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We prove a version of the tamely ramified geometric Langlands correspondence in positive
characteristic for GLy(k), where k is an algebraically closed field of characteristic p > n.Let X be a smooth
projective curve over k with marked points, and fix a parabolic subgroup of GL,(k) at each marked
point. We denote by Bun,p the moduli stack of (quasi-)parabolic vector bundles on X, and by Locyp
the moduli stack of parabolic flat connections such that the residue is nilpotent with respect to the
parabolic reduction at each marked point. We construct an equivalence between the bounded derived
category Db(QCoh(Loc%P)) of quasi-coherent sheaves on an open substack LOC%P C Locpp, and the
bounded derived category Db(DgunmP -mod) of Dgunmp -modules, where Dgunw is a localization of Dgun,,
the sheaf of crystalline differential operators on Bun,p. Thus, we extend the work of Bezrukavnikov—
Braverman [8] to the tamely ramified case. We also prove a correspondence between flat connections
on X with regular singularities and meromorphic Higgs bundles on the Frobenius twist X of X with
first-order poles.

1 Introduction
1.1 Geometric Langlands in positive characteristic

Let X be a smooth projective curve over C. Let G be a reductive group over C, and let G be its Langlands
dual group. The geometric Langlands correspondence (GLC), as proposed by Beilinson and Drinfeld
in [7], is a conjectural equivalence between the (appropriately defined) category of D-modules on
the moduli stack Bung of G-bundles on X, and the (appropriately defined) category of quasi-coherent
sheaves on the moduli stack Locg of G-local systems on X. A precise statement of this conjecture can be
found in [2].

In [8], a generic version of the GLC in positive characteristic is established for G = GL,(k).
The D-modules are interpreted in terms of crystalline differential operators. Using the Azumaya
property of crystalline differential operators and a twisted version of the Fourier-Mukai transform, the
authors prove a generic version of the GLC over the open subset of the Hitchin base where the spectral
curves are smooth. In the case of G = GLn(k), the results of [8] are generalized in various directions.
In [23], the mirabolic version of this correspondence is established. In [28], the author proved the
quantum version of this correspondence. In [17], the equivalence in [8] is extended to the Hitchin base
of reduced and irreducible spectral curves. The results of [8] were extended to arbitrary reductive groups
in [10] and [11].
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1.2 Tamely ramified geometric Langlands correspondence

The main purpose of this paper is to establish the tamely ramified version of the GLC proved in [8], that
is, we allow the flat connections to have regular singularities. The term “tamely ramified” comes from
analogy with the local Langlands program. See [15] Section 8 for a discussion of the tamely ramified
GLC over C. Let k be an algebraically closed field of characteristic p, and let X be a smooth projective
curve over k. We will work on the case of G = GL,(k) and assume p > n.LetD=q1+q2 + - + qm be an
effective reduced divisor on X, and let Pp = (P4, Py, ..., P) be an ordered m-tuple of parabolic subgroups
of GL, (k). We assume that we are in one of the following three cases:

1) gx =2,
(2) gx = 1, m > 2, and at least two P; are proper parabolic subgroups; or m = 1, P is a Borel subgroup
andn > 3,

(3) gx =0, m > 4, and all P; are Borel subgroups.

Compared to the unramified version of the GLC, instead of considering Bun, and Loc,, we consider
the moduli stack Bun, p, of (quasi-)parabolic vector bundles (vector bundles of rank n with a P;-reduction
at each q;), and the moduli stack Loc, p, of flat connections on parabolic vector bundles with regular
singularities at q1, qo, . . ., @ such that the residue at each g; is nilpotent with respect to the P;-reduction.
Note that the cotangent bundle T* Bun,p, is isomorphic to the moduli stack Higgsn p, of parabolic Higgs
bundles such that the residue of the Higgs field is nilpotent with respect to the parabolic reduction
at each g;. We denote by Dgun,,, the sheaf of crystalline differential operators on Bunyp, (Defined in
the sense of [8], Section 3.13. See Section 3.3 and Section 5.1.). We will define a localization Dg\mwr)
of Dpun,,, and an open substack Loc), of Locyp, (see Section 5.1 for precise definitions). We will
construct an O Coct, X Dgu% -module P (see Section 5.5) and consider the Fourier-Mukai functor with
kernel P

&5 : DP(QCoh(Loc?, ) —> Db(DgunnvPD -mod)

n,Pp

from the bounded derived category of quasi-coherent sheaves on EOC?IVPD to the bounded derived
category of DY -modules. The main theorem of the paper is the following:

Bun,p,,
Theorem 1.1. @ is an equivalence of derived categories.
There are natural functors from both sides of the equivalence: the Hecke functor H}, (see Section 5.6)
HY - Db(DgunmPD -mod) —> Db(Dgu% X Dx,p -mod)
and the functor W§_

Wp Db(omgPD -mod) — Db(c')mﬁPD X Dx\p -mod)

defined by tensoring with the universal flat connection. Let ®5 x\p be the Fourier-Mukai equivalence
induced by the pull-back of P:

Ppx\D ! Db(ogocgvpb X Dy\p -mod) > Db(DgunwD X Dx\p -mod).
The equivalence in Theorem 1.1 satisfies the following Hecke eigenvalue property:
Theorem 1.2. There is an isomorphism of functors:
H) o®p = dpxpo W) .

Now let (E, V) be a k-point of EOC%PD . We denote by Mgy the image of (E, V) under ®. By Theorem 1.2,
My satisfies

HgD(ME,V) = Mgy XE.
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1.3 Summary of the proof

We fix a k-point q € X and a parabolic subgroup P of GL,(k). For the purpose of simplifying notations,
our exposition will be restricted to the case of D = q and Pp = P from now on. The only proof that will
be different in the more general setting is the proof of Proposition 2.7 in the case of X = P', m > 4, and
all P; are Borel subgroups. We discuss this case in Remark 2.11.

Our proof of Theorem 1.1 is based on the same strategy as used in [8], but some new ingredients
come into play. Note that in [8], the GLC is established over the open subset of the Hitchin base where
the spectral curves are smooth. Compared to the unramified case in [8], one of the main difficulties in
the tamely ramified case is that unless P is a Borel subgroup of GL,(k), there are no smooth spectral
curves. We resolve this situation by considering the normalization of the spectral curves. It is observed
in [25] that under generic restrictions on the spectral curves, a fiber of the Hitchin map

hp . ’Higgsn,p —_— Bp

is isomorphic to the Picard stack of the normalization of the corresponding spectral curve. In Section 2.3,
we extend this observation to a family version. More precisely, we prove:

Theorem 1.3. There exists a Zariski open dense subset BJ C Bp and a flat family of smooth
projective curves & — BJ such that

Higgsnp xp, B = Pic(E/BY).
For each b € BY(k), S is the normalization of the spectral curve %y.

In Section 4, we establish a correspondence between flat connections on X with regular singularity
at g and Qxa (q)-twisted Higgs bundles on the Frobenius twist X® of X, which can be thought of as a
characteristic p version of the non-abelian Hodge correspondence in [26]. Let a be an unordered n-tuple
of elements in k. We denote by Higgsn(X®) the moduli stack of Qxa (q)-twisted Higgs bundles (E, ¢) on
X® such that the tuple of eigenvalues of the residue res,(¢) of the Higgs field at q is a. Let B{” be the
image of Higgsn4(X®) under the Hitchin map h™®. We fix a set-theoretic section ¢ of the Artin-Schreier
map k —> k that maps t to t¥ — t. We denote by Locy (e the moduli stack of flat connections (E, V) with
regular singularity at q such that the tuple of eigenvalues of res,;(V) is o(a). The p-curvature of (E, V)
(see Section 4.1) defines the Hitchin map h’ for flat connections with regular singularity at g:

N @ L£OCre@ —> BP.
We will define an open substack (see Section 4.2)
Eoc{w@ C LOoCh ()

and prove the following theorem:

Theorem 1.4.

(1) Lo, is a Pic(z®/B{")-torsor,

~ 3 1) /M .
(2) LOCno(@ = LOC) ;g xPEFTED 2Higgs, o (XD).

Note that for an arbitrary reductive group G, a similar construction is used in [10] to establish
the characteristic p version of the non-abelian Hodge correspondence for flat connections without
singularities.

One of the key steps in our proof of Theorem 1.4 is to show that the map

h : Loc]

> BD
n,0(@) BQ

is surjective. Since we consider flat connections with singularity at q, we cannot apply the Azumaya
property of differential operators on X directly. Instead, we construct a flat connection on X\q using
the Azumaya property, construct a flat connection on the formal disk around q by explicitly solving
a differential equation for the connection form, and glue them together using the Beauville-Laszlo
theorem [5].
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Note that Locy (o is the moduli stack of flat connections with regular singularity and nilpotent residue
at q. Restricting the isomorphism in Theorem 1.4(2) to (B3)® and combining Theorem 1.3, we deduce
that Loc) , == Locnp xzn (B™ is a Pic(E® /(BY)®)-torsor.

It is proved in [8] that for a smooth algebraic stack Z that is good in the sense of [7] (i.e., Z satisfies
dimT*Z = 2dim Z), there is a natural sheaf of algebras Dz on T*Z™® that satisfies 7D, = Fr, Dz, and
the restriction of D7 to the maximal smooth open substack (T*Z°%)® < (T*Z)® is an Azumaya algebra of
rank p?dmZ (see Section 3.3 for a review of this construction). Here 7™ : T*Z® —s Z® is the projection
and Fr: Z — Z® is the relative Frobenius. The stack Bun, » “almost” satisfies those two properties, and
we can still construct a sheaf of algebras Dguy,, that satisfies ﬂil)DBunn,P = Fr, Dpun,,. See Section 5.1 for
details.

The restriction DY

Bunss of Dgun,, to

Higgs,p xzo BH™D = Pic(ED/(B)™)

0
Bun,p

the Picard stack Pic(E®/(BY)®). In Section 5.2, we show that Dy,  has a tensor structure, therefore

Ypg,  has the structure of a commutative group stack, and there is a short exact sequence
uny p

is an Azumaya algebra. We associate with D, its stack of splittings Ypp ~, which is a Gy,-gerbe over
uny p

0 — BGp — Vpy  —> PicE?/BH®) — 0.
uny p
By taking dual, we get another short exact sequence:

0 — Pic(EY/B)Y) — Vi > Z—0.

np p

In Section 5.5, we prove that (VY, )1 = x (1) is isomorphic to Loc¥, as Pic(E® /(BY)™)-torsors,
Bun, p ”

therefore we can apply a twisted version of the Fourier-Mukai transform (reviewed in Section 5.4) to
prove the equivalence in Theorem 1.1. For the proof of this isomorphism, we show that the tautological
1-form 6D on T*(X\q)® extends to a 1-form ™ on £®, and both Pic(E® /(B)™")-torsors are isomorphic
to the moduli stack of rank one flat connections on ¥ with p-curvature (V.

1.4 Structure of the article

In Section 2, we first review some basic constructions related to the Hitchin fibration. Then we define
the Zariski open dense subset B C Bp and establish the correspondence between parabolic Higgs
bundles and the Picard stack of the normalization of spectral curves over BY. In Section 3, we first review
some properties of crystalline differential operators in positive characteristic, including the Azumaya
property and the Cartier descent. Then we describe the correspondence between modules over an
Azumaya algebra and twisted sheaves associated to its G,,-gerbe of splittings. Finally, we review the
definition of tensor structures on Azumaya algebras over group stacks. In Section 4, we first construct
the Hitchin map for flat connections with regular singularities. Then we prove the non-abelian Hodge
correspondence between £0¢n @ and Higgsn.(X™). In Section 5, we first define the sheaf of algebras
Dsgun,, and construct a tensor structure on Dgunm. Then we review the Fourier-Mukai transforms on
commutative group stacks and use this framework to prove the main theorem. Finally, we discuss the
Hecke eigenvalue property of this equivalence.

1.5 Notations and definitions

Unless otherwise mentioned, k is an algebraically closed field of characteristic p > 0. We consider the
general linear group GL,(k) and assume p > n. Let gl,(k) be the Lie algebra of GL,(k). We denote by N
the nilpotent cone in gl, (k). Let P be a parabolic subgroup of GL, (k). The Lie algebra of P decomposes as
Lie(P) = 1@ nj. We denote by Op the Richardson orbit corresponding to P, which is the unique nilpotent
orbit in gl,(k) such that the intersection with n} is open dense in nj. Let X be a smooth projective
algebraic curve over k. Let gx be the genus of X. We fix a k-point q € X. For any k-scheme S, we denote
by ¢4 : S — S x X the base change of q : Spec(k) — X. We denote by px the projection from S x X to X,
and by ps the projection to S.
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Definition 1.5. An S-family of (quasi-)parabolic vector bundles on X is a vector bundle E of rank n
on S x X with a P-reduction along S x q. We denote the moduli stack of such objects by Bunyp.
To be more precise, Bun,p classifies triples (E, Ep, 7), where Ep is a P-bundle on S x q and 7 is an
isomorphism

T Ep Xp k" i) t;E

Let Bun, be the moduli stack of rank n vector bundles on X. There is a canonical map from Bun, p
to Bun,, which is defined by forgetting the P-reduction.

Remark 1.6. Let Bbe the Borel subgroup of GL, (k) that consists of upper triangular matrices. There
is a one-to-one correspondence between the set of parabolic subgroups of GL,(k) containing B
and the set of ordered n-tuples of positive integers u = (u1, na, ..., us) such that 35, u; = n.
This correspondence can be described as follows. We consider the standard representation of
GLq(k) actingon k". Leteq, ey, ..., e, be the standard basis of k". Fori=1,2,...,s,letV; = @Jm:‘l ke

where m; = ZLZl k. Then the parabolic subgroup P, corresponding to u is identified with
{g € GLa(®)Ig(V}) € Vi, 1 <1<s}.

Let A1 > Ay > --- > A, be the conjugate partition to u. The Richardson orbit corresponding to P,
consists of M, the nilpotent matrix with Jordan blocks of sizes 11 > 4, > --- > A,.

Let E be a rank n vector bundle on S x X. A P,-reduction of the structure group along S x q
corresponds to a partial flag structure:

_ 0 1 2 S __ %
Oqu CEqCEqC-“quLqE,
where E; is a vector bundle of rank m; on S.

Remark 1.7. In the work of Mehta-Seshadri [22], a parabolic vector bundle is defined as a quasi-
parabolic vector bundle together with a set of real numbers (g, a1, @2, . .., as) satisfying

l=aw>a1> >0 >0

called parabolic weights. The parabolic weights can be used to define a stability condition on
such objects, which is necessary for the construction of a moduli space. Since we focus on
studying the moduli stack of such objects, we do not introduce the parabolic weights in this

paper.

Definition 1.8. An S-family of (quasi-)parabolic Higgs bundles on X is a parabolic vector bundle
(E, Ep, 7) together with a Higgs field

¢ € T(ENA(E) ® px(2x())),

such that the residue of ¢ at q, which we denote by resy(¢) € End(L;E), lies in I'(S, Ep xp ny). In
other words, if the parabolic reduction gives the following partial flag structure:

O:EoCElcEQC---ESZL;E,

we require res, (¢)(E;) € Ei_1. We denote the moduli stack of such objects by Higgs, .
We denote by Higgs,q the moduli stack of Qx(q)-twisted Higgs bundles (E, ¢),

¢ € T(ENA(E) ® Py (Qx(@)).
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There is a canonical map from Higgs,pr to Higgsye, which is defined by forgetting the P-
reduction.

Remark 1.9. #Higgs,p = T*Bunyp.

Remark 1.10. A parabolic version of the Hitchin moduli stack is previously considered in the
work of Yun [29]. Definition 2.1.1 in [29] is different from our Definition 1.8 in two aspects: the
marked point q on X is allowed to move in [29], and the Higgs field ¢ is only required to preserve
the flag structure instead of being nilpotent with respect to the flag structure.

Definition 1.11. An S-family of parabolic flat connections on X is a parabolic vector bundle
(E, Ep, 7) together with a flat connection with regular singularity at q

V:E— E®px(Qx(©@),

(i.e., Vis a Os-linear map of sheaves that satisfies the Leibniz rule), such that the residue res, v
of V at q lies in I'(S, Ep xp nj). We denote the moduli stack of such objects by Locyp.

We denote by Locyq the moduli stack of flat connections of rank n on X with regular singularity at
q. There is a canonical map from Loc, » to Locy ¢, which is defined by forgetting the P-reduction.

2 Spectral Data of Parabolic Higgs Bundles
2.1 Basic constructions

In this Subsection, we discuss the construction of the Hitchin map, spectral curves, and spectral sheaves
in [19] and [6] in the parabolic setting. By taking the coefficients of the characteristic polynomial of the
Higgs field, we get the Hitchin map:

h: Higgsnq — B,

where B = @, I'(X, Qx(q))) (More precisely, B is the affine space associated to the k-vector space
AL, T(X, Qx(@), i.e., B = Spec(Sym(@®L, I'(X, 2x(@))V).). If we require the residue of the Higgs field
to be nilpotent, the image of this map lies in By == @, I'X, Q&((i — 1)q).

Let T*X(q) = Specy(Sym,,, Tx(—q)), where Tx(—q) is the sheaf of vector fields on X that vanish at
q. Let = be the projection = : T*X(q) —> X. We denote by y the tautological section of 7*(Qx(q)). For
b = (by,by,..., bn), bi € T'(X, Qx(q)!), we define the spectral curve %, to be the zero-subscheme of the
section

YD1y 44 bray + by

of 7*(Qx(q)"). By abuse of notation, we also denote by = the projection from %, to X. Since 7.0y, =
EBi”:’Ol Tx(—q)®, we can compute the genus of %,
nn-—1)

Iz, = 2

29-D+n@g-1+1.

Let (E, ¢) be a k-point of Higgsy 4 such that h(E, ¢) = b. We can think of ¢ as a morphism
¢ Tx(—q) —> End(E).

By Cayley-Hamilton, there is a coherent sheaf 7 on %, such that =,(F) = E. We call F the spectral
sheaf corresponding to (E, ¢). Conversely, let G be a coherent sheaf on ¥y, there is a canonical section
¢can € T'(X,End(m,.(G)) ® Qx(q)) obtained by adjunction. It is proved in [6] that if ¥} is reduced, the
Hitchin fiber h='(b) is isomorphic to the stack of torsion free sheaves on %), and if ¥ is smooth, h=(b)
is isomorphic to the Picard stack Pic(Zy) of Zy.
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If we require the residue of ¢ to be nilpotent, then = ~%(q) is a single point ¢’ that lies in the zero-section
of T*X(q). Let V = spec(A) be an affine open neighborhood of g in X. Let x be an element of A that is
mapped to a local parameter of X at q. Shrinking V if necessary, we assume % is a nowhere vanishing
section of Qy(q). Let U = 7~ 1(V). The section & X gives a trivialization of T*X(q)|v and 7*(T*X(q))|y. Under
this trivialization, the tautological section y is equal to xdy considered as an element in Oy. Let (V) =
v xx Zp, then Oy, (v, is isomorphic to Oy/(fy), where f, = y" + bly" T4 4+ Dy_1y+bn, b € Oy. We denote
by f, the image of f, in Oy g = k[[x, Y]], then Os, o = K[[x, VII/ o).

2.2 The parabolic Hitchin base By

Now let P be a parabolic subgroup of GL,(k), and we assume the Richardson orbit Op of P contains the
nilpotent matrix with Jordan blocks of sizes A1 > Ay > -+ > A, >, A; = n. Composing h with the
forgetful map from Higgs,p to Higgsn, we get

hp : Higgsnp — B.
In order to describe the image of hp, we define the following sets of formal power series.

Definition 2.1. Let = (1,7m2,...,55), m > n2 > --- > ns be a decreasing sequence of positive
integers. Let y; = st:m nfori=0,1,2,...,s — 1 and ys = 0. We denote by P, the set of formal
power series of the form

y° + Z ai(x,y)xiyV' ,where a;(x,y) € k[[x,Y]],
i=1

and by P the subset of elements in P, that satisfy ai(x,y) € k[[x, y]]*.

In particular, if y = (m), PY, is the set of formal power series of the form

y™ +a(x, y)x, where a(x,y) € k[[x,y]]*.

Lemma 2.2. Let (E,Ep, 7, ¢) be a k- pomt of Higgsnp such that hp(E, ¢) = b. LetﬁJ be the element in
k[[x,y]] such that Og,, 7 ZkR[[x, y]]/(fb) as above, thenﬁ, € Py

This lemma follows from a direct computation, see Proposition 22 in [3]. It follows from Lemma 2.2
that hp factors through the affine space

By == (P T (X, QF'((1 — m)q)),

i=1
here m; = jif 5 < n—1 < y_;. To be more explicit, we have m = 1*12*2...v*, meaning that the first A,

terms are 1, the next A, terms are 2,..., and the last A, terms are r.

Lemma 2.3.

(1) Let f be a formal power series in P, 5 = R L N A Then f factorizes uniquely as
f—flfg -ft, where each f; is a formal power series in P° e

(2) Let § = y"+a1(x, Y)xy" =D +ay(x, y)x2y" 2 4. ay(x, y)X! beapower series in PO We write a;(0, 0) for

the constant term of a; € k[[x, y]]. Assume the polynomial y! + a4 (0, 0)y'~" + az(O, 0y +---+a(0,0)
has distinct roots. Then § factorizes uniquely as § = 919> - - - g1, where each g; € PY.

Proof. We start with Part (1). The uniqueness part follows from the fact that k[[x, y]] is a UFD. We prove
the existence part by induction on t. Let s = 3"i_, I; be the length of . Let

=y +> aix,y)x'y”, whereai(x, y) € K[[x, y]]*.

i=1
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In order to show thatf factorizes as required, it is enough to show that f factorizes asf = gh, where
sl

—ntl iy,vi—ml 0
g = yyo " + Zbi(x’y)xlyy e € P']llnlz n]t—l
g

i=1 o
and
=y + ey + o yxy D 4 at Xt e P
't

Comparing coefficients, we have

by + clyD =a1
by + by + coyH = a,

Ds 1, + by, 1015 4 bs_t,20yP + - + bs_o,0,¥5 = asy,
Ds 1,01 + by, _10oyF + bs 1, _oC3yF 4+ -+ bs g 10, yP = as 140

bs 1,01 + by, 10, y" = as_1

bs_1.c1, = as,

where yH stands for raising y to some positive integer power. Since as is invertible, b;_j, is also invertible
by the last equation. Solving this system of equations is equivalent to solving a single equation with
variable bs_;,. Indeed, we can solve ¢, ¢,_1, ..., 1 in turn as functions of bs_;, from the last I; equations;
then we can solve by, b, ..., bs_j—1 in turn as functions of bs_;, from the first s — s — 1 equations; then
we get the desired equation with variable bs_;, by substituting the other variables as functions of by,
in the (s — l;)-th equation. This equation has a solution by Hensel’s lemma. Indeed, after reduction to k,
this equation has a unique solution bs_y, (0, 0) = a5, (0, 0).

For Part (2), since we assume y' + a1 (0, 0)y'~! 4 a5(0, 0)y"=2 +- - - 4+ a;(0, 0) has distinct roots, by Hensel’s
lemma, they lift to distinct roots of the polynomial

V4 a Y+ ax )y 4 ax,y),

which we denote by b1(x,y),b2(%,y), ..., bi(x,y). Then

1
§=[]o"=bix., %

i=1

gives the desired factorization. Since ai(x,y) € k[[x, y]]*, we have bi(x,y) € k[[x, y]|* for each i. [ |

In order to obtain a spectral description of parabolic Hitchin fibers, we define the following open
subset of the Hitchin base Bp.

Definition 2.4. We define BJ to be the subset of By such that b e B is characterized by the following
properties:

(2.1) Zp\q' is smooth,

(2.2) f liesin P9, and all components in the factorization off in Lemma 2.3 Part (1) satisfy the assumption
in Lemma 2.3 Part (2). It follows thatf factorizes asf = fafs - fr, where fi = y* + a;(x,Y)X, ai(X, ) €
k[[x, y]]*. If As = A for some s # t, then the constant terms of as and a; are not equal to each other.

In particular, if P is a Borel subgroup of GL,(k), B is characterized by the spectral curve being smooth.
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Lemma 2.5. For every b € BY, there exists a k-point of Higgs,p that is mapped to b under the
Hitchin map hp.

Proof. Let &, — ¥}, be the normalization of the spectral curve ¥y and let 7 : S, — X be the projection
to X. Let D = Spec Ox 4 be the formal disk around q. By (2.2), £, xx D is the disjoint union of £;, where

i = Speck[[x, Y]]/ + ai(x, Y)x), a;i(x,y) € k[[x, y]]*.

Let £ be an invertible sheaf on %, then #.(£) defines a k-point (77,(£),¢) of Higgsn, such that
h(#@.(L),¢) = b and resy ¢ € Op the Richardson orbit of P. Therefore, we can find a partial flag structure
on 7, (£)q such that res, ¢ is nilpotent with respect to this partial flag structure. |

Remark 2.6. Let (E, Ep, 7, ¢) be a k-point of Higgs,p that is mapped to b € BS. Condition (2.2) on
¥, enforces that res,(¢) lies in the Richardson orbit Op. Note that O () nf consists of a single
P-orbit. Since we are in type A, for any x € Op ng, the centralizer of x in GLy(k) lies in P.
Therefore, there is a unique partial flag structure on E4 that is compatible with resy(¢).

Proposition 2.7. In the following two cases:

gx =2
(2) gx = 1,n >3 and P € G is a Borel subgroup,

BSis Zariski open dense in Bp. Moreover, Bp is the scheme-theoretic image of the Hitchin map hp,
that is, the smallest closed subscheme of B through which hp factors.

Proof. The first statement together with Lemma 2.5 implies the second statement. For the first
statement, we only need to show that both (2.1) and (2.2) define a non-empty open subset in Bp.

We start by showing that (2.1) defines a non-empty open subset in Bp. We denote by Bj" the locus in
Bp where the spectral curves are smooth away from q'. Since Bj" C Bp is open, it is enough to show that
it is non-empty.

Case 1. gx > 2, except for the case when gx = 2, n = 2, P = GL,(k). We use the following version of
Bertini’s theorem in [12]: [ |

Theorem 2.8 (cf. [12], Corollary 1). Let V be a smooth algebraic variety over an algebraically closed
field k. Let S be a finite-dimensional linear system on V. Assume that the rational map V --» PN
corresponding to S induces (whenever defined) separably generated residue field extensions.
Then a generic element of S defines a subscheme of V that is smooth away from the base locus
of S.

Let 7 be the projection = : T*X(q) — X. We denote by y the tautological section of 7*(Qx(q)).
Let S be the linear system of sections in z*(Qx(q)") spanned by y" and =*(b)y™' for all
b; € F(X,Q‘}?i((i —m)q),i = 1,2,...,n. The section y" is not contained in the span of 7*(b;)y"'. The
set of spectral curves %, with b € Bp corresponds to the open subset of S defined by the coefficient of
y" being non-zero. Let N = dim(S) — 1. We denote by fs : T*X(q) --+ PN the map induced by S. In order
to apply Theorem 2.8, we show that fs is unramified away from 7 ~*(q), which will imply that fs induces
finite separable extensions on the residue fields when restricted to T*(X\q). By the exact sequence

v
FEQmlrg = Qrong — Qreaagen —> 0,

it is enough to show that for any k-point p’ on T*X(q) such that #(p’) = p # g, the map v induces a
surjection onto the fiber of Qrx\q atp’.

Let V = Spec(A) be an affine open neighborhood of p in X. Let x be an element of A that is mapped
to a local parameter of X at p. Shrinking V if necessary, we assume q ¢ V and dx is a nowhere vanishing
section of QL. Let U = x~1(V). The section dx gives a trivialization of T*X(q)|v and =*(T*X(q))|y. Under
this trivialization, the tautological section y is equal to 9« considered as an element in Oy, and Qy is
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a free Oy-module generated by dx and dy. The fiber of Qy at p’ is a k-vector space of dimension two
spanned by dx and dy.
Under our assumptions on gx, n and P, we have
dimy, I'(X, Q' (( — m)q)) — dimy I'(X, Q8(( — mi)q — p)) = 1, fori > 1,

dimy, I'(X, Q21 ((i — m)q — p)) — dimy, I'(X, Q¥ (( — m)q — 2p)) = 1, fori > 2.
Take

s1 € (X, QF"(n = m)P\C (X, QF" (1 — mMn)q — p)),
s2 € T(X, Q%" ((n = mn)q = PI\T (X, QF (1 = mn)q — 2p)),
53 € PO QF™ V(1 = 1= mu)@\PK, Q7P ((1 = 1 = ma1)q — p)),
then d(s,/s1) and d(ssy/s1) span the fiber of Qy at p’.
Now we apply Theorem 2.8 to the restriction of the linear system S to T*(X\q). Since q' € 7~%(q) is the
only base point of S, a spectral curve % is smooth away from q' for a generic b € Bp.
Case 2. gx = 2,n = 2, P = GLy(k). By the same arguments as in Case 1, the map fs : T*(X\q) — PN
is unramified away from the union of #~'(p) for all p € X\q that satisfies O(2p) = Qx. There are finite

many points of X with this property, therefore the fact that a generic spectral curve is smooth away
from ¢’ follows from the following lemma:

Lemma 2.9. Let p € X\q. For a generic b € Bp, the spectral cover ¥, — X is étale around p.
Proof. This follows easily from the calculation

dimy, I'(X, Q81 ((i — my)q)) — dimy I'(X, Q2'(( — m)q —p)) = 1,fori > 1. m

Case 3. gx = 1. We consider the subspace @I, I'(X, Q%" € Bp. Since Qy is isomorphic to Oy, it is easy
to find b € @, I'(X, 2% such that the spectral cover £, — X is étale away from =~1(q).

Now we turn to (2.2). Let b e Bp. The condition f, P{ is equivalent to the condition that for
i=1,2,...,r,the (n — y)-th component of b lies in

P, Q"7 (= v = DD\, Q" ( =y — 1= D).
This condition defines a non-empty open subset of Bp since
dim;, T (X, Q2" ((n — 3 — D@) — dim, TX, Q" W (n -y —i— D) =1

under our assumptions on gx, n and P. The fact that the second condition in (2.2) defines a non-empty
open subset follows easily from the uniqueness part of Lemma 2.3.

Remark 2.10. The second statement in Proposition 2.7 was previously obtained in [3] using
different methods.

Remark 2.11. Proposition 2.7 also holds for the case of X = P! with ramification at D = ¢q1 +
q2 + -+ qm, m > 4 and each parabolic subgroup P; is a Borel subgroup. We need to show
that for a generic b € Bp, = @, I'(PY, fo’f((i — 1)D)), the spectral curve ¥, is smooth. For each
i=1,2,...,m, a generic spectral curve is smooth above g; since

dimy (P!, 2" ((n — D)) — dim, I'(P*, Q&' (n — 1D — qp) = 1.

Therefore, it is enough to show that there exists b € Bp, (k) such that %, is smooth away from
77Y(q). If n > 3, the same arguments as in Case 1 of the proof of Proposition 2.7 would work.
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If n = 2, we consider the subspace
[(PY, 2p) ® D(PY, Q2%(q1 + q2 + 93 + qa)) < Bp,.

Since I'(P*, Qp1) = 0 and I'(P?, sszf(ql + Q2+ qs + q4)) = T' (P}, Op1) = k, the spectral curve I, is
étale away from 7 ~*(q;) for any b € k*.

2.3 Spectral data of parabolic Higgs bundles
The next theorem describes the spectral data of parabolic Higgs bundles.

Theorem 2.12 (cf. [25], Theorem 5.16). For b € B)(k), the fiber of the Hitchin map h;l(b) is
isomorphic to the Picard stack Pic(%y). Here o : 5, — % is the normalization of the spectral
curve .

Proof. We've already constructed a map Pic(£,) —> h;'(b) in the proof of Lemma 2.5, therefore it
is enough to construct the inverse map. Let (E, ¢) € h;i(b), and we denote by F € Coh(Zp) the
corresponding spectral sheaf. Our goal is to show that there is a natural sheaf £ € Coh(Z;) such that
0. (L) =F.

Let &) = Spec @Eb,qu We write A = Alllxlz? . ~Ai‘, A > Ay > .- > A Note that by condition (2.2) in the
definition of BY,

to1

O3, =K[[x,y]l/(f), and f = H]“[@*z — a;x), ajj € R[[x,y]]*.

i=1 j=1
Therefore,

t
T x5, &= HHEU' whereOg, = k[[x, y]]/(y* — a;X).

i=1 j=1

Each T; is a formal disk such that the closed point is mapped to ¢’ under o : £ — .
Note that since the action of y on F/xF as a matrix with Jordan blocks of type A, the element
Uy = y*/x acts on the spectral sheaf F sheafifies over ﬁg defined by

Os: = k[[x, Y)[val/(f,y** = xvn).

This new curve $} is a disjoint union of l; + 1 components

L 1
31 = [ [ speck([va, y1I/(wy — ay) [ [ Speck(x, i)/ [ [0 — ayx), y* = xva). (2.1)

j=1 i=2 j=1

The firstl; components are formal disks that correspond to £4,j = 1,2, ..., l; in the normalization curve.
The spectral sheaf over those components must be line bundles, and each contributes a Jordan block
of size A4 to the residue of the Higgs field at the marked point q. Let F; be the spectral sheaf over the
last component of £} in (2.1). Since y acts on F;/xF; as a matrix with Jordan blocks of type A%AI; e Mg,

the element v, = y*2/x acts on Fi, therefore F; sheafifies over )ig defined by

t o1

Ogz = R[x vl /([T [[07 = 2520,y = xva).

i=2 j=1
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Repeating the same procedure for t times, the spectral sheaf F over 3, that we start with decomposes
as

li

DLy,

1 )=1

T
D -

1

where each £; is a line bundle over Z;. Since the normalization curve ¥, locally is the disjoint union of
those ¥j;, we get the desired statement that the spectral sheaf F sheafifies over . |

For the purpose of this paper, we need to develop a family version of Theorem 2.12. The first step is
to construct a simultaneous normalization of the family of spectral curves above BY. This can be done
since the spectral curves above BY are equisingular. To be more precise, let £ € BY x T*X(q) be the global
spectral curve above BY; we will construct a new family of curves & — BY with a proper birational
morphism o : £ — ¥ such that for each b € BJ(k), the morphism o}, : &, — I is the normalization
of &y.

The construction is as follows. Recall that ¢’ is the closed point of T*X(q) above q € X that lies in the
zero section of T*X(q). We blow up BY x T*X(q) along B x ¢/, and denote the strict transform of ¥ by £?.
Let V be an open neighborhood of g and U = z~1(V). For b € B3(k), let Zp(V) = V xx Xy, then Ox, ) is
isomorphic to Oy/(f) for some f = y" + b1y + .- 4+ b,_1y + by, b; € Oy. Since b € Bg(k),f factorizes as
f=fifs-fr.fi € P We write

fi =y + ai(x, y)x, where a;(x,y) € k[[x, y]]*.
We denote V xx E} by ©1(V), then £} (V) is a closed subvariety of
Spec(Oy[u]/(x — yw)).

We denote by ¢; the point defined by y = u = 0. By assumption (2.1) and the second part of assumption
(2.2) in the definition of B}, T} is smooth away from q;. Let &} = Spec(@zg’q&), then

t
Og: =R yIl/([ [ + aiyu, yyuy,

i=1

where t is the largest integer so that A; — 1 > 0. Let

t
g =[]0+ auy)w and g =y + iy, y)u,

i=1

so g factorizes as g = ¢1g2---g:. In each g;, there is a unique monomial of the form y™, and the
degree of such monomial is in decreasing order. Compared to f1, the degree of such monomial in g, is
lower by 1. This observation guarantees that the family of curves T can be resolved simultaneously by
1 steps of blow-ups. Now we blow up Spec(Oy[u]/(x—yu)) along B x q;, and denote the strict transform
of £! by 2. Repeating this procedure, we get a series of families of curves above BY:

PSRN A NS Y )

It follows from the observation above that %}* is smooth for each b € BS(k). The morphism £* — B
is flat since each %" is a projective curve of the same genus. The morphism ¥** — X is proper and
birational by properties of strict transforms. We set £ = %M.

Remark 2.13. After our paper appeared on the arXiv, similar results as in Theorem 2.12 were
also obtained in [27], see Theorem 1.1. In [27], the authors also considered the generic fiber of
so-called weak parabolic fibrations, in which the residue of the Higgs field is not required to
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be nilpotent. We will prove Theorem 2.14 the family version of Theorem 2.12, which did not
appear in [27].

Now we are ready to state the following theorem, which is a family version of Theorem 2.12. We
denote Higgsnp x3, BY by Higgs? ,.

Theorem 2.14. The correspondence between Higgs bundles and spectral sheaves induces an
isomorphism of stacks over BY:

Higgs p = Pic(E/BD).

Proof. Let S be a k-scheme. Since both Higgs? , and B} are locally of finite type over k, we can assume
S is locally of finite type over k. Let (E, ¢) be an S-point of Higgsgyp such that h(E,¢) = b € BJ(S). We
denote by F the corresponding spectral sheaf on %;,. The goal is to construct a sheaf F on £, such that
(o). F = F. We set %) = %y, Fo = F. The strategy is to construct by induction a series of sheaves 7 on
»f, k= 1,2,...11, such that (pp).Fk = Fi_1, Where py is the map p; : Zf — 25’? We assume that we
already have Fo, F1, ..., Fi—1 with the required property and aim to obtain ;. Note that above V an open
neighborhood of g, while obtaining $¥, we add a new variable uy to Oy and impose ug-_1 = Uy, starting
from up = x. Therefore, in order to construct F; so that (p;).F: = Fi—1, all we need to do is to define an
action of ut_1/y on F_1. Note that for any s : Spec(k) — S a closed point of S, s*F;_; is a torsion-free
sheaf on (Eé’l)s = ):{[1 xss Spec(k), therefore if such an action exists, it is unique. For the existence of
such an action, we consider the coherent sheaf G = ut_1 Fi—1/U_1 Fi—1 () yFi—1 On Eé’? There exists an
action of u;_1/y on Fi_4 if and only if G = 0. By Theorem 2.12, such an action exists when restricted to
s, s0 s*G = 0 for all closed points s of S. Therefore G = 0.

We set F = Fi,. Since £, is smooth, F is an invertible sheaf. Now let (E1, ¢1) and (Ez, ¢») be two S-
points of Higgs?, ,, both mapped to b under the Hitchin map, and we denote the corresponding spectral
sheaves b~y ]-E and . The construction of F implies that there is an isomorphism Homos,, (F1, Fo) =
Homos, (F1, F2). Therefore we have a morphism of stacks Higgsl, — Pic(£9/BY). ~

The inverse of this morphism is constructed as follows. Let £ be an invertible sheaf on X,. Since
¥p € S x T*X(q), there is a morphism

Os ¥ 7n*Tx(—q) — 57’1doxb (0.L).
By adjunction, we get a morphism
Os B Tx(—q) — m.Endo,, (0,L) — Endo, (T.L).

By Remark 2.6, there is a unique parabolic reduction of 7#,.£ at q that is compatible with this
Higgs field. |

3 Azumaya Property of Differential Operators in Positive
Characteristic
3.1 Frobenius twist of a k-scheme

Let Y be a scheme over an algebraically closed field k of characteristic p. Recall that the absolute
Frobenius Fy : Y — Y is the map that fixes the underlying topological space and takes f to f? on
regular functions. The Frobenius twist Y® of Y is the k-scheme that fits into the following pull-back
diagram:

yh — oy

Fspeck l

Spec k ——— Spec k
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The relative Frobenius Fr: Y — Y™ is the unique map that makes the following diagram commute.
Fy

Y

Speck el Spec k

Since Fr induces a bijection on k-points, we will not distinguish between k-points on Y and k-points
onY®D,

Let F and G be two Oy-modules. A map ¢ : F —> G is called p-linear if it is additive and satisfies
o(fs) = fPe(s) for any f € Oy, s € F(U) and open U C Y. For any Oy-module F, there is a natural p-linear
map F — (Fy)*F. This map is “universally p-linear” in the sense that any p-linear map 7 — G factors
through 7 — (Fy)*F and gives a unique Oy-linear map (Fy)*F — G.

3.2 Azumaya property of differential operators

In this section we review the Azumaya property of crystalline differential operators in characteristic
p, following [8]. Let Y be a smooth variety over k. We denote by Dy the sheaf of crystalline differential
operators on Y, that is, the sheaf of algebras generated by Oy and 7y subject to the relations: 9f — fa =
3(f), 8102 — 3201 = [91, 92, for any f € Oy, 8,01, 3, € Ty(U) and U C Y open. Since we are in characteristic p,
forany 9 € Ty(U), 9 € Dy acts as a derivation on Oy, and we denote this derivation by 8"l € Ty (U). There
is a p-linear map 7y —> Dy defined by «(8) = 8 — alP!. By the discussion above, « induces an Oy-linear
map Fr* Tyva) = F;7y — Dy. By adjunction, we have an Oy -linear map

t:Tyey — Fr,Dy.

Therefore, Fr, Dy sheafifies on T*Y®, that is, there exists a sheaf of algebras Dy on T*Y® that satisfies
7" Dy = Fr, Dy.
The following theorem is proved in [9].

Theorem 3.1 (cf. [8] Theorem 3.3 and [9] Theorem 2.2.3).

(1) The map « induces an isomorphism of sheaves from Or.vo to the center of Dy.
(2) The sheaf of algebras Dy is an Azumaya algebra over T*Y® of rank p??, where d is the dimension
of Y.

Let Abe an Azumaya algebra on Y. A splitting of A is defined to be a pair (E, p), where Eis a locally free
sheafonYand p: A > End(E) is an isomorphism of Oy-algebras. Such a (E, p) induces an equivalence
between the category QCoh(Y) of quasi-coherent sheaves on Y and the category .4 -mod of .A-modules,
which maps F € QCoh(Y) to E ® F. We define an equivalence from an Azumaya algebra A to another
Azumaya algebra B to be a splitting of A®? @ B. Such a splitting induces an equivalence from the category
of A-modules to the category of B-modules. Note that if there is a locally free sheaf E that gives a
splitting of A% ® B, then Homoe, (E, Oy) gives a splitting of A ® BP.

Let f : Z — Y be a morphism between smooth k-varieties. We denote by df ¥ the Frobenius twist of
the map induced by the differential of f:

df v z® sy TYD — T ZO,

Let p, be the projection to T*Y™®. Then we have:

Proposition 3.2 (cf. [8] Proposition 3.7). The Azumaya algebras (df ©)*D; and p; Dy are canonically
equivalent.

Following [8], we define f' : Dy-mod — Dz-mod to be the composition of the pull-back
functor Dy-mod — p3Dy-mod, the equivalence in Proposition 3.2, and the push-forward functor
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df*Dz-mod — Dz-mod. Similarly, we define f, : Dz-mod — Dy-mod to be the composition of the
pull-back functor Dz-mod — df*D,-mod, the equivalence in Proposition 3.2, and the push-forward
functor p3Dy-mod — Dy-mod.

Let 6% be the tautological 1-form on T*YV. We think of 6" as a map:

0P - TY® — THT*Y) D,

Corollary 3.3 (cf. [8] Proposition 3.11 and Corollary 3.12).

(1) The Azumaya algebra (6$”)*Dr.y is canonically equivalent to Dy.

@) Let 6V € T(ZY, Qz0) and 6Y € T(YD, Qya). If (FD)*6Y) = 6V, then the two Azumaya algebras
(0{1))*DZ and (02(1) o fM)*Dy are canonically equivalent.

Let M be a Dy-module. We denote by V,, the corresponding flat connection M — M ® Qy. There
is a p-linear map 7y — End(M) defined by

Vo 3) = Var (@) — Var (3.
By the discussion in Section 3.1, we can associate with it a Oy-linear map
Yy L Tyo — End(M),

which we call the p-curvature of M.

We review the Cartier descent for flat connections with zero p-curvature. Let F be a quasi-coherent
sheaf on Y. There is a canonical Dy-action on Fr*(F) = Oy ®o,q F, Which comes from the canonical
action of Dy on Oy. Therefore we have a flat connection (Fr* F, Vean). This construction induces a functor
from the category of quasi-coherent sheaves on Y® to the category of Dy-modules on Y with zero p-
curvature.

Theorem 3.4 (Cartier descent, cf. [20] Theorem 5.1). Let Y be a smooth variety over k. Then the
construction of (Fr* F, Vean) induces an equivalence between the category of quasi-coherent
sheaves on Y and the category of Dy-modules on Y with zero p-curvature.

3.3 Differential operators on smooth stacks

Let Y be a smooth irreducible algebraic stack over an algebraically closed field k. When k is the field
of complex numbers C, for Y that is good in the sense that it satisfies dimT*Y = 2dimY, the sheaf of
differential operators on Y is defined in [7] as a sheaf of algebras Dy on the smooth topology Ysm. We
review this definition as follows. The objects of Yy, are k-schemes S together with a smooth morphism
fs S — Y, and the morphisms between (S, fs) and (S, fs') are pairs (¢, @) containing a smooth morphism
¢:S— Sanda:fs 5 fs o ¢. Let (S,fs) be an object of Yg,. We denote by Z the left ideal Ds7s,y C
Ds generated by the relative tangent sheaf 7s,y. We define (Dy)é = Ds/Z. It has a Ds-action by left
multiplication. Let Np, (Z) be the normalizer of Z in Ds. We define (Dy)s := Np,(Z)/Z. In other words,
we set (Dy)s = SndDS((Dy)g)Op. For any smooth morphism ¢ : S — S’ over Y, we have a canonical
isomorphism

¢*((Dy)g) > Dy, (3.1)
which restricts to an isomorphism
¢~ ((Dy)s) = (Dy)s, (3.2)

where ¢~ is the sheaf-theoretic inverse image. We call Dy the sheaf of differential operators on Y.

It is observed in [8] that the isomorphism (3.2) no longer holds when k is of characteristic p > 0.
But meanwhile, Fr, Dy is a quasi-coherent sheaf on Y®, and the authors constructed a coherent sheaf
of algebras Dy on T*Y® that satisfies 7" Dy = Fr, Dy. The construction of Dy is as follows. For any
k-scheme S with a smooth morphism fs : S — Y, we need to define a coherent sheaf of algebras (Dy)s
on (T*Y)él) =S xya T*Y™D. We consider the Ds-module (D%)s, and denote by (D)s the corresponding
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coherent sheaf on T*S™. Since we mod out the left ideal generated by 7s,y when defining (D%)s, the

d (1)
support of (D})s lies in the closed substack (T*Y){" J, Tes®, We set (Dy)s = Endp, ((D5)s)??. For any

smooth morphism ¢ : S — S’ over Y, isomorphism (3.1) induces an isomorphism (¢V)*(Dy)s = (Dy)s,
where ¢ is the map (T*Y)s — (T*Y)s. Therefore, (Dy)s sheafifies to be a coherent sheaf of algebras Dy
on T*Y™® . We have the following proposition:

Proposition 3.5 (cf. [8] Lemma 3.14 and [28] Proposition 2.7). The coherent sheaf of algebras Dy
satisfies #PDy = Fr, Dy. If the stack Y is good in the sense that dimT*Y = 2dimY, and we
denote by T*Y° the maximal smooth open substack of T*Y, then the restriction of Dy to (T*Y?)®
is an Azumaya algebra of rank p2dmY,

3.4 D-modules, Azumaya algebras, and G,,-gerbes

Let k be an algebraically closed field. Let B be a k-scheme locally of finite type. Let Y be a stack locally
of finite type over B. Let Y —> Y be a G,,-gerbe over Y. We denote by QCoh(Y) the category of quasi-
coherent sheaves on Y. We say Y splits if there is an isomorphism ¥ = Y x BGy, of G,-gerbes. In this
case, there is a decomposition

QCoh(Y) = [ [ QCoh(Y),

nez

given by the weight of the G-action. If Y does not split, we still have such a decomposition by pulling
back along the action map a : BG,, x Y — Y. We call QGoh(Y) the category of twisted quasi-coherent
sheaves associated to Y.

Let A be an Azumaya algebra on Y. We associate with it a G,-gerbe Y4 over Y, which is defined
as follows. For f : S — B a map of schemes, Y 4(S) classifies triples (y,E,0) where y € Y(S),Eis a
vector bundleon S, and o : y* A S End(E) is an isomorphism of algebras over S. We call Y 4 the stack of
splittings of .A. We have the following lemma:

Lemma 3.6 (cf. [8] Lemma 2.3 and [14] Example 2.6). There is a canonical equivalence between
the category A -mod of A-modules on Y and QCoh(Y 4)1.

Now let Y be a smooth irreducible algebraic stack over k. A (crystalline) D-module M on Y is the
datum of a D-module Ms on S for each object (S,fs) in Ysm, and an isomorphism ¢'Ms 5 Ms of
D-modules for each morphism (¢,«), ¢ : S — S’ in Yg,. Here ¢' denotes the @-module pull-back
with the natural D-module structure. Those isomorphisms need to satisfy the cocycle condition for
compositions. When k is of characteristic p > 0, D-modules on Y correspond to twisted quasi-coherent
sheaves associated to a certain Gy-gerbe Gy on T*Y®, which is defined as follows. For any smooth
morphism fs : S —> Y, we associate with it a Gy-gerbe (Gy)s on (T*Y){” = SD xy T*Y®, which is defined
to be the pull-back of the G, -gerbe of splittings of the Azumaya algebra Ds along df(" : (T*V){" —
T*S™M. For any smooth morphism ¢ : S — S over Y, we have an isomorphism (¢™)*(Gy)s — (Gy)s
since dfs factorizes as

SxyTY =S xg & xy TY % 55 o5 g,
and the two Azumaya algebras (d¢™)*Ds and psDs are equivalent by Proposition 3.2. It is shown in [28]
that the category of D-modules on Y is equivalent to the category of twisted quasi-coherent sheaves
associated to Gy, see Theorem 2.3 in [28].

Now we assume Y satisfies dimT*Y = 2dimY, and denote by T*Y® the maximal smooth open
substack of T*Y. Recall that in Section 3.3, we defined a coherent sheave of algebras Dy on T*Y®, such
that its restriction to (T*Y%)® is an Azumaya algebra of rank p?#mY The G,,-gerbe of splittings of this
Azumaya algebra is isomorphic to the restriction of Gy to (T*Y%)® see Proposition 2.7 in [28]. Therefore,
the category of Dy|r+yoyn-modules is a localization of the category of (crystalline) D-modules on Y.

3.5 Tensor structures on Azumaya algebras

Let G be a commutative group stack over B, and A an Azumaya algebra over G. We denote the
multiplication on G by 1 : G x G — G. Following [24], we define a tensor structure on A to be an
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equivalence of Azumaya algebras from p*A to A X A, which is a bimodule M that induces a Morita
equivalence, together with an isomorphism

MEARarma (U, p3)' M =ARM ® 4myra (01, )M

of bimodules that satisfies the pentagon condition [13](1.0.1).

A tensor structure on the Azumaya algebra A induces a group structure on the stack Y4 of splittings
of A as follows. Let S be a k-scheme. An S-point of Y 4 is a pair (a, E), where a € G(S) and E is a splitting
module for a* A. Let (a, E) and (b, F) be two such pairs. The locally free sheaf EXF is a splitting module for
a* AXb* A. Applying the equivalence between u* A and A K A and then pulling-back along the diagonal
map As : S — S x S, we get a splitting module for u(a, b)*A. The construction of this group structure
implies that the projection map Y4 —> G is a group homomorphism, therefore we have a short exact
sequence:

0— BGy — Y4 — G — 0.

4 A Non-Abelian Hodge Correspondence Between Loc, 4 and Higgsy q

4.1 Spectral data for flat connections with regular singularities

Let (E, V) be a flat connection of rank n on X with regular singularity at q. We associate with it the
p-curvature vy, which is a Ox-linear map

Yy Fr* 7;(11)(7(1) —> Sﬂd(E)
It is associated with the p-linear map
Yv : Tx(=q) —> End(E)

defined by ¥v(3) = V(3)? — V(38P)) for any 8 € Tx(—q)(U) and U € X open. We can think of ¢y as a twisted
Higgs field

Yy : E— EQFr me(q).

The coefficients of its characteristic polynomial define a point b of

Pr, Er Q@)

i=1

Let Fr* : @L, T(XD, @y () — DL, T'(X, (Fr* Qxm () be the pull-back map. It follows from a similar
argument as in [21] Proposition 3.2 that b actually lies in the image of Fr*, and we also denote by b the
corresponding point in B® = @, I(X®, Qxa (9)). We call this map I’ : Loc,q — B® the Hitchin map
for flat connections with regular singularity at q. The corresponding spectral curve ¥; lies in the total
space of Fr* Qxa (), which is isomorphic to X xxo T*X(q)®P. Since b € B®, ¥ fits into the following
pull-back square:

T~z

lﬂ" J/ﬂ'(l)

x T x@

where £ ¢ T*X(q@)® is the spectral curve above b € BD as defined in Section 2.1. We denote by

E’ € Coh(x}) the spectral sheaf corresponding to v, so E satisfies [ (E') = E.
Let x be a local parameter of Oxq4. Let (E,V) be a flat connection with regular singularity at q.
Restricting yv (xdy) to q, we get res, (¥v) € End(Ey), which we call the residue of ¢y at q.

$20z AInr 2z uo Jasn eusny ABojouyos | pue aouslog Jo aimmsul Aq §Z/665/2/9/ 19/2/420Z/81on4e/ulwi/woo dno-olwspese//:sdny wolj papeojumoq



Tamely Ramified Geometric Langlands | 6193

Lemma 4.1. res,(Yv) = (resy V)P —res, V.

Proof. This equation follows from the computation (xd,)P! = xdy. [ |

Remark 4.2. If we assume res, V is nilpotent, since p > n, (resy V)P = 0. So resy(yry) = —res, V. In
particular, they lie in the same nilpotent orbit.

4.2 Statement of the theorem

Let a be an unordered n-tuple of elements in k. We denote by Higgsn.(X®) the moduli stack of Qyw (9)-
twisted Higgs bundles (E, ¢) on X» such that the unordered n-tuple of eigenvalues of res,(¢) is a. Let
B{" be the image of Higgsn,(X) under the Hitchin map h™®. Note that when a = (0,0, ...,0), B{" = B{.
We fix a set-theoretic section o of the Artin—-Schreier map k — k that maps t to t’ —t. Let Locy »(q) be the
substack of Loc, 4 that classifies flat connections (E, V) such that the unordered n-tuple of eigenvalues
of resy(V) is o (a). Note that by Lemma 4.1, ' (L0Cn,e (@) BS).

We denote by Loc;w@ the substack of Loc, . that classifies flat connections (E, V) such that the
corresponding spectral sheaf E’ € Coh(%)) is invertible. We have the following theorem:

Theorem 4.3.

(1) Coc;ﬂ@

~ : s () p(D) .
(2) LOCno@ = LOC) ;g XPF VD 2iggs, o (XD).

has a natural structure of a Pic(Z‘“/Bg))—torsor.

Before getting into the proof of Theorem 4.3, we state two corollaries.

Corollary 4.4. There exists an étale cover U — B{", such that

LoCno@ Xpp U= Higgsy (XM xpo U.

We denote by Higgs (X)) the moduli stack of Qxa (q)-twisted Higgs bundles (E, ¢) on XV such that
resy(¢) is nilpotent, and by Loc,r the substack of Loc;, 4 that classifies (E, V) with nilpotent resy (V). Then
we have:

Corollary 4.5.

(1) Locl, has a natural structure of a Pic(£®/B{})-torsor,
: O
(2) Locy = Locy, xPEEVBRD Aiggs (XD,

Our definition of Locy,,, and formulation of Theorem 4.3 is motivated by the work of Chen-Zhu
[10] on the characteristic p version of the non-abelian Hodge correspondence for flat connections
without singularities. The strategy of proof is similar to [10] besides the proof of the surjectivity
result Proposition 4.6. The rest of this section is devoted to the proof of Theorem 4.3. We start by
showing:

Proposition 4.6. The map h': Lo, — B{" is surjective.

We need to show that for any b ¢ Bé”(k), there exists (E,V) € Loc;l'a@(k) that is mapped to b under
the Hitchin map. The idea of constructing (E, V) is as follows: we construct a flat connection (Eo, Vo)
on X\q and a flat connection (E,¥) on the formal disk around q, such that both flat connections
have the correct p-curvature. Then we glue (Eo, Vo) and E, ¥ together using the Beauville-Laszlo

theorem [5].

4.3 Proof of Proposition 4.6

Letb e BP(k). Let 7' : &' — X and 7@ : 50 — XD be the corresponding spectral covers as described
in Section 4.1. We will construct (E, V) such that h'(E, V) = b and the spectral sheaf E’ is invertible.
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Step 1. In this step, we show that there exists a flat connection (Eg, Vo) on X\q such that the spectral
curve of ¢y, is '\(x')~'(q) and the spectral sheaf Ej is invertible. Such a (Ep, Vo) is equivalent to a
splitting of the Azumaya algebra i§Dx\q, where iy is the embedding iy : TO\(@®)"1(q) — T*X\QD.
Note that for any rank p vector bundle F on =M\ (x™)~1(q) such that End(F) = i§Dxq, the corresponding
spectral sheaf on £'\(z")~1(q) is invertible. This is because for any p € X\q and x a local parameter at p,
x acts as a regular nilpotent matrix on the fiber F, for any p’ € T\ (x®)~1(q) such that 7 (p') = p, see
the proof of Lemma 2.2.1in [9]. The existence of such a splitting is guaranteed by the following theorem.

Theorem 4.7 (cf.[17] Theorem 3.21). Let Y be a scheme of finite type over an algebraically closed
field. Assume dim(Y) < 1. Then H2.(Y, Gyy) = 0. In particular, every Azumaya algebra on Y splits.

Step 2. In this step, we construct a flat connection (£, ¥) on the formal disk D = Spec(@xyq) around q
that satisfies the following three properties:

(5.1) (£, V) has regular singularity and the unordered n-tuple of eigenvalues of res(V) is o (a),
(5.2) the spectral curve of y is 3/ := D xx ¥/,
(5.3) the spectral sheaf ' is invertible.

Now let x be a local parameter of X at g, then D = Spec(k[[x]]). We denote «(xdx) = xPd¥ by y, so
Oy, = R[[X]][yl/(f), where f = y" + b1 (X)y""" + - 4+ bp_1 ()Y + bp(x), bi(x) € k[[x]].

Since b € B, b;(x) actually lies in k[[xP]]. We assume that a consists of t distinct elements a1, d, ..., a,
each appearing m; times, then f € k[[xP]][y]/xPk[[xP]][y] factorizes as

t
f=Tly-am,
i=1

therefore f factorizes as f = fif; ---fi, where f; € k[[x?]][y] is monic and f; = (y — ap™. Therefore 3’ is
the disjoint union of 21’ = Speck[[x]][y]/(f). It is enough to construct flat connections (E;, ¥;) with the
following properties:

(5.1) (E;, V) has regular singularity and the eigenvalues of res(yy,) are all o (ay).
(5.2') the spectral curve of yr, is 3/,
(5.3’) the spectral sheaf ]:Zlf is invertible.

Since Oy, is alocal ring, (5.3) implies that E"lf isisomorphicto Oy, . Let e beits generator. A meromorphic

flat connection with spectral curve 3! is determined by the connection acting on e, which can be written
as V(e) = gedx, g € Oz [x71]. By (5.1") and (5.2"), V need to satisfy the following:

(5.17) (V(xdx) —o(a)(e) S (X, y — aye,
(5.2") (V(x8x)P — V((x3)P)))(e) = ye.

Since (V(xd3,)P — V((x3)P)) (e) = xP(af’l(g) +gP)e, (5.2") is equivalent to the following equation in O;:;:
K@@+ =Y.
We look for solutions of the form
g=—-—a—o@)/x+g1, 91 € R[x]][y],
so (5.17) is automatically satisfied, and (5.2") is equivalent to
%G + ) = ¢ — apP /. (4.1)
Note that since f; = (y — a)™ mod xPk[[xP]][y], there exists a polynomial h € k[[xP]][y] such that

(y — a)P/xP = hin Og,. By a substitution y' = y — a;, we can assume that f; = y™ mod xPk[[x"]][y]. In
this case, Oy = k[[x,y]]/(fi), therefore it is enough to find a solution g; € k[[x,y]]. It is easy to see that
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for any h e k[[xP]][y], the equation 8¢~ '(g1) + g% = h has solutions in k[[x, y]]. We look for solutions of the
form g, = xP~1 - gy, where g, € k[[x?,y]]. Equation 4.1 becomes

g P —gy=h,
for which the existence of solutions follows from Hensel’'s lemma.

Step 3. Let D* = Spec(k((x))) be the punctured disk around g, and let $% = D* xp ¥ be the spectral
curve above D*. Both (Eolpx, Volp~) and (E|p<, V|p=) give splittings of the Azumaya algebra Dx|;.. Since
all invertible sheaves on £ are trivial, we have an isomorphism of connections

(Eolp=, Volp) = (Elps, Vipe).

We fix such an isomorphism. By the theorem of Beauville-Laszlo [5], Eo and E can be glued together to
get a rank n vector bundle E on X. Since the gluing data is compatible with the connections, V, and V
are glued together to get a flat connection V on E with regular singularity at q. This connection (E, V)
satisfies all the properties we need.

4.4 Dy-modules on spectral covers of X

Letb e BP andletn’: ¥ — Xandz® : £ — X be the corresponding spectral covers as described
in Section 4.1. We have the following pull-back square:

DAL 3¢

J/‘/r' lﬂ'(l)

X ox

There is a canonical Dx-action on Oy = Ox ®0,,, Oza, Which comes from the canonical action of Dx
on Ox. Similarly, for any quasi-coherent sheaf M on =@, the pull-back sheaf p* M = Ox ®¢,,, M has
a canonical Dx-action. We denote by Vi, the corresponding map

x(D)

Vean 1 P°M — p* M Roy Q.

Definition 4.8. We define a Dx-module on ¥’ to be a quasi-coherent sheaf F on ¥’ together with
a k-linear map

VZ.F—)f@OXQX

that satisfies V(fs) = Vean(f)(5) + fV(s) for f € Oy, s € F(U) and U € T’ open. Let Dx(—q) be the
subsheaf of algebras of Dy generated by Ox and Tx(—q). Similarly, we define Dx(—q)-modules
on %'. The only difference is that now V is a map

V:F — F Qo 2x(q).

We have the following lemma concerning this definition.

Lemma 4.9.

(1) The structure sheaf Oy, is a Dx-module on ¥'. For any quasi-coherent sheaf M on @, the pull-
back p* M is a Dx-module on ¥’.

(2) Let (E, V) be a flat connection with regular singularity at q such that h'(E, V) = b. Let E’ € Coh(X')
be the corresponding spectral sheaf. Then (E', V) is a Dx(—¢q)-module on %'.

(3) Let (F1, V1) and (F», V) be two Dx(—q)-modules on %', then F1 ®o,, F» and Home,, (F1, F,) have
canonical structures of Dx(—q)-modules on %'.

In all of the cases above, we denote by V., the corresponding map induced by the action of 7x(—q).
Let (F, V) be a Dx(—q)-module on £’ such that =/ (F) is locally free, then = (F) has the structure of a
flat connection with regular singularity at q.

$20z AInr 2z uo Jasn eusny ABojouyos | pue aouslog Jo aimmsul Aq §Z/665/2/9/ 19/2/420Z/81on4e/ulwi/woo dno-olwspese//:sdny wolj papeojumoq



6196 | S.Shen

4.5 Proof of Theorem 4.3
Now we construct the map @ that induces the isomorphism in Theorem 4.3. Let b € BY". Let (E, V) €

Loc ;¢ and (M, ¢) € Higgsna(XP), both mapped to b under the Hitchin map. We denote the spectral
sheaf of (E, Ve) by E' € Coh(Z’) and the spectral sheaf of (M, ¢) by M € Coh(z®).

Lemma 4.10. Let G € Coh(=™®) and let £ be an invertible sheaf on ¥'. The push-forward = (£ ®
p*(G9)) is a locally free sheaf of rank n on X if and only if 7P(G)is a locally free sheaf of rank n
on XM,

By Lemma 4.9 and Lemma 4.10, we get a flat connection (n,(E' ® p*(M)), Vean) On X with regular
singularity at q.

Lemma 4.11.

(1) The flat connection (. (E' ® p*(M)), Vean) is mapped to b under the Hitchin map I/,
(2) The residue resq(Vean) has eigenvalues o (a).

The construction of (z,(E' ® p*(M)), Vean) is functorial. Therefore, we have a morphism of stacks
over Bg):

® 1 Locy 5 q) Xgo HiggsnaXP) — LOCh (-

Now we construct a map ¥ in the inverse direction. Let (F, Vr) be a point of Locy,@ such that
W' (F,Vr) = b. Let F/ € Coh(X’) be the spectral sheaf. Then by Lemma 4.9, there is a canonical Dx(—q)-
action on 7} (Home,, (E', Ox) ® F'). We denote Homo,, (F',Ox) ® F' by F.

Lemma 4.12.

(1) The flat connection () (F), Vean) has zero p-curvature.
(2) The residue resy(Ve) is nilpotent.

By Lemma 4.1, the residue resy(Vean) of ((F), Vean) at q satisfies
resq(vcan)p —Iesy (Vean) = 0.

This implies res, (V) is a semisimple matrix with integer eigenvalues. But meanwhile, resq(Vean) needs
to be nilpotent, so resy(Ven) must be the zero, therefore (w(F), Vean) is a flat connection without
singularities. By the Cartier descent (Theorem 3.4), there is a canonical quasi-coherent sheaf A" on X®
such that (z,(F), Vean) is isomorphic to (Fr*(N), Vean). Note that A can be identified with elements in
7,(F) that vanish under V. The action of Oz preserve those elements, therefore there is a canonical
quasi-coherent sheaf M on =™ such that (F, Vi) is isomorphic to (o*(M), Vean) as Dx(—q)-modules
on ¥’. Since E’ is an invertible sheaf, (F/, Vr) = (E' ® p*(M), Vean). The construction of M is functorial.
Therefore, we have a morphism W of stacks over B{":
W LoCy ) X L0 e —> Higgsna(X™).

Let (E, V) € Locy ., such that W(E, Ve) = b, and denote the corresponding spectral sheaf by E' €

Coh(%). Let £ be an invertible sheaf on . Then by Lemma 4.11,

(T[(E' ® p*(L)), Vean) € LOC] 5 q)-

This construction defines an action of Pic(=®/B{") on L0C) (@

Proposition 4.13. This action induces the structure of a pseudo Pic(=®/B{")-torsor on L0C} ;-
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Proof. Let S be a k-scheme. Let b be an S-point of BS;). We need to show that the action of Pic(Z{f)) on
the fiber (Loc{w@)b = Loc;w@ Xp p S is simply transitive when (Eoc{w@)b is non-empty. Let (E, Vi) and
(F, V) be two points of Loc}, ,,, thatis mapped to b under the Hitchin map. We denote the corresponding
spectral sheaves by E’ and F'. By the discussion after Lemma 4.12, there exists a quasi-coherent sheaf M
on Eél) such that (F/, V) = (' ® p*(M), V). Since p is faithfully flat, E’ and F’ being invertible sheaves

on ¥, implies that M is an invertible sheaf on E{f). The map ® induces a map

Homo , (O, M) = Homp, o ((E, Vi), (F, Vr)),
b
which is an isomorphism since ¥ produces its inverse. ]

We denote by Locy, 4 is the moduli stack of flat connections on X with regular singularity at q, without
constraints on the eigenvalues of the residue. Let Loc], , C Locnq be the substack characterized by the
spectral sheaf being invertible. We have the following proposition:

Proposition 4.14. The map I’ : Loc},, — B® is smooth.

Before getting into the proof of Proposition 4.14, we state a corollary that is going to be used in the
proof of Theorem 4.3.

Corollary 4.15. The map h' : Loc], ) —> B" is smooth.
Proof. The map Loc} ; xpo B{" — BV is smooth by base change, and the fiber product Locy 4 Xpn B
is the disjoint union of Lo}, ., where ¢ ranges from all unordered n-tuples of elements in k that maps to

n,co
a under the Artin-Schreier map. [ ]

We denote by Ziocn,q the stack that classifies triples (E, V, 6), where E is a vector bundle of rank n on
X,V :E — E® Qx(q) is a flat connection with regular singularity at g and 6 : E, 3 k" is a frame of E
at q. The natural action of GL, on the frame 6 gives Locy 4 the structure of a GLp-torsor over £0ocy g.

Lemma 4.16. Loc, 4 and E)?:n,q are algebraic stacks locally of finite type over k.

Proof. The 1-morphism Locn,q —> Bun, is representable and locally of finite presentation. Since Bun,
is an algebraic stack locally of finite type over k and Loc,4 is a GLy-torsor over Loc,q, both Locyq and
Locy, 4 are algebraic stacks locally of finite type over k. |

Lemma 4.17. Loc, , and Loc, , are smooth.

Proof. In order to show that Zwoclhq is smooth, all we need to show is that for any small extension of
finite-generated Artinian local k-algebras A’ — A, an A-point of Zvoc;q can be lifted to an A’-point of
Loc,

g0 that is, we want to produce the dashed arrow for the following commutative diagram:

Spec(A) —— Eoc;q
7

Spec(A”)

We denote by (E, V,0) the k-point
Spec(A/maA) — Spec(A) — Loc, .

The obstruction to the existence of such liftings lies in the second hypercohomology H?(.#¢ ) of the
complex

Venie)

Fiy  End(E)(—q) —— End(E) ® Qx(q),
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where Ve is the canonical connection on End(E) induced by V. By Serre duality, Hz(ﬂgyv) = Ho(ﬂgyv).

Note that Ho(ﬂ“gvv) is isomorphic to the Lie algebra of Aut(E,V,6). Since (E,V) € Coc{qu, we have

Aut(E,V) = kX by Proposition 4.13. But multiplication by scalars does not preserve the framing 6,
therefore Aut(E, Vv, 0) is the trivial group. This implies H?(.Z¢ ;) = HO(#¢ ) = 0. |

A by-product of the proof of Lemma 4.17 is the following computation of the dimension of Loc,.
Since HO(F¢ y) = H?(F2y) =0,

dim Loc, , =dim H'(F )

=2(dim H°(X, End(E) ® Qx(q)) — dim H°(X, End(E)(—q))).
By Riemann-Roch,
dim H(X, End(E) ® Qx(q)) — dim H°(X, End(E)(—q)) = n’g.

Therefore,
dim Loc], , =dim Loc, , — dim GL, (k)

=n’(2g — 1).

Proof Proposition 4.14. Let b € BV (k). By Proposition 4.6 and 4.13, the fiber (Loch v = Lo, 4 Xpm) b
Spec(k) is a Pic(Zf)l))ftorsor We compute that

dimBY =n(n + 1)(29 — 1)/2 +n(1 - g)
and
dimPic(z") = gz —1=n-129-1/2+n@g-1),
therefore
dim Pic(z{") = dim Loc], , — dim B,

Since both Eoc{qu and B® are smooth, the map I is flat by miracle flatness. Furthermore, since Pic(Zél))
is smooth, (Locy b is smooth, therefore h' is smooth. [ |

Proof of Theorem 4.3. The first part follows from Proposition 4.13 and Corollary 4.15. For the second
part, it is easy to see that the morphism & defined above induces a morphism

@ Locl o xPCED 2iggs, o (XD) — L0Co )
and W induces the inverse. n
Now we discuss how the residues of Higgs bundles and flat connections match under .
Proposition 4.18. Let (E, Vi) € Loc; ) and (M, ¢u) € Higgsna(XP) such that
W(E, Ve) = M, ¢i) = b € BV (k).

Denote the image of (E, Vi) and (M, ¢u) under ® by (F, V). Then resy(yv,) and resq(¢n) lie in
the same adjoint orbit.
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Proof. Let E' € Coh(X') be the spectral sheaf of (E, Vi), and let M e Coh(=®) be the spectral sheaf of
(M, ¢r). Let x be a local parameter of X at q. Note that res,(¢u) is the action of xPoY on the fiber =® (M)lg,
and res,(¢v;) is the action of x?3} on the fiber 7 (E' ® p*(M))l,. Since 7L’ (M)q = 7l(p* (M))], With the
same xP9 action, it suffices to show that the action of x*8} on 7,(p*(M))lq and 7/ (E' ® p*(M))]q lie in
the same adjoint orbit. This follows from the assumption that E’ is an invertible sheaf. |

In particular, if o (a) = (0), Proposition 4.18 together with Remark 4.2 implies that res,(Vr) and resq(¢u)
lie in the same nilpotent orbit. Therefore, we have the following:

Corollary 4.19. The scheme-theoretic image of Loc,p under the Hitchin map I’ is B".

5 Tamely Ramified Geometric Langlands Correspondence in Positive
Characteristic
5.1 The algebra Dgun,

In this subsection, we clarify what we mean by Dgun,,. Since the stack Bun,p does not satisfy the
property required in Proposition 3.5, we cannot apply this proposition directly. In order to solve this
problem, we introduce a new stack Bun, , similar to the stack Bun, introduced in [8]. The stack Bun, »
classifies the same objects as Bunyp, but the morphisms are different. Let S be a k-scheme, and let (£, Ef)
and (F, F}) be two rank n vector bundles on S x X with partial flag structures of type P (see Remark 1.6)
along S x q, then the set of morphisms between (E, E) and (F, Fy) are defined to be the set of isomorphic
classes of pairs (¢, £), where £ is a line bundle on S and ¢ is an isomorphism ¢ : (E, EY) 3 Feps0),F;oL).
By taking £ = Os, we get a natural map Bun,» — Bun, ;, and Bun, » is a Gn-gerbe over Bun, .

Proposition 5.1. The stack Bun, , satisfies dim T*Bun, , = 2dim Bun,, ,.

Proof. We apply the same strategy as in [16]. The main goal is to show that the nilpotent cone Nilp :=
hs1(0) C T*Bun,  is isotropic. Then the argument used in the proof of Propositions 7 and 8 in [16] applies
here to deduce the desired equality. Let B be a Borel subgroup of GL, (k) that is contained in P. We denote
by Bung the moduli stack of B-bundles on X. By Lemma 23 in [18], the natural map f : Bung — Bun,p is
surjective. In order to apply Lemma 5 in [16] to show that Ailp is isotropic, all we need to show is that for
any (E,E2, ¢) € Nilp(k), there exists Eg € Bung(k) such that f(Eg) = (E,E) and f*(¢) =0 ¢ T, Bung, that
is, there exists a complete flag structure of E over X such that its restriction to q is compatible with the
partial flag structure E;, and the Higgs field ¢ is nilpotent with respect to this complete flag structure.
We choose a basis (e1, e, ..., e,) of Eq such that the complete flag structure

0 C({e1) Cler,€) C---{e1,€,...,6n) =Eq

is compatible with E;. Let U = Spec A be an open neighborhood of q over which E and Q}(q) trivializes.
Fixing such trivializations, the Higgs field ¢ corresponds to an A-linear map A" — A". Since res;(¢)

is nilpotent with respect to E?, ¢4(e;) lies in the k-vector space spanned by ey, ey,..., e;_y. Shrinking U if
necessary, the basis (e1, ez, ..., e,) of Eq can be lifted to a basis (61, &, ..., &) of E over U that still satisfies
¢ (&) € (61,85,...,86_1). The B-reduction of E over U given by

0C (e1) C(81,8) C---(81,82,...,6n) =Ely

can be extended to a B-reduction over X since GLy(k)/B is projective. Such a B-reduction satisfies all the
properties we need. |

Remark 5.2. Over C the field of complex numbers, the analogue of Proposition 5.1 was proved
in [4] (see Theorem 6, 7) for a general reductive group G and parahoric P. It is not clear to the
author if their arguments can be adapted to the characteristic p setting.

Now we apply Proposition 3.5 to Bun, , and get Dpun_,. The sheaf of algebras Dpun,, is defined to be
the pull-back of Dpyy , to Bunyp.
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We denote #iggsnp xz, By by Higgs} » and Locnp x o (BY)™ by Locy p. Since Higgsy, p is smooth, Deun,,

restricts to an Azumaya algebra D§,, ~on

(Higgsd,)™® € Higgs\ = T*Bun{).

Now we are in the position to state the main theorem of the paper:

Theorem 5.3. There exists an O, K Dguw

®p with kernel P induces an equivalence

-module P, such that the Fourier-Mukai transform

D°(QCoh(Loc? p)) = Db(Dgun"vP -mod)

between the bounded derived category of quasi-coherent sheaves on Loc?, and the bounded
derived category of Dgun”—modules.

5.2 The tensor structure on Dy,

Recall that in Section 2, we constructed a family of curves s — BS such that

Higgs » = Pic(E/BY).

In this subsection we show that there is a natural tensor structure on the Azumaya algebra D3, ., in

the sense of [24] (see Section 3.5). We denote Z\7~' (B3 x q) by £°, where 7 : & —» B x X is the universal
spectral cover. Let i be the natural inclusion

i:3%0 — BY x T*X.
We denote by a the morphism
a: % xp Pic(T/BY) — Pic(E/Bp)
that maps (X, L) to L(X). We denote by « the Abel-Jacobi map
Kk 3/BY — Pic(£/BY)
that maps X € /B3 to 05 (X).

Let 6x be the tautological 1-form on T*X and 6fgun,, the tautological 1-form on T*Bunyp. By similar
arguments as in Theorem 4.12 in [8], we have

Proposition 5.4. When restricted to £° x 5 Pic(%/BY),
1"0x & pun, , = 0" Gpun, \ioxBoPic(i/Bg)-
9

In particular,

1'*QX = K*eBunmp|)~:0-
For the proof of Proposition 5.4, we consider the moduli stack Hecke} of quadruples
((E,ED, (F, F;),X,i :E—F),

where x € X\q, (£ Ej), (F,F})) € Bunyp such that F/E is the simple skyscraper sheaf at x, and the partial
flag structures E; and Fj coincide under i. By considering Im(ix) C Fx, this data is equivalent to a triple
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((F,F),x,V C Fx), where V is a dimension n — 1 subspace of Fx. We consider the following projections:
Heckel,

ST

Bunnf’ X\q X Bunn,P

where q maps the quadruple to (F, F}) and p maps the quadruple to ((E, E}), x). Both p and q are smooth.
Consider the following pull-back diagram:

A q*Higgs® p

: -

p*(T*(X\q) x ,HngS?I’P) a T*Heckek

We define a; to be the map:
a1 =pr,of1 : Z° — Higgs? p,
where pr, is the projection q*Higgs? , = Hecke} x g un,, HiggsS, — Higgs?,. Similarly, we define
@y = pr,ofp : Z0 — T*(X\q) x Higgs?,.
The stack Z° and the maps a1, a; can be described as follows:

Lemma 5.5. The stack Z° is isomorphic to £%xy Higgs} p. Under this isomorphism, a; corresponds
to the addition map a, and «; corresponds to the product of the projection map £° c T*(X\q) x
BY 24 T(X\q) with the identity map of Higgs? p.

Proof. Let ((E, E3), (F,Fp), X,1:E < F) be a k-point of Hecke%, which we denote by z. There is a short exact
sequence of cotangent spaces

0 — T:X & THeckel 5 Tipyt(x) — 0,

where py is the projection Hecke} —s X. The fiber p3*(x) classifies (F,F}) € Bunpp together with a
subspace V C F, of dimension n — 1. Therefore, T*py'(x) is the subspace of twisted Higgs fields ¢
I'(X, End(F) ® Qx(q + x)) such that res,(¢) is nilpotent with respect to the partial flag structure F; and
res,(¢) is nilpotent with respect to V c Fy. The composite w odq maps (z, (F, F3, 1)) to ¢, and 7 odp maps
(t, (E,E2, ¢r), (%, &) to the unique extension of ¢¢ to F. Therefore, Z° classifies triples

((F,F3,¢p),x,ECD),

where (F, F3,¢r) € Higgsnp, X € X\q such that F/E = ky and ¢r restricts to a twisted Higgs field on E with
no pole at x. Since (F, F3, ¢r) is isomorphic to (E, E, ¢r) away from x, they are mapped to the same point
b € B under the Hitchin map. Let £ resp. £ € Pic(S}) be the invertible sheaf corresponding to (E, E3, ér)
resp. (F,F2, ¢r) under the isomorphism in Theorem 2.14. Since F/E = ky, L'/L = ky for some %' € fg
that maps to x under the spectral cover map. Therefore having a triple ((F, F:, ¢r), X, E C F) as above is
equivalent to having (b, £,x'), where b € B, £ € Pic(¥,) and x’ € =\ [ |

Proof of Proposition 5.4. The goal is to show «}6gun,, = @}(0Bun,, X 6x). Both 1-forms are equal to the
pull-back of the tautological 1-form on T*Hecke} to Z°. ]
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Let 63, , be the restriction of fgun,, to Higgs),. By Lemma 3.14 in [8], in order to construct a tensor
structure on D it is enough to show that for the addition map

Bunyp’
m : Pic(S/BY) x Pic(%/BY) —> Pic(%/BY),

the 1-form 63, = satisfies the following equality:

*00 0 0
M 08un,, = OBun,s K OBun, ;- (5.1)

We denote by Pic? ()~:/B8) the degree d component of Pic(f:/Bgy Since there are isomorphisms between
components of Pic(£/BY) that preserve 08.n, ,» it is enough to prove the equality (5.1) for large enough d,
d" and

my g - Pic?(£/B9) x Pic? (£/BY) —> Pic**¥ (£/B9).
We denote by k4 the map
rq : (£/B9)? — Pic?(£/BY)

that maps (X1,%a, ..., %) € (£/BD)? to Os (X1 +Xp + --- + Xg). For d > 2gs, — 2, there is an open subset of
$4 such that &, is smooth and dominant. Therefore, it is enough to show that

K;—%—d’glgunnyp = nggunn‘p X K;’e}gunﬂvp'
By Proposition 5.4, this equality holds on (£°)4*¢ , therefore it holds on %4+,

5.3 Torsor structure on £oc),
By Corollary 4.5, Proposition 4.18, Remark 4.2, Remark 2.6, and Theorem 2.14, we have the following:

Proposition 5.6.

(1) The isomorphism in Corollary 4.5 induces

o s oo (D) /(ROY(L .
Loc), = Loch, xpa (BYD xPEEEND) (34iggs? D,

(2) the action of Pic(E®/(BY)™) on (Higgs) )™ gives Locd, the structure of a Pic(E®/(BY)™)-torsor.

Let S be a k-scheme. Let b be an S-point of (BY)™®. Consider the following commutative diagram:

Frih

Here £| = X xxo %" There exists a unique map from ¥, to ¥j that makes the diagram commute. We
call this map 7. Note that 7 is finite since Frg, is finite and p is separated.
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Let (E, E5, Vi) be an S-point of Locyp such that W (E, Vi) = b. Let E’ € Coh(Z;) be the spectral sheaf. We

associate with it an invertible sheaf E € Coh(ié) that satisfies a;(f’) = FE as follows. Let (E1, V1) € Loc,
and (Ey, ¢) € (HiggsS,P)(D such that h'(Eq, V1) = hM(E,, ¢,) = b and they are mapped to (E, Vg) under the
isomorphism in Proposition 5.6(1). Let E} € Coh(%;) be the spectral sheaf of (E1, V1) and L Coh(Z{f))
the spectral sheaf of (Es, ¢7), then we have E' = E1®p* L. By Theorem 2.14, there exists a unique invertible
sheaf £ on £{" such that o, L = £. Now we define

E =0"E)®pL.
This construction does not depend on the choice of (E1, V1) and (Ey, ¢2).

Lemma 5.7. The flat connection V., on T*F = Os, Qo E’ defined by
b

Vean @) ® 8) = 3(f) ® s + fVe(dT*(3))(5)

foranyd € 7u,f € Oy,s € E/(7(U)) and openU C £, hasno singularities. Here d7* is the tangent
map Tz, — 7*Tx.

Proof. Since b e BY, #1(q) consists of r points 1,4y, ...,q,. The only places that Vg, might have
singularities are q1,qy, ...,q,. Note that # : &, — X has ramification index 4; at q;. Let t be a local

parameter at q; € ¥, and x a local parameter at q € X such that 7*(x) = t*. Let U be an open
neighborhood of g;. Since (E, Ve) has nilpotent residue at g, there exists a positive integer N such that
for any m > N and s € E'(F(U)), (VE(x3:))"™(s) € XE'. We compute that

(Vean (00PN (f ® 8) = (t3)PN () ® 5 + f(Ve(dT* (t00)))" (9).
Since (ta)PN(f) € tOg, and (Ve(d7 (t3))PN(S) = (Ve(hix3))PN(s) € xE/, the sum lies in tOg, ® E'. Therefore,
the residue of (F*F/, Vean) at q’ is nilpotent. But since 7*F is an invertible sheaf on ¥, the residue must
be zero, so the flat connection Ve, has no singularity at g;. [ ]
We denote by 9, the restriction of k*0Bun,, tO $,. Then we have the following:

Lemma 5.8. The connection (z*E/, Vee,) is mapped to 8} under the Hitchin map I,

Proof. Let p’ € ¥, such that 7(p') = p # q. Let x be a local parameter at p. We denote 3, by y, so near p
the spectral curve ¥} is the vanishing scheme of a polynomial of the form

Y A DLOY" T A+ - 4 Do (Y 4 Dr(X).
Since T is smooth, y —y(p)) is a local parameter of ¥ atp'. Since 6y = ydx, we have
"0x = dy(x)ydy and (i*0x)™ = (3, (x)PyPdy?.
Let U be an open neighborhood of p'. For f € Oy and s € E(Z(U)), we compute

0 (f ®s) =f® A (@) (s)
=f® @ (X)) (s)
=f® @y X))PyP(s)
=<dp, 00V > F®9).

Therefore, W(F*E,Van) is equal to (i*6x)? when restricted to (ig)“). By Proposition 5.4,
WEE, Vean) = 6. ]
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Now recall that for a smooth variety Y over k, Dy is the Azumaya algebra on T*Y® that satisfies
Fr,(Dy) = =" (Dy).

Proposition 5.9. Let b be an S-point of (B3)®. The construction of (7*E/, Vean) induces an isomor-
phism of stacks between (£oc] p), = Loc p X g0, S and the stack of splittings of the Azumaya
algebra (8, ")*Ds, . Here we think of 6" as a map

9(1) 2(1) N T*E(l)

Proof. Both stacks are Pic(E{")-torsors. Since 7* is compatible with the Pic(E{")-actions, it induces an
isomorphism between those two stacks. |

5.4 Fourier-Mukai transforms on commutative group stacks

In this subsection, we review the Fourier-Mukai transforms on commutative group stacks, following
[8]. Let k be an algebraically closed field. Let B be an irreducible k-scheme that is locally of finite type.
Let G be a commutative group stack locally of finite type over B. The dual commutative group stack G¥
classifies 1-morphisms of group stacks from G to BGy,. The main examples we are going to consider are:

Examples 5.10.

(1) 6 =12,G" =BG,

(2) G =BGy, g =17,

(3) G = Zn, G¥ = Byun. Here y, = Spec(Z[x]/(xX" - 1)),

(4) G =un, GV = BZy,

(5) G = Ais an abelian scheme, then G¥ = A is the dual abelian scheme.

By the definition of G¥, there is a universal Gy,-torsor on G x G¥, which gives rise to the Poincaré line
bundle Pg.

In [8], a commutative group stack G is called very nice, if locally in smooth topology, G is a finite
product of stacks in the examples above. Under this assumption, the natural map G — GV is an
isomorphism. Therefore, there is another Poincaré line bundle Pgv on G¥ x G.

Theorem 5.11 (cf.[8] Theorem 2.7). Let G be a very nice commutative group stack and let G¥ beits

dual. Then the Fourier-Mukai functor @5, with kernel Pg induces an equivalence of derived
categories

D*(QCoh(G)) = D*(QCoh(G)).

Now Let G and G be very nice commutative group stacks that fit into a short exact sequence of group
stacks:

0— BGn—G—G—0.
By taking dual, we get another short exact sequence:
0—¢" — G 5Z—0.
Let Gy = 7 1(1).
Remark 5.12. Note that G} classifies maps of group stacks G —> BGy, such that the composition
BGn — G — BGy,

is the identity. Such a map gives a splitting of G considered as a G,-gerbe over G.
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Recall that the BG,,-action on G gives a decomposition

D"(QCoh(§)) = [ [ D"(QCoh(G)),.

nez

Proposition 5.13 (cf. [1] Proposition A.7 and [8] Proposition 2.9). The Fourier-Mukai functor @,
restricts to an equivalence of derived categories

D*(QCoh(GY) = D"(QCoh(&)1.

5.5 Proof of Theorem 5.3
Let ¥Ypg . be the Gy,-gerbe (defined in Subsection 3.4) over Higgs, = Pic(ED/(BY)D) that classifies

splittings of the Azumaya algebra Dy, . As discussed in Section 3.5, the tensor structure on Dy, |

gives yDg‘mM the structure of a commutative group stack, and it fits into a short exact sequence
0 — BGn —> Vpg, — Pic(SV/(BYHV) — 0.
By taking dual, we get another short exact sequence:
0 — Pic(EV/(BHY) — y;gunnrp Lz—0.

Proposition 5.14. (3, )1 :==~*(1) is isomorphic to Locl; as Pic(ED /(BY)™)-torsors.
Bunn‘p ’

Proof. It is enough to construct a morphism from Yo 1 to Loc%, that is compatible with the
Buny, p ”

Pic(E™/(B))-actions. Let S be a k-scheme. Let b be an S-point of (B3). By Remark 5.12, an S-point
of (B, )1 lying above b gives a splitting of the Azumaya algebra D§ Pulling back along the
Bun,, p

uny, p |Pic(§{f) )

Abel—Jacdbi map
k@D iéb — Pic(i{f)),

by Corollary 3.3(2) and Proposition 5.4, such a splitting gives a splitting of the Azumaya algebra (5{,1))*1)5}],
which in turn gives a point of (Loc,p), by Proposition 5.9. This map is clearly compatible with the
Pic(E{")-actions. [ ]

Now let Py« be the Poincaré line bundle on Y7, x Ypy . By Lemma 3.6 and Proposition 5.14,
uny p

Bun,, p
0

Bun, ,-Module P. By Proposition 5.13, the Fourier-Mukai transform with

Py restricts to an O, WD
kernel P

®p : D"(QCoh(Loc) ;) — DY(Dgyy, , -mod)

induces an equivalence of derived categories. This completes the proof of Theorem 5.3.

5.6 The Hecke functor
Recall that we define Hecke} to be the moduli stack of quadruples

((E,ED, (F,F}),x,1:E< F),
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where x € X\q, (E,EY), (F,F}) € Bunyp such that F/E is the simple skyscraper sheaf at x, and the partial
flag structures Ej and F; coincide under i. We consider the following projections:

Hecke)

P

Bun,, p Bun,, p xX\¢

where q maps the quadruple to (F,F}) and p maps the quadruple to ((E, E}), x). The Hecke functor HJ is
defined by

HY : D"(DYyy, , -mod) — D"(Dgy, , ® Dx\, -mod)

M p.g'M.

Let £ be the universal O .0, ) Dx\q-module. We define another functor WY

W : D°(O g0, -mod) —> D"(O o0, B Dy -mod)

F—piFQRE,

where p; is the projection Loc, x X — Locy. Let @5 x\q be the Fourier-Mukai equivalence induced by
the pull-back of P:

®p g i DO o0, K Dy -mod) = D' (Dfy, , B Dyyg -mod).
then we have:

Theorem 5.15. There is an isomorphism of functors:

Hg OCI)p = <D77,X\q o} Wg .

Proof. The proof is similar to the proof of Theorem 5.4 in [8]. Since the equivalence ®p

Db(OLOCSP -mod) > D°(D§,,, , -mod) is the Fourier-Mukai functor with kernel the D§,, - MO o0, -module

P, it is enough to show that H3(P) and WI(P) are isomorphic as DY, , K Dxq ¥ O o0, -modules. Recall

Bun,p
that in the proof of Proposition 5.4, we considered the pull-back diagram

1

A q*Higgs, p

f2 J{dq

p*(Higgsh) p x T*(X\q)) v T*Heckeh

and two maps a1 = pr, of; : Z® — Higgs? , and ay = pr, of; : Z° —> Higgs?, x T*(X\q). Since o}0pun,, =
o (0Bun,, X 6x), we have a canonical equivalence of Azumaya algebras by Corollary 3.3 (2):

@) D, ~ @) (Dhy, , B Diyg). (5.2)

For any M e DY, -mod, HJ(M) can be obtained by pulling-back along «!", applying equivalence (5.2),

Bunyp

then pushing-forward along a5”. For any o € Loc3, the D§

Bun,,“T0dule P, is a splitting of the Azumaya

$20z AInr 2z uo Jasn eusny ABojouyos | pue aouslog Jo aimmsul Aq §Z/665/2/9/ 19/2/420Z/81on4e/ulwi/woo dno-olwspese//:sdny wolj papeojumoq



Tamely Ramified Geometric Langlands | 6207

algebra Dgumh,ic@u) that is compatible with the tensor structure defined in Section 5.2. There is a
canonical equivalence of Azumaya algebras

1)y %750 (1)
(i )*DBunn,JPic(i:L“) ~ (i) Dxyg (5.3)

induced by the equality in Proposition 5.4, where b = (o), k; is the Abel-Jacobi map £, — Pic(Sy) and
i is the inclusion E¢ ¢ T*(X\q). The Dxg-module &, can be obtained from P, by pulling-back along «,
and applying equivalence (5.3). Since the stack Z° is isomorphic to £° X Higgs , and oy corresponds
to the addition map a, we have H3(P,) = P, K &,, which is what we wish to show. [ ]

Now let (E, V) be a k-point of ﬁOCSYP. We denote by Mgy the image of (E, V) under ® . By Theorem 5.15,
My satisfies

HY(Mzv) = Mey KE.
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