with one specific configuration of the barriers. b) Cheeseboard maze. Each small circle indicates a 

small hole in the maze. Animals cannot see which hole contains food until they stand above it. Over time, animals learn to 

navigate directly from the start box to the reward positions. One or multiple reward positions can be used. c) A T-maze. This 

maze has a single decision point, at the intesection. The animals start at the bottom arm and need to decide to turn left or right. 
Many paradigms can be done in this maze, e.g. an alternation task where at each trial reward is placed at the opposite side from 

the previous trial. 



 

 The field of memory research grew a lot also when studying fear. Different from the 

tasks described above, fear memory paradigms can induce stable memory formation with single 

exposure events. For example, by inducing a footshock in an environment, future exposures to 

the same environment lead animals to freeze. One important finding from these experiments 

was that the fear memory is context-specific and hippocampus-dependent so that a different 

environment will not lead to the same reaction (Frankland et al., 1998). The concept of “context”, 

however, changes between studies and therefore claims about hippocampal response to context 

also vary. In the simplest case, each context is defined as a separate environment, and in that 

case, the hippocampal code can be entirely different between contexts (S. Leutgeb et al., 2004). 

In other cases, the manipulation is within the same physical space, and what changes are either 

distal or local sensory cues of the environment (Kim & Lee, 2011; Piterkin et al., 2008). Lastly, 

context may define more abstract features in an otherwise unchanging environment, let it be a 

temporary cue (Vaidya et al., 2023; Zemla et al., 2022) or the rule by which the animal needs to 

use for decision-making, which needs to be inferred without any cue (Kaefer et al., 2020; Wood 

et al., 2000). In all those instances, it has been shown that hippocampal neurons encode 

contextual information, albeit in different ways; this shows different levels of sensitivity of the 

code to various changes in the environment. 

One of the great challenges of the approaches mentioned above is finding the right 

balance between simple and complex behaviour paradigms. Simple paradigms involving a 

reduced number of variables are easier to interpret and can yield valuable insight into the basic 

mechanisms of the network. However, they are often not representative of naturalistic 

behaviour. This implies that conclusions drawn from such studies might not portray the 

dynamics of the network from when it simultaneously processes multiple sources of 

information. Complex tasks, on the other hand, can be hard to interpret, since many variables 

are likely to be highly correlated and their individual contributions to the neural code hard to 

distinguish. Therefore, there is still a demand for developing behavioural tasks that manipulate 

sensory and behavioural variables in different amounts so that comparisons between neural 

activity in each case can be made. 

 

The brain areas involved in cognition 

Cognitive tasks engage various brain areas of the mammalian brain, including 

neocortical areas such as the prefrontal (Euston et al., 2012; Kaefer et al., 2020; Passecker et al., 

2019) and parietal cortices (Raposo et al., 2014), as well as periarchicortex areas such as the 

entorhinal (Eichenbaum & Lipton, 2008; Fyhn et al., 2004) and retrosplenial cortices (Nelson et 

al., 2014; Smith et al., 2012). The cortex, and especially the neocortex, is enlarged in humans and 

primates, making it easy to access through invasive and non-invasive research techniques. As a 

result, previous research has been able to elucidate its role in abilities such as decision-making 

(Euston et al., 2012; Raposo et al., 2014; Sul et al., 2010), multimodal sensory integration 

(Alexander & Nitz, 2015; Andersen & Buneo, 2002) and attention (Benchenane et al., 2011). 



 

 Located ventrally to the neocortex in mammals – and analogously in other vertebrates – 

is the hippocampus (Figure 1.2) (Knierim, 2015). The first insights on its cognitive functions date 

back to a report in 1957, when a patient with lesions to this brain area developed retrograde 

amnesia (Scoville & Milner, 1957). From then until the present day, advances in experimental 

techniques allowed discoveries related to its structure, function and interactions with other brain 

areas. It is now widely accepted that the hippocampus plays a central role in coordinating 

cognitive processes related to navigation, learning and memory. 

 During memory formation, sensory information arriving at the cortex is relayed to the 

hippocampus via its subregion Dentate Gyrus (DG). The DG is densely packed with principal 

neurons and therefore can assign a different pattern of activity to each experience an animal has 

(pattern separation). The DG connects to the subregion CA3, where recurrent connections allow 

for pattern completion: matching features of the current experience to previous knowledge, even 

in the presence of incomplete information. The CA3 then connects to the subregion CA1, which 

can integrate information from CA3 together with cortical inputs. The interaction between CA1 

and cortical areas such as the prefrontal cortex is thought to be central to memory consolidation 

(Klinzing et al., 2019; Squire et al., 1984). 

 Memory consolidation is the phenomenon by which memories become less labile. 

Information storage about recent experience relies strongly on the hippocampus but over time 

it is spread over the cortex, as has been confirmed by lesions and other manipulation studies 

Figure 1.2. Hippocampal anatomy in primates and rodents. Coronal brain sections from the monkey species Macaca 
Mulatta (a) and rat Rattus Novergicus (b) where the hippocampal region is highlighted by a red square (left). A zoom-in 

of the hippocampus is shown on the right. Cell bodies were marked using Nissl staining. The Dentate Gyrus (DG), CA3 

and CA1 subregions of the hippocampus are also indicated. Images adapted from brainmaps.org (Mikula et al., 2007). 



 

(Frankland & Bontempi, 2005; Nadel & Moscovitch, 1997; Squire, 1992; Tse et al., 2007). This 

information transfer is believed to happen during sleep and rest periods, through 

synchronisation between the hippocampus and the cortex. This is when the replay of awake 

hippocampal activity at compressed timescales is thought to support plasticity between those 

brain areas. Disrupting sleep therefore has a strong effect on long-term memory consolidation 

(Klinzing et al., 2019). How much memory retrieval relies on the hippocampus in the long term 

has been shown to depend on several factors, including time since encoding and memory content 

(Atucha et al., 2021; Frankland & Bontempi, 2005). 

 

The hippocampal representations of behaviour 

 The hippocampus is also known to play a role during behaviour, due to its navigation-

related activity. Especially in the dorsal portions of the CA3 and CA1 subregions, a subset of 

neurons – referred to as “place cells” –  display a strong modulation of firing rate by the animal’s 

position in the environment (O’Keefe & Dostrovsky, 1971). The activity of those cells not only 

indicates the animal’s current location, but in specific situations can also inform about past or 

planned future trajectories (O’Neill et al., 2010; Stachenfeld et al., 2017). This uniqueness of 

firing at each location is thought to “index” experiences to specific points in space as well as aid 

decision-making brain areas to choose appropriate behaviour outputs given the current state of 

the animal. 

 Neurons in the dorsal CA1 do not respond solely to an animal’s position. First discovered 

in the postsubiculum area of the hippocampal formation, another known modulator of 

hippocampal activity is head direction, which is driven by the anterior thalamus (Goodridge & 

Taube, 1997; McNaughton et al., 1983; Taube, 1995; Taube et al., 1990; Viejo & Peyrache, 2020). 

Dorsal CA1 is also known to carry information about goals and rewards (Dupret et al., 2010; 

Gauthier & Tank, 2018; Hollup et al., 2001; L. Zhang et al., 2022), through dopaminergic 

modulation from regions such as the Ventral Tegmental Area (Mamad et al., 2017). More 

interestingly, CA1 neurons can also respond to a complex set of environmental variables (mixed 

selectivity). These variables can be physical barriers, sensory cues and changes in environment 

shape and size (J. K. Leutgeb et al., 2005; R. U. Muller & Kubie, 1987; Shapiro et al., 1997; Wiener 

et al., 1989). Theoretical studies show that mixed selectivity neurons grant coding advantages to 

the hippocampus (Rigotti et al., 2013). 

A result of mixed selectivity is a modulation of the spatial code by the context the animal 

is in. For example, neurons can change their preferred firing position entirely between two 

environments, a phenomenon called global remapping (S. Leutgeb et al., 2004). Other types of 

change in sensory inputs (e.g. visual, tactile or auditory) can lead instead to a modulation of the 

maximal firing rate at the neuron’s preferred location, which is referred to as rate remapping (J. 

K. Leutgeb et al., 2005). Even when maintaining all sensory cues, the firing of CA1 neurons can 

be modulated by the animal's upcoming decision to turn right or left (Wood et al., 2000). Some 

studies suggest that time itself is also encoded as a variable (Kraus et al., 2013; MacDonald et al., 

2011). Even when position and sensory cues are maintained, if the time towards the goal is 



 

progressing and the animal is not resting or distracted, a clear sequence of firing related to the 

elapsed time can be observed (Kraus et al., 2013). There is evidence that time creates correlations 

between encoded memories; that means that not only overlapping sensory features of 

experiences dictate the similarity in their representation but also their proximity in time (Ziv et 

al., 2013). 

The representational feature of the dorsal hippocampus suggests it has a complementary 

role to the cortex during behaviour and that the relationship between those brain areas goes 

beyond memory consolidation. Neurons in the prefrontal cortex and other cortical areas show a 

more general representation of the task than the hippocampus, which includes even more 

complex mixed selectivity neurons (Rigotti et al., 2013), representation of task rules (Wallis et 

al., 2001) and reward contingencies (Riceberg & Shapiro, 2012). Cortical areas coordinate with 

the hippocampus in many ways: the synchrony of the prefrontal cortex to the hippocampal theta 

rhythm in working-memory tasks is related to cognitive flexibility (Benchenane et al., 2010; 

Zielinski et al., 2019); the entorhinal cortex grid cells are the main input to the hippocampal 

place cells (Fyhn et al., 2004); the posterior parietal cortex and retrosplenial cortex integrate 

visuospatial and proprioceptive inputs to support ego and allocentric navigation (Alexander & 

Nitz, 2015; Whitlock et al., 2008); the retrosplenial cortex complements the hippocampus in 

contextual coding (Smith et al., 2012). Moreover, memory consolidation and neural activity 

during task performance are not totally unrelated. Given the increased participation of the cortex 

in memory storage over long periods of time, many also believe that performing learned tasks 

requires proportionally less of the hippocampus over time (Frankland & Bontempi, 2005). 

However, the dynamics of hippocampal representations of behaviour variables in the long term 

remain unclear. 

 

The timescales of learning 

 Learning is a process that involves brain changes in many timescales. On a cellular level, 

learning-induced plasticity can happen on a scale of seconds to minutes (Zucker & Regehr, 2002) 

and can be long-lasting (Bliss & Collingridge, 1993; Dudek & Bear, 1992). Short-term plasticity 

involves changes in the probability of neurotransmitter release or the insertion of receptors in 

the synaptic membrane, whilst long-term plasticity involves mechanisms such as de novo 

protein synthesis. At the behavioural level, learning takes minutes, hours or even days, so other 

neural processes must involve these timescales. On what concerns this thesis, when I refer to 

learning I imply a behaviour process that leads to the formation of a memory at the network 

level, and this memory can then be used for improving behavioural responses. 

 On the fastest side of task learning is working memory, where changes are mostly 

transitory (Miller et al., 2018) and fear conditioning, where changes are quick but long-lasting 

(Izquierdo et al., 2016), supported by fear-related inputs of the amygdala to the hippocampus. 

Also episodic memories – or episodic-like in the case of rodents and other animals – are acquired 

in a single event. An episodic memory can be understood as the cohesive memory of a specific 

event, including the time (when), the context or location (where) and the actual event (what). 



 

The concept was defined for humans, but animals have also shown similar types of memory 

(Babb & Crystal, 2006; Clayton & Dickinson, 1998; Tulving, 1972). 

 On the other side of the learning spectrum is learning through repetition. Instead of 

acquiring a detailed memory of a single event, we often learn rules and associations through 

repetitive exposure to events that share a structure or feature that guides our behaviour. One 

concrete example is associative learning; in experimental paradigms, this means that the subject 

needs to find a correct pair – of two images or between a sensory cue and a location – to be able 

to receive a reward. If not explicitly told what the pairings are, many attempts of possible 

pairings are necessary to learn which ones lead to reward. The difficulty of the task can arise 

mainly from two sources: the number of features one can pair and the timing between the 

association and reward. If this timing is too large, the causal relationship between the task and 

reward might not be perceived. 

 In rodents, associative tasks are commonly combined with working memory paradigms. 

A stimulus is provided to the animal at the beginning of each trial and stimulus identity defines 

the appropriate choice to maximise reward. Stimulus presentation and choice periods are 

separate in time and the animal needs to store information about the recent stimulus during this 

interval. Studies using these paradigms often do not target the period of learning the associations 

themselves, but the working-memory periods in trials after they are learned. They have allowed 

for discoveries on the role of both the hippocampus and the prefrontal cortex in sustaining 

memory of the stimulus throughout the delay period before decision-making (Yoon et al., 2008). 

Associative memory paradigms that do not require working memory have also been used to 

show the different roles of the hippocampus in recognition memory and familiarity (Sauvage et 

al., 2008). 

 At longer time scales are associations in complex task structures, referred to as schemas. 

In one reference rodent study in the field (Tse et al., 2007), rats were required to associate smells 

and reward locations in an open arena. The learning of associations took the animals many 

training sessions. However, once the initial pairings were known, new odour-location pairings 

were quickly learned. The experimenters believe that understanding the concept that odours 

and locations are associated – the schema – defines the slow part of the learning curve. When 

new odours are introduced, the animals already expect a reward location to be associated with 

them; so within a single session, they are capable of discovering it. This study shows that 24 

hours after initial learning hippocampal lesions have a detrimental effect on memory, but not 

24 hours after the new set of odours are learned. They conclude that once the animal has a 

schema for the task, consolidation of new associations is much faster than at first learning. 

 

Models of learning 

Many theories have been devised to explain how animals structure their knowledge as 

they learn a task. One set of theories assumes decisions are based on previously experienced 

action-value pairs (model-free), while others assume the animal builds a mental model of the 

entire task and acts based on it (model-based). In model-free models, decision-making is quick, 



 

since the animal can simply choose the action that leads to the highest outcome. The issue, 

however, is that any changes to the environment require recomputing all action-value pairs, 

which is inefficient if the environment is dynamic. In model-based learning, the animals are 

more flexible, as they are able to choose the best action from those never used before. The 

drawback is that building an internal model containing all possible action paths and making a 

decision over them is costly, as it requires a lot of experience. 

One model that lies between those two categories is that of successor representations 

(Stachenfeld et al., 2017). In this model, decision at any time point is made by trying to maximise 

the expected value of future states, weighing by their proximity in time. The probability of future 

states is computed separately from the reward probability at each state. This means that it can 

be learned quickly, as in the model-free case, but it can readily respond to dynamic 

environments, as in model-based. Successor representations predict several phenomena, for 

example, the backward shift of hippocampal place fields in 1D environments with experience (I. 

Lee et al., 2004). If extended to contextual learning, one could assign different expected values 

to each state depending on context. Matching this idea, one experimental result shows that the 

probability distribution of hippocampal place fields in a linear track is specific between the start 

position and the reward position of each given context (Zemla et al., 2022). 

Other theoretical models accounting directly for contextual learning in the hippocampus 

include Bayesian models with latent state inference (Fuhs & Touretzky, 2007; Gershman et al., 

2010) and reinforcement learning models (Hasselmo & Howard Eichenbaum, 2005; Redish et 

al., 2007). For example, Fuhs and Touretzky (Fuhs & Touretzky, 2007) attempt to unify different 

definitions of context through general neural mechanisms. They define context as a set of 

experiences close in time that share sensory inputs and behaviours. In the brain, contexts contain 

activity patterns of groups of neurons (“states”) that are likely to transition between each other, 

whilst the probability of transition between states from different contexts is low. Contexts in this 

model form “latent attractors”, which I mention in the next section. Using Bayesian inference in 

a Hidden Markov Model they can determine when new contexts will be separated in terms of 

neural activity; this allows predictions about the different levels of hippocampal remapping 

observed in experiments. Also in agreement with experiments, it can explain the distinction 

between “context learning”, the slow learning that more than one context exists through 

multiple experiences, and “context inference”, the fast identification of the current context once 

learning has already happened. 

 

Neural population and dimensionality 

In the learning models above, neural mechanisms for information storage and 

processing cannot always be assigned to changes in individual neurons but are better understood 

at the neural population level. Responses of individual neurons to external variables are often 

measured via the correlation of firing rate to those variables. This can give reliable predictions 

in sensory cortices but can be hard to interpret in higher cognitive areas. Methods to study 

population dynamics have been developed to target this issue, especially in the motor cortex – 



 

due to the rise of brain-computer interfaces for prosthetics. In this field, not only the dynamics 

of the population in multiple timescales are relevant, but also the identification of parameters 

stable over days and between subjects. For instance, the concept of a neural manifold was created 

to describe the low-dimensional space that constrains the neural representation or neural 

trajectory, and that can be identified regardless of trial-to-trial variability and noise (Gallego et 

al., 2017; Nieh et al., 2021). This implies a redundancy of the neural code regarding behaviour 

tasks since a few behavioural variables are represented by thousands or millions of neurons. 

The topic of dimensionality of the neural code has received a lot of attention in recent 

years. Research on decision-making tasks shows that the hippocampal activity maps to a low-

dimensional manifold which is similar among animals and has a geometry relevant to the task 

(Bernardi et al., 2020; Nieh et al., 2021). However, these studies do not track how the geometry 

changes with time. It is known that the majority of hippocampal place cells change their 

preferred firing position as the days go by (Ziv et al., 2013), which is referred to as 

representational drift. This drift is not fully orthogonal to the representational manifold and 

therefore will affect its geometry, posing a question of how the manifold is used by the animal 

during learning. Despite the representational drift, animals are capable of learning and spatial 

information does not decrease over time (Vaidya et al., 2023). An insight into this comes from a 

study showing that natural constraints to the drift allow for linear decoding of information in 

downstream areas (Rule et al., 2020). They also show that plasticity mechanisms are sufficient 

to compensate for the cumulative effect of drift over time. Although the brain is a highly non-

linear system, it operates under the constraints of time, energy and number of neurons; a 

linearly decodable output is the simplest and arguably one of the most efficient codes to be read 

out by downstream areas (Karpas et al., 2019).  

Not only manifolds have been studied at the neural population level, but also normative 

theories have been used to explain and predict hippocampal population activity. Many models 

of memory are based on attractor dynamics, in which each memory itself can be understood as 

an attractor in the high dimensional space of neural activity. Attractors are stable subsets of all 

possible neural activity patterns, to which the dynamics of the population are driven. These 

theories can explain pattern completion in CA3 (Treves & Rolls, 1994) and the remapping 

between environments by CA1 place cells (Battaglia & Treves, 1998; Wills et al., 2005). Attractors 

grant the network robustness to noise if they are lower-dimensional than the neural activity 

space (Khona & Fiete, 2022). Attractor network models also allow for predictions in terms of the 

limit capacity for memory storage, which explains the narrow tuning of hippocampal place fields 

as well as other features of hippocampal representations (Battaglia & Treves, 1998). Apart from 

limit capacity, other constraints of the hippocampal network have been investigated using 

information theoretical approaches (Treves et al., 1996). 

 

  



 

 
 

 

In the introduction, I highlighted some of the extensive research from the past decades 

on hippocampal physiology and function, and some of the questions about this brain area that 

remain unanswered. Hippocampal representations of the environment have been mostly studied 

in the context of exploratory behaviours or after learning of goal-oriented behaviours. Less 

attention has been given to the dynamics of these representations during the learning period 

itself; it is also not clear how representations are related to animal performance over extended 

periods of time. Therefore, the main goal of this thesis was to understand how relationships 

between multiple variables are represented in the hippocampus as the animal learns and how 

they can support behaviour. I also looked for general mechanisms that can be employed by the 

brain to shape neural representations according to task demands. To achieve my goal, my 

specific aims were the following: 

 

1. Compare the statistics of CA1 single-cell tuning throughout different associative learning 

stages 

2. Understand the relationship between the CA1 population code structure and learning 

 

To accomplish these aims, I focused on a learning period of days, as is often how 

associative learning happens in naturalistic behaviour. In the upcoming chapters, I targeted 

these aims by the following approaches: 

(1) I designed a behavioural task for rats involving spatial and non-spatial learning over 

many days: animals had to remember the association between global visual-tactile cues and the 

location of food to be dug in a linear maze. I also developed an analysis method that accounts for 

individual variability in learning. It is based on a hierarchical clustering algorithm and it 

classifies training sessions into different learning stages based on animal task-solving strategies. 

(2) I electrophysiologically recorded the activity of hippocampus dorsal CA1 neurons as 

the animals learned. I investigated the cell firing correlation of pyramidal neurons and 

interneurons to single or multiple task variables over time. I also investigated how task demands 

influenced the coding of rewards. 

(3) I investigated how encoding of information in the population evolves with learning 

in ways not directly predictable by single-cell changes. I decoded task variables from neural 

population activity at different learning stages: this allowed me to compare the decoding of task-

relevant and irrelevant variables over time, and measure how dependencies between the 

representation of different variables could affect the overall population code. 

 

 

 

 



 

 
 

 

M1. Experimental methods 

 

Animals 

All the results shown here come from 5 Wild-type, Long Evans Rats of 9 - 13 weeks of 

age and weighing 300-350g. Animals were caged with littermates before implantation surgery 

and isolated afterwards. They were kept in a dedicated animal room under a 12 hour light/dark 

cycle.  All animal procedures were carried out in accordance with the Austrian federal law for 

experiments with live animals, under the project licence number BMBWF-66.018/0018-

V/3b/2019. 

 

Tetrode microdrive 

Tetrode microdrives were built using a 3D printed plastic case, metal cannulae and four-

channel electrodes (tetrodes) made of 4 x 12μm tungsten wires, which could be moved by 

rotating a small screw at the top of the case. In this thesis either 16 or 32-tetrode microdrives 

were used. Sixteen tetrodes were placed in the hippocampus and, if a larger microdrive was 

used, the other half was placed on the retrosplenial cortex, as described below. 

 

Microdrive implantation surgery 

The surgery protocol implemented here has been used in previous research projects 

(Kaefer et al., 2020; Xu et al., 2019). The entire procedure was performed with animals under 

isoflurane anaesthesia. Animals received rehydration with a saline/glucose solution mix every 2 

hours during the surgery. Analgesia was achieved with Metamizol (Novalgin) for quick initial 

action and buprenorphine for long-term action over the entire duration of the surgery. 

Medication dosage was calculated according to the animal’s body weight and internal guidelines 

based on the Austrian animal law. 

After shaving the hair over the animal's head, the skin surface was covered in iodine 

solution and a scalpel was used to make a straight cut that exposed the surface of the skull. With 

the help of a stereotaxic device, the craniotomy coordinates over the hippocampus were marked. 

The hippocampus coordinates used were the following (from Bregma, positive ML value 

indicates the right hemisphere): 

 Animal ID jc233 - AP: -2.5 to -4.5 and ML: -0.75 to -3.75 

 Animal ID jc243 - AP: -2.7 to -4.6 and ML: -2.0 to -4.3  (15o angle) 

 Animal ID jc250 - AP: -2.5 to -4.5 and ML: 1.0 to 4.0 

 Animal ID jc253 - AP: -2.5 to -4.5 and ML: 1.0 to 4.0 

 Animal ID jc259 - AP: -2.5 to -4.5 and ML: 1.2 to 4.2 



 

Animal jc243 had the microdrive implanted at a 15o angle from the midline, all others 

had it implanted at a straight angle (perpendicular to the skull). Two animals (jc233 and jc243) 

also received a second craniotomy over the Retrosplenial cortex: 

 Animal ID jc233 - Craniotomy 1 AP: -1.5 to -5.25 and ML: -0.25 to -0.75 

     Craniotomy 2 AP: -5.5 to -7.5 and ML: -0.25 to -2.25 

 Animal ID jc243 - AP: -2.7 to -6.3 and ML: -0.6 to -1.5 (15o angle) 

A dental drill was used for making a small hole on the skull following these coordinates. 

Using forceps, the dura mater was then removed so that the tetrodes could be lowered in the 

centre of the craniotomy with the help of the stereotaxic device. During the surgery tetrodes 

were lowered 1.0 to 1.3 mm into the brain; the remaining depth to reach the CA1 stratum 

pyramidale was achieved by tuning tetrode depth on the days following surgery. The tetrodes 

were then covered in a wax-oil mixture (3.5:1) to ensure smooth vertical movement, followed 

by a layer of bone cement connecting the body of the microdrive to the surface of the skull. After 

surgery, animals were allowed to recover for at least 7 days before the start of behaviour 

training. 

 

Maze design 

The maze consisted of a raised S-shaped platform, 10 cm wide and 360 cm long. The 

shape was formed by 5 arms of equal length (80 cm, each overlapping 10cm at the corners) and 

90o angles between them. It was surrounded by 30 cm-high transparent walls along the track 

and a square box on either end, each 20 cm wide surrounded by high black walls and a door to 

the maze. Each maze arm contained 7 holes 10cm apart (15 cm from the start box). Holes were 

5cm wide and 5cm deep and were filled with playground sand. All sand was burned in a lab oven 

before use, to avoid contamination. Extra tiles could be added to the maze surface, changing its 

texture and colour and covering subsets of the holes. In this experiment, the possible tiles 

(determining context) were two: a black, hard plastic tile with equidistant grooves of around 

1mm; and a white, EVA-foam sheet tile with a smooth surface. Fixed distal cues were hung 

around the room to facilitate distinguishing the overall position of the maze. 

 

Habituation and training 

Before surgery, a plastic well similar to the wells/holes in the maze was placed inside the 

animal's home cage, containing cornflakes covered in sand. This was used to habituate animals 

to digging for food. Initially, it contained a large number of flakes and over the days the ratio of 

flakes vs. sand was reduced down to a few flakes in the entire well. Once the animals recovered 

from surgery, they entered a food restriction protocol, aiming to keep them 85-90% of their 

original weight. The sand well was removed from the cage and they were then habituated to 

digging in the maze itself.  

During pre-training, no contextual cues (floor tiles) were put on the maze. The training 

started by making only two out of the 35 possible wells available to the animal. Each would 



 

contain a mix of cornflakes and sand, and the flakes would be visible on the surface. The number 

of flakes was progressively reduced until only a few were available; they were also made 

progressively less visible until they were buried around halfway deep into the sand. Once 

animals consistently dug the buried reward, a task-like scenario was introduced, where more 

wells were available, but not all contained food. Animals had to remember which well contained 

the food (consistent within a day) and after obtaining two pieces of food, they were expected to 

run to the end of the maze opposite to the start position. At the end box, they received an extra 

sucrose pellet. The electrophysiological recordings started once animals were capable of 

consistently performing this task without any interference from the experimenter. 

 

Behavioural task 

Recording days started with a 40 minute sleep session, followed by 40 trials of the task. 

Context (surface tiling of the maze) was changed every 5 trials so one day consisted of 8 blocks 

of 5 trials. The starting position (left/right box) was defined by a pseudo-random algorithm that 

made sure that both boxes were used in equal amounts in either context on a given day and not 

more than 3 trials in a row, as longer sequences delayed learning. After the 40 trials, animals 

had another 40 minute sleep session, followed by 4 probe trials. 

On a single trial, animals had to use the colour and texture of the maze as cues to decide 

where one of the rewards would be located (context-dependent, referred to as A or B). A second 

reward would be found at a fixed location, equal in both contexts, so independent of the cues 

(context-independent). A total of 8 sand-filled wells were available at each context, 4 of which 

overlapped between contexts in terms of position (the three rewarded wells plus a control well). 

Animals were only allowed to dig two wells in a trial; after the second choice was made all other 

wells were covered and made unavailable. Nevertheless, animals were allowed to go back and 

forth on the track and dig the chosen wells as many times as they wanted, for up to 5 minutes. 

Only one corn flake was made available at each reward well, to make sure animals would be 

motivated to run 40 trials a day. Animals terminate a trial by running to the box at the opposite 

end from which they started, where they would find a sucrose pellet if the two holes dug were 

correct. In case of an incorrect choice, there was no reward at the end box. The door to the end 

box was open only once the animal made two choices. If the animal did not complete the task in 

5 minutes the trial was also terminated and no further reward was provided in the trial. 

On the first day of training the corn flake was made visible and animals were allowed to 

dig as many holes as they wanted for the first 2 trial blocks; in the following 2 blocks, flakes 

were hidden superficially and only two choices were allowed. This protocol was necessary 

because omitting the food from the first trial demotivated the animals. For the rest of the first 

day and also the remaining days the food was placed halfway deep into the sand-filled wells and 

only two choices were allowed. A trial was considered correct when the animal chose to dig the 

two correct rewards for the current context. 

The probe trials consisted of one trial of each category (defined by start side and context), 

each of 5 minutes. In those trials, the food was placed at the very bottom of the reward well, 



 

making it very difficult for the animal to find it. This allowed us to measure their motivation and 

confidence about the location of the food. During probe trials, animals were allowed to dig as 

many holes as they wanted. Trials were terminated after 5 minutes or if the animal ran to the 

end box. 

As a control for this task, I made sure that no residual odours could guide the animal’s 

choice, neither odours from the food nor the animals themselves. Corn flour was mixed in small 

amounts in the sand and the sand from all the wells was frequently re-mixed together and 

distributed across all wells again to spread the smells evenly. The maze was also regularly 

cleaned with alcohol. To test for smell preferences, control experiments were done by hiding 

cornflakes in random locations and checking for behaviour. Animals never dug such locations 

and preferred the memorised reward wells. 

 

Electrophysiological recordings and position tracking 

In vivo extracellular electrophysiological recordings were made using an Axona Ltd. 

recording apparatus. The implanted microdrive in the animal’s head was plugged into the 

recording system via a headstage connected to a tether. The system included a pre-amplification 

of the analogue signal directly at the animal's head, then a second step of amplification and 

digitization of the signal before relaying it to the computer. The neural signal was recorded at a 

24kHz rate. For position tracking, the animal's headstage contained a pair of LEDs, one on each 

side. The LEDs were of different sizes, to allow identification of the left and right sides of the 

animal. Using an overhead camera and low light conditions, the system captured the position of 

the LEDs throughout the task, at a 50Hz rate. 

 

 

M2. Data Processing 

 

Spike extraction and spike sorting 

Spike extraction and automated spike sorting of neuronal spikes were performed using 

the MountainSort algorithm (Chung et al., 2017). The output from the algorithm was manually 

curated to remove artefacts, clusters violating the refractory period, clusters with non-biological 

waveshapes and those not recorded for the entirety of a session. I also manually checked for 

clusters that needed to be merged or split. Those generally were the result of firing bursts or 

tetrode drift, processes not fully handled by the algorithm. 

 

Linearization of tracking data 

 The 2D spatial data of animal movement in the S-shaped maze was transformed to 1D 

coordinates by a series of steps. First, the pixel position of the maze boundaries were annotated 

and each of the 5 maze arms was defined as a polygon. Distortions due to the camera position 



 

were corrected, making all arms exactly 80cm. In the next step, the polygons were concatenated 

by the short axis according to their order to the maze. Since corners overlap 10cm between maze 

arms in the real maze shape, this was also the case when calculating the coordinates. The short 

axis was then collapsed and for all analysis, I used only the linear coordinate along the long axis. 

The maze contained 5 arms of 80cm each with 4 overlapping regions of 10cm each; the end 

result was linear position data ranging from 0 to 360cm. To compensate for missing tracking 

data, missing data of less than 3 seconds was replaced by a linear interpolation between the 

position before and after the missing frames. Position values were also smoothed by using the 

mean tracking values around each frame, in a window of 5 frames. All off-maze tracking was 

labelled as such. 

 

 

M3. Analysis Methods 

M3.1 Behaviour 

 

Behavioural performance and error types  

Behaviour in a trial was considered correct if animals dug exactly the two rewarded wells 

of the current context and ran to the box at the opposite end of the maze from where they started. 

This information was annotated by the experimenter. In case the animal did not dig correctly, 

the errors were classified as: 

1. Wrong context: the animal dug the reward of the opposite context to the current trial. 

2. Incomplete: the animal did not dig at all or dug only one well throughout the maximal 

duration of the trial (5 minutes). This was usually a sign of demotivation. 

3. Random dig: the animal dug a hole that was not rewarded in either context. 

4. Other: the trial was incorrect for a reason not described by the options above. 

 

Reversals 

 A behaviour was considered a reversal if animals turned around and ran in the direction 

they originally came from. Trials always ended at the opposite end from where they started, so 

each reversal was paired with a second one towards the main trial direction. I counted each pair 

as a single reversal. To quantify them, I first calculated the discrete derivative of the linearised 

position to determine the movement direction in each frame. Denote with 𝑙𝑡 the linearized 

position at time 𝑡, then the discrete derivative is defined as: 

𝑑𝑡  =  𝑙𝑡  −  𝑙𝑡−1 

Left and right movement were determined by negative and positive derivatives, 

respectively. A zero derivative indicated no movement. A reversal event was defined if two 

consecutive bins had opposite signs. The total number of reversals in a trial was defined as the 

sum of all reversal events divided by two (pairing). 



 

 

 

Hierarchical clustering of behavioural strategies 

To cluster the recording sessions in terms of behaviour, I determined the likely strategies 

the animals could be using to solve the task on each given trial: 

1. Eager: the animal dug whichever 2 of the 3 reward wells came first, depending on the 

side they started, and regardless of the contextual cues. 

2. Win-stay-lose-shift: the animal dug the exact same well they dug in the previous trial if 

that was a successful trial, and a different combination (overlap of one is allowed) if the 

previous trial was incorrect. For the first trial of the day, it is not possible to assign 

evidence to this strategy, given that there is no previous trial for comparison. 

3. Contextual: the animal was aware that one well was always rewarded (context-

independent) and knew the association between the contextual cues and the second 

reward. Therefore, the animal dug only the two rewarded wells of the trial. 

  

Each trial was assigned a 1 or 0 for each strategy, depending if the behaviour was 

evidence for the strategy or not. For a single trial, there could be evidence for more than one 

strategy. One example of this evidence assignment would be the following: assume the order of 

rewards starting from the left side is Indep - A - B; if the animal dug Indep and B on the previous 

trial successfully, and now dug Indep and A when running from the left, the assignment on this 

trial would be: Strategy1 = 1, Strategy2 = 0 and Strategy3 = 1.  

For an entire session, I averaged assignments over all trials, obtaining the mean evidence 

for each strategy. These values determined the features used in the hierarchical clustering, which 

worked as follows: 

Initially, each point represents a cluster of size 1 each; clusters are merged recursively 

following the Ward variance minimization criterion. In detail, denote a cluster as 𝑋 =

{𝑥1, . . . , 𝑥𝑘}, and compute its mean 𝐸(𝑋)  =  
1

𝑘
 ∑  𝑘

𝑖=1 𝑥𝑖 and its variance 𝑉(𝑥)  =
1

𝑘
 ∑  𝑘

𝑖=1 (𝑥𝑖  −

 𝐸(𝑋))2 . At each step, the algorithm computes the variance of each possible merged pair of 

clusters 𝑉(𝑋𝑖 ∪ 𝑋𝑗), and selects the pair to merge that yields the lowest increase in total 

variance. This procedure is computationally demanding; a simplified algorithm with linear 

complexity in the number of points has been proposed by (Müllner, 2011) and is implemented 

in the Scipy library cluster.hierarchy.linkage which was used here for analysis. This process is 

iterated over until all points are clustered together, and that is the root of the tree. Once the tree 

is built, different cut-off points in the hierarchy yield different numbers of clusters, as discussed 

in the main text of Chapter 4. 

 

Refrain behaviour  

A behaviour was labelled “refrain” when animals successfully held back from eagerly  

digging the incorrect reward well. More specifically, when the incorrect contextual reward well 



 

was positioned before the correct one, given the trial running direction. To quantify this, I 

measured the amount of time spent in the first passage over the incorrect well. Time was 

calculated as the difference between entry and exit times within a radius of 10 cm from the centre 

of the well. 

 

Digging and non-digging periods  

Digging periods were estimated based on animal position and behavioural observations 

made by the experimenter. A digging period was determined by frames when the animal was 

within a 10 cm radius from a well dug and no running movement was detected  (speed < 3m/s). 

This means that the time included both digging and reward consumption if they happened at 

the same place. I termed this “time around reward”. This also implies that “trial time excluding 

digging” includes immobility periods, but away from the dug rewards. 

 

M3.2 Single cells 

 

Firing rate maps 

Ratemaps were calculated per cell and category. A category was defined as the 

combination of trial context and starting side. I only considered periods of movement (>3cm/s) 

in which the animal was moving in the preferred direction of the trial (e.g. moving left if the 

trial started on the right start box), to control for the direction selectivity of place fields in linear 

environments. The maze was divided into 4 cm bins; for each bin, the rate was calculated as the 

sum of all spikes that happened in that position divided by the occupancy (time spent in that 

bin). I then smoothed the place fields by convolving each rate map with a Gaussian kernel 

(sigma=2). 

 

Place cell classification 

A cell was defined as a stable place cell if it fulfilled a set of parameters: 

(1) Mean firing rate above 0.25 Hz and below 6 Hz. Low firing rates yield unreliable rate maps, 

and too high firing rates indicate that the clustered unit is most likely to be a putative basket cell, 

not a pyramidal neuron.  

(2) Maximum sparsity of 0.5. If we denote 𝑟 the rate map vector and �̅� the mean firing rate 

over all positions, the sparsity was calculated as follows (Skaggs et al., 1996): 

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =  (�̅�)² / 𝑟2̅̅ ̅ 

(3) Minimum spatial information of 0.8 between firing rate and position. If we denote r the rate 

map vector and  𝑝 the number of position bins, the spatial information was calculated as follows 

(Skaggs et al., 1992): 

𝑆𝐼 = ∑  

 

 

(𝑟 ∗ 𝑙𝑜𝑔2 𝑟 / �̅�  ∗  𝑝)  

(4) Minimum stability of 0.8. Stability calculation is defined in the next section. 



 

 

Place field stability 

Place field stability describes how correlated is the activity of a neuron in space across 

different passages of the same location. Therefore, I first determined the first trial in each 

category in which the place field appeared. Given that in each session there were only 10 trials 

per category, stability could only be reliably calculated if the place field appeared before the 5th 

trial in the category. The trials after appearance were then separated into two random halves, 

for which I calculated the mean rate maps and their correlation. I repeated this procedure 5 

times. The stability score was calculated as the mean correlation over all repetitions. 

 

Firing rate gain 

 The average firing rate gain per position in each trial category was defined as the mean 

of the normalised rate map over all pyramidal neurons. If we denote 𝑟𝑖  the rate map vector for 

each neuron 𝑖 and 𝑛 the number of pyramidal neurons, it was calculated as follows: 

𝑔𝑎𝑖𝑛 =  (∑  

 

𝑖

𝑟𝑖/𝑟�̅� ) /𝑛  

 

Identification of place fields 

 To detect place field region(s) in a rate map, I identified consecutive spatial bins with 

firing rate above two standard deviations from the mean firing rate. In a single rate map, it was 

sometimes possible to identify more than one region that fulfilled this criterion, indicating the 

presence of multiple place fields. The centre of each place field was then defined as the point of 

zero derivative inside such regions and the edges as the position on either side of this centre 

where the firing rate returns to less than one standard deviation above the mean firing in the 

entire map. The distance between the two edges determined the place field width. The width I 

report here was calculated as an average over the field widths calculated in the trial-by-trial rate 

maps; it was not calculated directly on the average rate map to avoid overestimation due to the 

place field shift over trials. 

 The shift of the place fields depends on the direction of movement of the animal (see 

main Figure 5.4a), so the same place field has a slightly shifted centre in the mean rate map from 

left vs right trials, if present in both. To account for that and be able to compare the place field 

across categories, I matched the place fields identified in each trial category by considering fields 

to be the same if the peak of a field in one category fell within the edges of the field  in the other 

category, even if their centre position did not perfectly match. If fields did not match between 

rate maps, they were considered as different fields. 

 

 

 



 

Remapping 

Two types of remapping have been considered, global and rate remapping, as previously 

described in (S. Leutgeb et al. 2004; J. K. Leutgeb et al. 2005). Global remapping measures the 

extent to which place fields completely reorganize from one condition to another, whereas rate 

remapping measures the extent to which place fields that remain in the same position change 

their peak firing rate. In the current study, the conditions I compared were the trial categories, 

defined by the direction and context of each trial. 

To quantify global remapping between pairs of categories, for each cell I calculated the 

Pearson correlation between the average firing rate map in each category. I made sure to keep 

one variable fixed for this comparison – e.g. if I compared contexts, I only compared maps of the 

same movement direction. I then calculated the distribution of correlations between all pairs of 

trials within a single category. Low correlations across categories indicated remapping. To 

establish if each single cell significantly remapped across categories, I compared its correlation 

across categories 𝑐 with the distribution of within-category correlation coefficients. Specifically, 

I used a z-score test, as follows: denote with 𝜇, 𝜎 the mean and standard deviation of the within-

category distribution. I then computed the z-scored coefficient as 𝑧 =  
𝑐 − 𝜇

𝜎
, and set a threshold 

of 𝑧 > 1.96 (i.e., 𝑝 < 0.05) to consider a cell significantly remapped. 

 For the rate remapping, I calculated a separate score for each place field within a rate 

map. The identification of place fields is described in the previous section. The remapping score 

was calculated as the difference in mean place field firing in each condition divided by their sum. 

If we denote 𝑟�̅� and 𝑟�̅� the mean firing rates of a field in categories x and y, the score is calculated 

as follows: 

𝑠𝑐𝑜𝑟𝑒 = (𝑟�̅� − 𝑟�̅�) / (𝑟�̅� + 𝑟�̅�)  

As in the global remapping case, I compared the score distribution within and across 

categories to define a significance threshold. I considered that a cell rate remapped only if it did 

not globally remap and at least one of its fields had a significant rate remapping score. The 

reason for the separation of fields was that many place cells displayed multiple place fields and 

it was not clear a priori that all fields would behave the same when the categories changed. 

Moreover, opposing changes in different fields would lead to a low score and therefore 

conclusion that no rate remapping occurred when it actually did, but locally. 

 

In-field peak rate difference 

 Rate remapping scores measured changes in mean firing between conditions but did not 

give information about its magnitude. Therefore, for each field region, I also compared the 

magnitude of remapping as the ratio between the peak firing rate inside the Gaussian-smoothed 

field in each condition. 

 

 

 



 

Place cell reward firing 

A cell classified as a place cell in a trial category was considered “active at a reward” if 

its average firing in the bin nearest the reward was at least 2 standard deviations above the 

average firing in the entire rate map. As a control, I shifted the rate map of each neuron 

independently and by a random amount and then calculated the same measure again. I repeat 

this procedure 100 times to calculate the expected percentage of place field in any location if they 

did not show any preference for specific location. This is denoted as “shuffle” in Figure 5.6b. 

 

Place field distance to reward 

For each place field I calculated the distance between the centre of the place field and the 

centre of each of the 3 reward locations. These distances were used to determine which is the 

closest reward to each place field. Given that reward positions are not evenly distributed 

throughout the maze, I also calculated the distribution of place field distances if place field 

centres were uniformly distributed in the maze, assuming the same reward positions as in the 

data. This procedure was repeated 1000 times, to have an estimated distribution of distances for 

each reward in the uniform place fields case. This distribution could then be compared to that 

of the data; I used F-statistics to compare the variances of the two distributions.  

 

Place field shift calculation  

Since many of the place cells recorded displayed more than one place field, the shift 

analysis was performed on each place field and trial category separately. For the shift calculation, 

the rate map was first calculated per trial and the peaks were identified in the same fashion as 

for the mean rate map, but with a looser threshold (1.5 std from the all-day mean). If a trial 

contained a peak within the place field region, it was assigned to that place field. The shift slope 

was then calculated using a linear regression between place field peak position and trial relative 

number (in the category). Trials in which there was no peak were not included as data points. 

For a more robust fit, a leave-one-out procedure was used, where I left one data point at a time 

and re-calculated the regression. The shift was defined as the regression with the lowest mean-

square error on the entire data. Place fields with a peak at the edge of the maze (<10cm from 

the ends) were excluded from this analysis, since often the shift led them “out” of the maze and 

the calculation was not reliable. 

 

Place field shift correlation to time and speed 

 To understand if place field shift was simply a result of changes in speed over trials, I 

calculated the partial correlation between the shift slope and speed using a linear mixed effects 

model. The model is defined as  

𝑠 =  𝑋𝑣 +  𝑌𝑡 +  𝑍𝑣: 𝑡 + 𝜀  

Where s in the shift slope, v is the velocity, t is the trial number, v:t is the interaction 

between both and 𝜀  refers to the residuals. X, Y and Z refer to the coefficients for each regressor, 



 

estimated by the model. I used the implementation from the Python library Statsmodels function 

mixedlm. 

 

Interneuron firing rate trends 

 For each interneuron I assessed whether the mean firing rate significantly changed as a 

function of trial number. Using the instantaneous rate over time instead of the mean per trial 

yielded equivalent results. For identifying the change in firing rate in time, I tested two types of 

regression: linear and sigmoidal, for detecting slow or abrupt changes in rate. I used Bayesian 

Information Criterion (BIC) to select the best fit. BIC is used for model selection as it calculates 

the trade-off between the quality of the fit and the number of parameters in a model. Given a 

dataset 𝑥 with 𝑛 datapoints and a model 𝑀, parametrised by a number 𝑘 of parameters 𝜃, the 

BIC is calculated as follows: 

𝐵𝐼𝐶 =  𝑘 𝑙𝑛(𝑛)  −  2𝑙𝑛( 𝑝(𝑥|𝜃, 𝑀)) 

Using this value, the criteria for determining the trends in the firing rate were the 

following: 

1. Sigmoid (step up/down): if the BIC was smaller for sigmoid than linear fit, the transition 

was sharp (angle parameter for the sigmoid >0.5) and the difference between upper and 

lower bounds of the sigmoid were larger than the trial-by-trial fluctuations. 

2. Linear (up/down):  if the Bayesian Information Criterion was smaller for linear fit than 

sigmoid fit and the slope of the linear fit was significantly different from zero (p>0.05) 

3. No trend: If none of the above criteria were met. 

 

Interneuron selectivity to task variables 

To understand if the mean firing rate of an interneuron in a given trial was correlated to 

the category of the trial I first subtracted the trends previously calculated, and analysed the 

residuals. Then for each neuron, I performed a two-factor ANOVA where the dependent variable 

was the residual firing rate in a given trial and the two independent variables were start position 

and context. I defined a neuron as selective to one or both of these variables if p>0.05 for the 

given variable or their interaction, respectively. 

 

M3.3 Neural population 

 

Population vector analysis with PCA and t-SNE        

I divided the entire maze (360 cm) into 9 spatial bins. The edges of each bin were slightly 

shifted between animals to make sure that reward locations were not in between bins. All bins 

were kept at 40cm wide, except at the maze edges, which were 35 and 45 cm if necessary for 

this adjustment. For each trial and position, I calculated the mean firing rate of each neuron; the 

activity of all neurons formed a population vector of length 𝑛, where 𝑛 is the number of 

pyramidal neurons; unless otherwise stated, these analyses included only putative excitatory 



 

neurons. The Principal Component Analysis (Bishop, 2006) or t-SNE (Maaten & Hinton, 2008) 

methods were then performed using all 360 vectors (40 trials x 9 positions) in a given session. 

Only periods of movement (>3cm/s) in the preferred direction of the trial were considered for 

the calculation (e.g. moving left if the trial started on the right start box). 

 

Linear decoding with Support Vector Machines 

I used Support Vector Machines (SVM) to decode task variables (e.g. Trial direction or 

context) from the average population vectors from each position and trial (as described in the 

previous section) or their projections in a subset of the Principal Components. An SVM finds the 

best high-dimensional plane that separates the different categories, by finding the plane with 

the largest distance to points from any category (Bishop, 2006). For estimating decoding 

accuracy, I used a bootstrapping method. I sampled, with replacement, 360 vectors at each 

repetition (n=100 repetitions), then 80% of these vectors were used for training the decoder 

and the remaining 20% for accuracy testing. I used the same bootstrap samples on both decoders 

as well as for the shuffled label condition. The two decoding strategies employed were the 

following:  

1. Global decoder: a standard SVM which received as labels the variable of interest 

associated to each vector. The output was the best hyperplane that separates the labels, 

by reducing the mean square error in the classification of the vectors in the training set. 

2. Conditional decoder: each vector was assigned two labels, one for the conditional 

variable and one for the variable of interest. I subdivided the vectors into groups 

determined by their conditional variable. For each group, I trained an SVM for classifying 

the variable of interest, determining a different hyperplane at each value of the 

conditional variable. 

3. Shuffle decoders: as a control, I calculated the average accuracy of both decoders above 

when I randomly shuffled the labels for the variable of interest, for the same vectors used 

in each bootstrap sample. The “shuffle” decoder in all plots refers to this manipulation 

unless explicitly mentioned that the shuffle was done to the conditional variable instead. 

The decoding error was calculated as the proportion of matches between the predicted 

labels and the real labels of each vector in the test set. To control for the different numbers of 

neurons in each section I also looked at days with large numbers of pyramidal neurons (>80) 

and divided the data into non-overlapping parts of 10, 20, 40 or 80 neurons. In each subsampled 

set, I calculated the decoding accuracy for different numbers of Principal Components, to 

compare the effect of cell identity and number in this measure. 

 

Population vector similarity 

Population vector similarity was calculated creating a tensor of dimensions n x p x t 

where n was the number of neurons, p the number of position bins and t the number of trials. 

For each fixed t, n x p contains as rows the mean rate map of each neuron in trial t (4cm spatial 



 

bins, 90 bins in total). For the similarity calculated over trials (Figure 6.1b-d), for each position 

p, I calculated the cosine similarity between the vector containing the activity of all neurons in 

that position for all possible pairs of trial numbers t and then averaged the similarity over all 

positions, obtaining the average similarity between pairs of trials. For the similarity between 

positions (as in Figure 6.7a-c), I took an average over the last 3 correct trials of a given trial 

category, obtaining a n x p matrix for each category. The cosine similarity was calculated 

between the columns of these matrices. 

 

M4. Statistics 

 

This is a general description of the statistical tests used throughout this thesis. The 

statistical test used in each analysis is described in the corresponding figure or text. Most 

comparisons in this thesis concern changes between behaviour clusters. Clusters contained an 

unequal number of sessions, and different animals could be more or less represented in each 

cluster. To control for this, in parametric tests, I mostly used two-factor ANOVA controlling for 

the factor “animal” and checking the effect of “behaviour cluster”. Tukey HSD was used as a 

post-hoc test in these instances. If Repeated Measures ANOVA (parametric) or Wilcoxon test 

were used (in the non-parametric case), I first obtained the mean value of the statistic for each 

animal in each behaviour group, then calculated the test statistic in a paired manner. For the 

Wilcoxon test, I used Holm-Sidak correction for multiple comparisons. For log-normal data, I 

calculated parametric tests on log-transformed data. For values bound between 0 and 1, such as 

correlation measures, I first used a Fisher Z-transform and then a Z-test to calculate significance 

levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 
 

 

In this chapter, I introduce a novel behavioural paradigm for testing space-context 

association memory in rats. In the following chapters, I come back to this paradigm to investigate 

hippocampal neural function at the single-cell and population level during associative learning. 

The hippocampus has been known for many decades to encode information about an individual’s 

spatial position (O’Keefe & Dostrovsky, 1971), time (Kraus et al., 2013; MacDonald et al., 2011) 

and contextual cues (R. Muller et al., 1987). My aim was to address both the spatial and 

contextual selectivity of the hippocampus simultaneously and to understand how they are 

represented as the animal learns their relevance in a goal-oriented task. 

Most rodent studies of hippocampal function involve acquiring data from animals 

already pre-trained in a task, where the only novelty is a novel memory item, or position 

(Komorowski et al., 2009; Xu et al., 2019). In this study, my goal was to monitor learning for an 

extended time, so I looked for a paradigm that involved learning over multiple days. This is 

interesting because it requires memory processes to counteract homeostatic mechanisms of 

sleep (Grosmark et al., 2012; Vyazovskiy et al., 2009) that could favour forgetting the task, 

especially in periods when it has not yet been fully learned. 

Contextual and associative learning have been largely explored in the field of fear 

memory research, but contextual-fear memory formation is known to involve different 

timescales and neural mechanisms than the formation of other types of memories (Phillips & 

LeDoux, 1992). Associative learning has also been studied in paradigms pairing objects, flavours 

or odours. These show the importance of the hippocampus for the memory of stimulus pairs but 

they usually do not include a spatial feature to the task or study the learning process itself 

(Bunsey & Eichenbaum, 1996; Komorowski et al., 2009; Sauvage et al., 2008). Based on these 

observations, I defined a set of requirements for the task I wanted to employ: 

1. A goal-oriented spatial task 

2. Contexts defined by changes within a single physical space 

3. Context as the determinant of reward position 

4. Fixed trajectories between contexts 

5. A task hard enough to require multiple days to be learned 

6. Reduced working-memory component, i.e. contextual cues should be accessible 

at all times 

Very recently, a study has been published using a paradigm that partially matches these 

requirements, using head-fixed animals and odour cues as context, albeit in a working-memory 

setting (Zemla et al., 2022). Nevertheless, I did not find in the literature a pre-existing 

behavioural task in freely moving rodents that fulfilled all the requirements; with this purpose, 

I designed a novel maze and behavioural task. I also performed in vivo tetrode recordings of the 



 

rat dorsal CA1 area of the hippocampus throughout the entire learning period (see schema in 

Figure 4.1a, an example of the electrode tracks reaching CA1 can be seen in Figure 4.1b). 

Maze and task design 

The details of the maze and task are explained in the Methods section. In short, I designed 

an S-shaped linear track containing multiple wells levelled with the track, which were filled with 

sand (Figure 4.2a). A subset of these wells could be covered, and the remaining were available 

for the animal to dig. Different contexts could be set by changing the colour and texture of the 

maze floor, whilst all other features and positions remained the same. In the paradigm I 

implemented, the animal was presented with two contexts. Half the wells available were 

matched between contexts (Figure 4.2b). At each trial the animal had to retrieve two pieces of 

food, one of which was always at the same location, independent of the context; the other whose 

location could be inferred by context but otherwise not indicated by any positional cue. The 

reward positions were the same every day for each animal, but different between animals. The 

structure of each training day is illustrated in Figure 4.2c. Animals ran a fixed amount of trials, 

independent of their performance. 

One of the great challenges of using 2D mazes is that changing the reward position leads 

the animal to choose a new trajectory and, as a result, the maze coverage is not the same between 

conditions (Gridchyn et al., 2020). The S-maze design forced the animals to a fixed trajectory, 

making positions comparable between contexts. The behaviour of animals familiar with the task 

only differed with respect to which positions animals stopped to dig in each context. Trials were 

equally likely to start on either end of the maze (left/right), to ensure that the order of contextual 

rewards in the 1D environment did not lead to behavioural bias. 

I chose a digging task to probe spatial memory despite the fixed running trajectory: a 

trial was considered correct if the animal only dug the two correct food locations. After the 

animal made its two choices, all other wells were covered to prevent any further exploration. 

Digging added an extra feature to this paradigm: different from running and exploration, it 

seems to be performed only when individuals are highly motivated; although I do not address it 

in detail in the current work, I observed that when animals were more confident about reward 

Figure 4.1. In vivo electrophysiology.  a) Schematic of a tetrode microdrive implant targeted to the 

dorsal CA1 area of the hippocampus. Image credits to Sofia Taveira. b) Example of tetrode tracks in the 

pyramidal layer of the dorsal CA1. Cell bodies were stained with cresyl violet (Nissl staining). Tracks 
are marked with arrows. 



 

location –  i.e. once they had a set strategy for the task – they were more likely to engage in 

digging and also to insist on it for longer. Although the food was placed at a similar depth in 

every trial, digging time was very variable; this had to do with how the food was often pushed 

around together with the sand as the animal dug, making it easier or harder for it to be found. 

This uncertainty of reward delivery has also been seen in other paradigms (Passecker et al., 

2019; Tryon et al., 2017), albeit in a form controlled by the experimenter. In our case, it was 

determined by the digging variability, but also affected the animals’ confidence during the task. 

Animals seemed to recognise changes in sensory cues from first exposure, much before 

they used these cues to guide decision-making. In trials right after a context switch, animals 

generally halted for a moment as they entered the maze. This behaviour was not observed in 

trials where no switch happened and therefore may indicate attention to cue change. Although 

only an empirical observation in terms of behaviour, neural data presented in the next chapters 

supports the idea that the animals are aware of context cues very early during learning. 

 

Behavioural performance 

Overall, achieving a performance of 80% or more required up to 4 days of training, and 

learning speed varied between animals (Figure 4.3a). Already on the first day, all animals quickly 

learned which wells could be rewarded and avoided digging all others almost entirely (Figure 

Figure 4.2. Experimental design. a) Schematic of the S-shape digging maze design. Image credits to Todor Asenov. b) Linear 

representation of the maze and task. Circles represent sand wells. Example reward locations are represented here in yellow, but 
are not actually marked by any cue in the real maze. Reward locations differ between different animals but are fixed across 

learning days. c) Structure of a single recording day. 



 

4.3b). This is consistent with behaviour in other tasks such as the cheeseboard maze, where 

animals quickly learn to navigate directly to the correct reward locations (Kesner et al., 1991).  

Despite the recognition of contextual cues and memory for reward locations not posing 

a challenge to the animals, the process of creating an association between them was much 

slower. This was expected, especially in this scenario where one of the reward locations did not 

depend on context. Most of the errors in this task could be attributed to digging a reward location 

in the context it was not rewarded (‘Wrong context’, Figure 4.3b). In those cases, animals seemed 

to dig whichever of the “rewardable” wells came first in their trajectory. Digging of other, never-

rewarded wells, happened mostly on the first day of learning (‘Random dig’, Figure 4.3b), usually 

near locations rewarded on the pre-training days. On the 5th day, most animals showed a slight 

decrease in performance, but no increase in wrong associations; their performance generally 

resulted from disengagement from digging, likely due to tiredness (‘Incomplete’, Figure 4.3b). 

Individual variability 

To better understand the behaviour of each individual, I compared their performance on 

different trial categories (Figure 4.4). The categories were defined by the contextual cues 

presented to the animal (A or B) and the side of the maze the trial started (L or R), as both 

variables seemed to affect behaviour. Whilst for some animals performance increased equally in 

all trial categories over days, others displayed biased behaviours; this was reflected in high 

performance in one or two categories in the initial days of learning. I then questioned what 

features of the behaviour determined these differences in performance. 

One relevant feature of the task was that animals were allowed to run back and forth at 

will, which I refer to as “reversals” (Figure 4.5a). This was introduced as a result of testing 

different training regimes in pilot experiments. When reverse movement was forbidden, animals 

were incapable or very slow at learning the task. Even when animals dug correctly, they often 

did not find food if they did not insist. As a consequence, animals often gave up and moved on 

to the next reward well. Motivated individuals, however, were likely to return to their initial 

Figure 4.3. Behavioural performance. a) Average performance (number of correct trials / total number of trials) of all animals 
over training days (in blue) and of each animal separately (light grey). Error bars indicate 1 standard deviation. b) Number of 

errors summed for all animals as a function of training day and error type. 



 

choice and dig again, succeeding at finding the food. In case the first choice was wrong, going 

back also functioned as a confirmation of the incorrect choice. Therefore, reverse movement 

serves as compensation for task uncertainty as well as an indication of an animal’s confidence 

about reward location. Even though animals seemed to reverse more on later learning days, this 

difference was not significant (Figure 4.5b). Animals were also more likely to reverse on the 

initial trial blocks of the day – each block corresponds to 5 consecutive trials of the same context 

(Figure 4.5d). The number of reversals in a single trial was highly dependent on the animal, but 

not on their stage of learning (Figure 4.5c). Even though reversals were necessary for learning 

as a whole and happened in more than half the trials, days with more reversal trials did not 

directly correlate with performance scores (Figure 4.5e). This confirmed that allowing reversals 

did not influence the original design of the task. 

 

Behavioural clustering 

Averaging behavioural measures between animals per training day (session) yielded 

inconclusive results, due to their differences in learning speed. Average task performance was 

also insufficient to describe behaviour, as the same overall performance score could result from 

various performances in each trial category, as previously mentioned. To tackle this issue, I 

applied a hierarchical clustering algorithm to classify sessions based on the different task-solving 

strategies an animal could have employed on each day. In this algorithm, I used three strategies 

that seemed to most likely explain the observed behaviour:  

1. “Eager” strategy: animals dig the first two “rewardable” holes on their path, 

independent of context;  

Figure 4.4. Individual performance per trial category. Performance per category was calculated as the number of correct 

trials in the category divided by the total number of trials in the category. Trial category was defined by which side of the maze 

the animal started (L or R) and which contextual cues are present (A or B). Figure titles starting indicate the ID of each animal. 



 

2. Win-stay-lose-shift (WSLS): animals dig the same holes as in the previous trial if that 

was a successful trial. Following an error trial they make a different choice, but independent of 

contextual cues;  

3. Contextual strategy: animals use the cues to make a decision, as expected from the 

task design. 

Each trial was assigned 1 or 0 for each strategy, depending on whether the wells dug 

were evidence for their use. The same choice of wells could sometimes be evidence for more 

than one strategy, and in such cases, both are assigned a 1. The average evidence for each 

strategy in each session was used as the dimensions for the clustering. Details on the algorithm 

Figure 4.5. Reversals a) Example animal trajectories without (top) and with (bottom) reversal behaviour. Note that the animal 
mostly stops at reward positions (dashed lines). Rew-I: context-independent reward, Rew-DC: context-dependent reward of the 

current trial context, Rew-DO: context-dependent reward of the opposite context. b) Average number of reversals per training 

day. Bars indicate the SEM. Differences are n.s. (p>0.9 for all pairs, Wilcoxon test with Holm-Sidak correction). c) Same as (b), 

but per animal. Animal jc253 has a larger tendency to reversals than the others. d) Probability of an animal doing one or more 
reversals in a trial as a function of trial block within a given day. The trend is not significant (r=-0.35, p=0.39, linear regression). 

e) Relationship between probability of reversal and daily performance (r=0.069 and p=0.743, linear regression). 



 

are described in the Methods section. The resulting hierarchical tree contained two main clusters 

(Figure 4.6). The first cluster contained sessions in which animals primarily used strategies 1 or 

2, which do not require integrating contextual cues into the decision (Naive). This includes the 

first day of training for most animals, up to the third day for some of them. The second cluster 

contained sessions where there was evidence for contextual strategy use. Given the tree 

structure of the algorithm, this could be subdivided into two groups: sessions in which this 

strategy was used but animals still made a considerable amount of mistakes (Intermediate); and 

those of high performance on the contextual task (Expert).  

The results of the clustering were robust to the addition of strategies. The use of 

“demotivated” (digging less than two holes) as a strategy did not greatly change the hierarchy. 

Adding training day as a variable also did not affect the main two clusters either, although it 

subdivided the Intermediate cluster into training sessions before and after Expert sessions. Since 

later analysis did not indicate many differences between the Intermediate subgroups, I did not 

include “training day” in the clustering. 

Behaviour readouts of animal strategy 

To better understand the dynamics of the learning, in Figure 4.7 I show how the evidence 

for each strategy changed over days. It is important to note that, even when animals employed 

the contextual strategy, evidence for multiple strategies was expected in certain trials. This 

expected value depended on the order of the rewards on the maze (i.e. when the context-

independent reward was placed in between the contextual ones, 50% of correct trials would give 

evidence to an eager strategy, whilst only 25% otherwise). I could observe that 3 animals 

switched to a contextual strategy already on the second day of training; the remaining two 

animals achieved similar behaviour only around the 4th day. This agrees with the results shown  

 

Figure 4.6. Hierarchical clustering of behavioural sessions. Top: Hierarchical clustering of training sessions based on the 

accumulated evidence of each behavioural strategy. For details on the distance metric please see the Methods section. Bottom: 

heatmap of evidence for each behavioural strategy in each training day. 



 

 in Figure 4.4, in which I show individual differences in learning each trial category. Both results 

support the notion that studying learning as a simple function of time can be misleading, as it 

might mask learning timescales inherent to each individual. For the remainder of this thesis, I 

looked at variables of interest both in terms of training day and behavioural clusters and 

presented the grouping that most explained each of them.  

I first compared behavioural clusters in terms of task performance. An inherent result of 

the cluster separation is that sessions in the Naive cluster show high evidence for an “eager” 

strategy. That means that animals were less likely to refrain from digging as they passed by the 

reward of the opposite context (Figure 4.8a). When they did succeed in refraining, however, 

they spent a lot more time around the location before deciding to move on; in the Expert 

sessions, animals ran past those positions with little sign of uncertainty (Figure 4.8b). In 

Intermediate sessions, this behaviour was neither of the extremes. In terms of reversals, there 

was no significant difference between behavioural clusters (Figure 4.8c). 

 

Learning within each session 

I also questioned if performance improved within a single training day. I divided the 

behaviour sessions into 8 training blocks of 5 trials, the rate at which context changed. Figure 

4.9a shows that Expert sessions already started with better performance, and the positive slope 

of performance in time indicates that it improved as the day progressed. This increase is also 

true for Intermediate but not for Naive sessions. This implies that errors in the Intermediate and 

Figure 4.7. Evidence for behavioural strategies. Mean evidence for each strategy, per animal and training day. The same trial 

can be evidence for more than one strategy so values do not have to sum to one. The dotted grey line indicates expected evidence 
for the “Eager” strategy when the animal is actually using the correct “Contextual” strategy, as it differs between animals 

depending on reward locations. 



 

Expert sessions were more likely to happen at the beginning of the day. Also at this timescale, 

reversals were not a direct correlate to performance. I was also interested in how likely animals  

were to switch strategies in the middle of the day, as switching is a sign of cognitive flexibility 

(Kaefer et al., 2020). In accordance with our expectation regarding the behaviour clusters, I 

found high evidence for the context strategy already in the first trial block of Expert sessions. In 

Intermediate sessions, there was non-negligible evidence for all strategies at the beginning of 

the day, but as the day progressed the contextual strategy became dominant. In the case of Naive 

sessions, other strategies were preferred and there was no clear sign of strategy learning 

throughout the day (Figure 4.9b). 

 

Time measurements of behaviour 

Once I assessed that the hierarchical clustering outputs a relevant grouping of the 

training sessions, I investigated other behavioural measures suggestive of learning of the space-

context associations. Similarly to the refraining behaviour in Figure 4.8a-b, for most measures, 

there was a gradual change from Naive to Expert sessions. For example, animals ran slower in 

naive sessions (Figure 4.8d), which resulted in longer trials, when it comes to movement periods  

Figure 4.8. Differences between behavioural clusters. a) Proportion of trials that the animal successfully refrained from 

digging when refrain was necessary, per behavioural cluster (p=3.74e-5 two-factor ANOVA. Post hoc Tukey HSD N vs. I p=5.30e-
12, N vs. E p=3.08e-14, I vs. E p=5.67e-6. Calculations on log-transformed data). b) Time, in seconds, spent around the incorrect 

reward in successful refrain trials; i.e. not digging. (p=1.07e-5 two-factor ANOVA, Post hoc Tukey HSD N vs. I p=0.021, N vs. E 

p=9.19e-6, I vs. E p=9.38e-4. Calculations on log-transformed data) c) Mean number of reversals per trial, for each behavioural 

cluster. Differences are n.s. (all p>0.75, Wilcoxon test with Holm-Sidak correction) d) Animal mean speed, excluding immobility 
periods (< 3cm/s). Differences are n.s. (p=0.324, Two-factor ANOVA). Error bars in panels a-c indicate the SEM. 



 

 
Figure 4.9. Evidence of learning within a day. a) Probability of performing a correct trial within each trial block, averaged 

over all sessions in a behavioural cluster. Grey lines indicate the result of linear regression. (Linear regression: Naive r=-0.05 

p=0.685, Intermediate r=0.22 p=0.037, Expert r=0.36 p=0.011) b) Mean evidence, per trial block, for each of the behavioural 

strategies (Linear Regression p<0.05 for all strategies marked with a *, for all others p>0.05). Error bars in all plots indicate 

the SEM. 

Figure 4.10. Trial time in correct and error trials. Comparison of 

trial duration, in seconds, between the different behavioural clusters. 

Here digging periods are excluded, since those are extremely variable 

within training days. For difference between correct and error, * 
indicates p<0.05 in paired t-tests. For comparison between 

behaviour clusters, two-factor ANOVA indicates p<0.05 only between 

error trials. Post hoc Tukey HSD results p=0.316 Nvs.I, p=0.023 N vs. 

E, p=0.232 I vs E. Error bars indicate the SEM. 



 

(Figure 4.10). This slowness might be a sign of higher exploration at this phase. Error trials were 
also longer for the Naive and Intermediate sessions, indicating animals explored more when 
they made a mistake, whilst in Expert sessions they quickly finished the trial after errors (Figure 
4.10).  

Immobility and digging periods were much more variable in duration and not directly 

related to the animal’s speed. This seems inherent to the digging itself; a rat could spend between 

3 seconds and more than a minute digging a location on a correct trial (Figure 4.11a, top). As 

previously mentioned, the reason is that digging is uncertain in nature. Nevertheless, on 

incorrect trials, if animals mistakenly dug the reward location of the opposite context, they spent 

a lot less time on it (Figure 4.11a, bottom). This is a sign that such “wrong digging” was not 

treated equally to the correct ones. This effect was more pronounced in Expert sessions, when 

wrong digs were quickly noticed by the animals and the time spent on those positions was much 

lower than for Naive sessions (Figure 4.11b). 

In terms of the proportion of time allocated to the reward region, not surprisingly 

animals spent more time around the context-independent and correct contextual rewards in 

correct trials than in error trials. This is because after making two choices, all other sand wells 

Figure 4.11. Time spent on reward locations. a) Probability Density of time spent over each reward position at each trial, if it 

was dug.  Top: correct trials, Bottom: error trials of the “wrong context” type. Rew-I: Context-independent reward, Rew-DC: 

Context-dependent reward of the current trial, Rew-DO: Context-dependent reward of the opposite context. b) Same as error 
trials in (a) but separated between behaviour clusters. c) Proportion of trial duration spent on each reward region, regardless if 

the animal dug. I first calculated the mean duration over all trials in each session, then I calculated the mean and s.e.m. over all 

sessions in each cluster. Error bars indicate the SEM. For difference between correct and error, * indicates p<0.05 in paired t-

tests. For comparison between behaviour clusters, p<0.05 only between correct trials in Rew-I (two-factor ANOVA). Post hoc 
Tukey HSD results p=0.003 Nvs.I, p=0.027 N vs. E, p=0.889 I vs E. 



 

were made unavailable; if an animal made a mistake it means that at least one of the correct 

reward wells was not accessible and therefore they could not spend time digging it during an 

error trial. Analogously, they spent more time around the reward of the opposite context on 

error trials. Only in Expert sessions they spent equal amounts of time around the independent 

reward in both correct and error trials (Figure 4.11c), indicating that they probably dug this well 

in both types of trials. 

 

Discussion 

Together, these results show that rats were capable of learning this context-space 

associative task within 3-4 days. In this paradigm, classifying behaviour sessions in terms of 

animal task-solving strategy yielded better predictions of behavioural variables than simple 

performance measures. As the animals learned the desired task strategy, they also became faster 

and spent less time exploring reward locations not associated with the current context. They 

spent less time deliberating over and made fewer attempts to dig incorrect locations; in case of 

an incorrect dig attempt, they also spent less time digging. As a note, I performed animal tracking 

by acquiring solely x/y coordinates of the animal’s head over time. For a more fine-grained 

investigation of behaviour in this maze, especially of digging behaviour, it would be beneficial to 

acquire full video footage associated with machine learning algorithms for movement 

classification (e.g. DeepLabCut). 

To create this maze and behavioural paradigm I was inspired by a conjunction of 

previous studies in spatial and contextual memory, which I summarise here. Much of the role of 

the hippocampus in contextual associative memory has been discovered in fear memory 

research. Animals show fear-related behaviours such as freezing primarily in contexts (e.g. a 

chamber) where they received a nociceptive stimulus in the past, a process that requires the 

hippocampus (Maren et al., 2013; Phillips & LeDoux, 1992). It is well established that fear 

memory formation also involves specific neural mechanisms, e.g. via the amygdala (Phillips & 

LeDoux, 1992), which allow associative learning to happen within a single exposure to the 

contextual cue.  

Other types of associative tasks require much longer timescales of learning (Komorowski 

et al., 2009). For example, animals take several days to learn odour-pair associations, a time 

comparable to my observations in the S-maze task (Bunsey & Eichenbaum, 1996). In this study, 

animals were taught to associate pairs of odours embedded in cups of sand or other digging 

media. After learning, if exposed to a sample odour followed by two options, animals could 

correctly dig at the odour originally associated with the sample. Lesions to the hippocampus 

impair animals' ability to choose the correct pairing (Bunsey & Eichenbaum, 1996). Similarly, if 

odours are associated with specific digging media, the hippocampus is necessary for animals’ 

recollection of the pairing, but not for the memory of each odour or media themselves (Sauvage 

et al., 2008).  

Digging has also been introduced in a spatial task studying memory schemas (Tse et al., 

2007). Rats learned the association of a food flavour with a location in an open arena where a 



 

reward could be dug out. They show that the initial learning of flavour-location pairings also 

requires many days, although not the learning of new pairings afterwards. The authors claim 

that, in the first stage of the training, the animal needs to learn a “schema” of the task: the rule 

that flavours are associated with reward positions. Later, when exposed to a new flavour, they 

already expect that a flavour determines a reward location, and therefore learn much faster. The 

study shows that lesions of the hippocampus affect task learning (Tse et al., 2007). Altogether, 

these studies that the behavioural paradigm I introduced here is a good candidate for studying 

the hippocampal dynamics during associative learning. 

I was also interested in the spatial aspect of the task. In spatial memory studies, contexts 

are often defined as separate environments, as in contextual fear paradigms. A previous study 

by my research group shows that contextual memories of this type can be manipulated 

separately during consolidation (Gridchyn et al., 2020). Hippocampal responses have also been 

studied in the case of morphing environments, where the animal is exposed to a square arena 

that is gradually shifted into a circular one (J. K. Leutgeb et al., 2005). Nevertheless, neither 

study addresses the learning of context process per se, nor do most studies in this field, which 

motivated the current work. 

Other mazes for rodents that share parallels with my task design include the radial 8-

arm maze (Xu et al., 2019) and some conveyor belt paradigms, the latter usually employed in 

head-fixed settings (Danielson et al., 2016; Vaidya et al., 2023). Similarly to the radial 8-arm 

maze, where animals have to make a decision about which arm to explore, my design has 

precisely 8 possible digging sites at any trial, which the animals can choose to dig. Conveyor-

belt paradigms often include tactile cues to define spatial locations or to define context 

(Danielson et al., 2016), as I have used in this case. 

The results presented in this chapter show that the task I developed imposed an 

interesting challenge for rats, which nonetheless they are capable of learning. Animals seemed 

to quickly familiarise themselves with the maze and learn which positions were ever rewarded. 

This is in accordance with previous studies of goal-directed spatial learning. The S-maze shares 

many features with the classic “Morris water maze” and its dry version, the “cheeseboard” maze, 

albeit in 1D. In those mazes, animals learn the most direct path to the safe platform or reward 

in a few trials (Kesner et al., 1991; R. Morris, 1984). In my paradigm, I saw a similar phenomenon 

in which animals moved directly towards their believed rewards, with very little interruption in 

their movement. Similarly, in the 2D mazes animals explored more in earlier trials (longer 

trajectories) and in the S-maze, they spent longer time digging at incorrect locations. 

Contrary to fast spatial learning, associative learning happened at a slower timescale, 

highlighting individual differences not noticeable otherwise. Studies often ignore or actively 

“average out” this individual variability, even when it is large (Zemla et al., 2022). In rodents, it 

has been shown that individual variability is regulated by external (Körholz et al., 2018) and 

neural factors (Akiti et al., 2022). In humans, individual differences in learning, memory and 

decision-making have been extensively studied (Badre et al., 2012; Bors & MacLeod, 1996; 

Kirchhoff & Buckner, 2006). A review study on human cognition suggests that differences in 



 

behaviour can be linked to specific variations in the brain structure between individuals (Kanai 

& Rees, 2011). 

Investigating decision-making in rodents was not a goal of the current study. 

Nevertheless, I hypothesised that learning differences between animals emerged from the task-

solving strategies they employed. I could not exhaust all possible strategies but pinpointed those 

most likely to explain the observed behaviour. The hierarchical clustering based on task-solving 

strategies was agnostic to any predetermined grouping; the evidence for each strategy was 

related to the wells dug by each animal rather than the experimenter’s view of the behaviour. I 

showed that many behavioural measures not used for clustering are common between sessions 

in the same cluster. This could also explain the robustness of the clustering to adding/removing 

strategies from the algorithm. In Chapters 5 and 6, I show how these behaviour clusters were 

distinct in terms of neural activity. 

Other methods for classifying rodent behaviour in terms of task-solving strategy have 

been described for the Morris water maze, using machine-learning algorithms (Gehring et al., 

2015; Graziano et al., 2003). In these examples, the algorithm classifies trajectory patterns on a 

trial-by-trial basis or even parts of trials. Whilst their approach is focused on studying the 

differences between behavioural patterns per se, my approach is mostly focused on classifying 

sessions to investigate other features of the behaviour and neural activity. I am not aware of any 

studies using hierarchical clustering for this type of behavioural classification. This is a very 

simple approach that can be easily adapted to other behavioural paradigms, by choosing 

strategies most suitable in each case. I believe that this type of behaviour clustering can yield a 

relevant grouping of training sessions and help adjust other analysis to different individual 

learning speeds. 

Lastly, the maze and behavioural paradigm I present here are not only suitable for the 

analysis I show in the following chapters but could also be used in future studies of other brain 

areas. For example, the retrosplenial cortex is known to respond to contextual cues (Nelson et 

al., 2014), as well as being important in spatial tasks, regulating egocentric versus allocentric 

navigation, among other functions (Alexander & Nitz, 2015; Vann et al., 2009). Therefore it is 

likely to play an important role in this task. The posterior parietal cortex and prefrontal cortex 

are known to be involved in decision-making (Diehl & Redish, 2023; Raposo et al., 2014; Sul et 

al., 2010) and associative learning (Lipton et al., 1999), making them other interesting areas for 

investigation. The relationship between sleep and associative learning has not been much 

explored in rodent studies; given that animals learn over multiple days, mechanisms of memory 

consolidation are probably also central to learning this task (Frankland & Bontempi, 2005; 

Ramadan et al., 2009; Talamini et al., 2008).   



 

 
 

 

In Chapter 4 I introduced a novel experimental paradigm that allowed me to study 

associative learning between space and visual/tactile contexts. The goal of the paradigm was to 

elicit neural responses in the hippocampus to multiple task variables known for engaging this 

brain area (Gener et al., 2013; R. U. Muller & Kubie, 1987; O’Keefe & Dostrovsky, 1971; Wible et 

al., 1986; Wiener et al., 1989) and investigate these responses over many days of learning. In the 

current chapter, I will look into how individual hippocampal cells behave during this task. 

The extent to which CA1 neurons are tuned to spatial variables is highly related to their 

position in the proximo-distal axis of the hippocampus, which determines their inputs (Beer et 

al., 2018). Moreover, there has been accumulating evidence that hippocampal place cells do not 

respond solely to an animal’s position, but also to environmental cues and their relationships 

(Shapiro et al., 1997; Wiener et al., 1989). Mixed-selectivity – neural tuning to multiple variables 

– has been shown to bring several coding benefits for a neural population (Rigotti et al., 2013). 

Some argue that place cell activity does not represent space at all, but rather the animal’s 

predictions or experiences (Stachenfeld et al., 2017; Tanaka et al., 2018). This is supported by 

the fact that the tuning of neurons to non-spatial variables seems more stable than their place 

code (Tanaka et al., 2018). In addition, there have been reports showing that non-place cells in 

this brain area also carry information about space (Stefanini et al., 2020) and reward (Gauthier 

& Tank, 2018; Wood et al., 1999; L. Zhang et al., 2022). 

Apart from these properties observed during free exploration or in familiar tasks, in the 

process of learning the hippocampus is known to adapt its place cell firing. It can discriminate 

different contexts (Markus et al., 1995; Mizumori et al., 1999; Smith & Mizumori, 2006; Wood 

et al., 2000; Zhao et al., 2020) and overrepresent reward locations (Dupret et al., 2010; Hollup 

et al., 2001). These phenomena have been mostly investigated in a time scale of dozens of trials, 

but less is known about their evolution over long periods of time. Previous recordings of 

hippocampal activity during multiple days use a free-exploration paradigm (Ziv et al., 2013) or 

focus only on the subpopulation of neurons with stable place fields over days (Vaidya et al., 

2023), precluding the investigation of changes in the firing resulting from learning. Both studies 

report that only a small percentage of place cells maintain their place field position over days, 

whilst the majority acquire their field on roughly a daily basis (Vaidya et al., 2023; Ziv et al., 

2013). Another study shows that CA1 neurons accumulate place fields around rewards also over 

days, and the strength and stability of this modulation are dependent on the cell depth in the 

pyramidal layer (Danielson et al., 2016). Regarding behaviour, one report shows that neurons 

from high-performing animals accumulate place fields in linear tracks selectively between the 

start position and reward for each context (Zemla et al., 2022), but it does not investigate the 

timescale of this accumulation during the process of learning. 



 

Overall, not many other studies address the encoding of fixed rewards and sensory cues 

in a spatial task over long periods of time, as the environment and the reward locations become 

familiar. It is not clear how the animals' improving performance over consecutive days is related 

to changes in the hippocampal encoding in the same period. Therefore I aimed here at 

investigating the responses of CA1 neurons over various timescales of learning, from a few trials 

to a few days.  

 

Place cells 

I simultaneously recorded dozens of cells (n=1725 putative units in total, mean of 69 ± 

25 units per day per animal) from the dorsal CA1 of 5 rats across 5 days of learning each, a period 

that was sufficient for all animals to achieve a performance of at least 80% of trials correct. The 

recordings were optimised for renewing the neuronal population recorded on each day; 

generally, the number of cells recorded on earlier training days was smaller (n=26 units on the 

worst session from all recordings) than that on later training days (n=109 units on the best 

session from all recordings), as the electrodes were moved to the centre of the hippocampal 

pyramidal layer over the days. On average, 80 ± 10% (mean ± STD) of cells recorded in a given 

day were classified as putative pyramidal cells, whilst the remaining were labelled putative 

interneurons (mostly fast-firing basket cells). 

To classify putative pyramidal neurons as place cells, I measured spatial information and 

sparsity of each rate map (Skaggs et al., 1996), as well as rate map stability. Trials were divided 

into categories determined by the combination of the side of the maze where the trial started 

(Left or Right) and the context (A or B). For the rate map calculation, I used only the periods 

where the animal ran forward, given their starting side. On a given day, 40 ± 15% of pyramidal 

cells were classified as stable place cells in at least one of the trial categories (Figure 5.1a), which 

is in agreement with previous reports on place cells (Schoenenberger et al., 2016), although most 

of those studies do not separate rate maps into categories. Only 17 ± 13% of place cells displayed 

stable place fields in all trial categories. This is in agreement with a previous report on a similar 

context-space association paradigm (Zemla et al., 2022).  

In addition to the stable cells, 36 ± 10% of cells were classified as unstable place cells, 

meaning their map was stable over at least two consecutive trials but not over the entire 

recording day (Figure 5.1b). The proportions of stable and unstable cells were not significantly 

different between animals, training days or behaviour clusters, although there seemed to be a 

trend for a higher number of stable place cells on sessions with better performance and an 

opposite trend for unstable ones. These trends could be a result of learning or a result of (on 

average) more cells being recorded from central areas of the CA1 pyramidal layer in expert 

sessions. A study using a similar task design claims that the proportion of pyramidal cells active 

as place cells is steady over learning (Vaidya et al., 2023). The same study shows that, over time, 

there is an increase of cells with long-lasting place fields, matching the trend I observe. They 

also report earlier emergence of place fields on later days, for a subgroup of place cells. I do not 



 

observe this phenomenon when looking at the entire population (Figure 5.1c) and their subgroup 

categorisation is not possible in the case of my dataset. 

I also observe no change in the width of place fields with experience over days (Figure 

5.1d), in agreement with a recent study (Geva et al., 2023). Sharpening of the place fields via 

synaptic plasticity mechanisms as a result of learning has also been reported (McHugh et al., 

1996) but only in the scale of seconds. 

Place field identification 

I then detected individual place fields within the rate map of each cell, in the categories 

the cell was classified as a place cell. Whilst most place cells had only one place field (90±5%) in 

which they fire above 2 standard deviations of their regular firing, a small proportion of place 

cells (9±5%) displayed two place fields within a single rate map (example in Figure 5.2). These 

proportions were not significantly different between behaviour groups (p>0.33 for all pairs, 

Wilcoxon test with Holm-Sidak correction). Some cells also show smaller (< 2 STD) firing peaks 

at regions that match the place field in a different category. Although not directly addressed in 

most publications, the presence of multiple place fields has been reported in many studies 

(Fenton et al., 2008; Schoenenberger et al., 2016; Vaidya et al., 2023). It has also been related to 

the size of environments, with place cells acquiring more place fields as the environment 

becomes larger (Fenton et al., 2008; Rich et al., 2014). 

Figure 5.1 Pyramidal cell features. a) Proportion of stable place cells in the pyramidal population. n=25 sessions. Differences 

are n.s. (One-sided Wilcoxon test with Holm-Sidak correction. p=0.23 N vs I; p=0.18 N vs E; p=0.23 I vs E). b) Proportion of 
unstable place cells in the pyramidal population. Differences are n.s. (One-sided Wilcoxon test with Holm-Sidak correction. 

p=0.09 N vs I; p=0.34 N vs E; p=0.56 I vs E). c) First trial of place field appearance in the category the place field is present. 

Differences are n.s. (Log-rank test with Holm-Sidak correction p=0.97 N vs I; p=0.34 N vs E; p=0.34 I vs E). d) Distribution of 

place field average size in each behavioural cluster. n=2716 place fields. Differences are n.s. (pval = 0.28. Two-Factor ANOVA 
after log-transformation of the data). Error bars in panels a-b indicate SEM. 



 

 

Place field remapping 

Considering that most place cells did not seem to respond equally in all trial categories, 

I was interested in how they remapped when I changed one task variable at a time. For a fixed 

context, cell activity was highly modulated by trial direction, which resulted in a high proportion 

of cells globally remapping, as well as some rate remapping (Figure 5.3a). This is in accordance 

with previous literature on rodents moving in 1D environments (McNaughton et al., 1983). For 

a fixed movement direction, most cells did not remap between contexts, although a small 

percentage showed rate remapping (Figure 5.3b). A recent report in a similar behaviour 

paradigm describes global rather than rate remapping in response to context change (Zemla et 

al., 2022), but my results agree with previous studies that show rate remapping in response to 

Figure 5.2. Examples of place cell firing rate maps. a) Example place cell with context-specific place fields. Each row 

represents a trial, plotted separated by their categories (during behaviour they are intermixed). Within each category, trials were 

ordered from top to bottom. “Start” refers to the side of the maze where the trial started, which defines the main running 

direction of that trial which is used for rate map calculation (e.g. a right start means the map was calculated only when the 
animal was running towards the left). This cell shows global remapping between left and right runs in both contexts. It also 

shows rate remapping between contexts A and B in runs starting on the left side. b) Other 4 example pyramidal neurons classified 

as place cells, from different animals and training sessions. The trials were ordered the same way as in panel (a). 



 

environment and task cue manipulations (Allen et al., 2012; S. Leutgeb et al., 2005). The 

difference between studies might be due to different recording methods; the first study estimates 

rate from calcium transients instead of actual spike counts, which could lead to lower 

correlations – therefore classification as global remapping – and less sensitivity to small changes 

in firing rate, missing rate remapping cases.  

Figure 5.3. Place cell remapping. a) Proportion of place cells that remap between running directions. n=25 sessions. All 
differences between behaviour clusters in the same remapping category are n.s. (Wilcoxon test with Bonferroni correction, all 

p>0.5). b) Remapping between contexts. All differences between behaviour clusters in the same remapping category are n.s. 

(Wilcoxon test with Bonferroni correction, all p>0.15). c) Distribution of ratios between the peak firing rate (lowest/highest) in 

each direction within the same context, for each place field. d) Same as (c) but between contexts within the same running 
direction. e) Log from the same values as calculated in (d), for pairs of place fields in the same rate map. Pearson R=0.28, 

p=7.83e-13. In panel a-b, error bars indicate the SEM. 



 

For a better comparison of rate remapping magnitude, I quantified the ratio between the 

in-field peak firing rate in each category (smallest/highest peak rate). I did this calculation as 

long as a place field had been detected in one of the categories in a pair; this allowed the detection 

of local rate remapping events in globally remapping cells (e.g. when in addition a second field 

emerged). A ratio close to zero indicates global remapping of the field, whilst other values 

indicate different strengths of rate remapping. On average, the difference was greater between 

firing rates of opposite trial directions than between contexts (Figure 5.3c-d), confirming again 

a stronger effect of directionality than context. Since this analysis was run per place field, I also 

checked if the remapping effect on two place fields within the same rate map was correlated. My 

finding was that remapping is specific to each place field, not to each place cell (Figure 5.3e). An 

example can be seen in Figure 5.2. My initial expectation was that stronger single-cell selectivity 

to context would emerge over days, as animals become better at associating context to different 

behaviours, despite no previous work showing it directly. However, there was no immediate 

difference between behaviour clusters in terms of remapping (Figures 5.3a-d). This indicates 

that learning this task might be attributed to other changes in the hippocampus or other brain 

areas.  

Figure 5.4. Firing rate gain. a) Example of gain around reward. b) Gain per behavioural cluster 

at different positions. Rew-I = Context Independent Reward, Rew-D = Context Dependent Reward 
(A and B). Differences between positions are n.s. (Kruskal-Wallis test. Naive p=0.11, Intermediate 

p=0.06, Expert p=0.14). Error bars indicate the SEM. 



 

Firing rate gain 

Next, I checked if the summed activity of all pyramidal cells was dependent on the animal 

position across the maze. For this I used a measure of firing rate gain, which is the sum of the 

mean firing rate of all cells per position bin, divided by the average mean rate over all bins, 

filtered for movement periods (movement velocity >3cm/s). An initial inspection seemed to 

indicate a higher gain around all three reward locations in all trial categories (Figure 5.4a). 

However, the strength of this effect was quite variable between recording days and, on average, 

there was no increase in firing rate gain at reward locations (Figure 5.4b). The variability 

between the days could have been due to a different proportion of reward-coding neurons in the 

recorded pyramidal population. According to a recent study, only a small subset of place cells 

(~20%) shows signs of overrepresentation of reward (Vaidya et al., 2023), which correspond to 

very few cells in some of my recording days. In that study, this is the same pool of neurons that 

have a fixed place field over many days.  

Despite the mean absolute gain not changing over learning, the difference in gain 

between contexts did; in one context the activity was below average and in the other, it was 

above. As the animal learned, the difference became larger at context-dependent rewards (Rew-

Figure 5.5. Difference in gain between categories. a) Absolute difference in gain between running directions, at specific 

regions of the maze. Differences between positions are n.s. (Kruskal-Wallis test. Naive p=0.26, Intermediate p=0.59, Expert 
p=0.70) b) Absolute difference in gain between contexts at specific regions of the maze (Kruskal-Wallis test. Naive p=0.72, 

Intermediate p=0.76, Expert p=0.02. Dunn’s post-hoc in Expert group with Bonferroni correction p=0.03 RI vs RD; p=0.34 RI 

vs E; p>0.99 RI vs O; p>0.99 RD vs E; p=0.12 RD vs O; p>0.99 E vs O).  c) Mean gain in left versus right trials is directional, so 

the gain is higher when the edge is where the trial starts (Paired t-test, right versus left edge, n=25 sessions, p=0.01). d) Mean 
gain in A versus B context trials at the context-dependent reward positions. Only correct trials included. There is a trend for 

higher gain when the position is not rewarded and the animal refrained from digging, but the difference between the two 

rewards is n.s. (Paired t-test, A vs B reward regions, n=25 sessions, p=0.09). Error bars in all panels indicate SEM. 



 

D) but not in the context-independent case (Rew-I) (Figure 5.5b). When observing only correct 

trials, there was a trend for higher gain when a context-dependent reward was not rewarded 

(Figure 5.5d), especially in expert sessions. A similar gain difference was also observed between 

trial directions at the edges of the maze (Figure 5.5a). Those positions are related to entry or exit 

of the maze, and therefore distinct behaviours: at entry animals are attentive and are likely to 

be deciding on where to go; at exit, they are focused on receiving a reward at the end box. It is 

not surprising that there is a difference in neural activity between the two, although this could 

have been other forms rather than firing rate gain. The gain was higher at entry rather than at 

the exit of the maze, but no clear trend was visible with learning (Figure 5.5c).  

 

Reward coding 

As the training progressed, I expected the accumulation of place fields around reward 

locations (Dupret et al., 2010; Hollup et al., 2001). This phenomenon, also referred to as goal 

remapping, is relatively fast, occurring within a few trials of exposure to new rewards. In the 

case of my task, rewarded locations did not change across days, so I was interested in whether 

the overrepresentation of goals was restricted to the novelty period or maintained throughout 

the multiple days necessary for learning. 

I focused on reward coding specifically by place cells. For each place field, I measured the 

distance of the place field to the nearest context-dependent reward at the start and end of the 

day (Figure 5.6a). I noticed a narrower distribution of place fields around the position of the two 

context-dependent rewards in expert sessions. This was calculated by comparing the 

distribution of place field distances to that of a simulated population (with evenly distributed 

place fields and the same reward locations). I was also interested in when the accumulation 

happens. As mentioned in Chapter 4, the behavioural cluster ‘Intermediate’ included sessions in 

days before the animals achieved asymptotic performance, but sometimes also after, if 

performance declined on a given day. I extracted from this cluster only the sessions that 

happened exactly one day before sessions in the ‘expert’ cluster. What I observed was that the 

accumulation of place fields at the contextual rewards was already present in these sessions from 

the beginning of the day, but not in the other sessions classified as intermediate. The same 

calculation using distance to all three rewards does not show this phenomenon (data not shown). 

I then chose a different approach to confirm these results. For each reward position I 

calculated the proportion of place cells that fired above 2 standard deviations of their rate map 

average firing rate. One surprising finding was that, despite no change in population gain, the 

number of place fields at the context-independent reward reduces over learning, which is not 

the case for other rewards or non-rewarded positions (Figure 5.6b, mean=13% for non-

rewarded positions). To my knowledge, there is no previous report of this reduction. Cortical 

consolidation is likely to play an important role in this task, and it would predict a lesser role of 

the hippocampus in encoding fixed information such as the context-independent reward. This 

could be then enacted in the form of less hippocampal resources being allocated to encoding this 

location. When I compared the width of place fields between reward locations, I observed no 



 

difference at any stage of learning (data not shown). A sharpening of place fields would imply a 

maintenance of information acuity with less active cells. A different explanation would be that 

many non-place cells also cover the context-independent reward position since the population 

firing rate gain was not lower there. 

In addition, in the position known for holding reward but not at the current category 

(Context-dependent reward of the opposite context: Rew-DO) there was the highest 

Figure 5.6. Reward coding during learning. a) Concentration of place fields around the context-dependent rewards (Rew-D) 
depending on behavioural cluster, at the beginning and end of the day. The Intermediate cluster was separated between sessions 

immediately preceding Expert sessions and other sessions. I also plotted the expected distribution of distances if the place fields 

(PF) were uniformly distributed in the maze and rewards were located the same as in the experiment (One-sided F-test between 

uniform distribution and data. First trial: p=0.27 N, p=0.17 I (other), p=0.02 I (pre), p=5e-6 E; Last trial: p=0.37 N, p=0.09 I 
(other), p=0.01 I (pre), p=2e-6 E) b) Percentage of all place fields that fired significantly around different reward positions, for 

each behavioural cluster (2 standard deviation above its mean firing per position). In the shuffled condition, the place field of 

each cell was independently shifted by a random amount and the percentages were then calculated. The process was repeated 

100 times for each recording session. Rew-I: Context-independent reward. Rew-DC: Context-dependent reward of the current 

context. Rew-DO: Context-dependent reward of the opposite context (Wilcoxon test with Holm-Sidak correction comparing each 
reward position versus the shuffle. Naive: p>0.29 for all rewards, Intermediate: p=0.04 Rew-I, p=0.37 Rew-DC, p=0.37 Rew-

DO. Expert: p>0.06 for all rewards). Note that the low number of sessions in the Expert group makes the statistics unreliable 

in this case, so given more samples Rew-I is likely to be truly lower than the shuffle. 



 

accumulation of place fields in intermediate and expert sessions, as in the firing rate gain results. 

For the rodents, refraining from digging at this location seems to be the hardest behaviour to be 

learned in this task. This indicates that reward expectation is not the only driver of place field 

accumulation but in general positions of behavioural relevance or high cognitive load. Place field 

accumulation around landmarks has also been shown (Geiller et al., 2017; R. U. Muller & Kubie, 

1987), but I am not aware of previous studies showing it at positions determined by behaviour 

(refrain vs dig) and after days of learning. 

 

Place field shift 

Another phenomenon was consistently present across learning days: for a given place 

cell, as the day progressed the centre of the place fields in each category progressively shifted 

towards the opposite direction from the running – i.e. the neurons fired earlier at each trial 

Figure 5.7. Place field shift. a) Two example place fields from different cells, one in left start trials (top) and the other 

from right trials (bottom). Brighter colours indicate higher firing rate. b) Relative shift slope on left vs right trials, for all 

place fields. c-d) Population vector similarity across positions (only pyramidal neurons), averaged over all animals. c) 

Similarity between consecutive trials. d) Similarity between the first and last trial of the day, showing a shift towards the 

side the animal is coming from. 



 

(Figure 5.7a). Over all place fields, this shift was mostly non-zero (Figure 5.7b) and independent 

of the distance of the place field centre to the nearest reward (Figure 5.8c). This has been 

previously reported (I. Lee et al., 2004), but others have also shown the opposite shift, towards 

the rewards (Xu et al., 2019).  

I then defined population vectors containing the mean firing rate of each neuron at a 

given position and trial. Between neighbouring trials the population vector for a given position 

was highest correlated with itself (Figure 5.7c), but between the beginning and end of the 

session, the shift becomes evident (Figure 5.7d). This showed that the effect involved most of 

the population. These measures were calculated using all sessions, as there was no significant 

difference in shift when I separated behavioural clusters (data not shown). 

The place field shift effect could have been caused by changes in speed as the day 

progressed since previous reports indicate speed as a strong modulator of the firing of place cells 

(McNaughton et al., 1983). Indeed, animal speed increased throughout each day. However, this 

effect was less pronounced in later days (Figure 5.8b), whilst the shift effect remained the same 

across days (Figure 5.8a). To confirm that speed was not the sole driver of the shift, I calculated 

the partial correlation of shift with speed and trial number (as a proxy for time). The results 

Figure 5.8. Place field shift correlation to speed and time. a) Absolute shift of the place field as trials 

progress, for each behavioural cluster and the corresponding linear fit. Since place fields are category 

specific and trials for different categories are interleaved during training, trials numbers are its relative 

number within the category. b) Mean speed within the place field at each trial, over all place fields, for 
each behavioural cluster, and corresponding linear fits. c) Neither shift magnitude (in cm) of the place 

field centre nor its directionality are related to the distance to the rewards in the maze. 



 

showed a non-zero contribution of speed to place field shift, but also a strong independent effect 

of trial number (linear mixed effects model: coef=1.45 and p<1.5e-4 for speed, coef=2.74 and 

p<3.5e-20 for trial number and coef=2.76 and p<2.4e-5 for their interaction). If I shuffled the 

place field centre position between the trials the correlations were abolished.  

Place field shift backwards has been suggested to underlie behavioural time scale 

plasticity (Priestley et al., 2022). In that report, however, the shift happens between the first and 

second exposure to the environment and is not observed in subsequent trials. Another 

hypothesis, which is in stronger agreement with my observations, is that shift reflects predictive 

coding. If the place fields do not represent the current position but the expected future position, 

then the place field peak is indeed expected to shift backwards and be modulated by speed 

(Battaglia et al., 2004; Chen et al., 2013). Theoretical accounts of predictive coding also foresee 

earlier firing as the animal becomes more certain of the upcoming experience (Stachenfeld et 

al., 2017). 

 

Interneurons 

The analyses above were performed on pyramidal neurons and, more specifically, place 

cells. Nevertheless, I was also interested in the changes in interneuron firing during this task. 

My first observation was that many interneurons showed a monotonic change in mean firing 

rate as the day progressed. For some, this change was linear, whilst others seemed to suddenly 

increase or decrease their mean firing once during the day, between two stable means (linear 

Figure 5.9. Interneuron firing rate trends in time. a) Example of interneurons with firing rate drift 

over time, either in a linear trend (left) or a step-like change (right). b) Proportion of interneurons with 

each type of shift. Error bars are the standard deviation from a binomial distribution using Wilson Score 

Interval. (n=185). 



 

and step, respectively, Figure 5.9a). In total, around 63% of total interneurons recorded showed 

a linear trend, 15% a step change and the remainder had no significant change in mean rate 

(Figure 5.9b). The linear trend has been previously described in the literature and associated 

with learning (Dupret et al., 2013). The small proportion of ‘step change’ interneurons in my 

dataset, however, prevents me from making conclusions about their function. Further studies 

aiming at recording from the interneuron layers of the dorsal CA1 are necessary for 

characterising them better. 

On top of their general trend, interneurons exhibited fluctuations on a trial-by-trial basis. 

Interneuron selectivity to spatial features of the environment has been previously reported (Ego-

Stengel & Wilson, 2007), so I wondered if these fluctuations were related to specific task 

variables. In Figure 5.10a I show the mean firing rate over trials of an example interneuron after 

detrending (subtraction of the line or step fit calculated above, see Methods). In this case, the 

interneuron seems to be much more active in trials of context B, starting on the left side. When 

I measured this selectivity for all recorded interneurons, around 39% were selective to one of 

the two variables (trial start side or context) or both (Figure 5.10b). Given that a great portion 

of the inhibition is local, the selectivity of principal cells to specific task variables is likely to drive 

different interneurons at each task condition. I did not observe any difference between 

behavioural clusters in terms of selectivity to different trial directions or contexts (Figure 5.10c).  

Figure 5.10. Interneuron tuning to task variables. a)  Selectivity to different task variables from an 

example neuron. b) Proportion of interneurons selective to different task variables over the entire 

recording, determined by correlation with each variable using two-way ANOVA. Error bars are the 

standard deviation from a binomial distribution using Wilson Score Interval. c) Same as the two middle 

columns in (b) but separated by behavioural cluster. In panel b-c, error bars indicate the SEM. 



 

Discussion 

These single-cell results recapitulate a lot of different findings from the hippocampus 

literature. I showed that, in the task I designed, measures such as the number of place cells, the 

width of place fields and the magnitude of place field shift were stable throughout learning days. 

Place cell activity was not the same in all reward positions but depended on their behavioural 

significance, a difference that emerged only once animals became experts in the task. I also 

showed that the firing rate of many interneurons monotonically changed over time and that they 

could be tuned to different task variables. Here I discuss how these findings match and expand 

what has been previously reported about learning-related changes in hippocampus dorsal CA1. 

My data showed that the response of a large percentage of neurons, both pyramidal and 

interneurons, was modulated by task variables such as context and direction of movement as 

well as their combinations. Nevertheless, since many cells did not remap between conditions or 

only rate remapped, the representation of different contexts was not fully dissimilar. In 

agreement with this, it has been shown that overlapping features of the environment drive 

overlapping representations in hippocampal CA1, as opposed to the separate subpopulations of 

neurons encoding each context/environment in CA3  (S. Leutgeb et al., 2004). It is also known 

that the response of these CA1 place fields to changes in the environment is slower than in CA3 

(I. Lee et al., 2004).  

The number of neurons tuned to space (place cells) and context remained constant over 

days, largely unaffected by familiarity. In a novel environment, dopamine signals during 

behaviour are thought to promote learning, via the facilitation of long-term potentiation of CA1 

synapses and increased assembly reactivation during sleep (Li et al., 2003; C. G. McNamara et 

al., 2014). This dopaminergic effect is likely absent or reduced after the first day of my paradigm, 

and therefore the drivers of learning and the stability I observe in this case are less understood. 

This might be related to the increased homogeneity of inputs to CA1 after repetitions when 

compared to exposure to a new environment (Cohen et al., 2017). A consistent input could 

explain the stable quality of place and context coding in the hippocampus with familiarity, 

despite the reduced role of dopamine and the gradual change in the active ensembles (Mankin 

et al., 2012).  

I also show that the encoding of reward positions by place cells was dependent on their 

behavioural significance, or cognitive load. At initial learning, novelty and reward signals from 

other brain areas were likely to have a strong influence on hippocampal activity. This would 

explain why all reward regions were covered by a similar number of place cells; also the slightly 

higher activity around the reward positions the animal actually received a reward in a given 

context. Later in learning, rather the opposite was observed, with the position requiring 

refraining behaviour – and therefore at the category in which it was not rewarded – being the 

most represented. I show this both in terms of place cells and in the firing rate gain of the 

population. This was an indication that the main drivers of CA1 activity changed over days and 

that during learning the cell tuning to reward became more refined. 



 

Previous research has shown that different reward contingencies modulate hippocampal 

activity (H. Lee et al., 2012), with more activity expected when reward is less certain, at least in 

humans (Vanni-Mercier et al., 2009). It is also known that dopaminergic activity is higher in 

more uncertain states (Fiorillo et al., 2003). In the paradigm I show here, probability of reward 

at context-dependent positions is 50% if the animal is agnostic to context, but learning the 

associations showed that it is deterministic. Although uncertainty signals could explain the 

neural activity earlier in learning, motivational state or task-specific movement at each reward 

position might be better explanations later on (Kennedy & Shapiro, 2009; Wiener et al., 1989). 

The position unrewarded in a category can be seen as a punishment; the animal was limited to 

two choices per trial and, if they dug there, they got one reward less as a consequence. Therefore 

the animal is likely to be in a different mental state when refraining and digging. I am not aware 

of studies of hippocampal associative learning that investigate neural tuning when the 

association determines very different behaviours at the same position. Our unlikely observation 

of stronger firing during refrain opens venues for investigation of the mechanisms controlling 

place cell recruitment beyond reward signals. 

A similar phenomenon to that of reward is observed at the edges of the maze, where the 

animal starts and terminates the trials. The same position shows a stronger overall population 

activity (gain) at the start of the trial. I argue that this is the point where the animal integrates 

contextual cues and makes a decision on where to dig next, which can be considered a higher 

cognitive load than running towards the reward at the end box once the trial is over. This 

hypothesis is in accordance with previous studies that show higher hippocampal activity and 

theta power during decision-making periods (Belchior et al., 2014). 

I also reported place field shifts in position, previously hypothesised to contribute to 

predictive coding and learning (Battaglia et al., 2004; Chen et al., 2013; Stachenfeld et al., 2017). 

In my data, the shift happens every day, in the same timescale from other reports: within dozens 

of trials within a single day. What previous studies do not show and I observed here is that the 

shift is present over long periods of learning, even when the animal is familiar with the task. 

Future research with different techniques is necessary to track the same neurons over the entire 

learning period, to understand if the shift is continuous for stable cells or if there is a “reset” of 

place field position during sleep (Vaidya et al., 2023). This would give insight if place field shift 

is a sign of predictive learning over many days or if other, slower processes are at play. 

Overall, the statistics of hippocampal single-cell tuning was not greatly altered over days 

despite the animal’s increasing performance. These performance changes are likely to be a result 

of an increasing engagement of cognitive cortical areas over time. Goal-oriented navigation 

based on memory is known for relying on the hippocampus in both novel and familiar 

environments, whilst cortical engagement is more prominent in the latter, at least in humans 

(Patai et al., 2019). A sign of change in cortical contribution over learning is the reduction in the 

behavioural effect of CA1 lesions versus an increase in that of prefrontal areas during long-term 

recall of associations in rodents (Tse et al., 2007). In the next chapter, I also investigate how 

undetected changes in the single cell level can accumulate and translate into significant 



 

differences in the population activity, which can then be used by downstream cortical areas for 

better task solving. 

 The data reported here aimed at understanding changes in the neural code with learning. 

For this purpose, I separated learning stages in behavioural clusters and focused most of our 

statistical analysis on comparing these clusters. Each cluster contained a different number of 

training sessions, and therefore different animals were more or less represented in each. I made 

an effort to select statistical methods that control for these factors; those have the drawback of 

reducing the statistical power usually obtained by pooling together neurons from all animals, as 

is customary in the field. As a result, many of the trends observed here were “non-significant”, 

but can still be of relevance and give insight into learning-related neural changes in this 

particular behavioural task. 

  



 

 
 

 

 In rodents, it has been shown that the emergence of place fields in CA1 is a random 

Poisson process related to a cell’s inputs and its intrinsic excitability (J. S. Lee et al., 2020). As a 

consequence, the activity of a single cell at a given location does not provide direct information 

about reward or other environmental variables. According to Lee et al. (J. S. Lee et al., 2020), 

rather than deterministically recruiting reward-coding neurons, reward signals lead to an 

upward modulation of the excitability of all hippocampal neurons specifically at those locations. 

This results in an overall increase in the number of fields emerging around the reward location, 

which makes information about rewards available only at the population level. If a variable – 

e.g. context – affects a place cell’s inputs instead of its excitability, it would alter instead the maze 

locations where place fields are likely to emerge. Similarly, downstream areas would only be 

able to determine context from a set of simultaneously active neurons and not from the presence 

or absence of a field in a single cell. These findings highlight the relevance of studying 

hippocampal representations at the population level. 

A previous study in primates shows that, given enough neurons, linear classifiers can be 

used to decode any arbitrary variable encoded in the hippocampal population (Bernardi et al., 

2020). Linear decodability at the population level does not require neurons to be exclusively 

selective to single variables, but it is equally effective if they have mixed selectivity (Bernardi et 

al., 2020; Kaufman et al., 2022). This divisibility of the activity patterns in any arbitrary set 

would suggest they are randomly spread in the neural activity space. Contrary to this intuition, 

however, is the observation of a non-random organisation of the neural activity that facilitates 

their generalisation to novel situations (Bernardi et al., 2020) and a structure in the population 

activity that reflects task-imposed associations between variables (Gulli et al., 2020) (for an 

opposing view on hippocampal generalisation see (Kaefer et al., 2020; Samborska et al., 2022)). 

The processes by which these structured representations are formed during learning remain to 

be elucidated. 

Task-variables can be considered decodable from the neural population activity if the 

activity patterns corresponding to each value of this variable are in some way separated in the 

neural activity space. If the decodability is linear, this means that the separating boundary is a 

line or high-dimensional plane. The value of the task-variable can be then predicted (i.e. 

decoded) when a novel activity pattern is observed, based on which side of the plane this activity 

lies. If any arbitrary division of the neural activity is linearly decodable (i.e. can be separated by 

a plane), it also implies that the hippocampal code is high-dimensional, i.e. not collapsed into 

too few patterns of activity (Bernardi et al., 2020). However, others argue that behaviour 

constrains the neural activity to a low-dimensional manifold (Nieh et al., 2021). These results 

are not necessarily contradictory; a non-trivial organisation of the neural code could be the result 

of patterns of activity lying in a non-linear, low-dimensional manifold embedded in a high-



 

dimensional space. Different definitions of dimensionality and higher dimensionality estimates 

yielded from linear methods often hinder the comparison between studies (Altan et al., 2021). 

Relative dimensionality measures are nevertheless a valuable tool for understanding the 

dynamics of the neural code during behaviour. 

In the current chapter, I aimed to investigate the simultaneous representation of task 

variables in the rat hippocampus during learning; I followed the population activity as variables 

became gradually associated in behaviour due to task demands. The goal was to identify if these 

associations were also present in the hippocampal code, what was the structure of the 

representation at different stages of learning and how fast it emerged in relation to behaviour. 

 

Principal Component Analysis 

My first approach to visualising the population activity in lower dimensions was to 

perform Principal Component Analysis (PCA). From a mathematical perspective, the significance 

of dimension in this method is straightforward, since each dimension (PC) consists of a weighted 

sum of the activity of all neurons, is orthogonal to the other dimensions and the order of the 

principal components is determined by the percentage of variance of the full data that they 

explain. To calculate the PCA, I obtained a population vector containing the mean firing rate of 

Figure 6.1. Population vectors in time. Example data for a single recording session a) Representation of 
projection of population vectors calculated per position and trial, projected into the first two principal 

components. Population vectors were calculated using all neurons in the population. Colour indicates trial 

numbers. b) Cosine similarity between population vectors in each trial, calculated per position and averaged 

over all positions. Population vectors were calculated using all neurons in the population. c/d) Same as a/b but 

calculated using only pyramidal neurons. 



 

the recorded neurons for each maze position in each trial; an n-dimensional vector where n is 

the total number of neurons in the dataset. The PCA was then calculated using all the vectors in 

a given session.  

In Figures 6.1 and 6.2 I plotted the projection of each population vector into the first 2 

PCs and checked if vectors calculated in similar task conditions (e.g. same trial) lay closer in this 

low dimensional space. If I included both interneurons and putative pyramidal neurons, I 

observed a strong correlation of the first two PCs with trial numbers – a proxy for time (Figure 

6.1a). This relationship was much weaker if only pyramidal neurons were used in the calculation 

(Figure 6.1c). The cosine similarity between population vectors over trials confirmed this result 

(Figures 6.1b/d), which was expected due to the strong time drift of firing rate in half the 

interneuron population, shown in Chapter 5. Similarly, the presence of place cells and other 

spatially tuned pyramidal neurons resulted in nearby positions being closely represented in the 

first PCs (Figure 6.2a). Other variables such as context and direction of movement did not seem 

Figure 6.2. Task variable representation in PCA space. Example projection of population vectors calculated per position 

and trial in one session, using only pyramidal neurons and projected into the first two principal components. a) Color 

indicates animal position in the maze. b) Colors and markers indicate start side of the trial (i.e. direction of movement) 
and context. c) Same as (b) but plotting individual positions separately for visualisation. Right maze edge: first position 

bin at the right edge of the maze. Rew-DB: Context-dependent reward of context B. Other: positions that are neither reward 

nor edges of the maze. 



 

to be organised within the first principal components at first glance (Figure 6.2b). However, 

when plotting vectors from a single position, there seemed to be some organisation of at least 

one of these variables (Figure 6.2c). To investigate the encoding of such task variables, for the 

remainder of this chapter, I focused on the population vectors containing only putative 

pyramidal neurons. 

 

Non-linear methods 

Visualising principal components is unfortunately restricted to 2 or 3 dimensions at a 

time, and it is overall a challenge to visually grasp the structure of the data in as few as 4 or 5 

dimensions. Yet, these dimensions still hold a lot of the variance of the data (Figure 6.8a-b). 

Therefore, I recurred to non-linear high-dimensional data visualisation methods to explore other 

structures in the data that might not be easily observed with PCA. Here I show results from t-

Figure 6.3. Task variable representation in t-SNE. Example projection of population vectors calculated per position 

and trial in one session, using only pyramidal neurons and embedded in a 2-dimensional t-SNE, perplexity=50. This is 

the same recording session as in figure 6.2. a) Colour indicates animal position in the maze. b) Colours and markers 
indicate start side of the trial (i.e. direction of movement) and context. c) Same as (b) but plotting individual positions 

separately for visualisation. Right maze edge: first position bin at the right edge of the maze. Rew-DB: Context-

dependent reward of context B. Other: positions that are neither reward nor edges of the maze. 



 

SNE, as other non-linear methods such as UMAP and Multidimensional Scaling (MDS) yielded 

qualitatively similar results. 

In the 2-dimensional t-SNE, the separation of positions was even clearer than in the first 

few principal components (Figure 6.3a) and, similarly, I observed only local separation of the 

other task variables (Figure 6.3b-c). t-SNE tries to balance global versus local distances from 

higher dimensions when calculating distances in the low-dimensional projection; nearby points 

in the original data lay close also in the t-SNE projection, giving an intuition on their structure 

(Maaten & Hinton, 2008). This became clear in Figure 6.3a, where a trajectory-like organisation 

can be observed following the sequence of positions. This is expected in the hippocampus since 

there is usually an overlap of active place cells between nearby positions, creating smooth 

transitions in neural activity space as the animal traverses the environment. In PCA space, this 

trajectory was also present, but better observed using 3 dimensions.  

Using a 3D PCA projection, it was also possible to observe a split of the representation in 

one of the maze ends, where each side of the split corresponded to the representation of that 

position in the one running direction. These two subgroups were equidistant to the 

representation of the other positions. In the t-SNE embedding, this was represented as two 

extremely distant groups (position coloured yellow in Figure 6.3a), one of which does not seem 

to be continuous with the other positions. This emerges because, if the data structure has 

inherently more dimensions than the t-SNE embedding, clusters of points might be placed 

further than they are in reality. This also suggests that the structure of this representation is 

probably more than 2-dimensional, which resulted in the distortions of the distances in the case 

of the 2D embedding. 

In addition to the distortions due to dimensionality, in t-SNE the local/global balance of 

distances is determined by a perplexity parameter that highly influences the projected outcome. 

t-SNE and UMAP algorithms are also stochastic, which means that every initialization yields a 

slightly different projection. So although these are powerful tools for visualising high-

dimensional data, they are not suitable for quantitative analysis based on the Euclidian distances 

between points. In this project, t-SNE results served to confirm the qualitative observation 

obtained from PCA, which could then be used in subsequent analysis for the characterisation of 

the representational geometry in Euclidean space. 

 

Decoding of task variables 

Given the structure observed in the low-dimensional representations of the data – global 

separation of positions, local separation of direction and context – I looked for quantitative ways 

to assess this structure. My first step was to check how accurately a simple linear decoder (i.e. a 

Support Vector Machine, see Methods) could separate different task variables. I denote this a 

“global” decoder, since it is trained using population vectors from all positions and trials. In 

Figure 6.5a I show the accuracy for independent classification of these three task variables: trial 

context, direction, and maze position. For all of them, the classifier accuracy was above chance 



 

levels, with position being the best decoded variable in all behaviour clusters. The accuracy for 

context was much lower, despite a slight upward trend with learning. 

If the local separation of trial direction and context observed in PCA was not a spurious 

observation it should influence decoding; therefore, I asked whether position-specific decoders 

for those variables would perform better than a global one. The separating boundary for the 

variable of interest (the decoded variable) was calculated separately for each label of another 

variable (the conditional variable), so I called it a conditional decoder. A 2D schematic of the two 

types of decoders is presented in Figure 6.4. In Figure 6.5b I show a comparison in performance 

between the two decoders when decoding context alone or conditional on position. I observed a 

gain in accuracy for the conditional decoder, which indicates that the separating boundary for 

context was not aligned between positions. To control for overfitting unrelated to the 

relationship between variables – due to the increased number of parameters – I shuffled the 

labels for the conditional variable keeping the decoded variable labels intact. If the accuracy of 

the conditional decoder was simply a result of its number of parameters, it should perform better 

also in this case. Conversely, if the conditional variable was informative about the decoded 

variable then the accuracy was expected to drop. I observed no signs of overfitting: shuffled 

conditional labels yielded worse accuracy than both other decoders.  

 It is important to note that the decoding accuracy is dependent on the size of the position 

bins used for calculating the population vectors. Although the trends remain the same, better 

accuracy is achieved with larger bins, especially for decoding variables such as context and 

Figure 6.4. Schematic of global vs. conditional decoders. Schematic of the difference between using a 
global linear decoder (Support Vector Machine) or multiple, one for each conditional variable. In this 

example the variable decoded is context and the conditional variable is maze position. Both context and 

position are labels assigned to each population vector and the decoder finds the high-dimensional plane 

that best separates the labels to be decoded. 



 

direction. This might result from averaging out part of the position-related variance when 

averaging over a larger area of the maze, making differences due to other variables more 

dominant. For too small spatial bins, the accuracy of context decoding drops close to chance 

level. Given that the mean place field width is around 48 cm (Chapter 5), if bins are small a lot 

of the neurons fire equally in nearby bins. In future studies, it might be relevant to use decoding 

methods which take position as a continuous variable, so that this issue becomes irrelevant. 

Figure 6.5. Results from linear decoding of tasks variables. a) Decoding accuracy of different task variables using a global 

decoder, for each behaviour cluster. Accuracy indicates the proportion of predicted labels that match the real labels in the held-

out test data set. Positions were divided in discrete bins for this calculation (see Methods). Each boxplot is calculated using one 
data point per session in the cluster, which represents the mean decoding accuracy for that session, using bootstrapped samples 

of populations vectors. All differences between behaviour clusters for the same variable are n.s. (p>0.19 for all comparisons, 

Mann-Whitney U with Holm-Sidak correction). b) Comparison of the global decoder of context and the decoding of context 

conditional on maze position, per behaviour cluster. We also show the accuracy of the conditional decoder in case the conditional 
labels were shuffled between population vectors. (Paired t-test with Holm-Sidak correction. Naive: Sim vs Cond p=0.146, Sim 

vs Cond(shuffle) p=0.085, Cond vs. Cond(shuffle) p=0.013; Intermediate: Sim vs Cond p=0.016,   Sim vs Cond(shuffle) 

p=0.001, Cond vs. Cond(shuffle) p=0.001; Expert: Sim vs Cond p=0.012, Sim vs Cond(shuffle) p=0.009, Cond vs. Cond(shuffle) 

p=0.009. 



 

From the remainder of this chapter, I use 40cm bins, which allow for a clear distinction in 

performance between the two decoder types. 

 

Decoding on dimension-reduced data 

The results from linear decoding were not surprising, given that the number of features 

(neurons) was much higher than the number of labels to distinguish (2 in the case of context or 

side, 9 in the case of positions). Considering I observed a separation of variables already in the 

first few principal components, I then asked whether all dimensions of the data were required 

to achieve high decoding accuracy. For that, I projected the population vectors into the principal 

components and showed the decoder only a limited number of PC dimensions at a time. I then 

tested the decoder performance at all the possible decoded/conditional variable combinations of 

trial context, direction and maze position. 

In Figures 6.6a-d I show the result calculated for the Expert behaviour cluster. As 

previously shown, decoding of context was better in the conditional case, strongly when 

conditioned on position but also when conditioned on movement direction (Figures 6.6a-b). It 

is also important to note that this difference is larger in a “middle-range” of PCs fed to the 

decoder. One hypothesis is that variability in the first principal components is dominated by 

differences in position. If I exclude this source of variability by feeding only vectors from the 

same position, smaller fluctuations in the same PCs caused by context become decodable. The 

global decoder, on the other hand, would only be capable of extracting contextual information 

from PCs in which the axis of variability for context is not parallel to that of position, which 

seems to be at much later PCs. Nevertheless, once the decoders have access to a large enough 

number of PCs – which is still much less than the total number of dimensions – their 

performance comes closer again. 

A qualitative analysis of the weights assigned to each PC supports the argument above. 

The global decoder assigned low weights to the initial PCs and its accuracy increase matched the 

point where later PCs were available and assigned larger weights (Figure 6.7a). Despite the 

different number of PCs provided in each run, the weights were relatively stable. The conditional 

decoder, on the other hand, exhibited two regimes: first, early PCs were assigned high weights; 

once more PCs were available, the weights became distributed. This indicates that although these 

first PCs provided context information, the middle dimensions added decodability for this 

variable. This shift also coincided with the point where performance starts to plateau, suggesting 

that further PCs do not carry much more information about this variable. Weights were 

considerably different between positions, supporting that the optimal separability between 

contexts is local (Figure 6.7b). It is important to take into consideration that the different number 

of samples used for training each parameter versus the number of features provided to the 

decoder can affect some of the results observed here. Therefore, controlling for such factors and 

quantifying these values across all sessions is necessary to confirm these results. 

  



 

 

 

Figure 6.6.  Conditional decoder accuracy as a function of principal components.  a) Accuracy of decoding 

context, by the global decoder or conditional on trial direction (accuracy value is the average over both directions). 
The population vectors were projected in the principal components and increasing number of these projections 

were fed to the decoder for accuracy calculation (in order of variance explained). Calculated for all sessions in the 

Expert behaviour cluster. Regions around the lines indicate S.E.M. over bootstrap samples, the shaded range in 

gray indicates a 95% C.I. for the difference between the global and conditional decoders, paired t-test.  Accuracy 
indicates the proportion of predicted labels that match the real labels in the held-out test data set. Positions were 

divided in discrete bins for this calculation (see Methods). b) Same as (a) but conditional on maze position. c) 

Same as (a) but the trial context is the conditional variable, and the decoded variable is trial direction. d) Same as 

(a) but the trial context is the conditional variable, and the decoded variable is position. e) Same as (b) but 
calculated for sessions in the Naive behaviour cluster. Note the difference in the y axis between the plots, since 

the maximal decoding accuracy is highly different between task variables. p<0.05 in the shaded regions, paired t-

test. 



 

The hierarchy between variables and learning 

To understand the relationship between variables, I then considered the inverse 

scenario: decoding trial direction or position, conditional on the context label of the population 

vectors. What I observed was that the accuracy of the two decoders was equivalent (Figures 6.6c-

d), an indication that context is not directly informative about the other variables. If we 

compared trial direction and position, direction decoding was better when conditional on the 

position at all possible numbers of PCs fed to the decoder, and this did not change with learning 

(see Figure 6.11). The inverse was not true; position decoding was also equal between decoders 

regardless of movement direction. This can be understood as a hierarchy between variables: 

position is on top of the hierarchy, encoded independently from the other variables and driving 

most of the variance (and therefore the easiest to linearly decode). The code for the direction of 

movement is then modulated at each position; context sits at the bottom of the hierarchy, 

dependent on the other two variables. A previous study in a different behavioural paradigm 

reports a similar hierarchical structure in hippocampal representations (McKenzie et al., 2014). 

Variables that are highly decodable using the global decoder are unlikely to benefit from 

information about less precisely encoded variables (i.e. context) (Figure 6.5a). The results from 

Figure 6.7. Examples of linear decoding weights. a) Example of decoder weights for the global 

context decoder. Population vectors were projected into a subset of PCs for training the decoder. Each 

column corresponds to decoding using a different number of PCs (adding cumulatively in order of 
their variance explained from left to right). The colours indicate the weight each PC received in that 

case, averaged over 100 bootstrapped repetitions. If the colour in a given row changes as it progresses 

to the right, it means that the weight associated to that PC changes as more PCs were available to the 

decoder. PC IDs were ordered from highest to lowest variance explained. b) Same as (a) but for the 

decoder conditional on position. Weights are specific to each position in the maze, so here the 
examples from 3 positions are shown. 



 

place cells in Chapter 5 already hinted at this structure. Position modulates the activity of many 

cells between almost silent and highly active. Direction and context lead to strong and weak 

levels of remapping, respectively. What the population analysis captures is how this translates 

into dimensionality and availability of information to downstream areas, as well as capturing 

the influence of non-place cells on the code. Given that position decoding accuracy is high and 

stable over all behaviour clusters, I did not pursue any further position decoding per se but rather 

the dependency of other variables on it.  

Lastly, I compared context decoding in the Expert versus Naive sessions (Figures 6.6b 

and 3.6e, respectively). The maximum accuracy achieved increased with learning, as well as the 

difference between decoders at lower numbers of PCs. The difference between decoders could 

be a sign that context drives more variability as it becomes relevant for behaviour, which would 

make it better decodable from earlier PCs in the conditional case. However, it is likely that the 

difference between decoders simply scales with the maximum accuracy. Decoder weights do not 

provide much insight into this issue, as the phenomena described in Figure 6.7 were the same 

over all behaviour clusters (data not shown). In the “future directions” section I discuss other 

methods that could help clarify this hypothesis. 

  

Variance explained and cell numbers 

It is important to note that the variance explained by each principal component varies 

between sessions, as a result of different identities and number of neurons. By definition, the 

maximum number of principal components is defined by the number of features (i.e. neurons) 

in the data. Therefore, on days with fewer neurons, there was a steeper relationship between 

the variance explained and the absolute number of principal components (Figure 6.8a). On the 

other hand, the variance explained per percentage of all principal components resulted in the 

opposite scenario; the same percentage of PCs explained more of the variance when calculated 

in a larger dataset, as it represented more PCs (Figure 6.8b).  

To control for this difference between sessions, I measured how much the decoding 

accuracy per PC changed if I subsampled the population. On days when a large number of 

Figure 6.8. Variance explained versus number of neurons recorded. a) Variance explained per principal component for all 

sessions. Difference colours indicate different animals and opacity represents the number of neuron in the session, with more 

opaque colour meaning less neurons. b) Same as (a) but per proportion of the principal components. 



 

pyramidal neurons were recorded (>80 neurons), it was possible to compare the accuracy per 

PC obtained from the analysis on non-overlapping subsets of neurons. My results show that the 

decoding accuracy per PC was robust to the sample size, despite the variance explained per PC 

changing between samples (Figure 6.9). Therefore, sessions could be compared based on the 

number of principal components used for decoding. As decoder accuracy generally plateaued 

around 15-20 PCs, I included all sessions with more than 20 pyramidal neurons in PCA 

calculations (only one session excluded) and show results up to 25 PCs for better visualisation. 

 

Decoding at different positions 

The performance of the decoders conditional on position shown until here was calculated 

as an average over all positions in the maze. I then asked if this performance was equal between 

positions or specific to locations related to behaviour. In the case of decoding context, I observed 

a large difference in decoding accuracy between positions; most of the separation of context 

Figure 6.9. The effect of subsampling on linear decoding. a) Decoding accuracy of context conditional on position from two 

example sessions of >80 pyramidal neurons recorded, when the PCA was calculated from a different sized pool of neurons. Error 
regions calculated from non-overlapping sets of neurons. b) Same as (a) but per cumulative proportion of variance explained. 



 

happened at context-dependent rewards (Figure 6.10a). This was not a reward-related effect, 

since at the context-independent reward this was not observed (Figure 6.10b) and at other 

positions in the maze the separation was also poor (Figures 6.10c-d). This indicates an 

association of context and place at the hippocampal level that is related to the task; the 

information of context is encoded only at the position where context influences decision-making. 

I also made sure to only use running periods when calculating the population vectors, in order 

to exclude decoding gains due to differences in behaviour (digging or not) at those locations. As 

a result of this local effect, learning-related gains were also constrained to the context-dependent 

reward locations. 

The separation of trial direction, on the other hand, was equally accurate at all positions 

(Figures 6.11). Nevertheless, at the edges of the maze, higher accuracy was achievable by both 

decoders with a much smaller number of principal components (Figure 6.11c). In Chapter 5 I 

showed that the neural population was more active at an edge position when the animals entered 

the maze, compared to when they exited. Therefore, this difference in single-cell activity is likely 

to be a large source of variance at these positions, bringing information about direction to lower 

PCs. There was no clear difference in direction decoding between behaviour clusters, suggesting 

that the representation of trial direction was unaffected by learning. 

One major possible confound to the difference in decoding between positions is velocity, 

which is known to strongly modulate hippocampal activity (McNaughton et al., 1983). Although 

all population vectors have been calculated during running periods, no difference was made 

between different velocity profiles. Unfortunately, velocity and behaviour are tightly correlated 

in this case. When animals were moving towards a reward location, they slowed down, 

compared to running past it in the context it was not rewarded. This difference in speed was 

especially true in the expert sessions and milder in the naive sessions, in which they were likely 

to slow down even if eventually they made the correct decision. The same was true regarding 

the separation of movement direction at the maze edges. Animals ran faster when exiting the 

maze in comparison to when entering it, regardless of context. Further control analysis would 

be necessary to detangle these effects, e.g. by comparing the neural activity in two different 

velocity profiles at a behaviourally irrelevant maze region. 

 

Population code versus behaviour performance 

It is not possible to appropriately train linear decoders to classify a trial in terms of 

behaviour (correct or error trial), due to the low number of error trials available for training the 

decoder in most sessions. Instead, I asked whether the information about context in the neural 

activity was different in correct versus error trials. This was the main aspect of the task the 

animals had to learn: the association between the contextual cues and reward location. For this, 

I looked at how the conditional decoder I previously trained had performed on the population 

vectors from the cross-validation test set, depending on the trial the population vector came 

from. I focused on the neural activity at the reward locations dug in each trial. 

  



 

  

Figure 6.10. Decoding context at different maze positions. Decoding of the variable context using a global decoder 
or a decoder conditional on position. Since performance is calculated for a held-out test set for each bootstrap sample, 

performance for population vectors in the test data from different positions can be calculated for both decoders. For 

each maze position the performance is separated between the different behaviour clusters. Rew-D: Context-dependent 

rewards, Rew-I: Context-independent rewards. 



 

  

Figure 6.11. Decoding trial direction at different maze positons. Decoding of the variable direction using a global 
decoder or a decoder conditional on position. Since performance is calculated for a held-out test set for each bootstrap 

sample, performance for population vectors in the test data from different positions can be calculated for both decoders. 

For each maze position the performance is separated between the different behaviour clusters. Rew-D: Context-

dependent rewards, Rew-I: Context-independent rewards. 



 

At context-dependent rewards, the context was better decoded in correct than in error 

trials. This difference was small in the naive sessions and became much larger at later learning 

stages; the accuracy of context decoding in expert sessions was close to 90% during correct trials 

and at chance level during error trials (Figure 6.12a). This effect was not observed at the context-

independent reward (Figure 6.12b), in accordance with the fact that the maximum decoding of 

context was in general worse at this location. The current analysis cannot exclude the possibility 

that the main differences in decoding between context-dependent and independent rewards 

result from the difference in place field coverage between the two (Chapter 5). 

The local decoding results showed that the decoding of context is worse at the contextual 

reward during error trials, so I used a cosine similarity approach to clarify the difference in the 

representation in these trials. For each trial, I measured the similarity between the population 

activity vector at the contextual reward dug – even if incorrect – to the average activity at that 

position over all correct trials. First, I looked at this measure for each correct trial versus the 

Figure 6.12. Differences between correct and error trials. a-b) Accuracy for conditional decoding of context at reward 
positions, for held-out population vectors coming from correct or error trials, per behaviour cluster. a) Context-dependent 

rewards (Correct vs error: Naive p=0.034, Intermediate p=5.19e-5, Expert p=0.003, Paired t-test), b) Context-Independent 

reward. (All differences between Correct and Error p>0.3, Paired t-test). c-d) Cosine similarity between population vector at the 

context-reward position dug at a given trial versus the average vector of all correct trials of either the same or opposite context. 
c) When the position dug was the correct one for the current context – correct trial (Same vs Opposite: Naive p=6.66e-4, 

Intermediate p=0.001, Expert p=3.47e-5, Paired t-test). Other types of error trials were not considered in this analysis. d) When 

the position dug was that from the opposite context – error trial (Same vs Opposite: Naive p=0.168, Intermediate p=0.178, 

Expert p=0.034, Paired t-test). 



 

average as a control measure. Not surprisingly there was high similarity between the neural 

activity in each trial and the average over all correct trials of the same context (Figure 6.12c). 

This indicates that the activity was reproducible over trials, when the context and behaviour 

were the same. The similarity to the average activity at that position in trials of the opposite 

context was lower; this indicates that the neural activity was different between the two contexts, 

despite the animal being at the same location.  

Contrary to correct trials, during error trials the population activity at the dug position 

was most similar to that from the opposite context, and increasingly so as the animal learned 

the task (Figure 6.12d). Here, only errors when animal dug the reward location of the opposite 

context were considered. Even though population vectors were calculated only using running 

periods, this result can be due to the fact that behaviour during error trials was overall more 

similar to that of the opposite context, where the animal also would chose to dig the same 

location. Together, these results suggest that animals dug the reward of the wrong context not 

as a result of ambiguous population activity as previously described (Xu et al., 2019), but as an 

actual encoding of the wrong context. 

 

Reward coding in the population 

 Despite the difference in context coding between reward types in my data, I asked 

whether there was any sign of a shared reward code across them. For this, I calculated the 

similarity between population vectors from pairs of positions, from trials of the same context 

but different running directions (Figure 6.13a). Since direction is a strong modulator of place 

cell activity in linear environments, as shown in Chapter 5, there is very little similarity between 

pairs of positions, even when the same position is considered. Nevertheless, between pairs of 

rewards, the similarity was higher, even when different reward locations were compared (Figure 

6.13b). In the opposite comparison – when the running direction was maintained but the context 

was different – the correlations between the same positions in the maze were much higher 

(Figure 6.13c). This was expected given that the effect of context on single-cell firing was much 

milder (Chapter 5). Nevertheless, when different positions were compared, correlations were 

higher if both positions were rewarded, regardless of their identity (Figure 6.13d). No significant 

difference was found between behaviour clusters in both analyses (data not shown). 

 Reward coding in the hippocampus has been extensively studied and a common reward 

code has been often reported (Gauthier & Tank, 2018; L. Zhang et al., 2022). In the chapter 

introduction, I mentioned that a common reward code might simply be the result of a higher 

propensity of cells to fire at those locations, increasing the chance of the same neurons covering 

multiple reward locations (J. S. Lee et al., 2020). The fact that the similarity between reward 

positions is stable over learning is another sign that the reward code emerges quickly and is 

independent of the associative aspects of the task. One contradictory result to this claim is my 

observation of different place cell coverage context-dependent and independent rewards, 

mentioned in Chapter 5. The similarity between reward locations also opens the question if 



 

linear decoders for certain variables are more aligned between reward positions than at other 

positions in the maze, which remains to be studied. 

 

Discussion 

 In this chapter, I have shown that behaviour variables are hierarchically represented in 

the hippocampus population code and that this representation adapts to meet behaviour 

demands. Such a hierarchy has been observed in previous studies, both in the spatial domain as 

well as for various task dimensions, but previous studies did not investigate changes in the 

representations during learning (McKenzie et al., 2014; H. Zhang et al., 2023). As in the single-

cell case, the representation of time and spatial position in all behavioural stages was mostly 

related to the activity of interneurons and pyramidal cell populations, respectively. Other 

variables were also encoded in the pyramidal population but were anchored to the position code. 

As the animal learned, the code adapted so that variables became more decodable at positions 

Figure 6.13. Similarity between rewarded positions in the population level. a) Similarity between average population 

vectors from each position, between the last 3 correct trials of same context but opposite direction. Example from a single 

session. White lines indicate reward positions. b) Similarity between rewarded positions versus between other pairs of positions 

when comparing different trial directions, over all sessions Rew-D = Context-dependent reward position, Rew-I = Context-
independent reward position. (Repeated Measures ANOVA p=1.68e-20; Paired t-test with Holm-Sidak correction Any to RewD/I 

p=6.53e-21; Any to Same p=1.12e-9; RewD/I to Same p=3.80e-3). c) Same as (a) but comparing categories of same direction 

but opposite context. d) Same as (b) but comparing different contexts. Only off-diagonal elements of the matrix were considered, 

since similarity between the same positions was much higher (Repeated Measures ANOVA p=3.00e-6; Paired t-test with Holm-
Sidak correction Any to RewD/I p=6.92 e-5; Any to RewDA/B p=3.47e-7; RewD/I to RewDA/B p=0.11). 



 

where they were relevant for behaviour; e.g. the variable context was better decoded where it 

determines the presence of reward. Encoding of context in those locations was also correlated 

to trial performance, indicating a link between hippocampal representations and behaviour over 

many days. Lastly, I showed that there was a common code for reward that disregards position 

information and that did not change with learning. 

Linear regressors and classifiers have been extensively used to decode information from 

the hippocampus and to detangle the contribution of individual neurons to the population code 

(Bernardi et al., 2020; Levy et al., 2023; Samborska et al., 2022). One recent study monitoring 

CA1 activity in rodents shows that context can be decoded from patterns of co-activity of 

hippocampal pyramidal neurons with improved accuracy and stability over long periods of time 

(Levy et al., 2023). The authors describe the decoding of context – two separate environments – 

as a result of a small set of anti-coactive cells, including place and non-place cells equally.  In my 

data, I could not identify a clear subgroup of cells that contribute to decoding, as decoding and 

PCA weights were spread over a large portion of the population. This might have to do with the 

difference in the concept of context in our study, which leads to much milder changes in cell 

firing than two distinct environments.  

The study above shows that context decoding improves with experience, as I also 

observed in my data. However, it does not include any structured learning paradigm, which 

could affect the neural representation of task variables. Here I investigated the process by which 

behavioural demands shape neural representations, monitoring a continuous learning period of 

a goal-oriented behaviour. I show that, as the animal learned the association between context 

and reward location, these two variables became increasingly bound in the population 

representation. Moreover, this process of adaptation to behavioural demands happened at a 

timescale that correlates with learning. 

I investigated this relationship between variables through conditional decoders. Certain 

variables were better decoded locally (conditional on position) than globally; this implies that 

the features (i.e. neurons) representing these variables are not the same across the entire 

environment. Features used by a global decoder to separate a variable across all locations have 

to be composed of neurons that are globally active to a certain extent (non-place cells) and also 

globally responsive to context. In the hippocampus, the population activity at a given position is 

largely influenced by place cells. If they are also sensitive to context, i.e. through rate remapping, 

they influence the features representing context at that location. At a different position, the same 

subset of place cells is silent, so context encoding must also shift to other neurons. In this 

scenario, mixed selectivity is what makes the code local. Studying the features of this mixed 

selectivity and how it changes with learning can provide future insights into the structure of the 

hippocampal population code. Linear decodability of variables on the population level can be 

achieved with single neurons with linear or non-linear mixed selectivity. The first enables the 

generalisation of information and robustness to noise whilst the second grants higher flexibility 

in the number of decodable variables from a single stimulus (Kaufman et al., 2022). The function 

of a brain area might determine the balance between the two. Population level analysis would 



 

suggest that brain areas such as the prefrontal cortex are more involved in generalisation and 

the hippocampus in the specificity of each experience (Kaefer et al., 2020; Samborska et al., 

2022; Tang et al., 2023), but a link to mixed selectivity has not been made. 

In primates, complex task structures that impose novel relationships between variables 

are reflected in the hippocampal code (Bernardi et al., 2020). My results suggest that this 

structure also exists in rodents, is built at the timescale of learning and reflects a reorganisation 

of the contributions of different variables to the code.  Here I also argue that task-relevant 

information might move to high-variance principal components with learning: a sign of 

migration towards a lower-dimensional representation of task-relevant features. Studies in the 

motor cortex show a similar type of structure, pointing out that manipulating the dimensionality 

of representations might be a robust widespread mechanism to interface between neural activity 

and behaviour (Gallego et al., 2017). Nonetheless, the dynamics and topological changes in 

hippocampal activity during learning remain to be elucidated. In the “future directions” section 

of this thesis, I discuss how to target this topic in my data with geometry and dimensionality-

related analytical approaches. 

  



 

 
 

 

In this thesis I investigated how the activity of single cells in the hippocampus translates 

into an effective population code of the external world and how goal-directed learning modulates 

this code to provide better information of task-relevant variables to downstream brain areas. 

For this purpose, I used linear methods such as Principal Component Analysis and Support 

Vector Machines. Although these methods allowed important insights into the data, they limit 

which aspects of the data can be described. Here I discuss further analysis that would allow me 

to confirm and expand the results I have presented. 

 

Variability in neural activity versus task variables 

A more direct way than linear decoders to measure the relationship between principal 

components and task variables is by the use of Canonical correlations (CC). CC gives a measure 

of the variability in each PC that can be accounted for by each task variable; it has been previously 

used to demonstrate the correlation between the first PCs and position/head direction in a 

network model of the hippocampus (Recanatesi et al., 2021). In my data, this could be used to 

confirm the contribution of position and context to the variability of different PCs as the animal 

learns. It has the advantage of being a continuous measure and can be calculated per PC 

independently (not cumulative PC as I used for the linear decoder), making any pair of PCs 

directly comparable. 

Moreover, both linear decoders and CC can be used to investigate how variables 

contribute to the neural activity at different stages of the task. Previous studies have pointed out 

that the encoding of variables is dynamic, tied to the behaviour in a timely fashion (Bernardi et 

al., 2020; Samborska et al., 2022). In this thesis I have focused on average activity vectors per 

position and trial, which hides dynamics related to action and decision-making. Looking at the 

neural activity around the time of action – e.g. when the animal enters the maze, just before 

digging, etc. – and at different stages of learning can add insight on contributions of the 

hippocampal representations to specific behaviours. 

 

The dimensionality of neural representations 

Weighting the contributions of task variables to different PCs is only one of many ways 

to assess the relationship between neural representations and dimensionality. It has been 

proposed that brain areas balance between shattering dimensionality (SD) and the 

generalisation capability of the code (Bernardi et al., 2020). These approaches use linear 

classifiers to determine: (1) how many arbitrary binary divisions of the data are linearly 

decodable (SD); and (2) how well a decoder trained in a fixed condition performs when the 

condition changes (generalisation). The authors suggest that, in well trained animals, the 

hippocampus has high SD and high generalisation score. They also show that during error trials 



 

generalisation is reduced. In my data, it would be possible to investigate the emergence of these 

features from naive to expert animals, measuring the effect of learning and behaviour on the 

structure of the neural code. 

Despite the term dimensionality, SD can be interpreted very differently than the 

dimensionality of a manifold, the activity subspace to which population vectors are constrained. 

SD is focused on the divisibility of the data, whilst manifold analyses focus on its topology. Here 

I showed that most of the variance explained in my dataset is found in the first ~10-15 principal 

components, as long as the number of neurons recorded exceeded this value. The neural activity, 

however, is likely to lie in a non-linear manifold of lower dimension than that estimated by PCA 

(Altan et al., 2021; Nieh et al., 2021), as it is also upper-bounded by task complexity (Gao et al., 

2017). 

In the task I proposed, learning was correlated with a reduction in dimensionality in PC 

space. However, it is not clear if  this results from a reduction in dimensionality of the neural 

manifold or a manifold realignment to the PCs. Changes in topology of hippocampal 

representations over experience would suggest the first (H. Zhang et al., 2023), but it remains 

to be tested if this is the case during goal-oriented learning. It is important to note that intrinsic 

dimensionality measures are not very robust to noise (Altan et al., 2021) and therefore the 

absolute value of dimensionality extracted by those methods is likely to yield false 

interpretations. Indeed, it has been shown that noise increases the dimensionality of the 

hippocampal spatial code (Hazon et al., 2022). Nevertheless, assuming the level of noise is the 

same across recordings, the relative changes in intrinsic dimensionality during learning can still 

be used to evaluate the formation of hippocampal representations. 

 

Predictive coding 

Hippocampal population activity can be investigated in the framework of predictive 

coding. Studies of the hippocampus and neural networks argue that navigation can be efficiently 

solved by a neural population representing the future instead of the current position of the 

animal (Recanatesi et al., 2021; Stachenfeld et al., 2017). If this is true, it would be interesting to 

understand the timescale of this process. It could be that the shift towards a future 

representation happens in a matter of one of a few trials (Priestley et al., 2022) or that it 

continues to evolve as long as the animal improves at the task. In Chapter 5 I showed a trial-by-

trial shift of place fields towards the animal’s incoming direction, which on the single cell level 

did not seem to differ between learning stages. At the population level it is still possible that the 

representation correlates to the animal’s future position with varying lags as the animal learns. 

In this case, the use of population vectors calculated in time is more suitable than using trial-

average vectors, since the future can differ at each passage over a given location. Predictive 

coding analysis could reveal if better animal performance can be assigned to more distant, 

precise predictions of task variables.  

 

 



 

Representational drift 

When referring to long-term dynamics of the hippocampal population, representational 

drift becomes an important factor (Ziv et al., 2013). Drift seems at first in contradiction with the 

observation of sleep influence in learning. Neural connections are strengthened for cells co-

active during awakeness, which would predict a stable activity of these cells in the following day 

(Dupret et al., 2010; Gridchyn et al., 2020). While this is true for novel learning, many argue 

that familiarity reduces the effect of sleep on hippocampal plasticity, so that learning becomes 

largely relayed to the cortex (Frankland & Bontempi, 2005). Despite this shift, it has been shown 

that the hippocampus is still important for certain types of behaviour at long timescales (Atucha 

et al., 2021). Not much is known about the role of hippocampal representations on behaviour 

over these periods, nor about their dynamics. 

 One previous study indicates that the encoding of context resists representational drift 

at the population level, despite variations in the activity of single neurons (Keinath et al., 2022). 

The study points out that the encoding of context happens in dimensions orthogonal to drift, in 

a scenario of purely exploratory behaviour. In this thesis I have shown that task demands impose 

relationships between the encoding of different task variables; it is therefore less clear if context 

representation would be resistant to drift, considering its representation is connected to space. 

One hypothesis is that the information about context represented in later PCs is detached from 

the spatial representation, and therefore could be orthogonal to drift. My behavioural paradigm 

is a good candidate to study these phenomena, but new recordings aimed at monitoring the 

activity of the same neurons over time are necessary, e.g. by using calcium imaging or silicon 

probes. 

 

The neurobiology of digging 

One topic that has not been very explored in the literature but is relevant in our dataset 

is digging behaviour. Like running, digging is an innate motor behaviour that requires a certain 

level of repetitive action. Despite its use in many experimental paradigms (Sauvage et al., 2008; 

Tse et al., 2007), not much is known of how this behaviour engages the brain, especially the 

hippocampus. For example, since the animal is awake and mobile, theta oscillations are expected 

to dominate hippocampal activity and phenomena such as theta phase precession might also be 

in place. However, digging seems to require higher levels of motivation than running; this might 

require neuromodulation from the midbrain or top-down control from cortical areas. 

Understanding the differences and similarities between running and digging at a neural level 

could help understand what are the main influences of motor action to hippocampal encoding, 

in a situation where position is fixed, for example. Our dataset allows for the investigation of 

some of these questions, but also future studies employing precise tracking of movement and a 

more constrained digging paradigm are necessary for targeting all aspects of this behaviour. 
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DG   Dentate Gyrus 

CA1   Cornu Ammonis 1 (subregion of the hippocampus) 

CA3  Cornu Ammonis 3 (subregion of the hippocampus) 

MDS  Multidimensional Scaling 

PC   Principal Component 

PCA   Principal Component Analysis 

PF  Place Field 

PV   Population Vector 

Rew-D  Context-dependent reward (any) 

Rew-DA  Context-dependent reward of context A 

Rew-DB  Context-dependent reward of context B 

Rew-DC  Context-dependent reward of the current trial context 

Rew-DO  Context-dependent reward of the opposite context 

Rew-I  Context-independent reward 

SEM  Standard Error of the Mean 

t-SNE   t-distributed Stochastic Neighbours Embedding 

UMAP   Uniform Manifold Approximation and Projection 
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