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We prove a version of the tamely ramified geometric Langlands correspondence in positive
characteristic for GLn(k), where k is an algebraically closed field of characteristic p > n. Let X be a smooth
projective curve over k with marked points, and fix a parabolic subgroup of GLn(k) at each marked
point. We denote by Bunn,P the moduli stack of (quasi-)parabolic vector bundles on X, and by Locn,P
the moduli stack of parabolic flat connections such that the residue is nilpotent with respect to the
parabolic reduction at each marked point. We construct an equivalence between the bounded derived
category Db(QCoh(Loc0

n,P)) of quasi-coherent sheaves on an open substack Loc0
n,P ⊂ Locn,P, and the

bounded derived category Db(D0
Bunn,P

-mod) of D0
Bunn,P

-modules, where D0
Bunn,P

is a localization of DBunn,P

the sheaf of crystalline differential operators on Bunn,P. Thus, we extend the work of Bezrukavnikov–
Braverman [8] to the tamely ramified case. We also prove a correspondence between flat connections
on X with regular singularities and meromorphic Higgs bundles on the Frobenius twist X(1) of X with
first-order poles.

1 Introduction
1.1 Geometric Langlands in positive characteristic
Let X be a smooth projective curve over C. Let G be a reductive group over C, and let Ğ be its Langlands
dual group. The geometric Langlands correspondence (GLC), as proposed by Beilinson and Drinfeld
in [7], is a conjectural equivalence between the (appropriately defined) category of D-modules on
the moduli stack BunG of G-bundles on X, and the (appropriately defined) category of quasi-coherent
sheaves on the moduli stack LocĞ of Ğ-local systems on X. A precise statement of this conjecture can be
found in [2].

In [8], a generic version of the GLC in positive characteristic is established for G = GLn(k).
The D-modules are interpreted in terms of crystalline differential operators. Using the Azumaya
property of crystalline differential operators and a twisted version of the Fourier–Mukai transform, the
authors prove a generic version of the GLC over the open subset of the Hitchin base where the spectral
curves are smooth. In the case of G = GLn(k), the results of [8] are generalized in various directions.
In [23], the mirabolic version of this correspondence is established. In [28], the author proved the
quantum version of this correspondence. In [17], the equivalence in [8] is extended to the Hitchin base
of reduced and irreducible spectral curves. The results of [8] were extended to arbitrary reductive groups
in [10] and [11].
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1.2 Tamely ramified geometric Langlands correspondence
The main purpose of this paper is to establish the tamely ramified version of the GLC proved in [8], that
is, we allow the flat connections to have regular singularities. The term “tamely ramified” comes from
analogy with the local Langlands program. See [15] Section 8 for a discussion of the tamely ramified
GLC over C. Let k be an algebraically closed field of characteristic p, and let X be a smooth projective
curve over k. We will work on the case of G = GLn(k) and assume p > n. Let D = q1 + q2 + · · · + qm be an
effective reduced divisor on X, and let PD = (P1, P2, . . . , Pm) be an ordered m-tuple of parabolic subgroups
of GLn(k). We assume that we are in one of the following three cases:

(1) gX ≥ 2,
(2) gX = 1, m ≥ 2, and at least two Pi are proper parabolic subgroups; or m = 1, P is a Borel subgroup

and n ≥ 3,
(3) gX = 0, m ≥ 4, and all Pi are Borel subgroups.

Compared to the unramified version of the GLC, instead of considering Bunn and Locn, we consider
the moduli stack Bunn,PD of (quasi-)parabolic vector bundles (vector bundles of rank n with a Pi-reduction
at each qi), and the moduli stack Locn,PD of flat connections on parabolic vector bundles with regular
singularities at q1, q2, . . . , qm such that the residue at each qi is nilpotent with respect to the Pi-reduction.
Note that the cotangent bundle T∗ Bunn,PD is isomorphic to the moduli stack Higgsn,PD of parabolic Higgs
bundles such that the residue of the Higgs field is nilpotent with respect to the parabolic reduction
at each qi. We denote by DBunn,PD

the sheaf of crystalline differential operators on Bunn,PD (Defined in
the sense of [8], Section 3.13. See Section 3.3 and Section 5.1.). We will define a localization D0

Bunn,PD

of DBunn,PD
and an open substack Loc0

n,PD
of Locn,PD (see Section 5.1 for precise definitions). We will

construct an OLoc0
n,PD

�D0
Bunn,PD

-module P (see Section 5.5) and consider the Fourier–Mukai functor with
kernel P

�P : Db(QCoh(Loc0
n,PD

)) −→ Db(D0
Bunn,PD

-mod)

from the bounded derived category of quasi-coherent sheaves on Loc0
n,PD

to the bounded derived
category of D0

Bunn,PD
-modules. The main theorem of the paper is the following:

Theorem 1.1. �P is an equivalence of derived categories.

There are natural functors from both sides of the equivalence: the Hecke functor H0
PD

(see Section 5.6)

H0
PD

: Db(D0
Bunn,PD

-mod) −→ Db(D0
Bunn,PD

� DX\D -mod)

and the functor W0
PD

W0
PD

: Db(OLoc0
n,PD

-mod) −→ Db(OLoc0
n,PD

� DX\D -mod)

defined by tensoring with the universal flat connection. Let �P,X\D be the Fourier–Mukai equivalence
induced by the pull-back of P :

�P,X\D : Db(OLoc0
n,PD

� DX\D -mod)
�−→ Db(D0

Bunn,PD
� DX\D -mod).

The equivalence in Theorem 1.1 satisfies the following Hecke eigenvalue property:

Theorem 1.2. There is an isomorphism of functors:

H0
PD

◦�P ∼= �P,X\D ◦ W0
PD

.

Now let (E, ∇) be a k-point of Loc0
n,PD

. We denote by ME,∇ the image of (E, ∇) under �P . By Theorem 1.2,
ME,∇ satisfies

H0
PD

(ME,∇ ) ∼= ME,∇ � E.
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6178 | S. Shen

1.3 Summary of the proof
We fix a k-point q ∈ X and a parabolic subgroup P of GLn(k). For the purpose of simplifying notations,
our exposition will be restricted to the case of D = q and PD = P from now on. The only proof that will
be different in the more general setting is the proof of Proposition 2.7 in the case of X = P1, m ≥ 4, and
all Pi are Borel subgroups. We discuss this case in Remark 2.11.

Our proof of Theorem 1.1 is based on the same strategy as used in [8], but some new ingredients
come into play. Note that in [8], the GLC is established over the open subset of the Hitchin base where
the spectral curves are smooth. Compared to the unramified case in [8], one of the main difficulties in
the tamely ramified case is that unless P is a Borel subgroup of GLn(k), there are no smooth spectral
curves. We resolve this situation by considering the normalization of the spectral curves. It is observed
in [25] that under generic restrictions on the spectral curves, a fiber of the Hitchin map

hP : Higgsn,P −→ BP

is isomorphic to the Picard stack of the normalization of the corresponding spectral curve. In Section 2.3,
we extend this observation to a family version. More precisely, we prove:

Theorem 1.3. There exists a Zariski open dense subset B0
P ⊂ BP and a flat family of smooth

projective curves �̃ −→ B0
P such that

Higgsn,P ×BP B0
P

∼= Pic(�̃/B0
P).

For each b ∈ B0
P(k), �̃b is the normalization of the spectral curve �b.

In Section 4, we establish a correspondence between flat connections on X with regular singularity
at q and �X(1) (q)-twisted Higgs bundles on the Frobenius twist X(1) of X, which can be thought of as a
characteristic p version of the non-abelian Hodge correspondence in [26]. Let a be an unordered n-tuple
of elements in k. We denote by Higgsn,a(X(1)) the moduli stack of �X(1) (q)-twisted Higgs bundles (E, φ) on
X(1) such that the tuple of eigenvalues of the residue resq(φ) of the Higgs field at q is a. Let B(1)

a be the
image of Higgsn,a(X(1)) under the Hitchin map h(1). We fix a set-theoretic section σ of the Artin–Schreier
map k −→ k that maps t to tp − t. We denote by Locn,σ(a) the moduli stack of flat connections (E, ∇) with
regular singularity at q such that the tuple of eigenvalues of resq(∇) is σ(a). The p-curvature of (E, ∇)

(see Section 4.1) defines the Hitchin map h′ for flat connections with regular singularity at q:

h′ : Locn,σ(a) −→ B(1)
a .

We will define an open substack (see Section 4.2)

Locr
n,σ(a) ⊂ Locn,σ(a)

and prove the following theorem:

Theorem 1.4.

(1) Locr
n,σ(a) is a Pic(�(1)/B(1)

a )-torsor,

(2) Locn,σ(a)
∼= Locr

n,σ(a) ×Pic(�(1)/B(1)
a ) Higgsn,a(X(1)).

Note that for an arbitrary reductive group G, a similar construction is used in [10] to establish
the characteristic p version of the non-abelian Hodge correspondence for flat connections without
singularities.

One of the key steps in our proof of Theorem 1.4 is to show that the map

h′ : Locr
n,σ(a) −→ B(1)

a

is surjective. Since we consider flat connections with singularity at q, we cannot apply the Azumaya
property of differential operators on X directly. Instead, we construct a flat connection on X\q using
the Azumaya property, construct a flat connection on the formal disk around q by explicitly solving
a differential equation for the connection form, and glue them together using the Beauville–Laszlo
theorem [5].
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Note thatLocn,(0) is the moduli stack of flat connections with regular singularity and nilpotent residue
at q. Restricting the isomorphism in Theorem 1.4(2) to (B0

P)
(1) and combining Theorem 1.3, we deduce

that Loc0
n,P := Locn,P ×B(1)

P
(B0

P)
(1) is a Pic(�̃(1)/(B0

P)
(1))-torsor.

It is proved in [8] that for a smooth algebraic stack Z that is good in the sense of [7] (i.e., Z satisfies
dim T∗Z = 2 dim Z), there is a natural sheaf of algebras DZ on T∗Z(1) that satisfies π

(1)∗ DZ ∼= Fr∗ DZ, and
the restriction of DZ to the maximal smooth open substack (T∗Z0)(1) ⊆ (T∗Z)(1) is an Azumaya algebra of
rank p2 dim Z (see Section 3.3 for a review of this construction). Here π(1) : T∗Z(1) −→ Z(1) is the projection
and Fr : Z −→ Z(1) is the relative Frobenius. The stack Bunn,P “almost” satisfies those two properties, and
we can still construct a sheaf of algebras DBunn,P that satisfies π

(1)∗ DBunn,P
∼= Fr∗ DBunn,P . See Section 5.1 for

details.
The restriction D0

Bunn,P
of DBunn,P to

Higgs(1)

n,P ×B(1)
P

(B0
P)

(1) ∼= Pic(�̃(1)/(B0
P)

(1))

is an Azumaya algebra. We associate with D0
Bunn,P

its stack of splittings YD0
Bunn,P

, which is a Gm-gerbe over

the Picard stack Pic(�̃(1)/(B0
P)

(1)). In Section 5.2, we show that D0
Bunn,P

has a tensor structure, therefore
YD0

Bunn,P
has the structure of a commutative group stack, and there is a short exact sequence

0 −→ BGm −→ YD0
Bunn,P

−→ Pic(�̃(1)/(B0
P)

(1)) −→ 0.

By taking dual, we get another short exact sequence:

0 −→ Pic(�̃(1)/(B0
P)

(1)) −→ Y∨
D0

Bunn,P

π−→ Z −→ 0.

In Section 5.5, we prove that (Y∨
D0

Bunn,P

)1 := π−1(1) is isomorphic to Loc0
n,P as Pic(�̃(1)/(B0

P)
(1))-torsors,

therefore we can apply a twisted version of the Fourier–Mukai transform (reviewed in Section 5.4) to
prove the equivalence in Theorem 1.1. For the proof of this isomorphism, we show that the tautological
1-form θ(1) on T∗(X\q)(1) extends to a 1-form θ̃ (1) on �̃(1), and both Pic(�̃(1)/(B0

P)
(1))-torsors are isomorphic

to the moduli stack of rank one flat connections on �̃ with p-curvature θ̃ (1).

1.4 Structure of the article
In Section 2, we first review some basic constructions related to the Hitchin fibration. Then we define
the Zariski open dense subset B0

P ⊂ BP and establish the correspondence between parabolic Higgs
bundles and the Picard stack of the normalization of spectral curves over B0

P. In Section 3, we first review
some properties of crystalline differential operators in positive characteristic, including the Azumaya
property and the Cartier descent. Then we describe the correspondence between modules over an
Azumaya algebra and twisted sheaves associated to its Gm-gerbe of splittings. Finally, we review the
definition of tensor structures on Azumaya algebras over group stacks. In Section 4, we first construct
the Hitchin map for flat connections with regular singularities. Then we prove the non-abelian Hodge
correspondence between Locn,σ(a) and Higgsn,a(X(1)). In Section 5, we first define the sheaf of algebras
DBunn,P and construct a tensor structure on D0

Bunn,P
. Then we review the Fourier–Mukai transforms on

commutative group stacks and use this framework to prove the main theorem. Finally, we discuss the
Hecke eigenvalue property of this equivalence.

1.5 Notations and definitions
Unless otherwise mentioned, k is an algebraically closed field of characteristic p > 0. We consider the
general linear group GLn(k) and assume p > n. Let gln(k) be the Lie algebra of GLn(k). We denote by N
the nilpotent cone in gln(k). Let P be a parabolic subgroup of GLn(k). The Lie algebra of P decomposes as
Lie(P) ∼= l ⊕ n+

P . We denote by OP the Richardson orbit corresponding to P, which is the unique nilpotent
orbit in gln(k) such that the intersection with n+

P is open dense in n+
P . Let X be a smooth projective

algebraic curve over k. Let gX be the genus of X. We fix a k-point q ∈ X. For any k-scheme S, we denote
by ιq : S −→ S × X the base change of q : Spec(k) −→ X. We denote by pX the projection from S × X to X,
and by pS the projection to S.
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6180 | S. Shen

Definition 1.5. An S-family of (quasi-)parabolic vector bundles on X is a vector bundle E of rank n
on S × X with a P-reduction along S × q. We denote the moduli stack of such objects by Bunn,P.
To be more precise, Bunn,P classifies triples (E, EP, τ), where EP is a P-bundle on S × q and τ is an
isomorphism

τ : EP ×P kn �−→ ι∗qE.

Let Bunn be the moduli stack of rank n vector bundles on X. There is a canonical map from Bunn,P

to Bunn, which is defined by forgetting the P-reduction.

Remark 1.6. Let B be the Borel subgroup of GLn(k) that consists of upper triangular matrices. There
is a one-to-one correspondence between the set of parabolic subgroups of GLn(k) containing B
and the set of ordered n-tuples of positive integers μ = (μ1, μ2, . . . , μs) such that

∑s
i=1 μi = n.

This correspondence can be described as follows. We consider the standard representation of
GLn(k) acting on kn. Let e1, e2, . . . , en be the standard basis of kn. For i = 1, 2, . . . , s, let Vi = ⊕mi

j=1 kej

where mi = ∑i
k=1 μk. Then the parabolic subgroup Pμ corresponding to μ is identified with

{g ∈ GLn(k)|g(Vi) ⊆ Vi, 1 ≤ i ≤ s}.

Let λ1 ≥ λ2 ≥ · · · ≥ λr be the conjugate partition to μ. The Richardson orbit corresponding to Pμ

consists of Mλ the nilpotent matrix with Jordan blocks of sizes λ1 ≥ λ2 ≥ · · · ≥ λr.
Let E be a rank n vector bundle on S × X. A Pμ-reduction of the structure group along S × q

corresponds to a partial flag structure:

0 = E0
q ⊂ E1

q ⊂ E2
q ⊂ · · · Es

q = ι∗qE,

where Ei is a vector bundle of rank mi on S.

Remark 1.7. In the work of Mehta–Seshadri [22], a parabolic vector bundle is defined as a quasi-
parabolic vector bundle together with a set of real numbers (α0, α1, α2, . . . , αs) satisfying

1 = α0 > α1 > · · · > αr ≥ 0

called parabolic weights. The parabolic weights can be used to define a stability condition on
such objects, which is necessary for the construction of a moduli space. Since we focus on
studying the moduli stack of such objects, we do not introduce the parabolic weights in this
paper.

Definition 1.8. An S-family of (quasi-)parabolic Higgs bundles on X is a parabolic vector bundle
(E, EP, τ) together with a Higgs field

φ ∈ 
(End(E) ⊗ p∗
X(�X(q))),

such that the residue of φ at q, which we denote by resq(φ) ∈ End(ι∗qE), lies in 
(S, EP ×P n+
P ). In

other words, if the parabolic reduction gives the following partial flag structure:

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · Es = ι∗qE,

we require resq(φ)(Ei) ⊆ Ei−1. We denote the moduli stack of such objects by Higgsn,P.
We denote by Higgsn,q the moduli stack of �X(q)-twisted Higgs bundles (E, φ),

φ ∈ 
(End(E) ⊗ p∗
X(�X(q))).
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There is a canonical map from Higgsn,P to Higgsn,q, which is defined by forgetting the P-
reduction.

Remark 1.9. Higgsn,P ∼= T∗Bunn,P.

Remark 1.10. A parabolic version of the Hitchin moduli stack is previously considered in the
work of Yun [29]. Definition 2.1.1 in [29] is different from our Definition 1.8 in two aspects: the
marked point q on X is allowed to move in [29], and the Higgs field φ is only required to preserve
the flag structure instead of being nilpotent with respect to the flag structure.

Definition 1.11. An S-family of parabolic flat connections on X is a parabolic vector bundle
(E, EP, τ) together with a flat connection with regular singularity at q

∇ : E −→ E ⊗ p∗
X(�X(q)),

(i.e., ∇ is a OS-linear map of sheaves that satisfies the Leibniz rule), such that the residue resq ∇
of ∇ at q lies in 
(S, EP ×P n+

P ). We denote the moduli stack of such objects by Locn,P.
We denote by Locn,q the moduli stack of flat connections of rank n on X with regular singularity at

q. There is a canonical map from Locn,P to Locn,q, which is defined by forgetting the P-reduction.

2 Spectral Data of Parabolic Higgs Bundles
2.1 Basic constructions
In this Subsection, we discuss the construction of the Hitchin map, spectral curves, and spectral sheaves
in [19] and [6] in the parabolic setting. By taking the coefficients of the characteristic polynomial of the
Higgs field, we get the Hitchin map:

h : Higgsn,q −→ B,

where B = ⊕n
i=1 
(X, �X(q)i) (More precisely, B is the affine space associated to the k-vector space⊕n

i=1 
(X, �X(q)i), i.e., B = Spec(Sym(
⊕n

i=1 
(X, �X(q)i))∨).). If we require the residue of the Higgs field
to be nilpotent, the image of this map lies in BN := ⊕n

i=1 
(X, �⊗i
X ((i − 1)q).

Let T∗X(q) = SpecX(SymOX
TX(−q)), where TX(−q) is the sheaf of vector fields on X that vanish at

q. Let π be the projection π : T∗X(q) −→ X. We denote by y the tautological section of π∗(�X(q)). For
b = (b1, b2, . . . , bn), bi ∈ 
(X, �X(q)i), we define the spectral curve �b to be the zero-subscheme of the
section

yn + b1yn−1 + · · · + bn−1y + bn

of π∗(�X(q)n). By abuse of notation, we also denote by π the projection from �b to X. Since π∗O�b =⊕n−1
i=0 TX(−q)⊗i, we can compute the genus of �b

g�b = n(n − 1)

2
(2g − 1) + n(g − 1) + 1.

Let (E, φ) be a k-point of Higgsn,q such that h(E, φ) = b. We can think of φ as a morphism

φ : TX(−q) −→ End(E).

By Cayley–Hamilton, there is a coherent sheaf F on �b such that π∗(F) = E. We call F the spectral
sheaf corresponding to (E, φ). Conversely, let G be a coherent sheaf on �b, there is a canonical section
φcan ∈ 
(X,End(π∗(G)) ⊗ �X(q)) obtained by adjunction. It is proved in [6] that if �b is reduced, the
Hitchin fiber h−1(b) is isomorphic to the stack of torsion free sheaves on �b, and if �b is smooth, h−1(b)

is isomorphic to the Picard stack Pic(�b) of �b.
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6182 | S. Shen

If we require the residue of φ to be nilpotent, then π−1(q) is a single point q′ that lies in the zero-section
of T∗X(q). Let V = spec(A) be an affine open neighborhood of q in X. Let x be an element of A that is
mapped to a local parameter of X at q. Shrinking V if necessary, we assume dx

x is a nowhere vanishing
section of �V(q). Let U = π−1(V). The section dx

x gives a trivialization of T∗X(q)|V and π∗(T∗X(q))|U. Under
this trivialization, the tautological section y is equal to x∂x considered as an element in OU. Let �b(V) :=
V ×X �b, then O�b(V) is isomorphic to OU/(fb), where fb = yn + b1yn−1 + · · ·+ bn−1y + bn, bi ∈ OV. We denote
by f̂b the image of fb in ÔU,q′ ∼= k[[x, y]], then Ô�b ,q′ ∼= k[[x, y]]/(f̂b).

2.2 The parabolic Hitchin base BP

Now let P be a parabolic subgroup of GLn(k), and we assume the Richardson orbit OP of P contains the
nilpotent matrix with Jordan blocks of sizes λ1 ≥ λ2 ≥ · · · ≥ λr,

∑r
i=1 λi = n. Composing h with the

forgetful map from Higgsn,P to Higgsn,q, we get

hP : Higgsn,P −→ B.

In order to describe the image of hP, we define the following sets of formal power series.

Definition 2.1. Let η = (η1, η2, . . . , ηs), η1 ≥ η2 ≥ · · · ≥ ηs be a decreasing sequence of positive
integers. Let γi = ∑s

j=i+1 ηj for i = 0, 1, 2, . . . , s − 1 and γs = 0. We denote by Pη the set of formal
power series of the form

yγ0 +
s∑

i=1

ai(x, y)xiyγi , where ai(x, y) ∈ k[[x, y]],

and by P0
η the subset of elements in Pη that satisfy ai(x, y) ∈ k[[x, y]]×.

In particular, if η = (m), P0
m is the set of formal power series of the form

ym + a(x, y)x, where a(x, y) ∈ k[[x, y]]×.

Lemma 2.2. Let (E, EP, τ , φ) be a k-point of Higgsn,P such that hP(E, φ) = b. Let f̂b be the element in
k[[x, y]] such that Ô�b ,q′ ∼= k[[x, y]]/(f̂b) as above, then f̂b ∈ Pλ.

This lemma follows from a direct computation, see Proposition 22 in [3]. It follows from Lemma 2.2
that hP factors through the affine space

BP :=
n⊕

i=1


(X, �⊗i
X ((i − mi)q)),

here mi = j if γj ≤ n − i < γj−1. To be more explicit, we have m = 1λ1 2λ2 · · · rλr , meaning that the first λ1

terms are 1, the next λ2 terms are 2,..., and the last λr terms are r.

Lemma 2.3.

(1) Let f̂ be a formal power series in P0
η , η = η

l1
1 η

l2
2 · · · ηlt

t , η1 ≥ η2 ≥ · · · ≥ ηt. Then f̂ factorizes uniquely as

f̂ = f1f2 · · · ft, where each fi is a formal power series in P0

η
li
i

,

(2) Let ĝ = yηl+a1(x, y)xyη(l−1)+a2(x, y)x2yη(l−2)+· · ·+al(x, y)xl be a power series in P0
ηl . We write ai(0, 0) for

the constant term of ai ∈ k[[x, y]]. Assume the polynomial yl +a1(0, 0)yl−1 +a2(0, 0)yl−2 +· · ·+al(0, 0)

has distinct roots. Then ĝ factorizes uniquely as ĝ = g1g2 · · · gl, where each gi ∈ P0
η .

Proof. We start with Part (1). The uniqueness part follows from the fact that k[[x, y]] is a UFD. We prove
the existence part by induction on t. Let s = ∑t

i=1 li be the length of η. Let

f̂ = yγ0 +
s∑

i=1

ai(x, y)xiyγi , where ai(x, y) ∈ k[[x, y]]×.
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In order to show that f̂ factorizes as required, it is enough to show that f factorizes as f̂ = gh, where

g = yγ0−ηt lt +
s−lt∑
i=1

bi(x, y)xiyγi−ηt lt ∈ P0

η
l1
1 η

l2
2 ···ηlt−1

t−1

and

h = yηt lt + c1(x, y)xyηt(lt−1) + c2(x, y)x2yηt(lt−2) + · · · + cl(x, y)xlt ∈ P0
η

lt
t

.

Comparing coefficients, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 + c1y� = a1

b2 + b1c1y� + c2y� = a2

· · ·
bs−lt + bs−lt−1c1y� + bs−lt−2c2y� + · · · + bs−2lt clt y

� = as−lt

bs−lt c1 + bs−lt−1c2y� + bs−lt−2c3y� + · · · + bs−2lt+1clt y
� = as−lt+1

· · ·
bs−lt clt−1 + bs−lt−1clt y

� = as−1

bs−lt clt = as,

where y� stands for raising y to some positive integer power. Since as is invertible, bs−lt is also invertible
by the last equation. Solving this system of equations is equivalent to solving a single equation with
variable bs−lt . Indeed, we can solve clt , clt−1, . . . , c1 in turn as functions of bs−lt from the last lt equations;
then we can solve b1, b2 . . . , bs−lt−1 in turn as functions of bs−lt from the first s − lt − 1 equations; then
we get the desired equation with variable bs−lt by substituting the other variables as functions of bs−lt

in the (s − lt)-th equation. This equation has a solution by Hensel’s lemma. Indeed, after reduction to k,
this equation has a unique solution bs−lt (0, 0) = as−lt (0, 0).

For Part (2), since we assume yl + a1(0, 0)yl−1 + a2(0, 0)yl−2 + · · ·+ al(0, 0) has distinct roots, by Hensel’s
lemma, they lift to distinct roots of the polynomial

yl + a1(x, y)yl−1 + a2(x, y)yl−2 + · · · + al(x, y),

which we denote by b1(x, y), b2(x, y), . . . , bl(x, y). Then

ĝ =
l∏

i=1

(yη − bi(x, y)x)

gives the desired factorization. Since al(x, y) ∈ k[[x, y]]×, we have bi(x, y) ∈ k[[x, y]]× for each i. �

In order to obtain a spectral description of parabolic Hitchin fibers, we define the following open
subset of the Hitchin base BP.

Definition 2.4. We define B0
P to be the subset of BP such that b ∈ B0

P is characterized by the following
properties:

(2.1) �b\q′ is smooth,
(2.2) f̂ lies in P0

λ, and all components in the factorization of f̂ in Lemma 2.3 Part (1) satisfy the assumption
in Lemma 2.3 Part (2). It follows that f̂ factorizes as f̂ = f1f2 · · · fr, where fi = yλi + ai(x, y)x, ai(x, y) ∈
k[[x, y]]×. If λs = λt for some s �= t, then the constant terms of as and at are not equal to each other.

In particular, if P is a Borel subgroup of GLn(k), B0
P is characterized by the spectral curve being smooth.
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Lemma 2.5. For every b ∈ B0
P, there exists a k-point of Higgsn,P that is mapped to b under the

Hitchin map hP.

Proof. Let �̃b −→ �b be the normalization of the spectral curve �b and let π̃ : �̃b −→ X be the projection
to X. Let D = Spec ÔX,q be the formal disk around q. By (2.2), �̃b ×X D is the disjoint union of �i, where

�i
∼= Spec k[[x, y]]/(yλi + ai(x, y)x), ai(x, y) ∈ k[[x, y]]×.

Let L be an invertible sheaf on �̃b, then π̃∗(L) defines a k-point (π̃∗(L), φ) of Higgsn,q such that
h(π̃∗(L), φ) = b and resq φ ∈ OP the Richardson orbit of P. Therefore, we can find a partial flag structure
on π̃∗(L)q such that resq φ is nilpotent with respect to this partial flag structure. �

Remark 2.6. Let (E, EP, τ , φ) be a k-point of Higgsn,P that is mapped to b ∈ B0
P. Condition (2.2) on

�b enforces that resq(φ) lies in the Richardson orbit OP. Note that OP
⋂

n+
P consists of a single

P-orbit. Since we are in type A, for any x ∈ OP
⋂

n+
P , the centralizer of x in GLn(k) lies in P.

Therefore, there is a unique partial flag structure on Eq that is compatible with resq(φ).

Proposition 2.7. In the following two cases:

(1) gX ≥ 2,
(2) gX = 1, n ≥ 3 and P ⊆ G is a Borel subgroup,

B0
Pis Zariski open dense in BP. Moreover, BP is the scheme-theoretic image of the Hitchin map hP,

that is, the smallest closed subscheme of B through which hP factors.

Proof. The first statement together with Lemma 2.5 implies the second statement. For the first
statement, we only need to show that both (2.1) and (2.2) define a non-empty open subset in BP.

We start by showing that (2.1) defines a non-empty open subset in BP. We denote by Bsm
P the locus in

BP where the spectral curves are smooth away from q′. Since Bsm
P ⊂ BP is open, it is enough to show that

it is non-empty.
Case 1. gX ≥ 2, except for the case when gX = 2, n = 2, P = GL2(k). We use the following version of

Bertini’s theorem in [12]: �

Theorem 2.8 (cf. [12], Corollary 1). Let V be a smooth algebraic variety over an algebraically closed
field k. Let S be a finite-dimensional linear system on V. Assume that the rational map V ��� PN

corresponding to S induces (whenever defined) separably generated residue field extensions.
Then a generic element of S defines a subscheme of V that is smooth away from the base locus
of S.

Let π be the projection π : T∗X(q) −→ X. We denote by y the tautological section of π∗(�X(q)).
Let S be the linear system of sections in π∗(�X(q)n) spanned by yn and π∗(bi)yn−i for all
bi ∈ 
(X, �⊗i

X ((i − mi)q)), i = 1, 2, . . . , n. The section yn is not contained in the span of π∗(bi)yn−i. The
set of spectral curves �b with b ∈ BP corresponds to the open subset of S defined by the coefficient of
yn being non-zero. Let N = dim(S) − 1. We denote by fS : T∗X(q) ��� PN the map induced by S. In order
to apply Theorem 2.8, we show that fS is unramified away from π−1(q), which will imply that fS induces
finite separable extensions on the residue fields when restricted to T∗(X\q). By the exact sequence

f ∗
S �PN |T∗(X\q)

ν−→ �T∗(X\q) −→ �T∗(X\q)/PN −→ 0,

it is enough to show that for any k-point p′ on T∗X(q) such that π(p′) = p �= q, the map ν induces a
surjection onto the fiber of �T∗(X\q) at p′.

Let V = Spec(A) be an affine open neighborhood of p in X. Let x be an element of A that is mapped
to a local parameter of X at p. Shrinking V if necessary, we assume q /∈ V and dx is a nowhere vanishing
section of �1

V. Let U = π−1(V). The section dx gives a trivialization of T∗X(q)|V and π∗(T∗X(q))|U. Under
this trivialization, the tautological section y is equal to ∂x considered as an element in OU, and �U is
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a free OU-module generated by dx and dy. The fiber of �U at p′ is a k-vector space of dimension two
spanned by dx and dy.

Under our assumptions on gX, n and P, we have

dimk 
(X, �⊗i
X ((i − mi)q)) − dimk 
(X, �⊗i

X ((i − mi)q − p)) = 1, fori ≥ 1,

dimk 
(X, �⊗i
X ((i − mi)q − p)) − dimk 
(X, �⊗i

X ((i − mi)q − 2p)) = 1, fori ≥ 2.

Take

s1 ∈ 
(X, �⊗n
X ((n − mn)q))\
(X, �⊗n

X ((n − mn)q − p)),

s2 ∈ 
(X, �⊗n
X ((n − mn)q − p))\
(X, �⊗n

X ((n − mn)q − 2p)),

s3 ∈ 
(X, �⊗(n−1)

X ((n − 1 − mn−1)q))\
(X, �⊗(n−1)

X ((n − 1 − mn−1)q − p)),

then d(s2/s1) and d(s3y/s1) span the fiber of �U at p′.
Now we apply Theorem 2.8 to the restriction of the linear system S to T∗(X\q). Since q′ ∈ π−1(q) is the

only base point of S, a spectral curve �b is smooth away from q′ for a generic b ∈ BP.
Case 2. gX = 2, n = 2, P = GL2(k). By the same arguments as in Case 1, the map fS : T∗(X\q) −→ PN

is unramified away from the union of π−1(p) for all p ∈ X\q that satisfies O(2p) ∼= �X. There are finite
many points of X with this property, therefore the fact that a generic spectral curve is smooth away
from q′ follows from the following lemma:

Lemma 2.9. Let p ∈ X\q. For a generic b ∈ BP, the spectral cover �b −→ X is étale around p.

Proof. This follows easily from the calculation

dimk 
(X, �⊗i
X ((i − mi)q)) − dimk 
(X, �⊗i

X ((i − mi)q − p)) = 1, for i ≥ 1. �

Case 3. gX = 1. We consider the subspace
⊕n

i=1 
(X, �⊗i
X ) ⊆ BP. Since �X is isomorphic to OX, it is easy

to find b ∈ ⊕n
i=1 
(X, �⊗i

X ) such that the spectral cover �b −→ X is étale away from π−1(q).
Now we turn to (2.2). Let b ∈ BP. The condition f̂b ∈ P0

λ is equivalent to the condition that for
i = 1, 2, . . . , r, the (n − γi)-th component of b lies in


(X, �⊗(n−γi)

X ((n − γi − i)q))\
(X, �⊗(n−γi)

X ((n − γi − i − 1)q)).

This condition defines a non-empty open subset of BP since

dimk 
(X, �⊗(n−γi)

X ((n − γi − i)q)) − dimk 
(X, �⊗(n−γi)

X ((n − γi − i − 1)q)) = 1

under our assumptions on gX, n and P. The fact that the second condition in (2.2) defines a non-empty
open subset follows easily from the uniqueness part of Lemma 2.3.

Remark 2.10. The second statement in Proposition 2.7 was previously obtained in [3] using
different methods.

Remark 2.11. Proposition 2.7 also holds for the case of X = P1 with ramification at D = q1 +
q2 + · · · + qm, m ≥ 4 and each parabolic subgroup Pi is a Borel subgroup. We need to show
that for a generic b ∈ BPD = ⊕n

i=1 
(P1, �⊗i
P1 ((i − 1)D)), the spectral curve �b is smooth. For each

i = 1, 2, . . . , m, a generic spectral curve is smooth above qi since

dimk 
(P1, �⊗n
P1 ((n − 1)D)) − dimk 
(P1, �⊗n

P1 ((n − 1)D − qi)) = 1.

Therefore, it is enough to show that there exists b ∈ BPD (k) such that �b is smooth away from
π−1(qi). If n ≥ 3, the same arguments as in Case 1 of the proof of Proposition 2.7 would work.
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If n = 2, we consider the subspace


(P1, �P1 ) ⊕ 
(P1, �⊗2
P1 (q1 + q2 + q3 + q4)) ⊆ BPD .

Since 
(P1, �P1 ) = 0 and 
(P1, �⊗2
P1 (q1 + q2 + q3 + q4)) ∼= 
(P1,OP1 ) = k, the spectral curve �b is

étale away from π−1(qi) for any b ∈ k×.

2.3 Spectral data of parabolic Higgs bundles
The next theorem describes the spectral data of parabolic Higgs bundles.

Theorem 2.12 (cf. [25], Theorem 5.16). For b ∈ B0
P(k), the fiber of the Hitchin map h−1

P (b) is
isomorphic to the Picard stack Pic(�̃b). Here σ : �̃b −→ �b is the normalization of the spectral
curve �b.

Proof. We’ve already constructed a map Pic(�̃b) −→ h−1
P (b) in the proof of Lemma 2.5, therefore it

is enough to construct the inverse map. Let (E, φ) ∈ h−1
P (b), and we denote by F ∈ Coh(�b) the

corresponding spectral sheaf. Our goal is to show that there is a natural sheaf L ∈ Coh(�̃b) such that
σ∗(L) = F .

Let �̂b = Spec Ô�b ,q′ . We write λ = λ
l1
1 λ

l2
2 · · · λlt

t , λ1 ≥ λ2 ≥ · · · ≥ λt. Note that by condition (2.2) in the
definition of B0

P,

O�̂b
∼= k[[x, y]]/(f̂ ), and f̂ =

t∏
i=1

li∏
j=1

(yλi − aijx), aij ∈ k[[x, y]]×.

Therefore,

�̃b ×�b �̂ ∼=
t∐

i=1

li∐
j=1

�ij, whereO�ij
∼= k[[x, y]]/(yλi − aijx).

Each �ij is a formal disk such that the closed point is mapped to q′ under σ : �̃b → �b.
Note that since the action of y on F/xF as a matrix with Jordan blocks of type λ, the element

v1 := yλ1 /x acts on the spectral sheaf F sheafifies over �̂1
b defined by

O�̂1
b

= k[[x, y]][v1]/(f̂ , yλ1 − xv1).

This new curve �̂1
b is a disjoint union of l1 + 1 components

�̂1
b =

l1∐
j=1

Spec k[[v1, y]]/(v1 − a1j)
∐

Spec k[[x, y]][v1]/(
t∏

i=2

li∏
j=1

(yλi − aijx), yλ1 − xv1). (2.1)

The first l1 components are formal disks that correspond to �1j, j = 1, 2, . . . , l1 in the normalization curve.
The spectral sheaf over those components must be line bundles, and each contributes a Jordan block
of size λ1 to the residue of the Higgs field at the marked point q. Let F1 be the spectral sheaf over the
last component of �̂1

b in (2.1). Since y acts on F1/xF1 as a matrix with Jordan blocks of type λ
l2
2 λ

l3
3 · · · λlt

t ,
the element v2 := yλ2 /x acts on F1, therefore F1 sheafifies over �̂2

b defined by

O�̂2
b

= k[[x, y]][v2]/(
t∏

i=2

li∏
j=1

(yλi − aijx), yλ2 − xv2).
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Repeating the same procedure for t times, the spectral sheaf F over �̂b that we start with decomposes
as

F =
t⊕

i=1

li⊕
j=1

Lij,

where each Lij is a line bundle over �ij. Since the normalization curve �̃b locally is the disjoint union of
those �ij, we get the desired statement that the spectral sheaf F sheafifies over �̃b. �

For the purpose of this paper, we need to develop a family version of Theorem 2.12. The first step is
to construct a simultaneous normalization of the family of spectral curves above B0

P. This can be done
since the spectral curves above B0

P are equisingular. To be more precise, let � ⊆ B0
P ×T∗X(q) be the global

spectral curve above B0
P; we will construct a new family of curves �̃ −→ B0

P with a proper birational
morphism σ : �̃ −→ � such that for each b ∈ B0

P(k), the morphism σb : �̃b −→ �b is the normalization
of �b.

The construction is as follows. Recall that q′ is the closed point of T∗X(q) above q ∈ X that lies in the
zero section of T∗X(q). We blow up B0

P × T∗X(q) along B0
P × q′, and denote the strict transform of � by �1.

Let V be an open neighborhood of q and U = π−1(V). For b ∈ B0
P(k), let �b(V) := V ×X �b, then O�b(V) is

isomorphic to OU/(f ) for some f = yn + b1yn−1 + · · · + bn−1y + bn, bi ∈ OV. Since b ∈ B0
P(k), f̂ factorizes as

f̂ = f1f2 · · · fr, fi ∈ P0
λi

. We write

fi = yλi + ai(x, y)x, where ai(x, y) ∈ k[[x, y]]×.

We denote V ×X �1
b by �1

b (V), then �1
b (V) is a closed subvariety of

Spec(OU[u]/(x − yu)).

We denote by q′
1 the point defined by y = u = 0. By assumption (2.1) and the second part of assumption

(2.2) in the definition of B0
P, �1

b is smooth away from q′
1. Let �̂1

b
∼= Spec(Ô�1

b ,q′
1
), then

O�̂1
b

∼= k[[u, y]]/(
t∏

i=1

(yλi−1 + ai(yu, y)u)),

where t is the largest integer so that λt − 1 > 0. Let

g =
t∏

i=1

(yλi−1 + ai(yu, y)u) and gi = yλi−1 + ai(yu, y)u,

so g factorizes as g = g1g2 · · · gt. In each gi, there is a unique monomial of the form ym, and the
degree of such monomial is in decreasing order. Compared to f1, the degree of such monomial in g1 is
lower by 1. This observation guarantees that the family of curves � can be resolved simultaneously by
λ1 steps of blow-ups. Now we blow up Spec(OU[u]/(x−yu)) along B0

P ×q′
1, and denote the strict transform

of �1 by �2. Repeating this procedure, we get a series of families of curves above B0
P:

�λ1 −→ �λ1−1 −→ · · · �1 −→ �.

It follows from the observation above that �
λ1
b is smooth for each b ∈ B0

P(k). The morphism �λ1 −→ B0
P

is flat since each �
λ1
b is a projective curve of the same genus. The morphism �λ1 −→ � is proper and

birational by properties of strict transforms. We set �̃ ∼= �λ1 .

Remark 2.13. After our paper appeared on the arXiv, similar results as in Theorem 2.12 were
also obtained in [27], see Theorem 1.1. In [27], the authors also considered the generic fiber of
so-called weak parabolic fibrations, in which the residue of the Higgs field is not required to
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be nilpotent. We will prove Theorem 2.14 the family version of Theorem 2.12, which did not
appear in [27].

Now we are ready to state the following theorem, which is a family version of Theorem 2.12. We
denote Higgsn,P ×BP B0

P by Higgs0
n,P.

Theorem 2.14. The correspondence between Higgs bundles and spectral sheaves induces an
isomorphism of stacks over B0

P:

Higgs0
n,P

∼= Pic(�̃/B0
P).

Proof. Let S be a k-scheme. Since both Higgs0
n,P and B0

P are locally of finite type over k, we can assume
S is locally of finite type over k. Let (E, φ) be an S-point of Higgs0

n,P such that h(E, φ) = b ∈ B0
P(S). We

denote by F the corresponding spectral sheaf on �b. The goal is to construct a sheaf F̃ on �̃b such that
(σb)∗F̃ = F . We set �0

b = �b, F0 = F . The strategy is to construct by induction a series of sheaves Fk on
�k

b , k = 1, 2, . . . λ1, such that (pk)∗Fk = Fk−1, where pk is the map pk : �k
b −→ �k−1

b . We assume that we
already have F0,F1, . . . ,Ft−1 with the required property and aim to obtain Ft. Note that above V an open
neighborhood of q, while obtaining �k

b , we add a new variable uk to O
�k−1

b
and impose uk−1 = uky, starting

from u0 = x. Therefore, in order to construct Ft so that (pt)∗Ft = Ft−1, all we need to do is to define an
action of ut−1/y on Ft−1. Note that for any s : Spec(k) −→ S a closed point of S, s∗Ft−1 is a torsion-free
sheaf on (�t−1

b )s := �t−1
b ×S,s Spec(k), therefore if such an action exists, it is unique. For the existence of

such an action, we consider the coherent sheaf G = ut−1Ft−1/ut−1Ft−1
⋂

yFt−1 on �t−1
b . There exists an

action of ut−1/y on Ft−1 if and only if G = 0. By Theorem 2.12, such an action exists when restricted to
s, so s∗G = 0 for all closed points s of S. Therefore G = 0.

We set F̃ = Fλ1 . Since �̃b is smooth, F̃ is an invertible sheaf. Now let (E1, φ1) and (E2, φ2) be two S-
points of Higgs0

n,P, both mapped to b under the Hitchin map, and we denote the corresponding spectral
sheaves by F1 and F2. The construction of F̃ implies that there is an isomorphism HomO�b

(F1,F2) ∼=
HomO�̃b

(F̃1, F̃2). Therefore we have a morphism of stacks Higgs0
n,P −→ Pic(�̃0/B0

P).
The inverse of this morphism is constructed as follows. Let L be an invertible sheaf on �̃b. Since

�b ⊆ S × T∗X(q), there is a morphism

OS � π∗TX(−q) −→ EndO�b
(σ∗L).

By adjunction, we get a morphism

OS � TX(−q) −→ π∗EndO�b
(σ∗L) −→ EndOX (π̃∗L).

By Remark 2.6, there is a unique parabolic reduction of π̃∗L at q that is compatible with this
Higgs field. �

3 Azumaya Property of Differential Operators in Positive
Characteristic
3.1 Frobenius twist of a k-scheme
Let Y be a scheme over an algebraically closed field k of characteristic p. Recall that the absolute
Frobenius FY : Y −→ Y is the map that fixes the underlying topological space and takes f to f p on
regular functions. The Frobenius twist Y(1) of Y is the k-scheme that fits into the following pull-back
diagram:
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The relative Frobenius Fr : Y −→ Y(1) is the unique map that makes the following diagram commute.

Since Fr induces a bijection on k-points, we will not distinguish between k-points on Y and k-points
on Y(1).

Let F and G be two OY-modules. A map ϕ : F −→ G is called p-linear if it is additive and satisfies
ϕ(fs) = f pϕ(s) for any f ∈ OU, s ∈ F(U) and open U ⊆ Y. For any OY-module F , there is a natural p-linear
map F −→ (FY)∗F . This map is “universally p-linear” in the sense that any p-linear map F −→ G factors
through F −→ (FY)∗F and gives a unique OY-linear map (FY)∗F −→ G.

3.2 Azumaya property of differential operators
In this section we review the Azumaya property of crystalline differential operators in characteristic
p, following [8]. Let Y be a smooth variety over k. We denote by DY the sheaf of crystalline differential
operators on Y, that is, the sheaf of algebras generated by OY and TY subject to the relations: ∂f − f∂ =
∂(f ), ∂1∂2 − ∂2∂1 = [∂1, ∂2], for any f ∈ OU, ∂, ∂1, ∂2 ∈ TY(U) and U ⊆ Y open. Since we are in characteristic p,
for any ∂ ∈ TY(U), ∂p ∈ DY acts as a derivation on OU, and we denote this derivation by ∂ [p] ∈ TY(U). There
is a p-linear map TY −→ DY defined by ι(∂) = ∂p − ∂ [p]. By the discussion above, ι induces an OY-linear
map Fr∗ TY(1) ∼= F∗

YTY −→ DY. By adjunction, we have an OY(1) -linear map

ι : TY(1) −→ Fr∗ DY.

Therefore, Fr∗ DY sheafifies on T∗Y(1), that is, there exists a sheaf of algebras DY on T∗Y(1) that satisfies
π

(1)∗ DY ∼= Fr∗ DY.
The following theorem is proved in [9].

Theorem 3.1 (cf. [8] Theorem 3.3 and [9] Theorem 2.2.3).

(1) The map ι induces an isomorphism of sheaves from OT∗Y(1) to the center of DY.
(2) The sheaf of algebras DY is an Azumaya algebra over T∗Y(1) of rank p2d, where d is the dimension

of Y.

Let A be an Azumaya algebra on Y. A splitting of A is defined to be a pair (E, ρ), where E is a locally free
sheaf on Y and ρ : A �−→ End(E) is an isomorphism of OY-algebras. Such a (E, ρ) induces an equivalence
between the category QCoh(Y) of quasi-coherent sheaves on Y and the category A -mod of A-modules,
which maps F ∈ QCoh(Y) to E ⊗ F . We define an equivalence from an Azumaya algebra A to another
Azumaya algebra B to be a splitting of Aop⊗B. Such a splitting induces an equivalence from the category
of A-modules to the category of B-modules. Note that if there is a locally free sheaf E that gives a
splitting of Aop ⊗ B, then HomOY (E,OY) gives a splitting of A ⊗ Bop.

Let f : Z −→ Y be a morphism between smooth k-varieties. We denote by df (1) the Frobenius twist of
the map induced by the differential of f :

df (1) : Z(1) ×Y(1) T∗Y(1) −→ T∗Z(1).

Let p2 be the projection to T∗Y(1). Then we have:

Proposition 3.2 (cf. [8] Proposition 3.7). The Azumaya algebras (df (1))∗DZ and p∗
2DY are canonically

equivalent.

Following [8], we define f ! : DY-mod −→ DZ-mod to be the composition of the pull-back
functor DY-mod −→ p∗

2DY-mod, the equivalence in Proposition 3.2, and the push-forward functor
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df ∗DZ-mod −→ DZ-mod. Similarly, we define f∗ : DZ-mod −→ DY-mod to be the composition of the
pull-back functor DZ-mod −→ df ∗Dz-mod, the equivalence in Proposition 3.2, and the push-forward
functor p∗

2DY-mod −→ DY-mod.
Let θ

(1)

Y be the tautological 1-form on T∗Y(1). We think of θ
(1)

Y as a map:

θ
(1)

Y : T∗Y(1) −→ T∗(T∗Y)(1).

Corollary 3.3 (cf. [8] Proposition 3.11 and Corollary 3.12).

(1) The Azumaya algebra (θ
(1)

Y )∗DT∗Y is canonically equivalent to DY.
(2) Let θ

(1)

1 ∈ 
(Z(1), �Z(1) ) and θ
(1)

2 ∈ 
(Y(1), �Y(1) ). If (f (1))∗(θ(1)

2 ) = θ
(1)

1 , then the two Azumaya algebras
(θ

(1)

1 )∗DZ and (θ
(1)

2 ◦ f (1))∗DY are canonically equivalent.

Let M be a DY-module. We denote by ∇M the corresponding flat connection M −→ M ⊗ �Y. There
is a p-linear map TY −→ End(M) defined by

ψ∇M (∂) = ∇M(∂)p − ∇M(∂ [p]).

By the discussion in Section 3.1, we can associate with it a OY-linear map

ψ∇M : Fr∗ TY(1) −→ End(M),

which we call the p-curvature of M.
We review the Cartier descent for flat connections with zero p-curvature. Let F be a quasi-coherent

sheaf on Y(1). There is a canonical DY-action on Fr∗(F) ∼= OY ⊗OY(1)
F , which comes from the canonical

action of DY onOY. Therefore we have a flat connection (Fr∗ F , ∇can). This construction induces a functor
from the category of quasi-coherent sheaves on Y(1) to the category of DY-modules on Y with zero p-
curvature.

Theorem 3.4 (Cartier descent, cf. [20] Theorem 5.1). Let Y be a smooth variety over k. Then the
construction of (Fr∗ F , ∇can) induces an equivalence between the category of quasi-coherent
sheaves on Y(1) and the category of DY-modules on Y with zero p-curvature.

3.3 Differential operators on smooth stacks
Let Y be a smooth irreducible algebraic stack over an algebraically closed field k. When k is the field
of complex numbers C, for Y that is good in the sense that it satisfies dim T∗Y = 2 dim Y, the sheaf of
differential operators on Y is defined in [7] as a sheaf of algebras DY on the smooth topology Ysm. We
review this definition as follows. The objects of Ysm are k-schemes S together with a smooth morphism
fS : S −→ Y, and the morphisms between (S, fS) and (S′, fS′ ) are pairs (φ, α) containing a smooth morphism
φ : S −→ S′ and α : fS

�−→ fS′ ◦ φ. Let (S, fS) be an object of Ysm. We denote by I the left ideal DSTS/Y ⊂
DS generated by the relative tangent sheaf TS/Y. We define (DY)

�

S := DS/I. It has a DS-action by left
multiplication. Let NDS (I) be the normalizer of I in DS. We define (DY)S := NDS (I)/I. In other words,
we set (DY)S = EndDS ((DY)

�

S)
op. For any smooth morphism φ : S −→ S′ over Y, we have a canonical

isomorphism

φ∗((DY)
�

S′ )
�−→ (DY)

�

S, (3.1)

which restricts to an isomorphism

φ−1((DY)S′ )
�−→ (DY)S, (3.2)

where φ−1 is the sheaf-theoretic inverse image. We call DY the sheaf of differential operators on Y.
It is observed in [8] that the isomorphism (3.2) no longer holds when k is of characteristic p > 0.

But meanwhile, Fr∗ DY is a quasi-coherent sheaf on Y(1), and the authors constructed a coherent sheaf
of algebras DY on T∗Y(1) that satisfies π

(1)∗ DY ∼= Fr∗ DY. The construction of DY is as follows. For any
k-scheme S with a smooth morphism fS : S −→ Y, we need to define a coherent sheaf of algebras (DY)S

on (T∗Y)
(1)

S := S(1) ×Y(1) T∗Y(1). We consider the DS-module (D�

Y)S, and denote by (D�

Y)S the corresponding
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coherent sheaf on T∗S(1). Since we mod out the left ideal generated by TS/Y when defining (D�

Y)S, the

support of (D�

Y)S lies in the closed substack (T∗Y)
(1)

S

df (1)

S
↪−−→ T∗S(1). We set (DY)S := EndDS ((D

�

Y)S)
op. For any

smooth morphism φ : S −→ S′ over Y, isomorphism (3.1) induces an isomorphism (φ̃(1))∗(DY)S′ ∼= (DY)S,
where φ̃ is the map (T∗Y)S −→ (T∗Y)S′ . Therefore, (DY)S sheafifies to be a coherent sheaf of algebras DY

on T∗Y(1). We have the following proposition:

Proposition 3.5 (cf. [8] Lemma 3.14 and [28] Proposition 2.7). The coherent sheaf of algebras DY

satisfies π
(1)∗ DY ∼= Fr∗ DY. If the stack Y is good in the sense that dim T∗Y = 2 dim Y, and we

denote by T∗Y0 the maximal smooth open substack of T∗Y, then the restriction of DY to (T∗Y0)(1)

is an Azumaya algebra of rank p2 dim Y.

3.4 D-modules, Azumaya algebras, and Gm-gerbes
Let k be an algebraically closed field. Let B be a k-scheme locally of finite type. Let Y be a stack locally
of finite type over B. Let Ỹ −→ Y be a Gm-gerbe over Y. We denote by QCoh(Ỹ) the category of quasi-
coherent sheaves on Ỹ. We say Ỹ splits if there is an isomorphism Ỹ ∼= Y × BGm of Gm-gerbes. In this
case, there is a decomposition

QCoh(Ỹ) ∼=
∏
n∈Z

QCoh(Ỹ)n

given by the weight of the Gm-action. If Ỹ does not split, we still have such a decomposition by pulling
back along the action map a : BGm × Ỹ −→ Ỹ. We call QCoh(Ỹ)1 the category of twisted quasi-coherent
sheaves associated to Ỹ.

Let A be an Azumaya algebra on Y. We associate with it a Gm-gerbe ỸA over Y, which is defined
as follows. For f : S −→ B a map of schemes, ỸA(S) classifies triples (y, E, σ) where y ∈ Y(S), E is a
vector bundle on S, and σ : y∗A �−→ End(E) is an isomorphism of algebras over S. We call ỸA the stack of
splittings of A. We have the following lemma:

Lemma 3.6 (cf. [8] Lemma 2.3 and [14] Example 2.6). There is a canonical equivalence between
the category A -mod of A-modules on Y and QCoh(ỸA)1.

Now let Y be a smooth irreducible algebraic stack over k. A (crystalline) D-module M on Y is the
datum of a D-module MS on S for each object (S, fS) in Ysm, and an isomorphism φ!MS′

�−→ MS of
D-modules for each morphism (φ, α), φ : S −→ S′ in Ysm. Here φ! denotes the O-module pull-back
with the natural D-module structure. Those isomorphisms need to satisfy the cocycle condition for
compositions. When k is of characteristic p > 0, D-modules on Y correspond to twisted quasi-coherent
sheaves associated to a certain Gm-gerbe GY on T∗Y(1), which is defined as follows. For any smooth
morphism fS : S −→ Y, we associate with it a Gm-gerbe (GY)S on (T∗Y)

(1)

S := S(1)×Y(1) T∗Y(1), which is defined
to be the pull-back of the Gm-gerbe of splittings of the Azumaya algebra DS along df (1)

S : (T∗Y)
(1)

S −→
T∗S(1). For any smooth morphism φ : S −→ S′ over Y, we have an isomorphism (φ̃(1))∗(GY)S′ −→ (GY)S

since dfS factorizes as

S ×Y T∗Y = S ×S′ S′ ×Y T∗Y
Id ×dfS′−−−−→ S ×S′ T∗S′ dφ−→ T∗S,

and the two Azumaya algebras (dφ(1))∗DS and p∗
2DS′ are equivalent by Proposition 3.2. It is shown in [28]

that the category of D-modules on Y is equivalent to the category of twisted quasi-coherent sheaves
associated to GY, see Theorem 2.3 in [28].

Now we assume Y satisfies dim T∗Y = 2 dim Y, and denote by T∗Y0 the maximal smooth open
substack of T∗Y. Recall that in Section 3.3, we defined a coherent sheave of algebras DY on T∗Y(1), such
that its restriction to (T∗Y0)(1) is an Azumaya algebra of rank p2 dim Y. The Gm-gerbe of splittings of this
Azumaya algebra is isomorphic to the restriction of GY to (T∗Y0)(1), see Proposition 2.7 in [28]. Therefore,
the category of DY|(T∗Y0)(1) -modules is a localization of the category of (crystalline) D-modules on Y.

3.5 Tensor structures on Azumaya algebras
Let G be a commutative group stack over B, and A an Azumaya algebra over G. We denote the
multiplication on G by μ : G × G −→ G. Following [24], we define a tensor structure on A to be an
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equivalence of Azumaya algebras from μ∗A to A � A, which is a bimodule M that induces a Morita
equivalence, together with an isomorphism

M � A ⊗μ∗A�A (μ, p3)
∗M ∼= A � M ⊗A�μ∗A (p1, μ)∗M

of bimodules that satisfies the pentagon condition [13](1.0.1).
A tensor structure on the Azumaya algebra A induces a group structure on the stack YA of splittings

of A as follows. Let S be a k-scheme. An S-point of YA is a pair (a, E), where a ∈ G(S) and E is a splitting
module for a∗A. Let (a, E) and (b, F) be two such pairs. The locally free sheaf E�F is a splitting module for
a∗A�b∗A. Applying the equivalence between μ∗A and A�A and then pulling-back along the diagonal
map �S : S −→ S × S, we get a splitting module for μ(a, b)∗A. The construction of this group structure
implies that the projection map YA −→ G is a group homomorphism, therefore we have a short exact
sequence:

0 −→ BGm −→ YA −→ G −→ 0.

4 A Non-Abelian Hodge Correspondence Between Locn,q and Higgsn,q

4.1 Spectral data for flat connections with regular singularities
Let (E, ∇) be a flat connection of rank n on X with regular singularity at q. We associate with it the
p-curvature ψ∇ , which is a OX-linear map

ψ∇ : Fr∗ TX(1) (−q) −→ End(E).

It is associated with the p-linear map

ψ∇ : TX(−q) −→ End(E)

defined by ψ∇ (∂) = ∇(∂)p −∇(∂ [p]) for any ∂ ∈ TX(−q)(U) and U ⊆ X open. We can think of ψ∇ as a twisted
Higgs field

ψ∇ : E −→ E ⊗ Fr∗ �X(1) (q).

The coefficients of its characteristic polynomial define a point b of

n⊕
i=1


(X, (Fr∗ �X(1) (q))i).

Let Fr∗ :
⊕n

i=1 
(X(1), �X(1) (q)i) ↪→ ⊕n
i=1 
(X, (Fr∗ �X(1) (q))i) be the pull-back map. It follows from a similar

argument as in [21] Proposition 3.2 that b actually lies in the image of Fr∗, and we also denote by b the
corresponding point in B(1) ∼= ⊕n

i=1 
(X(1), �X(1) (q)i). We call this map h′ : Locn,q −→ B(1) the Hitchin map
for flat connections with regular singularity at q. The corresponding spectral curve �′

b lies in the total
space of Fr∗ �X(1) (q), which is isomorphic to X ×X(1) T∗X(q)(1). Since b ∈ B(1), �′

b fits into the following
pull-back square:

where �
(1)

b ⊂ T∗X(q)(1) is the spectral curve above b ∈ B(1) as defined in Section 2.1. We denote by
E′ ∈ Coh(�′

b) the spectral sheaf corresponding to ψ∇ , so E′ satisfies π ′∗(E′) ∼= E.
Let x be a local parameter of OX,q. Let (E, ∇) be a flat connection with regular singularity at q.

Restricting ψ∇ (x∂x) to q, we get resq(ψ∇ ) ∈ End(Eq), which we call the residue of ψ∇ at q.
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Lemma 4.1. resq(ψ∇ ) = (resq ∇)p − resq ∇.

Proof. This equation follows from the computation (x∂x)
[p] = x∂x. �

Remark 4.2. If we assume resq ∇ is nilpotent, since p > n, (resq ∇)p = 0. So resq(ψ∇ ) = − resq ∇. In
particular, they lie in the same nilpotent orbit.

4.2 Statement of the theorem
Let a be an unordered n-tuple of elements in k. We denote by Higgsn,a(X(1)) the moduli stack of �X(1) (q)-
twisted Higgs bundles (E, φ) on X(1) such that the unordered n-tuple of eigenvalues of resq(φ) is a. Let
B(1)

a be the image of Higgsn,a(X(1)) under the Hitchin map h(1). Note that when a = (0, 0, . . . , 0), B(1)
a = B(1)

N .
We fix a set-theoretic section σ of the Artin–Schreier map k −→ k that maps t to tp − t. Let Locn,σ(a) be the
substack of Locn,q that classifies flat connections (E, ∇) such that the unordered n-tuple of eigenvalues
of resq(∇) is σ(a). Note that by Lemma 4.1, h′(Locn,σ(a)) ⊆ B(1)

a .
We denote by Locr

n,σ(a) the substack of Locn,σ(a) that classifies flat connections (E, ∇) such that the
corresponding spectral sheaf E′ ∈ Coh(�′

b) is invertible. We have the following theorem:

Theorem 4.3.

(1) Locr
n,σ(a) has a natural structure of a Pic(�(1)/B(1)

a )-torsor.

(2) Locn,σ(a)
∼= Locr

n,σ(a) ×Pic(�(1)/B(1)
a ) Higgsn,a(X(1)).

Before getting into the proof of Theorem 4.3, we state two corollaries.

Corollary 4.4. There exists an étale cover U −→ B(1)
a , such that

Locn,σ(a) ×B(1)
a

U ∼= Higgsn,a(X(1)) ×B(1)
a

U.

We denote by HiggsN (X(1)) the moduli stack of �X(1) (q)-twisted Higgs bundles (E, φ) on X(1) such that
resq(φ) is nilpotent, and by LocN the substack of Locn,q that classifies (E, ∇) with nilpotent resq(∇). Then
we have:

Corollary 4.5.

(1) Locr
N has a natural structure of a Pic(�(1)/B(1)

N )-torsor,
(2) LocN ∼= Locr

N ×Pic(�(1)/B(1)

N ) HiggsN (X(1)).

Our definition of Locr
n,σ(a) and formulation of Theorem 4.3 is motivated by the work of Chen–Zhu

[10] on the characteristic p version of the non-abelian Hodge correspondence for flat connections
without singularities. The strategy of proof is similar to [10] besides the proof of the surjectivity
result Proposition 4.6. The rest of this section is devoted to the proof of Theorem 4.3. We start by
showing:

Proposition 4.6. The map h′ : Locr
n,σ(a) −→ B(1)

a is surjective.

We need to show that for any b ∈ B(1)
a (k), there exists (E, ∇) ∈ Locr

n,σ(a)(k) that is mapped to b under
the Hitchin map. The idea of constructing (E, ∇) is as follows: we construct a flat connection (E0, ∇0)

on X\q and a flat connection (Ê, ∇̂) on the formal disk around q, such that both flat connections
have the correct p-curvature. Then we glue (E0, ∇0) and (Ê, ∇̂) together using the Beauville–Laszlo
theorem [5].

4.3 Proof of Proposition 4.6
Let b ∈ B(1)

a (k). Let π ′ : �′ −→ X and π(1) : �(1) −→ X(1) be the corresponding spectral covers as described
in Section 4.1. We will construct (E, ∇) such that h′(E, ∇) = b and the spectral sheaf E′ is invertible.
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Step 1. In this step, we show that there exists a flat connection (E0, ∇0) on X\q such that the spectral
curve of ψ∇0 is �′\(π ′)−1(q) and the spectral sheaf E′

0 is invertible. Such a (E0, ∇0) is equivalent to a
splitting of the Azumaya algebra i∗0DX\q, where i0 is the embedding i0 : �(1)\(π(1))−1(q) −→ T∗(X\q)(1).
Note that for any rank p vector bundle F on �(1)\(π(1))−1(q) such that End(F) ∼= i∗0DX\q, the corresponding
spectral sheaf on �′\(π ′)−1(q) is invertible. This is because for any p ∈ X\q and x a local parameter at p,
x acts as a regular nilpotent matrix on the fiber Fp′ for any p′ ∈ �(1)\(π(1))−1(q) such that π(1)(p′) = p, see
the proof of Lemma 2.2.1 in [9]. The existence of such a splitting is guaranteed by the following theorem.

Theorem 4.7 (cf. [17] Theorem 3.21). Let Y be a scheme of finite type over an algebraically closed
field. Assume dim(Y) ≤ 1. Then H2

et(Y,Gm) = 0. In particular, every Azumaya algebra on Y splits.

Step 2. In this step, we construct a flat connection (Ê, ∇̂) on the formal disk D = Spec(ÔX,q) around q
that satisfies the following three properties:

(5.1) (Ê, ∇̂) has regular singularity and the unordered n-tuple of eigenvalues of res(∇̂) is σ(a),
(5.2) the spectral curve of ψ∇̂ is �̂′ := D ×X �′,
(5.3) the spectral sheaf Ê′ is invertible.

Now let x be a local parameter of X at q, then D ∼= Spec(k[[x]]). We denote ι(x∂x) = xp∂
p
x by y, so

O�̂′ ∼= k[[x]][y]/(f ), where f = yn + b1(x)yn−1 + · · · + bn−1(x)y + bn(x), bi(x) ∈ k[[x]].

Since b ∈ B(1)
a , bi(x) actually lies in k[[xp]]. We assume that a consists of t distinct elements a1, a2, . . . , at,

each appearing mi times, then f̄ ∈ k[[xp]][y]/xpk[[xp]][y] factorizes as

f̄ =
t∏

i=1

(y − ai)
mi ,

therefore f factorizes as f = f1f2 · · · ft, where fi ∈ k[[xp]][y] is monic and f̄i = (y − ai)
mi . Therefore �̂′ is

the disjoint union of �̂′
i := Spec k[[x]][y]/(fi). It is enough to construct flat connections (Êi, ∇̂i) with the

following properties:

(5.1’) (Êi, ∇̂i) has regular singularity and the eigenvalues of res(ψ∇̂i
) are all σ(ai).

(5.2’) the spectral curve of ψ∇̂i
is �̂′

i ,

(5.3’) the spectral sheaf Ê′
i is invertible.

SinceO�̂′
i
is a local ring, (5.3’) implies that Ê′

i is isomorphic toO�̂′
i
. Let e be its generator. A meromorphic

flat connection with spectral curve �̂′
i is determined by the connection acting on e, which can be written

as ∇(e) = gedx, g ∈ O�̂′
i
[x−1]. By (5.1’) and (5.2’), ∇ need to satisfy the following:

(5.1”) (∇(x∂x) − σ(ai))(e) ⊆ (x, y − ai)e,
(5.2”) (∇(x∂x)

p − ∇((x∂x)
[p]))(e) = ye.

Since (∇(x∂x)
p −∇((x∂x)

[p]))(e) = xp(∂
p−1
x (g)+gp)e, (5.2”) is equivalent to the following equation in O�̂′

i
:

xp(∂
p−1
x (g) + gp) = y.

We look for solutions of the form

g = −(y − ai − σ(ai))/x + g1, g1 ∈ k[[x]][y],

so (5.1”) is automatically satisfied, and (5.2”) is equivalent to

∂
p−1
x (g1) + gp

1 = (y − ai)
p/xp. (4.1)

Note that since fi ≡ (y − ai)
mi mod xpk[[xp]][y], there exists a polynomial h ∈ k[[xp]][y] such that

(y − ai)
p/xp = h̄ in O�̂′

i
. By a substitution y′ = y − ai, we can assume that fi ≡ ymi mod xpk[[xp]][y]. In

this case, O�̂′
i

∼= k[[x, y]]/(fi), therefore it is enough to find a solution g1 ∈ k[[x, y]]. It is easy to see that
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for any h ∈ k[[xp]][y], the equation ∂
p−1
x (g1) + gp

1 = h has solutions in k[[x, y]]. We look for solutions of the
form g1 = xp−1 · g2, where g2 ∈ k[[xp, y]]. Equation 4.1 becomes

gp
2 · xp2−p − g2 = h,

for which the existence of solutions follows from Hensel’s lemma.
Step 3. Let D× = Spec(k((x))) be the punctured disk around q, and let �̂× = D× ×D �̂ be the spectral

curve above D×. Both (E0|D× , ∇0|D× ) and (Ê|D× , ∇̂|D× ) give splittings of the Azumaya algebra DX|�̂× . Since
all invertible sheaves on �̂× are trivial, we have an isomorphism of connections

(E0|D× , ∇0|D× ) ∼= (Ê|D× , ∇̂|D× ).

We fix such an isomorphism. By the theorem of Beauville–Laszlo [5], E0 and Ê can be glued together to
get a rank n vector bundle E on X. Since the gluing data is compatible with the connections, ∇0 and ∇̂
are glued together to get a flat connection ∇ on E with regular singularity at q. This connection (E, ∇)

satisfies all the properties we need.

4.4 DX-modules on spectral covers of X
Let b ∈ B(1), and let π ′ : �′ −→ X and π(1) : �(1) −→ X(1) be the corresponding spectral covers as described
in Section 4.1. We have the following pull-back square:

There is a canonical DX-action on O�′ = OX ⊗OX(1)
O�(1) , which comes from the canonical action of DX

on OX. Similarly, for any quasi-coherent sheaf M on �(1), the pull-back sheaf ρ∗M ∼= OX ⊗OX(1)
M has

a canonical DX-action. We denote by ∇can the corresponding map

∇can : ρ∗M −→ ρ∗M ⊗OX �X.

Definition 4.8. We define a DX-module on �′ to be a quasi-coherent sheaf F on �′ together with
a k-linear map

∇ : F −→ F ⊗OX �X

that satisfies ∇(fs) = ∇can(f )(s) + f∇(s) for f ∈ OU, s ∈ F(U) and U ⊆ �′ open. Let DX(−q) be the
subsheaf of algebras of DX generated by OX and TX(−q). Similarly, we define DX(−q)-modules
on �′. The only difference is that now ∇ is a map

∇ : F −→ F ⊗OX �X(q).

We have the following lemma concerning this definition.

Lemma 4.9.

(1) The structure sheaf O�′ is a DX-module on �′. For any quasi-coherent sheaf M on �(1), the pull-
back ρ∗M is a DX-module on �′.

(2) Let (E, ∇) be a flat connection with regular singularity at q such that h′(E, ∇) = b. Let E′ ∈ Coh(�′)
be the corresponding spectral sheaf. Then (E′, ∇) is a DX(−q)-module on �′.

(3) Let (F1, ∇1) and (F2, ∇2) be two DX(−q)-modules on �′, then F1 ⊗O�′ F2 and HomO�′ (F1,F2) have
canonical structures of DX(−q)-modules on �′.

In all of the cases above, we denote by ∇can the corresponding map induced by the action of TX(−q).
Let (F , ∇) be a DX(−q)-module on �′ such that π ′∗(F) is locally free, then π ′∗(F) has the structure of a

flat connection with regular singularity at q.
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4.5 Proof of Theorem 4.3
Now we construct the map � that induces the isomorphism in Theorem 4.3. Let b ∈ B(1)

a . Let (E, ∇E) ∈
Locr

n,σ(a) and (M, φ) ∈ Higgsn,a(X(1)), both mapped to b under the Hitchin map. We denote the spectral
sheaf of (E, ∇E) by E′ ∈ Coh(�′) and the spectral sheaf of (M, φ) by M ∈ Coh(�(1)).

Lemma 4.10. Let G ∈ Coh(�(1)) and let L be an invertible sheaf on �′. The push-forward π ′∗(L ⊗
ρ∗(G)) is a locally free sheaf of rank n on X if and only if π

(1)∗ (G) is a locally free sheaf of rank n
on X(1).

By Lemma 4.9 and Lemma 4.10, we get a flat connection (π ′∗(E′ ⊗ ρ∗(M)), ∇can) on X with regular
singularity at q.

Lemma 4.11.

(1) The flat connection (π ′∗(E′ ⊗ ρ∗(M)), ∇can) is mapped to b under the Hitchin map h′,
(2) The residue resq(∇can) has eigenvalues σ(a).

The construction of (π ′∗(E′ ⊗ ρ∗(M)), ∇can) is functorial. Therefore, we have a morphism of stacks
over B(1)

a :

� : Locr
n,σ(a) ×B(1)

a
Higgsn,a(X(1)) −→ Locn,σ(a).

Now we construct a map � in the inverse direction. Let (F, ∇F) be a point of Locn,σ(a) such that
h′(F, ∇F) = b. Let F′ ∈ Coh(�′) be the spectral sheaf. Then by Lemma 4.9, there is a canonical DX(−q)-
action on π ′∗(HomO�′ (E′,O�′ ) ⊗ F′). We denote HomO�′ (E′,O�′ ) ⊗ F′ by F .

Lemma 4.12.

(1) The flat connection (π ′∗(F), ∇can) has zero p-curvature.
(2) The residue resq(∇can) is nilpotent.

By Lemma 4.1, the residue resq(∇can) of (π ′∗(F), ∇can) at q satisfies

resq(∇can)
p − resq(∇can) = 0.

This implies resq(∇can) is a semisimple matrix with integer eigenvalues. But meanwhile, resq(∇can) needs
to be nilpotent, so resq(∇can) must be the zero, therefore (π ′∗(F), ∇can) is a flat connection without
singularities. By the Cartier descent (Theorem 3.4), there is a canonical quasi-coherent sheaf N on X(1)

such that (π ′∗(F), ∇can) is isomorphic to (Fr∗(N ), ∇can). Note that N can be identified with elements in
π ′∗(F) that vanish under ∇can. The action of O�(1) preserve those elements, therefore there is a canonical
quasi-coherent sheaf M on �(1) such that (F , ∇can) is isomorphic to (ρ∗(M), ∇can) as DX(−q)-modules
on �′. Since E′ is an invertible sheaf, (F′, ∇F) ∼= (E′ ⊗ ρ∗(M), ∇can). The construction of M is functorial.
Therefore, we have a morphism � of stacks over B(1)

a :

� : Locr
n,σ(a) ×B(1)

a
Locn,σ(a) −→ Higgsn,a(X(1)).

Let (E, ∇E) ∈ Locr
n,σ(a) such that h′(E, ∇E) = b, and denote the corresponding spectral sheaf by E′ ∈

Coh(�′). Let L be an invertible sheaf on �(1). Then by Lemma 4.11,

(π ′
∗(E

′ ⊗ ρ∗(L)), ∇can) ∈ Locr
n,σ(a).

This construction defines an action of Pic(�(1)/B(1)
a ) on Locr

n,σ(a).

Proposition 4.13. This action induces the structure of a pseudo Pic(�(1)/B(1)
a )-torsor on Locr

n,σ(a).
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Proof. Let S be a k-scheme. Let b be an S-point of B(1)
a . We need to show that the action of Pic(�

(1)

b ) on
the fiber (Locr

n,σ(a))b := Locr
n,σ(a) ×B(1)

a ,b S is simply transitive when (Locr
n,σ(a))b is non-empty. Let (E, ∇E) and

(F, ∇F) be two points of Locr
n,σ(a) that is mapped to b under the Hitchin map. We denote the corresponding

spectral sheaves by E′ and F′. By the discussion after Lemma 4.12, there exists a quasi-coherent sheaf M
on �

(1)

b such that (F′, ∇F) ∼= (E′ ⊗ ρ∗(M), ∇can). Since ρ is faithfully flat, E′ and F′ being invertible sheaves
on �′

b implies that M is an invertible sheaf on �
(1)

b . The map � induces a map

HomO
�

(1)
b

(O
�

(1)

b
,M)

�−→ HomDX(−q)((E, ∇E), (F, ∇F)),

which is an isomorphism since � produces its inverse. �

We denote by Locn,q is the moduli stack of flat connections on X with regular singularity at q, without
constraints on the eigenvalues of the residue. Let Locr

n,q ⊂ Locn,q be the substack characterized by the
spectral sheaf being invertible. We have the following proposition:

Proposition 4.14. The map h′ : Locr
n,q −→ B(1) is smooth.

Before getting into the proof of Proposition 4.14, we state a corollary that is going to be used in the
proof of Theorem 4.3.

Corollary 4.15. The map h′ : Locr
n,σ(a) −→ B(1)

a is smooth.

Proof. The map Locr
n,q ×B(1) B(1)

a −→ B(1)
a is smooth by base change, and the fiber product Locr

n,q ×B(1) B(1)
a

is the disjoint union of Locr
n,c, where c ranges from all unordered n-tuples of elements in k that maps to

a under the Artin–Schreier map. �

We denote by L̃ocn,q the stack that classifies triples (E, ∇, θ), where E is a vector bundle of rank n on

X, ∇ : E −→ E ⊗ �X(q) is a flat connection with regular singularity at q and θ : Eq
∼=−→ kn is a frame of E

at q. The natural action of GLn on the frame θ gives L̃ocn,q the structure of a GLn-torsor over Locn,q.

Lemma 4.16. Locn,q and L̃ocn,q are algebraic stacks locally of finite type over k.

Proof. The 1-morphism Locn,q −→ Bunn is representable and locally of finite presentation. Since Bunn

is an algebraic stack locally of finite type over k and L̃ocn,q is a GLn-torsor over Locn,q, both Locn,q and
L̃ocn,q are algebraic stacks locally of finite type over k. �

Lemma 4.17. Locr
n,q and L̃oc

r
n,q are smooth.

Proof. In order to show that L̃oc
r
n,q is smooth, all we need to show is that for any small extension of

finite-generated Artinian local k-algebras A′ −→ A, an A-point of L̃oc
r
n,q can be lifted to an A′-point of

L̃oc
r
n,q, that is, we want to produce the dashed arrow for the following commutative diagram:

We denote by (E, ∇, θ) the k-point

Spec(A/mAA) −→ Spec(A) −→ L̃oc
r
n,q.

The obstruction to the existence of such liftings lies in the second hypercohomology H
2(F •

E,∇ ) of the
complex

F •
E,∇ : End(E)(−q)

∇End(E)−−−−→ End(E) ⊗ �X(q),
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where ∇End(E) is the canonical connection on End(E) induced by ∇. By Serre duality, H2(F •
E,∇ ) ∼= H

0(F •
E,∇ ).

Note that H
0(F •

E,∇ ) is isomorphic to the Lie algebra of Aut(E, ∇, θ). Since (E, ∇) ∈ Locr
n,q, we have

Aut(E, ∇) = k× by Proposition 4.13. But multiplication by scalars does not preserve the framing θ ,
therefore Aut(E, ∇, θ) is the trivial group. This implies H

2(F •
E,∇ ) ∼= H

0(F •
E,∇ ) = 0. �

A by-product of the proof of Lemma 4.17 is the following computation of the dimension of Locr
n,q.

Since H
0(F •

E,∇ ) = H
2(F •

E,∇ ) = 0,

dim L̃oc
r
n,q = dimH

1(F •
E,∇ )

=2(dim H0(X,End(E) ⊗ �X(q)) − dim H0(X,End(E)(−q))).

By Riemann–Roch,

dim H0(X,End(E) ⊗ �X(q)) − dim H0(X,End(E)(−q)) = n2g.

Therefore,

dimLocr
n,q = dim L̃oc

r
n,q − dim GLn(k)

=n2(2g − 1).

Proof Proposition 4.14. Let b ∈ B(1)(k). By Proposition 4.6 and 4.13, the fiber (Locr
n,q)b := Locr

n,q ×B(1) ,b

Spec(k) is a Pic(�
(1)

b )-torsor. We compute that

dim B(1) = n(n + 1)(2g − 1)/2 + n(1 − g)

and

dim Pic(�
(1)

b ) = g
�

(1)

b
− 1 = n(n − 1)(2g − 1)/2 + n(g − 1),

therefore

dim Pic(�
(1)

b ) = dimLocr
n,q − dim B(1).

Since both Locr
n,q and B(1) are smooth, the map h′ is flat by miracle flatness. Furthermore, since Pic(�

(1)

b )

is smooth, (Locr
n,q)b is smooth, therefore h′ is smooth. �

Proof of Theorem 4.3. The first part follows from Proposition 4.13 and Corollary 4.15. For the second
part, it is easy to see that the morphism � defined above induces a morphism

� : Locr
n,σ(a) ×Pic(�(1)/B(1)

a ) Higgsn,a(X(1)) −→ Locn,σ(a),

and � induces the inverse. �

Now we discuss how the residues of Higgs bundles and flat connections match under �.

Proposition 4.18. Let (E, ∇E) ∈ Locr
n,σ(a) and (M, φM) ∈ Higgsn,a(X(1)) such that

h′(E, ∇E) = h(1)(M, φM) = b ∈ B(1)
a (k).

Denote the image of (E, ∇E) and (M, φM) under � by (F, ∇F). Then resq(ψ∇F ) and resq(φM) lie in
the same adjoint orbit.
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Proof. Let E′ ∈ Coh(�′) be the spectral sheaf of (E, ∇E), and let M ∈ Coh(�(1)) be the spectral sheaf of
(M, φM). Let x be a local parameter of X at q. Note that resq(φM) is the action of xp∂

p
x on the fiber π

(1)∗ (M)|q,
and resq(ψ∇F ) is the action of xp∂

p
x on the fiber π ′∗(E′ ⊗ ρ∗(M))|q. Since π

(1)∗ (M)|q ∼= π ′∗(ρ∗(M))|q with the
same xp∂

p
x action, it suffices to show that the action of xp∂

p
x on π ′∗(ρ∗(M))|q and π ′∗(E′ ⊗ ρ∗(M))|q lie in

the same adjoint orbit. This follows from the assumption that E′ is an invertible sheaf. �

In particular, if σ(a) = (0), Proposition 4.18 together with Remark 4.2 implies that resq(∇F) and resq(φM)

lie in the same nilpotent orbit. Therefore, we have the following:

Corollary 4.19. The scheme-theoretic image of Locn,P under the Hitchin map h′ is B(1)

P .

5 Tamely Ramified Geometric Langlands Correspondence in Positive
Characteristic
5.1 The algebra DBunn,P

In this subsection, we clarify what we mean by DBunn,P . Since the stack Bunn,P does not satisfy the
property required in Proposition 3.5, we cannot apply this proposition directly. In order to solve this
problem, we introduce a new stack Bunn,P similar to the stack Bunn introduced in [8]. The stack Bunn,P

classifies the same objects as Bunn,P, but the morphisms are different. Let S be a k-scheme, and let (E, E•
q)

and (F, F•
q) be two rank n vector bundles on S × X with partial flag structures of type P (see Remark 1.6)

along S × q, then the set of morphisms between (E, E•
q) and (F, F•

q) are defined to be the set of isomorphic

classes of pairs (ι,L), where L is a line bundle on S and ι is an isomorphism ι : (E, E•
q)

�−→ (F⊗p∗
S(L), F•

q ⊗L).
By taking L = OS, we get a natural map Bunn,P −→ Bunn,P, and Bunn,P is a Gm-gerbe over Bunn,P.

Proposition 5.1. The stack Bunn,P satisfies dim T∗Bunn,P = 2 dim Bunn,P.

Proof. We apply the same strategy as in [16]. The main goal is to show that the nilpotent cone N ilp :=
h−1

P (0) ⊂ T∗Bunn,P is isotropic. Then the argument used in the proof of Propositions 7 and 8 in [16] applies
here to deduce the desired equality. Let B be a Borel subgroup of GLn(k) that is contained in P. We denote
by BunB the moduli stack of B-bundles on X. By Lemma 23 in [18], the natural map f : BunB −→ Bunn,P is
surjective. In order to apply Lemma 5 in [16] to show that N ilp is isotropic, all we need to show is that for
any (E, E•

q, φ) ∈ N ilp(k), there exists EB ∈ BunB(k) such that f (EB) = (E, E•
q) and f ∗(φ) = 0 ∈ T∗

EB
BunB, that

is, there exists a complete flag structure of E over X such that its restriction to q is compatible with the
partial flag structure E•

q, and the Higgs field φ is nilpotent with respect to this complete flag structure.
We choose a basis (e1, e2, . . . , en) of Eq such that the complete flag structure

0 ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · 〈e1, e2, . . . , en〉 = Eq

is compatible with E•
q. Let U = Spec A be an open neighborhood of q over which E and �1

X(q) trivializes.
Fixing such trivializations, the Higgs field φ corresponds to an A-linear map An −→ An. Since resq(φ)

is nilpotent with respect to E•
q, φq(ei) lies in the k-vector space spanned by e1, e2, . . . , ei−1. Shrinking U if

necessary, the basis (e1, e2, . . . , en) of Eq can be lifted to a basis (ẽ1, ẽ2, . . . , ẽn) of E over U that still satisfies
φ(ẽi) ∈ 〈ẽ1, ẽ2, . . . , ẽi−1〉. The B-reduction of E over U given by

0 ⊂ 〈ẽ1〉 ⊂ 〈ẽ1, ẽ2〉 ⊂ · · · 〈ẽ1, ẽ2, . . . , ẽn〉 = E|U
can be extended to a B-reduction over X since GLn(k)/B is projective. Such a B-reduction satisfies all the
properties we need. �

Remark 5.2. Over C the field of complex numbers, the analogue of Proposition 5.1 was proved
in [4] (see Theorem 6, 7) for a general reductive group G and parahoric P. It is not clear to the
author if their arguments can be adapted to the characteristic p setting.

Now we apply Proposition 3.5 to Bunn,P and get DBunn,P
. The sheaf of algebras DBunn,P is defined to be

the pull-back of DBunn,P
to Bunn,P.
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We denote Higgsn,P ×BP B0
P by Higgs0

n,P and Locn,P ×B(1)
P

(B0
P)

(1) by Loc0
n,P. Since Higgs0

n,P is smooth, DBunn,P

restricts to an Azumaya algebra D0
Bunn,P

on

(Higgs0
n,P)

(1) ⊆ Higgs(1)

n,P
∼= T∗Bun(1)

n,P.

Now we are in the position to state the main theorem of the paper:

Theorem 5.3. There exists an OLoc0
n,P

�D0
Bunn,P

-module P , such that the Fourier–Mukai transform
�P with kernel P induces an equivalence

Db(QCoh(Loc0
n,P))

�−→ Db(D0
Bunn,P

-mod)

between the bounded derived category of quasi-coherent sheaves on Loc0
n,P and the bounded

derived category of D0
Bunn,P

-modules.

5.2 The tensor structure on D0
Bunn,P

Recall that in Section 2, we constructed a family of curves �̃ −→ B0
P such that

Higgs0
n,P

∼= Pic(�̃/B0
P).

In this subsection we show that there is a natural tensor structure on the Azumaya algebra D0
Bunn,P

, in
the sense of [24] (see Section 3.5). We denote �̃\π̃−1(B0

P ×q) by �̃0, where π̃ : �̃ −→ B0
P ×X is the universal

spectral cover. Let i be the natural inclusion

i : �̃0 −→ B0
P × T∗X.

We denote by a the morphism

a : �̃ ×B0
P

Pic(�̃/B0
P) −→ Pic(�̃/B0

P)

that maps (̃x, L) to L(̃x). We denote by κ the Abel–Jacobi map

κ : �̃/B0
P −→ Pic(�̃/B0

P)

that maps x̃ ∈ �̃/B0
P to O�̃ (̃x).

Let θX be the tautological 1-form on T∗X and θBunn,P the tautological 1-form on T∗Bunn,P. By similar
arguments as in Theorem 4.12 in [8], we have

Proposition 5.4. When restricted to �̃0 ×B0
P

Pic(�̃/B0
P),

i∗θX � θBunn,P = a∗θBunn,P |�̃0×B0
P

Pic(�̃/B0
P).

In particular,

i∗θX = κ∗θBunn,P |�̃0 .

For the proof of Proposition 5.4, we consider the moduli stack Hecke1
P of quadruples

((E, E•
q), (F, F•

q), x, i : E ↪→ F),

where x ∈ X\q, (E, E•
q), (F, F•

q) ∈ Bunn,P such that F/E is the simple skyscraper sheaf at x, and the partial
flag structures E•

q and F•
q coincide under i. By considering Im(ix) ⊂ Fx, this data is equivalent to a triple
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((F, F•
q), x, V ⊂ Fx), where V is a dimension n − 1 subspace of Fx. We consider the following projections:

where q maps the quadruple to (F, F•
q) and p maps the quadruple to ((E, E•

q), x). Both p and q are smooth.
Consider the following pull-back diagram:

We define α1 to be the map:

α1 = pr2 ◦f1 : Z0 −→ Higgs0
n,P,

where pr2 is the projection q∗Higgs0
n,P = Hecke1

P ×q,Bunn,P Higgs0
n,P −→ Higgs0

n,P. Similarly, we define

α2 = pr2 ◦f2 : Z0 −→ T∗(X\q) × Higgs0
n,P.

The stack Z0 and the maps α1, α2 can be described as follows:

Lemma 5.5. The stack Z0 is isomorphic to �̃0×B0
P
Higgs0

n,P. Under this isomorphism, α1 corresponds
to the addition map a, and α2 corresponds to the product of the projection map �̃0 ⊂ T∗(X\q)×
B0

P
pr1−→ T∗(X\q) with the identity map of Higgs0

n,P.

Proof. Let ((E, E•
q), (F, F•

q), x, i : E ↪→ F) be a k-point of Hecke1
P, which we denote by τ . There is a short exact

sequence of cotangent spaces

0 −→ T∗
xX

p∗
X−→ T∗

τHecke1
P

π−→ T∗
τ p−1

X (x) −→ 0,

where pX is the projection Hecke1
P −→ X. The fiber p−1

X (x) classifies (F, F•
q) ∈ Bunn,P together with a

subspace V ⊂ Fx of dimension n − 1. Therefore, T∗
τ p−1

X (x) is the subspace of twisted Higgs fields φ ∈

(X,End(F) ⊗ �X(q + x)) such that resq(φ) is nilpotent with respect to the partial flag structure F•

q and
resx(φ) is nilpotent with respect to V ⊂ Fx. The composite π ◦dq maps (τ , (F, F•

q, φF)) to φF, and π ◦dp maps
(τ , (E, E•

q, φE), (x, ξ)) to the unique extension of φE to F. Therefore, Z0 classifies triples

((F, F•
q, φF), x, E ⊂ F),

where (F, F•
q, φF) ∈ Higgsn,P, x ∈ X\q such that F/E = kx and φF restricts to a twisted Higgs field on E with

no pole at x. Since (F, F•
q, φF) is isomorphic to (E, E•

q, φE) away from x, they are mapped to the same point
b ∈ B0

P under the Hitchin map. Let L resp. L′ ∈ Pic(�̃b) be the invertible sheaf corresponding to (E, E•
q, φE)

resp. (F, F•
q, φF) under the isomorphism in Theorem 2.14. Since F/E = kx, L′/L = kx′ for some x′ ∈ �̃0

b

that maps to x under the spectral cover map. Therefore having a triple ((F, F•
q, φF), x, E ⊂ F) as above is

equivalent to having (b,L, x′), where b ∈ B0
P, L ∈ Pic(�̃b) and x′ ∈ �̃0

b . �

Proof of Proposition 5.4. The goal is to show α∗
1θBunn,P = α∗

2(θBunn,P � θX). Both 1-forms are equal to the
pull-back of the tautological 1-form on T∗Hecke1

P to Z0. �
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Let θ0
Bunn,P

be the restriction of θBunn,P to Higgs0
n,P. By Lemma 3.14 in [8], in order to construct a tensor

structure on D0
Bunn,P

, it is enough to show that for the addition map

m : Pic(�̃/B0
P) × Pic(�̃/B0

P) −→ Pic(�̃/B0
P),

the 1-form θ0
Bunn,P

satisfies the following equality:

m∗θ0
Bunn,P

= θ0
Bunn,P

� θ0
Bunn,P

. (5.1)

We denote by Picd
(�̃/B0

P) the degree d component of Pic(�̃/B0
P). Since there are isomorphisms between

components of Pic(�̃/B0
P) that preserve θ0

Bunn,P
, it is enough to prove the equality (5.1) for large enough d,

d′ and

md,d′ : Picd
(�̃/B0

P) × Picd′
(�̃/B0

P) −→ Picd+d′
(�̃/B0

P).

We denote by κd the map

κd : (�̃/B0
P)

d −→ Picd
(�̃/B0

P)

that maps (̃x1, x̃2, . . . , x̃d) ∈ (�̃/B0
P)

d to O�̃ (̃x1 + x̃2 + · · · + x̃d). For d > 2g�b − 2, there is an open subset of
�̃d such that κd is smooth and dominant. Therefore, it is enough to show that

κ∗
d+d′ θ

0
Bunn,P

= κ∗
d θ0

Bunn,P
� κ∗

d′ θ
0
Bunn,P

.

By Proposition 5.4, this equality holds on (�̃0)d+d′
, therefore it holds on �̃d+d′

.

5.3 Torsor structure on Loc0
n,P

By Corollary 4.5, Proposition 4.18, Remark 4.2, Remark 2.6, and Theorem 2.14, we have the following:

Proposition 5.6.

(1) The isomorphism in Corollary 4.5 induces

Loc0
n,P

∼= Locr
N ×B(1) (B0

P)
(1) ×Pic(�(1)/(B0

P)(1)) (Higgs0
n,P)

(1),

(2) the action of Pic(�̃(1)/(B0
P)

(1)) on (Higgs0
n,P)

(1) gives Loc0
n,P the structure of a Pic(�̃(1)/(B0

P)
(1))-torsor.

Let S be a k-scheme. Let b be an S-point of (B0
P)

(1). Consider the following commutative diagram:

Here �̃′
b := X ×X(1) �̃

(1)

b . There exists a unique map from �̃b to �̃′
b that makes the diagram commute. We

call this map τ̃ . Note that τ̃ is finite since Fr�̃b
is finite and ρ̃ is separated.
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Let (E, E•
q, ∇E) be an S-point of Locn,P such that h′(E, ∇E) = b. Let E′ ∈ Coh(�′

b) be the spectral sheaf. We
associate with it an invertible sheaf Ẽ′ ∈ Coh(�̃′

b) that satisfies σ ′∗ (̃E′) = E′ as follows. Let (E1, ∇1) ∈ Locr
N

and (E2, φ2) ∈ (Higgs0
n,P)

(1) such that h′(E1, ∇1) = h(1)(E2, φ2) = b and they are mapped to (E, ∇E) under the
isomorphism in Proposition 5.6(1). Let E′

1 ∈ Coh(�′
b) be the spectral sheaf of (E1, ∇1) and L ∈ Coh(�

(1)

b )

the spectral sheaf of (E2, φ2), then we have E′ ∼= E1⊗ρ∗L. By Theorem 2.14, there exists a unique invertible
sheaf L̃ on �̃

(1)

b such that σ
(1)∗ L̃ = L. Now we define

Ẽ′ = σ ′∗(E′
1) ⊗ ρ̃∗L̃.

This construction does not depend on the choice of (E1, ∇1) and (E2, φ2).

Lemma 5.7. The flat connection ∇can on τ̃ ∗Ẽ′ = O�̃b
⊗O�̃′

b
Ẽ′ defined by

∇can(∂)(f ⊗ s) = ∂(f ) ⊗ s + f∇E(dπ̃∗(∂))(s)

for any ∂ ∈ TU, f ∈ OU, s ∈ Ẽ′ (̃τ (U)) and open U ⊆ �̃b, has no singularities. Here dπ̃∗ is the tangent
map T�̃b

−→ π̃∗TX.

Proof. Since b ∈ B0
P, π̃−1(q) consists of r points q1, q2, . . . , qr. The only places that ∇can might have

singularities are q1, q2, . . . , qr. Note that π̃ : �̃b −→ X has ramification index λi at qi. Let t be a local
parameter at qi ∈ �̃b and x a local parameter at q ∈ X such that π̃∗(x) = tλi . Let U be an open
neighborhood of qi. Since (E, ∇E) has nilpotent residue at q, there exists a positive integer N such that
for any m ≥ N and s ∈ Ẽ′ (̃τ (U)), (∇E(x∂x))

m(s) ∈ x̃E′. We compute that

(∇can(t∂t))
pN(f ⊗ s) = (t∂t)

pN(f ) ⊗ s + f (∇E(dπ̃∗(t∂t)))
pN(s).

Since (t∂t)
pN(f ) ∈ tO�̃b

and (∇E(dπ̃ *(t∂t)))
pN(s) = (∇E(λix∂x))

pN(s) ∈ x̃E′, the sum lies in tO�̃b
⊗ Ẽ′. Therefore,

the residue of (̃τ ∗Ẽ′, ∇can) at q′ is nilpotent. But since τ̃ ∗Ẽ′ is an invertible sheaf on �̃b, the residue must
be zero, so the flat connection ∇can has no singularity at qi. �

We denote by θ̃b the restriction of κ∗θBunn,P to �̃b. Then we have the following:

Lemma 5.8. The connection (̃τ ∗Ẽ′, ∇can) is mapped to θ̃
(1)

b under the Hitchin map h′.

Proof. Let p′ ∈ �̃b such that π̃(p′) = p �= q. Let x be a local parameter at p. We denote ∂x by y, so near p
the spectral curve �̃b is the vanishing scheme of a polynomial of the form

yn + b1(x)yn−1 + · · · + bn−1(x)y + bn(x).

Since �̃b is smooth, y − y(p′) is a local parameter of �̃b at p′. Since θX = ydx, we have

i∗θX = ∂y(x)ydy and (i∗θX)(1) = (∂y(x))pypdyp.

Let U be an open neighborhood of p′. For f ∈ OU and s ∈ Ẽ′ (̃τ (U)), we compute

∂
p
y (f ⊗ s) = f ⊗ (dπ(∂y))

p(s)

= f ⊗ (∂y(x))p∂
p
x (s)

= f ⊗ (∂y(x))pyp(s)

=< ∂yp , (i∗θX)(1) > (f ⊗ s).

Therefore, h′ (̃τ ∗Ẽ′, ∇can) is equal to (i∗θX)(1) when restricted to (�̃0
b )(1). By Proposition 5.4,

h′ (̃τ ∗Ẽ′, ∇can) = θ̃
(1)

b . �
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Now recall that for a smooth variety Y over k, DY is the Azumaya algebra on T∗Y(1) that satisfies
Fr∗(DY) = π

(1)∗ (DY).

Proposition 5.9. Let b be an S-point of (B0
P)

(1). The construction of (̃τ ∗Ẽ′, ∇can) induces an isomor-
phism of stacks between (Loc0

n,P)b := Loc0
n,P ×(B0

P)(1) ,b S and the stack of splittings of the Azumaya

algebra (θ̃
(1)

b )∗D�̃b
. Here we think of θ̃

(1)

b as a map

θ̃
(1)

b : �̃
(1)

b −→ T∗�̃(1)

b .

Proof. Both stacks are Pic(�̃
(1)

b )-torsors. Since τ̃ ∗ is compatible with the Pic(�̃
(1)

b )-actions, it induces an
isomorphism between those two stacks. �

5.4 Fourier–Mukai transforms on commutative group stacks
In this subsection, we review the Fourier–Mukai transforms on commutative group stacks, following
[8]. Let k be an algebraically closed field. Let B be an irreducible k-scheme that is locally of finite type.
Let G be a commutative group stack locally of finite type over B. The dual commutative group stack G∨

classifies 1-morphisms of group stacks from G to BGm. The main examples we are going to consider are:

Examples 5.10.

(1) G = Z, G∨ = BGm,
(2) G = BGm, G∨ = Z,
(3) G = Zn, G∨ = Bμn. Here μn = Spec(Z[x]/(xn − 1)),
(4) G = μn, G∨ = BZn,
(5) G = A is an abelian scheme, then G∨ = A∨ is the dual abelian scheme.

By the definition of G∨, there is a universal Gm-torsor on G ×G∨, which gives rise to the Poincaré line
bundle PG .

In [8], a commutative group stack G is called very nice, if locally in smooth topology, G is a finite
product of stacks in the examples above. Under this assumption, the natural map G −→ G∨∨ is an
isomorphism. Therefore, there is another Poincaré line bundle PG∨ on G∨ × G.

Theorem 5.11 (cf. [8] Theorem 2.7). Let G be a very nice commutative group stack and let G∨ be its
dual. Then the Fourier–Mukai functor �PG with kernel PG induces an equivalence of derived
categories

Db(QCoh(G))
�−→ Db(QCoh(G∨)).

Now Let G̃ and G be very nice commutative group stacks that fit into a short exact sequence of group
stacks:

0 −→ BGm −→ G̃ −→ G −→ 0.

By taking dual, we get another short exact sequence:

0 −→ G∨ −→ G̃∨ π−→ Z −→ 0.

Let G̃∨
1 = π−1(1).

Remark 5.12. Note that G̃∨
1 classifies maps of group stacks G̃ −→ BGm such that the composition

BGm −→ G̃ −→ BGm

is the identity. Such a map gives a splitting of G̃ considered as a Gm-gerbe over G.
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Recall that the BGm-action on G̃ gives a decomposition

Db(QCoh(G̃)) ∼=
∏
n∈Z

Db(QCoh(G̃))n.

Proposition 5.13 (cf. [1] Proposition A.7 and [8] Proposition 2.9). The Fourier–Mukai functor �PG̃∨
restricts to an equivalence of derived categories

Db(QCoh(G̃∨
1 )

�−→ Db(QCoh(G̃))1.

5.5 Proof of Theorem 5.3
Let YD0

Bunn,P
be the Gm-gerbe (defined in Subsection 3.4) over Higgs0

n,P
∼= Pic(�̃(1)/(B0

P)
(1)) that classifies

splittings of the Azumaya algebra D0
Bunn,P

. As discussed in Section 3.5, the tensor structure on D0
Bunn,P

gives YD0
Bunn,P

the structure of a commutative group stack, and it fits into a short exact sequence

0 −→ BGm −→ YD0
Bunn,P

−→ Pic(�̃(1)/(B0
P)

(1)) −→ 0.

By taking dual, we get another short exact sequence:

0 −→ Pic(�̃(1)/(B0
P)

(1)) −→ Y∨
D0

Bunn,P

π−→ Z −→ 0.

Proposition 5.14. (Y∨
D0

Bunn,P

)1 := π−1(1) is isomorphic to Loc0
n,P as Pic(�̃(1)/(B0

P)
(1))-torsors.

Proof. It is enough to construct a morphism from (Y∨
D0

Bunn,P

)1 to Loc0
n,P that is compatible with the

Pic(�̃(1)/(B0
P)

(1))-actions. Let S be a k-scheme. Let b be an S-point of (B0
P)

(1). By Remark 5.12, an S-point
of (Y∨

D0
Bunn,P

)1 lying above b gives a splitting of the Azumaya algebra D0
Bunn,P

|Pic(�̃
(1)

b )
. Pulling back along the

Abel–Jacobi map

κ(1) : �̃
(1)

b −→ Pic(�̃
(1)

b ),

by Corollary 3.3(2) and Proposition 5.4, such a splitting gives a splitting of the Azumaya algebra (θ̃
(1)

b )∗D�̃b
,

which in turn gives a point of (Locn,P)b by Proposition 5.9. This map is clearly compatible with the
Pic(�̃

(1)

b )-actions. �

Now let PY∨ be the Poincaré line bundle on Y∨
D0

Bunn,P

× YD0
Bunn,P

. By Lemma 3.6 and Proposition 5.14,

PY∨ restricts to an OLoc0
n,P

� D0
Bunn,P

-module P . By Proposition 5.13, the Fourier–Mukai transform with
kernel P

�P : Db(QCoh(Loc0
n,P)) −→ Db(D0

Bunn,P
-mod)

induces an equivalence of derived categories. This completes the proof of Theorem 5.3.

5.6 The Hecke functor
Recall that we define Hecke1

P to be the moduli stack of quadruples

((E, E•
q), (F, F•

q), x, i : E ↪→ F),
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where x ∈ X\q, (E, E•
q), (F, F•

q) ∈ Bunn,P such that F/E is the simple skyscraper sheaf at x, and the partial
flag structures E•

q and F•
q coincide under i. We consider the following projections:

where q maps the quadruple to (F, F•
q) and p maps the quadruple to ((E, E•

q), x). The Hecke functor H0
P is

defined by

H0
P : Db(D0

Bunn,P
-mod) −→ Db(D0

Bunn,P
� DX\q -mod)

M �→ p∗q!M.

Let E be the universal OLoc0
n,P

� DX\q-module. We define another functor W0
P:

W0
P : Db(OLoc0

n,P
-mod) −→ Db(OLoc0

n,P
� DX\q -mod)

F �→ p∗
1F ⊗ E ,

where p1 is the projection Locn × X −→ Locn. Let �P,X\q be the Fourier–Mukai equivalence induced by
the pull-back of P :

�P,X\q : Db(OLoc0
n,P

� DX\q -mod)
�−→ Db(D0

Bunn,P
� DX\q -mod).

then we have:

Theorem 5.15. There is an isomorphism of functors:

H0
P ◦�P ∼= �P,X\q ◦ W0

P .

Proof. The proof is similar to the proof of Theorem 5.4 in [8]. Since the equivalence �P :
Db(OLoc0

n,P
-mod)

�−→ Db(D0
Bunn,P

-mod) is the Fourier–Mukai functor with kernel theD0
Bunn,P

�OLoc0
n,P

-module

P , it is enough to show that H0
P(P) and W0

P(P) are isomorphic as D0
Bunn,P

�DX\q �OLoc0
n,P

-modules. Recall
that in the proof of Proposition 5.4, we considered the pull-back diagram

and two maps α1 = pr2 ◦f1 : Z0 −→ Higgs0
n,P and α2 = pr2 ◦f2 : Z0 −→ Higgs0

n,P × T∗(X\q). Since α∗
1θBunn,P =

α∗
2(θBunn,P � θX), we have a canonical equivalence of Azumaya algebras by Corollary 3.3 (2):

(α
(1)

1 )∗D0
Bunn,P

∼ (α
(1)

2 )∗(D0
Bunn,P

� DX\q). (5.2)

For any M ∈ D0
Bunn,P

-mod, H0
P(M) can be obtained by pulling-back along α

(1)

1 , applying equivalence (5.2),

then pushing-forward along α
(1)

2 . For any σ ∈ Loc0
n,P, the D0

Bunn,P
-module Pσ is a splitting of the Azumaya
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algebra D0
Bunn,P

|Pic(�̃
(1)

b )
that is compatible with the tensor structure defined in Section 5.2. There is a

canonical equivalence of Azumaya algebras

(κ
(1)

b )∗D0
Bunn,P

|Pic(�̃
(1)

b )
∼ (i(1)

b )∗DX\q (5.3)

induced by the equality in Proposition 5.4, where b = h′(σ ), κb is the Abel–Jacobi map �̃b −→ Pic(�̃b) and
ib is the inclusion �̃0

b ⊂ T∗(X\q). The DX\q-module Eσ can be obtained from Pσ by pulling-back along κb

and applying equivalence (5.3). Since the stack Z0 is isomorphic to �̃0 ×B0
P
Higgs0

n,P and α1 corresponds
to the addition map a, we have H0

P(Pσ ) ∼= Pσ � Eσ , which is what we wish to show. �

Now let (E, ∇) be a k-point of Loc0
n,P. We denote by ME,∇ the image of (E, ∇) under �P . By Theorem 5.15,

ME,∇ satisfies

H0
P(ME,∇ ) ∼= ME,∇ � E.
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