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Abstract

Starting with the empty graph on [n], at each round, a set of K = K(n) edges
is presented chosen uniformly at random from the ones that have not been presented
yet. We are then asked to choose at most one of the presented edges and add it to
the current graph. Our goal is to construct a Hamiltonian graph with (1 + o(1))n
edges within as few rounds as possible.

We show that in this process, one can build a Hamiltonian graph of size (1+o(1))n
in (1 + o(1))(1 + (log n)/2K)n rounds w.h.p. The case K = 1 implies that w.h.p. one
can build a Hamiltonian graph by choosing (1 + o(1))n edges in an online fashion as
they appear along the first (0.5 + o(1))n log n rounds of the random graph process.
This answers a question of Frieze, Krivelevich and Michaeli. Observe that the number
of rounds is asymptotically optimal as the first 0.5n log n edges do not span a Hamilton
cycle w.h.p. The case K = Θ(log n) implies that the Hamiltonicity threshold of the
corresponding Achlioptas process is at most (1+o(1))(1+(log n)/2K)n. This matches
the (1−o(1))(1+(log n)/2K)n lower bound due to Krivelevich, Lubetzky and Sudakov
and resolves the problem of determining the Hamiltonicity threshold of the Achlioptas
process with K = Θ(log n).

We also show that in the above process one can construct a graph G that spans a
matching of size bV (G)/2)c and (0.5+o(1))n edges within (1+o(1))(0.5+(log n)/2K)n
rounds w.h.p.

Our proof relies on a robust Hamiltonicity property of the strong 4-core of the bi-
nomial random graph which we use as a black-box. This property allows it to absorb
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paths covering vertices outside the strong 4-core into a cycle.
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1 Introduction
Let G0, G1, ..., GN , N =

(
n
2

)
be the random graph process. That is, G0 is the empty graph

on [n] and Gi+1 is formed by adding to Gi an edge chosen uniformly at random from the
non-present ones, for 0 ≤ i < N . Equivalently let e1, e2, ..., eN be a permutation of the
edges of the complete graph Kn chosen uniformly at random and set Gi = ([n], {e1, ..., ei}),
0 ≤ i < N . Let τ2 be the minimum i such that Gi has minimum degree 2 and τH
be the minimum i such that Gi is Hamiltonian. Building upon work of Pósa [13] and
Korshunov [11], Bollobás [6] and independently Ajtai, Komlós and Szemerédi [1] proved
that τ2 = τH = 0.5n(log n+ (1 + o(1)) log log n) w.h.p.1 Thus, to achieve Hamiltonicy, one
has to wait until the minimum degree becomes 2. Unfortunately, this necessary condition
is satisfied w.h.p. only by graphs of the random graphs process that have at least 0.5n log n
edges, while a Hamilton cycle uses only n of them. This raises the following question. Can
one built a Hamiltonian subgraph of Gt that spans (1 + o(1))n edges in an online fashion
for some t = (1 + o(1))τ2?

Frieze, Krivelevich and Michaeli studied a generalization of this question in the following
setting [9]. Once again let e1, e2, ..., eN be a permutation of E(Kn) chosen uniformly at
random. The sequence e1, e2, ..., eN is revealed, one edge at a time. Starting with the empty
graph on [n], as soon as an edge is revealed we must decide, immediately and irrevocably,
whether to choose and add it to our graph. Let Bi be the graph constructed after the
ith edge has been revealed. Let B′HAM be the set of pairs (t, b) for which there exists an
algorithm that builds a Hamiltonian graph of size at most b within the first t rounds of the
above process w.h.p. Clearly, as Bi ⊆ Gi for all i and τ2 > 0.5n log n w.h.p., a necessary
condition for (t, b) ∈ B′HAM is that t ≥ 0.5n log n and b ≥ n. Frieze, Krivelevich and
Michaeli proved that for every ε > 0 there exists C > 0 such that if t ≥ (0.5+ ε)n log n and
b ≥ 9n or t ≥ Cn log n and b ≥ (1+ε)n then (t, b) ∈ B′HAM . They also asked whether there
exist ε > 0 and a pair t, b such that t ≤ (0.5 + ε)n log n, b ≤ (1 + ε)n and (t, b) /∈ B′HAM .
Theorem 1.1 answers this question.

A second way to generalize our question is within the framework of the Achlioptas pro-
cesses. Inspired by the “power of two choices" paradigm Achiloptas proposed the following
process. Starting with the empty graph on [n], at each round, a set of K = K(n) edges is
presented chosen uniformly at random from the ones that have not been presented yet (or
from all

(
n
2

)
possible ones). We are then asked to choose one of them to add to the current

graph, immediately and irrevocably. The aim of the Achlioptas process is to accelerate or
delay a given graph property. For example, Bohman and Frieze proved that there exist
ε > 0 and a strategy that w.h.p. ensure that one can construct a graph with no component

1We say that a sequence of events {En}n≥1 holds with high probability if limn→∞Pr(En) = 1− o(1).
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of size Ω(n) after (1 + ε)n/2 rounds, thus delaying the appearance of the giant [4]. Kriv-
elevich, Lubetzky and Sudakov studied τH(K)′, the minimum number of rounds needed to
construct a Hamiltonian graph in the above process [12]. They proved that w.h.p.

(1 + o(1))

(
1 +

log n

2K

)
n ≤ τH(K) ≤ (1 + o(1))

(
3 +

log n

K

)
n. (1)

To obtain the upper bound, they constructed a random 3-out graph which is known to
be Hamiltonian [5]. For the lower bound they proved that for any algorithm A and any
ε > 0, after (1− ε)(1+0.5 log n/K)n rounds there exist nε/2 vertices of degree smaller than
2 w.h.p. Their argument goes as follows. After 0.5(1− ε)n rounds, the graph constructed
so far by A contains at least εn vertices of degree smaller than 2, deterministically. From
those vertices, at least nε/2 will not be incident to any edge that will be presented in the
next 0.5(1 − ε)n(log n)/K rounds w.h.p. Any such vertices have degree at most 1 in the
graph constructed so far.

Krivelevich, Lubetzky and Sudakov also proved that the lower bound in (1) is the correct
one, in the sense that it is equal to (1 + o(1))τH(K) w.h.p., in the regimes K = o(log n)
and K = ω(log n). In these regimes the lower bound reduces to (1 + o(1))(n log n)/2K and
(1 + o(1))n respectively. Theorem 1.1 implies that the lower bound in (1) is always the
correct one. The problem of improving the bounds in (1) is also stated as Problem 43 in
Frieze’s bibliography on Hamilton cycles in random graphs [7].

Formally the process that we consider is the following one. Starting with the empty
graph on [n], at each round, a set of K = K(n) edges is presented chosen uniformly at
random from the ones that have not been presented yet. We are then asked to choose at
most one of them to add to the current graph immediately and irrevocably. We let Bi

be the graph constructed after i rounds. We let BHAM = BHAM(K) be the set of pairs
(t, b) = (t(K), b(K)) for which there exists an algorithm that builds a Hamiltonian graph
of size at most b within the first t rounds of the above process w.h.p. Similarly, we let
BPM = BPM(K) be the set of pairs (t, b) for which there exists an algorithm that builds a
graph of size at most b that spans a matching of size bn/2c within the first t rounds of the
above process w.h.p.

Theorem 1.1. Let K = K(n) = O(log n). Then,((
1 +

250

log log n

)(
1 +

log n

2K

)
n,

(
1 +

11

log log n

)
n

)
∈ BHAM .

The case K = ω(log n) of the above theorem follows from Theorem 1.2 of [12]. Once
again, as Gt has minimum degree 0 for t ≤ 0.5n log n w.h.p., one has that (t, b) ∈ BPM
only if t ≥ 0.5n log n and b ≥ n/2.

Theorem 1.2.((
1 +

250

log log n

)(
0.5 +

log n

2K

)
n,

(
0.5 +

11

log log n

)
n

)
∈ BPM .
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Ramark 1.3. Frieze, Krivelevich and Michaeli gave an alternative proof to Theorem 1.2
for the case K = 1 ( See Theorem 4 of [9]).
Ramark 1.4. One may consider the variations of the process where at every round, the
K edges that are presented are chosen uniformly at random from all

(
n
2

)
possible edges or

from the ones that are missing from the graph that is constructed so far. Theorems 1.1 and
1.2 as stated also hold for these variations.

In this note we sketch the proof of Theorem 1.1. Theorem 1.2 can be proven in a similar
manner. Both proofs are based on structural properties of the strong 4-core of a random
graph which we describe in the next section.

2 The strong k-core
For a graph G we define the strong k-core of G to be the maximal subset S of V (G)
with the property that every vertex in S ∪ N(S) has at least k neighbors in S. By N(S)
we denote the set of vertices in V (G) \ S that are adjacent to S. Observe that if the
sets S1, S2 ⊂ V (G) have this property, then so does the set S1 ∪ S2. Thus the strong
k-core of a graph is well-defined. It also naturally partitions the vertex set of a graph G
into 3 sets which we denote by Vk,black(G), Vk,blue(G) and Vk,red(G) where Vk,black(G) is the
strong k-core of G, Vk,blue(G) is its neighborhood and Vk,red(G) is the rest i.e. Vk,red(G) =
V (G) \ (Vk,black(G) ∪N(Vk,black(G)). In our knowledge, the strong 3-core was first used in
[3] for finding the longest cycle in sparse random graphs while the concept of the strong
k-core was first formalized in [2]. There it was observed that the strong 4-core of G(n, c/n)
is robustly Hamiltonian for c ≥ 20 as described below. For a graph G and U ⊆ V (G)
denote by G[U ] the subgraph of G induced by U . By G(n, p) we denote the binomial
random graph i.e., the random graph on [n] where every edge appears independently with
probability p.
Theorem 2.1 (Theorem 3.3 of [2]). Let G ∼ G(n, c/n), c ≥ 20. Let G′ be the subgraph of
G induced by V4,black(G) ∪ V4,blue(G). Then for every U ⊆ V4,blue(G) and matching M on
V4,blue \ U w.h.p. we have that G′[V (G′) \ U ] ∪M has a Hamilton cycle that spans M .

Theorem 2.1 enable us to use the strong 4-core of G(n, 20/n) as an absorber for finding
large cycles. Indeed, assume that a graph G contains G′ ∼ G(n, 20/n) as a subgraph. In
addition assume that there exists a set of vertex disjoint paths P that do not intersect
V4,black(G

′) ∪ V4,blue(G′) internally and whose endpoints lie in V4,blue(G
′). Then, given G′

and P , one can contract each path of P into an edge. This results to a matching M on
V4,blue(G

′). Theorem 2.1 then gives that G′ ∪M spans a Hamilton cycle which spans all
the edges in M . Replacing the edges in M with the corresponding paths in P gives a cycle
of G whose vertex set consists of V4,black(G′), V4,black(G′) and the set of vertices spanned by
the paths in P . This will be our main strategy in proving Theorem 2.1.

The next lemma will also be used in the proof of Theorem 1.1. For its proof see Lemma
3.3 of [2].
Lemma 2.2. Let G ∼ G(n, c/n), c ≥ 20. Then |V4,blue(G)| ≥ 0.1 · (2c)3e−2cn w.h.p.
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3 Constructing a Hamilton cycle online, efficiently
We now sketch the proof of Theorem 1.1. To simplify its description we only consider the
case K = 1. Thus at round i we are presented with an edge ei chosen uniformly at random
from the ones that have not been presented yet, for i ∈ [N ]. For its proof we describe an
algorithm A that chooses (1 + 11/ log log n)n edges within the first (1 + 250/ log log n)(1 +
log n/2)n rounds and constructs a Hamiltonian graph w.h.p. Let

n′ =
n

log log n
, tε =

(
50

log log n

)(
1 +

log n

2

)
n,

t0 = 0, t1 = tε, t2 = t1 + tε + n, t3 = t2 + tε, t4 = t3 + tε + n(log n/2) and t5 = t4 + tε. A
consists of 5 phases. Its ith phase starts when eti−1+1 is presented and ends once A decides
whether to keep the edge eti .

During its first phase, A picks the first 10n′ edges that are spanned by [n′]. Let G1 be
the graph A constructed during Phase 1 of A, U = V4,black(G)∪V4,blue(G′), W = V4,blue(G

′)
and Z = [n] \ U . Lemma 2.2 implies that |U | = Ω(n′) w.h.p. The rest of the phases of A
aim to cover the vertices in Z by a set P ′ of vertex disjoint paths with endpoints inW that
do not internally intersect U . To do so, during its second phase, A greedily covers Z with
at most n/(log log n)2 vertex disjoint paths, each of length at most log n. Here we allow
paths of length 0 which correspond to single vertices. Let P be the set of these paths.
Then, during Phase 3, A greedily matches the endpoints of the paths in P to W , each
path P ∈ P is therefore potentially extended to a path with a pair of unique endpoints in
W . Let End(P) be the set of endpoints of paths in P that lie in Z (are left unmatched).
During Phase 4, A attempts to match the vertices in End(P) to log0.8 n many vertices
in the interior of distinct paths in P . This is possible as t4 − t3 = tε + 0.5n log n, which
implies that each vertex in End(P) is incident to ω(log0.8 n) edges in {et3+1, ..., et4} whose
other endpoint lies in [n] \ U . Finally, during Phase 5, using the edges selected during
Phase 4, A reroutes the paths in P with an endpoint in End(P) through the rest of the
paths. Such a rerouting may look as follows. Let Q = v1, v2, ..., vk and P = u1, u2, ..., ur be
vertex disjoint paths with v1, vk, ur ∈ W and u1 ∈ Z. In such a case, adding the edges u1vi
and vi+1v with v ∈ W , 1 ≤ i ≤ k − 1 (selected during phases 4 and 5 respectively) and
removing the edge vivi+1 from E(P ) ∪ E(Q) results to 2 vertex disjoint paths that cover
V (P ) ∪ V (Q) and have their endpoints in W .

One may show that the set of edges selected during the last 4 phases span a set P ′ of
vertex disjoint paths with endpoints in W that do not internally intersect U w.h.p. Given
G1 and P , one may appeal to Theorem 2.1, as discussed in the previous section, to show
the existence of a Hamilton cycle spanned by the constructed graph. Finally note that
the edges selected during phases 2 and 3 span a set of paths, thus there are at most n.
Therefore, in total, A selects 10n′+n+ |End|(log0.8 n+ 2) which is equal to (1 + o(1))n in
the high probability event that |End(P)| = o(n/ log n).
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