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Zigzag optical cavity for sensing and controlling torsional motion
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Precision sensing and manipulation of milligram-scale mechanical oscillators has attracted growing interest
in the fields of table-top explorations of gravity and tests of quantum mechanics at macroscopic scales. Torsional
oscillators present an opportunity in this regard due to their remarked isolation from environmental noise. For
torsional motion, an effective employment of optical cavities to enhance optomechanical interactions—as already
established for linear oscillators—so far faced certain challenges. Here, we propose a concept for sensing and
manipulating torsional motion, where exclusively the torsional rotations of a pendulum are mapped onto the
path length of a single two-mirror optical cavity. The concept inherently alleviates many limitations of previous
approaches. A proof-of-principle experiment is conducted with a rigidly controlled pendulum to explore the
sensing aspects of the concept and to identify practical limitations in a potential state-of-the art setup. Based
on this study, we anticipate development of precision torque sensors utilizing torsional pendulums that can
support sensitivities below 10−19 N m/

√
Hz, while the motion of the pendulums are dominated by quantum

radiation pressure noise at sub-microwatts of incoming laser power. These developments will provide horizons
for experiments at the interface of quantum mechanics and gravity.

DOI: 10.1103/PhysRevResearch.6.013141

I. INTRODUCTION

Precision sensing with mechanical oscillators has a long
history in science and technology, and continues to be an
active area of research in many fronts. These include detection
of gravitational waves [1], exploration of quantum mechanics
and its potential extensions at macro scales [2–6], tests of
gravity at micro scales [7–9] or at relativistic speeds [10], and
precision determination of Newton’s gravitational constant
[11] just to name a few. Recently, milligram-scale optome-
chanical systems [12–16] have been attracting heightened
attention as promising candidates for table-top fundamental
gravity and quantum mechanics experiments, since milligram
scale is expected to simultaneously allow for good optical
control and large gravitational interactions [17]. This mass
scale might prove beneficial for testing the ideas of gravita-
tionally mediated entanglement [18–20] or provide schemes
for searches for dark matter targeted at a unique parame-
ter space not covered by other potential experiments [21].
The development of sensing techniques that go beyond the
state-of-the-art with milligram-scale mechanical objects is
thus timely, especially in light of impressive control already
achieved in more complicated systems with larger masses
[22]. Our interest here is towards torsional oscillators given
their natural isolation from the environmental seismic and
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acoustic noise, which makes them attractive for general force
sensing applications.

Numerous techniques have been developed in the frame-
work of optomechanics to sense torsional motion via light.
Optical sensing of angular displacements first flourished with
optical levers, the precision versions of which date back to
the Eötvös torsion balance experiments for testing the equiv-
alence of gravitational and inertial masses [23]. The optical
lever is still the workhorse of many applications, from reading
out of atomic force microscopes [24] or micro-scale tor-
sional force sensors [25] to implementing quantum correlation
enhanced sensing protocols [26]. Nevertheless, many other
techniques still continue to be developed for enhanced sensi-
tivity, stability, or utility. These include techniques that utilize
Mach-Zehnder interferometry [27], Michelson interferometry
[28,29], Sagnac interferometry [30], or techniques that com-
bine multipass optical levers with interferometry [31]. There
is growing interest in optical cavity-based approaches for an-
gular sensing, since for the related case of linear displacement
sensing, these approaches have led to spectacular sensitivities
[1] and also allowed the sought-after enhancement of quantum
radiation pressure noise levels (QRPN) to above that of clas-
sical thermal noise [32]. For linear displacements, the main
effect relies on the fact that mechanical displacements can
change the cavity length. Probing this change with a resonant
optical build-up in the cavity allows for a signal enhancement.
However, for angular sensing, it is not yet clear how to most
effectively utilize cavities to benefit from the same signal
enhancement.

Previously investigated solutions include constructing cav-
ities at the ends of a torsional pendulum [12,33,34] and
monitoring differential signals in postprocessing, or construct-
ing degenerate optical cavities in different ways for enhancing
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FIG. 1. Schematics of the proposed torsion sensing concept. A
suspended torsional pendulum with a hole in the center and high
reflectivity coatings on both faces is inserted into a two-mirror optical
cavity. The system operates around a specific yaw orientation that
fixes the zigzag beam separation l . See text for additional details.

the amplitudes in higher-order cavity modes associated with
beam tilting induced by small cavity mirror rotations [35].
Both methods provide high sensitivity, and in fact the double-
cavity arrangement of Ref. [12] provides the highest torque
sensitivity with milligram-scale torsional pendulums to date.
The explored approaches nevertheless have their limitations,
e.g., due to far-from-optimal common mode cancellations,
mechanical/thermal noise associated with complicated im-
plementations, trade-offs between range and sensitivity, or
limitations to laser power due to angular instabilities induced
by the optical antisping effect [36]. Other related work for
angular sensing and motion control with cavities include in-
terfacing cavities with nanomechanical rotors [37].

In this paper, we propose a torsion sensing concept where
the yaw motion of a pendulum is mapped onto the path length
of a single two-mirror optical cavity (see Fig. 1). Further, we
perform a proof-of-principle demonstration of this concept.
The introduced concept inherently addresses many technical
problems that can prevent precision usage of cavities for an-
gular sensing. The cavity by design is insensitive to motion in
any other mode than the yaw rotation, it does not result in a
trade-off between sensitivity enhancement and usable range, it
does not lead to dynamical instabilities in the form of optical
antispring effect despite utilization of planar pendulum mir-
rors, and it further contains an extra intrinsic reference mode
that bypasses the pendulum to directly help eliminate prob-
lems with laser frequency and cavity length noises without
requiring absolute length or frequency stabilization. Through-
out this paper, we thoroughly explore the insensitivity of the
cavity to motional modes other than the torsional one, i.e., the
lack of measurement cross coupling, which could otherwise
overshadow the true noise present in the torsional motion
by inadvertently mixing in large signals from thermally or
seismically induced motions of other modes.

The presented demonstration here utilizes a rigidly con-
trolled mirror body to simulate possible motions of a real
pendulum to test and validate the proposed ideas. For

completeness, we also give a quantitative prediction for a
system incorporating a milligram-scale torsional pendulum in
an ultrahigh vacuum environment with state-of-the-art sus-
pensions and a realistic high-finesse cavity. Based on these
calculations, in the frequency range from 2 Hz to 200 Hz
we anticipate a torque sensitivity of 10−19 − 10−20 N m/

√
Hz,

and the domination of QRPN in the mechanical motion at
sub-microwatts of incoming laser power—much smaller than
those used in previous experiments for similar physical scales.
These prospects make the proposed setup interesting for
macroscopic tests of quantum mechanics and tests of gravity-
driven entanglement [38,39].

The overall sensing technique is presented in Sec. II, and
the experimental realization is described in Sec. III. The char-
acterization of the coupling of different motions to the cavity,
as well as a simple demonstration of the utility of the reference
mode for mitigating noise is presented in Sec. IV. Finally, a
realistic noise model to predict the performance of a future
milligram-scale torsional pendulum integrating the developed
concept is presented in Sec. V.

II. THE SENSING PRINCIPLE

The proposed setup is an optical cavity formed by two
identical spherical mirrors and a torsional pendulum with high
reflectivity coatings on both sides (Fig. 1). The pendulum
has a hole in the center to allow for coupling to the cavity
mode highlighted in red, which we call the zigzag mode. This
mode is exclusively sensitive to the yaw motion, whereby
the mode path length—hence the resonance frequency—is
linearly proportional to the yaw rotation angle around the
central operating angle of the pendulum (Fig. 1). If realized
ideally, linear displacements (transverse or longitudinal) or
roll motion of the pendulum have no effect on the zigzag
mode path length, leaving the resonance frequency unaltered.
Furthermore, the pitch motion can be made to induce path
length changes that are only quadratic in the pitch angle due
to the symmetry of the geometry. The zigzag mode is thus
ideally suited to sensing the yaw motion or manipulating it by
means of radiation pressure, e.g., in the form of optical spring
or feedback damping [40]. Note that, as we will illustrate,
sensing the yaw motion simply amounts to optically track-
ing the cavity resonance frequency. In addition to the zigzag
mode, the hole in the pendulum also allows for a separate
cavity mode highlighted in blue, which we call the on-axis
mode. This cavity mode is decoupled from any motion of
the pendulum, and serves as a relative length reference for
the zigzag mode. Offset locking the frequency of the sens-
ing laser to this mode mitigates laser frequency noise and
also eliminates the effects of cavity length drifts from the
measurements carried out on the zigzag mode. Lastly, the
cavity mode highlighted in green, which we call the sup-
port mode, allows for application of an additional radiation
pressure torque on the pendulum (e.g., if the restoring torque
supplied by the pendulum suspension is too weak), or for
monitoring and controlling the longitudinal linear motion of
the pendulum.

The angular sensitivity provided by the technique can be
quantified by first noting the zigzag mode frequency shift per
yaw rotation, c

λ
l

Lzig
(Hz/rad). Here λ is the wavelength of the
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FIG. 2. (a) Experimental setup. The “on-axis” and the “zigzag” lasers are coupled to their respective cavity modes. The on-axis laser
frequency is locked to the cavity. A beatnote between the lasers obtained on a fast photodetector is used to lock the zigzag laser frequency to
the on-axis laser with a variable frequency offset. The position of the pendulum is manipulated via a rotation stage, a 5-axis stage (Thorlabs
PY005/M), and an attached piezo transducer. BS, beam splitter; PBS, polarizing beam splitter; HWP, half-wave plate. (b) A picture of the
cavity. [(c)–(e)] Measured zigzag mode frequency shifts, as a function of the yaw angle (c), longitudinal swing angle (d), and transverse
position (e) of the pendulum. Note that a transverse displacement is the main component of an actual transverse swing motion of a pendulum.
Solid lines represent parameter-free models in (c) and (d), and a linear fit to the data in (e). Data was acquired via discrete changes in the stages
in (d) and (e), and via continuous piezo scans in (c)

utilized light, l is the zigzag beam separation, Lzig ≈ 2L −
l2

2L
g

1+g ≈ 2L is the geometrical length of the zigzag mode,
L is the separation between the two spherical mirrors, and
g = 1 − L

R is the commonly used cavity stability parameter. A
metrologically relevant sensitivity parameter is the ratio of the
induced shift to the full linewidth of the zigzag mode. This can
be expressed using the cavity finesse F (ratio of the mode’s
free spectral range to its linewidth) as

S = 2l

λ
F (rad−1). (1)

Note that S is independent of the cavity length, and with this
definition, n ∼ 1/(S δθ )2 has the interpretation of the total
number of photons required to achieve an angular resolution
of δθ , assuming n � 1.

In the outlined cavity geometry, the zigzag mode is a stable
cavity mode in the Gaussian-beam propagation sense as long
as its length Lzig is equal to or smaller than twice the radius of
curvature R of the spherical mirrors. To a good approximation,
this corresponds to L � R. In terms of the cavity stability
parameter, this condition is given by g � 0. Assuming there
exists a static equilibrium angle for the pendulum, the optome-
chanical system does not possess an angular instability (again
for g � 0) originating from the geometric antispring effect
discussed in Ref. [36]. Instead, one obtains a spring effect
that increases the restoring torques. Although we will not
discuss this effect further, we just note this physically means
that in response to a rotation, the zigzag mode location at the
pendulum shifts such that it acts to restore the orientation by
changing the lever arm of the radiation pressure force—and

hence the applied torque. The same arguments are also valid
for any motion that involves the pitch rotation (Fig. 1) of the
pendulum bar.

Since we are utilizing a rigidly controlled mirror body to
simulate a pendulum in the current demonstration, the dis-
cussed effects of radiation pressure will not yet be relevant.
For the same reasons, the support mode will not be discussed
further.

III. EXPERIMENTAL REALIZATION

Our experimental setup is shown in Fig. 2(a). Two 780 nm
DFB lasers are used to couple to the zigzag and the on-axis
modes of the cavity—typically a few hundred microwatts of
power incident for each. The frequency of the “on-axis laser”
is locked to the cavity with the “squash locking” method
[41] (chosen for implementation simplicity and simultaneous
robustness), which here utilizes a slight ellipticity in the beam
shape provided by a prism, and a quadrant photodetector for
its measurement. The zigzag laser is locked to the on-axis
laser with a variable GHz-range frequency offset by means
of stabilizing the beat note between the two lasers obtained on
a fast photodetector [42].

A picture of the zigzag cavity is shown in Fig. 2(b). The
simulated pendulum is composed of two flat mirrors (2 mm
thick, 7 mm in diameter) that are fixed on an aluminum holder
with a center-to-center separation of 11 mm [see insets in
Fig. 2(b)]. The holder hosts a 2-mm diameter hole in its center.
This assembly is suspended from above with a rigid post that
is mounted on a 5-axis tip-tilt-translation stage in addition
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to a rotation stage. The effective lever arm length for tilting
the pendulum (to simulate swing motion) is 6 cm. For the
cavity, we use two spherical mirrors with R = 50 mm radius
of curvature epoxied on an aluminum cavity spacer.

In this paper, we employ a special strategy to construct
the cavity to ease the optical alignment to the zigzag mode.
This strategy requires the choice of a specific cavity length L
such that, in absence of the pendulum, the cavity hosts the
mode depicted in dotted lines in Fig. 1—the no-pendulum
zigzag mode. Spatially, the ends of this mode are perpen-
dicular to the spherical mirrors and also perpendicular to the
pendulum once it is inserted in the cavity. In Appendix A we
show that geometrically such a mode can exist in a cavity if
g > 1/2. Under this condition, the separation of the parallel
no-pendulum zigzag beams l (Fig. 1) is given by

l = R

√
1 − 1

4

1

g2 + 2g − 1
. (2)

Matching this separation to the center-to-center mirror sep-
aration of the pendulum (i.e., l = 11 mm) requires L to be
24.8 mm (equivalently, g = 0.504) for R = 50 mm. Before
gluing the mirrors to the cavity spacer, we ensure that we
indeed realize this particular cavity length by coupling light to
the on-axis cavity mode and monitoring the transverse mode
separation, which directly reveals the cavity length given a
known R [43]. For our parameters, this procedure amounts
to setting the separation between the fundamental and third
order transverse cavity modes to 28.3 MHz. Note that one can
also fix the cavity length by measuring the free spectral range,
but such a procedure is comparatively more involved as it
requires measuring a GHz-level frequency separation (instead
of MHz-level) to within to a fraction of 100 kHz in presence of
technical laser frequency noise. Once the cavity is made, the
light is first coupled to the no-pendulum zigzag mode, then
the pendulum is inserted and the yaw angle of the pendulum
is tweaked to recover transmission from the cavity to conclude
the alignment.

The resulting cavity here has a free spectral range of
6.2 GHz for the on-axis mode and 3.2 GHz for the zigzag
mode. The full linewidths for the two modes are 7 MHz and
14 MHz respectively. The finesses associated with the on-axis
and zigzag modes are then Fon = 880 and Fzig = 230, with
the difference in the finesse practically accounted for by the
tripling of the number of roundtrip bounces (hence the light
loss from the cavity). The central operating yaw angle for the
pendulum is 8.5 degrees from the cavity axis.

We would like to clarify that although the no-pendulum
zigzag mode here exists in a geometric optics sense, it is,
strictly speaking, unstable from a Gaussian beam propagation
perspective. Nevertheless, it still shows power buildup at reso-
nance conditions, and furthermore, due to its unstable nature,
resonances can be observed for a larger range of input beam
incident angles, making it easier to find a starting point for the
alignment. We also note that the procedure described here for
constructing and aligning the cavity is just a matter of choice.
In particular, a specific cavity length is not required to have
a zigzag mode (in presence of the pendulum): for a given L
there always exists a pendulum yaw orientation that results
into a desired l as long as g � 0.

IV. RESULTS

To characterize the sensitivity of the setup to different
motions of the simulated pendulum, we track the zigzag mode
resonance frequency as we manipulate the position and ori-
entation of the pendulum using the 5-axis stage. Frequency
tracking is accomplished by means of scanning the zigzag
laser frequency while monitoring the transmission, and the
pendulum manipulation is accomplished either with manual
actuation or with an attached piezo actuator slab. We compare
the observed frequency shifts to the expected ones for a spe-
cific pendulum movement by calculating the expected zigzag
mode length changes δs as outlined in Appendix B. These
length changes result in a cavity frequency shift δν = c

λ
1
s δs,

where s is the zigzag mode length itself. The results are
presented in Figs. 2(c)–2(e).

First, we confirm the ∼85 MHz/µrad linear dependence
(S ≈ 6.5 × 106 rad−1) of the resonance frequency on the
pendulum’s yaw angle [Fig. 2(c)]. The deviation of the data
from linear behavior near ±1 µrad is an artifact rooted in
the piezo actuation nonlinearities. With manual mechanical
actuation, we have verified that the linear behavior persists
even at milliradian levels. For future optomechanics experi-
ments, the relevant angular variations will not be larger than
the microradian level.

Next, we observe the predicted quadratic change in the
resonance frequency in response to tilting the pendulum as-
sembly to mimic the longitudinal swing motion [Fig. 2(d)].
For the pendulum body, this motion is a combination of
a pure pitch rotation about its centroid and a pure lon-
gitudinal translation. Here, the observed resonance shifts
originate solely from the pitch angular rotation compo-
nent of the motion—giving rise to a c

λ

1+g
4g (Hz/rad2) cavity

shift per squared pitch angle [a second order sensitivity
of S(2) = L

λ

1+g
g F (rad−2)]—with no measurable contribu-

tion from the longitudinal translation (see Appendix C).
These findings show that there is a specific alignment of
the pendulum and the cavity—the bottom of the parabola—
which makes the system almost blind to the pitch motion of
the pendulum.

Lastly, we observe an initially unconsidered effect, which
manifests in the form of a residual sensitivity to transverse
translations [Fig. 2(e)]. For a realistic estimation of achievable
yaw sensitivities, this effect needs to be taken into account
to assess signal leakages from the transverse swing and the
roll motions of the pendulum. As we will elaborate later
with an informative comparison, the involved cavity shifts are
nevertheless subdominant. Appendix C contains an analysis
of the effect together with more data. The analysis indicates
that the response originates from a relative tilt δα of the
two mirrors (about the yaw axis) that form the pendulum,
which are imperfectly glued to the aluminum holder. The
model predicts a c

λ
δα
2L (Hz/m) cavity frequency shift per trans-

verse pendulum translation—equivalent to a sensitivity of S =
2δα
λ
F (m−1). With the observed 30 MHz/µm response, this

leads to an inferred relative tilt of δα = 0.2 degrees between
the two mirrors of the constructed pendulum. An initial com-
parison of this residual sensitivity with the main yaw-rotation
sensitivity can be made by converting the later into a sensi-
tivity to pendulum-end-point displacements. This comparison
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FIG. 3. Relative frequency drifts between the zigzag cavity mode
and the zigzag laser frequency with and without offset locking the
zigzag laser to the on-axis mode.

indicates a 2/δα = 570 times stronger sensitivity for the yaw
motion.

Having characterized the response to various motions, we
return to an important technical advantage brought by the
design, namely the existence of a reference mode that is
decoupled from the pendulum. Referencing the zigzag laser
frequency to the on-axis mode of the cavity, as already dis-
cussed, allows for automatic elimination of the cavity length
noise and for mitigation of laser frequency noise. To demon-
strate the utility of the reference mode, we compare the
relative frequency between the zigzag laser and the zigzag
cavity mode as a function of time, both when the zigzag
laser is free-running and when it is offset locked. The re-
sults are shown in Fig. 3. In these measurements, the relative
laser-cavity frequencies were identified by scanning over the
resonance by modulating the yaw motion for a fixed laser
offset locking point. As qualitatively evidenced, engaging the
frequency locking reduces the overall noise (in this case about
threefold). It is important to note that in the current setup
the fluctuations in the on-axis laser lock and the offset lock
themselves are at least an order of magnitude smaller than the
observed fluctuations for the red curve in Fig. 3. This indi-
cates that these measurements truly reflect some mechanical
drifts in the yaw motion of the simulated pendulum—free
from cavity length and laser frequency drifts. Carrying out
more quantitative spectral measurements for noise immunity
is not very meaningful at this stage until an upgraded compact
system that is housed in a vacuum environment is constructed.

V. DISCUSSION AND OUTLOOK

We proposed and demonstrated a cavity-based angle sens-
ing concept, which responds sensitively only to yaw motion
of a suspended pendulum. We would like to put the system
into context by discussing the intended sensing application
utilizing milligram-scale torsional pendulums in the quantum
regime. Here, the purpose of the cavity is twofold. First, it en-
hances the sensitivity to rotational motions induced by small
torques, e.g., due to gravitational forces created by another
milligram-scale pendulum. Second, it enhances the QRPN,
elevating it above the suspension thermal torque noise and the
new rotational motion sensitivity floor [17]. Conceptually, in
such a setting, the observable motions of mechanical objects

can be dominated by quantum noise, while the associated
gravitational fields sourced and sensed by the objects—
which will possess quantum-uncertainties—can dominate the
torques acting on the objects. This would constitute an exper-
imentally uncharted regime in physics.

For suspended pendulums, once residual gas damping is
eliminated, structural damping from the suspension becomes
the limitation. In this case, the physical mechanisms respon-
sible for damping lead to a level of damping rate and thermal
noise that fall of as one goes above the resonance frequency
[17]. Thus, both for force sensing and for rendering QRPN
the dominating torque noise, off-resonance sensing becomes
advantageous. In the remainder of this paper, we identify a
physically plausible range of parameters where the QRPN
dominated motion can be observed with a zigzag cavity, and
we show that leakage signals from other motional modes can
be kept subdominant in the signal.

First, we would like to point to an advantageous property of
the demonstrated scheme: Although the sensitivity increases
with cavity finesse [Eq. (1)], the accessible angular measure-
ment range remains the same—it is determined purely by
geometrical factors. Such a property does not hold in general
for other explored schemes, as exemplified in the case of
Ref. [35], where the angular sensitivity increases with cavity
finesse at the expense of a drop in the sensing range. In our
setup, the limitation comes form the fact that the geometry
of the zigzag mode slowly walks off from the initial mode
geometry as the yaw angle is scanned—until the input light
is no longer coupled to the zigzag mode. With this effect,
the sensing range is limited to θrng = 2gλ

πw0
(see Appendix D),

where w0 is the beam waist size at the cavity center. In the cur-
rent setup, w0 ≈ 75 µm, leading to θrng ≈ 0.2 degrees. Note
that, throughout the angle scan, the laser frequency can be
easily made to track the cavity resonance, making the finesse-
dependent cavity linewidth not a limitation to the sensing
range.

One last point to address before making performance pro-
jections is the unexpected residual sensitivity of the cavity to
the transverse motion originating from the nonparallel nature
of the mirrors at the two ends of the pendulum. Note that,
for a monolithic pendulum mirror, one might think that this
effect could completely disappear. However, low-loss optical
coatings required for high-finesse cavities invariably lead to
material stress, resulting in some residual curvature especially
for thin (e.g., ∼500 µm) substrates. Nevertheless, realistically,
the relative tilt of the two ends could be at least an order of
magnitude smaller than the 0.2 degrees inferred in the current
paper—assuming several meters of radius-of-curvature.

To operationally compare the residual transverse motion
sensitivity [Fig. 2(c)] to the main yaw motion sensitivity
[Fig. 2(e)], we first compare the cavity shifts caused by the
rms motion of individual normal modes of a pendulum that
is assumed to be thermal noise limited in its motion. We
will than substantiate this discussion with more a informa-
tive comparison of spectral noise distributions. We assume
a 12 × 0.5 × 0.5 mm3 pendulum suspended on a 5-cm long
1 µm thick fiber in the experimentally studied zigzag cav-
ity, and assign kBT/2 worth of energy to transverse swing,
roll, and yaw modes. Note that pitch, longitudinal-swing and
-violin modes will couple to the measurement quadratically
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and will thus have negligible contributions. Assuming specific
frequencies for the considered modes (2 Hz swing, 2 Hz roll,
and 5 mHz yaw), the rms fluctuations in the corresponding
coordinates could be calculated and converted to zigzag mode
frequency shifts using the measured sensitivities. Carrying out
this calculation also requires an understanding of how each
pendulum mode couples to the zigzag cavity mode, which is
detailed in Appendix C. Following this procedure, one obtains
rms cavity shifts of about 75 kHz and 4 kHz respectively for
transverse swing and roll motions, while obtaining 25 GHz for
yaw motion. This indicates a vast dominance of the signal by
the yaw motion.

Finally, we present a spectral estimation of the perfor-
mance that could be expected from a future milligram-scale
torsional pendulum that utilizes a zigzag cavity. Note that
certain system parameters assumed from this point on differ
from those utilized so far. Assuming other potential technical
noises are under control, we consider four inevitable noise
sources: suspension thermal noise Sth

τ [12], quantum radiation
pressure noise SQRPN

τ [32], photon shot noise Sshot
θ [17], and

mirror substrate/coating Brownian noise Sth
θ [44]. The respec-

tive power spectral densities for these noise contributions are
given by

Sth
τ (ω) = 4kBT Iγm,

SQRPN
τ (ω) = 8l2F2h̄ωLPin

π2c2
,

Sshot
θ (ω) = h̄

SQRPN
τ

,

Sth
θ (ω) = 16kBT

ωl2

1 − σ 2

√
πEw0

(
φsub + 2√

π

1 − 2σ

1 − σ

d

w0
φcoat

)
.

(3)

Here, ω = 2π f is the angular frequency, with f being
the Fourier frequency used in Fig. 4. The subscripts θ and
τ refer to angle and torque variables, and their associated
spectral densities can be converted into each other through
the frequency dependent susceptibility χ (ω) of the torsional
oscillator [17], Sθ (ω) = |χ (ω)|2Sτ (ω). In Eq. (3), kB is the
Boltzmann constant, h̄ is the reduced Planck constant, and
c is the speed of light. The remaining parameter definitions
together with their assumed values are listed in Table I.

Assuming a 5-cm long cavity with 10-cm radius-of-
curvature mirrors, the resulting torque and angle noise
contributions that are expected to limit the yaw sensitivity
are presented in Fig. 4. In addition to the sources of noise
already discussed in Eq. (3), here we have also included
limitations due to leakage signals from the transverse swing
and roll modes of the pendulum (dotted and dashed lines).
The motion of these modes are assumed to be thermal-noise
limited, and their gravitational-dissipation-dilution-enhanced
[17] mechanical quality factors are assumed to be 106. A
60-mdeg residual relative yaw bending of the two ends of
the pendulum is assumed for the cause of the leakage signals,
whose origins are detailed in Appendix C.

Based on the presented calculations, in the ∼2 − 200 Hz
frequency range, the system could be expected to be
limited by QRPN with only sub-microwatts of input optical
power—meaning that the mechanical motion will be domi-

FIG. 4. Individual contributions of noise sources in an en-
visioned future milligram-scale torsional pendulum employing a
zigzag cavity. Expected angular noise density

√
Sθ and the equiv-

alent torque noise density
√

Sτ are plotted in accordance with the
discussions in the text for system parameters given in Table I. The
right-hand-side axis of the bottom plot indicates the corresponding
cavity frequency noise density

√
Sν that would actually be measured

for the considered system.

nated by quantum noise. This renders the system interesting
for experimental tests of macroscopic quantum mechanics or
gravity-driven entanglement [38,39]. Furthermore, a thermal
noise limited torque sensitivity of 10−19 − 10−20 N m/

√
Hz

is anticipated in this frequency range—assuming input
optical power is adjusted as needed to lower the QRPN.
As a reference, the current record in the milligram scale is

TABLE I. Anticipated experimental parameters of the zigzag
setup including a mg-scale torsion pendulum.

Parameter Description Value

T temperature 300 K
l pendulum width 5 mm
h pendulum height 1 mm
t pendulum thickness 0.5 mm
m pendulum mass 6 mg
I pendulum moment of inertia ml2/12
D fused silica suspension fiber diameter 1 µm
ωm/2π mechanical (torsional) frequency 10 mHz
Qm yaw mode quality factor [45] 2 × 104

γm yaw mode damping rate ωm
Qm

ωm
ω

σ mirrors’ substrate Poisson’s ratio [46] 0.15
E mirrors’ substrate Young’s modulus [46] 70 GPa
w0 beam radii at the mirrors 100 µm
φsub mirrors’ substrate loss angle [44,47] 10−7

φcoat mirrors’ coating loss angle [44,46] 10−4

d coating’s thickness 10 µm
F cavity finesse [48] 2 × 104

λL sensing laser wavelength 780 nm
ωL sensing laser frequency 2πc/λL

Pin incident laser power 0.4 µW
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FIG. 5. Illustration for Appendix A.

2 × 10−17 N m/
√

Hz [12] (limited not by the pendulum itself,
but by the readout scheme and cross couplings of other mo-
tions to the signal to say the least), highlighting the potential
of the envisioned system as a torque sensor.
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APPENDIX A: NO-PENDULUM ZIGZAG MODE

In this Appendix we show that the zigzag mode in the
experimentally utilized cavity also exists in absence of the
pendulum as a geometric self-replicating path, and we re-
late the cavity configuration to the zigzag beam separation.
From the geometric point of view, showing the existence of
the mode in the cavity is equivalent to finding an angle α

(Fig. 5) at which one can send a beam of light from the
center of the cavity to one of the spherical mirrors such
that the beam reflected from this mirror is perpendicular
to the other spherical mirror at the point of contact. We
can write

R sin β =
(

L

2
− R(1 − cos β )

)
tan α

R sin β = (R − L + R(1 − cos β )) tan δ

α + δ = 2γ

β + γ = α. (A1)

The first equation expresses � through angles β and α, the
second one through β and δ, and the last two equations con-
sider triangles OO1P and OO2P respectively. Switching to
new variables x = tan α, y = tan β, z = tan γ , t = tan δ and
expressing L/R through 1 − g, we can rewrite the same equa-
tions as

y =
(

1 − g + 1

2

√
1 + y2

)
x

y = (
√

1 + y2(g + 1) − 1)t

x + t

1 − xt
= 2z

1 − z2

y + z

1 − yz
= x. (A2)

From these equations, one can first express x, y, and t as a
function of z as x = 4z

3−z2 , y = z
3 , t = 2z

3+z2 . Then, one can also
express z through g, eliminating all other variables to obtain

t = tan δ =
√

(2g + 5)(2g − 1)

2g2 + 4g − 1
, (A3)

which leads us to the conclusion that the sought-after configu-
ration only exists if g > 1/2, or if L < R/2. The separation
between the parallel no-pendulum zigzag beams is then
given by l = 2(R − L/2) sin δ = R sin δ(1 + g), which gives
Eq. (2).

APPENDIX B: ZIGZAG MODE PATH CALCULATION

In this Appendix, we describe our procedure for calculat-
ing the zigzag mode round trip length as a function of the
pendulum’s location and orientation. The calculations take
into account the possible angular misalignment of the two
ends of the pendulum. This procedure forms the basis for
a general numerical computation of the path lengths, and it
also allows for analytical approximations in limiting cases,
which are readily utilized in the main text for evaluating cavity
frequency shifts.

First, we concretely define the geometrical problem, and
introduce the points M1 and M2, on the right and left sides
of the origin O, at which the zigzag mode reflects from the
cavity mirrors (Fig. 6). These points are constrained to the
surfaces of the spherical mirrors, and are parametrized by
the cavity length L and the mirrors’ radius-of-curvature R.
We then introduce the points P1 and P2 where the reflec-
tions from the pendulum mirror surfaces take place. These
points are constrained to the surfaces of the respective pen-
dulum mirrors, and are parametrized by the orientation,
location, and thickness of the pendulum. The closing of the
zigzag path onto itself requires the rays M1P1 and M2P2

to be at normal incidence to the two pendulum mirror sur-
faces, i.e., parallel to the surface normal unit vectors n̂i =
∓{cos αi cos βi, sin αi cos βi, sin βi}, with i = {1, 2}. Here αi

and βi refer to the yaw and pitch angles respectively. n̂1,2

might differ in their orientation, for example in their yaw angle
α1,2 = α ∓ δα/2 as illustrated in Fig. 6.

We proceed by solving for the points M1 and M2 by requir-
ing the spherical mirror normal vectors

−−−→
M2O2 and

−−−→
M1O1 to
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FIG. 6. Illustration for Appendix B.

bisect the reflecting rays. This is mathematically expressed as

−−−→
M1M2

|M1M2| + n̂1 = λ1
−−−→
M1O1

−−−→
M2M1

|M2M1| + n̂2 = λ2
−−−→
M2O2. (B1)

Here λ1,2 are unknown proportionality constants. Including
the constraints on M1,2, the system solves for eight variables
(three for each of M1 and M2, and two for real numbers λ1,2)
and contains eight equations, and is therefore complete. The
inferred points are functions of cavity parameters L and R, the
pendulum’s yaw and pitch angles and the relative bending of
the pendulum ends.

Next, we solve for the points P1,2 utilizing the fact that they
are constrained to the pendulum mirror surfaces. Given the
already found M1,2 and the known directions n̂1,2 of the rays
towards the pendulum, this amounts to finding the intersection
of the rays with the surfaces. The latter are parametrized with
thickness t of the pendulum and its location in xy plane in
addition to the normal vectors.

Following the outlined steps one can calculate the length of
P1M1M2P2 to obtain the zigzag mode length, and to evaluate
its resonance frequency changes in response to the pendulum
motion. Note that there is also a contribution to cavity res-
onance shifts due to changes in the Gouy phase shifts [49],
but it is omitted since changes of geometric origin always
dominate for any real pendulum motion in the investigated
configuration.

APPENDIX C: TRANSLATION AND ROLL SENSITIVITIES

In this Appendix, we will focus on the effects caused by
arbitrary translations and roll rotations of the pendulum. Note
that in this section α, β, and γ stand for yaw, pitch, and
roll angles of the pendulum respectively with no connection
to definitions in Appendix A. We will start with the effects
on the cavity due to the translations. When the pendulum is
translated by a vector �v (Fig. 7), the zigzag mode path length
changes by δs based on the projections of �v onto the pendulum
mirror normal vectors,

δs = n̂1 · �v + n̂2 · �v. (C1)

The unit vectors n̂1,2 encode the information on both the
central angles and the misalignment angles for yaw α1,2 =
α ∓ δα/2 and pitch β1,2 = β ∓ δβ/2 degrees of freedom. To
lowest order in δα and δβ the unit vectors can be expressed as

n̂1,2 = ∓n̂(0) + cos β
δα

2
n̂(δα) + δβ

2
n̂(δβ ),

n̂(0) = {cos α cos β, sin α cos β, sin β},
n̂(δα) = {− sin α, cos α, 0},
n̂(δβ ) = {− cos α sin β,− sin α sin β, cos β}. (C2)

Here n̂(0), n̂(δα), and n̂(δβ ) are mutually orthogonal unit vectors
that span a Cartesian basis. Assuming a central pitch angle
β 	 1, such that cos β ≈ 1, the path length change resulting
from a pendulum translation can be expressed simply as

δs ≈ (�v · n̂(δα) ) δα + (�v · n̂(δβ ) ) δβ. (C3)

For a translation of the pendulum in the x-y plane—related
to the swing motions of the pendulum—we obtain

δs = v sin(φ − α) δα − vβ cos(φ − α) δβ. (C4)

Here v is the magnitude of the vector �v, and φ is its angle to
the x axis. For practical purposes, the second term can be ne-
glected in comparison to the first one, as it contains two factors
of small angles. Therefore, we see that if the pendulum is bent

FIG. 7. Illustration for Appendix C.
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FIG. 8. Zigzag mode frequency change as a function of trans-
verse, x axis, and longitudinal translations of the pendulum. Solid
lines represent the theoretical models based on Eq. (C4) assuming
δα = 0.2 degrees.

(δα 
= 0), the zigzag mode frequency changes in response to
angle-conserving translations. The change is maximized to
δs = v δα for φ − α = π/2, i.e., for “transverse” translations
of the pendulum, and practically zeroed if φ = α, i.e., for
“longitudinal” translations.

Our setup conforms to these expectations as illustrated in
Fig. 8, which compares three directions of translations: (1)
along the transverse direction [same as Fig. 2(e)], where the
fit to the data yields δα = 0.2 degrees; (2) along the x axis
(φ = 0), in which case the frequency response should be
sin α = 0.15 times smaller (purple line) than that for the trans-
verse displacements; and (3) along the longitudinal direction,
where there is a lack of any pronounced cavity shift.

For a translation of the pendulum in the z direction,
a cavity length change originates from the pitch mis-
alignment δβ, yielding δs = v δβ. Nevertheless, such a
change is not very relevant for a real pendulum motion
given the constrained motion in the z direction due to the
suspension.

We now turn to the roll motion. In presence of finite pitch
angles β1,2, the cavity resonance frequency is expected to
develop a residual sensitivity to pure roll rotations (Fig. 1) as
well. To model this effect, note that a small roll rotation can be
approximated by translations of the two mirror ends in oppo-
site directions along the z axis. This situation can be analyzed
by replacing Eq. (C1) by δs = n̂1 · �v1 + n̂2 · �v2, and using the
translation vectors �v1,2 = ∓ẑγ l/2. Here, γ is the small roll
angle, and l is the pendulum width as in the main text. With
these parameters, the resulting cavity length change can be
expressed as δs ≈ γ lβ, showing that the effect is caused by
the central angle β–and not δβ. To get a sense of the strength
of this effect, we can compare it with the measured residual
transverse translation sensitivity. Notice that a real transverse
swing motion of the pendulum will involve a finite roll motion
in addition to pure translations. For a nonzero central pitch
angle β to cause a leakage signal contribution of the same
order as that caused by the translation part of the motion, the
undesired pitch angle would need to be of order 0.5 degrees.

An important takeaway from this analysis is that the rela-
tive pitch between the cavity axis and the pendulum should be
aligned not only for the sake of minimizing cavity sensitivity
to pitch motion, but also to minimize sensitivity to roll motion.
One can additionally calculate [based on Eq. (B1)] that the
center (i.e., the minimum) of the quadratic cavity response
curve to pure pitch rotations remain at the β = 0 condition
even in presence of finite yaw and pitch misalignment angles
δα and δβ (to first order in each of these variables). Thus,
to this approximation, there are no conflicting conditions in
simultaneously having low sensitivity to any pendulum nor-
mal mode that is not the torsional yaw mode, e.g., transverse
or longitudinal swing, roll, pitch, violin, and pendulum bar
bending.

Although we argued that a pure roll motion of the pen-
dulum is decoupled from the cavity for β = 0, in reality the
physical roll-normal mode of a pendulum will exhibit finite
amounts of transverse translations due to the dynamical cou-
pling between the two degrees of freedom, because of the
constraint introduced by the pendulum suspension [50]. We
will not reproduce the relevant calculations, but in effect, the
roll motion acquires an accompanying transverse translation
motion (to first order) by the amount − I

ξm γ , where I is the
moment of inertia about the center of mass for roll rotations,
ξ is the suspension fiber length, and m is the mass of the
pendulum body. These small transverse translations form the
mechanism for the coupling of the pendulum roll-normal
mode to the cavity when the pendulum is bent (i.e., when
δα 
= 0); this is the origin of the leakage roll thermal noise
in Fig. 4. For technical completeness, note that the choice
of generalized coordinates, which leads to the specific minus
in the specified translation is when the signs are the same
for both translation and roll angles for the swing-normal
mode.

APPENDIX D: SENSING RANGE

A limitation to the range of angles that can be sensed
comes about due to the change in the geometry of the zigzag
mode accompanying a yaw rotation. Here, a sufficiently
large change causes the input light to be no longer mode
matched to the cavity. We define the limits of the range as
the changes in yaw angle ±�θ that result in a reduction of
the intensity coupling efficiency to 1/e times its maximal
value.

Calculating the drop in the coupling efficiency amounts
to evaluating the overlap between transverse mode profiles
of two zigzag modes corresponding to two pendulum
orientations with �θ yaw angle separation. Since paraxial
propagation of Gaussian beams preserve the overlap between
arbitrary transverse mode profiles, the desired overlap
can be calculated at any point along the zigzag mode
path—not necessarily where the light is in-coupled. The
center of the cavity—one of the beam waist locations—is
a particularly convenient location to carry out this
calculation, since only the tilt angle α (Fig. 5) of the
mode can change at this location in the ideal case. This
change is �α ≈ 1

g�θ under the assumption α 	 1. We
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calculate the overlap | ∫ ∞
−∞ ψ∗

2 (x) ψ1(x) dx |2 for the two
normalized transverse mode functions ψ1(x) = ( 2

πw2
0
)1/4

exp(− x2

w2
0
) and ψ2(x)=( 2

πw2
0
)1/4exp(− x2

w2
0
)exp(i�α 2π

λ
x),

where w0 =
√

λL
2π

( 1+g
1−g )1/4 [49] is the beam waist size.

Carrying out the overlap integral yields

�θ = g
λ

πw0
. (D1)

Accounting for rotations of both signs, the full sensing range
is given by twice this expression, θrng = 2 �θ .
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