Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites

Samo Curk,a,b,1 Johannes Kraussera,c, Georg Meisla,e, Daan Frendela,f, Sara Linse,f, Thomas C. T. Michaelsa,d,1, Tuomas P. J. Knowlesa, and Andela Sarića,a,1

Edited by Robert Tycko, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD; received November 24, 2022; accepted November 17, 2023

Self-replication of amyloid fibrils via secondary nucleation is an intriguing physico-chemical phenomenon in which existing fibrils catalyze the formation of their own copies. The molecular events behind this fibril-surface-mediated process remain largely inaccessible to current structural and imaging techniques. Using statistical mechanics, computer modeling, and chemical kinetics, we show that the catalytic structure of the fibril surface can be inferred from the aggregation behavior in the presence and absence of a fibril-binding inhibitor. We apply our approach to the case of Alzheimer’s Aβ12 amyloid fibrils formed in the presence of proSP-C Brichos inhibitors. We find that self-replication of Aβ42 fibrils occurs on small catalytic sites on the fibril surface, which are far apart from each other, and each of which can be covered by a single Brichos inhibitor.

Method of Scaling Exponents

Self-replication of amyloid fibrils via secondary nucleation has been shown to be a multi-step mechanism driven by the adsorption of monomeric amyloidogenic proteins onto the surface of pre-existing fibrils. We apply our approach to the case of the amyloid fibril surface. This approach allows us to infer the catalytic structure of the fibril surface, which is inaccessible to current structural and imaging techniques. Using statistical mechanics, computer modeling, and chemical kinetics, we show that the catalytic structure of the fibril surface can be inferred from the aggregation behavior in the presence and absence of a fibril-binding inhibitor. We apply our approach to the case of Alzheimer’s Aβ12 amyloid fibrils formed in the presence of proSP-C Brichos inhibitors. We find that self-replication of Aβ42 fibrils occurs on small catalytic sites on the fibril surface, which are far apart from each other, and each of which can be covered by a single Brichos inhibitor.

Significance

Many currently intractable neurodegenerative diseases, including Alzheimer’s disease, are associated with the self-assembly of proteins into structured aggregates called amyloid fibrils. These fibrils possess the ability to passively self-replicate by catalyzing the formation of new fibrils on their surfaces. This auto-catalytic process is believed to underlie the rapid generation of cytotoxic molecular species. Using inhibitors of amyloid self-replication, in theory and experiment, we find that for Alzheimer’s Aβ42 peptide, the self-replication activity of the fibrils is limited to rare and small catalytic sites along the fibril surface. This finding has implications for rational drug design and points to potential shortcomings when averaged fibril structure is used to design therapeutic agents.
surface of amyloid fibrils (29–34). It has been shown that the secondary nucleation rate in the absence of inhibitors, \( r \), depends on the coverage of the fibril surface by monomeric protein \( \theta_0 \) as:

\[
r \propto \theta_0^\sigma,
\]

where \( \sigma \) is a scaling exponent (30, 33, 35). This formula suggests that the nucleation process can be described as a rearrangement of \( \sigma \) surface-bound proteins into an oligomer of a critical size. This pre-equilibrium reaction step is then followed by a conformational conversion step from the surface-attached oligomer into a growth-competent \( \beta \)-sheet-rich fibrillar form (Fig. 1A, Left). Using the Langmuir adsorption model, the protein coverage can be expressed as:

\[
\theta_0 = \frac{m}{K_d + \frac{m}{K_d}},
\]

where \( m \) is the concentration of free monomers in solution, and \( K_d \) is the dissociation constant for the binding of monomers to the fibril surface. If we now introduce a fibril-binding inhibitor at concentration \( I \) into the system, the inhibitor will compete with monomers for space on the fibril surface and therefore decrease the protein surface coverage (Fig. 1A, Right). The effect of a competitively binding inhibitor on the protein coverage can be expressed as:

\[
\theta = (1 - \theta_I) \theta_0,
\]

where \( \theta_I \) is the inhibitor coverage of the fibril surface, and \( \theta \) is the protein coverage that now depends on both protein and inhibitor concentration (see SI Appendix for the derivation). Based on Eqs. 1–3, one would then expect that in the presence of inhibitors, the expression for the secondary nucleation rate Eq. 1 would remain the same and only the protein coverage would be decreased. To investigate how the presence of inhibitor influences the secondary rate, it is useful to define two scaling exponents that can be compared:

\[
\sigma = \left( \frac{\partial \ln r}{\partial \ln \theta} \right)_{I=0}, \quad \sigma_1 = \left( \frac{\partial \ln r}{\partial \ln \theta} \right)_{m=\text{const}},
\]

where \( \sigma \), as already defined by Eq. 1, tracks the dependence of the secondary nucleation rate \( r \) on protein coverage \( \theta \) in the absence of inhibitor. The second scaling exponent \( \sigma_1 \) tracks the same dependence when inhibitor concentration is varied at constant monomer concentration. In a simple scenario where inhibitors displace monomers by competing with them anywhere on the surface (Fig. 1A and Eqs. 1–3), one would expect the two scaling exponents to be equal \( \sigma_1 = \sigma \) (Fig. 1B).

Fig. 1. Fibril self-replication and its inhibition: (A) Self-replication of amyloid fibrils by secondary nucleation involves binding of amyloidogenic protein monomers to the fibril surface, association of monomers into protein oligomers, and the catalysis of the oligomers into new daughter fibrils. The rate of this multi-step process is directly related to the coverage of the fibril surface by protein monomers. Nucleation of protein can be disrupted by inhibitors that decrease protein coverage by competing with monomers for the fibril surface. (B) Langmuir model prediction for how protein coverage (Left panel) and nucleation rate (Middle panel) change when modulating either monomer (blue solid line) or inhibitor (pink dashed line) concentration. Here, inhibitors only affect the protein coverage so the scaling exponents \( \sigma, \sigma_1 \) that track the dependence of rate on coverage (defined in Eq. 4) should have the same value, regardless of whether protein coverage is modulated by changing protein or inhibitor concentration. (C) In experiments, however, we observe starkly different behavior; the values of scaling exponents differ significantly and the presence of inhibitors seems to increase the rate of nucleation at a given amount of protein coverage. Data for varying monomer are taken from ref. 10 and data at varying inhibitor are the same as in Fig. 4.
**Aβ42 Aggregation in the Presence of Brichos Shows Non-trivial Inhibition Behavior**

We now evaluate the scaling exponents $\sigma$ and $\sigma_I$ from in-vitro experimental data of Aβ42 aggregation kinetics in the presence of proSP-C Brichos, a molecular chaperone that binds to Aβ fibril surfaces and specifically inhibits secondary nucleation but does not bind Aβ monomers (27, 28, 36–38). Per Eq. 4, we analyze two datasets. In the first dataset, the initial monomer concentration is kept constant and the inhibitor concentration is varied, allowing the evaluation of $\sigma_I$ (SI Appendix, Fig. S1). In the second dataset (33), the initial concentration of Aβ42 monomers is varied in the absence of any inhibitor, allowing the evaluation of $\sigma$ (SI Appendix, Fig. S2). The secondary nucleation rate (numerator in Eq. 4) can be directly extracted parameter-free from the time-dependence of aggregated fibril mass, as measured by ThT fluorescence (SI Appendix, Eq. S.6 and S.7), as measured by surface plasmon resonance (33, 37).

When changing the fibril coverage by varying the monomer concentration in the absence of inhibitor, we measure a constant scaling exponent $\sigma = 2.3 \pm 0.4$. Surprisingly, when modulating the inhibitor concentration, the scaling exponent is much smaller, and equals unity ($\sigma_I = 1.0 \pm 0.1$) (Fig. 1C). Interestingly, the measured disparity between scaling exponents ($\sigma_I < \sigma$) suggests that at a given fibril coverage by protein, the rate of secondary nucleation is higher in the presence of inhibitors than in their absence. We find these values of the scaling exponents to be well bounded and robust (SI Appendix, Fig. S3). The somewhat unintuitive result $\sigma \neq \sigma_I$ disagrees with the prediction from the ideal inhibitor binding model and points to a possibly nontrivial inhibition mechanism by which Brichos chaperones affect secondary nucleation.

![Diagram of secondary nucleation](https://www.pnas.org/content/121/7/e2220075121/f02)

**Particle-Based Model: Monomer–Inhibitor Interactions Influence $\sigma_I$**

The simple theoretical scenario for secondary nucleation and its inhibition presented in Fig. 1A neglects possible interactions between adsorbed particles. Realistically, however, the few nanometers wide fibrils offer only a limited surface for protein and inhibitor binding, and one can imagine that nonideal properties of adsorbed macromolecules can alter the expected kinetic behavior. To investigate the potential role of the macromolecular properties of the adsorbed molecules on secondary nucleation, we utilize a coarse-grained computer model of fibrilization that describes all molecules as physical particles (30, 35, 39–43).

The amyloidogenic protein monomers are described as spherocylindrical particles (Fig. 2A) that can interconvert between three distinct conformational states: i) the dissolved state which can transiently aggregate via nonspecific interactions into unstructured oligomers, ii) the β-sheet-prone state that readily assembles into compact elongated fibrillar structures, and iii) the “catalyzed” state on the fibril surface that stabilizes a surface oligomer and enables its detachment from the surface. Energetically,

In the following sections, we investigate the possible surface-based inhibition mechanisms of secondary nucleation and look for the origin of the scaling exponent behavior $\sigma_I = 1 < \sigma$. First, we use a particle-based computer model of secondary nucleation to investigate the effect of interprotein interactions on the scaling exponents (Fig. 2). Then, we develop a more general statistical-mechanics model of secondary nucleation and its inhibition that also takes into account the structure of the fibril surface (Fig. 3). Finally, based on the statistical mechanics model that best explains the experimental data, we build a kinetic model of amyloid aggregation in the presence of inhibitors and test it against time-dependent experimental data (Fig. 4). The summary of the results is given in Fig. 5.
Although the presence of inhibitors leads to an overall slowing what we would expect from ideal Langmuir competitive binding. the rate of nucleation (path 2 → 3 in Fig. 2D), relative to to displace proteins from the fibril surface is partially offset by inhibitors’ influence on oligomerization. To further confirm this, we performed simulations with appreciable attractive tip-to-tip interactions between inhibitors and monomers—in addition to their hard-core repulsion—and indeed, we measured $\sigma_1 > \sigma$ (SI Appendix, Fig. S4). However, in our simulations, under no conditions could we recover the values of scaling exponents that emerged in experiment: While a repulsive interaction between adsorbed inhibitors and protein is sufficient to give an appreciable separation of scaling exponents ($\sigma_1 < \sigma$), it cannot quantitatively explain experimental scaling ($\sigma_1 = 1$).

**Statistical-Mechanics Model: $\sigma_1 = 1$ Points to Small and Isolated Secondary Nucleation Sites**

Our particle-based computer model suggests that a comparison between the two scaling exponents $\sigma$ and $\sigma_1$ can serve as a readout of the interactions between fibril-bound molecules. To explore broader conditions under which we can recover the experimentally measured $\sigma_1 = 1$ we develop a general statistical-mechanical representation of secondary nucleation and its inhibition.

To start, we define all fibrils as an ensemble of independent subsystems that are surrounded by a common protein-inhibitor solution. The surface of each independent fibril is able to accommodate up to $N_{\text{max}}$ molecules such that any number of monomers ($N_m$) and inhibitors ($N_I$) can adsorb subject to a constraint $N_m + N_I \leq N_{\text{max}}$. The adsorption of both species and their clustering on a given fibril surface is governed by a grand-partition function $\xi(\lambda_m, \lambda_I, N_{\text{max}}, T)$, where $\lambda_m$ and $\lambda_I$ are the monomer and inhibitor thermodynamic activities, respectively, and $T$ is the temperature. Generally, we have:

$$\frac{\lambda_m^{N_m} \lambda_I^{N_I}}{N_m! N_I!} e^{-\lambda_m - \lambda_I}$$
Taking this consideration into account, the no co-occupancy fibril surface is divided into one or more catalytically active sites, at the same time. A more physical interpretation is that the completely covers it and there is no space for a protein to bind surface is small enough that a single volume–excluding inhibitor cannot co-occupy the same space for inhibitors cannot co-occupy the same binding site, which can be satisfied if the monomer and inhibitor cannot overlap on a small binding site due to volume–exclusion. No other repulsive interaction is required.

\[
\xi = \sum_{N_m=0}^{N_{\text{max}} - N_0} \sum_{N_I=0}^{N_{\text{max}} - N_0} Q_{N_m,N_I} J_m^N_1 \]

where \(Q_{N_m,N_I}\) is the canonical partition function for the case with adsorbed \(N_m\) monomers and \(N_I\) inhibitors. The coverage of the fibril surface by the nucleating species \(\theta\) and the rate of nucleation \(r\) can be extracted from the grand partition function as

\[
\theta = \langle N_m \rangle / N_{\text{max}}, \quad r = \langle r_{N_m,N_I} \rangle,
\]

where \(\langle N_m \rangle\), and \(\langle r_{N_m,N_I} \rangle\) are the grand-canonical averages of the monomer occupancy, and per-occupancy rate of nucleation, respectively. The per-occupancy rate is in turn given by a canonical ensemble average over all different configurations \(i\) that \(N_m\) monomers and \(N_I\) inhibitors can arrange into:

\[
r_{N_m,N_I} = \frac{1}{Q_{N_m,N_I}} \sum_i e^{-E_i/kT} \sum_{j=2}^{N_m} n_i(j) C_j(j).
\]

Here, \(E_i\) is the energy of a given configuration, \(k\) the Boltzmann constant, \(n_i(j)\) the protein cluster distribution at configuration \(i\) (with \(j\) the size of the cluster), and \(C_j(j)\) the rate of conformational conversion of a protein cluster of size \(j\) at the configuration \(i\). This general form of the nucleation rate accounts for the possibility that protein oligomers of different sizes and shapes might get catalyzed at different rates (44–47). Combining the formulas for the average rate and coverage Eq. 6, we can evaluate the scaling exponents \(\sigma\) and \(\sigma_1\) by enforcing the constraints \(\lambda_1 = 0\) or \(\lambda_m = \text{const.}\), respectively.

Remarkably, regardless of the potentially complicated details of the nucleating system and the influence of inhibitor, we can find a general condition under which \(\sigma_1 = 1\), which can be mathematically expressed as:

\[
\sigma_1 = 1 \quad \text{if} \quad Q_{N_m \geq 1, N_I \geq 1} = 0.
\]

This vanishing partition function means that monomers and inhibitors cannot co-occupy the same space for \(\sigma_1 = 1\). Taking this consideration into account, the no co-occupancy \((Q_{N_m \geq 1, N_I \geq 1} = 0)\) criterion can only be satisfied if a given fibril surface is small enough that a single volume–excluding inhibitor completely covers it and there is no space for a protein to bind at the same time. A more physical interpretation is that the fibril surface is divided into one or more catalytically active sites, where monomers and inhibitors can adsorb, and inactive surface that separates the active sites. Such catalytic sites have a small maximum occupancy \(N_{\text{max}}\), and the criterion of no monomer–inhibitor co-occupancy can therefore be easily satisfied. Hence, our ensemble of independent subsystems refers to an ensemble of catalytic sites. To be considered independent, such sites need to be far apart from one another such that molecules adsorbed onto them cannot cross-interact.

Let us now consider a simplified case that emerged from the above general statistical-mechanics model, for which we can more easily evaluate the scaling exponents: a one-dimensional fibril covered with sparse catalytic sites. Monomers and inhibitors can bind the catalytic sites and interact with each other with an energy \(\epsilon\) (Fig. 3A). Without loss of generality, we specify the size of the nucleation-prone oligomer to be 2, which sets the conformational conversion rate of protein clusters of size \(j\) to scale as \(C_j(j) \propto j^{-1}\). Consequently, the scaling exponent in the absence of inhibitor and monomer–monomer interactions is consistent (\(\sigma = 2\)) for all \(N_{\text{max}}\). We then solve this simplified model for the scaling exponent \(\sigma_1\) at different values of monomer–inhibitor interaction energy \(\epsilon\) and for different values of \(N_{\text{max}}\).

In the ideal Langmuir competitive binding regime (\(\epsilon \to 0\)), we find \(\sigma_1 = \sigma = 2\), as expected from Fig. 1, regardless of the maximal occupancy of the catalytic site (Fig. 3B, Top Left part of the graph and 3C, blue and green symbols). However, as soon as monomers and inhibitors interact with a nonvanishing repulsive interaction, \(\epsilon > 0\), \(\sigma_1\) acquires values appreciably below \(\sigma\) for \(\epsilon \sim kT\) and then reaches a constant value at higher repulsion energies (Fig. 3B). The value to which \(\sigma_1\) saturates depends on the maximal occupancy of the catalytic site. For instance, for \(N_{\text{max}} = 50\), which mimics a scenario where the entire fibril surface contributes to secondary nucleation akin to a homogeneous fibril, the inhibition scaling exponent saturates to about \(\sigma_1 = 1.3\). This value of \(\sigma_1\) remains approximately the same as long as \(N_{\text{max}} \geq 3\) (Fig. 3B and C, red triangle). However, for \(N_{\text{max}} = 2\), and only then, do we find \(\sigma_1 = 1\) (Fig. 3C, purple pentagon). In other words, the experimentally observed \(\sigma_1\) can be recovered only if the catalytic site is small (\(N_{\text{max}} = 2\)) and if the inhibitor and monomer interact strongly unfavorably with each other (\(\epsilon >> 0\)). This strong unfavorable interaction in practice means that a monomer and inhibitor cannot occupy the same binding site, which can be satisfied if the monomer and inhibitor cannot overlap on a small binding site due to volume–exclusion. No other repulsive interaction is required.

**Fig. 4.** Kinetics of Aβ42 aggregation in the presence of surface-binding inhibitor: Time-dependence of fibril aggregation measured at 21°C in 20 mM sodium phosphate, 0.2 mM EDTA, pH 8.0, initial monomer concentration of 3 μM, a low fibril seed concentration, and at varying concentration of proSP-C Brichos inhibitor. Data points represent normalized ThT fluorescence and the solid lines a global fit to the kinetic reaction schemes based on two limiting models of secondary nucleation and its inhibition. For model fit (A) secondary nucleation takes place on small and distant catalytic sites, that can each be covered by a single inhibitor molecule. And for model fit (B) inhibitors compete for the fibril surface according to Langmuir competitive binding kinetics.
A Scaling exponent analysis summary:

<table>
<thead>
<tr>
<th>Are exponents equal? ((\sigma_I = \sigma))</th>
<th>Monomers and inhibitors interact</th>
<th>No effective interactions</th>
<th></th>
<th>Repulsive interactions</th>
<th>Attractive interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Small & distant catalytic sites reaction scheme:

Fig. 5. Summary of our analysis and the proposed model of AβNL secondary nucleation at small and isolated fibril sites. (A) The method of scaling exponents \((\sigma_I, \sigma)\) allows us to extract information on the sign of interactions between fibril-adsorbed monomers and inhibitors, and in the special case of \(\sigma_I = 1\), we additionally acquire information about the catalytic structure of the fibril surface. (B) Our proposed kinetic reaction scheme for AβNL fibril aggregation in the presence of proSP-C Brichos. Fibril formation includes a primary nucleation step in which the initial fibrils form, followed by elongation of the fibril by addition of monomers to fibril ends. The surface of fibrils is able to catalyze the formation of new fibrils on special catalytic sites, leading to a fibril self-replication mechanism. This process of self-replication can be inhibited by Brichos inhibitors binding to catalytic sites, covering them whole.

This result confirms the no co-occupancy criterion of Eq. 8. It is important to notice that the uncertainty in the experimentally measured \(\sigma_I\) is much smaller than the difference between \(\sigma_I(N_{\text{max}} = 2, \epsilon \rightarrow \infty)\), where co-occupancy is prohibited, and \(\sigma_I(N_{\text{max}} = 3, \epsilon \rightarrow \infty)\), where co-occupancy is possible. For completeness, we also considered alternative scenarios for secondary nucleation to the one outlined in Eq. 7. In all the cases, however, we found that \(\sigma_I = 1\) requires small catalytic sites and no co-occupancy between monomer and inhibitor (SI Appendix).

Small Fibril Sites Model Explains AβNL Aggregation Kinetics in the Presence of proSP-C Brichos

Let us now test the mechanistic picture of the fibril catalytic surface against time-dependent experimental data. To do so, we build a kinetic model of amyloid aggregation that incorporates small fibril sites and test its predictions against the time-dependent AβNL aggregation data.

Following previous work, we describe the aggregation kinetics of AβNL by combining primary nucleation, self-replication by secondary nucleation and fibril elongation into a single kinetic model that describes the number \((P)\) and mass \((M)\) concentrations of fibril aggregates as a function of time \((t)\) (10, 29, 33, 48):

\[
\frac{dP}{dt} = k_n m^{\sigma_I} + r, \quad \frac{dM}{dt} = 2k_+ m P. \tag{9}
\]

Here, \(n_c\) is the reaction order for primary nucleation, \(k_n\) and \(k_+\) are the rate constants for primary nucleation and elongation, respectively, and \(r\) is the rate of secondary nucleation. We model secondary nucleation and its inhibition by Brichos as

\[
r = k_{\text{cat}} M (1 - \theta_I)^{\sigma_I} \theta_I. \tag{10}
\]

where \(k_{\text{cat}}\) is a catalysis rate constant for converting a surface oligomer into a new fibril nucleus, \(\theta_I\) is the coverage of catalytic surface by Brichos, and \(\theta_0\) the coverage by protein in absence of Brichos, given by the Langmuir isotherm of Eq. 2. Importantly, Brichos binding to the fibril occurs on a slow timescale, comparable to that of fibril aggregation (27, 37, 46). Hence, unlike \(\theta_0\), Brichos coverage cannot be captured by a pre-equilibrium expression. Rather, it evolves in time according to

\[
\frac{d\theta_I}{dt} = (1 - \theta_I) k_I^+ I - \theta_I \left( k_I^- + \frac{d \ln M}{dt} \right), \tag{11}
\]

where \(k_I^+\) and \(k_I^-\) are the Brichos association and dissociation rate constant, and the term \((d \ln M/dt)\) signifies that as the amount of fibril surface increases through elongation, the proportion of the surface covered by inhibitor decreases. See SI Appendix for a full derivation of the rate laws.

Depending on the chosen value of the inhibitor scaling exponent \(\sigma_I\), the same rate formula of Eq. 10 describes both the nucleation-inhibition scenario of Eqs. 1–3 \((\sigma_I = \sigma)\), and the small fibril sites scenario that we derived from the general statistical mechanics model \((\sigma_I = 1 < \sigma)\). To compare which model of the fibril surface and inhibition matches better with experiment, we numerically solve Eqs. 9–11 and fit the evolution of fibril mass \(M(t)\) against experimental data of AβNL aggregation at different concentrations \((I)\) of proSP-C Brichos. We perform the fits in a global manner, where the same set of rate laws and a common set of kinetic parameters attempts to describe data at all inhibitor concentrations. The global parameters we fit are \(k_{\text{cat}}\) and the initial amount of fibril seed \((M(t = 0))\). All other parameters \((k_n, n_c, k_+\), \(K_d, k_I^+, \text{and } k_I^-)\) are taken from the literature (33, 37).

As shown in Fig. 4, both models fit the experimental aggregation data equally well in the absence of inhibitor where the value of \(\sigma_I\) does not play a role (Left-most curve \(I = 0\) in Fig. 4). However, at increasing concentrations of Brichos, it becomes clear that the model with small and independent
secondary nucleation sites that can be covered by single inhibitors (Fig. 4A) outperforms the model where ideal inhibitors bind according to the Langmuir adsorption model (Fig. 4B, see also SI Appendix, Fig. S6).

Crucially, the comparison between the two models showcases that the inhibition mechanism and the associated value of $\sigma_f$ greatly influence the aggregation kinetics. Moreover, it demonstrates that our analysis workflow—the extraction of experimental scaling exponents in the presence and absence of inhibitors—provides a method for finding molecular mechanisms and the corresponding rate laws.

**Discussion and Conclusions**

In this paper, we have demonstrated that inhibitory molecules, beyond their therapeutic promise, can serve as a powerful tool for identifying mechanistic details underlying protein aggregation phenomena. In particular, the use of inhibitory molecules within statistical-mechanics and chemical kinetics frameworks revealed structural heterogeneity of $\alpha$-helical fibril surface, where only specific and small sites on the fibril surface are able to catalyze the formation of new fibrils. Each such catalytic site is likely completely inhibited by a single proSP-C Brichos complex. Our model also suggests that these catalytic sites need to be substantially distant from one another such that the contact between bound inhibitors and proteins is prevented. Fig. 5 presents the summary of our results.

The above requirements suggest a lower bound on the spacing between catalytic sites that we estimate to be at least the size of Brichos $\sim 15$ nm (49, 50). The distance between secondary nucleation sites is thus much larger than the repeat distance of $\beta$-monomers along the fibril axis, which is only a few Å (51). While we should expect nonhomogeneity of the fibril structure on the length scale of monomer spacing, we find the surface heterogeneity on a length scale that is larger than $\sim 10$ nm surprising, especially given the universally homomolecular makeup of the fibrils (52).

There is, however, a body of evidence supporting the scenario of surface heterogeneity. Surface plasmon resonance measurements of Brichos binding to the fibril surface suggest two binding modes (37). While this behavior could arise due to coexistence of strong specific and much weaker nonspecific interactions with the homogeneous fibril surface, it could also indicate two types of binding sites. Additionally, electron-microscopy images of immunogold-labeled Brichos bound to the fibril surface suggest sparse binding sites (27, 36). Furthermore, a recent coaggregation study of $\alpha$-helix 42 and S100A9 proteins shows S100A9 fibril binding to the surface of $\beta$ fibrils at a sub-stoichiometric ratio of one S100A9 fibril per about 300 fibrillar $\beta$ monomers while completely abolishing secondary nucleation (53). The same study reports a smallest distance of $\sim 40$ nm between surface-bound S100A9 fibrils, corroborating our model.

Our analysis cannot reveal the origin of secondary nucleation sites, but it can be hypothesized that such sites are not periodic, as otherwise they would be visible from structural data. They also do not seem to be correlated with morphological features of the fibril, such as the fibril local curvature or the relative intensity of ThT fluorescence, as recently reported (54). Instead, it is tempting to speculate that catalytic sites might originate on the level of higher-order fibrillar assembly, such as bundling, braiding, or coiling of filaments into mature fibril structures. This would however imply that secondary nucleation sites form on a timescale related to inter-filament kinetics, which is expected to be much slower than the timescale observed for secondary nucleation. More likely, random point defects arising from missing or misaligned fibrillar monomers could occur anywhere on the fibril surface due to thermal fluctuations. These defects would scale in number with the amount of aggregated fibril mass, consistent with Eq. 10, and their presence could expose the fibril core for motifs not present on the fibril surface (55, 56).

Importantly, the realization that the fibril surface might be structurally heterogeneous has implications for structure-based rational drug design, as discovery methods typically focus on structural information averaged along the fibril axis. In line with this, mutations of the $\beta$-peptide that modify the surface-exposed residues do not seem to affect the resulting fibril’s ability to self-replicate (57). Similarly, antibodies designed to target epitopes exposed on the fibril surface usually bind the fibril with very high affinity but do not seem to act as particularly good inhibitors of secondary nucleation (25, 26). This indicates that such antibodies, including aducanumab that has recently been put in the spotlight in the context of Alzheimer’s disease treatment (58, 59), likely bind to non-catalytic parts of the fibril surface, hence interfering with secondary nucleation only indirectly. We expect that future work will provide more details into the nature of catalytic sites both via structural methods, as well as by measuring their persistence over multiple secondary nucleation events or their abundance at varying environmental conditions.

**Data, Materials, and Software Availability.** Aggregation data and the source code for the coarse-grained computer model have been deposited in figshare ([https://figshare.com/s/85798bab4ebc68dd822ed](https://figshare.com/s/85798bab4ebc68dd822ed)) (60).

**ACKNOWLEDGMENTS.** We acknowledge support from the Erasmus programme and the University College London Institute for the Physics of Living Systems (S.C., T.C.T.M., A.S.), the Biotechnology and Biological Sciences Research Council (T.P.J.K.), the Engineering and Physical Sciences Research Council (D.F.), the European Research Council (T.P.J.K., S.L., D.F., and A.Š.), the Frances and Augustus Newman Foundation (T.P.J.K.), the Academy of Medical Sciences and Wellcome Trust (A.Š.), and the Royal Society (S.C. and A.Š.).

**Author affiliations:** 1Department of Science and Technology Austria, Klosterneuburg 3400, Austria; 2Department of Physics and Astronomy, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom; 3Visvesvaraya Harimrad Depart- ment of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; 4Department of Biochemistry and Structural Biology, Lund University, Lund 22100, Sweden; and 5Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland.


P. Arosio et al., Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat. Commun. 7, 10948 (2016).


J. Panis et al., Templating S100A9 amyloids on αf fibril surfaces revealed by charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses. Chem. Sci. 11, 7031–7039 (2020).


