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Abstract

This thesis consists of four distinct pieces of work within theoretical biology, with two themes in
common: the concept of optimization in biological systems, and the use of information-theoretic
tools to quantify biological stochasticity and statistical uncertainty.
Chapter 2 develops a statistical framework for studying biological systems which we believe to be
optimized for a particular utility function, such as retinal neurons conveying information about
visual stimuli. We formalize such beliefs as maximum-entropy Bayesian priors, constrained
by the expected utility. We explore how such priors aid inference of system parameters with
limited data and enable optimality hypothesis testing: is the utility higher than by chance?
Chapter 3 examines the ultimate biological optimization process: evolution by natural selection.
As some individuals survive and reproduce more successfully than others, populations evolve
towards fitter genotypes and phenotypes. We formalize this as accumulation of genetic
information, and use population genetics theory to study how much such information can
be accumulated per generation and maintained in the face of random mutation and genetic
drift. We identify the population size and fitness variance as the key quantities that control
information accumulation and maintenance.
Chapter 4 reuses the concept of genetic information from Chapter 3, but from a different
perspective: we ask how much genetic information organisms actually need, in particular
in the context of gene regulation. For example, how much information is needed to bind
transcription factors at correct locations within the genome? Population genetics provides us
with a refined answer: with an increasing population size, populations achieve higher fitness by
maintaining more genetic information. Moreover, regulatory parameters experience selection
pressure to optimize the fitness-information trade-off, i.e. minimize the information needed for
a given fitness. This provides an evolutionary derivation of the optimization priors introduced
in Chapter 2.
Chapter 5 proves an upper bound on mutual information between a signal and a communication
channel output (such as neural activity). Mutual information is an important utility measure
for biological systems, but its practical use can be difficult due to the large dimensionality of
many biological channels. Sometimes, a lower bound on mutual information is computed by
replacing the high-dimensional channel outputs with decodes (signal estimates). Our result
provides a corresponding upper bound, provided that the decodes are the maximum posterior
estimates of the signal.
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CHAPTER 1
Introduction

The chapters of this thesis discuss several different topics within theoretical biology, but there
are themes and concepts that they have in common. This introductory chapter briefly discusses
these themes, and that way provides general background and motivation for individual chapters.

1.1 Biological optimization
Organisms evolve under natural selection. Across biology, this fact has lead to reasoning that
the various organs and behaviors of organisms, as well their genomes, were shaped by selection
to help the organisms survive and reproduce, i.e. achieve high fitness (Tinbergen, 1963; Rosen,
2013; Orzack, 2001).
Such arguments can be formulated as normative theories, predicting that among the possible
ways that a biological system could be configured, the configuration that will be realized will be
one that maximizes fitness, or some proxy – a utility function via which that system contributes
to organismal fitness. (We leave aside the subtleties of defining fitness and situations where
selection does not maximize it.) A classical example are theories of efficient coding in sensory
neurons (Barlow, 1961), postulating that the way that sensory neurons respond to stimuli
should allow them to represent the stimuli as well as possible, given biophysical constraints,
an approach that has found success in predicting response curves and receptive fields (e.g.
(Laughlin, 1981; Srinivasan et al., 1982)). Normative theories are not without caveats, though.
Not every aspect of every biological system is necessarily optimized in the first place, and even
if it is, identifying the utility function for which it is optimized can be difficult (Gould and
Lewontin, 1979). Optimization does not need to be perfect (Pérez-Escudero et al., 2009):
it operates within the context of biophysical constraints and stochasticity, and being good
enough may suffice. We may also wish to study optimization in systems where we have
some uncertainty over their precise state. The Bayesian statistical framework we introduce
in Chapter 2 addresses some of these issues: beliefs about optimization are formalized as
maximum-entropy prior distributions over system configurations, with a preference for high
utility.
Some instances of biological optimization take place within an individual organism’s lifetime, and
may be driven by its interactions with its environment (e.g. organisms can learn). Nonetheless,
natural selection is the ultimate justification for any normative theory (e.g. because it acts on
the capacity to learn), and it is itself an important force for optimization on evolutionary time

1



1. Introduction

scales. It is therefore interesting to relate normative theories to population genetics theory,
where selection is studied explicitly and quantitatively.
In population genetics, selection is studied in combination with non-adaptive forces such as
random genetic drift, mutation and recombination (Fisher, 1930). These non-adaptive forces
can sometimes overwhelm selection. Early observations that genome size does not scale with
apparent complexity of species (the c-value paradox (Thomas, 1971)) led to the idea that
many genomes contain junk DNA (Ohno, 1972), i.e. DNA that is not under selection to
perform any function. In humans, the majority of the genome seems to be junk (Ponting and
Hardison, 2011; Rands et al., 2014; Doolittle, 2013). (A further complication is that parts of
the genome could be selfish, functioning to benefit their own rather than organismal fitness.)
Famously, Kimura (Kimura, 1968) used early estimates of rates of molecular evolution to
argue that much of evolution must be nearly neutral, i.e. with little to no effect of selection
(Kimura, 1983). While the initial arguments needed to be reevaluated, the neutral theory
became an important baseline model (Kern and Hahn, 2018; Jensen et al., 2019). Selection
causes evolution to depart from this neutral baseline by pushing evolving populations towards
fitter genotypes and phenotypes, giving rise to optimization in genetically encoded systems.
Optimizing systems with more parameters, or with a greater precision, will require a greater
departure from neutrality, but non-adaptive forces impose various limits to selection (Haldane,
1957; Robertson and Waddington, 1960; Barton and Partridge, 2000).
What are the limits to selection with regard to its capacity to optimize heritable phenotypes?
We turn to this question in Chapter 3. To formulate such limits in general, we quantify
the departure from neutrality using information-theoretic quantities: selection accumulates
information in the genome. Even though this intuition has been around at least since Kimura’s
article on this topic in 1961 (Kimura, 1961), and Claude Shannon himself briefly worked
in population genetics (Crow, 2001), a general mathematical theory of genetic information
has not yet been developed (Maynard Smith, 2000; Griffiths, 2001; Wagner, 2017). In
Chapter 3, we propose information measures that bridge three important levels of description
(Maynard Smith, 2000): the population (how large is the effect of selection on stochastically
evolving populations?), the genotype (how constrained is the DNA sequence?), and the
phenotype (how well can selection optimize phenotypes?). We then prove a general bound on
how quickly information can be accumulated by selection.
But how much genetic information do organisms actually need? In Chapter 4, we ask this
question specifically in the context of gene regulation. Gene regulation is interesting both
because of the importance of regulatory sequences (in humans, the majority of conserved
sequences are non-coding (Ponting and Hardison, 2011; Rands et al., 2014)) and because
gene regulation is particularly amenable to analysis due to its combinatorial nature (sets of
genomic regions experience selection for different regulatory phenotypes, but share a genotype-
phenotype map). For example, how much information is needed to bind transcription factors
in desired genomic locations (Schneider et al., 1986; Wagner, 2017)? The answers to such
questions depend not only on the regulatory task, but also on the strength of selection and
the effective population size (if selection is weak or the population small, the regulatory task
might not be solved) and properties of the genotype-phenotype map (how many genotypes
solve the task?).
Regulatory genotype-phenotype maps are an important topic in their own right. The rela-
tionships between the DNA sequence and transcription factor binding or transcription are
increasingly well described by experiments and predictive models (Yona et al., 2018; Lagator
et al., 2022; de Boer et al., 2020; Vaishnav et al., 2022; Fuqua et al., 2020; Galupa et al.,
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1.2. Information theoretic tools

2023), but this opens up questions about why gene regulation is organized the way it is.
Chapter 4 combines the concept of genetic information from Chapter 3 with the optimization
perspective from Chapter 2. If regulatory genotype-phenotype maps can evolve, what outcome
should we expect? While we cannot predict which specific DNA sequences map to which
specific phenotype, we can study how many sequences map to each phenotype – a property
we refer to as the architecture of the regulatory phenotypes.
We build on a body of work in population genetics – the equilibrium distributions by Wright
(1937), fixation probabilities by Kimura (1962) and the theory of free fitness, developed by
independently by Iwasa (1988) and Sella and Hirsh (2005) and extended by Mustonen and
Lässig (2010). Free fitness is analogous to free energy in statistical physics, and is maximized
as evolution converges to an equilibrium distribution. When written in a suitable form, its
entropic term is the genetic information as defined in Chapter 3. By applying free fitness
theory to joint systems of regulatory and target loci, we derive an optimization principle for
regulatory architectures, which provides an evolutionary justification for the optimization priors
introduced in Chapter 2. This result can be used to make predictions about optimal values of
some regulatory parameters, and estimate the required genetic information. While individual
regulatory sequences evolve to solve specific regulatory tasks, the regulatory architecture
evolves to facilitate these solutions across the genome by minimizing the required information.
The optimal architecture may require novel regulatory mechanisms, which must also be encoded
in the genome – but we find that the information saved by optimization can be so large, that
a number of additional genes that implement it can be afforded.

1.2 Information theoretic tools
The systems we consider need a probabilistic description. There are several reasons for this. In
Chapter 2, we consider systems with unknown parameter values that we analyze statistically.
Chapters 2 as well as Chapter 5 also consider systems that encounter random external stimuli
which elicit (possibly noisy) responses. Chapters 3 and 4 consider the evolution of finite
populations, i.e. with random genetic drift. All these phenomena are described using probability
distributions, and we use several information-theoretic quantities to describe the properties of
these distributions.
The Shannon entropy (Cover and Thomas, 2006) of a random variable X,

H(X) = −
∑︂
x

P (x) log2 P (x), (1.1)

here expressed in bits, was originally developed in the context of communication and data
compression (Shannon, 1948). If a random source of signals emits signal x with probability
P (x), then encoding these signals in bits will take at least H(X) bits per signal on average.
Sources where the signals are more difficult to guess (P (x) is more evenly spread among many
possible signals) have a higher entropy. Even without the communication context, H(X) can
be used simply as a measure of randomness or unpredictability. An example use case are
maximum-entropy distributions (Jaynes, 1982, 2003). The optimization priors we introduce in
Chapter 2 are an instance of maximum-entropy distributions, and express our partial ignorance
about the parameters of the analyzed systems.
The mutual information (Cover and Thomas, 2006) between two random variables X and Y ,

I(X;Y ) =
∑︂
x,y

P (X, Y ) log2
P (X, Y )
P (X)P (Y ) (1.2)

3



1. Introduction

is a measure of statistical dependence between X and Y . It is zero when X and Y are
independent and positive otherwise. It was originally introduced to describe communication
via noisy channels. X is the channel input and Y is the channel output, and broadly speaking,
the goal is to reconstruct X based on Y . We use mutual information in Chapter 2 as a utility
function for biological systems that sense the environment, with X being the state of the
environment and Y the response of the system. Chapter 5 examines the relationship between
I(X;Y ) and the error probabilities when attempting to reconstruct X based on Y .
Finally, the Kullback-Leibler divergence (KL divergence), or relative entropy (Cover and
Thomas, 2006) between two distributions P and Q,

DKL(P ||Q) =
∑︂
x

P (x) log2
P (x)
Q(x) (1.3)

quantifies how different the two distributions are. It is zero when P (x) = Q(x) for all x and
positive otherwise. Originally, it was used to quantify the inefficiency of sub-optimal codes
in communication. We use it in Chapter 1 to generalize optimization priors. In situations
where our beliefs about a system in absence of any optimization are given by a non-uniform
distribution Q(x), optimization priors minimize DKL(P ||Q) instead of maximizing entropy
H(X). It is also central in Chapters 3 and 4, where we use it to define the information
accumulated by selection in evolution. We associate P and Q with evolution with and without
selection respectively, such that DKL(P ||Q) quantifies how much influence selection has on
the variable X.
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CHAPTER 2
Optimality and statistical analysis of

biological systems

This was a collaboration with Wiktor Młynarski, Thomas R. Sokolowski and Gašper Tkačik
(Młynarski et al., 2021). W.M. performed a number of key analyses: the basic toy model
analysis in Fig. 2.2, degree of optimality estimation in Fig. 2.4, resolving optimality prediction
ambiguities in Fig. 2.5 (including Fig. A.1 and A.2), receptive field analyses in Fig. 2.7 and 2.8
(including Fig. A.3). The remaining analyses were performed or had a major contribution by
M.H. Figures mentioned above, as well as Fig. 2.1, 2.3 and 2.9 were also visualized by W.M.

Abstract. Normative theories and statistical inference provide complementary approaches for
the study of biological systems. A normative theory postulates that organisms have adapted to
efficiently solve essential tasks, and proceeds to mathematically work out testable consequences
of such optimality; parameters that maximize the hypothesized organismal function can be
derived ab initio, without reference to experimental data. In contrast, statistical inference
focuses on efficient utilization of data to learn model parameters, without reference to any
a priori notion of biological function. Traditionally, these two approaches were developed
independently and applied separately. Here we unify them in a coherent Bayesian framework
that embeds a normative theory into a family of maximum-entropy “optimization priors.” This
family defines a smooth interpolation between a data-rich inference regime, and a data-limited
prediction regime. Using three neuroscience datasets, we demonstrate that our framework
allows us to address fundamental challenges relating to inference in high-dimensional, biological
problems.

2.1 Introduction
Ideas about optimization are at the core of how we approach biological complexity (Rosen, 2013;
Bialek, 2012; Tkačik and Bialek, 2016). Quantitative predictions about biological systems have
been successfully derived from first principles in the context of efficient coding (Laughlin, 1981;
van Hateren, 1992), metabolic (Kacser and Burns, 1995; Ibarra et al., 2002), reaction (Savir
et al., 2010; Tkačik et al., 2008), and transport (Tero et al., 2010) networks, evolution (Orzack,
2001), reinforcement learning (Alexander, 2003), and decision making (Geisler, 2011; Gold
and Shadlen, 2007), by postulating that a system has evolved to optimize some utility
function under biophysical constraints. Normative theories generate such predictions about
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2. Optimality and statistical analysis of biological systems

living systems ab initio, with no (or minimal) appeal to experimental data. Yet as such
theories become increasingly high-dimensional and optimal solutions stop being unique, it
gets progressively hard to judge whether theoretical predictions are consistent with data (Doi
et al., 2012; Bittner et al., 2019), or to define rigorously what that even means (Wang et al.,
2016; Park and Pillow, 2017; Eichhorn et al., 2009). Alternatively, data may be “close to”
but not “at” optimality, and different instances of the system may show variation “around”
optima (Pérez-Escudero et al., 2009; De Martino et al., 2018), but we lack a formal framework
to deal with such scenarios. Lastly, normative theories typically make non-trivial predictions
only under quantitative constraints which, ultimately, must have an empirical origin, blurring
the idealized distinction between a data-free normative prediction and a data-driven statistical
inference.

In contrast to normative theories which derive system parameters ab initio, the fundamental task
of statistical inference is to reliably estimate model parameters from experimental observations.
Here, too, biology has presented us with new challenges. While data is becoming increasingly
high-dimensional, it is not correspondingly more plentiful; the resulting curse of dimensionality
that statistical models face is controlled neither by intrinsic symmetries nor by the simplicity
of disorder, as in statistical physics. To combat these issues and simultaneously deal with
the noise and variability inherent to the experimental process, modern statistical methods
often rely on prior assumptions about system parameters. These priors either act as statistical
regularizers to prevent overfitting or to capture low-level regularities such as smoothness,
sparseness or locality (Park and Pillow, 2011). Typically, however, their statistical structure is
simple and does not reflect the prior knowledge about system function.

Normative theories and inference share a fundamental similarity: they both make statements
about parameters of biological systems. While these statements have traditionally been made
in opposing “data regimes” (Fig. 2.1), we observe that the two approaches are not exclusive
and could in fact be combined with mutual benefit. To this end, we develop a Bayesian
statistical framework that combines data likelihood with an “optimization prior” derived from
a normative theory; contrary to simple, typically applied priors, optimization priors can induce
a complex statistical structure on the space of parameters. This construction allows us to
rigorously formulate and answer the following key questions: (1) Can one derive a statistical
hypothesis test for the consistency of data with a proposed normative theory? (2) Can one
define how close data is to the proposed optimal solution? (3) How can data be used to set
the constraints in, and resolve the degeneracies of, a normative theory? (4) To what extent
do optimization priors aid inference in high-dimensional statistical models?

The primary focus of this work is to develop conceptual and theoretical links between normative
theories and statistical analyses. We illustrate the application of these developments to simple
model systems, and demonstrate their relevance to real-world data analysis on three diverse,
yet still relatively tractable, examples. Applying similar methodology to large-scale high-
dimensional data would necessitate further development of sophisticated computational or
approximative schemes. We recognize that as an outstanding and highly relevant challenge for
future research.

2.2 Bayesian inference and optimization priors
Given a probabilistic model for a system of interest, P (x|θ), with parameters θ, and a set
of T observations (or data) D = {xt}Tt=1, Bayesian inference consists of formulating a (log)
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Figure 2.1: Normative theories and statistical inference. Both approaches make statements
about values of system parameters (middle row; center panel). Normative theories predict which
parameters would be of highest utility to the system (middle row in red; left panel) without reference
to experimental data. Data analysis infers parameter values from experimental observations (middle
row in blue; right panel). Large amounts of data support reliable inference of parameters. We
consider a continuum of regimes that are applicable with different amounts of data (bottom row).

posterior over parameters given the data:

logP (θ|D) = log L(θ) + logP (θ) + const, (2.1)

where the constant term is independent of the parameters, L(θ) = ∏︁T
t=1 P (xt|θ) is the

likelihood assuming independent and identically distributed observations xt, and P (θ) is the
prior, or the postulated distribution over the parameters in absence of any observation. Much
work has focused on how the prior should be chosen to permit optimal inference, ranging from
uninformative priors (Jeffreys, 1946), priors that regularize the inference and thus help models
generalize to unseen data (MacKay, 2003b; Murphy, 2012), or priors that can coarse-grain the
model depending on the amount of data samples, T (Machta et al., 2013).
Our key intuition will lead us to a new class of priors fundamentally different from those
considered previously. A normative theory for a system of interest with parameters θ can
typically be formalized through a notion of a (upper-bounded) utility function, U(θ; ξ), where
ξ are optional parameters which specify the properties of the utility function itself. Optimality
then amounts to the assumption that the real system operates at a point in parameter space,
θ∗, that maximizes utility, θ∗(ξ) = argmaxθ U(θ; ξ). Viewed in the Bayesian framework,
the assertion that the system is optimal thus represents an infinitely strong prior where the
parameters are concentrated at θ∗, i.e., P (θ|ξ) = δ(θ − θ∗(ξ)). In this extreme case, no data
is needed to determine system parameters: the prior fixes their values and typically no finite
amount of data will suffice for the likelihood in Eq (2.1) to move the posterior away from θ∗.
This concentrated prior can, however, be interpreted as a limiting case of a softer prior that
“prefers” solutions close to the optimum.
Consistent with the maximum entropy principle put forward by Jaynes (Jaynes, 2003), we
therefore consider for our priors distributions that are as random and unstructured as possible
while attaining a prescribed average utility:

P (θ|β, ξ) = 1
Z(β, ξ) exp [βU(θ; ξ)] . (2.2)
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2. Optimality and statistical analysis of biological systems

This is in fact a family of priors, whose strength is parametrized by β: when β = 0, parameters
are distributed uniformly over their domain without any structure and in absence of any
optimization; as β → ∞, parameter probability localizes at the point θ∗(ξ) that maximizes
the utility to Umax(ξ) (if such a point is unique) irrespective of whether data supports this
or not. At finite β, however, the prior is “smeared” around θ∗(ξ) so that the average utility,
Ū(β, ξ) =

∫︁
dθ P (θ|β, ξ)U(θ, ξ) < Umax(ξ) increases monotonically with β. For this reason,

we refer to β as the “optimization parameter,” and to the family of priors in Eq (2.2) as
“optimization priors.” In evolutionary context, the optimization parameter β is related to the
effective population size, see Sec. 2.8.4 and Chapter 4.

The intermediate regime, 0 < β < ∞, in the prior entering Eq (2.1) is interesting from an
inference standpoint. It represents the belief that the system may be “close to” optimal with
respect to the utility U(θ; ξ) but this belief is not absolute and can be outweighed by the
data: the log likelihood, log L, grows linearly with the number of observations, T , matching
the roughly linear growth of the log prior with β. Varying β thus literally corresponds to the
interpolation between an infinitely strong optimization prior and pure theoretical prediction in
the “no data regime” and the uniform prior and pure statistical inference in the “data rich
regime”, as schematized in Fig. 2.1.

Additional parameters of the utility function, ξ, determine its shape in the domain of parameters
θ. Parameters ξ can be known and fixed for a specific theory or, if unknown a priori, inferred
from the data in a Bayesian fashion. When there are no utility parameters ξ to consider, we
will suppress them for notational simplicity.

In the following, we apply this framework to a toy model system, a single linear-nonlinear neuron,
which is closely related to logistic regression. This example is simple, well-understood across
multiple fields, and low-dimensional so that all mathematical quantities can be constructed
explicitly; the framework itself is, however, completely general. We then apply our framework
to a more complex neuron model and to three experimental data sets. Taken together, these
examples demonstrate how the ability to encode the entire shape of the utility measure into
the optimization prior opens up a more refined and richer set of optimality-related statistical
analyses.

2.2.1 Example: Efficient coding in a simple model neuron
Let us consider a simple probabilistic model of a spiking neuron (Fig. 2.2A), a broadly applied
paradigm in sensory neuroscience (Sharpee and Bialek, 2007; Kastner et al., 2015; Paninski
et al., 2007; Tkačik et al., 2010; Gjorgjieva et al., 2014). The neuron responds to one-
dimensional continuous stimuli xt either by eliciting a spike (rt = 1), or by remaining silent
(rt = 0). The probability of eliciting a spike in response to a particular stimulus value is
determined by the nonlinear saturating stimulus-response function. The shape of this function
is determined by two parameters: position x0 and slope k (see Methods).

Parameters θ = {x0, k} fully determine the function of the neuron, yet remain unknown to
the external observer. Statistical inference extracts parameter estimates θ̂ using experimental
data D consisting of stimulus-response pairs (Fig. 2.2B, left panel), by first summarizing the
data with the likelihood, L(θ) (Fig. 2.2B, right panel), followed either by maximization of
the likelihood, θ̂ = argmaxθL(θ) in the maximum-likelihood (ML) paradigm, or by deriving θ̂
from the posterior, Eq (2.1), in the Bayesian paradigm.

To apply our reasoning, we must propose a normative theory for neural function, form the
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Figure 2.2: Efficient coding in a toy model neuron and the corresponding optimization prior.
(A) Model neuron uses a logistic nonlinearity (middle panel) to map continuous stimuli xt (left
panel) to a discrete spiking response rt (right panel). The shape of the nonlinearity is described
by two parameters: slope k and offset x0. (B) An example dataset (left panel) consisting of
stimulus values (black line) and associated spiking responses (empty circles – no spike, full circles –
spike). Likelihood function of the nonlinearity parameters defined by the observed data. Dark blue
corresponds to most likely parameter values. (C) Distribution of natural stimuli to which the neuron
might be adapted. In this example, each mode corresponds to a behaviorally relevant state of the
environment: presence of a predator, a prey or a mate. (D) Efficient coding utility function, here,
the mutual information between neural response rt and the state of the environment, ct, with stimuli
drawn from the distribution in panel C. The amount of information conveyed by the neuron depends
on the position and slope of the nonlinearity. Insets depict example nonlinearities corresponding to
parameter values marked with black crosses. (E) Four maximum-entropy optimization priors over
parameters for the neural nonlinearity (left panel). Distributions are specified by the utility of each
slope-offset combination. Increasing parameter β constrains the distribution (lowers its entropy) and
increases the expected utility of the parameters (right panel). Here we plot the normalized utility
Ũ(θ) - see main text for explanation. Orange numbers on the horizontal axis specify the fraction of
the entire domain effectively occupied by parameters at given β.

optimization prior, and combine it with the likelihood in Fig. 2.2B, as prescribed by the Bayes
rule in Eq (2.1). An influential theory in neuroscience called “efficient coding” postulates that
sensory neurons maximize the amount of information about natural stimuli they encode into
spikes given biophysical constraints (Barlow, 1961; van Hateren, 1992; Tkačik et al., 2010;
Olshausen and Field, 1996; Smith and Lewicki, 2006; Chalk et al., 2018). This information-
theoretic optimization principle (Shannon, 1948) has correctly predicted neural parameters
such as receptive field (RF) shapes (Olshausen and Field, 1996; Hyvärinen et al., 2009) and
the distribution of tuning curves (Ganguli and Simoncelli, 2014; Wang et al., 2016), as well as
other quantitative properties of sensory systems (Laughlin, 1981; Ratliff et al., 2010; Borghuis
et al., 2008; Młynarski, 2015; Młynarski and McDermott, 2018; Carlson et al., 2012), ab initio,
from the distribution of ecologically relevant stimuli (Olshausen and Field, 1996; Bialek, 2012).

To apply efficient coding, we need to specify a distribution from which the stimuli xt are
drawn. In reality, neurons would respond to complex and high-dimensional features of sensory
inputs, such as a particular combination of odorants, timbre of a sound or a visual texture, in
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2. Optimality and statistical analysis of biological systems

order to help the animal discriminate between environmental states of very different behavioral
relevance (e.g. a presence of a predator, a prey or a mate). To capture this intuition in our
simplified setup, we imagine that the stimuli xt are drawn from a multi-modal distribution,
which is a mixture of three different environmental states, labeled by ct (Fig. 2.2C). Efficient
coding then postulates that the neuron maximizes the mutual information, I(rt; ct), between
the environmental states, ct, that gave rise to the corresponding stimuli, xt, and the neural
responses, rt.

Mutual information, which can be evaluated for any choice of parameters k, x0, provides
the utility function, UMI(k, x0) = I(rt; ct), relevant to our case; in this simple example, the
utility function has no extra parameters ξ. Figure 2.2D shows that UMI is bounded between 0
and 1 bit (since the neuron is binary), but does not have a unique maximum. Instead, there
are four combinations of parameters that define four degenerate maxima, corresponding to
the neuron’s nonlinearity being as steep as possible (high positive or negative k) and located
in any of the two “valleys” in the stimulus distribution (red peaks in Fig. 2.2D). Moreover,
the utility function forms broad ridges on the parameter surface, and small deviations from
optimal points result only in weak decreases of utility. Consequently, formulating clear and
unambiguous theoretical predictions is difficult, an issue that has been recurring in the analysis
of real biological systems (Brinkman et al., 2016; Pitkow and Meister, 2012).

Given the utility function, the construction of the maximum-entropy optimization prior according
to Eq (2.2) is straightforward. Explicit examples for different values of β are shown in Fig. 2.2E
(left panel). Generally, the average utility of the prior monotonically increases as the prior
becomes more localized around the optimal solutions, as measured by the decrease in entropy
of the prior (Fig. 2.2E, right panel). This can be interpreted as restricting the system into a
smaller part of the parameter domain. If an increase in average utility requires a reduction
in entropy by 1 bit, this means that the parameters will be sampled from at most half the
available domain.

Before proceeding, we note that our approach depends on several non-trivial choices. First, the
fact that system parameterization and the size of the parameter domain can affect Bayesian
inferences is well recognized (Gelman, 2004) and we discuss how it relates to our case in
Supplemental Information (Sec. 2.8.1, 2.8.3; Fig. 2.10, 2.11). Second, β and the utility
function enter the optimization prior of Eq (2.2) as a product, leaving the scale of each
quantity arbitrary. For interpretation purposes we therefore define the normalized utility,
Ũ = (Ū(β) − Ū(β = 0))/(Umax − Ū(β = 0)), which takes on values between 0 and 1
for non-negative β, and is insensitive to linear scaling. We discuss the issue of β scaling
in Supplemental Information (Sec. 2.8.4). Third, data and optimality theories could be
combined in multiple ways. However combining them via maxent optimization priors enjoys
favorable theoretical guarantees that alternative approaches may lack, which we demonstrate
in Supplemental Information (Sec. 2.8.5, Fig. 2.13, 2.14 Methods S5, Fig. S4, S5). These
considerations complete our setup and allow us to address the four questions posed in the
Introduction.

2.3 Question 1: Statistical test for the optimality
hypothesis

Given a candidate normative theory and experimental data for a system of interest, a natural
question arises: Does the data support the postulated optimality? This question is non-trivial
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2.3. Question 1: Statistical test for the optimality hypothesis

for two reasons. First, optimality theories typically do not specify a sharp boundary between
optimal and non-optimal parameters, but rather a smooth utility function U(θ) (Fig. 2.3A):
How should the test for optimality be defined in this case? Second, a finite dataset D might
be insufficient to infer a precise estimate of the parameters θ, but will instead yield a (possibly
broad) likelihood surface (Fig. 2.3B): How should the test for optimality be formulated in the
presence of such uncertainty?
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Figure 2.3: Statistical test of optimality. (A) Utility function UMI(k, x0). Crosses and numbers
show the locations of ground truth parameters. (B) Likelihood of the nonlinearity parameters
obtained from 20 stimulus–response (xi, ri) pairs. The three examples correspond to three ground
truth parameter values (black crosses in A), and are ordered by increasing utility. (C) Marginal
likelihood of the optimality parameter β, L̃(β) = P (D|β), corresponding to data in A. Maximum
likelihood estimates β̂1,2,3 (blue circles) indicate that the data would be most probable with no
preference for high utility UMI (left panel, β̂1 = 0 – note that we do not allow negative β̂), some
preference for high UMI (middle panel, β̂2 > 0 finite) and strong preference for high UMI (right panel,
β̂3 → ∞; blue circle displayed at β = 200 for illustration purposes). Likelihood ratio statistic λ1,2,3
compares the marginal likelihood of β at β = 0 vs. β = β̂1,2,3 (see Methods). (D) Null distribution
of the test statistic λ. Point mass at λ = 0 corresponds to cases where the maximum likelihood
optimality parameter is zero, β̂ = 0. High values of λ are evidence against the null hypothesis that
β = 0, and hence support optimality. Dashed vertical line represents p = 0.05 significance threshold,
blue circles show λ1,2,3. Only λ3 crosses the threshold, indicating significant preference for high
utility parameters.

Here we devise an approach to address both issues. The basis of our test is a null hypothesis
that the system is not optimized, i.e., that its parameters have been generated from a uniform
random distribution on the biophysically accessible parameter domain. This distribution
is exactly the optimization prior P (θ|β = 0). The alternative hypothesis states that the
parameters are drawn from a distribution P (θ|β) with β > 0. To discriminate between the
two hypotheses, we use a likelihood ratio test with the statistic λ, which probes the overlap
of high-likelihood and high-utility parameter regions. Specifically, we define the marginal
likelihood of β given data, L̃(β) = P (D|β) =

∫︁
dθL(θ)P (θ|β) (Fig. 2.3C), and then define

λ as the log ratio between the maximal marginal likelihood, maxβ>0 L̃(β), and the marginal
likelihood under the null hypothesis, L̃(β = 0) (see Methods). Here, we assumed for simplicity
that the utility function U does not depend on any additional parameters ξ; this simplification
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2. Optimality and statistical analysis of biological systems

is relaxed in the Supplemental Information (Sec. 2.8.2, Fig. 2.12).

The test statistic λ has a null distribution that can be estimated by sampling (Fig. 2.3D), with
large λ implying evidence against the null hypothesis; thus, given a significance threshold, we
can declare the system to show significant degree of optimization, or to be consistent with no
optimization. This is different from asking if the system is “at” an optimum: such a narrow
view seems too restrictive for complex biological systems. Evolution, for example, might not
have pushed the system all the way to the biophysical optimum (e.g., due to mutational load
or because the adaptation is still ongoing), or the system may be optimal under utility function
or resource constraints slightly different than those postulated by our theory (De Martino
et al., 2018). Instead, the proposed test asks if the system has relatively high utility, compared
to the utility distribution in the full parameter space. This approach has been used e.g. in the
context of the genetic code, which has been argued to be exceptionally robust withing the
space of possible codes (Haig and Hurst, 1991; Freeland and Hurst, 1998).

While principled, this hypothesis test is computationally expensive, since it entails an integration
over the whole parameter space to compute the marginal likelihoods, L̃(β), as well as Monte
Carlo sampling to generate the null distribution. The first difficulty can be resolved when the
number of observations T is sufficient such that the likelihood of the data, L(θ), is sharply
localized in the parameter space; in this case the value of the utility function at the peak
of the likelihood itself becomes the test statistic and the costly integration can be avoided
(see Methods). The second difficulty can be resolved when we can observe many systems
and collectively test them for optimality; in this case the distribution of the test statistic
approaches the standard χ2 distribution (see Methods).

2.4 Question 2: Inferring the degree of optimality
Hypothesis testing provides a way to resolve the question whether the data provides evidence
for system optimization or not (or to quantify this evidence with a p-value). However, statistical
significance does not necessarily imply biological significance: with sufficient data, rigorous
hypothesis testing can support the optimality hypothesis even if the associated utility increase
is too small to be biologically relevant. Therefore, we formulate a more refined question: How
strongly is the system optimized with respect to a given utility, U(θ)?

Methodologically, we are asking about the value of the optimization parameter, β, that is
supported by the data D. In the standard Bayesian approach, all parameters of the prior
are considered fixed before doing the inference; the prior is then combined with likelihood to
generate the posterior (Fig. 2.4A). Our case corresponds to a hierarchical Bayesian scenario,
where β is itself unknown and of interest. In the previous section we chose it by maximizing
the marginal likelihood, L̃(β), to devise a yes/no hypothesis test. Here, we consider a fully
Bayesian treatment, which is particularly applicable when we observe many instances of the
same system. In this case, we interpret different instances (e.g., multiple recorded neurons)
as samples from a distribution determined by a single population optimality parameter β
(Fig. 2.4B) that is to be estimated. Stimulus-response data from multiple neurons are then
used directly to estimate a posterior over β via hierarchical Bayesian inference.

To explore this possibility, we generate parameters θn of n = 1, . . . , N model neurons from three
different distributions: strongly optimized (β = 12; Fig. 2.4C, left panel), weakly optimized
(β = 4; Fig. 2.4C, middle panel) and non-optimal (Gaussian distribution of parameters;
Fig. 2.4C, right panel). For each of the three examples, we simulate stimulus-response data
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Figure 2.4: Inference of the degree of optimality. (A) Posterior over nonlinearity parameters,
inferred for a single system with a utility-derived prior at fixed optimality parameter, β = β∗. (B)
A hierarchical model of a population of optimized systems. Population optimality parameter β
controls the distribution of parameters for individual systems (n = 1, . . . , N), θn, which give rise to
observed data, Dn. (C) Nonlinearity parameters (64 red dots per distribution) sampled from three
different ground truth distributions (denoted by roman numerals in panels G-J): a strongly optimized
population (β = 12; left), a weakly optimized population (β = 4; middle), a non-optimal distribution
(Gaussian distribution; right). For each model neuron θn, data Dn consists of 100 stimulus-response
pairs. (D) Results of hierarchical inference. Posteriors over β (purple lines) and MAP estimates, β̂
(dashed purple lines) were obtained using simulated data from G. Priors (gray lines) were uniform on
the [0, 20] interval. (E) Normalized utility Ũ . Estimated values (purple bars) closely match ground
truth (gray bars). (F) Entropy and normalized utility of ground truth distributions (gray, filled
circles) and inferred distributions parametrized by β̂ (purple, empty circles).

for all neurons and use these data in a standard hierarchical Bayesian inference to compute
posterior distributions over the population optimality parameter, β (Fig. 2.4D; see Methods).

Following hierarchical inference, we can interpret the inferred population optimality parameter
β̂, by mapping it onto normalized utility (cf. Fig. 2.2E). This reports optimality on a [0, 1] scale,
with 1 corresponding to the maximum achievable utility Umax and thus a fully optimal system,
and 0 corresponding to the average utility under random parameter sampling, Ū(β = 0).
Normalized utility for the three examples is shown in Fig. 2.4E.

Our framework enables us to draw inferences about optimality which are not possible otherwise.
For example, in addition to estimating the normalized utility, we can also quantify how
restrictive the optimization needs to be in order to achieve that level of utility. This restriction
is measured by the entropy associated with β̂ (Fig. 2.4F). In example I from Fig. 2.4C-E,
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β̂ = 12.8 is associated with a decrease in entropy of about 1.75 bits compared to β = 0,
meaning that nonlinearity parameters are effectively restricted to a fraction about 2−1.75 ≈ 0.3
of the parameter domain. Example III with β̂ = 0 is consistent with a high-entropy optimization
prior and indicates almost no parameter space restriction. This is despite the fact that the
actual parameters were sampled from a Gaussian highly concentrated (i.e., with low entropy)
in the parameter space—but not in a region of high utility. This mismatch suggests that such
a system could be optimized for a different utility function or shaped by other constraints.
The system could also be anti-optimized, i.e. prefer negative values of Ũ , which could easily
be identified by permitting negative β values during inference. Another clear benefit of the
probabilistic framework is the possibility of computing uncertainty estimates of β and the
associated utility and entropy.

2.5 Question 3: Data resolves ambiguous theoretical
predictions

Predictions derived from optimality theories can be non-unique and ambiguous. This ambiguity
can manifest itself in different ways.

The first kind of ambiguity results from the existence of multiple maxima of the utility function.
Before formulating statistical questions, it is important to pause and clarify the underlying
biological context: Could different observed instances of the system freely sample from all
utility maxima (as in Fig 2.4C, example I), or is a single maximum relevant, perhaps because it
is the only one that nature realized by evolutionary adaptation? In the later case, the first task
of statistical analysis is to identify that single maximum. For low-dimensional systems, this
ambiguity can be resolved trivially: in our toy model, for example, a few data points suffice to
zero in on one of the four degenerate utility maxima (Supplemental Methods Sec. A.2 and
Fig. A.1). In contrast, in high-dimensional parameter spaces the task of finding the “closest
optimum” is non-trivial (Doi et al., 2012) and could be aided by sampling methods derived
from optimization priors, which is a topic for further research.

The second kind of ambiguity results from system parameters which enter the utility function,
but are unconstrained by the optimization theory in question. Such parameters limit the
performance of the whole system, with the utility typically achieving its global maximum when
they take on extremal values (e.g., ±∞, 0, etc.); yet, these extremal values often correspond
to physically implausible scenarios (infinite averaging time or energy consumption, zero noise,
instantaneous response time, etc.). Optimization theory cannot make a non-trivial prediction
about these parameters, so they must either be fixed a priori based on known external
constraints, or inferred from data simultaneously with the optimization of the remaining
parameters. An additional subtlety comes into play when we analyze multiple instances of
a system (e.g., neurons): either each individual neuron has its own value of the constraint
parameter, to be determined from data (which we address in the following paragraph), or all
neurons share a single value of the constraint that needs to be inferred jointly.

In our model, the nonlinearity slope k is unconstrained by optimization: mutual information
increases monotonically as |k| → ∞ (Fig. 2.5A). This corresponds to vanishing noise in neural
spiking. Since such noise cannot physically vanish, we must change the interpretation of the
utility function, UMI(θ), and evaluate it only over positions x0, while treating the slope k
as a constraint to be fit from data—which we indicate by writing UMI(x0; k). Here, slope
k determines the entire shape of the utility function (Fig. 2.5B). Unreliable neurons with
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a small slope have a unique optimal position x0 = 0, while for neurons with large |k| the
utility is bimodal, with optimal positions separating peaks of the stimulus distribution. As
before, we can infer both parameters for a “noisy” (Case I) and “precise” (Case II) simulated
neuron (Fig. 2.5C); this time, however, the optimization prior acts only on x0, while the prior
over slope k remains uniform. To properly assess optimality, we must normalize the utility by
the maximal utility achievable at the estimated value of k: Ũ(x̂0; k̂) = (U(x̂0; k̂) − Ū(β =
0; k̂))/((Umax(x0; k̂) − Ū(β = 0; k̂)). In both cases, the relative utility exceeds 0.9 (Fig. 2.5C).
Because theoretical predictions now depend on the biophysical constraint—which itself is a free
parameter adjustable separately for each system instance—high values of normalized utility
can be achieved by neurons with very different x0.
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Figure 2.5: Resolving ambiguities of theoretical predictions. (A) Prediction ambiguity due
an unconstrained system parameter. Utility is evaluated over the position parameter x0 (red),
with the slope parameter k (green) interpreted as an externally imposed biophysical constraint. k
is inferred from data for each neuron separately; for different k, optimality may predict different
optimal positions, x0. (B) Optimization priors for x0 are conditional maxent distributions over x0
parametrized by values of k (rows of the matrix), here at fixed β = 12 (left). Distributions over x0
for two example values of k (dashed black lines at left) are displayed in the right panel, with optimal
x0 values marked (pink and red circles for cases I and II, respectively). (C) Posteriors over the
position (x0, left column, top) and the slope (k, left column, bottom) parameters, estimated for cases
I and II (light and dark purple lines, respectively; dashed lines – MAP estimates), by marginalizing
the joint posterior. Ground-truth values are marked with circles. Normalized utility of x0, relative to
the maximal utility for k inferred separately for cases I and II. (D) Prediction ambiguity due to an
unspecified utility function. Utility prefers high mutual information I at a low average firing rate ⟨r⟩,
with an unknown trade-off parameter ξ. Optimization prior with no firing rate constraint (left, ξ = 0)
shows four degenerate maxima; the constraint (right, ξ = 2) partially lifts the degeneracy. (E)
Two ground truth distributions (gray) corresponding to different values of the firing rate constraint
ξ. Red dots denote N = 64 sample neurons. (F) Posteriors over the firing rate constraint ξ (left
column, top) and the optimality parameter β (left column, bottom), estimated for cases I and II
(light and dark purple lines, respectively; dashed lines – MAP estimates), by marginalizing the joint
posterior. Ground-truth values are marked with circles. Normalized utilities computed for ξ inferred
separately for cases I and II.
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2. Optimality and statistical analysis of biological systems

The third kind of ambiguity arises when the utility function itself depends on additional
parameters, ξ. The mutual information utility UMI of our toy model can be extended by
considering the cost of neural spiking, resulting in a new compound function, U(x0, k; ξ) =
UMI(x0, k) − ξ⟨rt⟩, with the trade-off parameter ξ. Increasing ξ changes the shape of the new
utility function (Fig. 2.5D). Given multiple instances of a biological system (Fig. 2.5E), we
can ask about the most likely form of U (i.e., the single value of ξ shared across all instances
of the system), together with the most likely value of the optimization parameter, β. Note
that such joint determination of β and ξ corresponds to answering Question 2 (“ Inferring the
degree of optimality”), in the presence of ambiguity. This problem is solved by hyperparameter
inference, which generates joint posteriors and MAP estimates of β and ξ (Fig. 2.5F). Here,
too, the normalized utilities are defined relative to the inferred value of ξ and can thus be
comparable even when the underlying utility functions are substantially different.

The difference between ambiguities of the second and third kind is subtle, yet important.
Broadly speaking, the second kind of ambiguity arises if only a subset of system parameters θ
depends on the optimality parameter β, while the remaining parameters act as constraints
that have to be inferred. In the third kind of ambiguity all system parameters θ depend on
the optimality parameter β as well as on additional parameters of the utility function ξ. The
corresponding differences in parameter dependency patterns are summarized graphically in the
Supplemental Information (Sec. A.2, Fig. A.2).

2.6 Question 4: Optimization priors improve inference
for high-dimensional problems

Here, we extend our toy model neuron with 2 parameters to a more realistic case with hundreds
of parameters. We focus on a Linear-Nonlinear-Poisson (LNP) model (Paninski et al., 2007),
whose responses to natural image stimuli are determined by a linear filter (also referred to
as a receptive field - RF) - ϕ ∈ R16×16 (Fig. 2.6A). The purpose of this exercise is to show
the tractability of our approach and the power of optimization priors for high-dimensional
inference problems. Inference of neural filters, ϕ, from data is a central data analysis challenge
in sensory neuroscience, making our example practically relevant.

Experimentally observed filters ϕ in the visual cortex have been suggested to maximize the
sparsity of responses st to natural stimuli (Olshausen and Field, 1996). A random variable is
sparse when most of its mass is concentrated around 0 at fixed variance. These experimental
observations have been reflected in the normative model of sparse coding, in which maximization
of sparsity has been hypothesized to be beneficial for energy efficiency, flexibility of neural
representations, and noise robustness (Hyvärinen et al., 2009; Olshausen and Field, 2004).
Filters optimized for sparse utility USC(ϕ) (see Methods) are oriented and localized in space
and frequency (Fig. 2.6B, leftmost panel) and famously resemble RFs of simple cells in the
primary visual cortex (V1). A significant fraction of neural RFs, however, differ from optimally
sparse filters (Ringach, 2002), perhaps due to the existence of additional constraints. One
possible constraint is spatial locality, which leads to suboptimally sparse filters that increasingly
resemble localized blobs (Doi and Lewicki, 2014), as shown in Fig. 2.6B.

In our framework, sparse coding utility USC and locality ULO combine into a single utility
function with a parameter ξ that specifies the strength of the locality constraint. We wondered
whether an optimization prior based on sparsity, even in the presence of an additional constraint
of unknown strength, could successfully regularize the inference of linear filters, ϕ.
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CC

A

Figure 2.6: Optimality priors improve inference of high-dimensional receptive fields. (A)
Linear-nonlinear-Poisson (LNP) neuron responding to 16×16 pixel natural image patches, xt. Stimuli
are projected onto a linear filter ϕ, which transforms them via logistic nonlinearity into average
firing rate of Poisson spiking, rt. (B) Receptive fields optimized for maximally sparse response to
natural stimuli with a locality constraint ξ. First three panels on the left display 2 × 2 example filters
optimized at increasing ξ. Rightmost panel shows the decrease in average sparse utility of filters with
increasing ξ. (C) MAP estimates of two optimally sparse filters (ξ = 0) obtained with optimality
prior of increasing strength β. White digits denote correlation with the corresponding ground truth.
(D) Average correlations of N = 100 filter estimates with the ground truth as a function of prior
strength β for locality constraint ξ = 0. Dashed blue line denotes the average correlation for ML
estimates. MAP estimate correlations are significantly higher than ML estimate correlations (t-test;
*** denotes p < 0.001). Error bars denote standard errors of the mean. (E) Identification of
prior strength β and locality constraint ξ via cross-validation. Left panel, cross-validation errors in
predicting withheld neural responses for a range of β and ξ values (heatmap). Parameter combination
resulting in minimal error is marked with a red frame. Top right, a ground truth filter optimized with
ξ = 0.2. Bottom right, MAP estimate of the filter, obtained with correctly identified values for β
and ξ.

We first consider a scenario where the locality constraint is known a priori to equal zero. We
simulate spike trains of 100 model neurons optimized under sparse utility USC responding to a
sequence of 2000 natural image patches (see Methods for details). Using these simulated data
we infer the filter estimates, ϕ̂, using Spike Triggered Average (STA) (Sharpee, 2013; Park
and Pillow, 2017), which under our assumptions are equivalent to the maximum likelihood
(ML) estimates (Paninski et al., 2007) (see Methods). STAs computed from limited data
recover noisy estimates of neural filters (Fig. 2.6C; column second from the left).
Can sparse coding provide a powerful prior to aid inference of high-dimensional filters? Using
our sparse coding utility, USC(ϕ), we formulate optimization priors for various values of β and
compute maximum-a-posteriori (MAP) filter estimates ϕ̂(β) from simulated data (Fig. 2.6C;
four rightmost columns; see Methods for details). Increasing values of β interpolate between
pure data-driven ML estimation (Fig. 2.6C, second column from the left) that ignores the
utility, and pure utility maximization (Fig. 2.6C, right column) at very high β = 102 where the
predicted filters become almost completely decoupled from data; these two regimes seem to
be separated by a sharp transition. For intermediate β = 1, 10, 20, MAP filter estimates show
a significant improvement in estimation performance relative to the ML estimate (Fig. 2.6D).
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2. Optimality and statistical analysis of biological systems

We next consider a scenario where the locality constraint is not known a priori, but can be
identified together with the prior strength β using cross-validation (Kass et al., 2014), as
described in Question 3. To this end, we simulate responses of a single neuron whose filter
was optimized with the locality constraint ξ = 0.2 (Fig. 2.6E, “Gnd. Truth”). We then use
a subset of 1800 out of 2000 stimulus-response pairs to compute the MAP estimate of the
filter using a range of β and ξ values. Each MAP estimate of the filter is used to compute
the prediction error for neural responses over withheld portion of the data. Cross-validation
correctly identifies the true ξ and the optimal β values which minimize the prediction error
(Fig. 2.6E); the resulting filter estimate (Fig. 2.6E, “MAP”) closely resembles the ground
truth.

Optimization priors achieve a boost in performance because they quantitatively encode many
characteristics we ascribe to the observed receptive fields (localization in space and bandwidth,
orientation), which the typical regularizing priors (e.g., L2 or L1 regularization of ϕ components)
will fail to do. While hand-crafted priors designed for receptive field estimation can capture
some of these characteristics (Park and Pillow, 2017; Savin and Tkacik, 2016), optimization
priors grounded in the relevant normative theory represent the most succinct and complete way
of summarizing our prior beliefs. For flexible optimization priors whose strength and additional
parameters are set by cross-validation, one might expect that the postulated optimality theory
need not be exactly correct to aid inference, so long as it captures some of the statistical
regularities in the data.

2.7 Applications

2.7.1 Application 1: Receptive fields in the visual cortex
Here we analyze receptive fields of neurons in the primary visual cortex (V1) of the Macaque
monkey (Ringach, 2002) (Fig. 2.7A). This system is a good test case, for which multiple
candidate optimality theories were developed and tested against data (Olshausen and Field,
1996; Wiskott and Sejnowski, 2002; Hyvärinen et al., 2009; Van Hateren and van der Schaaf,
1998). As in the example of Fig. 2.6, we focus on sparse coding using utility USC, which
prioritizes RFs localized in space and frequency (Fig. 2.7B; see Methods). An alternative utility
prioritizing slow features is presented in Supplemental Information (Sec. A.3, Fig. A.3).

We first ask whether RFs of individual neurons support the optimality hypothesis, as in Question
1. Given the high-quality of RFs estimates, costly marginalization of the likelihood can be
avoided and the utility of estimated RFs can be used directly as a test statistic. To construct
the null distribution for the test, we sample 106 random filters consistent with optimization
prior P (ϕ|β = 0), and declare the 95th percentile to be the optimality threshold (Fig. 2.7C).
As expected, a large majority (204 neurons, green dots / example frame in Fig. 2.7C) of V1
neurons pass the optimality threshold, with 46 neurons failing the test (orange dots / example
frame in Fig. 2.7C).

We next ask whether all RFs can be used together to quantify the degree of population
optimality, as in Question 2. We estimate approximate posteriors over parameter β via
rejection sampling (see Methods), using all RFs in the population (Fig. 2.7D, purple line). For
comparison, we also compute posteriors using 250 utility-maximizing and 250 utility-minimizing
filters (Fig. 2.7D, red and gray lines, respectively). MAP estimates of β obtained with simulated
maximal and minimal utility RFs provide a reference for the interpretation of β estimated
from real data. This estimate, β̂V1, is very close to the parameter value of the optimally
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Figure 2.7: Optimality of V1 receptive fields. (A) Six example receptive fields (RFs) from
Macaque visual cortex (courtesy of Dario Ringach (Ringach, 2002)). (B) Example simulated RFs
optimized for sparsity. (C) Null distribution of utility values used to test for optimality under
sparse utility and the 95-percentile significance threshold (red dashed line). Significant (green)
and non-significant (orange) receptive fields denoted with dots (x axis is truncated for visualization
purposes); example RFs are shown in frames of matching colors. Blue dot shows the average RF
utility (99.6th percentile of the null distribution). (D) Approximate log-posteriors over population
optimality parameter β derived from 250 RFs estimates (purple line), 250 maximum-utility filters (red
line) and 250 minimal-utility filters (gray line). Dashed lines mark MAP estimates. (E) Empirical
distribution of RF utilities (blue line) compared with utility distribution consistent with the inferred
β̂V1 (purple line). (F) Spatial autocorrelation of RFs predicted for different β values (reported in
top-right corner of each panel, cf. inferred values in D). Note a good match between data-derived RF
autocorrelation (black frame) and the predicted autocorrelation at the inferred β̂V1 (purple frame).
(G) Three clusters with different β, learned with a MaxEnt mixture-model. For each cluster, 3 × 3
sample receptive fields are displayed, together with the corresponding normalized utility values in the
bottom-right panel.

sparse filters, implying high degree of optimization. The normalized utility is 0.69, implying a
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2. Optimality and statistical analysis of biological systems

significant, yet not complete, degree of optimization.

Since population optimality β parametrizes the entire distribution of receptive fields, inferring
β allows us to make predictions inaccessible by other means. For example, given the inferred
degree of optimality, we predict the entire distribution of utility values (not only its mean)
across neurons. In principle, the predicted distribution (or its higher-order moments, e.g.,
variance) could deviate from the empirically observed distribution, if the real system were
adapted to a different utility or set of constraints. For V1 neurons, the predicted and empirical
sparse utility distributions are very similar (Fig. 2.7E).

Another prediction concerns the correlation between system parameters, in our case, RF
shapes. Different values of β predict very different spatial autocorrelation functions of RFs
(Fig. 2.7F), with the prediction at inferred β resembling the data-derived autocorrelation
better than the alternative or extremal β values. These examples demonstrate that once the
single parameter β is inferred, the optimality framework makes quantitative, rigorous, and
parameter-free predictions of non-trivial statistics that can be directly tested against data.

Our framework can also be used to dissect sources of deviation from optimality. We fit a
mixture model, where each mixture component was parametrized by a separate value of β
(Fig. 2.7G; see Methods). This procedure clusters the RFs into three groups spanning a broad
range of utility values. The largest cluster (135 RFs) achieves a nearly maximal normalized
utility of 0.94; neurons in this cluster all passed the significance test in Fig. 2.7C. The existence
of second- and third-largest clusters (95 RFs, normalized utility of 0.52; 20 RFs, normalized
utility ∼ 0, respectively) suggests that these cells might be a subject to additional unknown
constraints or might be optimizing a different utility. We emphasize that we analyze the
optimality of individual neurons, whereas the optimization of complete populations could yield
a more diverse set of RFs that are individually suboptimally sparse (Olshausen and Field, 1996;
Zylberberg et al., 2011; Hyvärinen et al., 2009), accounting for the deviations we observe.
Our analysis is intended as a demonstration of the applicability of our framework, rather than
a definitive optimality claim about V1 neurons. Population-level analysis of optimality is a
subject of future work.

2.7.2 Application 2: Receptive fields in the retina
Here we analyze temporal receptive fields of 117 retinal ganglion cells (RGCs) in the rat
retina (Deny et al., 2017). Temporal RFs have a characteristic bimodal shape (Fig. 2.8A,
left) which can be captured well by a simple filter model with three parameters (Sun et al.,
2017). Two parameters (c1, c2) describe the amplitudes of both modes, while the third (a)
determines the temporal scale of the filter (Fig. 2.8A, right panel). In what follows, we focus
on the optimality of filter shapes in the space of these three parameters.

RGC receptive fields long have been hypothesized to instantiate predictive coding (PC) – a
canonical example of a normative theory in sensory neuroscience (Srinivasan et al., 1982).
Temporal PC postulates that, instead of tracking the exact stimulus value directly in their
responses, neurons encode a difference between the stimulus and its linear prediction computed
using past stimuli. Such a strategy has many potential benefits: it reduces the dynamic range
of signals, minimizes use of metabolic resources, and can lead to efficient coding in the low
noise limit, by performing stimulus decorrelation and response whitening (Srinivasan et al.,
1982; Bialek, 2012; Dong and Atick, 1995; Van Hateren and van der Schaaf, 1998; Chalk
et al., 2019).
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Figure 2.8: Optimality of retinal receptive fields. (A) Two example temporal receptive fields
of rat retinal ganglion cells. Gray lines show RF estimates (courtesy of Olivier Marre (Deny et al.,
2017)), dashed blue lines show parametric fits. Fit parameters correspond to amplitudes of filter
modes (parameters c1, c2, orange) and scale (parameter a, green). (B) Example natural stimulus:
light intensity of a single pixel of a natural movie (top-left, black). Representative retinal RF and
its linear response to the natural stimulus (bottom-left, blue line). Optimal predictive coding filter
and its response to the same stimulus (top-right, dark red line). Optimal instantaneous information
transmission filter and its response (bottom-right, pink line). (C) Analysis of temporal RFs with
the generalized predictive coding utility, UPC. First panel: Utility function of filter modes c1, c2
constrained by timescale a = 25. Second panel: Log-posterior (solid purple line) over population
optimality parameter β (dashed vertical line – MAP estimate). Third panel: Normalized utility of
the RF population. Fourth panel: Optimization prior distribution over (c1, c2) at the inferred β̂,
marginalized over all values of the timescale parameter a (black dots – data-derived RFs). (D)
Analysis of temporal RFs with the instantaneous information utility, UII, analogous to C.

An optimal predictive coding filter must be adapted to the statistics of stimuli it encodes (Srini-
vasan et al., 1982). We optimize PC filters using natural light intensity time-courses (see
Methods). Optimal PC filter responses qualitatively resemble the responses of a representative
retinal filter convolved with the same natural stimulus (Fig. 2.8C). Both filters generate strong,
spike-like transients to sudden changes in the stimulus mean, while their output remains
close to 0 when the stimulus is not changing. This pattern is different from the response
of a parametric bimodal filter (with parameters a, c1, c2) optimized to track the stimulus,
obtained by maximizing instantaneous information transmission in a low-noise regime (UII,
see Methods). Importantly, predicted responses can be very distinct despite the qualitative
similarity between retinal, PC, and instantaneous information filters.

To evaluate the optimality of retinal RFs, we propose a new utility, UPC, that mathematically
generalizes the canonical formulation of predictive coding (Srinivasan et al., 1982). This utility
prioritizes filters which minimize power in their output, given a fixed filter norm, while allowing
the filters to operate on timescales distinct from the stimulus frame rate (see Methods for
details). We evaluate UPC(θ; a) as a function of the two filter mode parameters, θ = (c1, c2),
but consider the timescale a to be an external constraint to be inferred from data for each
neuron separately, as in Question 3. Parameter a is a constraint because, much like k in the
toy neuron example of Fig. 2.2, its value is not set by optimality (which prefers a → 0) but by
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2. Optimality and statistical analysis of biological systems

biophysical constraints or by the temporal horizon at which prediction is of highest use to the
organism. For a broad range of a values, UPC is highest close to the diagonal of the (c1, c2)
plane, representing nearly balanced filters, as shown in Fig. 2.8C (left).

We use all retinal RFs jointly to compute the posterior over the optimality parameter β
(Fig. 2.8C, second panel). The inferred β̂ ≈ 11.7 yields a normalized utility of 0.85, implying
strong optimization for PC (Fig. 2.8C, third panel from the left); even relative to the non-
parametric optimal PC filter with no timescale constraint, the utility of retinal filters remains
as high as 0.74. The high degree of optimization is visually evident in the (c1, c2) plane,
where individual neurons fall onto high utility regions of the maximum entropy distribution
given inferred β̂ and marginalized over timescale a (Fig. 2.8C, right). An analogous analysis
performed using maximization of instantaneous information UII (see Methods) reveals a
negative β estimate and thus anti-optimization for this alternative utility, with real neurons
avoiding high-utility regions of the maximum entropy distribution.

2.7.3 Application 3: Neural wiring in C. elegans
Here we analyze neural wiring in C. elegans, which has been the subject of several normative
studies (Chen et al., 2006; Chklovskii, 2004; Pérez-Escudero et al., 2009; Pérez-Escudero and
de Polavieja, 2007). Relative positions of neurons could be partially predicted by minimizing
the total wiring cost under the constraint that muscles and sensors need to be properly
connected (Chen et al., 2006; Pérez-Escudero and de Polavieja, 2007). Instead of trying to
predict individual neuron positions, we ask a different question: Are the measured neuron
positions optimized to minimize the wiring cost to muscles and sensors?

For each neuron i, the wiring cost is determined by the number of muscles it connects to, the
distance between the neuron’s position, xi, and positions of muscles, mi,j, and the number
of synapses formed by each connection, ni,j (Fig. 2.9A). The resulting utility function for
each neuron can be written as UWC(xi;mi, ni, ξ) = −∑︁Ni

j=1 ni,j|xi −mi,j|ξ, where Ni is the
number of muscles the neuron i connects with, and ξ is an exponent determining the form of
the utility as a function of distance (Chen et al., 2006) (Fig. 2.9B). The precise value of ξ is
not specified by the theory and thus needs to be inferred from data, following the ambiguity
of the third kind scenario (cf. Question 3).

Our analysis shows that a large proportion of 126 neurons that form connections with muscles
align closely with the maxima of the utility function (Fig. 2.9B, left panel). We estimate the
joint posterior distribution over the optimality parameter β and the connection exponent ξ,
for neuron-muscle and neuron-sensor connections separately (Figs. 2.9B,C, middle panels). In
both cases, the normalized utility exceeds 90 %, implying strong optimization. Interestingly,
the estimates for the exponent ξ are relatively high: 1.6 for neuron-muscle connections and
1.9 for neuron-sensor connections, suggesting that neurons are penalized only weakly for small
deviations from optimal positions but much stronger for large deviations. This is in contrast
to previously published analysis that focused instead on neuron-neuron connections (Pérez-
Escudero et al., 2009), where the authors find (and we confirm) ξ ≈ 0.5. This implies a
cost that is considerable for short connections and grows only slowly with distance, a pattern
consistent with the clustering of neurons within ganglia and the nerve ring. The lower exponent
for neuron-neuron connections could be related to their anatomy. In C. elegans, input and
output synapses can be located on the same neurite (Donato et al., 2019)). This might reduce
the cost associated with connections between distant neurons, e.g. because some computation
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Figure 2.9: Optimality of neural wiring in C. elegans. (A) Left panel: Connection schematic
between example neuron at position x1 (black circle) and three muscles at positions m1,1,m1,2,m1,3
(green circles). Number of synapses between neuron x1 and muscle m1,j is denoted n1,j . The
example neuron forms monosynaptic connections (green lines) only with the three muscles. Right
panel: wiring cost utility, UWC(x1; ξ), as a function of position x1, corresponding to the scenario
depicted at left. Position axis spans the entire C. elegans body length. Utility functions are shown for
three exponent values ξ. (B) Neuron-muscle connection analysis. Left panel: Utility UWC(x; ξ = 2)
(red, scaled to [0, 1] for each neuron) for all 126 neurons (rows), as a function of neuron positions
x ∈ [0, 1]. Black line denotes positions of real neurons. Middle panel: joint posterior over optimality
parameter β and the exponent ξ (cross denotes MAP estimates reported in the legend). Right panel:
normalized utility of neuron-muscle connectivity. (C) Neuron-sensor connection analysis, analogous
to B.

could be performed locally near clusters of synapses away from the cell bodies Ruach et al.
(2023).

2.8 Properties and extensions of the framework

Here we discuss some advantages and limitations of using optimization priors, as well as
extensions that address them.
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2.8.1 Effects of parametrization
Related to Sec. Bayesian inference and optimization priors.

Biological systems can often be described using different sets of parameters. One set of
parameters can be converted into another using a mathematical transformation, such as the
log-transform (replacing the value of slope k by log k) or the reciprocal (replacing k by 1/k).
The choice of parametrization is largely a matter of convenience or convention. However,
when working with probability distribution functions such as the optimization priors (Eq. 2),
special care needs to be taken, since the functional form of the priors is intertwined with the
choice of parametrization. In this section we highlight the subtleties involved. In 2.8.3 we
introduce a generalized form of the optimization priors, that allows us to clearly separate the
choice of the parametrization from the choice of the normative prior distribution.

Maximum entropy priors depend on parametrization. Suppose that a researcher, Alice,
defines the family of optimization priors as introduced in Eq. 2,

PA(θ|β) ∝ eβU(θ). (2.3)

Suppose that Alice then decides to use a different set of parameters, ϕ = f(θ), to perform
some computational task. The prior Eq. (2.3), as function of ϕ, can be obtained by the
standard method of changing variables,

PA(ϕ|β) ∝ eβU(f−1(ϕ))| det J(ϕ)|, (2.4)

where Jij(θ) = ∂f−1(ϕ)i

∂ϕj
is the Jacobian. Some parameter regions may appear expanded or

shrunk in the new parametrization; the Jacobian corrects for this and makes sure that the
underlying probability distribution does not change. A change of variables like this can be
done whenever it is convenient.
Notice, however, that the distribution PA(ϕ|β) in Eq. (2.4) is different from what another
researcher, Bob, who has been using the parametrization ϕ from the beginning, has obtained
from Eq. 2 directly,

PB(ϕ|β) ∝ eβU(f−1(ϕ)). (2.5)
Namely, Bob’s distribution PB(ϕ|β) does not include the Jacobian that is present in PA(ϕ|β),
since Bob did not perform a change of variables from θ. This means that Alice and Bob are
using different optimization priors and will get different results downstream in the analysis.
This is particularly clear for β = 0, i.e. with zero optimization. Bob’s prior PB(ϕ|β) is then
uniform in ϕ; but Alice’s prior PA(ϕ|β) ∝ | det J(ϕ)| is uniform in θ, but non-uniform in ϕ
(unless θ and ϕ are related by a linear transformation, in which case the Jacobian | det J(ϕ)|
is constant).

Illustration with the toy model. Fig. 2.10 shows three different parametrizations of our
toy model,

Alice: θ = (x0, k) , (2.6)
Bob: ϕ =

(︂
x

1/3
0 , k1/3

)︂
, (2.7)

Carol: ψ =
(︄

1
2(1 + erf( x0√

2σx0

)), 1
2(1 + erf( k√

2σk
))
)︄
. (2.8)
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Figure 2.10: An illustration of three different parametrizations of the toy model, related to
Sec. Bayesian inference and optimization priors and Fig. 2B,D. Alice, Bob and Carol use θ, ϕ and
ψ – shown in top, middle and bottom row respectively. Column A: Utility plotted in the different
parametrizations. Columns B-D: Likelihood from the three examples used in the main text Fig. 3B,
here plotted in 3 different parametrizations. Column E: Optimization priors under β = 0 that Alice,
Bob and Carol are effectively using when they applied Eq. 2 using their choice of parametrization.
For comparison, all are plotted in Alice’s parametrization θ.

The ψ parametrization corresponds to the Gaussian distribution that we used as a non-optimised
example in the paper, Fig. 3G (III).

In Fig. 2.10, column A shows the utility surface in the three different parametrizations.
Compared to Alice’s parametrization θ (top row; this is the parametrization also used throughout
the paper), the parameter regions around (x0, k) = (0, 0) are inflated in Bob’s and Carol’s
parametrizations ϕ and ψ (middle and bottom rows). Columns B-D show the likelihood
surfaces, which show the same distortion between the parametrizations. Column E in Fig.
2.10 shows the optimization priors of Alice, Bob and Carol under no optimization, β = 0,
transformed into Alice’s parameters θ. Alice has defined her prior family according to Eq. 2
using θ and it is therefore uniform for β = 0. Bob and Carol have defined their priors to be
uniform ϕ and ψ, and they are therefore not uniform in θ. Specifically, the region around
(x0, k) = (0, 0) which was inflated in ϕ and ψ has higher probability density when “shrunk”
back to θ. We later refer to the β = 0 optimization prior, P (θ|β = 0), as the null model.

Since Alice, Bob and Carol are effectively using different priors, they obtain different results
in downstream analyses. To demonstrate this, Fig. 2.11 shows the likelihood of β for the
three example systems (subplots) and three parametrizations (blue, orange, green). The
differences between parametrizations are mostly qualitative for examples 1 and 3, which are
on the two extremes – non-optimised and highly optimised (β̂ML = 0 and ∞, regardless of
parametrization).

In the intermediate example 2, the ML estimates vary based on parametrization. For example,
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Figure 2.11: Likelihood of β for three example systems and three parametrizations θ, ϕ and
ψ, related to Sec. Bayesian inference and optimization priors and Fig. 3C. Example 1 (see likelihood
in Fig. 2.10B) is not optimised and ML β is always 0, but the curve differs between parametrizations.
Similarly, Example 3 (likelihood in Fig. 2.10D) is strongly optimised and ML β is always ∞. The
intermediate Example 2 (likelihood in Fig. 2.10C) has finite ML estimate of β, which depends on
parametrization (dashed vertical lines). The values are β̂ML,θ = 3.5 β̂ML,ϕ = 4.6 and β̂ML,ψ = 8.3.

ψ squeezes the utility peaks into the corners (Fig. 2.10A, bottom). This leads to β̂ML,ψ = 8.3,
higher than β̂ML,θ = 3.5 for the original parametrization, where the peaks are more spread
out.

These differences raise the question of which parametrization leads to correct results. First,
we stress that the answer is problem-specific and cannot be addressed in general. One should
consider whether a prior uniform in the chosen parameters under zero optimization (β = 0) is
appropriate.

Second, whenever this is desirable, the choice of parameters can be decoupled from the prior
distribution. A change in variables can be performed after the optimization priors are defined.
Alternatively, a null distribution under zero optimization can be specified explicitly – this is
discussed in the following section.

2.8.2 Statistical test of optimality with additional utility parameters
Related to Question 1: Statistical test for the optimality hypothesis and Fig. 3A-D

Suppose we have a utility function U(θ; ξ) and a likelihood function L(θ) = P (D|θ), which
is evaluated using some experimental dataset D. The optimality theory, and the associated
question of evidence for it, may be stated in one of two forms:

(a) The system parameters have been optimized for high U(θ; ξ) for a specific value of ξ∗

which we assume to know. Can we reject the optimization prior P (θ|β = 0, ξ = ξ∗)
with in favour of P (θ|β, ξ = ξ∗) with some positive β > 0?
In this case, ξ is fixed and the framework described in the main text applies. Note that
the null hypothesis does not in fact depend on ξ∗, since utility plays no role under β = 0,
and we can write P (θ|β = 0, ξ = ξ∗) = P (θ|β = 0).

(b) The system parameters have been optimized for high U(θ; ξ) for some unknown value
of ξ. Can we reject the optimization prior P (θ|β = 0) in favour of P (θ|β, ξ) with some
positive β > 0 and some value of ξ?
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2.8. Properties and extensions of the framework

This can be approached as a multiple hypothesis testing problem. We perform the
likelihood ratio test for a range of values of ξ, obtaining a p-value for each, p(ξ). This
allows us to detect and compare evidence for optimality under different assumptions
about the utility function, parametrized by ξ. A multiple testing correction is necessary
to manage the risk of false positives.

Example. We illustrate how this can be done within our toy model. The utility U(x0, k; ξ) =
UMI(x0, k)−ξ⟨r⟩ combines the mutual information utility with the cost of spiking, parametrized
by ξ – as introduced in the main text, Question 3. The utility is plotted for three values of ξ
in Fig. 2.12A.

Fig. 2.12B-E shows the statistical test of optimality for two example systems. Likelihood
functions of the neuron parameters P (D|θ) are displayed in Fig. 2.12B. For system I (Fig.
2.12B, top panel), the likelihood is concentrated near one of the mutual information peaks,
and for system II (Fig. 2.12B, bottom panel) it is concentrated in the areas corresponding
to low spiking rate. Fig. 2.12C displays the corresponding marginal likelihood P (D|β, ξ) =∫︁
dθP (D|θ)P (θ|β, ξ). Given a sample of stimulus-response pairs, system I is likely to be

generated under a zero or moderate cost of spiking ξ. System II is likely under high ξ that
prioritizes low spiking rate.

The likelihood ratio test can be performed for any value of ξ; we show the results for ξ = 0
in Fig. 2.12D (which is equivalent to the scenario described in the main text, Question 1).
According to the test, and under the 0.05 significance threshold, system I is significantly
optimal (p = 0.013). System II, however, is not (p = 1). The null distribution of the likelihood
ratio statistic λ is based on 10,000 data sets sampled according to P (D|β = 0). The likelihood
ratio test is performed across a range of ξ ∈ (−4, 4), each value yielding a p-value p(ξ). Note
that the null distribution of likelihood ratios under each ξ can be estimated using the same
set of samples.

Performing multiple hypothesis tests needs to be balanced by using a more stringent p-value
threshold, if we are to maintain a low probability of falsely claiming optimality. We aim to
keep the probability of one or more false positives – the family-wise error rate (FWER) below
α = 0.05. Common generic methods such as the Bonferroni correction, which sets the p-value
threshold at α/n with n being the number of tests, can be too conservative, since tests
performed for similar values of ξ are correlated – especially if ξ takes values from a dense grid.

To choose the appropriate p-value threshold, we compute the minimal p-value across ξ,
pmin = minξ p(ξ). FWER is the probability that pmin sampled under β = 0 falls below
the threshold, which means that the threshold can be chosen as the α-quantile of the null
distribution of pmin. This distribution, computed from 10,000 samples, and the threshold
corresponding to α = 0.05, is shown in Fig. 2.12E (the transformation − log10 pmin is used
for visualization purposes). A system with pmin below this threshold is declared optimal at
significance level α. Fig. 2.12E shows that both example systems pass this test at α = 0.05,
despite being optimal for different variants of the utility function corresponding to different
values of the spiking cost parameter ξ.

2.8.3 Optimization priors with general null models
Related to Sec. Bayesian inference and optimization priors.
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Figure 2.12: Statistical test of optimality with unknown utility parameter ξ, related to Question
1: Statistical test for the optimality hypothesis and Fig. 3A-D. A: Toy model utility function
U(x0, k; ξ) = UMI(x0, k) − ξ⟨r⟩ of position x0 and slope k for three different values of spiking cost
– parameter ξ. B: Likelihood of the nonlinearity parameters obtained from 20 stimulus–response
pairs. The ground truth parameters shown as white crosses. C: Marginal likelihood of the optimality
parameter β and utility parameter ξ. D: Likelihood ratio test of optimality for a fixed ξ = 0. The
null distribution is based on 10,000 samples of θ = (x0, k) from the uniform distribution P (θ|β = 0)
and dataset D according to P (D|θ). The black arrows indicate the likelihood ratio statistic for the
two example systems. Only the system I passes the test at significance level 0.05 (to the right of
dashed vertical line). E: Test of optimality under variable ξ. The likelihood ratio test was performed
across a range of ξ ∈ (−4, 4); plotted on the horizontal axis is the smallest p-value pmin = minξ p(ξ),
transformed as − log10 pmin for better visualization at low pmin. Dashed vertical line shows the
significance threshold α = 0.05, which lies at pmin ≈ 0.012 – this serves as the multiple testing
correction guaranteed to keep FWER below α. Both systems pass this threshold (black arrows)
but they achieve this with different values of utility parameter ξ (for system I, pmin is achieved at
ξ ≈ 0.7; for system II at ξ ≈ 4).
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The maximum entropy optimization priors from Eq. 2 are uniform for β = 0 (we refer to the
P (θ|β = 0) as the null model). However, finding a parametrization where this is appropriate
(see 2.8.1) can be difficult. For example, how to parametrize receptive fields such that a
reasonable null model is uniform in some domain? The choice of parameters can also be
dictated by convenience or convention. For such cases and in general, we can decouple the
choice of parametrization from the choice of the null model.
Let the null model – the parameter distribution without optimization – be q(θ). Then the
normative prior family

P (θ|β) = 1
Z(β)q(θ) e

βU(θ) (2.9)

is maximum entropy in the sense that is solves the optimization problem

P (θ|β) = arg max
p(θ)

(︂
−DKL(p||q) + β Eθ∼p(θ) U(θ)

)︂
(2.10)

= arg max
p(θ)

∫︂
p(θ)

(︄
− log p(θ)

q(θ) + β U(θ)
)︄
dθ, (2.11)

where DKL is the Kullback-Leibler divergence or relative entropy. Intuitively, P (θ|β) is as
similar to q(θ) as possible, while constraining average utility. If q(θ) is uniform in some domain,
we recover the maximum entropy solution from Eq. 2.
When changing parametrization, q will transform accordingly. E.g. Alice and Bob might
choose two null models qA(θ) and qB(ϕ), each using their preferred parametrization. They are
equivalent (Alice and Bob will get the same results) if

qA(θ) | det J(θ)| = qB(f(θ)). (2.12)

How to choose the right parametrization/null model? In general, the choice is problem-
specific and beyond the scope of our paper. Note that even when q(θ) is uniform on some
domain, the domain needs to be chosen and affects the results.
In some biological systems, an established null model may be available. Distributions of the
form Eq. (2.9) have a history in population genetics (Wright, 1937; Barton and Coe, 2009) of
describing the equilibrium distributions of allele frequencies; the functional form emerges from
a stochastic model of evolution. The null model q(θ) is then the equilibrium distribution under
mutation and random drift; natural selection enters through the factor eβU(θ). The parameter
β quantifies the strength of natural selection in favour of U relative to random drift.
In other cases, the null model may simply reflect our limited knowledge about the system.
As a half-joke example, a simple null model for positions of neurons along the AP axis in C.
elegans might be uniform, ignoring the intricacies of its body shape. The situation is different
for an animal like the brontosaurus, since “All brontosauruses are thin at one end, much, much
thicker in the middle, and then thin again at the far end” (Elk, 1972). More elaborate null
models might take into account cell lineages, or assume that neurons are allowed to permute
their positions, but not occupy new places (making θ discrete).
In the example of visual receptive fields, it may be worth considering if properties such as
smoothness should be included in the null model q or in the utility part of the prior eβU(θ). If
smoothness is present without optimization, then for the purposes of testing and quantifying
optimality, it should be included in q. For Bayesian inference this might not matter, since
performance is more important than the justification of the prior/null model.
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2.8.4 Interpreting the magnitude of optimization parameter β
Related to Question 2: Inferring the degree of optimality.

The optimization parameter β enters the optimization priors in a product with utility, eβU(θ).
This means that the magnitude of β cannot be directly compared between different biological
systems, or different utility functions considered in the same system. However, there are
several ways to interpret the size of β.

Probability of observing a parameter combination. As follows from the functional form
of the optimization priors, each additional unit of utility U makes a parameter combination
θ more probable by a factor eβ. One can ask how much of a probability increase is then
conferred by a biologically significant increase in U .

Normalized utility. Each value of β has an associated average utility

Ū(β) =
∫︂
P (θ|β)U(θ)dθ (2.13)

achieved by the optimization prior. Normalized utility,

Ũ = Ū(β) − Ū(β = 0)
Umax − Ū(β = 0)

(2.14)

is plotted throughout the paper. This converts β to the expected, biologically meaningful
increase in utility, and where it falls on the scale from not optimized at all (at β = 0) and
maximum possible utility (Umax). Negative values for normalized utility are possible for cases
of “anti-optimization”, when the inferred β < 0.
Note that normalized utility is a distributional property, since it is defined as an average value
of utility over an optimization prior at an inferred value of β. It is also possible to evaluate
and normalize the point estimate of utility at a particular value of (e.g. inferred) parameters
θ, U(θ̂)−Ū(β=0)

Umax−Ū(β=0) . This may be more appropriate if we only deal with data for a single instance
of a system, which may not permit a reliable estimate of β.
The mapping between β and Ū(β) is not trivial and depends on the distribution of U under
no optimization. A direct calculation shows that the average utility grows with its variance,

dŪ(β)
dβ

= U2(β) − Ū
2(β) = VarU(β). (2.15)

In particular, close to β = 0, Ū(β) grows linearly with slope VarU(β = 0). This can be
expected intuitively – if the available parameter combinations provide a large variety of utility
values, even small β (weak selection, see below) can induce a large change in Ū .
If the distribution of utility under β = 0 is Gaussian, this linear growth continues indefinitely,
otherwise the growth is nonlinear and depends on higher moments of that distribution.

Alternative normalization of utility functions. Based on the above arguments, it would
be also possible to “standardize” the raw utility values by subtracting the average utility
at β = 0 and dividing by StdU(β = 0). Such standardized utility would then enter the
optimization prior and inference. In this representation, inferred β values would be directly
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interpretable: an increase of 1 for the value of β would lead to an approximate increase of 1
in the standardized utility; while zero, as before, would correspond to the expected utility with
no optimization. The advantage of this method is that Umax need not be known in advance
(which could be intractable to find exactly in high-dimensional spaces); the drawback is that
one needs to estimate Ū(β = 0) and StdU(β = 0) by Monte Carlo sampling to standardize
the utility before doing any inference. We did not use this alternative normalization in the
paper.

Strength of natural selection. A factor analogous to eβU(θ) appears in the equilibrium
distribution of allele frequencies (Wright, 1937; Barton and Coe, 2009) in population genetics,
if log fitness if proportional to U . The parameter β corresponds to the log fitness advantage
per unit utility, multiplied by the effective population size. Fitness is the expected number
of offspring in the next generation; population size enters because selection is more efficient
in larger populations, where stochastic effects (random drift) are weaker. This connection is
developed in more detail in Chapter 4.

2.8.5 Trade-offs between utility and likelihood
Related to Sec. Bayesian inference and optimization priors.

The normative priors defined in Eq. (2), and the optimization parameter β, are used in a
Bayesian framework to interpolate between predictions from normative theories and inferences
from data. Along this interpolation path, various trade-offs between theory and data are made.
Here we focus on the maximum posterior parameter estimates, and show that they achieve
the best possible utility-likelihood trade off. This provides an additional justification for the
maximum entropy form of the optimization priors, Eq. (2).

Consider the the maximum posterior (MP) estimates of θ, as a function of the optimization
parameter β,

θ̂MP (β) = arg max
θ

eβU(θ)P (D|θ)
Z(β) . (2.16)

As β increases from 0 to infinity, θ̂MP (β) goes from the maximum likelihood estimate θ̂ML to
the maximum utility prediction, θ∗.

The maximum posterior trajectory θ̂MP (β), parametrized by β, achieves the best possible
trade-off between the normative theory and data in the following sense: it finds the parameter
combinations with the highest utility given each value of likelihood. Or conversely, it finds the
most likely parameter combination, for a given each value of utility. This can be shown by
rewriting the MP formula1 as

θ̂MP (β) = arg max
θ

(logP (D|θ) + βU(θ)) (2.17)

= arg max
θ

(︄
U(θ) + 1

β
logP (D|θ)

)︄
. (2.18)

Here, β takes the role of a Lagrange multiplier constraining U(θ) when maximizing logP (D|θ);
or equivalently, 1/β constrains logP (D|θ) when maximizing U(θ).

1We could also include a non-uniform null distribution q(θ) as discussed in 2.8.3, and the MP formula
would be θ̂MP (β) = arg maxθ (log q(θ) + logP (D|θ) + βU(θ))
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We compare the utility-likelihood trade-off achieved achieved by maximum posterior estimates
based on the maximum entropy optimization priors with two alternative methods of interpolation
between theory and data.

Alternative interpolation method: Linear interpolation between maximum likelihood
and maximum utility parameters In this approach we reduce both the normative theory
and the data to points in the parameter space, maximum utility θ∗ and maximum likelihood
θ̂ML, and interpolate between them, using

θ(γ) = γθ∗ + (1 − γ)θ̂ML (2.19)

with higher values of parameter γ ∈ (0, 1) giving more importance to the normative theory.
This path can be compared to the maximum posterior trajectory Eq. (2.16). While the
linear interpolation follows a straight line (cyan), the MP estimates follow a curved trajectory
(purple). While on many situations the two trajectories can be similar, sometimes there is a
substantial difference in the trade-off, see Fig. 2.13A-C. In addition to the better trade-off,
maximum entropy optimization priors also yield posterior distributions over parameters, Fig.
2.13D, which can be used for more refined analyses.

Alternative interpolation method: Interpolation using a Gaussian prior. Keeping the
Bayesian approach, one could choose a family of optimization priors other than maximum
entropy (MaxEnt). Here we consider Gaussian priors around a utility peak, with two diffferent
levels of detail. The comparison with MaxEnt is in Fig. 2.14.

The simplest option seems to be a Gaussian prior centered at the utility peak,

PG1(θ|β) ∝ e− β
2 (θ−θ∗)TC−1(θ−θ∗). (2.20)

As an example using our toy model, we chose the covariance matrix C naively such that
the Gaussian is roughly symmetric in the plots, corresponding to a visual “distance from the
optimum”.

A more elaborate approach is to take into account the shape of the peak – the rate at which
utility decreases in different directions. This is similar to the approach of Pérez-Escudero et al.
(Pérez-Escudero et al., 2009). We can fit the utility function around the peak with a quadratic
function, and take the exponential to obtain a Gaussian,

PG2(θ|β) ∝ eβŨ(θ); Ũ(θ) = a+
∑︂
i

bi(θ − θ∗)i +
∑︂
ij

cij(θ − θ∗)i(θ − θ∗)j. (2.21)

The linear coefficients bi can be set to zero if the peak is inside the parameter domain – in our
case the peak lies at the boundary, and utility has nonzero gradient there, and hence bi will be
nonzero. The coefficients a, b, c can be obtained by Taylor expansion if a formula for U(θ) is
available; in our case U is computed numerically – so we fit a, b, c by minimizing mean square
error in the vicinity of the peak.

Both types of Gaussian priors are parametrized by β, analogously to MaxEnt. Example priors
for β = 10 are shown in Fig. 2.14A-C. To compare them in terms of the utility-likelihood
trade-off, we compute the MP trajectory θ̂MP (β) for increasing β as in the previous section.
The trajectories are shown on top of each prior and on top of the likelihood surface, Fig.
2.14D. The panel 2.14E shows the utility-likelihood trade-off.
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Figure 2.13: Comparison with linear interpolation between data and a normative theory in the
parameter space, related to Sec. Bayesian inference and optimization priors. Linear interpolation
takes a straight trajectory from maximum likelihood θ̂ML to maximum utility θ∗, cyan dashed lines.
Maximum posterior (MP) interpolates between the same two, but takes a curved trajectory, purple
dashed lines. A-B: Interpolation trajectories are shown on top of a utility heatmap (A) and a
likelihood heatmap (B). C: MP achieves a better trade-off between likelihood and utility along the
way. D: Posterior heatmaps, for the 4 values of β highlighted as purple points in the upper plots.
Notes: The trajectories are bumpy, because parameters are rounded to the nearest vertex in a
128 by 128 grid, and the utility values are computed with noise (mutual information estimates
from 200,000 samples). Data was chosen to get a marked difference between linear interpolation
and maximum posterior trajectories. Likelihood is based on stimuli x = {−1.5,−1.49, 0, 2} and
responses r = {0, 1, 0, 0}. For randomly generated data, the two trajectories are often similar in the
utility-likelihood plot (even if they differ visibly in the x0, k plot).

The trade-off is poor for the naive Gaussian PG1(θ|β). The fitted Gaussian prior PG2(θ|β) and
the full MaxEnt prior achieve similar trade-offs for high β (i.e. near the peak), but PG2(θ|β)
underperforms MaxEnt for lower β. As argued in the previous section, the trade-off is optimal
for MaxEnt. However, the fitted Gaussian prior may often serve as a convenient approximation
to reduce computational costs, especially if the utility has a unique maximum.

Discussion. This optimal trade-off achieved by the maximum entropy optimization priors is
due to its sensitivity to the full shape of the likelihood and utility function – not only their
peaks. In addition to the specific shape of the trajectory, this means that if the utility has
multiple peaks, they are naturally taken into account.

The linear and Gaussian require specifying the “correct” peak, which can be difficult in
high-dimensional systems. Consider the RF inference in Fig. 6C in the main text. Small values
of β improve inference by pulling towards the nearest local maximum and gradually increasing
utility. Too large β can lead the inference towards a different maximum with higher utility,
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Figure 2.14: Comparison with interpolation using Gaussian priors, related to Sec. Bayesian
inference and optimization priors. A-C: Alternative normative priors with β = 10. A: Naive Gaussian
PG1(θ|β), see Eq. Eq. (2.20). Covariance is C = ((102, 0), (0, 32)) such that the Gaussian is
visually symmetric. B: Fitted Gaussian PG2(θ|β), see Eq. Eq. (2.21). Parameters are a = 0.916,
b = (−0.021, 0.212), c = ((0.003,−0.030), (−0.030,−0.603)) obtained from a least squares fit
around the peak. C: MaxEnt prior P (θ|β) ∝ eβU(θ). D: Likelihood surface used for further analysis.
Generated from an intermediately optimised ground truth parameters and 20 spikes; same as in main
text Fig. 3 likelihood 2. The trajectories (also shown in top panels) correspond to the maximum
posterior θ̂MP (β) with varying β in the three priors above. E: Utility-likelihood trade off. MaxEnt
performs best, and PG2(θ|β) is an approximation to it that performs similarly for high β (high utility
region of the plot). The naive Gaussian PG2(θ|β) performs poorly, since it does not correspond to
the shape of the utility peak.

which is however inconsistent with data. Linear interpolation towards this “wrong” maximum
would yield meaningless results.
Except in situations when the data points to a point near a unique utility maximum, we need
to take into account the full shape of the utility function (and of the likelihood function).

2.9 Discussion
Despite their theoretical appeal, the application of optimization principles to biological sys-
tems has been hindered by statistical issues that grow more pressing as the complexity and
dimensionality of the models increases. These issues are not new. Instead of developing
an ad hoc solution whenever called for by a particular application, we decided to tackle
these issues head on and flesh them out with simple examples. For instance, the issue of an
unconstrained optimization parameter or a trade-off with unknown strength is well-known to
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the practitioners, but is often solved “by hand”: one manually adjusts the constraint until
the optimality predictions are (visually) consistent with data. Such manual “fine-tuning” of
constraints is clearly problematic from the statistical viewpoint, as it could easily amount to
(over-)fitting that is not controlled for. In contrast, our framework performs inference and
optimization jointly and provides a full posterior over constrained and unconstrained parameters
alike. Another problematic issue arises from degenerate maxima of the utility functions. A
frequent solution has been to postulate further constraints within the theory itself, which
disambiguate the predictions (Doi et al., 2012). Our framework proposes a complementary
mechanism: using a small amount of data to localize the theoretical predictions to the relevant
optimum, against which further statistical tests can be carried out. As a last example, when
fitting complex (e.g., nonlinear dynamical systems) models one typically restricts parameters
by hand to a domain that is thought to be “biologically relevant.” In contrast, optimization
priors automatically suppress vast swaths of parameter space that lead to non-functioning
systems, even if these systems are not fully optimized for the postulated utility. In this way,
the statistical power of the data can be used with maximum effect in the parameter regime
that is of actual biological relevance, without sacrificing statistical rigor.
The ability to exclude biologically irrelevant regions of the parameter space highlights a general
advantage of optimality priors over simple, unstructured distributions. Frequently applied
“regularization priors” which penalize the norm of parameter values (e.g. Laplace or Gaussian
(Park and Pillow, 2017; Sharpee, 2013)) assign highest probability when all parameters are
equal to 0. Moreover, these priors are isotropic – they act with the same strength on each
parameter and do not take into account interactions between them – which is an essential
(and nontrivial) property of real systems. Together, these two requirements enforced by the
prior are often contradictory to the notion of a functioning biological system. For example,
penalizing parameter magnitudes while inferring the shape of nonlinearity in our toy-model
neuron would bias the inferences towards completely non-functional solutions (slope and offset
equal to 0). Intuitively, the robustness against overfitting afforded by the regularization prior
thus comes at a cost of biasing inferences away from functional solutions. Our approach,
in contrast, attempts to avoid such a disastrous trade-off by incorporating knowledge about
biological function directly into the structure of the prior.
While our framework provides a principled way to navigate a number of statistical issues
in complex biological systems, important questions remain. A key challenge is to identify
the relevant optimization criterion for a biological system, and to express it in terms of
experimentally measurable quantities. A candidate utility function which embodies an optimality
criterion of interest could be selected from a possible discrete set of such functions (Wang
et al., 2016; Młynarski and Hermundstad, 2018; Chalk et al., 2019), or by inferring utility
function parameters. Because we leverage the well-understood machinery of Bayesian inference,
one could perform model selection for the utility function that best explains the data. Such an
approach could be used, for example, to rigorously verify whether entire neural populations in
the visual cortex are jointly optimized for sparsity or a different utility, such as slowness (Wiskott
and Sejnowski, 2002). An important caveat is that the more flexible our choice of the utility
function becomes, the easier it is to claim an optimality for a system of interest. In principle, one
could postulate a utility function with a fully unconstrained shape: in this limit, our framework
would automatically recover the utility function shape from data (if these were sufficient)
assuming the observed system is optimal, in a way reminiscent of inverse reinforcement
learning (Chalk et al., 2019). This connection is an interesting topic for further research. In
this paper, however, we focused on optimization theories where the number of adjustable
utility parameters is smaller than the number of system parameters being predicted.
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Our framework dovetails with other approaches which address the issues of ambiguity of
theoretical predictions and model identifiability given limited data in biology. “Sloppy-
modelling” (O’Leary et al., 2015; Gutenkunst et al., 2007), grounded in dynamical systems
theory, characterizes the dimensions of the parameter space which yield qualitatively similar
behavior of the system. In our framework, these dimensions correspond to regions of the
parameter space of equal or similar utility. Another important conceptual advance grounded
in statistical inference has been the usage of limited data to coarse-grain probabilistic mod-
els (Bialek et al., 1996; Chen et al., 2018; Machta et al., 2013). In our framework, a related
coarse-graining occurs when, instead of inferring all system parameters from data directly,
optimization sets the values of most of these parameters, leaving only the unconstrained subset
to be fitted. The resulting dimensionality reduction could be sizable (e.g., with optimization
predicting high-dimensional RF shapes given inferred firing rate, locality, or neural noise con-
straints), and could efficiently parametrize neuronal heterogeneity in terms of a small number
of constraints that vary from neuron to neuron or between neural populations. Another point
of connection with recent work concerns the ability to instantiate high-dimensional maximum
entropy distributions over parameters with complicated dependency structures (De Martino
et al., 2018; Bittner et al., 2019; Lueckmann et al., 2017). Such computational innovations will
be essential for statistical analyses of optimality that require sampling from maximum-entropy
optimization priors.
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CHAPTER 3
Accumulation and maintenance

of genetic information

Abstract. Selection accumulates information in the genome — it guides stochastically
evolving populations towards states (genotype frequencies) that would be unlikely under
neutrality. This can be quantified as the Kullback-Leibler divergence (KL divergence) between
the actual distribution of genotype frequencies and the corresponding neutral distribution.
First, we show that this population-level information sets an upper bound on the information at
the level of genotype and phenotype, limiting how precisely they can be specified by selection.
Next, we study how the accumulation and maintenance of information is limited by the cost
of selection, measured as the genetic load or the relative fitness variance, both of which we
connect to the control-theoretic KL cost of control. The information accumulation rate is
upper bounded by the population size times the cost of selection. This bound is very general,
and applies across models (Wright-Fisher, Moran, diffusion) and to arbitrary forms of selection,
mutation and recombination. Finally, the cost of maintaining information depends on how
it is encoded: specifying a single allele out of two is expensive, but one bit encoded among
many weakly specified loci (as in a polygenic trait) is cheap.

3.1 Introduction
Throughout evolution, selection accumulates information in the genome. It guides evolving
populations towards fitter phenotypes, genotypes and genotype frequencies, which would be
highly unlikely to arise by chance. This information – the degree to which selection can control
the stochastic process of evolution – has been a long-standing subject of research (Kimura,
1961; Eigen, 1971; Worden, 1995; MacKay, 2003a; Watkins, 2008; Peck and Waxman, 2010;
Barton, 2017), and relates to basic questions in evolutionary biology and genetics.

How well can selection specify the genotype and the phenotype? The degree to
which within- and between-species genetic variation are shaped by selection has been the
subject of the neutralist-selectionist debate (Kimura, 1968; Hey, 1999; Kern and Hahn, 2018;
Jensen et al., 2019). Today, we know that much of the human genome is involved in various
biochemical processes (The ENCODE Project Consortium et al., 2012; Kellis et al., 2014a),
but this does not mean that it is strongly shaped by selection (Doolittle, 2013; Graur et al.,
2013; Brunet and Doolittle, 2014). Here we ask a related question in information-theoretic
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3. Accumulation and maintenance of genetic information

terms: how much information can selection accumulate and maintain in the genome? Much
of the sequence is to some degree random, and given its size l ≈ 3 × 109 base pairs, it likely
contains far less information than the maximum conceivable 6 × 109 bits of information. A
similar question has been raised in the context of origin of life: given high mutation rates, how
much information could be maintained in the genome of early organisms (Eigen, 1971)?
Analogous questions can be asked about the phenotype. How many traits can selection
optimize? It is easy to list a large number of potentially relevant traits: take the expression of
all genes in all cell types and conditions, or regulatory interactions between pairs of genes. For
a fit organism, these traits need to be specified with some precision, and this precision is likely
limited (even if it is to some degree facilitated by correlations among traits). For example, a
study of selective constraint on human gene expression (Glassberg et al., 2019) gave evidence
of constraint, but overall, this seems weak. Given the large number of possibly important
phenotypes, how precisely can selection specify them?

Quantifying genetic information. An established method in bioinformatics quantifies
the information content of a short genomic motif, such as a binding site, by comparing an
alignment of its instances across the genome to the genomic background (Schneider et al.,
1986; Wasserman and Sandelin, 2004). Our definition of genetic information is mathematically
similar, but aims to apply more generally (to large regions without multiple instances available).
It is therefore based in theoretical population genetics rather than sequence data analysis. A
key related concept is the repeatability of evolution (Lobkovsky and Koonin, 2012; Lässig
et al., 2017). Evolution is stochastic due to genetic drift and mutation, but selection can
reduce the space of possible outcomes. For example, suppose that in a sequence of length l, n
sites are under strong selection for specific nucleotides. By fixing those nucleotides, selection
will accumulate 2n bits of information. Meanwhile, the remaining l − n sites will be occupied
by random nucleotides, and if a replicate population evolves under identical conditions, the
l− n nucleotides will likely be different. Therefore our concept of information in a sequence is
inversely related to how differently it could have evolved under identical conditions.
In general, however, the information content of the genome cannot be quantified by simply
counting the sites that are under selection. A single bit of information can be spread across
many loci under weak selection – a phenomenon particularly relevant when selection acts on
polygenic traits, long recognized in quantitative genetics and described by the infinitesimal
model (Fisher, 1918; Barton et al., 2017). Polygenicity and weak selection also resolve the
apparent contradiction between the variety of phenotypes, or biochemical processes involving
the DNA, and the lack of strong selective constraint on all of them. Selection might act on a
small number of high level traits, which are influenced by large numbers of loci spread across
the genome (described by the omnigenic model (Boyle et al., 2017)), which experience only
weak selection individually.
In Section 3.2, we define information on three levels – the population state (genotype
frequencies), the genotype, and the phenotype. There are simple inequalities between the
three levels. This means that the upper bound on information accumulation rate, which we
prove at the population level, also implies a bound at the genotype and phenotype levels. We
use the KL divergence, a central quantity in information theory (Cover and Thomas, 2006)
to quantify the difference between their actual distribution and their corresponding neutral
distribution.
Notably, the neutral phenotype distribution corresponds approximately to the phenotype
distribution among random DNA sequences. Recent work with random mutant libraries suggests
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that for some phenotypes, this distribution is accessible experimentally (gene expression driven
by random promoters (de Boer et al., 2020; Vaishnav et al., 2022; Lagator et al., 2022) or
enhancers (Fuqua et al., 2020)). Any departure from this neutral distribution amounts to
accumulation of information.

Cost of information. After defining what genetic information means, we ask how quickly
it can accumulate and how much of it can be maintained. We look for answers in terms of
the cost of selection – the amount of relative fitness variation in a population. This cost,
traditionally measured as the relative fitness variance or the genetic load, is itself limited.
In a population with constant size, relative fitness is proportional to the expected number
of offspring, and the number of offspring can only vary between zero and the reproductive
capacity of the organism.

We rely on an information-theoretic measure of cost of selection, which is itself upper bounded
by the relative fitness variance and genetic load, but has favorable mathematical properties.
It relates the cost of selection to the KL cost of control (Todorov, 2006; Theodorou, 2015;
Nourmohammad and Eksin, 2021), or the thermodynamic power (Pavlichin et al., 2019).

The relationship between information accumulation rate and the cost of selection has been
studied by Kimura (Kimura, 1961) and later Worden (Worden, 1995), MacKay (MacKay,
2003a) and Barton (Barton, 2017). In Sec. 3.3 we discuss these works in more detail and
present a new, more general bound. The problem of maintenance has been studied by Eigen
(Eigen, 1971), Watkins (Watkins, 2008) and Peck and Waxman (Peck and Waxman, 2010).
We discuss these in Sec. 3.4 and present example calculations that suggest general trends in
the amount of information that can be maintained per unit cost.

3.2 Quantifying genetic information
The measures of information studied in this paper are based on comparisons between the
distributions of various variables under selection versus neutrality. The focus on probability
distributions accounts for the stochasticity of evolution, and the difference between the
distributions with and without selection corresponds to the control that selection exerts on
evolution. We quantify this difference in bits, using the KL divergence (Cover and Thomas,
2006)

D(U) =
∑︂
u

ψU(u) log2
ψU(u)
φU(u) (3.1)

where U is a variable that takes values u with probabilities ψU(u) with selection and φU(u)
under neutrality. Below we focus on three variables – genotype frequencies (which describe
population states), genotypes and phenotypes.

For a pair of variables U, V , statistical dependencies are reflected in their joint and conditional
KL divergence, D(U, V ) andD(U |V ) (see SI Sec. B.1 for the definitions). Both are nonnegative
quantities, and they follow the chain rule

D(U, V ) = D(U) +D(V |U) = D(V ) +D(U |V ). (3.2)

The chain rule allows a comparison of the effects of selection on different variables, as well as
on the same variable at different times.
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Figure 3.1: Selection controls the evolution of a single locus, two allele system and drives the
distribution of the population states, genotype and phenotype away from neutrality. (A) Stochastic
trajectories of the frequency xA of the beneficial allele A, under neutrality and under selection
(blue and red). The allele A starts at a single copy, and under selection it tends to increase in
frequency. Black arrows indicate the times when the distributions are plotted in (B-D). At time
= 500 generations, the system is approximately stationary. (Caption continues on the next page.)
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3.2. Quantifying genetic information

Figure 3.1: (Continued from previous page.) (B-D) The probability distributions of the genotype
frequency xA (B), genotype g (C) and a noisy phenotype z (D) under neutrality (blue) and under
selection (red) after a varying number of generations of evolution. The associated measures of
information D(X), D(G) and D(Z) are indicated in each panel. (B) The neutral distribution φX

converges to a symmetric U shape, while the distribution under selection is biased towards high
frequencies of the beneficial allele A. The information D(X) increases over time. (C) The neutral
genotype distribution φG converges to a uniform distribution, due to symmetry between alleles a and
A. Under selection (ψG), the beneficial allele A has a higher probability, but it does not dominate
completely, so the genotype-level information D(G) is less than the maximum 1 bit. D(G) is also
upper bounded by D(X). (D) A phenotype with different means and a Gaussian noise for each allele,
ζ(z|g) = N (z;µg, σ) with µa = −1, µA = +1 and σ = 1. The information D(Z) is upper bounded
by D(G), with a gap due to the partially overlapping distributions ζ(z|a) and ζ(z|A). Generated
using a haploid Wright-Fisher model (SI Sec. B.4) with population size N = 40, mutation rate
µ = 0.005 and fitness 1 (allele a) and 1.05 (allele A).

3.2.1 Population-level information
Evolution is a stochastic process happening to populations, and genotype frequencies form
the state space. We use X to denote the genotype frequencies as a random variable, with
each value x being a vector with an element xg for each genotype g, normalized as ∑︁g xg = 1.
As an example, Fig. 3.1A shows a common evolutionary scenario where a single locus, two
allele system starts from a single copy of a beneficial allele A, and later the frequency evolves
stochastically.

X takes values x with probabilities ψX(x) under selection and φX(x) under neutrality. Fig. 3.1B
shows examples of these distributions for the single locus system at three different times.
In general, these distributions are shaped by various evolutionary forces – mutation, drift,
recombination, selection (ψX only), and others. We refer to D(X), the KL divergence between
ψX and φX , as the population-level information.

The example in Fig. 3.1 illustrates two important phenomena we discuss in the rest of this
chapter. The first phenomenon is the accumulation of information. A population evolves from
an initial distribution (in the simplest case, initially ψX = φX and D(X) = 0, but this is not
necessary). For example, the initial state x may be completely specified as in Fig. 3.1A, or
both ψX and φX may start at the neutral stationary distribution. Over time, selection causes
ψX to diverge from φX and the information D(X) accumulates (Fig. 3.1B). We study this in
detail in Sec. 3.3. The second phenomenon is the maintenance of information, and it takes
place when both ψX(x) and φX(x) are stationary, and the information D(X) is constant. In
Sec. 3.4 we study how much information can be maintained at a given cost of selection.

The population-level information D(X) has been studied under different names and in different
roles (Barton and de Vladar, 2009; Mustonen and Lässig, 2010; Bod’ová et al., 2016; Barton,
2017). It captures any departure of the genotype frequency distribution ψX from its neutral
counterpart φX – notably, selection can favor not only high frequencies of fit genotypes, but
also higher or (more typically) lower amounts of genetic variation within populations. Note
that D(X) refers to the effects of selection on the genotype frequencies, rather than allele
frequencies. It therefore includes effects of selection on correlations between loci (linkage
disequilibrium), which are generated by physical linkage, by chance in finite populations, or
due to functional interactions (epistasis) – see also SI Sec. B.2.

Notably, D(X) (or D(G) introduced below) appears as a term in free fitness – a quantity
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analogous to free energy which, under some assumptions, increases over time (Iwasa, 1988;
Sella and Hirsh, 2005; Mustonen and Lässig, 2010). This implies that evolution maximizes the
expected log-fitness while constraining D(X) – see SI Sec. B.8.

3.2.2 Genotype-level information
If we sample a random genotype from a population in a given state x, we find the genotype
g with a probability given simply by its frequency ψG|X(g|x) = φG|X(g|x) = xg. Taking
into account evolutionary stochasticity, we average over all population states x with their
probabilities φX(x) or ψX(x),

φG(g) =
∑︂
x

φX(x) xg, ψG(g) =
∑︂
x

ψX(x) xg. (3.3)

Under symmetric point mutations, the neutral distribution φG converges to a uniform distribu-
tion over all genotypes, while selection typically concentrates ψG among a smaller number of
fit genotypes. This is also the case for the single locus system in Fig. 3.1C. The divergence
between ψG and φG is the genotype-level information D(G).
If selection precisely specifies n out of l nucleotides in the genome – i.e. ψG(g) is uniform
over a fraction 1/4n out of 4l possible genotypes – this implies D(G) = 2n bits. This
corresponds to the intuition of 2n bits of information encoded in the genome. More typically,
selection will specify many sites only weakly (biasing the probability towards some alleles, see
also Fig. 3.1C), and may contribute to D(G) through LD – correlations between linked or
epistatically interacting sites. Without linkage or epistasis, D(G) is approximately additive
across loci (see Fig. B.1).
D(G) generalizes some previous definitions of genetic information (Kimura, 1961; Worden,
1995; Peck and Waxman, 2010) which focused on strong selection or uniform distributions,
and coincides with others in important special cases (Watkins, 2008; MacKay, 2003a).

3.2.3 Phenotype-level information
Finally, selection controls evolution on the level of the phenotype Z. Z could be a categorical
trait such as the presence/absence of a disease or the correct/incorrect protein fold, a
quantitative trait, a comprehensive characterization of an individual, or its fitness. Given a
genotype g, the probability of the phenotype z will be given by the possibly noisy genotype-
phenotype relationship ψZ|G(z|g) = φZ|G(z|g) = ζ(z|g). When there are no environmental
effects or intrinsic noise, ζ(z|g) will be concentrated at a single value z for each genotype g.
Taking into account the variation within populations, as well as the evolutionary stochasticity,
the marginal probability of z is

ψZ(z) =
∑︂
g

ψG(g) ζ(z|g), φZ(z) =
∑︂
g

φG(g) ζ(z|g). (3.4)

We show the distributions ψZ , φZ for the single locus system in Fig. 3.1D, where the trait has
a genotype-dependent mean and a Gaussian noise. While under neutrality, φZ tends to spread
out over time, selection causes ψZ to be more concentrated. The divergence between ψZ and
φZ is the phenotype-level information D(Z).
If we can take the genotype distribution φG to be uniform over all possible DNA sequences of
some length, then φZ is the phenotype distribution among such random sequences. Examples
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Figure 3.2: Illustration of D(X) (cyan) and D(G) (orange) for a single locus, two allele system at
stationary distributions ψX , φX as a function of selection strength Ns for two different mutation
strengths Nµ. The genotype-level information D(G) grows with Ns, from 0 up to 1 bit one out
of the two alleles dominates, with the steepest increase around Ns = 1. The population-level
information D(X) can be much greater than D(G) when mutation is strong, and generates diversity
within the population that selection can shape (or suppress). When mutation is weak, D(X) and
D(G) are similar, since the population state can be specified by the allele that is currently fixed and
D(X|G) = 0. Computed using a Wright-Fisher model as in Fig. 3.1, with population size N = 100.

of this distribution have recently been measured experimentally, for gene expression generated
by random promoter sequences in S. cerevisiae and E. coli (de Boer et al., 2020; Lagator
et al., 2022). If a healthy cell requires the gene expression to be in some narrow range, this
translates to a requirement on the phenotype-level information D(Z), and this requirement
will increase if the expression needs to be specified across cell states.

3.2.4 The relationship between the three levels
The definitions above, combined with the chain rule (Eq. (3.2)) lead to a hierarchy among the
three levels,

D(X) ≥ D(G) ≥ D(Z). (3.5)

This inequality can be observed across columns of panels in Fig. 3.1B-D.

Intuitively, the phenotype-level information D(Z) is bounded by the genotype-level information
D(G), since the information about the phenotype has to be encoded in the genome. A special
case of this relationship has been noted by Worden (Worden, 1995), who however, worked in
a deterministic setting (see SI Sec. B.3). The difference between the two, D(G) −D(Z) =
D(G|Z), can have two sources. First, the phenotype distribution ζ(z|g) may overlap between
genotypes, causing the phenotype to be specified less precisely than the genotype (as in
Fig. 3.1D). Second, selection may favor genotypes based on criteria other than the phenotype
Z, such as other phenotypes or robustness.

Similarly, D(G) can only be as large as the population-level information D(X). To increase
the probability of a genotype g, selection must increase the probability of population states
with a high frequency of g. However, selection can also shape the patterns of genetic diversity
in populations, without impacting the average genotype frequencies, therefore contributing to
the difference D(X) −D(G) = D(X|G). In populations with weak mutation, which tend to
have little diversity, this difference is small – see Fig. 3.2.
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3. Accumulation and maintenance of genetic information

We rely on the inequalities in Eq. (3.5) in two ways. First, an upper bound on the population-
level information D(X) which we prove in Sec. 3.3 also implies an upper bound on the
genotype and phenotype-level information D(G) and D(Z). In other words, selection can only
fine-tune the phenotype to a degree to which it can control the population state.

Second, D(X) and D(G) can be difficult to estimate directly for systems with multiple loci,
due to the high dimensionality (see Fig. B.1). In such situations, D(Z) for fitness or a
low-dimensional phenotype Z can serve as a lower bound on D(G) and D(X). If Z is the trait
under selection, or fitness itself, this lower bound can be tight. This approach is applicable
even for complex or essentially black box genotype-phenotype models, such as models of gene
regulation or protein folding.

3.3 Accumulation of information
In this section we show how the rate at which D(X), the population-level information, increases
over time, is limited by the population size and the variation in fitness. We start by pointing
out a connection between population genetics and control theory.

3.3.1 Accumulation of information and the cost of control
We consider a population evolving over time, with a trajectory X0, X1, . . . , XT forming a
Markov chain between generations 0 and T (such as in Fig. 3.1A). The divergence of the
trajectories’ distribution from neutrality, D(X0, X1, . . . , XT ), has been proposed as a measure
of predictability of evolution (Lässig et al., 2017). Using the chain rule (Eq. (3.2)), we can
decompose it in two ways,

D(X0, X1, . . . , XT )

= D(X0)⏞ ⏟⏟ ⏞
Initial

information

+
T−1∑︂
t=0

D(X t+1|X t)⏞ ⏟⏟ ⏞
KL cost of control

(3.6)

= D(XT )⏞ ⏟⏟ ⏞
Final

information

+
T−1∑︂
t=0

D(X t|X t+1)⏞ ⏟⏟ ⏞
Effect of selection on

trajectories reaching XT

. (3.7)

In Eq. (3.6), we distinguish between the divergence of the initial states X0 and the additional
conditional divergence in each generation, D(X t+1|X t). The latter can be recognized as the
KL cost of control, averaged over the initial states xt (Todorov, 2006; Theodorou, 2015). In
the context of population genetics, selection takes the role of control.

Eq. (3.7) makes the distinction between the distribution of endpoints XT , and the conditional
distribution of the states that precede those endpoints. Selection can shape the full trajectories,
but only the effects on XT constitute the final population-level information.

Together, Eq. (3.6) and (3.7) imply a bound on the information accumulated between times 0
and T in terms of the KL cost of control,

D(XT ) −D(X0) ≤
T−1∑︂
t=0

D(X t+1|X t). (3.8)
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3.3. Accumulation of information

Specifically, the information accumulated over a single generation, ∆D(X t) = D(X t+1) −
D(X t), is upper bounded as

∆D(X t) ≤ D(X t+1|X t). (3.9)
Analogous bounds for continuous time Markov chains and the diffusion approximation are in
SI Sec. B.6 and B.7.
Note that control theory is concerned with computing optimal control policies, which maximize
an imposed objective while minimizing the cost ∑︁T−1

t=0 D(X t+1|X t). This is analogous to
computing the optimal artificial selection – in fact, the KL divergence control theory framework
has recently been used to study artificial selection on quantitative traits (Nourmohammad and
Eksin, 2021).
In contrast, natural selection is typically given by the biological or ecological circumstances,
and not necessarily optimized in this sense. Still, the KL cost of control provides bounds on
the rate at which selection accumulates information (Eq. (3.8,3.9)) and it has a meaning in
population genetics, which we discuss in the next section.
We also note that Eq. (3.9) is related to the proof that free fitness increases over time (Iwasa,
1988; Sella and Hirsh, 2005), see SI Sec. B.8.

3.3.2 Variation in fitness as cost of control
To compute D(X t+1|X t) in population genetics, we need to specify a model. We analyze
multiple general model classes in the SI: Wright-Fisher and discrete Moran models in Sec. B.5,
continuous time Moran model in Sec. B.6 and the diffusion approximation in Sec. B.7. In
summary, the bound in Eq. (3.9) always takes the form

∆D(X t) ≤ kN
∑︂
xt

ψX
t(xt)C(xt) = kN⟨C⟩t, (3.10)

where N is the population size, kN is the number of individuals that are sampled with selection
in each generation (k = 1 under asexual reproduction or k = 2 under sexual reproduction
when 2 parents are sampled with selection for each individual). Note that this does not reflect
ploidy – we consider g to be the full genotype of an organism, including polyploidy or any
extrachromosomal DNA. Such factors might enable more complex patterns of selection and
inheritance and influence the accumulation of information in any particular case, but they do
not enter the upper bound. Rather, k reflects sampling 2 parents per individual in sexually
reproducing species provides more opportunity for selection to influence which genes get passed
on as the fitness of both parents is considered. This does not necessarily mean that information
will accumulate faster with sex, as some of the extra information can be lost due to random
recombination and segregation.
C(xt) is the cost of selection at the population state xt (see below), and ⟨C⟩t is the expected
cost at time t. To upper bound information accumulated over multiple generations, we need
to sum over them,

D(XT ) −D(X0) ≤ kN
T−1∑︂
t=0

∑︂
xt

ψX
t(xt)C(xt) = kN⟨C⟩0,T . (3.11)

The cost C(x) is a measure of fitness variation in a population in the state x,

C(x) =
∑︂
g

xgŵg(x) log2 ŵg(x). (3.12)
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3. Accumulation and maintenance of genetic information

where ŵg(x) is the (frequency dependent) relative fitness of genotype g. When sampling
genotypes as parents for the next generation, g is picked with probability xg under neutrality
and xgŵg(x) under selection – C(x) is the KL divergence between these two distributions.
Under a constant population size N , the strongest possible selection regime would entail a
single individual producing all N offspring in the current generation, i.e. xi = 1/N , ŵg(x) = N
for their genotype and ŵg(x) = 0 for all others. This yields an upper bound on C(x) in terms
of N , C(x) ≤ log2 N .
C(x) is also related to two more established measures of cost in population genetics – the
relative fitness variance V (x) and the genetic load L(x), which have been studied under a
number of circumstances – e.g. mutation-selection balance (Haldane, 1937), genetic drift
(Kimura et al., 1963; Kondrashov, 1995), certain types of epistasis and the evolution of sex
(Kimura and Maruyama, 1966; Kondrashov, 1988), ongoing substitutions (Haldane, 1957;
Kimura, 1995; Ewens, 1970) or stabilizing selection on quantitative traits (Lande, 1980). They
are defined as

V (x) =
∑︂
g

xg (ŵg(x) − 1)2 (3.13)

L(x) = 1 − 1
ŵmax(x) , (3.14)

where ŵmax(x) is the maximum relative fitness present in the population x, ŵmax(x) =
maxg;xg>0 ŵg(x). We derive the relationships between C(x), V (x) and L(x) in the SI
Sec. B.9. V (x) and L(x) satisfy the inequality V (x) ≤ L(x)

1−L(x) (see also (Shnol et al., 2011))
and both provide an upper bound on C(x),

C(x) ≤ V (x)
ln 2 , C(x) ≤ log2

1
1 − L(x) . (3.15)

In addition, under weak selection and in the diffusion approximation, C(x) = V (x)/(2 log 2).
The bounds in Eq. (3.10,3.11) can therefore also be rewritten in terms of V (x) or L(x) using
Eq. (3.15).
Assuming constant population size, relative fitness is proportional to the expected number of
offspring, and therefore limited by the species’ reproductive capacity. The quantities ŵmax(x),
L(x), V (x) and C(x) and as a consequence ∆D(X), are therefore all limited in realistic
settings (SI Sec. B.9). In particular, C(x) ≤ log2 R(x) where R(x) is the expected number of
offspring of the fittest genotype contained in x.
In the context of artificial selection or genetic algorithms, an alternative measure of cost
is the population size N , which is the number of cultivated plants or animals, or fitness
function evaluations (Robertson, 1970; Barton and Paixão, 2013). We note that according
to the bounds in Eq. (3.10,3.11), the maximal accumulation rate is also proportional to N .
Furthermore, increasing the strength of selection (and therefore C(x)) beyond an optimal
value may increase the immediate response to selection, but reduces the long term response,
due to loss of genetic diversity (Robertson, 1970; Barton and Paixão, 2013). Therefore in
practice, C(x) will be limited even in this context.

3.3.3 Example 1: the fates of a beneficial allele
The bounds in Eq. (3.10,3.11) hold in genetically diverse populations with clonal interference
or recombination. Still, it is interesting to consider the case of sequential fixation/loss of
mutations, as was done previously (Haldane, 1957; Kimura, 1961; Barton, 2017).
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Figure 3.3: Information accumulation associated with the fixation or loss of a beneficial allele in
a haploid single locus, two allele system. The beneficial allele starts at a single copy and evolves
under drift and selection, but no mutation. (A) The population-level information (D(Xt), cyan)
and genotype-level information (D(Gt), orange) over time, for three different strengths of selection
(Ns). Both D(Xt) and D(Gt) start at zero, accumulate over time as selection tends to increase
the frequency of the beneficial allele, and saturate as the allele is fixed or lost. The black line is
the upper bound according to Eq. (3.11) with k = 1. (B) The increments in D(Xt) and D(Gt)
per generation (cyan and orange dashed), and the upper bound according to Eq. (3.10) with k = 1
(black dashed). (C) The cyan line shows the total information accumulated, D(X∞) = D(G∞), as
function of the fixation probability ψfix. D(X∞) serves as a lower bound on N times the total cost
of selection, plotted in black, regardless of the form selection takes. The full black line corresponds to
constant selection coefficient, with black points showing the three cases in (A,B). The dash-dotted
black line shows frequency dependent selection that maximizes ψfix (and therefore also D(X∞))
while constraining N⟨C⟩0,∞. (D) Same data as in (C), but the vertical axis now shows the ratio of
the information D(X∞) and the total cost of selection ⟨C⟩0,∞ for constant selection (full black) and
optimized frequency dependent selection (dash-dotted black). At most N bits can be accumulated
per unit cost, and this is achieved at weak selection. At strong selection, this reduces to as low as 1
bit per unit cost. Figure computed using the Wright-Fisher model as in Fig. 3.1, with population
size N = 100.

Suppose that a beneficial allele A appears in one copy at time t = 0, and is guaranteed to
be fixed or lost before another mutation appears that could interfere with it. The population
and genotype-level information, D(X t) and D(Gt), start at 0 and accumulate over time as
selection tends to increase the frequency of A (Fig. 3.3A). The cumulative cost of selection
N⟨C⟩0,t serves as the upper bound on both D(X t) and D(Gt).

Note that under relatively strong selection (Ns = 3, Fig. 3.3A right), A increases in frequency
considerably faster than under neutrality, leading to high D(X t). But some of these gains are
later lost as A is fixed or lost. This is an example of how only the probabilities of endpoints, and
not the shape of the trajectories, matters for the information that is ultimately accumulated
(the two terms in Eq. (3.7)).

The increments in D(X t) and D(Gt) in each generation are plotted in Fig. 3.3B, along with
the bound by N⟨C⟩t, Eq. (3.10). The bound on ∆D(X t) is relatively tight. ∆D(Gt) can
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3. Accumulation and maintenance of genetic information

temporarily exceed N⟨C⟩t, since the accumulation bound in Eq. (3.10) does not directly apply
to the genotype level, but this is only a transient phenomenon due to the inequality between
the cumulative genotype- and population-level information D(Gt) ≤ D(X t).
Both D(X t) and D(Gt) saturate at the same value D(X∞) = D(G∞), since the ultimate
fate of the population is given simply by whether the allele A is fixed or lost. The fixation
probability is 1/N under neutrality and ψfix = ψX

∞(1) = ψG
∞(A) under selection, and the

accumulated information is a function of this probability,

D(X∞) = D(G∞) = (3.16)

= ψfix log2(Nψfix) + (1 − ψfix) log2
N(1 − ψfix)
N − 1 (3.17)

This function is plotted in cyan in Fig. 3.3C. According to Eq. (3.11), it provides a lower bound
on the total cost, N⟨C⟩0,∞ ≥ D(X∞), given a fixation probability. This holds when the allele
A has a constant, frequency independent selective advantage, as in the three examples in
Fig. 3.3A,B (full black line and black points in Fig. 3.3C). By computing a suitable frequency
dependent selection, which optimizes the fixation probability while constraining the total
cost N⟨C⟩0,∞, we can reduce the cost considerably (dash-dotted black line in Fig. 3.3C, see
Sec. B.11 and Fig. B.4 for details). This is achieved by making selection weaker at high
frequencies, where the risk of losing A is low. Still, the cost stays above D(X∞), as it has to
under arbitrary frequency and time-dependent selection.
Under both forms of selection, the bound is only tight when selection is weak. To emphasize
this, we plot the information accumulated per unit cost, D(X∞)/⟨C⟩0,∞, as function of the
fixation probability ψfix in Fig. 3.3D. At weak selection, ψfix is only perturbed a little from its
neutral value 1/N , but up to N bits can be accumulated per unit cost. A special case of this
was shown by Barton (Barton, 2017). Similar scaling with N was also found in a different
setting by Kimura (Kimura, 1995).
Stronger selection accumulates more information, but at a disproportionately higher cost, since
a large part of it is spent on shaping trajectories rather than outcomes. In the extreme case,
to achieve ψfix = 1, only individuals carrying the A allele can be allowed to reproduce and
A gets fixed in only one generation – a highly unlikely way to fixation under neutrality. In
this case, selection has the same effect on each genotype sampled as a parent in the first
generation, as on the allele that is ultimately fixed (both are A with probability 1/N under
neutrality and 1 under selection). As a result, the cost is equal to the accumulated information,
⟨C⟩0,∞ = D(G∞) = D(X∞) and only 1 bit per unit cost is accumulated (Fig. 3.3D). This is
why previous results derived in deterministic settings (Kimura, 1961; Worden, 1995) claimed
much more stringent limits on accumulation of information.

3.3.4 Example 2: accumulation of information under mutation
Unlike the example above, real systems experience ongoing mutation. On the one hand,
mutation is necessary to supply beneficial alleles for adaptation, but on the other hand,
mutation can disrupt existing adaptation. In this section, we assume that the single locus, two
allele system starts at the neutral stationary distribution with D(X0) = D(G0) = 0, and then
selection is turned on. Adaptation exploits copies of the allele A that either segregate in the
population by chance at time 0, or arise later by mutation.
Fig. 3.4A shows the information D(X t) and D(Gt) over time. Accumulation take place on
the time scale of 1/µ. Note that the bound Eq. (3.11) is not very tight. This is even more
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Figure 3.4: Information accumulation in a single locus, two allele system and the associated upper
bounds. The system starts from a neutral stationary distribution over allele frequencies, where
D(X0) = D(G0) = 0. Then it evolves under selection with varying strengths (Ns, left to right) for
2 × 104 generations. (A) The cumulative information at the population level (D(X0), cyan) and
genotype level (D(G0), orange) over time. Due to the weak mutation Nµ = 0.01, the two measures
of information are similar. The black and gray lines show upper bounds by the cumulative cost of
selection and the cumulative fitness flux. (B) The increments in information per generation, ∆D(Xt)
(cyan dashed) and ∆D(Gt) (orange dashed) and the upper bounds on these increments in terms of
the cost of selection kN⟨C⟩t (black, in this case k = 1) and the expected fitness flux 2N⟨ψ⟩t (gray).
Note that the cost of selection bound is briefly nearly tight under weak selection (Ns = 1, left), and
the fitness flux bound is tight near stationarity, when both the accumulation rate and the fitness flux
approach 0. Figure computed using the Wright-Fisher model as in Fig. 3.1. The population size is
fixed at N = 100. For technical reasons, the expected fitness flux curves were computed using an
equivalent Moran model, see Sec. B.10 and Fig. B.2.

apparent in Fig. 3.4B, where the average cost per generation N⟨C⟩t remains positive even
after the system has reached the new stationary state, while the increments in D(X t) and
D(Gt) are zero. This corresponds to the cost of maintaining information, which we discuss in
Sec. 3.4.

In summary, the accumulation of information is upper bounded by the KL cost of control,
which in turn corresponds to the population size times the variation in fitness. However, if
selection changes not only the probabilities of the final states, but also the paths that lead
there (because it is strong, because adaptation is maintained for a long time, or because
adaptation is reversed by time-dependent selection), then the information accumulated is less
than the total cost.

3.3.5 Comparison with the fitness flux bound
The fitness flux theorem (Mustonen and Lässig, 2010) implies another upper bound on
information accumulation rate, ∆D(X t) ≤ 2N⟨ϕ⟩t, where ⟨ϕ⟩t is the expected fitness flux
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per generation. It is plotted in gray in Fig. 3.4. It differs from the cost of selection bound
both quantitatively and in terms of interpretation.
Quantitatively, neither bound is tighter in general. In Fig. 3.4B, the cost of selection bound is
tighter in early stages of adaptation, and the fitness flux bound is tighter in the late stages.
This is consistent with the interpretation of fitness flux as the rate of ongoing adaptation, or
the rate of ascent in the mean fitness landscape/seascape (Mustonen and Lässig, 2010). This
rate is high in the early stages of adaptation, when the population is far from the fitness peak
and tends to climb up quickly. Later, when the population approaches a stationary distribution,
there is no more adaptation on average, and 2N⟨ϕ⟩t as well as ∆D(X t) vanish. Meanwhile,
the cost of selection bound kN⟨C⟩t is tighter in the earlier stages when most of the cost is
spent on new adaptation, but it remains positive under stationarity, due to maintenance costs.
Technically, the fitness flux theorem was originally derived in (Mustonen and Lässig, 2010)
under the diffusion approximation, and requires an additional assumption that the neutral
process is at a stationary distribution with detailed balance. We derive and discuss the technical
aspects of the fitness flux bound in Sec. B.10 and Fig. B.2 and B.3.

3.4 Maintenance of information
In this section, we ask how much information can be maintained in the genome for a given
cost of selection. A general bound analogous to Eq. (3.10) seems to be out of reach for now,
but we can study how the information maintained depends on key evolutionary parameters.
We start by analyzing the single locus, two allele system, and then proceed to systems with
large numbers of loci.

3.4.1 Single locus: weak selection is most efficient
Fig. 3.5A shows the information, D(X) and D(G), maintained by the single locus, two
allele system at the stationary state under various strengths of selection. Stronger selection
maintains more information – up to 1 bit at the genotype level, and more on the population
level. However, it comes with a higher cost of selection ⟨C⟩, Fig. 3.5B. Notably, the cost
increases faster then the maintained information. As a result, the amount of information
maintained per unit cost decreases with selection strength, Fig. 3.5C.
There are two important asymptotic regimes. When selection is very strong, Ns ≫ 1,
deleterious mutations are purged as soon as they arise, and D(G) ≈ 1 bit. Mutations arise
with a probability Nµ per generation, and purging each costs C ≈ 1/(N ln(2)) (assuming
truncation selection with α = 1 − 1/N , see Sec. B.9). In this regime,

Strong selection: D(G)
⟨C⟩

≈ ln 2
µ
, (3.18)

bits can be maintained per unit cost (see Fig. 3.5C). Similar arguments apply when Nµ > 1.
The inverse scaling with µ is expected based on the deterministic mutation load (Haldane,
1937) or Eigen’s error catastrophe (Eigen, 1971) which occurs when selection cannot maintain
sequences without error, and it was also derived by Watkins (Watkins, 2008).
Selection is much more efficient when it is weak, Ns ≪ 1. Both the cost and the maintained
information can be calculated under the diffusion approximation (see SI Sec. B.4.2 for details).
If mutation is also weak, Nµ ≪ 1, the amount of genetic variation (pairwise diversity)
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Figure 3.5: Maintenance of information in the single locus, two allele system. (A) The main plot
shows the stationary values of information, D(X) (cyan) and D(G) (orange), as function of selection
strength Ns. Stronger selection keeps the beneficial allele at higher frequencies, but this is associated
with higher average cost of selection ⟨C⟩, shown in (B). Note that much of the time, one of the
alleles is fixed and the cost C is zero. ⟨C⟩ is the average cost per generation over the stationary
distribution of allele frequencies. (C) The ratio of the maintained information and the average cost of
selection, D(X)/⟨C⟩ (cyan) and D(G)/⟨C⟩ (orange). Selection is most efficient when it is relatively
weak (Ns ≪ 1), maintaining up to N

µ(1+4Nµ) bits per unit cost at the genotype level, and inefficient
when strong (Ns ≫ 1), maintaining only about ln(2)/µ bits per unit cost (dotted horizontal lines).
The population size is N = 100 and mutation rate µ = 10−4.

scales with 2Nµ, and the cost (variation in fitness) is approximately ⟨C⟩ ≈ Nµs2/(2 ln 2).
Meanwhile, selection shifts the mean frequency of A away from 1/2 by about Ns/2, and
this is associated with genotype-level information D(G) ≈ N2s2/(2 ln 2) bits. In this regime,
up to N/µ bits per unit cost are maintained. When mutation Nµ is not negligible, a more
accurate result is

Weak selection: D(G)
⟨C⟩

≈ N

µ(1 + 4Nµ) , (3.19)

see SI Sec. B.4. This limit is also highlighted in Fig. 3.5C. The special case when Nµ ≫ 1,
D(G)
⟨C⟩ ≈ 1/(4µ2) was previously derived by Watkins (Watkins, 2008).

By itself, a single locus under weak selection cannot contribute much to biological function.
However, selection can act on a polygenic trait influenced by many loci. If they are unlinked,
we expect both the maintained information and the cost of selection to be approximately
additive, and the ratio D(G)/⟨C⟩ to scale according to Eq. (3.19). To confirm this, we next
study a polygenic system.

3.4.2 Information stored among many loci
We use an individual-based model to study a population of N haploids with l = 1000 biallelic
loci, mutation and free recombination. Offspring are produced by sampling pairs of parents
with selection, shuffling their genomes (at each locus, the allele from either parent is inherited
with probability 1/2), and flipping each allele with probability µ. Selection acts on a fully
heritable, additive trait with equal effects, zg = (the number ofA alleles in g), with fitness
being wg = (1 + s)zg .
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Figure 3.6: Maintenance of information in a system with l = 1000 biallelic loci. Selection is directional
on an additive trait Z (= the number of beneficial alleles). (A) A heatmap showing the number
of individuals in a population occupying each value of the phenotype z at each generation. The
population is initialized as a collection of random genomes, each containing the beneficial allele at
around l/2 = 500 loci. Over time, this number stochastically increases due to selection. Only the
first 1500 generations of the trajectory are shown, the full trajectory was 5 × 103 generations of
burn-in and 2 × 105 to estimate the stationary distributions in (B,C). (B) The stationary distribution
over the phenotype Z, under neutrality (φZ , blue) and selection (ψZ , red), along with the phenotype-
level information D(Z). Due to symmetry between loci and alleles, φZ(z) = Binom(z; l, 0.5) is
binomial. Under selection, ψZ is obtained as the histogram over individuals and over 2 × 105

generations at stationarity. (C) The marginal distribution over allele frequencies at individual loci,
under neutrality (φXsingle , blue, computed using a transition matrix for the single locus system)
and under selection (ψXsingle , red, computed as a histogram over all loci and 2 × 105 generations
at stationarity). The associated D(Xsingle) and D(Gsingle) correspond to information maintained
at one locus, and because the loci are approximately independent, the total information is about
l = 1000 times more. The population size is N = 40, mutation strength Nµ = 0.02 and selection
strength Ns = 0.4. (D) The relationship between the maintained information D(Z) and the cost
of selection ⟨C⟩, with recombination (brown points), without recombination (olive points). This is
compared with predictions under the assumption of independent loci (gray line; computed using
single locus diffusion approximation and multiplying both information and cost by the number of
loci) and the linear scaling with ⟨C⟩ based on Eq. (3.19) (dotted gray). Computed for a system with
l = 104 loci, population size N = 40, mutation strength Nµ = 0.02 and variable Ns. Distributions
estimated from a stochastic trajectory over 5 × 104 generations, after 5 × 103 generations of burn-in.
The inset shows identical data with a log vertical scale.
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The results are shown in Fig. 3.6. The panel 3.6A shows an example of a stochastic population
trajectory, indicating the phenotypes present in the population over time. The system is
initialized with random genomes that contain the beneficial allele at each locus with probability
1/2, with z taking values around l/2 = 500 with binomial noise. Selection with s = 0.01 makes
the beneficial alleles more frequent over time. The stationary distribution over phenotypes is
in Fig. 3.6B. Under neutrality, φZ = Binom(l, 1/2) by symmetry. The distribution ψZ under
selection is shifted relatively far from φZ , leading to D(Z) = 88.0 bits of information on the
phenotype level.
The population state distribution and the genotype distribution are inaccessible due to their
dimensionality (see Fig. B.1). However, we know that they are lower bounded by D(Z), which
is easy to compute, and D(Z) ≈ D(G) since Z is the only trait under selection. Since the
loci are unlinked and have equal effects, the information D(Z) can be divided evenly among
them. The marginal distribution over allele frequencies is only slightly different from neutrality
(Fig. 3.6C), by about D(Xsingle) = 0.095 bits in terms of allele frequency distribution and
D(Gsingle) = 0.088 in terms of allele probabilities. The 1000 loci, however, combine to produce
a large shift in the phenotype distribution, D(Z) ≈ 1000D(Gsingle).
This information is maintained at a very low cost of selection, ⟨C⟩ = 0.0012 bits per generation,
or relative fitness variance ⟨V ⟩ = 0.0017. This amounts to D(Z)/⟨C⟩ = 7.1 × 104 bits per
unit cost, only a little below the single locus limit N/µ/(1 + 4Nµ) = 7.4 × 104 under weak
selection.

3.4.3 Interference between loci
In practice, the selection on different loci might interfere, and this can hinder the maintenance
of information. The interaction may be due to Hill-Robertson interference, linkage, or epistasis.
In Fig. 3.6D we vary the selection coefficient s on individual alleles in a l = 104 locus system,
and plot the maintained D(Z) against the cost ⟨C⟩. We use the individual-based model to
compute these with free recombination (as in 3.6A-C) and with zero recombination (offspring
genotypes are identical to those of single parents, up to mutation). We compare the results
with the weak selection scaling according to Eq. (3.19), and results for 104 loci that evolve
independently (cost and information are summed over 104 single locus systems).
With free recombination, weak selection maintains about as much information as if the loci
were independent (brown points and gray line in Fig. 3.6D, inset), approximately according
to Eq. (3.19) (gray dotted line). However, when selection is strong (⟨C⟩ ≈ 0.1 or more),
individual alleles experience additional fluctuations in frequency due to random associations
with alleles at other loci in a finite population (Hill and Robertson, 1966; Barton, 1995),
reducing the efficiency of selection. As a result, the freely recombining loci maintain less
information than if they were independent. This is in addition to the fact that under strong
selection, maintenance is more costly even for independent loci (full gray line departs from
dotted gray line, Fig. 3.6D). Extremely strong selection, which removes potentially adaptive
variation at other loci, maintains even less information than more moderate selection, and it
makes recombination ineffective (brown points at high ⟨C⟩ in Fig. 3.6D).
Without recombination, less information is maintained at any given cost (olive points in
Fig. 3.6D). In fact, Watkins (Watkins, 2008) has shown that due to clonal interference,
organisms with no recombination cannot maintain more than the order of ln(N)/µ bits of
information even if the cost is unlimited, making Haldane’s and Eigen’s results (Haldane, 1937;
Eigen, 1971) pertinent to asexual populations.
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The advantage of recombination has also been recognized in a similar context by MacKay
(MacKay, 2003a) and Peck and Waxman (Peck and Waxman, 2010), and relates to the
evolution of sex and epistasis. Recombination is advantageous when facing unconditionally
deleterious or beneficial alleles (Kondrashov, 1988). However, recombination can be disad-
vantageous when adaptation depends on beneficial combinations of alleles (Kondrashov and
Kondrashov, 2001). For example, under stabilizing selection on a quantitative trait, fitness
is highest near an intermediate, optimal trait value, but recombination generates variation
around it. This raises questions about how information scales with relevant parameters (such
as recombination rate) in such scenarios. For now, it is not clear if any form of selection
can maintain more information at a given cost than N

µ(1+4Nµ) achieved by weak directional
selection with strong recombination.

3.5 Discussion
Selection exerts control on evolving populations, but its capacity is limited. The limits to
selection have been approached from various angles. Here we build upon previous work that
had developed the idea that selection accumulates and maintains information in the genome
(Kimura, 1961; Eigen, 1971), and that this is associated with a cost in terms of variation in
fitness, such as genetic load or fitness variance (Haldane, 1937, 1957). The early work has
suggested remarkably simple limits to selection: that the maximal rate of accumulation is
bounded by the cost itself (Kimura, 1961; Worden, 1995), and that maintenance is limited to
about 1/µ functional sites in the genome (Haldane, 1937; Eigen, 1971).

Later work has pointed out that both accumulation (Barton, 2017; MacKay, 2003a) and
maintenance (Peck and Waxman, 2010; Watkins, 2008) can exceed these limits, notably when
recombination is involved. However, the general bounds remained unclear, possibly in part due
to the difficulty of defining genetic information in general.

The measures of information that we have introduced in Sec. 3.2 coincide with or generalize
previous definitions, and offer two advantages. First, they facilitate connections between
different levels – e.g. between the abstract population-level information that has been studied
theoretically in different contexts (Mustonen and Lässig, 2010; Barton and de Vladar, 2009;
Bod’ová et al., 2016) and the effect that selection has on the distribution of phenotypes.

Second, the generality of our definition allows proving a general bound on information
accumulation rate. This turns out to be a factor N faster than the early bounds, but depends
on selection on individual loci being weak. The bound relies on a measure of cost of selection
that connects the genetic load and fitness variance (Shnol et al., 2011) with the KL cost in
control theory (Todorov, 2006; Theodorou, 2015), recently used in the context of artificial
selection (Nourmohammad and Eksin, 2021).

How much information can be maintained in the genome at a given cost remains an open
problem, but we have discussed how this might scale with the population size and the mutation
rate. The scaling in Eq. (3.19) generalizes a result by Watkins (Watkins, 2008) to realistic
populations with Nµ < 1. Still, more work is needed to make claims about the information
content of any real organism’s genome. Typical populations have Ne/µ much greater than the
genome size, suggesting that the genome size or other factors are more limiting than Eq. (3.19).
The maintenance can be made more difficult by linkage or epistasis, and parts of the genome
are likely under strong selection which is more costly. Still, Eq. (3.19) suggests that in theory,
the genome could contain a substantial amounts of information among weakly selected loci,
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e.g. coding for polygenic traits. This is consistent with recent work (Galeota-Sprung et al.,
2020) pointing out that mutation load does not pose severe limitations to the functional
fraction of the human genome.
Similarly, the bound on accumulation rate in Eq. (3.10) hypothetically allows accumulation of
information amounting to 10% of the human genome in about 106 generations (6 × 108 bits,
assuming effective population size Ne ≈ 104, k = 2 and meager cost ⟨C⟩ ≈ 0.03 or relative
fitness variance ⟨V ⟩ ≈ 0.018 devoted to accumulation). But this is unlikely to have happened.
Some selection was likely strong and more costly, and selection could have fluctuated, reversing
previous adaptation. However, under the right conditions, information can accumulate very
fast.
Our findings are complementary to the point raised by Kondrashov (Kondrashov, 1995),
that the survival of populations could be threatened by large numbers of weakly deleterious
mutations (Ns < 1). While selection cannot purge them, it can perturb the allele frequency
distribution of each by a small amount, and thus shift the distribution of higher level traits
very far from neutrality. This is similar to the response by Charlesworth (Charlesworth, 2013).
In fact, information accumulation and maintenance are most cost-efficient in this regime. This
does not mean that a genomic architecture, where most mutations operate at Ns < 1 and
information is encoded among many weakly specified sites, would evolve as an adaptation
to maximise information gain. Nevertheless, such an architecture might arise in multicellular
organisms as a side effect of their small effective population sizes and long genomes (Lynch
and Conery, 2003; Lynch, 2007).
Focus on the information content of genomes, rather than their fraction under selection, could
help better frame the controversy sparked by some publications from the ENCODE project
(The ENCODE Project Consortium et al., 2012; Doolittle, 2013; Graur et al., 2013; Brunet
and Doolittle, 2014; Kellis et al., 2014a; Graur, 2017; Galeota-Sprung et al., 2020). On the
one hand, genomic regions under detectable selection (less than 15% in humans (Rands et al.,
2014)) likely contain less than 2 bits per base pair, because their current function could be
achieved by a number of alternative sequences (e.g. due to synonymous mutations in coding
regions, or flexibility of transcription factor binding site sequence and location). On the other
hand, regions without detectable selection could contain a considerable amount of information
in the aggregate, at a low cost, encoding polygenic traits.
In bioinformatics, there already is a measure of information content applicable to short
regulatory motifs (Schneider et al., 1986; Wasserman and Sandelin, 2004). Future work could
examine the precise relationship between this measure and our theoretical definitions. The
generality of our framework also opens new directions for future research. One is to predict
the maximal amount of information that can be maintained in genomes and populations with
realistic parameters. Another is to study the information content of genomic elements with
well-described genotype-phenotype maps (e.g. promoters (de Boer et al., 2020; Vaishnav
et al., 2022)), under different hypotheses about selection on the phenotype.
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CHAPTER 4
Evolution and information content of

regulatory sequences

Abstract. The evolution of regulatory regions is shaped by the genetic architecture of
regulatory phenotypes, i.e. properties or the regulatory Genotype-phenotype map (GP map).
This architecture depends broadly on how gene regulation is organized (e.g. the availability
of regulatory mechanisms such as nucleosome binding or RNA interference), as well as on
the particular parameter values associated with such mechanisms – both of which can evolve.
We argue that selection on regulatory phenotypes across the genome induces selection on
the architecture, which in turn evolves to facilitate adaptation across the genome. Using
population genetics theory, we derive an optimality principle, implying that GP maps associated
with the evolved architecture tend to maximize the number of genotypes associated with
the fit combinations of regulatory phenotypes. Mathematically, this builds on analogies
between population genetics and statistical physics, as well as optimal coding in information
theory. Optimal values of some regulatory parameters can be derived even without a complete
knowledge of the molecular mechanisms involved. We illustrate the theory using a simplified
model of Transcription factor (TF) binding to promoters: the fraction of possible promoter
sequences that bind the TF evolves to match the fraction of promoters under selection to
bind it. We discuss the subtleties and limitations of the theory, associated with biophysical
constraints and the need for mutational robustness.

4.1 Introduction
Evolving genomes experience selection that is shaped by underlying GP maps. For example,
regulatory regions such as promoters may be selected to bind specific TFs. But the GP maps
themselves can evolve: changes to the TF concentration or DNA-binding domain will affect
which promoter sequences bind it via changes to the size and sequence of potential binding
sites. Mutations that affect the map may have highly pleiotropic effects, because a single TF
can interact with sites across the entire genome, and therefore experience strong selection
associated with phenotypic changes at the target loci. If regulatory GP maps evolve under
this type of selection, what kind of maps should we expect as a result?

A number of specific questions about gene regulation remains unanswered, and might benefit
from a suitable evolutionary framework. It is not clear why TFs have such short motifs in
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eukaryotes (Wunderlich and Mirny, 2009) and rely on other mechanisms for promoter search
(Field et al., 2008; Brodsky et al., 2020), why so much of human DNA is transcribed (Mattick
et al., 2010), or why regulatory networks are so densely interconnected by weak links (Biggin,
2011). A number of recent studies that characterize the genotype-expression maps of promoter
and enhancer regions in E. coli (Yona et al., 2018; Lagator et al., 2022), S. cerevisiae (de Boer
et al., 2020; Vaishnav et al., 2022) and Drosophila (Fuqua et al., 2020; Galupa et al., 2023)
found that a large fraction of random DNA sequences can act as a promoter or enhancer, and
even those that do not are only a few point mutations away. Should we be surprised by this
finding?

In this paper, we study the evolution of regulatory parameters, such as those associated with
TFs, which parametrize the genetic architecture of regulatory phenotypes. More specifically,
we focus on how the space of possible DNA sequence at a locus is divided among the relevant
regulatory phenotypes. For example, what fraction of possible promoter-sized DNA sequences
bind a TF?

Our key finding can be summarized in a simple principle: evolved parameters associate the
fit phenotypes with a large number of genotypes. This provides a bridge between population
genetics theory and optimality theories: a way to derive optimal parameter values that is
rooted in population genetics theory.

Our approach builds on an analogy between population genetics and statistical physics (Sella
and Hirsh, 2005; de Vladar and Barton, 2011), in particular the theory of free fitness developed
by Iwasa (Iwasa, 1988) and Sella and Hirsh (Sella and Hirsh, 2005), who in turn built on
Wright’s equilibrium distributions (Wright, 1937) and Kimura’s fixation probabilities (Kimura,
1962). Free fitness is a quantity that is maximized as evolution approaches equilibrium. We
use this result to express a trade-off between fitness and genetic information, a measure of
evolutionary constraint on the genotype (the difference between the genotype distribution
under selection vs. under neutrality). For a given genotype-phenotype-fitness map, there
is a minimal information required for any given expected fitness, with the population size
controlling how much of each is maintained. Regulatory parameters are under selection to
maximize free fitness.

This type of information is similar to the bioinformatics concept of the Information content (IC)
of binding motifs (Schneider et al., 1986; Wasserman and Sandelin, 2004). IC quantifies, for a
collection of TF binding sites, how different they are statistically from the rest of the genome
(a comparison similar to that between distributions under selection vs. under neutrality, if
selection drove the evolution of the binding sites). The requirement to localize TF binding to
a precise site, i.e. to make that site unique within the genome, implies a necessary amount of
IC. But a similar question can be asked about any regulatory task. How much information
does a promoter need to contain so that it interacts with a given set of TFs, or expresses the
gene in a given set of environments (Wagner, 2017)? We find that if selection is strong, the
evolved architectures resemble optimal codes in information theory, reflecting the statistics of
“messages”, i.e. phenotypes selected for across the genome.

We find that the difference in free fitness between optimal and sub-optimal architectures can be
dramatic, amounting to millions of bits across the whole genome for plausible parameters, due
to the sheer number of TF-DNA interactions affected. The magnitude of such savings is critical.
Optimization may require additional molecular mechanisms, which must also be encoded in the
genome, and require an information overhead which must not exceed the savings. Savings of
millions of bits imply that a number of additional regulatory genes (thousands of bits each) can
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be easily afforded. However, the comparisons of various architectures in terms of information
can be done even if the precise molecular mechanisms involved are not known.

Moreover, quantification of the necessary information can be interesting in the context of
debates about the functionality within genomes. Based on comparisons with related species, up
to about 15% of the human DNA is under detectable selection (Ponting and Hardison, 2011;
Rands et al., 2014), most of which is non-coding and must affect fitness via some regulatory
processes. But a much larger fraction (up to about 80%) of the genome seems to have
the capacity, or shows signs of involvement in such processes (Pheasant and Mattick, 2007;
Mattick et al., 2010; The ENCODE Project Consortium et al., 2012; Kellis et al., 2014a). This
has led to debates about technical problems and underappreciated evidence (Graur et al., 2013;
Mattick and Dinger, 2013), the meaning of function (Doolittle, 2013; Brunet and Doolittle,
2014; Kellis et al., 2014b; Linquist, 2022) and insights from population genetics theory (Graur,
2017; Galeota-Sprung et al., 2020). One source of difficulties are the unknown and possibly
complicated genotype-phenotype relationship of regulatory sequences. Long regions of DNA
could perform simple functions that only weakly constrain their evolution. Quantification of
the information necessary for some regulatory tasks, as we propose here, avoids the dichotomy
between functional and non-functional, and can be done even without a complete knowledge
of the GP maps involved: instead we ask what the optimal map would be.

We develop the theory in Sec. 4.2. Starting from basic population genetics assumptions, we
derive an optimization principle for the regulatory parameters, and connect it to optimal coding
in information theory. The assumptions are then questioned in Sec. 4.3, where we discuss how
biophysical constraints on gene regulation affect the information requirements, and how the
presence of strong mutation (neglected in Sec. 4.2) adds robustness as an additional factor in
the optimization.

4.2 Theory: evolution of regulatory parameters
The theory contains three key ingredients. First, a class of population genetics models that is
very general but still tractable at stationarity, introduced in Sec. 4.2.1. Second, an analysis
analogous to energy-entropy trade-off in statistical physics, see Sec. 4.2.2. And third, an
interpretation of this trade-off as an optimization principle relevant for regulatory systems, see
Sec. 4.2.3. In Sec. 4.2.4 we point out a connection to optimal coding in information theory,
which provides intuition about what the optimal architectures look like.

4.2.1 Population genetics setting
We track a population with effective size N that evolves under selection, mutation and
drift. We assume the successive fixations regime, which requires a low enough mutation rate,
NLµ ≪ 1, where L is the size of the genome considered. This limits the applicability of
this theory, but we show in Sec. 4.3.3 that similar results hold also in genetically diverse
populations.

The population state is given by the most recently fixed genotype (labeled i, j, . . . ), and
evolutionary stochasticity is captured by the distribution over these genotypes, ψi. Mutations
are proposed at a rate µij (from i to j), and accepted with the fixation probability (Kimura,
1962; Sella and Hirsh, 2005)

pfix
ij = 1 − e−2(wj−wi)

1 − e−2N(wj−wi)
, (4.1)
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where wi and wj are log-fitness values. Together, µij and pfix
ij determine the substitution rates

αij = µijp
fix
ij , which can be used to define a continuous time Markov chain,

dψi
dt

=
∑︂
j ̸=i

(ψjαij − ψiαij) . (4.2)

We make two further assumptions. First, the effective population size N and log-fitness
landscape wi are constant over time. Second, the mutation probabilities µij satisfy detailed
balance,

µij
µji

= φj
φi
, (4.3)

where φi is the neutral stationary distribution over i, i.e. stationary solution to Eq. (4.2) if
wi = const. for all genotypes i (analogous to the density of states in physics). Under the
simplest model of only single nucleotide replacements and no mutation bias, φi will be uniform
over all sequences of a given length.
Under these assumptions, ψ will converge to an equilibrium distribution (Wright, 1937; Berg
et al., 2004; Sella and Hirsh, 2005; de Vladar and Barton, 2011),

ψeqi = φie
2Nwi

Z
, (4.4)

with the partition sum Z = ∑︁
i φie

2Nwi . Selection increases the probability for genotypes with
high fitness, and is more efficient in larger populations. This is analogous to the Boltzmann
distribution in physics, with fitness instead of (negative) energy and 2N instead of inverse
temperature.
This model, or its more specific instances, have been used in similar contexts of evolution
of gene regulation (Berg et al., 2004; Sella and Hirsh, 2005; Lynch and Hagner, 2015). We
introduce an extension to genetically diverse populations in Sec. 4.3.3 and discuss limitations
of equilibrium-based theory in Sec. 4.4.
Particular systems at equilibrium are fully specified by the fitness landscape wi (in this paper,
motivated by gene regulation), the neutral distribution φi, and the population size N . Often,
we can simplify the description by grouping all genotypes by their fitness. Log-fitness w occurs
with probability φ(w) = ∑︁

i;wi=w φi under neutrality and φ(w)e2Nw/Z under selection.
In Fig. 4.1A, we introduce a simple binary model of TF binding. It consists of n promoter
regions, some of which (nf) are under selection to bind a TF and the rest (n(1 − f)) to avoid
it. TF binding is treated as a binary phenotype, and each promoter with the wrong phenotype
(failure to bind where wanted or ectopic binding where unwanted) incurs a log-fitness penalty
s, such that the log-fitness is wi = −(nfail

i +nect
i )s, where nfail

i and nect
i are the counts of both

kinds of error in genotype i. (Extensions with different s for positive and negative selection, or
different for each promoter, are possible but not done here for simplicity.) We assume that all
promoters have the same GP map, and that under neutrality, a single promoter binds the TF
with a probability q (e.g. because a fraction q of all possible promoter sequences bind the TF).
Therefore q parametrizes the regulatory architecture in this system. Under neutrality, nfail and
nect will both be binomial, nfail

i ∼ Bin(nf, 1 − q) and nect
i ∼ Bin(n(1 − f), q). This allows us

to compute the neutral distribution of log-fitness φ(w), shown in gray in Fig. 4.1B. Under
selection, the distribution ψ(w) is pushed towards higher w, depending on the population size
(red in Fig. 4.1B).
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In summary, the example system consists of an architecture parametrized by the regulatory
parameter q, and a phenotype-fitness map parametrized by s and f . This system is intentionally
simple for illustration purposes. Later we introduce continuously varying binding probabilities,
multiple TFs and non-promoter regions. Note, however, that this analysis does not depend
on which promoter sequences bind the TF, or the mechanism of TF binding. Details such
as promoter length, TF binding motif or possible cooperativity between binding sites are all
absorbed into a single parameter of the architecture, q.

4.2.2 Fitness-information trade-off
As the population size N increases, selection becomes more efficient, and the population
achieves a higher expected log-fitness ⟨w⟩ = ∑︁

i ψiwi. For this to happen, the distribution ψ
must concentrate more and more probability at genotypes with high rather than low fitness.
We can quantify this as genetic information D, using the Kullback-Leibler divergence (KL
divergence) (Cover and Thomas, 2006)

D =
∑︂
i

ψi ln
ψi
φi
. (4.5)

This quantifies how the distribution ψ differs from φ. If ψ and φ are equal, e.g. in absence
of selection or before it had time to act, D is zero. Whenever ψ and φ differ, D is positive.
In the important special case of uniform neutral distribution φi = const., D is equal to the
reduction in Shannon entropy of ψ compared to φ, D = H(φ) −H(ψ), see Sec. 4.5.1.

Both ⟨w⟩ and D are plotted as function of population size in Fig. 4.1C for the TF binding
example. The plots show the information in bits, D/ ln 2. Before developing the equilibrium
theory, we point out a few more properties of the information D and its connection to broader
literature.

The measure D is similar to the IC of binding motifs in bioinformatics (Schneider et al.,
1986; Wasserman and Sandelin, 2004). IC focuses on the particular problem of localizing
TF binding. It is mathematically similar to Eq. (4.5), but it is computed from nucleotide
frequencies within experimentally discovered binding sites (e.g. by ChiP-seq) vs. across the
genome, rather than probabilities under selection vs. neutrality. If the discovered binding sites
were all under identical selection (to bind a TF, for example), and genome-wide nucleotide
frequencies corresponded to neutrality, then IC would be a special case of D. IC has been used
to study how much information is needed in a binding motif to localize it precisely within the
genome (Schneider et al., 1986; Wunderlich and Mirny, 2009). The information D generalizes
this approach: in any particular system, how much information is needed to achieve a given
expected log-fitness?

A similar question was asked by Wagner (Wagner, 2017), who focused on binary phenotypes
and defined an information measure as the log-ratio of all genotypes to the subset of those
with a required phenotype. This corresponds to D if φ is uniform across all and ψ across
the subset of genotypes. We also use binary examples for illustration purposes (except in
Sec. 4.3.1), but D applies to any fitness landscape, notably when selection is finite and acts
on continuously varying phenotypes.

Finally, we point out that D can also be computed or lower bounded using distributions
over phenotypes. If genotype i has a conditional probability ζz|i of developing a phenotype z,
then ψZz = ∑︁

i ψiζz|i and φZz = ∑︁
i φiζz|i are the distributions of z under selection and under
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neutrality. We then find the inequality

D ≥ DZ =
∑︂
z

ψZz ln ψ
Z
z

φZz
. (4.6)

In particular, if z is fully determined by the genotype (z = z(i) and ζz|i = δz,z(i)), the bound
is tight D = DZ . This allows us to compute D = DW from fitness distributions such as in
Fig. 4.1B. Further connections to literature, and an analysis of how selection accumulates and
maintains information is in Chapter 3 (ref. (Hledik et al., 2022)).
We show the relationship between ⟨w⟩ and D in Fig. 4.1D. With increasing population size,
the parametric curve takes us from relatively low fitness at zero information to high fitness
and higher information. Crucially, the region below this curve is inaccessible: the equilibrium
distribution in Eq. (4.4) has the lowest information D possible in this system at any given
expected log-fitness ⟨w⟩, or conversely, the highest ⟨w⟩ at a given D.
This can be easily proved by showing that the equilibrium distribution maximizes a quantity
called free fitness F ,

ψeq = argmax
ψ

F (ψ), where F (ψ) = ⟨w⟩ − 1
2ND. (4.7)

In the maximization problem, 1/(2N) can be seen as a Lagrange multiplier, constraining D
while maximizing ⟨w⟩. Free fitness F (developed independently by Iwasa (Iwasa, 1988) and
Sella and Hirsh (Sella and Hirsh, 2005)) is analogous to free energy in physics where a similar
trade-off occurs between energy and entropy. In fact, F is not only maximized at equilibrium,
but is a non-decreasing function of time before equilibrium is reached. We include a short
proof in Sec. 4.5.2, and other proofs for a variety of other models are given in references
(Iwasa, 1988; Sella and Hirsh, 2005; Mustonen and Lässig, 2010; Hledik et al., 2022). A
related body of work is the maximum entropy approximation (Barton and de Vladar, 2009;
Bod’ová et al., 2016) which approximates the evolution of quantitative traits by assuming
quasi-equilibrium form of allele frequency distribution at all times.
From now on, all distributions ψ will be assumed to be at equilibrium, and we drop the
superscript from ψeq. We note that at equilibrium, the free fitness can be expressed using the
partition function, F = lnZ

2N .

4.2.3 Optimization of regulatory parameters
The equilibrium theory implies a minimal D for any ⟨w⟩ for any specific system, but this
minimal value will change if the regulatory architecture changes. In the TF binding toy model,
its only parameter is q, the fraction of promoter sequences that bind the TF. We plot the
fitness-information trade-off curve for several different values of q in Fig. 4.1E. Like other
parameters of regulatory systems, q, is encoded elsewhere in the genome, and can evolve.
For example, q could evolve via changes to the TF’s own regulatory sequence (making the
TF concentration higher or lower) or to the TF DNA-binding domain (making it bind more
promiscuously or specifically). What can we say about evolution of q in our model?
Depending on the population size N , some values of q seem more advantageous than others.
For example, in small populations, selection within promoters is ineffective, marked by D close
to zero. It seems best to choose q such that random sequences have a high expected fitness
⟨w⟩. Large populations are practically certain to evolve the desired binding phenotype at each
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Figure 4.1: Illustration of the key concepts. (A) An example binary model of TF binding. Promoters
(black lines) either bind or avoid a TF, depending on their sequence. Among all possible promoter
sequences, a fraction q binds and 1 − q avoids the TF. The genotype consists of n (here n = 6)
promoters, of which a fraction f is under positive selection (bind) and 1 − f under negative selection
(avoid). Each error reduces log-fitness by s. Here, one promoter under positive selection fails
to bind the TF (nfail = 1), and one promoter under negative selection binds the TF ectopically
(nect = 1), implying w = −2s. (B) Distributions of log-fitness under neutrality and under selection
at different effective population sizes. (C) Expected log-fitness and information both increase with
increasing population size. (D) Relationship between the expected log-fitness ⟨w⟩ and information D.
Equilibrium distributions have the lowest possible D at a given ⟨w⟩. (E) If the genotype-phenotype
map changes (via parameter q), new combinations of ⟨w⟩ and D are unlocked. (E) Values of q∗ that
maximize free fitness, i.e. achieve best fitness-information trade-off, as function of N . The optimum
depends on the form of selection, here parametrized by the fraction f of promoters under positive
selection.

promoter. It seems best to choose q such that this can be achieved with as little information
D as possible, i.e. to maximize the number of fit genotypes. If we can choose any q, a larger
region becomes accessible in the ⟨w⟩, D diagram. The values of q that achieve the best
trade-offs can be obtained by maximizing the free fitness F for each population size, and the
optima are shown in Fig. 4.1F. In small populations, the best choice for q is to accommodate
the most prevalent requirement (weighted, if needed, by selection strength). Since the fraction
f of promoters is under selection for binding the TF and 1 − f to avoid the TF, the optimum
at low N is q∗ = 0 for f < 0.5 and q∗ = 1 for f > 0.5. At higher N , both phenotypes need
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to be represented in the sequence space, so that each promoter can adapt.

To answer this, we need to include the loci controlling q in the model. We will refer to them
as regulator loci and label their genotype r, while the other, target loci keep the label i. Their
joint equilibrium distribution is

ψr,i = φr,ie
2Nwr,i

Z
(4.8)

We assume that the two sets of loci do not overlap, such that under neutrality, r and i are
independent and φr,i = φrφi. We are especially interested in the evolution of the regulatory
loci. The marginal distribution over r is

ψr ∝
∑︂
i

φrφie
2Nwr,i = φrZr = φre

2NFr (4.9)

where Zr = ∑︁
i φie

2Nwr,i is the partition function for the target loci conditional on a regulatory
genotype r, and Fr = lnZr/(2N) = ⟨wr⟩ − Dr/(2N) is the corresponding free fitness.
Therefore, while the equilibrium distribution of entire systems has log-fitness in the exponent
(Eq. (4.4)), the marginal distribution of any subset of loci that interact with others has free
fitness in the exponent. Regulator genotypes do not even have fitness by themselves, but only
in combination with genotypes at the target loci. Advantage goes to regulator genotypes that
achieve high fitness with a large number of target genotypes, and the interplay of fitness and
numbers is captured by free fitness (cf. (Barton and Coe, 2009)).

Often, the interaction between the regulatory loci and their targets is only via a collection
of regulatory parameters λ (such as λ = {q}), and we might not know or care how these
are encoded in the genome. In that case, we can write log-fitness as wi(λ), conditional
free fitness as F (λ) and summarize the possibly complicated genetic architecture of λ as
φ(λ) = ∑︁

r;λ(r)=λ φr. The equilibrium distribution of λ will be

ψ(λ) ∝ φ(λ) e2NF (λ). (4.10)

φ(λ) expresses how common the value λ would be under neutrality, i.e. among random
DNA sequences. But in large populations, or with many target loci, the factor e2NF (λ) will
overwhelm it and λ will be strongly optimized for the free fitness of its targets.

This is illustrated for the toy model in Fig. 4.2. The panel A shows three examples of a
possible neutral distribution φ(q). In panel B, we increase the population size and observe
how under selection on 100 target promoters, the distribution ψ(q) converges to the same
form. Note that as observed in Fig. 4.1F, the optimal q also changes with N . Beyond around
N = 10000, further increases in N do not make a difference: all promoters are adapted to
the required phenotype, and the distribution ψ(q) is dominated simply by what fraction of
possible genotypes realize the required combination of phenotypes.

Fig. 4.2CD shows the effect of increasing the number of target promoters, n. The conditional
free fitness F (λ) is additive across target promoters, and therefore the term e2NF (λ) not only
overwhelms φ(q) with large n, but also becomes increasingly peaked around an optimum.
Therefore, unless this is physically impossible, we would expect that regulatory parameters
interacting with many target loci are very strongly optimized at equilibrium.

Boltzmann-like types distributions have been used before to model biological optimization.
For example, Berg and von Hippel (1987) derived it for TF binding site sequences as a
maximum-entropy distribution with a constraint on the free energy of TF binding. A more
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general formulation of such approaches beyond genetics is in Chapter 2 (ref. (Młynarski
et al., 2021)). On the other hand, equilibrium distributions such as Eq. (4.4) has been derived
from population genetics theory by Wright (1937) (or later Sella and Hirsh (2005) in the low
mutation regime studied here), providing a mechanistic explanation for this form. We argue
that these approaches can be bridged: the distribution in Eq. (4.10) implies an optimization
principle for λ, but is derived from population genetics.

If regulatory parameters are indeed optimized, this raises some questions: what form do the
optimal architectures tend to have? And after optimization, how much information is still
needed for adaptation?
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Figure 4.2: If a regulator has many targets, it will be strongly optimized. (A) Several neutral
distributions of q, expressing the availability of q among all possible DNA sequences. (B) Distribution
ψ(q) under increasing population size. Other parameters: n = 100, f = 0.2, s = 0.001 (C,D)
Distribution ψ(q) under increasing number of target promoters for N = 100 (C) and N = 10000
(D). Other parameters: f = 0.2, s = 0.001.

4.2.4 Optimal architectures and the associated information
To develop intuition about the emergent architectures, we focus on a simple best-case
scenario. We focus on the regime of large population size, where maximization of free fitness
F (λ) = ⟨w(λ)⟩ − D(λ)/(2N) actually means minimization of D(λ), since the expected
log-fitness ⟨w(λ)⟩ is anyway at its maximum.

We assume discrete phenotypes z (such as binding/avoiding a TF), and n genomic regions,
such as promoters or non-promoter windows. All of these share the same GP map where the
phenotype z is realized with probability qz under neutrality, i.e. by a fraction qz of random
sequences (parametrizing the genetic architecture). We allow all qz values to be optimized, up
to the constraint ∑︁z qz = 1 such that they do not overlap in the sequence space. Of the n
regions, fractions fz are forced by strong selection to evolve the phenotype z. How should be
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sequence space be divided among phenotypes, so that the required phenotypes are realized by
the largest number of genotypes, i.e. with the lowest D({qz})?
Given q and f , the information is D({qz}) = ∑︁

z nfz ln 1
qz

, since nfz regions must realize z
with probability 1, while under neutrality it would only be with probability qz. The optimal
partitions q∗

z are given by

{q∗
z} = argmin

{qz};
∑︁

z
qz=1

∑︂
z

nfz ln 1
qz
. (4.11)

This minimization problem is identical to the classical problem of optimal codes in information
theory dating back to Shannon (Shannon, 1948). A source generates messages z with
probabilities fz, and each is assigned a code word that is lz symbols long. We want to
choose code words such that the average length, ∑︁z fzlz is minimized. In Eq. (4.11), ln(1/qz)
corresponds to the lengths lz and the condition ∑︁z qz = 1 corresponds to the Kraft inequality
(Cover and Thomas, 2006), a requirement for unique decodability of the original messages.
(Kraft inequality is ∑︁z qz ≤ 1 but equality is achieved at the optimum. Also, in information
theory, e and the natural ln are usually replaced by 2 and log2 to express code length in bits).
The solution is

q∗
z = fz, with minimal information D({q∗

z}) = n
∑︂
z

fz ln 1
fz

= nH({fz}), (4.12)

where H({fz}) is the Shannon entropy of probabilities fz. In other words, the fraction of
sequence space devoted to each phenotype should match its desired frequency among the
relevant genomic regions – we refer to this as frequency matching. And the minimal information
to encode these phenotypes is given by the entropy of these frequencies. The DNA sequence
of each region must encode a message about which phenotype should be realized there,
and the information needed is proportional to the length of code needed to transmit such
messages. In engineered systems we use information theory to devise codes that approach this
minimum (Cover and Thomas, 2006), but apparently selection is similarly driving organisms to
efficiently solve an analogous problem, by evolving novel regulatory mechanisms that approach
a mathematically identical bound.
Rare messages, i.e. phenotypes such as strong TF binding that is required only in a minority
of genomic regions, require a considerable amount of information to encode, ln 1

fz
> 1 per

genomic region. In contrast, phenotypes that are common (e.g. do not bind here) take little
information, fz ≈ 1 and ln 1

fz
≈ 0. Even across the genome, the most common phenotype

require less information to encode than rare ones. However, it is the need to encode the
common phenotype that drives the optimization towards devoting most sequence space to
them, leaving less for the rare but nonetheless important phenotypes.
An example of frequency matching is in Fig. 4.1F, where at large N , optimal q matches
the fraction f of promoters that must bind the TF. A real-world example is TF binding in
prokaryotes. Each TF binds only in a small number of locations, and binding requires a
correspondingly specific sequence – with the associated information depend on the size of the
genome where the TF does not bind (Schneider et al., 1986; Wunderlich and Mirny, 2009). In
contrast, nucleosomes cover the majority of eukaryotic genomes, and their localization relies on
specific sequences they avoid rather than bind (Field et al., 2008). TFs in eukaryotes tend to
have low information content compared to prokaryotes, likely because their binding is restricted
by the chromatin landscape and multiple binding sites can be required for transcriptional
regulation (Wunderlich and Mirny, 2009). Nonetheless, the information needed to arrange
these more complex mechanisms for a desired outcome might follow the same coding principles.
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4.3 Approximating theoretically optimal maps with
biological mechanisms

The idealized scenario leading to the coding analogy, as well as the population genetics
assumptions needed to derive the free fitness theory, depends on strong simplifications. In this
section we address three important aspects of real systems. First, phenotypes are often not
discrete, but quantitative or probabilistic (e.g., TF molecules bind DNA with some sequence and
parameter-dependent probability). In Sec. 4.3.1, we show that this leads to overspecification:
additional information is needed to guarantee or avoid binding with high probability. Second,
if the phenotype z is highly multidimensional (e.g. if z is the binding status of many TFs), it
might not be possible to independently tune all the probabilities qz and achieve the optimum
in Eq. (4.12). Nonetheless, suitable regulatory mechanisms can enable organisms to get closer
to it, as we discuss in Sec. 4.3.2. Finally, we question a key assumption made in Sec. 4.2.1
that evolution proceeds by successive fixations in otherwise monomorphic populations. We
outline how the results change in genetically diverse populations.

4.3.1 Biophysical constraints and overspecification
Real TF binding is not binary: a given genomic region can be bound with a probability that
depends on the target sequence, TF properties, and its concentration. We extend our toy
model by assuming that this probability pB is a function of binding free energy ∆G,

pB = 1
1 + e∆G , (4.13)

i.e. the system is at thermodynamic equilibrium. Under neutrality, we assume that a random
promoter has ∆G drawn from a normal distribution with mean µ and standard deviation σ, e.g.
because it is the sum of independent free energy contributions from a number of nucleotides
(with a continuous approximation for simplicity). This model is illustrated in Fig. 4.3A. The
transition from binding to not binding takes place approximately between ∆G = −5 and 5,
and depending on µ and σ, sequences may exist on either side as well as inside the transition
range.
Selection still acts on the binding phenotype; now the log-fitness penalty is pBs for spurious
binding and (1 − pB)s for failing to bind when needed. Either type of selection on individual
promoters will restrict their distribution of ∆G to only sufficiently high and sufficiently low
∆G, see red and blue distributions in Fig. 4.3A.
Note that the sequences inside the transition range are eliminated by positive and negative
selection alike. Intermediate binding such as pB = 0.5 is never desirable in this model, and an
optimal frequency-matching code would not assign it any genotypes. But with a unimodal
distribution over ∆G, it is impossible to avoid intermediate binding without also eliminating
either of the desirable phenotypes (pB ≈ 1 and pB ≈ 0). The next best solution would be to
make σ very large, so that the vast majority of genotypes is far on either side of the transition,
but σ is likely limited, for instance by the strength of molecular recognition interactions or the
binding site length.
These biophysical constraints mean that achieving the same expected log-fitness now takes more
information, Fig. 4.3B. This is an instance of overspecification (von Hippel and Berg, 1986) –
more information is required than might be supposed from a simple combinatorial analysis. The
optimal µ (Fig. 4.3C) behaves similarly to the binary model. In small populations, promoters
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cannot adapt anyway and the best choice is to accommodate the majority of promoters (which
require no binding) and choose a very large µ. In large populations, intermediate values of µ
can approximate frequency matching.
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Figure 4.3: Biophysical constraints and overspecification. (A) TF occupancy depends on the binding
free energy ∆G. This is normally distributed. (B) Fitness-information trade-offs achieved by optimal
µ with various σ. For large σ, we approach the binary model, as fewer sequences have intermediate
occupancies. (C) Optimal µ as function of N .

4.3.2 Availability of regulatory mechanisms
The optimal frequency-matching code may also be impossible because the available mechanisms
of gene regulation may not have enough flexibility to individually adjust the probability qz
of each phenotype z. To illustrate this, we return to the binary model of TF binding, but
consider a large number T of TFs, as well as a set of m non-promoter genomic regions (in
addition to n promoters).
Each TF must bind some fraction f of promoters, and avoid the rest (subject to a penalty
s per error). Non-promoter regions have the same GP map, but are selected to avoid all
TF (penalty also s for simplicity). Under neutrality, any single TF binds to any promoter or
non-promoter region with probability q, independently of other TFs. A schematic figure is in
Fig. 4.4A.
Under neutrality, the chances for a promoter to bind the correct set of fT TFs and avoid the
other (1 − f)T are qfT (1 − q)(1−f)T . A non-promoter region successfully avoids all TFs with
probability (1 − q)T . For a given value of q, we can again compute ⟨w⟩ and D as function
of population size, black curves in Fig. 4.4B. The fitness-information trade-off is shown in
Fig. 4.4C.
Note that other verbal descriptions lead to the same mathematical model. For example,
instead of binding a single TF molecule, we can require several molecules binding a cluster
binding sites, perhaps because they are needed to cooperatively initiate transcription. Instead
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of genomic regions binding different TFs, we could talk about these regions being transcribed
under different conditions. In all these cases, we obtain a list of binary phenotypes, each
realized by a fractions q of possible sequences, each required at a list of genomic windows
parametrized by n,m and f , and a fitness penalty s for errors.

What is the optimal architecture in this situation? At low N , q∗ is zero as before, Fig. 4.4D.
At high N , the ideal solution would be frequency matching. Perfect frequency matching would
divide the sequence space among the at most n+ 1 different phenotypes actually needed –
n binding profile (at most one unique profile per promoter) and 1 avoid all phenotype for
all the non-promoter regions. But this is certainly impossible to realize by varying the single
parameter q. Even more complex but realistic models of gene regulation would not be able
to prioritize the required set of TF combinations out of 2T possible ones – these must be
ultimately specified by the promoter sequences.

In our model, varying q can only lead to more or less binding overall, the optimal q is therefore
q∗ = nf/(n+m), matching the fraction of all regions that need to bind any particular TF,
and the necessary information is

D(q∗) = T (n+m)H
(︄

nf

n+m

)︄
, (4.14)

proportional to the number of TFs. This arrangement is very inefficient from the perspective
of the non-promoter regions, which must avoid each TF separately. This does not necessarily
mean that the total information in non-promoter regions is high. Instead, the need to avoid
them means that the optimal q∗ is low, leading to a high information requirements for binding
TFs inside promoters. For example, with q∗ = 0.01, about 82% of D(q∗) is inside promoters
(87% with q∗ = 0.001 or 71% with q∗ = 0.1).

Can organisms reduce the required information by evolving new regulatory mechanisms? This
is possible by introducing an additional layer of regulation – a mechanism that leaves promoters
open to TF binding, while non-promoters are prevented from binding all TFs in a single step.
We refer to these two states as open and closed chromatin, but other molecular mechanisms
may be involved instead or regulate the chromatin state – for example, a special class of
pioneering TFs or DNA methylation (Bird and Wolffe, 1999; Deaton and Bird, 2011; Héberlé
and Bardet, 2019).

Under neutrality, there is a probability qop of being open and 1−qop of being closed. Therefore,
promoters achieve the required phenotype with the probability qopq

fT (1 − q)(1−f)T . Non-
promoter regions with probability 1−qop +qop(1−q)T ≈ 1−qop – either by being closed, or by
being open but avoiding all TFs; but the latter option is negligible with an appreciable number
of TFs. This leads to a considerable improvement in the fitness-information trade-off, visible
in Fig. 4.4C. At high N , the optimal values are q∗

op = n/(n+m), matching the frequency of
promoters that need to be open to binding, and q∗ = f , matching the fraction of promoters
that any TF needs to bind (Fig. 4.4D). The necessary information is

Dchr(q∗
op, q

∗) = (n+m)H
(︃

n

n+m

)︃
+ TnH(f). (4.15)

The first term term corresponds to the information necessary to specify which regions are
promoters, and this does not grow with the number of TFs. The second quantifies the
specification of which promoters must be bound by each of the T TFs, and this is independent
of the number of non-promoter regions.
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The addition of a chromatin-like mechanism can lead to a dramatic reduction in the required
information compared to the single-layer regulation in Eq. (4.14). We illustrate the difference
in Fig. 4.4E for parameters roughly corresponding to the human and yeast genomes. We
assume that the genome contains n = 20000 promoters (for humans; or n = 6300 for yeast),
each ℓ = 2000bp (300bp) long. The rest of the genome consists of L/ℓ − n non-promoter
regions, with genome size L = 3.2 × 109bp (1.2 × 107bp). We assumed T = 1500 (300) TFs
each binding a fraction f = 0.1 (0.1) of promoters.
In Fig. 4.4E, we varied the genome size L to show how the amount of non-promoter regions
affects the information calculations. If TFs bind completely independently, the information
grows with L, because binding must be more specific to avoid the aditional non-promoter
regions. With chromatin, this growth practically disappears, because the first term in Eq. (4.15),
corresponding to promoter/non-promoter specification, is negligible. At the actual values of
L, the amount of information saved by chromatin is very large.
These estimates might be optimistic if some non-promoter regions need to be open in practice,
reducing the advantage of chromatin. Also, implementing the additional level of regulation
itself requires information: genes involved in chromatin regulation, and their own regulatory
elements, must be encoded in the genome. Nonetheless, even if 104 bits were needed to
encode each such additional gene, several can be afforded in yeast, and many in humans, from
the available savings. In other words, random walks in the sequence space are more likely to
stumble upon several entire chromatin-regulating genes and efficiently encoded TF binding,
than inefficiently encoded TF binding. This suggests an economy of scale principle in gene
regulation: with many genes and TFs, even a small efficiency improvement in encoding all
their interactions can pay for encoding a new gene that implements it.

4.3.3 Robustness and theory extension to strong mutation regime
A major assumption of the theory in Sec. 4.2 is that evolution proceeds by successive fixations
in otherwise monomorphic populations. This assumption is justified for short genomic elements,
such that NLµ ≪ 1, where L is the size of the genomic region considered, and µ is the
mutation rate per base pair. This may be sufficient for individual regulatory elements in small
populations, but not, for example, when considering a large number of promoters as well as
loci controlling their TF regulators. The low-mutation theory can also be applied separately to
independently evolving loci – assuming no linkage and no epistasis between them. However,
our key results about optimization depend on epistasis between a set of regulatory loci and a
large number of target loci.
The strong mutation regime is more technically difficult to study, as the level of description must
move from individual genotypes to genotype frequencies in diverse populations. Nonetheless,
equilibrium distributions and free fitness were both originally developed on the population-level
(Wright, 1937; Iwasa, 1988). The derivation for systems consisting of many multi-allelic loci
at linkage equilibrium with arbitrary epistasis are clearly laid out in ref. (Mustonen and Lässig,
2010). The necessary assumption is that individual each locus is either in the low mutation
regime or has a particularly simple form of mutation. We summarize the relevant results in
Sec. 4.5.3.
In the weak mutation regime, it was sufficient to consider fixations of individual genotypes; as
shown by Eq. (4.4), those with higher fitness were more likely to evolve. In contrast, under
strong mutation, the success of any one genotype also depends on the success of its mutational
neighbors, which occur in many of its descendants and ancestors. This causes a departure
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Figure 4.4: Novel regulatory mechanisms can improve coding efficiency. (A) An extended model
with T TFs, n promoters and m non-promoter regions (here, T = 3, n = 6 and m = 14). Each
promoter is under positive selection for a fraction f of promoters and negative selection for 1 − f
(here f = 1/3), while all non-promoter regions are under negative selection only. Ectopic binding
events, and failures to bind where it is required, reduce log-fitness by s (red arrows). (B) Expected
log-fitness and information as function of N . Black curves are based on the model with TF binding
only, and blue curves are based on the model which also includes open/closed chromatin states.
Parameter values are n = 2000, m = 8000, T = 100, f = 0.1, s = 10−3, q = 0.01 (TFs only) or
q = 0.1 and qop = 0.2 (with chromatin). (C) Compared to a model with TFs only (black), chromatin
regulation (blue) enables better trade-offs between fitness and information. Parameter values as in
(B), but q and qop use optimal values as shown in (D). (D) Parameter optima for the models with
and without chromatin. Parameter values as in (B,C). (E) Comparison of information needed at
strong selection, with and without chromatin. Parameter values inspired by the human and yeast
genome (see text).

from Eq. (4.4) such that an additional advantage goes to fit genotypes with fit mutational
neighbors, i.e. are mutationally robust van Nimwegen et al. (1999); Rao and Leibler (2022).
Below we discuss this phenomenon from the perspective of equilibrium and free fitness theory.
On the population level, an equilibrium distribution ψ̃(x) can be derived over x, a vector of
allele frequencies. It has a Boltzmann-like form

ψ̃(x) ∝ φ̃(x)e2N ln ω̄(x), (4.16)
where φ̃(x) is the equilibrium in absence of selection, and ω̄(x) = ∑︁

i xiωi is the mean fitness
within within a population with frequencies xi of genotypes xi, and genotypic fitness values
ωi. This distribution maximizes a population-level free fitness,

F̃ = ⟨ln ω̄⟩ − 1
2N D̃ (4.17)

The term D̃ is again a type of genetic information, but on the population level – it quantifies
how different the distribution over population states differs under selection, ψ(x), and under

71



4. Evolution and information content of regulatory sequences

neutrality, φ(x). We can relate it to the information D defined in Eq. (4.5) for distributions
over genotypes by computing the probability that a randomly sampled genotype from a
randomly sampled population is i,

ψi =
∫︂
ψ(x)xidx and φi =

∫︂
φ(x)xidx, (4.18)

or in other words, the expected genotype frequencies. It can be shown that the population-level
information is larger than the genotype-level information,

D̃ = D +
∑︂
i

ψi

∫︂
ψ(x|i) ln ψ(x|i)

φ(x|i) = D +D(X|G) ≥ D (4.19)

where ψ(x|i) = ψ(x)xi/ψi is the conditional distribution over population states, if a randomly
sampled genotype was i. If ψ(x) is taken as a Bayesian prior, then ψ(x|i) is the posterior
after looking at a randomly sampled genotype. The second term, D(X|G), is a non-negative
conditional KL divergence (Cover and Thomas, 2006), implying the inequality D̃ ≥ D.
The difference D(X|G) vanishes when mutation is weak and the population is mostly monomor-
phic, because after we sample a single genotype i, it is practically certain that it is fixed in the
population, regardless of selection (ψ(x|i) = φ(x|i) both peaked at xi = 1). In this regime,
we can also replace the log mean-fitness ln ω̄(x) by log-fitness wi of the fixed genotype i,
recovering the mean fitness in Eq. (4.7). In contrast, when mutation is strong, ψ(x|i) and
φ(x|i) can differ because populations are genetically diverse and selection can change the
patterns of diversity (e.g. reduce it when acting against phenotypic variance). In such cases,
D(X|G) will be positive.
As in Sec. 4.2.3, we can consider a joint system of regulatory loci and their targets, and
compute the marginal distribution over the allele frequencies xR at the regulatory loci,

ψ(xR) ∝ φ(xR)e2NF̃ (xR), (4.20)

F̃ (xR) is the free fitness of the target loci conditional on the regulator loci having allele
frequencies xR. Therefore, even in diverse populations, selection acts to optimize regulatory
parameters by maximizing free fitness, but there are two differences.
First, Eq. (4.20) does not automatically translate to a distribution over regulatory parameter
values as in Eq. (4.10), because the λ itself can have diverse values in the population, depending
on the allele frequencies xR at regulatory loci. Optimization still takes place, but in the space
of population states, each with some variation in λ. If λ has a sharply peaked optimum (as
in Fig. 4.2 with large N and many target loci), states x with too much diversity in λ will be
suppressed. This will cause departures from Eq. (4.10) by favoring values of λ that are more
robust to changes by mutation, or where such changes cause smaller reduction in free fitness.
Second, mutational robustness is also important for the target loci. Under successive fixations,
free fitness expressed the need to achieve high fitness with a large number of genotypes. With
stronger mutation, the focus shifts from genotypes to populations. Populations need to be kept
at high log-mean fitness ln ω̄, while minimizing the KL divergence from the neutral distribution
over population states, D̃, which contains an additional term D(X|G) reflecting the effects
of selection on genetic variation, and depends on the robustness of occupied genotypes. If
the genotype ψi is robust, mutations to it have little effect on fitness, the population is likely
to have the same levels of diversity under selection as under neutrality, and the contribution∫︁
ψ(x|i) ln ψ(x|i)

φ(x|i) will be low. On the other hand, if i sits on top of a sharp fitness peak or near
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a steep cliff, the inferior mutational neighbors are likely to be missing from the population
under selection, even though they would have been present under neutrality. Minimization
of D(X|G) therefore favors robust genotypes, and the marginal genotype distribution ψi
departs from the low-mutation equilibrium in Eq. (4.4). It also means that D is no longer
minimized at a given ⟨w⟩, a phenomenon that could be seen as a case of robustness-associated
overspecification.

Mutational robustness is a known factor in evolution in general (van Nimwegen et al., 1999;
Wilke et al., 2001; Rao and Leibler, 2022) as well as in the context of gene regulation
(Payne and Wagner, 2014, 2015). It is interesting to contrast it with the minimization of D.
Mutational robustness is a local phenomenon, associated with the preference for genotypes
with fit mutational neighbors (Rao and Leibler, 2022). In contrast, low information D is closely
related to genotypic redundancy – a large number of genotypes with high fitness (Láruson
et al., 2020), and it does not depend on which genotypes these are. Mutational robustness
may emerge indirectly as a by-product of the minimization of D, if the genotypes with high
fitness happen to be neighbors (Payne and Wagner, 2015), but if mutation is high, robustness
becomes important in itself.

In summary, if mutation is high, the trade-off between fitness and information changes to a
triple trade-off between fitness, information and mutational robustness. Regulatory parameters
will evolve such that they associate high fitness with many, mutationally robust genotypes,
and themselves become robust to mutation.

4.4 Discussion
Equilibrium population genetics suggests an optimization principle for regulatory parameters:
they should be tuned such that across their target loci, high-fitness phenotypes are realized
by as many random sequences as possible. An analogy with coding in information theory
suggests what, approximately, the evolved regulatory architectures look like. Most of the
sequence space will be devoted to the phenotypes required at many loci, and a lot of genetic
information will be needed at loci that require unusual phenotypes. In ideal circumstances,
the necessary information is given by the entropy associated with phenotype requirements
across the genome, but this can be increased due to biophysical constraints or the need for
robustness in high-mutation regimes.

The quantification of genetic information can also be used, at least under naive assumptions,
to think about how much genetic information is needed for regulatory tasks. For example,
evolving a specified set of TF-DNA interactions may require information that is proportional
to the genome size and the number of TFs (Eq. (4.14)). However, this is dramatically reduced
if an additional layer or regulation (e.g. closed chromatin) efficiently excludes all regions that
should not bind any TFs (Eq. (4.15) and leaves open only a region scaling with the number
of genes. In humans, this suggests order 2 × 104 × 1.5 × 103 = 3 × 107 bits, plausible given
that under 15% of the human genome (3 × 108 bp) is known to be selectively constrained
(Ponting and Hardison, 2011; Rands et al., 2014).

We briefly comment on further limitations of the theory. First, the focus on stationary
distributions may be problematic because approaching them takes too long to ever be relevant.
This could be because selection changes on a faster time scale (e.g. due to ecological processes),
or because populations might settle on local optima and never explore more of the sequence
space. While this is indeed a serious limitation, our results might be nonetheless relevant.
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TF binding sites are short and the difference between a functional binding site and random
sequence is often only a few point mutations (Yona et al., 2018; Lagator et al., 2022), making
exploration of the sequence space possible at least for individual regulatory elements. Also,
even if is not reached, the information needed to achieve a phenotype can be an informative
statistic. Phenotypes requiring less information can evolve faster ((Wagner, 2017), unpublished
work by Reka Borbely, and Sec. 4.5.4) or be more likely to evolve when several alternatives
with equal fitness are available. Regardless of the evolutionary scenario, it seems helpful for
adaptation to have many genotypes that realize the high-fitness phenotypes, and future work
can explore this in more detail.

Second, the existence of equilibrium distributions (associated with free fitness maximization)
requires the assumption of detailed balance. In the low mutation regime, this restricts the form
of mutation rates, excluding e.g. structural mutations such as duplications or deletions. In
the high mutation regime, it further restricts us to scenarios with linkage equilibrium between
small loci (with negligible standing variation at each), excluding also finite recombination
rate. What happens outside these regimes is an open question. Structural mutation that
produces repetitive sequences could, for example, lead to optimal architectures that employ
such sequences for regulatory tasks, as seems to be the case with transposable elements
(Trizzino et al., 2017). Methods from non-equilibrium statistical physics might be used to
study these technically difficult situations.

A more conceptual problem is that optimal architectures can only be derived from assumptions
about what selection is acting. If we knew what regulatory phenotypes are required along the
genome, we could study the optimal maps and the necessary information – but the requirements
are actually unknown. Instead, we typically make assumptions about selection based on what
actually evolved.

4.5 Detailed calculations

4.5.1 Genetic information and entropy reduction

If the neutral distribution φi is uniform over all possible genotypes, φi = 1/|G| where |G| is
the size of the genotype space, then the genetic information D can be rewritten as

D =
∑︂
i

ψi ln
ψi

1/|G|
= ln |G| +

∑︂
i

ψi lnψi, (4.21)

where the two terms are equal to the Shannon entropy H(φ) and (negative) Shannon entropy
H(ψ). If the distribution under selection is also uniform over a subset of genotypes G′, i.e.
ψi = 1/|G′|, then H(ψ) = ln |G′| and D = ln |G| − ln |G′|. This is the information formula
used by Wagner (Wagner, 2017).
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4.5. Detailed calculations

4.5.2 Free fitness is a non-decreasing function of time: low
mutation regime

We start by taking a time derivative of F as defined in Eq. (4.7) and apply the CTMC dynamics
from Eq. (4.2). After simplifying,

dF

dt
=

∑︂
ij; j ̸=i

(ψjαij − ψiαij)
(︄
wi − 1

2N ln ψi
φi

)︄
(4.22)

=
∑︂
ij; j ̸=i

ψiαij

(︄
(wj − wi) − 1

2N ln ψjφi
ψiφj

)︄
. (4.23)

We can simplify further using the formula for fixation probabilities in Eq. (4.1) and detailed
balance in Eq. (4.3),

dF

dt
= 1

2N
∑︂
ij; j ̸=i

ψiαij ln ψiαij
ψjαji

(4.24)

≥ 0, (4.25)
where the inequality is proved using ln u ≥ 1 − 1/u.

4.5.3 Free fitness in genetically diverse populations
We model a population with n haploid loci, with locus l having ml alleles. The state of
the population is described by a list of frequencies xal for allele a at locus l, normalized at
each locus, ∑︁ml

a=1 xal = 1. Between loci, we assume linkage equilibrium, implying that the
frequency of genotype i = a1, a2, . . . , an (consisting of an allele at each locus) is the product
of frequencies of all alleles it contains, xi = xa11xa22 . . . xann.
The population states have a distribution ψ(x), and its dynamics under mutation, selection,
free recombination and drift can be modeled with the diffusion equation,

∂tψ(x) = −
l∑︂
l=1

ml−1∑︂
a=1

∂al

⎛⎝mal(x)ψ(x) + sal(x)ψ(x) − 1
2N

l∑︂
k=1

mk−1∑︂
b=1

∂bk (bal,bk(x)ψ(x))
⎞⎠ .

(4.26)
We use short notation ∂t = ∂

∂t
and ∂al = ∂

∂xal
for partial derivatives w.r.t. time and allele

frequencies. The sums leave the last allele at each locus, because its frequency is determined
by the frequencies of other alleles at the same locus. Genetic drift scales inversely with the
effective population size N , and its covariance structure is given by

bal,bk(x) =

⎧⎪⎪⎨⎪⎪⎩
xal(1 − xal); a = b, l = k,

−xalxbk; a ̸= b, l = k,

0; l ̸= k.

(4.27)

Mutation and selection enter via the expected changes in allele frequencies per generation,
mal(x) and sal(x). These depend on the particular model, but for the diffusion process to
have an equilibrium distribution, we require mutation and selection to have a gradient form,

sal(x) =
l∑︂

k=1

mk−1∑︂
b=1

bal,bk(x) ∂bk ln ω̄(x) (4.28)

mal(x) =
l∑︂

k=1

mk−1∑︂
b=1

bal,bk(x) ∂bkM(x). (4.29)
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For selection, the form in Eq. (4.28) comes naturally if we assign a fitness ωi to each genotype
i, allowing arbitrary epistasis. Selection is then controlled by the gradient of the logarithm of
mean fitness, ω̄ = ∑︁

i xiωi.
For mutation, the form in Eq. (4.29) emerges only under somewhat restrictive conditions. In
general, we can parametrize it with mutation rates µabl from allele a to b at locus l, such
that the mal(x) = ∑︁ml

b=1(xblµbal − xalµabl). Mustonen and Lassig (Mustonen and Lässig,
2010) indentified two situations when a suitable mutation potential M exists. One is when
the mutation rates are independent of the source allele and depend only on the target allele,
i.e. µabl = µ̃bl, in which case M = ∑︁n

l=1
∑︁ml
a=1 µ̃al ln xal. The second situation requires a

detailed balance condition at each locus, µabl/µbal = φbl/φal, but also that mutation rates are
small enough at each locus (Nℓµ ≪ 1) so that at most two alleles per locus coexist in the
population at the same time.
Under these conditions, the diffusion equation in Eq. (4.26) has an equilibrium solution (with
zero probability flux),

ψ(x) = e2NM(x)e2N ln ω̄(x)

Z
∏︁n
l=1

∏︁ml
a=1 xal

= φ(x) e2N ln ω̄(x)

Z
, (4.30)

analogous to Eq. (4.4), with φ(x) being the equilibrium distribution under neutrality (U-shaped).
This equilibrium distribution maximizes a population-level free fitness,

F̃ =
∫︂
ψ(x) ln ω̄(x)dx− 1

2N

∫︂
ψ(x) ln ψ(x)

φ(x)dx = ⟨ln ω̄⟩ − 1
2N D̃, (4.31)

similarly to Eq. (4.7). The population-level free fitness is also a non-decreasing function of
time, as implied by the fitness flux theorem (Mustonen and Lässig, 2010).

4.5.4 Time to evolve a phenotype
While this paper focuses on stationary distributions, the concept of genetic information can
also be helpful when considering the process of evolving a new genotype (Wagner, 2017).
This is easy to demonstrate in a very simple scenario. We assume only two phenotypes, such
that the one favored by selection is realized by |G′| out of |G| possible genotypes; therefore
D = ln |G|− ln |G′| is required to satisfy selection. Assuming no other selection and sequential
fixations regime, evolution will be a random walk in the genotype space, with a random step
every 1/U generations on average, where U is the total mutation rate. Eventually, the favored
phenotype will be proposed by a mutation. Then, if selection is strong (Ns ≫ 1 where s is
the log-fitness difference between the two phenotypes), it will be fixed. The time that this
takes depends on where in the genotype space the |G′| favored genotypes are located, and
where the random walk starts. If, for simplicity, both are distributed uniformly, every proposed
mutation has a probability of about |G′|/|G| of finding the favored phenotype. Therefore, the
expected time to evolve will be about |G|/(U |G′|) = eD/U , exponential in the information D.
In more realistic settings, the |G′| favored genotypes might be concentrated in a small part of
the genotypes space, and if evolution starts far away, it may take longer for the random walk
to reach it. On the other hand, in practice there may also be intermediate phenotypes with a
smaller selective advantage leading up to the best phenotype. Then evolution can proceed
faster by climbing up a fitness landscape rather than walking entirely blindly (Wilf and Ewens,
2010).
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CHAPTER 5
A tight upper bound on mutual

information

Abstract. We derive a tight lower bound on equivocation (conditional entropy), or equiv-
alently a tight upper bound on mutual information between a signal variable and channel
outputs. The bound is in terms of the joint distribution of the signals and maximum a
posteriori decodes (most probable signals given channel output). As part of our derivation, we
describe the key properties of the distribution of signals, channel outputs and decodes, that
minimizes equivocation and maximizes mutual information. This work addresses a problem in
data analysis, where mutual information between signals and decodes is sometimes used to
lower bound the mutual information between signals and channel outputs. Our result provides
a corresponding upper bound.

5.1 Introduction
The relationship between conditional entropy (equivocation) or mutual information, and best
possible quality of decoding is an important concept in information theory. The best possible
quality of a decoding scheme, when quantified by the minimal probability of error ϵ, does not
uniquely determine the value of equivocation or mutual information, but various upper and
lower bounds have been proved, see Sec. 5.1.1.

Here we discuss a scenario when not only ϵ, but the complete joint probability distribution
p(x, x̂) of signals x and maximum a posteriori decodes x̂ is available. We refer to p(x, x̂) as
the confusion matrix. To our knowledge, such a scenario has not been extensively studied in
the literature, despite having practical relevance for estimation of mutual information, as we
point out in Sec. 5.1.2. In this article, we derive an upper bound on mutual information (and
a corresponding lower bound on equivocation) that is based on the confusion matrix and is
tighter than the known similar bound by Kovalevsky and others (Kovalevsky, 1968; Tebbe and
Dwyer, 1968; Feder and Merhav, 1994) based on probability of error alone. The inequality in
our bound can be proved quickly using the bound by Kovalevsky, as we show in Sec. 5.3.1.
However, we also include a self-contained derivation in Sec. 5.4, where we construct the
distribution of channel outputs that minimizes equivocation H(X|Y ) under our constraints.
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Figure 5.1: Plot of the functions ϕ∗(ϵ) and − log (1 − ϵ). The two functions intersect at ϵ = 0, 1/2,
2/3, . . . , (|X | − 1)/|X | (black dots), and in between ϕ∗(ϵ) is piecewise linear.

5.1.1 Equivocation, mutual information and the minimal probability
of error

We consider a signal variable (message) X that is communicated through a channel with output
Y and then decoded, obtaining a “decode” X̂ – forming a Markov chain X ↔ Y ↔ X̂. The
equivocation H(X|Y ) quantifies the uncertainty in X if the value of Y is given. Conversely,
the mutual information I(X;Y ) measures how much information about X is contained in Y .
It is not surprising that both H(X|Y ) and I(X;Y ) can be related to the minimal probability
of error while decoding, ϵ = Pr(X ̸= X̂).
Accurate decoding, i.e., low ϵ, requires sufficiently low equivocation H(X|Y ). This is quantified
by Fano’s inequality (Cover and Thomas, 2006). The mutual information between the true
signal and the channel output, I(X;Y ) = H(X) − H(X|Y ), needs to be sufficiently high,
and this is described by rate-distortion theory (Shannon, 1959).
Here we focus on the opposite bounds. If the minimal probability of error ϵ is specified, there
is also a minimal possible equivocation. The following lower bound was derived for discrete X
with finite support by Kovalevsky (Kovalevsky, 1968) and later Tebbe and Dwyer (Tebbe and
Dwyer, 1968) and Feder and Merhav (Feder and Merhav, 1994) (see (Golic, 1999)). It reads

H(X|Y ) ≥ ϕ∗(ϵ), (5.1)

where ϕ∗(ϵ) is a piecewise linear function that coincides with − log (1 − ϵ) at points ϵ = 0,
1/2, 2/3, . . . , (|X | − 1)/|X | (we use log = log2 throughout the paper, and X is the support
of X), and it can be written using the floor and ceiling functions,

ϕ∗(ϵ) = α(ϵ) log
⌊︃ 1

1 − ϵ

⌋︃
+ (1 − α(ϵ)) log

⌈︃ 1
1 − ϵ

⌉︃
, (5.2)

α(ϵ) =
⌊︃ 1

1 − ϵ

⌋︃ (︃
(1 − ϵ)

⌈︃ 1
1 − ϵ

⌉︃
− 1

)︃
. (5.3)

The function ϕ∗(ϵ) is plotted in Fig. 5.1.
The bound Eq. (5.1) has been generalized to countably infinite support of X by Ho and Verdú
(Ho and Verdú, 2010). Sason and Verdú (Sason and Verdú, 2018) proved a generalisation of
Eq. (5.1) for Arimoto-Rényi conditional entropy of arbitrary order.
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5.2. Statement of the bound

The bound Eq. (5.1) is tight when only the overall probability of error ϵ is available. However,
when more constraints on the the joint distribution of X and Y are given, tighter bounds
can be obtained. Prasad (Prasad, 2015) introduced two series of lower bounds on H(X|Y )
based on partial knowledge of the posterior distribution p(x|y). The first is in terms of the k
largest posterior probabilities p(x|y) for each y, that we could label p1(y), p2(y), . . . , pk(y) in
descending order (where 1 ≤ k ≤ |X |). The second series of bounds by Prasad is in terms of
the averages of p1(y), p2(y), . . . , pk(y) across all y.
Hu and Xing (Hu and Xing, 2016) focused on a binary signal X and derived a bound tighter
than Eq. (5.1) by taking into account the prior distribution of signals p(x). Hu and Xing also
discuss suboptimal (other than maximum a posteriori) decoding, which is otherwise rare in
the related literature.

5.1.2 Motivation: estimation of mutual information
Here we extend the bound Eq. (5.1) to account for the situation when the complete confusion
matrix – the joint distribution p(x, x̂) is known. We are motivated by the following scenario:
suppose that the goal is to estimate the mutual information I(X;Y ) from a finite set of
(x, y) samples. Moreover, assume that the space of possible channel outputs Y is large (much
larger than the space of signals, |Y| ≫ |X |), making a direct calculation of I(X;Y ) by
means of their joint distribution p(x, y) infeasible due to insufficient sampling. In such a case,
one approach (used e.g. in neuroscience (Borst and Theunissen, 1999)) is to construct a
decoder, map each y into a decode x̂ and estimate the confusion matrix p(x, x̂). Then the
post-decoding mutual information I(X; X̂) can be calculated and used as a lower bound on
I(X;Y ) due to the data processing inequality (Cover and Thomas, 2006). However, the gap
between I(X; X̂) and I(X;Y ) is not known (but see a discussion of this gap in (Samengo,
2002)), and an upper bound on I(X;Y ) based on p(x, x̂) is desirable. Our result is such a
bound, for the specific case of maximum a posteriori decoder.
While mutual information I(X;Y ) has this practical importance, we formulate our result as
an equivalent lower bound on equivocation H(X|Y ) = H(X) − I(X;Y ) first. This is simpler
to state and prove.

5.2 Statement of the bound
Given the joint distribution p(X, X̂) of signals X (discrete with finite support) and maximum
a posteriori decodes X̂ based on the channel output Y , the equivocation H(X|Y ) is bounded
from below by

H(X|Y ) ≥
∑︂
x̂

p(x̂)ϕ∗(ϵx̂), (5.4)

where ϵx̂ = p(X ̸= X̂|x̂) = 1 − p(X = x̂|X̂ = x̂) is the probability of error for the decode x̂
and the function ϕ∗ is defined in Eq. (5.2), Eq. (5.3).
Equivalently, we can bound the mutual information I(X;Y ) from above:

I(X;Y ) = H(X) −H(X|Y )
≤ H(X) −

∑︂
x̂

p(x̂)ϕ∗(ϵx̂). (5.5)

These bounds are tight, and we construct the distributions p(y|x̂) and p(x|y) that achieve
equality in Sec. 5.4.

81



5. A tight upper bound on mutual information

5.2.1 Comments on the bound
We note that since the function ϕ∗(ϵx̂) is convex, we can apply Jensen’s inequality to the right
hand side of Eq. (5.4) and recover the bound Eq. (5.1) by Kovalevsky (Kovalevsky, 1968),

H(X|Y ) ≥ ϕ∗
(︄∑︂

x̂

p(x̂) ϵx̂
)︄

= ϕ∗(ϵ). (5.6)

Both bounds coincide in case of binary signal |X | = 2, or any other case when the probability
of error is less than 1/2, ϵx̂ < 1/2 for all x̂. On this range, ϕ∗(ϵx̂) = 2ϵx̂ and the bound
simplifies to

H(X|Y ) ≥ 2
∑︂
x̂

p(x̂) ϵx̂ = 2ϵ, (5.7)

as has been noted in (Feder and Merhav, 1994) and before.

5.2.2 Example calculation
As an illustration, we apply our bound Eq. (5.4) to an example confusion matrix and compare
it to the bound Eq. (5.1) that is in terms of error probability ϵ only.

The confusion matrix considered is depicted in Fig. 5.2 (A) for the case |X | = 5. We vary the
size |X | of the space of signals X = {1, 2, . . . , |X |}, and the confusion matrix always takes
the form

p(x, x̂) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2|X | ; x = x̂ < |X |,

1
2|X | ; x < |X |, x̂ = |X |,
1

|X | ; x = x̂ = |X |,
0; x ̸= x̂, x̂ < |X |.

(5.8)

This distribution has the property that while most of the decodes have zero probability of
being incorrect (ϵx̂ = 0 for x̂ < |X |), the last one has a high probability of being incorrect,
ϵx̂ = (|X | − 1)/(|X | + 1) for x̂ = |X |. Our bound Eq. (5.4) takes this into account – which
makes it substantially tighter than the bound Eq. (5.1) based only on the overall probability
of error ϵ. This can be seen in Fig. 5.2 (B), where both lower bounds are plotted. We also
plot the post-decoding conditional entropy H(X|X̂) which serves as the upper bound on the
true value of H(X|Y ).

5.3 Proof of the bound
We offer two alternative proofs of the bound here. The first proves it as a simple consequence
of the bound Eq. (5.1) by Kovalevsky. It is short, but it leaves open the question of tightness.
We therefore focus on the second proof, which is self-contained, implies tightness and perhaps
offers additional insights, since it includes a derivation of the distribution of channel outputs
p(y|x̂), p(x|y) that minimizes H(X|Y ).

Throughout the proofs, the spaces of possible values of X and Y are written as X and Y
respectively. The decoding function is denoted g : Y → X and is based on the maximum a
posteriori rule, g(y) ∈ argmax

x
p(x|y). Finally, Yx̂ = {y ∈ Y | g(y) = x̂} is the set of all y

that decode into x̂.
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New lower bound
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Figure 5.2: Example application of the bound. (A) The joint distribution of signals and decodes
p(x, x̂) for which we compute the bound, defined in Eq. (5.8). Here for the case |X | = 5. (B)
Bounds on conditional entropy (equivocation) H(X|Y ) plotted for different sizes of signal space |X |.
H(X|Y ) is bounded from above by H(X|X̂) (blue points). Our novel lower bound (Eq. (5.4)) is
in orange and the bound by Kovalevsky (Eq. (5.1)) in green. Our bound Eq. (5.4) is the tightest
possible given the confusion matrix.

5.3.1 A quick proof of inequality following Kovalevsky’s bound
The left hand side of Eq. (5.4), the equivocation H(X|Y ) can be written as

H(X|Y ) =
∑︂
x̂

p(x̂)
∫︂

Yx̂

H(X|Y = y) dp(y|x̂), (5.9)

where the term ∫︁
Yx̂
H(X|Y = y) dp(y|x̂) is the entropy of X conditional on Y , but with the

values of Y only limited to Yx̂. Since it has the form of conditional entropy, we can use the
Kovalevsky bound Eq. (5.1) and obtain our result Eq. (5.4).

This establishes the inequality in our bound, but it does not tell us if equality can be achieved
– and if it can, for what distribution of Y does it happen. We address this in the following
section.

5.4 Proof by minimization of equivocation
For simplicity, we formulate the derivation for discrete Y . However, as we comment in Sec.
5.5, the derivation applies to continuous Y with only minor modifications. Two small steps of
the proof are left out for brevity, but the reader will be referred to the preprint (Hledík et al.,
2019) which includes these.

For clarity, let us state the minimization problem we are solving. We minimize

H(X|Y ) =
∑︂
x̂

p(x̂)
∑︂
y∈Yx̂

p(y|x̂)H(X|Y = y) (5.10)
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with respect to p(y|x̂) and p(x|y), with the constraints given by the confusion matrix and
maximum a posteriori decoding:

∀x, x̂ :
∑︂
y

p(x|y)p(y|x̂) = p(x|x̂), (5.11)

∀x̂, ∀y ∈ Yx̂ : x̂ ∈ argmax
x

p(x|y). (5.12)

Note in Eq. (5.10) that the minimization can be done separately for each x̂, since the
corresponding Yx̂ are disjoint. Hence we have |X | independent minimization problems with
the objective function ∑︂

Yx̂

p(y|x̂)H(X|Y = y). (5.13)

Note also that we do not have any constraint on |Y|, the number of elements of Y. We
actually exploit this flexibility in the proof. However, it turns out (see Propositions 1 and 2)
that when the minimum is achieved, there can be only a limited number of y values with
different distribution p(x|y).

Our approach is based on update rules for p(y|x̂) and p(x|y) that decrease the objective
function Eq. (5.13) while respecting the constraints Eq. (5.11), Eq. (5.12). In fact, the
updates also change |Y |. The minimum of H(X|Y ) is achieved when the update rules can no
longer be used to decrease it – and such situations can be characterized and the corresponding
H(X|Y ) can be calculated.

It is instructive to have in mind the following visualization of our minimization problem, which
we use to illustrate the update rules in Fig. 5.3. The distribution p(x, y|x̂) for some x̂,
with y restricted to y ∈ Yx̂ can be represented as a matrix, with a row for each x and a
column for each y. Normalized columns correspond to p(x|y) and the sum of each column
is p(y|x̂). The constraint Eq. (5.11) means that each row has a fixed sum, p(x|x̂), and the
constraint Eq. (5.12) means that one row (e.g. the first) contains the dominant elements of
all columns. The objective function Eq. (5.13) is a weighted sum of entropies of all columns.
Our minimization will consist of adding and removing columns, and moving probability mass
within rows.

In the following, a probability distribution is called flat if all non-zero elements are equal, i.e.
there are n non-zero elements and all have probabilities 1/n. The number n is called its
length.

Proposition 1: equivocation is minimized by flat p(x|y)
The minimum of the objective function Eq. (5.13), given constraints Eq. (5.11), Eq. (5.12)
can only be achieved when the distributions p(x|y) are flat for all y.

Proof. Suppose that there is a channel output y′ with a non-flat distribution p(x|y′). Then,
the following update rule, illustrated in Fig. 5.3 (A), will decrease the objective function
Eq. (5.13).

We label the elements of X as x1, x2, . . . , x|X | such that

p(x1|y′) ≥ p(x2|y′) ≥ · · · ≥ p(x|X ||y′) ≥ 0, (5.14)
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where at least two of the inequalities are sharp (otherwise p(x|y′) would be flat). Note that
x1 must be the decode of y′, i.e. g(y′) = x̂ = x1. The proposed update is to replace y′ by
y′

1, y
′
2, . . . , y

′
|X | with flat distributions p(x|y′

i),

p(xj|y′
i) =

⎧⎨⎩1/i; j ≤ i

0; j > i,
(5.15)

p(y′
i|x̂) =

⎧⎨⎩ip(y′|x̂) (p(xi|y′) − p(xi+1|y′)) ; i < |X |
ip(y′|x̂) p(xi|y′); i = |X |.

(5.16)

Intuitively, this replaces y′ by multiple elements y′
i with flat distributions p(x|y′

i) covering
the first 1, 2, . . . , |X | elements of the ordered x1, x2, . . . , x|X |. It can be confirmed that this
replacement respects the constraints Eq. (5.11). All y′

i still decode into x̂ = x1, and the
probability associated with y′ is merely divided among the elements y′

i,∑︂
i

p(y′
i|x̂) = p(y′|x̂), (5.17)∑︂

i

p(xj|y′
i)p(y′

i|x̂) = p(xj|y′)p(y′|x̂). (5.18)

See Fig. 5.3 for an example.

This replacement decreases the objective function Eq. (5.13). More detailed proof of this can
be found in the preprint (Hledík et al., 2019), section IV.

The only case when the proposed replacement cannot be used to decrease the objective
function is when p(x|y) is flat for all y. Therefore flat p(x|y) must be a characteristic of any
solution to our minimization problem.

Note that there are only 2|X |−1 different possible flat distributions p(x|y) with nonzero
p(X = x̂|y), which means that we need at most 2|X |−1 elements in Yx̂ to achieve the minimum
equivocation. However, as the following proposition will show, there are further restrictions on
p(x|y) at the minimum.

Reflecting that only flat p(x|y) are of further interest in the minimization, we say that the
channel output y has length l if p(x|y) has length l.

Proposition 2: minimization restricts lengths of p(x|y)
Building on Proposition 1, we further claim that if equivocation is minimized, no two channel
outputs y1, y2 ∈ Yx̂ can have lengths differing by more than 1.

Proof. As before, we introduce an update rule. Recalling the visualization with a column
for each y, this update rule will move a nonzero element from a longer column to a shorter
column, as shown in Fig. 5.3 (B).

Take two elements y1, y2 ∈ Yx̂ that have flat distributions p(x|y1) and p(x|y2) with lengths a
and b respectively where a > b. Assume that a and b differ by more than one, a− b > 1. This
means that we can choose an element x′ ∈ X such that p(x′|y1) = 1/a and p(x′|y2) = 0.
Assume momentarily that p(y1|x̂)/a = p(y2|x̂)/b (we will relax this assumption later). Then
we can replace y1, y2 by y′

1 and y′
2, such that
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Figure 5.3: Illustrations of the update rules used to prove (A) Proposition 1 and (B) Proposition 2.
Displayed is the joint distribution p(x, y|x̂). (A) A channel output y′ with a non-flat distribution
p(x|y′) is replaced by y′

1, y
′
2, . . . , y

′
4 with flat distributions p(x|y′

i), such that y′
1, y

′
2, . . . , y

′
4 still

decode into x1 and the confusion matrix is not affected. This replacement decreases H(X|Y ), our
objective function. The elements of X are labeled in decreasing order of p(x, y|x̂). (B) Two channel
outputs, y1 and y2, have flat distributions p(x|y1,2) with 3 and 1 nonzero elements respectively. We
replace y1 by y1 and y1, and then transfer probability p(x2, y1|x̂) to p(x2, y2|x̂) (dotted red arrow).
The distributions p(x|y1), p(x|y1) and p(x|y2) remain flat, and the objective function H(X|Y ) is
decreased.

• p(x|y′
1) is flat with length a− 1. It is nonzero for the same x as p(x|y1), except for x′

where it is zero.

• p(x|y′
2) is flat with length b+ 1. It is nonzero for the same x as p(x|y2), and also for x′.

Given that p(y1|x̂)/a = p(y2|x̂)/b, we can also choose the probabilities p(y′
1|x̂) and p(y′

2|x̂)
such that y′

1, y′
2 contribute the same amount to p(x|x̂) = ∑︁

y p(x|y)p(y|x̂) as y1 and y2 did,
ensuring that constraints Eq. (5.11) are respected:

p(y′
1|x̂) = a− 1

a
p(y1|x̂), (5.19)

p(y′
2|x̂) = b+ 1

b
p(y2|x̂). (5.20)

This update rule reduces the objective function Eq. (5.13), we show this in the extended
version of the paper (Hledík et al., 2019) (section IV).
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This update rule is applicable to any y1, y2 ∈ Yx̂ with lengths a and b such that a − b > 1
respectively. We have, however, further required that p(y1|x̂)/a = p(y2|x̂)/b. This requirement
can be avoided. If p(y1|x̂)/a > p(y2|x̂)/b, we first split y1 into y1 and y1 with

p(y1|x̂) = a p(y2|x̂)/b, (5.21)
p(y1|x̂) = p(y1|x̂) − a p(y2|x̂)/b, (5.22)
p(x|y1) = p(x|y1) = p(x|y1), (5.23)

such that the above mentioned update rule can be applied to y1 and y2 while y1 is left
unchanged, see Fig. 5.3 (B). If p(y1|x̂)/a < p(y2|x̂)/b, we can proceed analogously by
splitting y2.
We can decrease the objective function by repeatedly applying this generalized update rule.
Therefore, the minimum can only be achieved when the lengths of p(x|y) for y ∈ Yx̂ vary by
no more than 1.

Note that by repeated application of this update rule, in a finite number of steps we reach
a state with only up to two lengths (per x̂) that differ by at most 1. As shown in the next
section, such a state implies a specific value of H(X|Y ). Together with the update rule in the
proof of Proposition 1, this gives us an algorithm to find the distributions p(y|x̂) and p(x|y)
that achieves the minimum H(X|Y ). The algorithm can start from an arbitrary initialization
of p(y|x̂) and p(x|y) that follows the constraints Eq. (5.11), Eq. (5.12) and finishes in a finite
number of steps.
It remains to be determined what are the (at most two) allowed lengths of y ∈ Yx̂ and how
the elements y with these lengths contribute to the equivocation H(X|Y ).

Admissible lengths of p(x|y)
Let us call the two admissible lengths lx̂ and lx̂ + 1. Given x̂, the total probability of all
y ∈ Yx̂ with length lx̂ is αx̂, and those of length lx̂ + 1 have probability 1 − αx̂. Then from
the constraint Eq. (5.11), we can write the probability that x̂ is the correct decode

1 − ϵx̂ = αx̂
lx̂

+ 1 − αx̂
lx̂ + 1 , (5.24)

from which we can deduce that 1
lx̂+1 ≤ 1 − ϵx̂ ≤ 1

lx̂
, and that the two admissible lengths must

be
lx̂ =

⌊︃ 1
1 − ϵx̂

⌋︃
and lx̂ + 1 =

⌈︃ 1
1 − ϵx̂

⌉︃
, (5.25)

unless 1
1−ϵx̂

is an integer – in that case the floor and ceiling coincide into a single admissible
length.
Now, from equations Eq. (5.24) and Eq. (5.25) we can determine that

αx̂ =
⌊︃ 1

1 − ϵx̂

⌋︃ (︃
(1 − ϵx̂)

⌈︃ 1
1 − ϵx̂

⌉︃
− 1

)︃
= α(ϵx̂) (5.26)

is the total probability (given x̂) of y ∈ Yx̂ with length ⌊ 1
1−ϵx̂

⌋.
Finally, the minimal value of equivocation is simply

H(X|Y ) ≥
∑︂
x̂

p(x̂) (αx̂ log lx̂ + (1 − αx̂) log (lx̂ + 1)) , (5.27)

which together with equations Eq. (5.25) and Eq. (5.26) constitutes our main bound, as stated
in Eq. (5.4).
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5.5 Discussion
We have introduced a tight lower bound on equivocation in terms of the maximum a posteriori
confusion matrix, and proved it in two ways. The first is a proof of the inequality, starting
from a similar bound by Kovalevsky (Kovalevsky, 1968), but it does not prove that the bound
is tight. Therefore, we developed a second proof, in which we construct the distribution of
channel outputs that minimizes the equivocation and achieves equality in our bound.
Central to the latter approach are two update rules for the distribution of the channel outputs.
These update rules exploit the fact that equivocation can be, under our constraints, minimized
by (1) making the posterior distributions p(x|y) flat and (2) making sure that these flat
distributions contain similar numbers of nonzero elements.
We formulated the proof for discrete random variables X and Y , but it can be extended. If
X is discrete but Y continuous, application of a modified version of the first update rule
would result in 2|X | regions in the Yx̂ space corresponding to each of the 2|X | possible flat
distributions p(x|y′). For example, the region associated with a flat distribution of length |X |,
that is p(x|y′) = 1/|X |, would have a total probability ∫︁Yx̂

|X | minx p(x|y)dp(y|x̂). These
subsets of Y where p(x|y) is constant can then be treated like discrete values, and the rest of
our derivation applies.
Bounds on equivocation (or mutual information) in terms of the confusion matrix are, to our
knowledge, not common – despite their relevance for estimation of mutual information. We
hope that our result can be useful for these purposes, and that it sheds some light on the gap
between mutual information before and after decoding. However, its applicability is restricted
by the assumption of maximum a posteriori decoding, and relaxing this assumption remains
an interesting challenge.
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APPENDIX A
Methods and supplementary results:
optimality and statistical analysis of

biological systems

A.1 Methods
A.1.1 Model neuron and mutual information utility function
A model neuron elicits a spike at time t (rt = 1) with a probability:

P (rt = 1|xt) = 1
1 + exp [−k(xt − x0)]

; (A.1)

the stimuli xt were distributed according to a Gaussian Mixture Model,

P (xt) =
3∑︂
i=1

wiN (µi, σ2
i ), (A.2)

where wi = 1/3 are weights of the mixture components, µ1,2,3 = −2, 0, 2 are the means, and
σi = 0.2 are standard deviations.
To estimate mutual information between class labels and neural responses, we generated
5 · 104 stimulus samples xt from the stimulus distribution. Each sample was associated with
a class label ct ∈ {1, 2, 3}, corresponding to a mixture component. We created a discrete
grid of logistic-nonlinearity parameters by uniformly discretizing ranges of slope k ∈ [−10, 10]
and position x0 ∈ [−3, 3] into 128 values each. For each pair of parameters on the grid, we
simulated responses of the model neuron to the stimulus dataset and estimated the mutual
information directly from a joint histogram of responses rt and class labels ct.

A.1.2 Likelihood ratio test of optimality
The proposed test uses the likelihood ratio statistic,

λ = 2 log maxβ>0 P (D|β)
P (D|β = 0) . (A.3)
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The null hypothesis is rejected for high values of λ. The marginal likelihood of β, L̃(β) =
P (D|β), depends on the overlap of parameter likelihood and the optimization prior, P (D|β) =∫︁

Θ P (D|θ)P (θ|β) dθ, where Θ is the region of biophysically feasible parameter combinations.
The null distribution of λ is obtained by sampling in three steps: (i) sample a parameter
combination θ from a uniform distribution on θ, i.e. P (θ|β = 0); (ii) sample a data set D
according to the likelihood P (D|θ); (iii) compute the test statistic λ according to Eq. (A.3).
This computationally expensive process simplifies in two situations described below.
Data-rich-regime simplification. In the data-rich regime, when the parameter likelihood
P (D|θ) is concentrated at a sharp peak positioned at θ̂ML, likelihood ratio depends only on
the value of utility at θ̂ML:

λ = 2 log maxβ>0
∫︁

Θ P (D|θ)P (θ|β) dθ∫︁
Θ P (D|θ)P (θ|β = 0) dθ (A.4)

= 2 log maxβ>0 P (θ̂ML|β)
P (θ̂ML|β = 0)

(A.5)

= 2 log
⎛⎝Z(0) max

β>0

eβU(θ̂ML)

Z(β)

⎞⎠ , (A.6)

which is a non-decreasing function of the utility U(θ̂ML). Thus, this test is equivalent to a
test that uses the utility estimate itself, U(θ̂ML), as the test statistic, making it possible to
avoid the costly integration over Θ. The null distribution can then be obtained by computing
U(θ) at uniformly sampled θ.
Multiple system instances simplification. If multiple instances of the system are available
and we can assume that their parameters θ1, θ2, . . . , θN are i.i.d. samples from the same
distribution P (θ|β), then the datasets D1,D2, . . . ,DN are also i.i.d., P (D1,D2, . . . ,DN |β) =∏︁N
n=1 P (Dn|β). We test the hypotheses β = 0 vs. β > 0 with the likelihood ratio statistic

λ = 2 log maxβ>0
∏︁N
n=1 P (Dn|β)∏︁N

n=1 P (Dn|β = 0)
. (A.7)

By Wilks’ theorem, for large N the null distribution of λ approaches the χ2
1 distribution (with

a point mass of weight 1/2 at λ = 0, because we only consider β ≥ 0). This removes the
need for sampling in order to obtain the null distribution.

A.1.3 Hierarchical inference of population optimality
Assuming that experimental datasets D1,D2, . . . ,DN are i.i.d., the posterior over population
optimality parameter β takes the form:

P (β|D1, . . . ,DN) ∝ P (β)
N∏︂
n=1

∫︂
θn

P (Dn|θn)P (θn|β)dθn, (A.8)

where θ = (kn, x0,n) is a vector of neural parameters (slope and position), and P (β) is a prior
over β. We approximated integrals numerically via the method of squares. Neural parameter
values were sampled from ground-truth distributions via rejection sampling.

A.1.4 Inference of receptive fields with optimality priors
We randomly sampled 16 × 16 pixel image patches from the van Hateren natural image
database Van Hateren and van der Schaaf (1998) and standardized them to zero mean and
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unit standard deviation. Neural responses were simulated using a Linear-Nonlinear Poisson
(LNP) model:

P (rt|xt, ϕ, k, x0) = λrt
t e

−λt

rt!
, (A.9)

where λt is the rate parameter equal to:

λt = L

1 + exp
[︂

− ϕTxt
]︂ , (A.10)

where L = 20 was the maximal firing rate.

Given a linear filter ϕ, we quantified sparsity of its responses to natural images using the
following function:

USC(ϕ) = −
⟨︃

|ϕTxt|
⟩︃
. (A.11)

Filter sparsity was averaged across the natural image dataset consisting of 5 · 104 standardized
image patches randomly drawn from the van Hateren image database. The mean and standard
deviation of filters ϕ was set to be 0 and 1 respectively. We optimized filters which either
maximize or minimize the sparse utility measure via gradient descent. Different random
initializations led to different filter shapes.

The locality utility of neural filters was defined as follows:

ULO(ϕ) = −
∑︂
i,j

((i− imax)2 + (j − jmax)2)ϕ2
i,j, (A.12)

where imax, jmax are positions of the RF pixel with the largest absolute value. This definition
of locality was introduced in Doi et al. (2012).

Sparsity and locality utilities were combined into a single utility:

U(ϕ; ξ) = USC(ϕ) + ξULO(ϕ). (A.13)

To estimate receptive fields (neural filters), we first simulated the responses of the model
population to 2000 natural image patches. We estimated linear receptive fields from simulated
data by computing the spike-triggered average (STA), a widely applied estimator of neural
receptive fields Sharpee (2013). In the STA model, response of neuron n at time t is assumed
to follow the normal distribution Park and Pillow (2017):

P (rt,n|st,n, ϕn) = N (ϕTnst;σ2) (A.14)

where ϕn is the linear receptive field of the n-th neuron, and σ2 is the noise variance.

To infer the receptive fields from simulated neural responses using our framework, we assumed
the following optimization prior over receptive fields derived from the sparsity utility in
Eq (A.11):

P (ϕn|β) ∝ exp
[︃
β(USC(z(ϕn)))

]︃
, (A.15)
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where z(ϕn) denotes normalization of the receptive field to zero mean and unit variance.
The sparse utility was evaluated over 104 randomly sampled image patches. The resulting
log-posterior took the following form:

E(ϕn|D,S, β) ∝ − 1
σ2

T∑︂
t=1

(︃
ϕTnst − rt,n

)︃2
+ βUSC(z(ϕn)). (A.16)

MAP inference was performed via gradient ascent on the log-posterior. Receptive fields were
inferred with different priors corresponding to following values of the β parameter: 0, 1, 10, 20,
100. Receptive fields were estimated after reducing the dimensionality of stimuli with Principal
Component Analysis to 64 dimensions. Estimation via gradient ascent on the log-posterior
was performed in the PCA domain. PCA preprocessing is equivalent to low-pass filtering the
stimuli.
To estimate value of the locality constraint ξ as well as the prior strength β via cross-validation,
we split the data into the training and testing datasets comprising of 80% and 20% of data
respectively. We estimated receptive fields for a range of β and ξ values ([0, 0.01, 0.1, 1, 10]
and [0, 0.05, 0.2, 1] respectively). For each MAP RF estimate, we predicted neural responses
r̂t using stimuli from the test dataset. We then computed the average error ⟨(r̂t − rt)2⟩ using
neural responses in the test dataset. Combination of hyperparameters ξ, β which resulted in
the smallest error value was taken to be the estimate of the correct one.

A.1.5 Analysis of V1 receptive fields
Receptive fields of 250 neurons in the Macaque V1 were published and analyzed in Ringach
(2002). All receptive fields were downsampled to 32 × 32 pixels size and normalized to have
zero mean and unit variance.
To evaluate sparseness of V1 receptive fields, we relied on the following sparse utility:

USC(ϕ) =
⟨︃

log(1 + (z(ϕT )xt)2),
⟩︃
t

(A.17)

where xt are individual image patches and z(ϕn) denotes normalization of the receptive field to
zero mean and unit variance. The sparse utility was evaluated over 5 × 104 randomly sampled
image patches. This form of the sparse utility was proposed in Olshausen and Field (1997),
and together with the measure specified in Eq (A.11) it belongs to a broad class of equivalent
sparsity measures defined by convex functions Hyvärinen et al. (2009).
To test individual RFs for optimality, we generated the null distribution of utility values by
bootstrapping 106 random filters as follows: (i) draw a random integer K between 1 and 128;
(ii) superimpose K randomly selected principal components of natural image patches; each
component is multiplied by a random coefficient v ∼ N (0, 1); (iii) generate a 2D Gaussian
spatial mask centered at a random position on the image patch; lengths of horizontal and
vertical axes of the Gaussian ellipse were drawn independently; (iv) multiply the random filter
and the Gaussian mask. This procedure ensures that a range of filters of different sparsity
and slowness will be randomly generated. Filters were standardized to zero mean and unit
standard deviation.
To establish a measure of optimality at a population level, we needed to simplify the integration
over all receptive field parameters, which was intractable due to their high-dimensionality.
Computation of posteriors over β in Eq (A.8) was therefore approximated as follows:
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P (β|D1, . . . ,DN) ≈ P (β)
N∏︂
n=1

1
Z(β)P (θ̂n|β). (A.18)

where θ̂ are receptive fields estimates computed in Ringach (2002).

We approximated P (θ̂n|β) via rejection sampling, noting that P (θ̂n|β) = P (U(θ̂n)|β), i.e.,
the probability of a high dimensional receptive field is determined solely by a one-dimensional
utility function.

For each β we randomly sampled 106 filters from the proposal distribution, as described above,
and retained only those consistent with P (USC(θ)|β) via rejection sampling. Obtained utility
values were fitted with a Gaussian distribution, used to evaluate posteriors over β, with point
estimates being posterior maxima; the prior over β was uniform over the range displayed in
the figures. For sparse utility, we discretized β values into 20 values equally spaced on the
[−5, 5] interval. Filters accepted for each β value were used to compute the average spatial
autocorrelation.

For comparison we used optimally sparse receptive fields learned from natural image patches
preprocessed with PCA. We note that this preprocessing step might not have a direct biological
counterpart. To compare optimal solutions and neural data, we therefore evaluated sparsity of
model and real V1 RFs in the domain of natural images without PCA preprocessing.

To cluster receptive fields according to optimality, we defined a mixture model:

P (θn|{w1, . . . , wK}, {β1, . . . , βK}) =
K∑︂
k=1

wkP (USC(θn)|βk) (A.19)

where wk is the weight of the kth mixture component and βk is the optimality of that
component. To approximate utility-defined distributions, we used the Gaussian approximation
described above i.e.: P (θn|β) = P (USC(θn)|β) = N (USC(θn);µβ, σ2

β)

Parameters of the model were learned via the standard expectation-maximization algorithm
(EM).

A.1.6 Analysis of retinal receptive fields
Temporal receptive fields of retinal ganglion cells were published and analyzed in Deny et al.
(2017). We analyzed RFs of 117 neurons selected by temporal smoothness. Each RF was
normalized to unit norm and fitted with a parameteric biphasic filter model described in Sun
et al. (2017).

We considered two different utility functions. First one was a generalization of the predictive
coding objective introduced in Srinivasan et al. (1982). The predictive coding objective
minimizes the squared difference between the stimulus value st at time t and the linear
prediction of that stimulus value computed from N past values: E(ϕ) =

[︃∑︁N
τ=0 ϕτst−τ

]︃2
,

where ϕτ are the weights of the linear filter. In the classical approach it has been assumed that
the linear weight of the current stimulus st is equal to 1 i.e. ϕ0 = 1. We note that such form
makes it difficult to evaluate predictive coding filters adapted to stimuli of unknown temporal
scale. In particular, we optimize and evaluate our filters on natural movies whose frame rate
might be mismatched with the timescale of the retina. We therefore relax the assumption that
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the predictive coding filter reduces the dynamic range by subtracting only the current stimulus
from its prediction, and assume that what is being predicted is itself a linear combination of
stimulus values (e.g., integrating stimulus value over some recent period of time). In practice
this means that we allow all values of the filter including ϕ0 to vary freely. To avoid trivial
solutions, where the residue E(ϕ) is minimized by setting all weights to 0, we impose a unit
norm constraint on the filter ϕ. The utility function of a filter ϕ is then equal to:

UPC(ϕ) = −
⟨︃[︂ N∑︂

τ=0
z(ϕ)τsn,t−τ

]︂2⟩︃
n

(A.20)

where z denotes the unit norm operator, and n indexes stimulus epochs sn.
We evaluated the utility UPC using 50000, 21-sample long excerpts of single-pixel luminance
extracted from natural movies of scenes in the African savanna van Hateren and Ruderman
(1998).
We used these natural stimulus data to learn the optimal predictive-coding filter, as described
in Srinivasan et al. (1982) via gradient descent.
The second considered utility was measuring the amount of information between the stimulus
and the instantaneous filter output in a low-noise regime. Under the Gaussian approximation
of stimulus and output distribution this utility takes the form:

UII(ϕ) = −1
2 log(1 − ρ2), (A.21)

where ρ is the Pearson correlation coefficient between the stimulus st and the filter output
rt. This utility is high when the neural responses track the stimulus with high fidelity. Note
that this is not the general solution to an efficient coding (infomax) problem, where the full
response trajectory, not the instantaneous response, should encode high information about
the stimulus, which leads to decorrelation / whitening in the low-noise regime. We evaluated
UII using a trajectory of 20000 samples of pixel intensity values extracted from the natural
movie dataset.
To compute utility-defined distributions of the filter mode amplitude parameters c1, c2, we
first discretized values of these parameters into 100 values uniformly spaced on the [0.01, 13]
interval, where 13 was the maximum amplitude parameter value among fits to normalized
retinal RFs. For each filter we evaluated utility for each pair of discretized amplitude parameter
values and a fixed value of the scale parameter a fitted to that filter. We used such utility
surfaces to estimate the normalization constant of the utility-defined distribution parametrized
by β and the scale parameter a.
We discretized the parameter β into 100 values uniformly spaced on the [−10, 64] interval.
We estimated the posterior over β by numerically integrating over filter parameters c1, c2, a.
We assumed a uniform prior over β.

A.1.7 Analysis of connectivity in C. elegans
For our analysis we used the C. elegans neural wiring dataset available on Worm Atlas
(www.wormatlas.org). This dataset has been published and analyzed before in Chen et al.
(2006) as well as Pérez-Escudero et al. (2009); Pérez-Escudero and de Polavieja (2007) – for
details about the dataset please refer to this prior work.

108



For the analyses depicted in Fig. 8 we selected two sets of neurons. The first set consisted of
126 neurons connected to at least one muscle, and the second set consisted of 86 neurons
connected to at least one sensor. "i-th" neuron was therefore characterized by its position, xi,
number of landmark cells (muscles or sensors) it was connected to, Ni, vectors of positions of
the landmark cells, mi (muscles), and si (sensors), and vectors of the number of synapses
in each neuron-to-landmark connection, ni. For each neuron the utility of its position was
defined as:

UWC(xi;Ni, li, ni) = −
Ni∑︂
j=1

ni,j|xi − li,j|ξ. (A.22)

where li ∈ {mi, si}, denotes the vector of landmark cell positions. We evaluated the utility
function on the [0, 1] interval representing the linear extent of the worm body axis, discretized
into 100 linearly spaced values. To compute the posterior distribution over parameters β and
ξ we discretized them into 64 linearly spaced values. For neuron-muscle connections, β was
defined over a [1.5, 4] interval and ξ over a [1.3, 1.9] interval. For neuron-sensor connections,
β was defined over a [10, 25] interval and ξ over a [1.5, 2.2] interval. We assumed a uniform
prior over parameters β, ξ.

A.1.8 Quantification and statistical analysis
Statistical test performed in Fig. 5D was a two-tailed t-test. Stars denote p-values lower than
0.001. Error bars in the figure denote standard errors of the mean.

A.2 Data disambiguates degenerate theoretical
predictions

Related to Question 3: Data resolves ambiguous theoretical predictions and Fig. 4.

Ambiguity of the first kind Predictions of an optimization theory can be degenerate or
ambiguous. Here we explore the first kind of ambiguity, where the utility function has multiple
(possibly degenerate) maxima.
In this situation, biological context typically forces us to choose between two interpretations.
On the one hand, we may observe multiple instances of the biological system and each instance
could be an independent realization sampled from any of the maxima: statistical analyses
of optimality thus need to consider and integrate over the whole parameter space, as in the
approaches described above. On the other hand, we may observe a single (e.g., evolutionary)
realization of the biological system which we hypothesize corresponds to a single optimum
of the utility function. Our task is then first to identify that relevant maximum; if it exists,
subsequent analyses can follow up on how well data agrees with that prediction and how
surprising such an agreement might be in face of multiple alternative maxima.
In the Fig. 2 example of the main paper, multiple values of slope and offset yield optimal
or close to optimal neural performance, resulting in ambiguous theoretical predictions. As a
simple illustration of how data can break such ambiguities, we consider three example neurons
with varying degree of optimality (Fig. A.1A) and observe how their posteriors look like after
seeing as few as T = 12 stimulus-response pairs from each neuron (Fig. A.1B). All three
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simulated datasets reduced the uncertainty (entropy) about the neuron’s parameters by a
similar amount, as reflected by the entropy and utility of the posterior versus the entropy and
utility of the prior (Fig. A.1C). Despite similar reductions in entropy, the resulting inferences
were very different in terms of agreement with the theory. Only the posterior of the first
neuron concentrated in a high-utility region of the parameter domain, thus clearly identifying
one of the four peaks of the utility function as consistent with the operating regime of the
simulated neuron. The two remaining posteriors are concentrated in regions of the parameter
space which weakly overlap with the prior, or where prior probability is close to 0. To capture
these qualitative differences mathematically, we define and compute the mode entropy, where
each mode corresponds to the attraction basin of a local utility maximum. Optimality theories
with degenerate maxima will allocate the prior probability relatively evenly among the modes,
resulting in high mode entropy (here, 2 bits, i.e., 4 possible local maxima). A few observations
of neuron 1 consistent with an optimal solution drastically collapsed this mode uncertainty and
identified the single relevant utility maximum; this decrease was smaller for slightly suboptimal
neuron 2 and vanished for neuron 3 (Fig. A.1D).

This is a very non-standard application of the Bayesian framework at small sample sizes,
T : here, the structure of the prior (i.e., the normative theory) dominates the posterior, in
what we refer to as the “data-regularized prediction” regime. In this regime, our goal is
to derive ab initio theoretical predictions, not fit parameters to reproduce the data, and
the data is only used to disambiguate the prediction – to identify which utility maximum,
if any, is realized in nature. If we track the evolution of the average utility, full posterior
entropy, and the mode entropy with the number of data points T , we clearly see the transition
from such “data-regularized prediction” regime dominated by the prior normative theory, to
the “theory-regularized inference” regime in the large sample limit (Fig. A.1E). In the first
regime, data removes the theoretical ambiguity and collapses the mode entropy with T < 10
samples; in the second regime, the actual parameter values (k, x0) are inferred with increasing
precision, as evidenced by posterior entropy that continues to decrease linearly in the log sample
size (corresponding to the standard asymptotic inverse scaling of the variance in parameter
estimates with the sample size).

In the “data-regularized prediction” regime, β also serves a novel role: when the normative
theory has multiple optima with a broader spectrum of utility values, β determines which
of the peaks are considered as nearly degenerate candidate predictions. A peak with utility
U ′ < Umax will be suppressed in the prior by ∼ exp(−β(Umax −U ′)), and, for sufficiently high
β, the alternative theoretical prediction corresponding to U ′ will be disregarded irrespective of
the data.

Here we showed that the ambiguities of normative theories resulting from degenerate utility
maxima can often be resolved in our Bayesian framework in the “data-regularized prediction”
regime by a very small amount of data. This power may appear trivial at first glance, because
the parameter space of our example is two dimensional and so priors and posteriors can be
evaluated explicitly and plotted across their whole domain. In more realistic cases involving
tens of parameters, however, finding all (nearly) degenerate maxima of the utility function and
deciding whether data is “close to” any one of them becomes a daunting task due to the curse
of dimensionality. In the past, this has severely limited the application of optimality principles
to complex systems with more than a few parameters Tkačik et al. (2010, 2008); Młynarski
(2015), except in those rare cases where strict guarantees exist De Martino et al. (2018). In
contrast, even in spaces of high dimensionality, posteriors resulting from our framework can
be sampled with Monte-Carlo methods or optimized by well-developed methodology Murphy
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(2012), with search concentrated around the unique peak of the normative theory that is
simultaneously permitted by the chosen value of β and is consistent with the data, if such
a peak exists. Intuitively, theory “proposes” possible optimal solutions ab initio while data
“disposes” with those degenerate solutions for which there is no likelihood support.

Ambiguity of the second and third kind Here we further draw the distinction between
ambiguities of the second and third kind.
In the second kind of ambiguity, parameters θ can be subdivided into optimized parameters
θopt (e.g. the offset of the neural nonlinearity x0 in our toy example) and constraints
θcon (e.g. the slope k, which determines the response reliability of the model neuron)
i.e. θ = {θopt, θcon}. While the utility of the system depends on both sets of parameters,
only the optimized parameters θopt depend on the optimality parameter β (Fig. A.2A) (i.e.
P (θopt|β, θcon) ∝ exp

[︃
βU(θ)

]︃
.

In the case of ambiguity of the third kind, the utility function is parametrized by an additional
parameter ξ, which is not set by the theory. The parameter probability distribution is therefore
given by: P (θ|β, ξ) ∝

[︃
βU(θ; ξ)

]︃
. Resolving the ambiguity corresponds to inferring the value

of that parameter directly from the data D. Thus here, in contrast to the ambiguity of
the second kind, all parameters depend on the optimality parameter β and the additional
parameter ξ (Fig. A.2B).

A.3 Sparse and slow utility in V1 receptive fields
Related to Application 1: Receptive fields in the visual cortex and Fig. 6.

To complement the analysis of V1 neurons in terms of the sparse utility USC, here we present
additional analysis in terms of the slowness utility. Slowness utility ULC assumes that neurons
extract invariant properties of sensory data Wiskott and Sejnowski (2002). Given a linear
filter ϕ, we quantified slowness of its responses to a set of natural image sequences using the
following function:

ULC(ϕ) = −
⟨︃ 1
T − 1

T∑︂
t=2

(ϕTxt,n − ϕTxt−1,n)2
⟩︃
n
. (A.23)

where n is an index over image sequences, and t is a time index over images within a sequence.
Filter slowness was averaged across a 5 · 104 artificially generated natural image sequences of
length T = 2. Each sequence was generated by moving an image patch by a random distance
nx ∈ [−8, 8] pixels in a horizontal direction and ny ∈ [−8, 8] pixels in vertical direction, and
rotating it by a random angle α ∈ [−90◦, 90◦]. The mean and standard deviation of filters ϕ
and image patches xt,n was set to be 0 and 1 respectively.
Optimally slow RFs minimize temporal variability of neural activity in natural sensory envirom-
nents Berkes and Wiskott (2005). On the level of individual neurons, slowness and sparseness
optimality criteria yield very different predictions. In contrast to optimally sparse RFs which
are localized in space and frequency (Fig. A.3B, left column), RFs optimized for slowness are
broad and non-local (Fig. A.3B, right column).
In the right column of Fig. A.3B-F, we present analysis of the optimality of V1 RFs in terms of
the slow utility ULC. This analysis is complementary to the analysis of the sparse utility USC
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Figure A.1: Disambiguating degenerate theoretical predictions, related to Question 3: Data
resolves ambiguous theoretical predictions and Fig. 4. (A) A maximum-entropy prior derived from
the mutual information utility with β = 1. The prior has multiple maxima reflecting non-uniqueness
of theoretical predictions. (B) Posteriors obtained by updating the prior with three example datasets
(D1,D2,D3). Grayscale lines denote regions of different utility values (black – highest utility, white –
lowest utility). Depending on the observed data, posteriors concentrate in regions of different utility
value. (C) Distributions on the entropy-utility plane. Orange dot corresponds to the prior from A,
purple dots to posteriors from B. Orange line is the entropy–average utility tradeoff in the maximum
entropy optimization prior (analogous to Fig. 2E in the main text). (D) Mode entropy. In the prior
(red bar), probability is equally distributed across 4 peaks of the distribution resulting in 2 bits of
entropy. Mode entropy decreases significantly in posteriors 1 and 2. (E) Posterior convergence.
Average utility (top row), posterior entropy (middle row) and posterior mode entropy (bottom row)
are plotted against the number of data samples; shown are averages of 512 realizations for each
data set size. Purple lines correspond to parameter settings 1-3 in panel A. Red dashed line denotes
values of each statistic for the prior.
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Figure A.2: Graphical models depicting variable dependencies corresponding to the second
and third kinds of ambiguity, related to Question 3: Data resolves ambiguous theoretical predictions
and Fig. 4. (A) Ambiguity of the second kind. (B) Ambiguity of the third kind.

presented in the main text. We present analysis of the sparse utility again in the left panels
of Fig. A.3B-F for comparison. To compute posteriors over β (Fig. A.3D), for slow utility
we used 64 β values equally spaced on the [−32, 32] interval. The remaining details of the
analysis are shared with the analysis of sparse coding utility and are described in the Methods.
Overall, RFs of individual neurons are much more consistent with the sparse, rather than with
the slow utility. This is readily apparent in the outcome of the optimality test (Fig. A.3 C) and
posteriors over the utility parameter β (Fig. A.3 D), where V1 RFs yield a slightly negative
estimate β̂. Similarly, the empirical distribution of utility values of V1 RFs as well as their
spatial autocorrleation, is more consistent with the inferred distribution of sparse, rather than
slow utilities (Fig. A.3E and F respectively).
Here we analyzed utility of indiviudal neurons, treating them as independent realizations
from an underlying distribution of parameters. It is important to stress that simultaneous
optimization of a population of model neurons for maximal slowness yields filters which very
closely resemble RFs of visual neurons Berkes and Wiskott (2005); Hyvärinen et al. (2009).
Moreover, slowness and sparseness are both affected by eye movements and natural stimulus
dynamics, while the RFs used here were recorded in anesthesized and paralyzed animals. Our
analysis is therefore not a proof of lack of optimization for slowness at the population level. It
is rather a demonstration of applicability of the framework to real data. Analysis of optimality
of neural populations is a subject of future work.
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Figure A.3: Sparse and slow utility analysis of V1 receptive fields, related to Application 1:
Receptive fields in the visual cortex and Fig. 6. (A) Six example receptive fields (RFs) from Macaque
visual cortex (courtesy of Dario Ringach; Ringach (2002)). (B) Simulated RFs optimized for sparsity
(left column) and slowness (right column). (C) Null distributions of utility values used to test for
optimality under sparse (left column) and slow (right column) utilities. Red dashed lines denote
the significance threshold (95th percentile). Green and orange circles correspond to significant and
non-significant receptive fields (the axis was truncated for visualization purposes, and not all values
are displayed). Example significant and non-significant receptive fields are displayed in green and
orange frames respectively. Blue dots show the average utility of receptive fields, which are equal to
the 99.6th percentile (sparse USC) and 46th percentile (slow ULC) of p(U |β = 0). (D) Approximate
log-posteriors over population optimality parameter β derived from 250 RFs estimates (purple line),
250 maximum-utility filters (red line) and 250 minimal-utility filters (gray line). Dashed lines mark
MAP estimates of beta. (E) Empirical distributions of RF utilities (blue lines) compared with utility
distributions consistent with the population optimality β inferred from V1 data (purple lines). (F)
Spatial autocorrelation of RFs consistent with different average values of utility (determined by β
parameter). Values of β are denoted in the top-right corner of each panel, and correspond to results
of inference displayed in panel D. Middle plots (purple frame) in the left and the right column depict
autocorrelation consistent with β inferred from V1 RFs. For comparison, autocorrelation of RFs is
displayed as an inset.
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APPENDIX B
Supplementary information:

accumulation and maintenance of
genetic information

B.1 Joint and conditional KL divergence, chain rule
For a single variable U , the KL divergence Cover and Thomas (2006) between its distributions
with and without selection is

D(U) =
∑︂
u

ψU(u) log2
ψU(u)
φU(u) (B.1)

where U takes values u with probabilities ψU(u) under selection and φU(u) under neutrality.

To be well defined, the KL divergence requires that the support of ψU is a subset of the support
of φU . In other words, if for some u we have φU(u) = 0, then also ψU(u) = 0 – outcomes
impossible under neutrality are also impossible under selection. This condition needs to be
respected when setting the initial conditions (ψU and ϕU at time zero). Over time, selection
increases or decreases the probability of population states, genotypes or phenotypes that arise
by reproduction with mutation, a by finite factor proportional to fitness. But selection cannot
create entirely new states. On the other hand, some genotypes that arise by mutation can
have zero fitness, and therefore be impossible under selection (ψU(u) > 0 but ψU(u) = 0).
When this happens, the corresponding term ψU(u) log2

ψU (u)
φU (u) is set to zero. Therefore this is

a very natural assumption, and analogous arguments apply to joint/conditional distributions
which we discuss next.

For a pair of variables U, V we can write their joint and conditional KL divergence Cover and
Thomas (2006),

D(U, V ) =
∑︂
u,v

ψU,V (u, v) log2
ψU,V (u, v)
φU,V (u, v) , (B.2)

D(U |V ) =
∑︂
v

ψV (v)
∑︂
u

ψU |V (u|v) log2
ψU |V (u|v)
φU |V (u|v) (B.3)
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where ψU,V (u, v) and ψU |V (u|v) are the joint and conditional probabilities under selection,
and φU,V (u, v) and φU |V (u|v) under neutrality. With these definitions, the chain rule states
two possible decompositions of the joint KL divergence,

D(U, V ) = D(U) +D(V |U) = D(V ) +D(U |V ). (B.4)

In the case of the genotype frequencies X, genotype G and phenotype Z, the conditional KL
divergences D(G|X) and D(Z|G) are both zero, implying the inequality Eq. (3.5). Along
with some of the corresponding marginal distributions, this is also illustrated in Fig. B.1.

B.2 Allele frequencies, LD and information
When there is a fixed number of loci, instead of genotype frequencies, an alternative way to
describe a population state is in terms of allele frequencies. Allele frequencies by themselves,
however, do not capture correlations between loci and therefore can miss some of the information
that selection can accumulate on the population level. This can be expressed using the chain
rule,

D(X) = D(Allele freq.) +D(X|Allele freq.) ≥ D(Allele freq.), (B.5)

where the term D(Allele freq.|X) = 0 because regardless of selection, allele frequencies are
fully determined by the genotype frequencies X. The term D(X|Allele freq.) quantifies how
different from neutrality are the correlations between loci.

B.3 Violation of the bound by Worden 1995 by drift
The genotype-level information introduced by Worden Worden (1995) (see Eq. (11) there) is
the KL divergence between the genotype frequencies and a uniform distribution,

I =
∑︂
g

xg log2(Mxg), (B.6)

where M is the number of possible genotypes and xg the frequency of genotype g (denoted
qj in Worden (1995)). Worden also introduced a similar genotype-level measure (Eq. (8)
in Worden (1995), which was upper bounded by I. These measures of information can be
seen as special cases of D(G) and D(Z) when there is no evolutionary stochasticity – ψX is
concentrated at a single value x, and φX is concentrated at a single value of x that is uniform
over all possible genotypes.

Worden proposes a bound on the rate of increase of I starting from a uniform x, and the
maximal rate is proportional to a quantity similar to the genetic load, i.e. roughly a factor N
(population size) times more stringent than the bound presented here.

The proof relies on the assumption that the population is large and xg evolve deterministically,
but later, validity in finite populations is claimed (Sec. 2.6 in Worden (1995)). This is mistaken:
in a realistic population, I can hardly be zero to start with, as there will be more possible
genotypes than individuals and xg cannot be uniform. Starting from near uniform x, random
drift will tend to remove variability from the population and concentrate all genotypes around
some random ancestral genotype, and I will increase even without selection. This can also be
seen as a consequence of the convexity of KL divergence: random fluctuations in x will, on
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Figure B.1: An example of the distributions over genotype frequencies, genotypes and phenotypes,
with and without selection and for a varying number of loci, along with the corresponding measures
of information. Based on a Wright-Fisher model with parameters N = 40, µ = 0.005, s = 0.05 (as
in Main Text Fig. 3.1). Fitness is multiplicative across loci, w = (1 + s)z where z is the number of
beneficial A alleles carried – i.e. there is directional selection for an additive, fully heritable phenotype
z (as in Main Text Fig. 3.6). All distributions are at the stationary state, computed using a transition
matrix-based model (1 locus) or a long run (105 generations after 200 generations of burn-in) of an
individual-based model (> 1 locus).
(A) Distributions over genotype frequencies (ψX(x) with selection and φX(x) without, red and blue)
and the population-level information, D(X). The distributions cannot be plotted and D(X) cannot
be directly estimated for 5 and 100 loci, due to the large number of possible genotype frequencies x,
but we can still lower bound D(X) by D(G) or D(Z).
(B) Distributions over genotypes (ψG(g) with selection and φG(g) without, red and blue) and the
genotype-level information, D(G). This information is less than D(X), because selection not only
gives preference to the fitter alleles, but also reduces the genetic variation within populations. The
number of possible genotypes becomes too large for 100 loci, but we can still lower bound D(G) by
D(Z).
(C) Distributions over the phenotype (ψZ(z) with selection and φZ(z) without, red and blue) and
the phenotype-level information, D(Z). The phenotype is simply the number of A alleles across all
loci in an individual – an additive trait of varying polygenicity. In this example, selection favors the
A allele at each locus, making fitness a function of z. In such cases, D(G) ≈ D(Z), since grouping
genotypes into bins of equal z reduces the state space but preserves selective differences. In general,
the trait might be unrelated to fitness or form only a component of it, leading to D(G) > D(Z).
Note that D(Z) is approximately proportional to the number of loci, with each locus encoding about
0.4 bits. This is because loci evolve approximately independently, as there is zero epistasis, free
recombination and little Hill-Robertson interference (see also Main Text Sec. 3.4.2-3.4.3).
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average, increase I. This highlights the need to consider stochasticity as well as population
variation when quantifying the intuitive notion of genetic information.
Worden’s stringent bound does hold if the genotype frequencies evolve deterministically and
there is no recombination. This is consistent with our observation that selection accumulates
information less cost-efficiently when Ns ≫ 1 and the fixation probability of a beneficial
mutation is close to 1 (Main Text Fig. 3.3CD).

B.4 The single locus, two allele system used for figures
We use a haploid single locus, two allele system to produce Figures 3.1-3.5. The figures are
produced with a Wright-Fisher model, Moran model (only the fitness flux in Fig. 3.4, B.2B and
B.3), and some intuition can be gained by approximating it as diffusion under weak selection.
Note that this is only an illustration, more general classes of models are discussed in sections
B.5, B.6 and B.7.
The system has two alleles, a and A, where the latter is beneficial under selection. It is
parametrized by the population size N , mutation rate µ and selection coefficient s(x) (which
is frequency dependent only in Fig. 3.3CD and B.4).

B.4.1 Wright-Fisher model
Under the Wright-Fisher model, the state space is a set of discrete frequencies of the A
allele, xA = 0, 1/N, 2/N, . . . , 1, while the a allele always has the complementary frequency
xa = 1 − xA. The two alleles have the following properties.

Allele g frequency xg fitness wg(x) relative fitness ŵg(x)
a xa = 1 − xA wa(x) = 1 ŵa(x) = 1

1+s xA

A xA wa(x) = 1 + s ŵA(x) = 1+s
1+s xA

The probability of sampling allele A as a parent is xAŵA(x), and the probability of sampling
it as offspring is

qA(x) = xA(1 − µ) + xaµ (B.7)

pA(x) = xAŵA(x)(1 − µ) + xaŵa(x)µ = xA(1 + s)(1 − µ) + (1 − xA)µ
1 + sxA

, (B.8)

under neutrality and under selection respectively. The Wright-Fisher transition probabilities
are given by the binomial distribution,

Q(xt+1|xt) =
(︄

N

Nxt+1

)︄
qA(x)Nx

t+1
A (1 − qA(x))N−Nxt+1

A . (B.9)

P (xt+1|xt) =
(︄

N

Nxt+1

)︄
pA(x)Nx

t+1
A (1 − pA(x))N−Nxt+1

A . (B.10)

This is a case of the Wright-Fisher model with selection among parents (see Eq. (B.27,B.28)
and SI Sec. B.5.1). An analogous discrete-time Moran model can be written by plugging Eq.
(B.7,B.8) into Eq. (B.43,B.44).
All calculations were done with N ≤ 200. Given the small size of the system, we can compute
the full matrix P (xt+1|xt), and calculate the distribution over genotype frequencies over time
by iterating ψXt+1(xt+1) = ∑︁

xt ψX
t(xt)P (xt+1|xt).
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B.4.2 The diffusion approximation
We write the diffusion approximation for the evolution of the frequency xA. Following the
notation in SI Sec. B.7, the first two moments of change of xA are given by

aA = µ(1 − 2 xA) expected change due to mutation, (B.11)

asA = s xA(1 − xA)
1 + sxA

expected change due to selection, (B.12)

bAA = xA(1 − xA)
N

drift covariance. (B.13)

The diffusion equation for this system is a special case of Eq. (B.57,B.58).

Maintenance of information under weak selection. Since the diffusion process takes
place along only one dimension, the stationary distribution can be determined by equating
the probability flux to zero. For simplicity, we neglect the mean fitness 1 + sxA ≈ 1 in the
denominator in Eq. (B.12), by assuming that selection is weak, s ≪ 1.
The stationary distributions under selection and under neutrality are Wright (1937)

ψ̃ = (xA(1 − xA))2Nµ−1e2NsxA

Z(N,µ, s) φ̃ = (xA(1 − xA))2Nµ−1

Z(N,µ, 0) (B.14)

with the normalization constant

Z(N,µ, s) =
∫︂ 1

0
(xA(1 − xA))2Nµ−1e2NsxAdxA = Γ(2Nµ)2

1F̃ 1(2Nµ; 4Nµ; 2Ns), (B.15)

where Γ is the Gamma function and 1F̃ 1 is the regularized confluent hypergeometric function.
Similar integrals yield results for the maintained information D(X), D(G) and the associated
expected cost at the stationary state. We calculate the expectation of the cost C(x) = V (x)

2 ln 2 =
s2xA(1−xA)

2 ln 2 (see SI Sec. B.9 and B.7.1). For the genotype-level information D(G), we also
need the expected frequency of A which is equal to its marginal probability, ⟨xA⟩ = ψ̃

G(A).
For brevity, we only write the leading terms in s for each quantity.

⟨C⟩ =
∫︂ 1

0
ψ̃ C(x) dxA = Nµs2

(4Nµ+ 1) 2 ln 2 +O
(︂
s4
)︂

(B.16)

⟨xA⟩ = ψ̃
G(A) =

∫︂ 1

0
ψ̃ xA dxA = 1

2 + Ns

8Nµ+ 2 +O
(︂
s3
)︂

(B.17)

D(G) = ⟨xA⟩ log2
⟨xA⟩
1/2 + (1 − ⟨xA⟩) log2

1 − ⟨xA⟩
1/2 = (Ns)2

(4Nµ+ 1)2 2 ln 2 +O
(︂
s4
)︂

(B.18)

D(X) =
∫︂ 1

0
ψ̃ log2

ψ̃

φ̃
dxA = (Ns)2

(4Nµ+ 1) 2 ln 2 +O
(︂
s4
)︂

(B.19)

Notably, at weak selection, both the cost ⟨C⟩ and the information D(X), D(G) scale with s2.
Their ratio is therefore given by the population size and the mutation rate,

D(G)
⟨C⟩

= N

µ (4Nµ+ 1) +O(s2), (B.20)

D(X)
⟨C⟩

= N

µ
+O(s2). (B.21)

The ratio N
µ (4Nµ+1) is shown in Fig. 3.5C.

119



B.5 The bound on information accumulation rate –
Markov chains

The bound on information accumulation rate, as stated in Eq. (3.10,3.11), holds across several
different model classes. Here we derive it for models that are Markov chain, in particular the
Wright-Fisher model and the discrete Moran model. The two following sections contain similar
derivations for continuous time Markov chains and the diffusion approximation. Note that all
of the model parameters, such as those that describe selection, mutation or population size,
can be time dependent, but we do not write it explicitly as we only need to focus on a single
time step.
In the Markov chains class of models, the population state X t takes discrete values xt at
discrete time steps t. The distribution over states is governed by

φX
t+1(xt+1) =

∑︂
xt

Q(xt+1|xt)φXt(xt) under neutrality, (B.22)

ψX
t+1(xt+1) =

∑︂
xt

P (xt+1|xt)ψXt(xt) under selection, (B.23)

where φXt(xt) and ψXt(xt) are the marginal distributions over population states at time t,
and Q(xt+1|xt) = φX

t+1|Xt(xt+1|xt) and P (xt+1|xt) = ψX
t+1|Xt(xt+1|xt) are the transition

probabilities. Q(xt+1|xt) and P (xt+1|xt), as well as all the parameters that we later introduce
to specify them, can be time-dependent, but we do not write it explicitly. The population-level
information at time t is

D(X t) =
∑︂
xt

ψX
t(xt) log2

ψX
t(xt)

φXt(xt) . (B.24)

In general, the chain rule Eq. (3.2) yields a bound

∆D(X t) = D(X t+1) −D(X t) = D(X t+1|X t) −D(X t|X t+1) (B.25)

≤ D(X t+1|X t) =
∑︂
xt

ψX
t(xt)

∑︂
xt+1

P (xt+1|xt) log2
P (xt+1|xt)
Q(xt+1|xt) . (B.26)

The expression ≤ D(X t+1|X t) corresponds to the expected KL cost of control Todorov (2006);
Theodorou (2015). In the special case when Q(xt+1|xt) and P (xt+1|xt) are independent
of time ψX

t(xt) is the stationary distribution of P (xt+1|xt), D(X t+1|X t) is also the KL
divergence rate between P (xt+1|xt) and Q(xt+1|xt). We now examine specific forms of the
transition probabilities given by the Wright-Fisher model and the Moran model.

B.5.1 Wright-Fisher model
In this general model, each time step t represents a generation, and consists of sampling a
new population of N offspring genotypes that constitute the population at t+ 1. The basic
assumption is that the offspring genotypes are sampled independently with with probabilities
qg(xt) without selection or pg(xt) with selection, leading to multinomial probability distributions
over the frequencies xt+1 in the next generation,

Q(xt+1|xt) =
(︄

N

Nxt+1

)︄∏︂
g

qg(xt)Nx
t+1
g , (B.27)

P (xt+1|xt) =
(︄

N

Nxt+1

)︄∏︂
g

pg(xt)Nx
t+1
g , (B.28)
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where
(︂

N
Nxt+1

)︂
= N !∏︁

g
(Nxt+1

g )! is the multinomial coefficient. We can use these expressions to
write down the general bound Eq. (B.26) as

∆D(X t) ≤ D(X t+1|Xt) = N
∑︂
xt

ψX
t(xt)

∑︂
g

pg(xt) log2
pg(xt)
qg(xt)

(B.29)

The probabilities qg(xt) capture arbitrary mutation and recombination, and we show examples
of the form qg(xt) can take below. Selection is modelled by the relationship between qg(xt)
and pg(xt), and this can be done in two ways, which we discuss in the following subsections.

Asexual reproduction. In an asexual population with mutation, qg(x) will have the form

qg(x) =
∑︂
g′
xg′ ρasex

g′g , (B.30)

where ρasex
g′g is the probability that a parent with genotype g′ produces offspring with genotype

g, and includes arbitrary mutation.

Sexual reproduction, random mating. Provided that recombination happens always
between two parental genotypes, we sum over possible pairs of parental genotypes,

qg(x) =
∑︂
g1g2

xg1xg2 ρ
rec
g1g2g (B.31)

with xg1xg2 being the probability of a parental pair g1, g2 and ρrec
g1g2g the probability that this

pair produces offspring with genotype g. This includes arbitrary mutation and recombination.
Alternatively, we can distinguish between two sexes, classifying each genotype as male (g ∈ GM )
of female (g ∈ GF ). We sum over all male-female pairs,

qg(x) =
∑︂

gm∈GM

∑︂
gf ∈GF

xgmxgf

Z(x) ρsex
gmgfg

(B.32)

with ρsex
gmgfg

being the probability that parents gm, gf give rise to offspring g and

Z(x) =
∑︂

gm∈GM

∑︂
gf ∈GF

xgmxgf
(B.33)

is a normalization factor such that xgmxgf
/Z(x) is the probability of a parental pair gm, gf .

Nonrandom mating. In the case of sexual reproduction, we can replace the expression
xgmxgf

/Z(x) by a different expression for the probability of sampling a mating pair gm, gf .
For example, we can include a factor 0 ≤ σgmgf

≤ 1 corresponding to the probability that
individuals with this pair of genotypes will mate. Then qg(x) will have the form

qg(x) =
∑︂

gm∈GM

∑︂
gf ∈GF

xgmxgf
σgmgf

Z̃(x)
ρsex
gmgfg

, (B.34)

with normalization
Z̃(x) =

∑︂
gm∈GM

∑︂
gf ∈GF

xgmxgf
σgmgf

. (B.35)
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Selection in an infinite offspring pool

Here we assume that all individuals (under asexual reproduction) or all pairs of individuals
(under sexual reproduction) in the population at time t contribute a large number of offspring
to a common pool. The next generation then consists of N individuals sampled from this
pool, with or without selection.
The genotype frequencies in the pool will be equal to qg(xt), since this is the probability that a
random invididual (or pair of individuals) from the population xt has offspring with genotype g.
Under neutrality, the genotypes that survive and constitute the next generation are sampled at
random. Under selection, genotypes from the pool are sampled with probabilities proportional
to fitness wg(xt), leading to

pg(xt) = qg(xt)wg(xt)∑︁
g′ qg′(xt)wg′(xt) = qg(xt) w̃g(xt). (B.36)

where w̃g(xt) = wg(xt)∑︁
g′ qg′ (xt)wg′ (x) is the relative fitness of g calculated within the offspring pool

where selection takes place. Combining it with Eq. (B.29), we obtain the bound

∆D(X t) ≤ D(X t+1|X t) = N
∑︂
xt

ψX
t(xt)

∑︂
g

qg(xt) w̃g(xt) log2 w̃g(xt) = N⟨Ct
pool⟩,

(B.37)
where the last expression coincides with the definition of the cost of selection in Main Text
Eq. (B.90), calculated at time t within the offspring pool where selection takes place, and
averaged over possible population states xt.

Selection among parents

Here we assume that selection takes place before reproduction. From the population at
time t, we first sample N genotypes (under asexual reproduction) or N pairs of genotypes
(under sexual reproduction) as parents. These are sampled independently, with probabilities
proportional to fitness. Then we sample one offspring genotype for each parent/pair of parents,
with mutation and recombination, and these constitute the population at time t+ 1.
When sampling genotypes as parents, g gets picked with probability given by its frequency
xtg under neutrality, and xtgŵg(xt) under selection where ŵg(xt) = wg(xt)∑︁

g′ xg′ wg′ (x) is the relative
fitness of genotype g, now computed within the adult population at time t.
We can rewrite Eq. (B.29) with

pg(xt) = qg
(︂
ŵ(xt) ◦ xt

)︂
, (B.38)

where (ŵ(xt) ◦ xt)g = ŵg(xt) xtg is the vector of genotype frequencies that are weighted by
their relative fitness. However, Eq. (B.38) is difficult to analyse. An easier approach is to
introduce an intermediate variable Y t, which signifies the genotype frequencies among parents
(or pairs of parents) at generation t. The Wright-Fisher model is a Markov chain of the form

· · · → X t → Y t → X t+1 → Y t+1 → · · · . (B.39)

Selection operates in the step X t → Y t when parents are sampled from the existing popu-
lation, but not in the step Y t → X t+1 where reproduction takes place with mutation and
recombination. This can be expressed by writing the chain rule

D(X t+1|X t) = D(Y t|X t) +D(X t+1|Y t, X t) −D(Y t|X t+1, X t) ≤ D(Y t|X t) (B.40)
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where the term D(X t+1|Y t, X t) = D(X t+1|Y t) = 0 because Y t → X t+1 is the reproduction
step with no selection. The term D(Y t|X t+1, X t) is nonnegative and can be dropped since
an upper bound on D(X t+1|X t) is sufficient for our purposes, but deserves some attention as
it could make the bound loose. D(Y t|X t+1, X t) can only be large when, given the genotype
frequencies X t, X t+1 at two subsequent generations, there is uncertainty about the genotype
frequencies among the parents Y t sampled from X t that gave rise to X t+1. In diverse
populations with low mutation rates or large genomes, parents tend to be easy to identify, and
D(Y t|X t+1, X t) will be small.
Finally, to calculate D(Y t|X t) we note that conditionally on X t, Y t is a multinomial variable
with kN trials (k = 1 under asexual reproduction or k = 2 under sexual reproduction) and
probabilities xtg under neutrality or xtgŵg(xt) under selection. Then the bound can be written
as

∆D(X t) ≤ D(Y t|X t) = kN
∑︂
xt

ψX
t(xt)

∑︂
g

xtg ŵg(xt) log2 ŵg(xt) = kN⟨Ct⟩. (B.41)

Here we have assumed no distinction between sexes, but we can extend to that case by
sampling N parents of each sex separately and find

∆D(X t) ≤ D(Y t|X t) = N⟨Ct
male⟩ +N⟨Ct

female⟩. (B.42)

B.5.2 Discrete-time Moran model
This model can be defined similarly to the Wright-Fisher model, but under the Moran model
each time step consists of only one birth and one death, and there are N such time steps per
generation.
The genotype that dies is chosen at random from the population xt, and the probability that
it will be g is equal to its frequency xtg. The probability that the genotype born is g′ is qg′(xt)
under neutrality and pg′(xt) under selection. These can take the same form as under the
Wright-Fisher model, with selection within an infinite offspring pool or among parents. This
gives rise to the transition probabilities

Q(xt+1|xt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xtgqg′(xt); xt+1 = xt + eg′

N
− eg

N
, g′ ̸= g (g dies, g′ born),∑︁

g x
t
gqg(xt); xt+1 = xt,

0; otherwise,
(B.43)

P (xt+1|xt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xtgpg′(xt); xt+1 = xt + eg′

N
− eg

N
, g′ ̸= g (g dies, g′ born),∑︁

g x
t
gpg(xt); xt+1 = xt,

0; otherwise,
(B.44)

where eg is a vector of genotype frequencies with one at element g and zeros elsewhere. Now
the bound on information accumulation rate, Eq. (B.26), simplifies to

∆D(X t) ≤ D(X t+1|X t) =
∑︂
xt

ψX
t(xt)

(︄∑︂
g

pg(xt) log2
pg(xt)
qg(xt)

−
∑︂
g

βg(xt) log2
βg(xt)
αg(xt)

)︄
(B.45)

≤
∑︂
xt

ψX
t(xt)

∑︂
g

pg(xt) log2
pg(xt)
qg(xt)

, (B.46)

≤ kN⟨Ct⟩ (B.47)
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where we have used αg(xt) = xt
gqg(xt)∑︁

g′ x
t
g′qg′ (xt) and βg(xt) = xt

gpg(xt)∑︁
g′ x

t
g′pg′ (xt) to denote the probability

that if the genotype that is born and dies is the same, it is the genotype g. Even though
selection makes βg(xt) different from αg(xt), such replacements leave the population unchanged
regardless of g, and this is associated with the nonpositive second term inside the brackets in
Eq. (B.45), which reduces the amount of information that can be accumulated.

Eq. (B.46) is almost identical to the bound on information accumulation rate under the
Wright-Fisher model, Eq. (B.29). This means that the discussion of the two models of
selection in Sec. B.5.1 and B.5.1 also applies to the Moran model, which allows us to write
Eq. (B.47). The only difference is that in each time step, we sample only one genotype from
the offspring pool, or one parent (or pair of parents). This is reflected in the missing factor
N . As there are N time steps per generation, the bound on information accumulated per
generation again scales with kN⟨Ct⟩.

Note, however, that the effective population size of the Moran model (i.e. the population size
of a Wright-Fisher model with the same covariance in allele frequency change per generation)
is Ne = N/2. This is because in the Moran model, both the births and deaths are random
events, whereas the Wright-Fisher model only has random births. We can therefore expect
the tighter bound ∆D(X t) ≲ kNe⟨Ct⟩ to hold for large enough populations, as both models
approach the same diffusion limit. We also prove the bound under the diffusion approximation
separately in Sec. B.7.

B.6 The bound on information accumulation rate –
continuous-time Markov chains

In this class of models, the genotype frequencies X t are discrete, but the time t is continuous.
The distributions φXt(x), ψXt(x) over X t are governed by the master equations

d

dt
φX

t(x) =
∑︂
x′
Q̄(x, x′)φXt(x′) under neutrality, (B.48)

d

dt
ψX

t(x) =
∑︂
x′
P̄ (x, x′)ψXt(x′) under selection, (B.49)

where Q̄(x, x′) and P̄ (x, x′) are transition rates from x′ to x under neutrality and selection
respectively. These can be time dependent. The population-level information D(X t) is defined
as in Eq. (B.24), but now changes continuously in time. The rate of this change is upper
bounded as

d

dt
D(X t) ≤

∑︂
x

ψX
t(x)

∑︂
x, x′ ̸=x

(︄
P̄ (x′, x) log P̄ (x′, x)

Q̄(x′, x)
+ Q̄(x′, x) − P̄ (x′, x)

)︄
. (B.50)

When P̄ and Q̄ are independent of time and ψXt(x) is the stationary distribution associated
with P̄ , the right hand side corresponds to the KL divergence rate between P̄ and Q̄, as
derived in Kesidis and Walrand (1993). The bound Eq. (B.50) can be verified algebraically, or
derived from the discrete bound Eq. (B.26) by taking Q = eϵQ̄, P = eϵP̄ and the limit ϵ → 0.
We now show an example of the form that P̄ and Q̄ can take.
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B.6.1 Continuous-time Moran model
This model is based on its discrete-time counterpart in Sec. B.5.2. Only transitions consisting
of replacing one genotype (g, death) by another (g′, birth) are allowed, and the transition
rates have the form

Q̄(x′, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Nxgqg′(x); x′ = x− eg

N
+ eg′

N
, g′ ̸= g,

−∑︁
g,g′ ̸=gNxgqg′(x); x′ = x,

0; otherwise,
(B.51)

P̄ (x′, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Nxgpg′(x); x′ = x− eg

N
+ eg′

N
, g′ ̸= g,

−∑︁
g,g′ ̸=gNxgpg′(x); x′ = x,

0; otherwise,
(B.52)

where time is measured in generations, i.e. there are on average N replacement events per
unit time. With this form of the transition rates, we can rewrite the general bound Eq. (B.50)
as
d

dt
D(X t) ≤ N

∑︂
x

ψX
t(x)

∑︂
g,g′ ̸=g

xg

(︄
pg′(x) log pg

′(x)
qg′(x) + qg′(x) − pg′(x)

)︄
(B.53)

= N
∑︂
x

ψX
t(x)

∑︂
g

(︄
pg(x) log pg(x)

qg(x) − xgqg(x)
(︄
pg(x)
qg(x) log pg(x)

qg(x) + 1 − pg(x)
qg(x)

)︄)︄
(B.54)

≤ N
∑︂
x

ψX
t(x)

∑︂
g

pg(x) log pg(x)
qg(x) . (B.55)

This is the same bound as for the discrete Moran model in Eq. (B.47), up to the factor N ,
which is due to the different unit of time.

B.7 The bound on information accumulation rate –
diffusion approximation

Here we show an upper bound on the rate of accumulation of information under the diffusion
approximation. The approach is similar to calculations by Iwasa Iwasa (1988) (who assumed
detailed balance) and Hasegawa Hasegawa (1977) (who did not), but here we distinguish
between the processes with and without selection. We start by deriving a general bound for a
pair of diffusion processes, and then apply it to the population genetics context in Sec. B.7.1.
For brevity, we write the probability density over population states x at time t as φ = φ(x, t)
under neutrality and ψ = ψ(x, t) under selection. The population-level information is now
determined by integration,

D(X) =
∫︂
ψ log2

ψ

φ
dx = 1

ln 2

∫︂
ψ ln ψ

φ
dx. (B.56)

Note that while we stick to measuring information in bits, it is more convenient to use the
natural logarithm during the derivation.
The diffusion equation is parametrized by the first and second moment of change in xg.
Selection is assumed to only exert control through the first moment, which we label as ag
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under neutrality and ag +asg under selection. The second moment is bgg′ , both under neutrality
and under selection. All these are functions of x and t, e.g. ag = ag(x, t), but we do not write
this for brevity. We sum over any index that appears twice in a term, e.g. ∂gbg′g = ∑︁G−1

g=1 ∂gbg′g.
Note that the diffusion is described in the subspace of G − 1 genotype frequencies, where G is
the number of genotypes – the last frequency is determined by normalization, xG = 1−∑︁G−1

g=1 xg.
The diffusion equation is

∂tφ = −∂g (ugφ) , ug = ag − 1
2∂g

′bgg′ − 1
2bgg

′∂g′ lnφ under neutrality,
(B.57)

∂tψ = −∂g (vgψ) , vg = ag + asg − 1
2∂g

′bgg′ − 1
2bgg

′∂g′ lnψ under selection, (B.58)

where we introduced the velocity fields ug = ug(x, t) and vg = vg(x, t) such that ugφ and
vgψ are the probability fluxes under neutrality and under selection respectively. From their
definition, it follows that

∂g ln ψ
φ

= −2b−1
gg′

(︂
vg′ − ug′ − asg′

)︂
. (B.59)

The rate of change of D(X) can be written as

d

dt
D(X) = 1

ln 2

∫︂
∂t

(︄
ψ ln ψ

φ

)︄
dx, (B.60)

and the integrand can be written as

∂t

(︄
ψ ln ψ

φ

)︄
= ln ψ

φ
∂tψ + ∂tψ − ψ

φ
∂tφ (B.61)

= − ln ψ
φ
∂g (vgψ) − ∂g (vgψ) + ψ

φ
∂g (ugφ) (B.62)

= −∂g
(︄
vgψ ln ψ

φ
+ (vg − ug)ψ

)︄
+ ψ (vg − ug) ∂g ln ψ

φ
. (B.63)

The first term is a divergence and vanishes after integration in Eq. (B.60) because ugφ and
vgψ cannot cross the domain boundary (assuming ψ/φ < ∞). Therefore

d

dt
D(X) = 1

ln 2

∫︂
ψ (vg − ug) ∂g ln ψ

φ
dx (B.64)

= − 2
ln 2

∫︂
ψ (vg − ug) b−1

gg′

(︂
vg′ − ug′ − asg′

)︂
dx (B.65)

= − 2
ln 2

∫︂
ψ
(︃
vg − ug − 1

2a
s
g

)︃
b−1
gg′

(︃
vg′ − ug′ − 1

2a
s
g′

)︃
dx+ (B.66)

+ 1
2 ln 2

∫︂
ψ asg b

−1
gg′ asg′ dx. (B.67)

The last expression has two terms, both of which are quadratic forms. The first one makes a
nonpositive contribution, leading to the upper bound in information accumulation rate,

d

dt
D(X) ≤ 1

2 ln 2

∫︂
ψ asg b

−1
gg′ asg′ dx. (B.68)

On the right hand side we can identify the KL cost of control Theodorou (2015) in bits. This
bound holds for any pair of diffusion processes with the same fluctuations covariance bgg′ . We
will now discuss it in the context of population genetics.
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B.7.1 Application to population genetics
The bound Eq. (B.68) does not depend on the form of ag, and therefore it can be used to
model arbitrary mutation and recombination, for example by taking

ag = qg − xg (B.69)
with qg = qg(x) as introduced in the discrete models above. Notably, ag does not need to be
the gradient of a scalar potential (an assumption in free fitness Iwasa (1988) and fitness flux
Mustonen and Lässig (2010) theories).
The fluctuations in genotype frequencies can modeled based on multinomial sampling in the
Wright-Fisher model (Eq. (B.27,B.28)),

bgg′ = δgg′xg − xgxg′

N
, (B.70)

with no summation over g, and where the (effective) population size N can be time-dependent.
This has the inverse Withers and Nadarajah (2014)

b−1
gg′ = N

(︄
δgg′

xg
+ 1
xG

)︄
. (B.71)

The control term asg imposed by selection can be written as

asg = (ŵg − 1) xg where ŵg = wg∑︁
g wgxg

(B.72)

where wg is the fitness of genotype g, possibly time and frequency dependent, and ŵg is the
relative fitness. With these definitions, we find that

G−1∑︂
g,g′=1

asg b
−1
gg′ asg′ = N

G∑︂
g=1

(asg)2

xg
= N

G∑︂
g=1

(ŵg − 1)2 xg = NV (x) (B.73)

and the bound on information accumulation rate is
d

dt
D(X) ≤ N⟨V ⟩

2 ln 2 = N⟨C⟩. (B.74)

In the last equation, we identify ⟨V ⟩
2 ln 2 = ⟨C⟩ – this can be derived under weak selection in

discrete time, see Sec. B.9.
We can get intuition about the tightness of this bound by analyzing the first, nonpositive
term in Eq. (B.67). The bound is only tight when vg − ug − 1

2a
s
g = 0 for all x with nonzero

ψ. An interesting specific case is when the neutral process is at an equilibrium with detailed
balance, such that ug = 0. We note that vg can be decomposed as vg = v′

g + asg into the
contribution from selection asg and all other evolutionary forces, v′

g. Our bound is then tight
when asg = −2v′

g, i.e. when selection induces a probability flux in exactly the opposite direction
and exactly twice the magnitude as the all the other evolutionary forces combined. While this
might occasionally and approximately be the case, it will only be a transient phenomenon.
Suppose that the population starts at the neutral equilibrium with v′

g = 0 and then selection
starts to act, e.g. after a change in the environment. For any nonzero asg, the bound cannot
be tight as asg ̸= −2v′

g = 0. After some time a new equilibrium might be reached, with
vg = v′

g + asg = 0, where again, the bound is not tight asg ̸= −2v′
g = 2asg. In this case,

maintenance costs are incurred but no further adaptation takes place. The bound can only
be tight for a moment when adaptation is taking place, selection pulls the population in the
opposite direction as the other evolutionary forces combined, but selection is twice as strong,
asg = −2v′

g.
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B.8 Relationship with free fitness and statistical physics
Stochastic models in population genetics show some mathematical properties analogous to
statistical physics. In particular, a quantity called free fitness, analogous to free energy in
physics, can be defined and shown to monotonically increase over time. In this section we
provide some background about free fitness and discuss two connections with our work. First,
the increasing property of free fitness can be proved by a method similar to the proof of our
bound on information accumulation rate. Second, free fitness can be written as the difference
between mean log fitness and genetic information as defined in this paper (e.g. on the genotype
or population level), implying that evolution tends to maximize mean log fitness at a given
amount of information.

B.8.1 Boltzmann form of stationary distributions
Under suitable conditions, the stationary distributions in population genetics models take a
form similar to the Boltzmann distribution. Models on both the population level and the
genotype level display this property.

• If mutation is weak (NU ≪ 1 where U is the total mutation rate across the studied
genomic region), populations are mostly monomorphic, with only occasional fixations of
a different genotype. The system can then be described with the most recently fixed
genotype g and the distribution ψG(g). The stationary distribution ψ̃

G(g) takes the
form Berg et al. (2004); Sella and Hirsh (2005)

ψ̃
G(g) = 1

ZG
e2N lnwg , (B.75)

where 2N is again analogous to inverse temperature, log fitness lnwg is analogous to
negative energy, and ZG is normalization constant.

• Assuming many biallelic loci under linkage equilibrium, we can describe the system
with the vector of allele frequencies p and the joint distribution ψP (p) over them. The
stationary distribution ψ̃P (p) can be derived from the diffusion approximation and takes
the form Wright (1937); de Vladar and Barton (2011)

ψ̃
P (p) = 1

ZP

∏︂
i

(piqi)2Nµ−1 e2N ln w̄(p), (B.76)

where pi and qi = 1 − pi are the allele frequencies of the two alleles at locus i and ZP

is a normalization constant. Twice the population size 2N takes the role of inverse
temperature and log mean fitness ln w̄(p) takes the role of negative energy. The factors
(pi(1 − pi))2Nµ−1 correspond to mutation and drift potential (similar to e.g. chemical
potential), which will be made clearer in the next subsection.

The formulas apply to haploids, but similar formulas apply to diploids or when mutation
coefficients vary across loci or alleles (see e.g. the SI of Sella and Hirsh (2005)). Importantly,
they depend on the assumption of detailed balance. At stationarity, net probability flux
between any two allele frequency vectors or genotypes must be zero, making ψ̃G(g) and ψ̃P (p)
equilibrium distributions. This can be violated under certain forms of mutation, recombination
and strong selection, leading to additional terms related to robustness Rao and Leibler (2022).
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B.8.2 Free fitness
When a system starts from an arbitrary initial distribution and approaches the stationary
distribution in Eq. (B.76) or Eq. (B.75), we can track this progress using free fitness Iwasa
(1988); Sella and Hirsh (2005), which increases monotonically in time as was shown previously
and as we can also prove in more generality here.

• On the genotype level, we can define free fitness FG at any distribution ψG(g) away
from equilibrium as a sum of expected log fitness and entropy terms,

FG = ⟨lnwg⟩ψG⏞ ⏟⏟ ⏞
Selection

+ 1
2N

⟨︄
ln 1
ψG(g)

⟩︄
ψG⏞ ⏟⏟ ⏞

Entropy

(B.77)

= lnZG

2N⏞ ⏟⏟ ⏞
Equilibrium
free fitness

− 1
2N

⟨︄
ln ψ

G(g)
ψ̃
G(g)

⟩︄
ψG⏞ ⏟⏟ ⏞

KL divergence
from equilibrium

= F̃
G − 1

2NDKL(ψG||ψ̃G) (B.78)

where ⟨·⟩ψG denotes an expectation over g ∼ ψG(g). In the special case of equilibrium
ψG = ψ̃

G, we obtain FG = F̃
G = lnZG

2N , and away from equilibrium, free fitness is
reduced by an amount proportional to the KL divergence between the actual distribution
ψG and the equilibrium ψ̃

G.

• On the population level with linkage equilibrium, free fitness at a distribution ψP can be
defined as a sum of three terms – a negative potential for selection, mutation and drift,
and entropy:

F P = ⟨ln w̄(p)⟩ψP⏞ ⏟⏟ ⏞
Selection

+ 2Nµ− 1
2N

⟨︄∑︂
i

ln(piqi)
⟩︄
ψP⏞ ⏟⏟ ⏞

Mutation and drift

+ 1
2N

⟨︄
ln 1
ψP (p)

⟩︄
ψP⏞ ⏟⏟ ⏞

Entropy

(B.79)

= lnZP

2N⏞ ⏟⏟ ⏞
Equilibrium
free fitness

− 1
2N

⟨︄
ln ψ

P (p)
ψ̃
P (p)

⟩︄
ψP⏞ ⏟⏟ ⏞

KL divergence
from equilibrium

= F̃
P − 1

2NDKL(ψP ||ψ̃P ) (B.80)

where the expectations ⟨·⟩ are taken over p ∼ ψP (p). While mutation and drift now
appear as additional terms in free fitness, free fitness can again be decomposed into its
value at equilibrium and a difference proportional to the KL divergence away from it.

The key property of the free fitness is that it is a non-decreasing function of time, until it is
maximized at equilibrium. This was proved by Iwasa Iwasa (1988) for the case of F P and
Sella and Hirsh Sella and Hirsh (2005) for the case of FG in low mutation regime. In the next
section we show that both results can also be derived by the same method as our bound on
information accumulation rate.

B.8.3 Convergence to stationary distributions
The general bounds on information accumulation rate (Eq. (B.26) for Markov chains, Eq. (B.50)
for continuous time Markov chains and Eq. (B.68) for the diffusion approximation) apply
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for any pair of stochastic processes, provided that they have compatible support such that
the KL divergence is well defined. To make this explicit, we focus on the case of discrete
Markov chains, consider some general process ξ instead of the neutral process φ, and introduce
notation that generalizes D(X t),

Dψ||ξ(X t) =
∑︂
xt

ψX
t(xt) log2

ψX
t(xt)

ξXt(xt) (B.81)

Dψ||ξ(X t+1|X t) =
∑︂
xt

ψX
t(xt)

∑︂
xt+1

ψX
t+1|Xt(xt+1|xt) log2

ψX
t+1|Xt(xt+1|xt)

ξXt+1|Xt(xt+1|xt) . (B.82)

The KL divergence chain rule now yields the inequality

∆Dψ||ξ(X t) = Dψ||ξ(X t+1) −Dψ||ξ(X t) ≤ Dψ||ξ(X t+1|X t). (B.83)

If ξ = φ is the neutral process, this is the KL cost of selection bound on the information
accumulation rate (Eq. (3.9) and Eq. (B.26)). But we can also choose ξ such that it does
contain selection and has the same transition probabilities as ψ, but starts from a different initial
condition, i.e. ξXt+1|Xt = ψX

t+1|Xt and ξX0 ̸= ψX
0 . Then we find that Dψ||ξ(X t+1|X t) = 0

and ∆Dψ||ξ(X t) ≤ 0, i.e. the divergence between ψXt and ξXt is non-increasing over time,
because relative to ξ, there is no control exerted on ψ.

If, in addition, the system has a unique stationary distribution ψ̃X and ξX0 is initialized there
(and therefore stays there indefinitely, ξX0 = ξX

t = ψ̃
X for any t), we find that ψXt converges

to this stationary distribution ψ̃
X monotonically in terms of the KL divergence Dψ||ξ(X t).

Similar proofs apply to continuous time Markov chains and diffusion, since we only need to
replace φ by ξ and repeat the derivation leading to Eq. (B.50) and Eq. (B.68).
In the two regimes discussed above in Sec. B.8.1, the population state X corresponds to some
fixed genotype G or a vector of allele frequencies P . Therefore Dψ||ξ(X t) = DKL(ψGt ||ψ̃G)
or Dψ||ξ(X t) = DKL(ψP t ||ψ̃P ) are non-increasing functions of time. Together with Eq.
(B.78,B.80), this implies that FG or F P are non-decreasing functions of time.
Iwasa Iwasa (1988) and Sella and Hirsh Sella and Hirsh (2005) proved the same result
by different methods. In our framework it emerges as a special case of the information
accumulation bound with zero control. The key part of our proof, stating that Dψ||ξ(X t) is
non-increasing, is also more general (regarding the state space, the form of the stationary
distribution, and detailed balance – although free fitness is not defined so generally). A similarly
general proof for continuous time Markov chains, as well as several related results for replicator
dynamics and reaction networks, is reviewed in reference Baez and Pollard (2016).

B.8.4 Free fitness as a trade-off between fitness and information
We can rewrite the expressions for free fitness using the genotype and population-level
information respectively. We first write down the neutral stationary distributions. On the
genotype level, we assume that it is uniform over 4l possible sequences of length l,

φ̃G(g) = 1
4l . (B.84)

On the population level,
φ̃P (p) = 1

Zφ,P

∏︂
i

(piqi)2Nµ−1 , (B.85)
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where Zφ,P is the normalization constant, to be distinguished from ZP in Eq. (B.76) which
includes selection.
Using φ̃G(g) and φ̃P (p), we can rewrite free fitness, Eq. (B.78,B.80), as

FG = ⟨lnwg⟩ψG⏞ ⏟⏟ ⏞
Selection

− 1
2N

⟨︄
ln ψ

G(g)
φ̃G(g)

⟩︄
ψG⏞ ⏟⏟ ⏞

Genotype-level
information

− 1
2N ln(4l)⏞ ⏟⏟ ⏞
Independent

ofψG

= ⟨lnwg⟩ψG − 1
2ND(G)+const. (B.86)

on the genotype level and

F P = ⟨ln w̄(p)⟩ψP⏞ ⏟⏟ ⏞
Selection

− 1
2N

⟨︄
ln ψ

P (p)
φ̃P (p)

⟩︄
ψP⏞ ⏟⏟ ⏞

Population-level
information

+ lnZφ,P

2N⏞ ⏟⏟ ⏞
Independent

ofψP

= ⟨ln w̄(p)⟩ψP − 1
2ND(P ) + const.

(B.87)
on the population level. In both cases we have emphasized that terms independent of ψG
or ψP are constant in time and therefore not important for the dynamics of free fitness. Up
to the constant, this formula for free fitness has also been used in the paper on fitness flux
Mustonen and Lässig (2010). The fitness flux theorem (ref. Mustonen and Lässig (2010) and
Sec. B.10) then provides perhaps the most elegant proof that free fitness is a non decreasing
function of time, as it relates changes in D(P ) to changes in expected fitness.
Free fitness tends to increase over time until it is maximized at the Boltzmann-like equilibrium
distribution ψ̃

G or ψ̃P . In other words, evolution maximizes the expected log fitness while
constraining the amount of genetic information, with 1/(2N) serving as a Lagrange multiplier
that controls the trade-off.

B.9 Properties of measures of cost of selection
Here we prove general inequalities between the genetic load L(x), relative fitness variance
V (x), and the information theoretic cost C(x). We also derive the form of C(x) for the
special cases of weak selection and truncation selection. The three measures are defined as

L(x) = 1 − 1
ŵmax(x) (B.88)

V (x) =
∑︂
g

xg (ŵg(x) − 1)2 , (B.89)

C(x) =
∑︂
g

xgŵg(x) log2 ŵg(x), (B.90)

where xg is the frequency of genotype g in the population and ŵmax(x) = maxg;xg>0 ŵg(x)
is the relative fitness of the fittest individual that is present in the population (xg > 0).
We note that some previous work has defined ŵmax(x) to be the maximum fitness possible,
i.e. the fitness of an ideal genotype with no deleterious mutations regardless of whether such
an individual exists. Load computed with such a definition is higher, and this has led to
claims of severe restrictions on the rate of adaptive substitutions Kimura (1968) and the
functional fraction of the human genome Graur (2017). However, load under this definition
has been criticized as irrelevant, since the ideal genotype has a vanishing probability of existing
in the population, and if only the fitness values likely to be present in the population are
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considered, load-based restrictions are more permissive Ewens (1970); Galeota-Sprung et al.
(2020). Our definitions of L(x), V (x) and C(x) all focus on the existing variation of fitness
in the population x. L(x) is also related to the concept of lead, which was defined as the
difference between the maximum and the mean log fitness in a traveling wave Desai and Fisher
(2007).

Truncation selection and limitations by reproductive capacity. Under truncation
selection, a fraction α of individuals in the population has constant relative fitness, equal to
the maximum ŵg(x) = ŵmax(x) and the remaining fraction 1 − α has relative fitness zero
ŵg(x) = 0. By definition, the mean relative fitness must be ∑︁g xgŵg(x) = 1, which requires
ŵmax(x) = 1/α. The three measures of cost of selection then are

Ltrunc(x) = 1 − α, (B.91)

V trunc(x) = α
(︃ 1
α

− 1
)︃2

+ (1 − α) (0 − 1)2 = 1
α

− 1, (B.92)

Ctrunc(x) = − log2 α. (B.93)

At a constant population size, the expected number of offspring of an individual is equal
to their relative fitness ŵg(x) (or 2ŵg(x) under sexual reproduction, with two parents per
offspring). In a species with a reproductive capacity R, we have ŵmax(x) ≤ R and the load is
limited as L ≤ 1 − 1/R. V (x) and C(x) at given R are maximized under truncation selection,
when only the most extreme relative fitness values available are occupied (Nα individuals have
relative fitness ŵg(x) = 1/α = ŵmax(x) = R and N −Nα individuals have fitness 0). This
implies upper bounds V (x) ≤ R − 1 and C(x) ≤ log2 R.

General inequality between L(x) and V (x). From Eq. (B.88), the genetic load L(x)
determines the maximum relative fitness in the population, ŵmax(x) = 1/(1 − L(x)). Given
that relative fitness of all individuals in the population must lie between 0 and ŵmax(x), its
variance V (x) is maximized when only these extreme values are occupied, i.e. under truncation
selection. In that case we have V trunc(x) = 1/α − 1 with α = 1/ŵmax(x). This implies a
general bound,

V (x) ≤ V trunc(x) = L(x)
1 − L(x) , (B.94)

with equality under truncation selection. The same inequality was derived in ref. Shnol et al.
(2011) by other means.

General inequality between L(x) and C(x). Since logarithm is an increasing function and
xgŵg(x) ≤ 0, we can upper bound each term of the form xgŵg(x) log2 ŵg(x) in Eq. (B.90)
by xgŵg(x) log2 ŵmax(x). Summing over g, we obtain

C(x) ≤
∑︂
g

xgŵg(x) log2 ŵmax(x) = log2 ŵmax(x) = log2
1

1 − L(x) . (B.95)

Equality is again achieved under truncation selection.

General inequality between V (x) and C(x). We use the inequality log2 u ≤ u−1
ln 2 in

Eq. (B.90) to obtain

C(x) ≤
∑︂
g

xgŵg(x)ŵg(x) − 1
ln 2 = 1

ln 2

(︄∑︂
g

xgŵg(x)2 − 1
)︄

= V (x)
ln 2 . (B.96)
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Equality is approached under truncation selection when α → 1.

C(x) under weak selection. Here we assume that for all genotypes g present in the
population (xg > 0), the relative fitness ŵg(x) is close to 1. We can then use the Taylor
expansion

ŵg(x) log2 ŵg(x) = 1
ln 2

(︃
ŵg(x) − 1 + 1

2 (ŵg(x) − 1)2 +O
(︂
(ŵg(x) − 1)3

)︂)︃
. (B.97)

Combining this with Main Text Eq. (B.90), we find

C(x) = 1
ln 2

∑︂
g

xg

(︃
ŵg(x) − 1 + 1

2 (ŵg(x) − 1)2 +O
(︂
(ŵg(x) − 1)3

)︂)︃
(B.98)

= V (x)
2 ln 2 + 1

ln 2
∑︂
g

xg O
(︂
(ŵg(x) − 1)3

)︂
, (B.99)

or in short, C(x) ≈ V (x)/(2 ln 2) under weak selection. This is particularly relevant for the
diffusion limit, when the population size is sent to infinity, and the selection strength is rescaled
inversely to the population size.

B.10 Fitness flux theorem
In this section we compare the newly introduced bound on information accumulation rate (the
cost of selection bound) and a similar bound implied by the fitness flux theorem Mustonen
and Lässig (2010) (the fitness flux bound). The fitness flux theorem was originally derived
under the diffusion approximation. For better comparison, we also derive an analogous result
for discrete-time Markov chains. We then discuss the distinct interpretation of the two bounds,
and illustrate them (using both the discrete and diffusion expressions) in Fig. B.2.

B.10.1 Discrete-time Markov chains
The fitness flux theorem, like its counterparts in statistical physics (e.g. Crooks (2000)), is
based on the comparison of forward and reverse path probabilities. For simplicity, we will not
derive the fitness flux theorem in its general form, but rather the form that allows a direct
comparison with the cost of selection bound.

We focus on short paths consisting of only one step, (X t, X t+1). The probability of the
forward path (xt, xt+1) is ψXt(xt)P (xt+1|xt). We consider a probability distribution over
reverse paths, ψXt+1(xt+1)P (xt|xt+1), which is normalized to 1 – we can write this as

1 =
∑︂

xt xt+1

ψX
t(xt)P (xt+1|xt) exp ln ψ

Xt+1(xt+1)P (xt|xt+1)
ψXt(xt)P (xt+1|xt) (B.100)

By Jensen’s inequality,

0 ≥
∑︂

xt xt+1

ψX
t(xt)P (xt+1|xt) ln ψ

Xt+1(xt+1)P (xt|xt+1)
ψXt(xt)P (xt+1|xt) , (B.101)
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Next, inside the logarithm, we divide and multiply by the neutral probabilities,

0 ≥
∑︂

xt xt+1

ψX
t(xt)P (xt+1|xt) ln

ψX
t+1(xt+1)P (xt|xt+1) φ

Xt+1 (xt+1)Q(xt|xt+1)
φXt+1 (xt+1)Q(xt|xt+1)

ψXt(xt)P (xt+1|xt) φXt (xt)Q(xt+1|xt)
φXt (xt)Q(xt+1|xt)

(B.102)

=
∑︂

xt xt+1

ψX
t(xt)P (xt+1|xt) ln

ψXt+1 (xt+1)P (xt|xt+1)
φXt+1 (xt+1)Q(xt|xt+1)
ψXt (xt)P (xt+1|xt)
φXt (xt)Q(xt+1|xt)

, (B.103)

where we assumed that the neutral process is at a stationary distribution with detailed balance,
i.e. φXt(xt)Q(xt+1|xt) = φX

t+1(xt+1)Q(xt|xt+1). Finally, we rearrange terms and divide by
ln 2 to get an expression in bits,

Fitness flux bound: (B.104)

∆D(X t) ≤
∑︂
xt

ψX
t(xt)

∑︂
xt+1

P (xt+1|xt) log2
P (xt+1|xt)Q(xt|xt+1)
Q(xt+1|xt)P (xt|xt+1) = 2N⟨ϕ⟩t, (B.105)

Cost of selection bound: (B.106)

∆D(X t) ≤
∑︂
xt

ψX
t(xt)

∑︂
xt+1

P (xt+1|xt) log2
P (xt+1|xt)
Q(xt+1|xt) ≤ kN⟨C⟩t, (B.107)

where ⟨ϕ⟩t is the discrete analog of the fitness flux, averaged over the possible transitions
(xt, xt+1),

ϕ(xt, xt+1) = 1
2N log2

P (xt+1|xt)Q(xt|xt+1)
Q(xt+1|xt)P (xt|xt+1) . (B.108)

The interpretation of this expression and the relationship to fitness accumulation is most
clear in the diffusion approximation, see below. To help compare the fitness flux bound with
the cost of selection bound, we take the expectation over the final state xt+1 and compute
the expected fitness flux from any initial state xt, ϕ(xt) = ∑︁

xt+1 P (xt+1|xt)ϕ(xt, xt+1). An
example plot of ϕ(xt) is in Fig. B.2A. For comparison, we also included in Eq. (B.107) the
cost of selection bound.
While the cost of control is a non-negative conditional KL divergence, the fitness flux bound
contains an additional term related to the reverse transition probabilities, and can be negative
(this is more easily interpretable as the mutation term in the diffusion approximation). The
fitness flux bound relies on the additional assumption that the neutral process is at a stationary
distribution with detailed balance. This can be satisfied in the single locus, two allele system
when using the Moran model, but it is violated by the Wright-Fisher model which we use
throughout most of the paper.

B.10.2 Diffusion approximation
Mustonen and Lässig Mustonen and Lässig (2010) derive the fitness flux theorem using a
similar method but under the diffusion approximation, where the fitness flux is related to the
rate accumulation of fitness. We include here an informal account of how that relates to the
formula in Eq. (B.107).
In continuous time, we can generalize the definition of fitness flux in Eq. (B.108) to an arbitrary
time interval ∆t and the transition (xt, xt+∆t).

ϕ(xt, xt+∆t) = 1
∆t

1
2N log2

P (xt+∆t|xt)Q(xt|xt+∆t)
Q(xt+∆t|xt)P (xt|xt+∆t) , (B.109)
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Figure B.2: Comparisons between the fitness flux, the information-theoretic cost of selection and
fitness variance, using the single locus, two allele systems under the Wright-Fisher model, the
equivalent discrete-time Moran model and the diffusion approximation.
(A) We compute the expected fitness flux per generation (ϕ(xA), gray dotted) and the cost of
selection (C(xA), black dotted) for each frequency xA under the discrete Moran-model for three
different effective population sizes Ne (left to right; census population size NMoran = 2Ne to account
for the additional stochasticity in the Moran model compared to the Wright-Fisher model). We
fixed Nes = 3 and Neµ = 0.1 to obtain models with a similar behavior but different time scales and
granularity. Both ϕ(xA) and C(xA) are multiplied by Ne and the same numerical factor as in the
bounds on information accumulation rate (the bounds are obtained by averaging these values with
respect to ψX(xA)). The discrete formulas are compared with their diffusion approximation (full
gray and black lines). As expected, the diffusion approximation is closer to the discrete model at
higher Ne. The fitness flux ϕ(xA) converges to the diffusion approximation non-uniformly across xA,
due to the spikes next to the domain boundaries. These spikes do not disappear but get “squeezed
out” at high Ne. We also plot multiples of the relative fitness variance V (xA) (purple dashed and
full lines), which approximate the fitness flux and the cost of selection. The cost C(xA) can be
approximated very closely by V (xA)/(2 ln 2) as long as s ≪ 1 (here, the largest value is s = 0.3
for Ne = 10). Fitness flux is the sum of a selection term proportional to V (xA) which is largest at
intermediate xA, and a mutation term which dominates near xA = 0 or 1 and causes the discrepancy
between ϕ(xA) and 2V (xA)/ ln 2. Even when mutation rate is small compared to selection, µ ≪ s,
mutation is important as the system approaches the stationary distribution concentrated near xA = 0
and 1. (Caption continues on the next page.)
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Figure B.2: (Continued from previous page:)
(B) The Wright-Fisher model uses the same parameters as Main Text Fig. 3.4, namely N = Ne =
100;Neµ = 0.01 and Nes, varied across columns. We plot the increase of information per generation
(population level ∆D(Xt), blue dashed; genotype level ∆D(Gt), orange dashed), the upper bound in
terms of cost of selection Ne⟨C⟩t, computed using the discrete formula (Eq. (B.107), black dashed)
and the diffusion formula (Eq. (B.115), black full), and the upper bound in terms of the fitness
flux computed using the discrete formula (Eq. (B.105), gray dashed) and the diffusion formula
(Eq. (B.114), gray full). We also show the fitness variance approximations of the two bounds
(Eq. (B.116), purple solid and the fitness variance term in Eq. (B.117), purple dotted, outside the
plot range for Nes = 2 and 3). The discrete fitness flux bound is violated, since the Wright-Fisher
model does not satisfy detailed balance under neutrality. The continuous fitness flux bound holds
under weak selection, but fails when selection gets stronger, as differences grow between the discrete
system and the diffusion approximation.
(C) The Moran model has the same effective parameters but double the census population size,
NMoran = 2Ne. The curve descriptions are the same as for the Wright-Fisher model, but note that
each generation consists of 2Ne replacements, and the information increase as well as the upper
bounds are rescaled accordingly. Also note that we plot the cost of selection bound Ne⟨C⟩t using
the effective population size Ne rather than the census population size NMoran = 2Ne, which would
lead to a twice as large (and less tight) bound. The Moran morel satisfies detailed balance under
neutrality, and the discrete fitness flux bound holds under arbitrary selection. The continuous fitness
flux bound again fails under strong selection.
Note that the diffusion formula for the fitness flux bound would correctly upper bound the accumulation
of information in a system modeled fully using the diffusion approximation. These figures show that
it does not always upper bound the accumulation of information in discrete models, especially not
when selection is strong. The Main Text Fig. 3.4 uses the information accumulation curves and
cost of selection bounds based on the Wright-Fisher model, and the fitness flux bound based on the
Moran model.

where we also divided by ∆t to get the fitness flux per generation. Under the diffusion
approximation, if ∆t is small, the transition probabilities P,Q will be approximately normal
with parameters given by a(xt), as(xt) and b(xt) (see Sec. B.7; we drop the dependence on
xt for brevity),

P (xt+∆t|xt) ≈ N (xt+∆t; xt + a+ as, b), (B.110)
Q(xt+∆t|xt) ≈ N (xt+∆t; xt + a, b). (B.111)

Then in Eq. (B.109) we recover the definition of fitness flux from Mustonen and Lässig (2010),

ϕ(xt, xt+∆t) ≈ 1
N∆t ln 2 (xt+∆t − xt)g b−1

gg′ asg′ (B.112)

where we sum over repeated indices as in Sec. B.7. Note that the factor 1/ ln 2 appears because
we use base 2 logarithms throughout. If the process takes place in a fitness landscape/seascape
F , the vector b−1

gg′ asg′/N = ∂gF is its gradient, and ϕ(xt, xt+∆t) is the rate at which the
system climbs it up and therefore accumulates fitness (Fig. 1 and Eq. S8-S10 in Mustonen
and Lässig (2010)). This interpretation of fitness flux is exact in the diffusion approximation
as ∆t → 0, but only approximate for the discrete formulas in Eq. (B.108) and Eq. (B.105).
We can take the expectation over xt+∆t to obtain the expected fitness flux per generation
from any starting position xt,

ϕ(xt) ≈ 1
N ln 2(a+ as)gb−1

gg′ asg′ , (B.113)
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which is also plotted in Fig. B.2A. Finally, we can take the expectation over xt to obtain the
fitness flux bound in the diffusion approximation. It compares with the cost of selection bound
as follows,

Fitness flux bound: d

dt
D(X t) ≤ 2

ln 2

∫︂
ψ
(︂
ag + asg

)︂
b−1
gg′ asg′ dx = 2N⟨ϕ⟩t, (B.114)

Cost of selection bound: d

dt
D(X t) ≤ 1

2 ln 2

∫︂
ψ asg b

−1
gg′ asg′ dx ≤ N⟨C⟩t. (B.115)

Note that in Eq. (B.114) we added the factor 2 which was missing in Mustonen and Lässig
(2010), as pointed out in Barton (2017).
Again, the fitness flux bound requires the neutral process to be at a stationary distribution with
detailed balance, which means zero neutral flux ug = 0 (see Eq. (B.57)). (There is a more
general flux theorem, which does not require detailed balance Mustonen and Lässig (2010),
but it does not provide a bound on ∆D(X t).) The single locus, two allele system satisfies the
detailed balance, since diffusion only takes place along a single dimension. However, detailed
balance is rare in systems with multiple loci with recombination and general forms of mutation.

B.10.3 Comparisons of the discrete and the diffusion formulas
The two bounds, computed using both the Markov chain and the diffusion formulas, are
compared in Fig. B.2BC for the single locus, two allele system. Note that the bounds
are obtained by averaging the functions 2Neϕ(xA) and NeC(xA), such as those plotted in
Fig. B.2A, with respect to the distribution ψX(xA).
In Fig. B.2B, we use the Wright-Fisher model to compute the distribution over allele frequencies
and the information increments. The population size is NWF = Ne = 100, mutation strength
Nµ = 0.01 and selection strength varies across columns. The cost of selection bound is in
black, and the diffusion formula (full line, based on Eq. (B.115)) is in an agreement with
the discrete formula (dashed line, based on Eq. (B.107)). The discrete version of the fitness
flux bound is violated, as the Wright-Fisher model does not satisfy detailed balance (grey
dashed, based on Eq. (B.105)). This is because cycles such as 0 → 1 → 2 → 0 copies of the
A allele take place more often than the reverse cycle, since two alleles can get lost by drift in
a single generation with a high probability, but are unlikely to arise by mutation. However,
detailed balance holds in the diffusion approximation. If fitness flux is computed according to
the diffusion formula, the bound holds under weak selection when the diffusion approximation
is close to the Wright-Fisher model, but fails when selection is stronger (full grey line, based
on Eq. (B.114)).
In Fig. B.2C, we use the Moran model of the same system to compute the distributions and
information increment over time. Note that in order to have the same magnitude of genetic
drift as the Wright-Fisher model, the Moran model needs twice as large a census population
size, NMoran = 2Ne. Time is measured in generations (NMoran = 2Ne replacements each),
and the increments in information are also computed per generation.
The discrete and diffusion formulas are again in agreement for the cost of selection bound.
Note that we computed it as Ne⟨C⟩t rather than NMoran⟨C⟩t, to account for the additional
stochasticity due to random deaths, even though NMoran = 2Ne parents are sampled with
selection in each generation. The fitness flux bound now holds in its discrete version – the
Moran model only allows allele frequency changes by ±1/NMoran and therefore satisfies detailed
balance. If fitness flux is computed using the diffusion formula in Eq. (B.114), it upper bounds
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the Moran model accumulation of information when selection is weak, but again fails when
selection is strong and diffusion departs from the discrete model.
In conclusion, care is needed when applying the fitness flux bound to discrete models. In Main
Text Fig. 3.4, we plot the information accumulation and the cost of selection bound based on
the Wright-Fisher model, and the fitness flux bound based on the Moran model.

B.10.4 Interpretation of the bounds under diffusion
The cost of control is non-negative and determined solely by the magnitude of the selection
term asg, with the inverse drift covariance b−1

gg′ acting as the metric. As shown in Sec. B.7 and
Fig. B.2A, this is proportional to the variance in fitness,

d

dt
D(X t) ≤ N⟨C⟩t ≈ N

2 ln 2⟨V ⟩t. (B.116)

In Fig. B.2BC, this bound starts off large and reduces slightly as selection removes variation
from the population. It remains positive at the stationary state, where it represents the cost
of maintenance.
In contrast, the fitness flux bound in Eq. (B.114) contains the sum asg + ag, corresponding to
selection and mutation contributions to the fitness flux. As a result, the fitness flux bound
can be written as a sum of a selection term and a mutation term,

d

dt
D(X t) ≤ 2N⟨ϕ⟩t = 2N

ln 2⟨V ⟩t⏞ ⏟⏟ ⏞
Selection term

+ 2
ln 2

∫︂
ψ ag b

−1
gg′ asg′ dx.⏞ ⏟⏟ ⏞

Mutation term

(B.117)

The selection term is proportional to the fitness variance – like the cost of selection bound,
but with a 4 times higher numerical coefficient. When the selection term in Eq. (B.117)
dominates (a regime also discussed in Mustonen and Lässig (2010)), the two bounds are
proportional to each other, but the cost of selection bound is tighter. In general, the mutation
term in Eq. (B.117) causes the two bounds to behave in qualitatively different ways. Notably,
the mutation term can be substantial and comparable to the selection term even when the
parameters N, s, µ suggest that selection is strong and mutation is weak (i.e. under any or
all of the conditions Ns ≫ 1, Nµ ≪ 1 and s ≫ µ). We illustrate and explain this in the
following paragraphs.
Fig. B.2A shows that the selection term in Eq. (B.117) dominates especially at intermediate
allele frequencies (around xA = 0.5), where the fitness variance is high and mutation in
opposing directions cancels out. Near xA = 0, fitness variance is low and mutation towards
the fitter allele A leads to a positive expected fitness flux. Near xA = 1, mutation towards the
deleterious allele a dominates and leads to a negative expected fitness flux (Fig. B.2A).
This enables a more detailed understanding of the fitness flux bound in the scenario in Main
Text Fig. 3.4 and Fig. B.2C. The system is initialized at the neutral stationary distribution,
which is symmetric. Therefore the mutation term in fitness flux vanishes, because the positive
and negative contributions (at xA < 0.5 and xA > 0.5 respectively) cancel out. The bound
is therefore proportional to the average fitness variance. Over time, as selection shifts the
distribution towards higher xA, mutation contributes more and more negatively, until the
mutation and selection terms exactly cancel at stationarity. This happens regardless of N,µ
and s. At stationarity, populations fluctuate around frequencies where mutation and selection
are balanced, typically close to xA = 0 or xA = 1.
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The only regime when the selection term dominates fitness flux for an extended period of
time is when not only mutation is weak overall, but also the population is initialized at an
intermediate frequency. This is shown in Fig. B.3, which uses the same parameters as Fig. B.2C,
but the population is initialized at the frequency xA = 0.5.
Note that only the process with selection can be initialized at xA = 0.5. The neutral process
must always be at the neutral stationary distribution to satisfy the assumptions of the fitness
flux theorem. As a result, the information D(X t) is very high initially and decreases until
drift spreads out the distribution ψXt towards xA = 0 and 1. Later, D(X t) slightly increases
over a much longer (mutation-limited) time scale, see Fig. B.3A. The early phase is useful for
illustrating the behavior of the fitness flux and the cost of selection, but neither bound is very
informative there, as information is being lost.
In Fig. B.3B we plot the increments in information, the fitness flux bound and the cost of
selection bound per generation. Both bounds are proportional to the relative fitness variance
in the early phase at intermediate frequencies, albeit with different proportionality constants
(full and dotted purple lines in Fig. B.3B). In the later phase, when the population is mostly
fixed for one of the alleles, the mutation term in Eq. (B.117) becomes important and negative,
and the fitness flux bound departs from the fitness variance approximation.

B.11 Frequency dependent selection that maximizes
fixation probability

In Main Text Fig. 3.3CD, we compare the efficiency of selection (accumulated information
per unit cost of selection) under constant selection, and under a specific form of frequency
dependent selection. This frequency dependence is optimal in the sense that it maximizes
the fixation probability of A at a given cumulative cost of selection. Below we describe the
optimization procedure.
The calculation is done using a single locus, two allele Wright-Fisher model as described in
Sec. B.4, but instead of a single selection coefficient, we have a vector

s =
(︃
s (0) , s

(︃ 1
N

)︃
, s
(︃ 2
N

)︃
, . . . , s (1)

)︃⊺

(B.118)

of selection coefficients s(xA) for each possible allele frequency xA. Given s, we can compute

• The (right stochastic) transition matrix P (s) according to Eq. (B.10), using the respective
selection coefficient for each starting frequency (rows of P (s)).

• The vector ψfix(s) of fixation probabilities for each possible starting frequency. It is
given by the last column of the matrix power P (s)t at infinite time t → ∞. Numerically,
we keep doubling t, until the total probability that neither allele is fixed is less than 10−6

for all starting frequencies.

• The vector c(s) of cost of selection at each frequency,

c(s) =
(︃
C (0) , C

(︃ 1
N

)︃
, C

(︃ 2
N

)︃
, . . . , C (1)

)︃⊺

. (B.119)

Note that C(0) = C(1) = 0 since there is no fitness variation when one of the alleles is
fixed.
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Figure B.3: Demonstration of the fitness flux and the cost of selection bounds in the single locus,
two allele system initialized at an intermediate frequency xA = 0.5. Note that only the process with
selection is initialized at xA = 0.5; the neutral process must always be at the neutral stationary
distribution to satisfy the assumptions behind the fitness flux theorem. This leads to a high initial
value of D(Xt) at t = 0. Calculated using the discrete Moran model with the same parameters as in
Fig. B.2C.
(A) The cumulative information at the population level (D(Xt), blue) and genotype level (D(Gt),
orange), as well the cumulative fitness flux (2Ne⟨ϕ⟩0,t, gray) and cumulative cost of selection
(Ne⟨C⟩0,t, black). D(Xt) starts out high due to the initial distribution being different under selection
than under neutrality (D(X0) ≈ 12.3 bits, outside the plot range, in all three cases). At first, drift
causes the distribution under selection to spread out towards extreme frequencies, D(Xt) decreases
on the time scale of ∼ Ne = 100 generations. Meanwhile, D(Gt) accumulates as the mean frequency
xA increases from 0.5 due to selection. The two measures of information eventually reach similar
values, since mutation is low and the population is mostly fixed for one of the alleles. The cumulative
fitness flux and cost of selection upper bound the cumulative information increase D(Xt) −D(X0),
but are not very informative in this case, because despite selection acting, D(Xt) started at a value
that is higher than can be maintained and is lost rather than accumulated.
(B) The increase of information per generation on the population and genotype levels (∆D(Xt),
blue dashed; ∆D(Gt), orange dashed), and the upper bounds in terms of fitness flux (2Ne⟨ϕ⟩t, gray
dashed) and the cost of selection (Ne⟨C⟩t, black dashed). Note the log scales on both axes. Initially,
∆D(Xt) is negative and falls outside of the plot as drift spreads out the distribution over allele
frequencies. Meanwhile, ∆D(Gt) is positive as the mean frequency xA increases due to selection –
this is associated with a positive fitness flux and cost of selection. After about 2Ne = 200 generations,
one of the alleles is likely to be fixed by drift, but the mean frequency continues to slowly increase at
a mutation-limited rate (time scale 1/µ = 104 generations), which also causes modestly positive
∆D(Xt) and ∆D(Gt). In this phase, the cost of selection remains nearly constant, while fitness flux
slowly decays, providing a fairly tight bound on ∆D(Xt). The cost of selection bound can be very
well approximated with the relative fitness variance (Ne⟨V ⟩t/(2 ln 2), purple solid line). The fitness
flux is proportional to the fitness variance in the first phase, when xA is near 0.5 (2Ne⟨V ⟩t/ ln 2,
purple dotted line), but departs from it later as xA tends to take values near 0 or 1 where mutation
is important (see Fig. B.2A). We note that similar behavior can also observed for different values of
Neµ,Nes.
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• The vector γ(s) of expected total cost of selection until either allele is fixed, for each
starting frequency. The first and last elements are again equal to zero, since one of the
alleles is fixed and no more cost is incurred. The remaining elements can be computed
using the recurrence relation

γ(s) = c(s) + P (s)γ(s), (B.120)

where c(s) is the immediate cost and P (s)γ(s) is the expected future cost. Eq. (B.120)
can be solved for γ(s) as a system of linear equations.

• The value vector v(s) = ψfix(s) − λγ(s), where λ is the Lagrange multiplier which
quantifies the constraint on the total cost.

We look for s which maximizes value v(s). This is an instance of a Markov decision process
Bellman (1957) similar to the pursuit/first passage problem Eaton and Zadeh (1962) with
a small modification to include an unwanted absorbing state (loss of the A allele). The
frequency-dependent selection s corresponds to the decision policy. The optimal policy does
not depend on time or the initial state, and maximizes all elements of v(s) simultaneously
Eaton and Zadeh (1962).
We optimize s iteratively. It is initialized at all zeros, and we alternate between a value update
and a policy (selection) update,

Value update: v := v(s) = ψfix(s) − λγ(s) (B.121)
Policy update: s := argmaxs (P (s)v − λc(s)) (B.122)

The value update uses the current estimate of s. The policy update uses the current estimate
of v to compute the selection coefficient at each frequency, which maximizes the expected
value in the next step, minus the immediate cost. The maximization is independent for each
element of s and is done by binary searching for zero gradient (log10 s in range from 10−5 to
102, binary search depth 10).
To produce Fig. 3.3CD, we vary the cost constraint λ and compute s by 60 value-policy
update iterations. Examples of the frequency dependent s are shown in Fig. B.4A. Notably,
selection is strongest at low frequencies of xA when A is at the greatest risk of being lost,
but weak at higher frequencies to reduce costs. Fig. B.4B,C show the fixation probability
ψfix(s) and the expected total cost γ(s) for each starting frequency, from which the Main
Text Fig. 3.3CD uses only the values for the initial frequency 1/N .
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Figure B.4: Frequency dependent selection that optimizes fixation probability of an allele at a
constrained total cost.
(A) The frequency dependent selection coefficient s, computed as described in Sec. B.11, under
various cost constraints λ. When this constraint is greater, selection is weaker overall.
(B) Fixation probability ψfix(s) of the allele A for each starting frequency xA. The fixation probability
is close to the frequency itself under weak selection (large λ), and higher when selection is overall
stronger.
(C) The expected total cost of selection, γ(s) associated with trajectories starting from each initial
frequency xA. It is low for high frequencies, where the allele A is expected to be fixed soon, and for
low frequencies under weak selection, where it is expected to be lost soon.
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