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ABSTRACT
Electrostatic correlations between ions dissolved in water are known to impact their transport properties in numerous ways, from conductivity
to ion selectivity. The effects of these correlations on the solvent itself remain, however, much less clear. In particular, the addition of salt has
been consistently reported to affect the solution’s viscosity, but most modeling attempts fail to reproduce experimental data even at moderate
salt concentrations. Here, we use an approach based on stochastic density functional theory, which accurately captures charge fluctuations
and correlations. We derive a simple analytical expression for the viscosity correction in concentrated electrolytes, by directly linking it to
the liquid’s structure factor. Our prediction compares quantitatively to experimental data at all temperatures and all salt concentrations up to
the saturation limit. This universal link between the microscopic structure and viscosity allows us to shed light on the nanoscale dynamics of
water and ions under highly concentrated and correlated conditions.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0188215

I. INTRODUCTION
One mole of table salt is dissolved in a liter of pure water: how

does this addition modify the liquid’s viscosity? While this ques-
tion has been addressed in great detail by many experimentalists
over the past two centuries,1–3 their observations are often diffi-
cult to rationalize beyond the qualitative level. In particular, the
effects of electrostatic interactions between ions dissolved in water
are known to be manifold, with unclear consequences on the liquid’s
rheological properties. How these interactions impact ions’ trans-
port properties has been the subject of many modeling attempts
for over a century, starting with the seminal studies of Debye,
Hückel, Onsager, and others.4–6 Most existing theories of electroki-
netic transport share, however, many common shortcomings, such
as failing at high salt concentrations or for multivalent ions. In
addition, the exact nature of the coupling between the motion of dis-
solved ions and that of the surrounding solvent remains a very much
open question, even in the apparently simple case of ions in room
temperature water, let alone more complex environments, such as

nanoconfined or glass-forming liquids,7–9 where charge fluctuations
can play a key role.10

Here, we focus on the impact of the presence of salt on the
liquid’s viscosity. It had, indeed, be noticed first by Poiseuille1

that increasing the salt concentration generally also increases an
electrolyte’s viscosity, sometimes by up to one order of magnitude
near the saturation limit. Later, Jones and Dole3 noted that, in
most cases, the relative change in the liquid’s viscosity η followed
an empirical law—now known as the Jones–Dole equation—of the
form

Δη = η − η0 ≃ A
√

c + Bc, (1)

where η0 is the viscosity of the pure solvent at the same tempera-
ture, c is the salt concentration, and A and B are empirical salt- and
temperature-dependent parameters.

From the qualitative point of view, the origin of this “ionic
viscosity” can be readily understood. At thermal equilibrium, ions
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FIG. 1. Electrostatic correlations in aqueous electrolytes. (a) Debye correlation
cloud around a cation at thermal equilibrium. (b) Deformation of the correlation
cloud under a shear flow, in the reference frame of a cation. This deformation
allows ions to transmit momentum through the fluid via electrostatic interactions,
playing the role of an additional viscosity.

are typically surrounded by oppositely charged ions, creating the so-
called Debye correlation cloud extending over a typical scale known
as the Debye length [see Fig. 1(a)],

λD =

√
ϵkBT
2e2c

, (2)

where T is the temperature, ϵ is the solvent’s dielectric constant,
kB is Boltzmann’s constant, and e is the elementary charge. In
the presence of a fluid velocity gradient, however, the correlation
cloud is sheared [see Fig. 1(b)], and electrostatic forces between
ions contribute to homogenize momentum throughout the fluid,
effectively increasing its viscosity. Quantifying this effect is a notori-
ously hard problem, pioneered by Falkenhagen and co-workers.11

They obtained that, in the limit of infinite dilution, ion–ion
electrostatic interactions are responsible for a viscosity increase
of the form

Δηion−ion =
1

60

√
ℓBc
√

8π
kBT
D

, (3)

where we introduced the diffusion coefficient D of ions as well as
the Bjerrum length ℓB, which measures the strength of electrostatic
interactions,

ℓB =
e2

4πϵkBT
. (4)

This result yields a theoretical prediction for the value of the coeffi-
cient A of the Jones–Dole equation (1). This prediction compares
favorably to experiments in the limit of a very high dilution (see
Fig. 2).

At higher concentrations, the B term introduced by Jones and
Dole is generally interpreted as describing how individual ions
perturb the solvent—an effect that is a priori linear with salt concen-
tration. It was initially believed that ions that reinforce the hydrogen
bond network of water (known as kosmotropes) were associated
with positive values of B and ions that weaken it (chaotropes) with
negative values.. Yet, recent studies have shown that, while this effect
does seem to originate in local electrostatic interactions between
ions and water, it does not correspond to large-scale changes in the

FIG. 2. Comparison between experimental data and the Falkenhagen limiting
law. Blue points: Experimental data for a NaBr solution at 25 ○C. [Reproduced
with permission from Isono, J. Chem. Eng. Data 29, 45–52 (1984). Copyright
1984 American Chemical Society.] Red line: Falkenhagen limiting law, Δη∝

√

c.
Yellow line: Power law fit Δη∝ c1.5 in the limit of high concentrations.

solvent’s structure.12,13 In addition, adding this phenomenological
term only provides a good agreement with experimental data for
concentrations up to around 100 mM.

Based on these observations, one can write the viscosity
increment as the sum of two terms,

Δη = Δηion−ion + Δηion−water, (5)

where Δηion–ion (respectively, Δηion–water) corresponds to the contri-
bution of ion–ion (respectively, ion–water) interactions.

Various attempts at extending the Jones–Dole law were
reported in the literature;15–17 they generally amount to adding phe-
nomenological terms scaling as c2, c log c, etc., emerging from, for
example, volume exclusion effects, ion–ion interactions, or elec-
trostatic barriers for microscopic rearrangements—without strong
theoretical evidence for any of the suggested scalings. In addition,
the suggested models contain various fitting parameters that do not
allow for easy physical interpretation, or only compare reasonably
to certain salts or experimental conditions. As an example of such
limitations, in the limit of very high concentrations (above 1M), the
viscosity increment seems to scale as c3/2; see Fig. 2 in the case of
sodium bromide (NaBr). This scaling differs from the ones often
used in the literature to extend the Jones–Dole law.

It is not a priori clear whether these high-concentration devia-
tions arise from ion–ion or ion–water interactions. However, rescal-
ing the viscosity increment by the viscosity of pure water η0(T), and
plotting it as a function of the quantity cℓB, experimental data for
a given salt at all temperatures seem to collapse on a single master
curve at high concentrations (see Fig. 3). Since cℓB ∝ λ−2

D is a mea-
sure of electrostatic correlations between ions, this observation sug-
gests that high concentration deviations arise mostly from ion–ion
interactions.

Based on these observations, we develop in this paper a field-
theoretical approach for the description of this ionic viscosity and
show that it can be directly determined from the charge structure
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FIG. 3. Rescaled viscosity increment as a function of concentration and temper-
ature. x axis: c × ℓB (note that ℓB depends on temperature); y axis: Δη/η0(T).
The symbols represent experimental data for KF, CaCl2, and LaCl3. [Reproduced
with permission from Isono, J. Chem. Eng. Data 29, 45–52 (1984). Copyright
1984 American Chemical Society and Goldsack and Franchetto, Can. J. Chem.
56, 1442–1450 (1978). Copyright 1978 Canadian Science Publishing.] Colors
represent temperatures. Black lines are a guide to the eye.

factor of the electrolyte. The latter can be determined, thanks to a
stochastic density functional theory based on the Dean–Kawasaki
equation,19,20 which has recently proved successful at determining
various properties of electrolytes.21–24 In particular, we make use of
a technique introduced by Avni and co-workers22 to cut off electro-
static interactions at short distances, enabling to better describe the
structure of concentrated electrolytes.

Overall, we show as our main result that the viscosity increment
can be determined analytically as a Fourier space integral,

Δηion−ion =
c

15(2π)2
kBT
D ∫ dqV(q)

d
dq
[q2C0

ρ(q)
∂C0

ρ

∂q
], (6)

where V(q) is the Fourier-transformed ion–ion interaction poten-
tial (e.g., electrostatic or van der Waals interactions) and C0

ρ is the
charge structure factor of the electrolyte at thermal equilibrium in
the absence of any flow—directly linking the electrolyte’s micro-
scopic structure to a macroscopic quantity such as viscosity. Based
on this result, a simple Ansatz for the viscosity of concentrated
electrolytes is found to be

Δη = B(T)c +
1

60
√

8π
kBT
D
[
√
ℓBc + 6πa2

(ℓBc)3/2
], (7)

where the only new parameter introduced by our model is the ionic
size a, allowing for straightforward physical interpretation. We show
that this theoretical result compares favorably to experimental data
under nearly all conditions of temperature, concentration, salt com-
position, and valence and can correctly predict viscosity increments
of more than 300%, in the case of multivalent salts close to the
saturation limit.

This paper is organized as follows: in Sec. II, we present our
field-theoretical framework and derive Eq. (7). Readers not inter-
ested in the details of the computation may skip Secs. II B–II F

and go directly to Sec. III, where we compare our predictions to a
large body of experimental data. We also provide a simple, quasi-
quantitative interpretation of our result. Finally, Sec. IV establishes
our conclusion.

II. FROM ELECTROSTATIC CORRELATIONS
TO THE IONIC VISCOSITY
A. Hydrodynamics with ions

We consider an aqueous solution containing some monova-
lent binary salt X+, Y− with concentration c, subjected to a shear
flow. We only consider ion–ion interactions and, therefore, treat
water as a continuous fluid with a given permittivity ϵ(T). We
assume that both types of ions are monovalent with the same dif-
fusion coefficient D and have the same physical size; the relaxation
of these assumptions will be discussed later. We denote by u(r)
the local fluid velocity, p(r) the pressure field, n+(r) the local den-
sity in cations, and n−(r) the local density in anions. We define
ρ(r) = n+(r) − n−(r) the local charge density. It should be noted
that ⟨ρ⟩ = 0 due to electroneutrality and that ⟨n+⟩ = ⟨n−⟩ = c. In the
limit of low Reynolds numbers, the velocity field solves the Stokes
equation,

η0∇
2u −∇p + f(r) = 0, (8)

where f represents all body forces acting on the fluid, other than
pressure. If the fluid is subject to no external force, then f(r) corre-
sponds only to interactions between dissolved ions at position r and
other ions elsewhere, which derives from an interaction potential
V(r),

f(r) = −kBT ∫ dr′ρ(r)∇V(r − r′)ρ(r′). (9)

In the simplest case, where we assume that ions are point particles
with no short-range repulsion, the interaction potential is simply
the Coulomb potential: V(r) = e2

/4πkBTϵr = ℓB/r. Other situations
will also be addressed later. Since the fluid is electroneutral on aver-
age, ⟨ρ⟩ = 0 and the net force ⟨f⟩ acting on the fluid is solely due
to local and random charge fluctuations. Introducing the Fourier
transform as

f(k) = ∫ f(r)eik⋅r dr, (10)

we can express the electrostatic force as

⟨f(k)⟩ =
kBT
(2π)3 ∫ dq⟨ρ(k − q)ρ(q)⟩(iq)V(q). (11)

This force vanishes at equilibrium due to the problem’s symme-
tries but may take a non-zero value in the presence of an external
shear flow. The last equation allows us to directly link ⟨f⟩ to the
electrolyte’s charge structure factor defined as

Γρ(k, k′) = ⟨ρ(k)ρ(k′)⟩. (12)

The goal of Secs. II B–II F is, therefore, to compute this structure
factor using a field-theoretical approach and to use Eq. (11) to show
that

⟨f(k)⟩ ≃ −k2Δηu(k). (13)
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To do so, we first compute the structure factor Γρ at equilibrium (i.e.,
in the absence of any flow) and use it to compute the effect of advec-
tion by the solvent when an external flow is present. We then deduce
a first-order correction of the structure factor and use Eq. (11) to
obtain the viscosity correction. We now present the details of this
computation.

B. Charge fluctuations and the Dean–Kawasaki
equation

The local charge density ρ can be determined by computing
the fluctuations of the local cation and anion densities, n+ and n−,
around their mean value c. These fluctuations can be described by
the Dean–Kawasaki equation,19,20 which has recently been used to
compute the conductivity of concentrated electrolytes accurately.23

It reads

∂tn± = −∇ ⋅ (n±u) +D∇2n± ±D∇⋅

× ∫ dr′n±(r)∇V(r − r′)ρ(r′) +
√

2Dn±(r)∇ ⋅ ζ±, (14)

where ζ+ and ζ− are uncorrelated white noise fluxes with zero mean
and unit variance. The first term on the right-hand side corre-
sponds to advection by the solvent, the second to ion diffusion, the
third to ion–ion interactions, and the last one to random Brownian
fluctuations.

In what follows, we assume that fluctuations of n+ and n− are
small compared to the average value c so that we may work at first
order in δn± = n± − c and ζ±. Since ρ = n+ − n− and ∇ ⋅ u = 0 due
to the fluid being incompressible, we obtain

∂tρ = −u ⋅∇ρ +D∇2ρ + 2cD∇ ⋅ ∫ dr′∇V(r − r′)ρ(r′) +
√

4Dc∇ ⋅ ζ
(15)

or, in Fourier space,

∂tρ(k) =
1
(2π)3 ∫ dq u(k − q) ⋅ iqρ(q) −Dk2ρ(k)

−Dκ2
Dρ(k) − i

√
4Dckζ. (16)

Note that we made use of the fact that the sum of two Gaussian
vectors itself is a Gaussian vector, with additive variance, and that
V(q) = 4πℓB/q2 in the case of point-like ions. We also introduced
the inverse Debye length κD = λ−1

D .
The last equation can be seen as an evolution equation of the

form

∂tρ = (−a + iL) ⋅ ρ + b, (17)

where ρ is the vector {ρ(k)}k and the operators a, b, and L are given
by

a = diag{Dk2
+Dκ2

D}k, (18)

b = {−i
√

4Dckζ(k)}
k
, (19)

L ⋅ f (k, k′) =
1
(2π)3 ∫ dq u(k − q) ⋅ q f (q, k′). (20)

We may now integrate Eq. (16) over time, assuming that the initial
condition vanishes,

ρ(k, t) = [∫
t

0
e(−a+iL)(t−s)

⋅ b ds]
k
. (21)

The charge structure factor can now be obtained as

Γρ(k, k′; t) = ⟨ρ(t) ⋅ ρ†
(t)⟩

kk′
= ∫

t

0
ds∫

t

0
ds′e(−a+iL)(t−s)

⋅

× ⟨b ⋅ b†
⟩ ⋅ e(−a−iLT

)(t−s′). (22)

Since we are interested in static correlations, we now take the limit
t →∞ and use the fact that

⟨ζ(k, t)ζ(k′, t′)⟩ = (2π)3δ(k + k′)δ(t − t′). (23)

We obtain (see Ref. 25)

(−a + iL) ⋅ Γρ + Γρ ⋅ (−a − iLT
) = −4Dck2

(2π)3δ(k + k′) (24)

or, using the definition of L and a,

D(k2
+ k′2 + 2κ2

D)Γρ(k, k′) −
i

(2π)3 ∫ dq u(k − q) ⋅ qΓρ(q, k′)

+
i

(2π)3 ∫ dq u(k′ − q) ⋅ qΓρ(k, q)

= 4Dck2
(2π)3δ(k + k′). (25)

Equation (25) cannot be solved directly. However, since we only
wish to compute ⟨f⟩ up to linear order in the velocity field u, one
may use a perturbative approach, which we now describe. At zeroth
order in u, one may set L and obtain

Γ0
ρ(k, k′) = (2π)3δ(k + k′)

2ck2

k2
+ κ2

D
= (2π)3δ(k + k′)g(k). (26)

To obtain the correction at first order in u, one may simply replace
Γρ by Γ0

ρ in all convolutions in Eq. (25). We obtain

Γρ(k, k′) = Γ0
ρ(k, k′) −

u(k + k′) ⋅ (ik′g(k′) − ikg(k))
D(k2

+ k′2 + 2κ2
D)

. (27)

Inserting this result into Eq. (11) then yields

⟨f(k)⟩ =
kBT
(2π)2D

2ℓB ∫ dq
g(q) − g(k − q)

q2
+ (k − q)2

+ 2κ2
D

qq
q2 ⋅ u(k). (28)

Note that we have used the incompressibility condition u(k) ⋅ k = 0.
To compute this integral, we use spherical coordinates (q, θ, ϕ) to
describe the Fourier space, with k being the reference for angles. We
have

qq
q2 =

⎛
⎜
⎜
⎜
⎜
⎝

cos2 θ sin θ cos θ cos ϕ sin θ cos θ sin ϕ

sin θ cos θ cos ϕ sin2 θ cos2 ϕ sin2 θ sin ϕ cos ϕ

sin θ cos θ sin ϕ sin2 θ sin ϕ cos ϕ sin2 θ sin2 ϕ

⎞
⎟
⎟
⎟
⎟
⎠

.

(29)
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The rest of the integrand does not depend on ϕ, so we can write

∫

2π

0
dϕ

qq
q2 = π

⎛
⎜
⎜
⎜
⎜
⎝

2 cos2 θ 0 0

0 sin2 θ 0

0 0 sin2 θ

⎞
⎟
⎟
⎟
⎟
⎠

. (30)

Note that the first diagonal coefficient is irrelevant since we only
wish to evaluate the tensor on a vectorial subspace orthogonal
to k due to incompressibility. Since we interpret f as a viscous
force, we are interested in its long wavelength limit k→ 0 [see
Eq. (13)]. Expanding to second order in k and integrating over θ,
we obtain

⟨f(k)⟩ ≃ −
kBT
D

ℓB
2

15π
c∫

∞

0
dqκ2

Dq2 5κ2
D − q2

(κ2
D + q2

)
4 k2u(k)

= −
kBT
D

ℓBc
1

60κD
k2u(k). (31)

Comparing with Eq. (13), we find that, indeed, electrostatic
interactions between ions effectively increase the fluid’s viscosity by

Δηion−ion =
1

60
√

8π
kBT
D

√
ℓBc, (32)

which corresponds to the Falkenhagen limiting law.11

C. General case: Universal link between the charge
structure factor and the viscosity increment

The above Fourier-space approach has the advantage of being
computationally lighter than Falkenhagen’s historical real-space
derivation (which made extensive use of spherical harmonics) and of
offering a straightforward way of extending the result to any desired
accuracy, provided that the charge structure factor in the absence
of flow Γ0

ρ is known, and might deviate from Eq. (26) due to non-
Coulombic interactions between ions, e.g., short-distance repulsion.
In the case of a generic interaction potential V(k), due to trans-
lation invariance in the absence of external flow, Γ0

ρ can always be
written as

Γ0
ρ(k, k′) = 2c(2π)3 δ(k + k′)C0

ρ(k), (33)

where we introduced the rescaled structure factor C0
ρ(k). One can

then express the viscosity increment as a function of this quantity
alone,

Δη = lim
k→0

1
(2π)3k2

kBT
D ∫ dqV(q)

×
C0

ρ(q) − C0
ρ(k − q)

(k − q)2C0
ρ(q) + q2C0

ρ(k − q)
C0

ρ(q)C
0
ρ(k − q)qq. (34)

If we assume ions to be perfectly spherical, then C0
ρ(k) only depends

on k. This assumption is valid for atomic ions (Na+, Cl−, etc.) and
is an approximation in the case of molecular ions (SO2−

4 , NO−3 , etc.).
We can, therefore, expand the integrand for k→ 0 and perform the
integral of ϕ and θ, yielding

Δηion−ion =
c

15(2π)2
kBT
D ∫ dqV(q)

d
dq
[q2C0

ρ(q)
∂C0

ρ

∂q
]. (35)

In the above case where ions interact through electrostatics
alone, with no short-range repulsion, the rescaled structure factor
is given by

C0
ρ(k) =

k2

k2
+ κ2

D
, (36)

and Eq. (35) is equivalent to Eqs. (13) and (32). However, Eq. (36)
only provides a very rough estimate of the electrolyte’s structure
factor, which can be determined from numerical simulations or
experiments. For example, Fig. 4(a) shows a comparison between
Eq. (36) (red line) and results from molecular dynamics simula-
tions of a concentrated NaCl solution26 (blue circles). The above
Ansatz fails at capturing the layered structure of ionic correlations at
high concentrations, as those emerge from short-distance repulsions
between ions.

Consequently, a straightforward way of improving
Falkenhagen’s result is to use a more precise Ansatz for C0

ρ(k)
and insert it into Eq. (35). Although this Ansatz does not need to be
physically motivated as long as it faithfully reproduces experimental
and numerical data, we report results to this end in Sec. II D, making
use of a simple model first introduced by Ref. 22.

D. Finite ion size and truncated Coulomb potential
Introducing a short-distance repulsion between ions in the

Dean–Kawasaki equation unfortunately makes the computation
intractable. However, Avni and co-workers suggested an alterna-
tive approach to account for the finite size of ions:22 truncating the
Coulomb potential at some finite cutoff distance a, and setting the
ion–ion interaction to zero below a [see Fig. 4(b)],

V(r) =
ℓB

r
→

ℓB

r
H(r − a), (37)

with H being the Heaviside step function. In Fourier space, this
corresponds to

V(k) = 4π
ℓB

k2 → 4π
ℓB

k2 cos ka. (38)

While this constitutes an apparently uncontrolled approximation,
this trick generally yields accurate results, at very little mathematical
cost.

Overall, the above derivation of Γ0
ρ still holds, replacing κ2

D by
κ2

D cos ka in Eq. (16). The equilibrium structure factor C0
ρ is then

given by

C0
ρ(k) =

k2

κ2
D cos ka + k2 . (39)

This result is shown in Fig. 4(a) (yellow line) and captures the
essential features of the numerical data. Therefore, truncating the
electrostatic potential appears to a be viable strategy to accurately
describe the structure of concentrated electrolytes.

Injecting now Eq. (39) into (35), we obtain at leading order in a

Δηion−ion =
1

60
√

8π
kBT
D
[
√
ℓBc + 6πa2

(ℓBc)3/2
]. (40)

Equations (35) and (40) constitute the main result of this work.
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FIG. 4. Effective cutoff electrostatic potential. (a) Charge structure factor of a concentrated electrolyte. Blue points: Molecular dynamics simulation of a solution of NaCl with
concentration c = 1.23M (adapted from Ref. 26). Red line: Eq. (26) (no cutoff). Yellow line: Eq. (39) (cutoff a = 3 Å). (b) Definition of the short-distance cutoff a. a corresponds
roughly to the distance of minimal approach between two ions: instead of introducing a short-distance repulsion, the interaction potential is simply truncated below a.

E. Multivalent ions and asymmetric salts
In Secs. II A–II D, we only considered the case of a monovalent

binary electrolyte X+, Y−. However, the discussion can be extended
in a straightforward manner to multivalent salts of the type z : 1 or z :
z with z > 1. Noticing that ρ = z+n+ − z−n−, all the above derivations
can be redone, yielding

Δη =
1

60
√

8π
kBT
D
[
√

zz̄ℓBc + 6πa2
(zz̄ ℓBc)3/2

], (41)

with z̄ = z or (z + 1)/2 depending on z : z or z : 1 salt, respectively.
In a similar manner, the case where cations and anions have

different diffusion coefficients, say D+ and D−, can also be treated
analytically; see Refs. 11 and 23. It can be shown that all the above
computations still hold, replacing the quantity D by an effective
coefficient,

Deff =
(z+ + z−)D+D−

D+z− +D−z+ − 4z+z−( D+−D−√
D++D−

√
z++z−+

√
D+z++D−z−

)
2 . (42)

In the above derivation, we also used the same cutoff distance
a for cation–cation, cation–anion, and anion–anion interactions.
One could, in principle, define specific values of a for cation–cation
and anion–anion interactions and then use mixing rules for cross-
interactions. Doing so has been reported to only marginally affect
the results;23 therefore, we use a single value of a for all types of
interactions.

F. Discussion of the cutoff potential
Finally, let us comment on the choice of the cutoff potential.

While the combination of the cutoff potential and the stochastic
density functional theory has been shown to be quite powerful to
account for finite size effects in the transport dynamics of con-
centrated electrolytes,22 recent developments24 have suggested that
details of the cutoff potential may need to be chosen carefully. In

particular, Ref. 24 suggests setting the potential to some finite value
v0 (which may be positive or negative) at distances smaller than a,

V(r) =
ℓB

r
H(r − a) + v0H(a − r). (43)

In this case, it can be shown that the ion–ion correlator becomes

C0
ρ(k) =

k2

k2
+ κ2

D cos ka + v0κ2
D(sin ka − ka cos ka)/ℓBk

. (44)

Inserting again this result into Eq. (7), we obtain

Δη =
kBT
√
ℓBc

60D
√

8π
[1 + 6πa2

[1 −
2
3

av0

ℓB
]ℓBc], (45)

which is identical to the previous result, with a being effectively
replaced by a

√
1 − 2av0/3ℓB.

Since we can a priori expect v0 to be at most of the order of
ℓB/a, this modification essentially amounts to modifying a by a fac-
tor of order unity. Our results should, therefore, not depend too
much on the exact details of the cutoff potential. In what follows,
we come back to the simple case where v0 = 0 and, instead, treat a as
an adjustable parameter.

III. INTERPRETATION AND COMPARISON
WITH EXPERIMENTAL DATA
A. Physics of the ionic viscosity and the truncated
potential

At the semi-quantitative level, one can interpret the Falken-
hagen limiting law [Eq. (32)] and the existence of a viscosity
increment at low concentrations as follows. As previously stated,
ions in an electrolyte at equilibrium are typically surrounded by a
Debye atmosphere bearing an opposite charge and distributed over
a typical length scale λD.

Let us now consider the case where an external flow is applied
on the electrolyte, with a given velocity gradient ∂u

∂z ; see Fig. 1(b).
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We notice that, since ions in the correlation cloud are typically sep-
arated by λD, they will feel different solvent velocities, typically by
an amount λD

∂u
∂z (z), where ∂u

∂z is the external velocity gradient.
Therefore, an anion in the Debye cloud surrounding a cation will
be on average pulled away by a force λD

∂u
∂z /μ, where μ is the ion’s

mobility. The energy landscape of the Debye atmosphere is locally
modified by ΔE ∼ λ2

D
∂u
∂z /μ upstream of the flow and by −ΔE down-

stream: the probabilities of finding an anion there are modified by
e±ΔE/kBT , tilting the cloud along the velocity profile [see Fig. 1(b)].
Since each ion in the correlation cloud is exerting an average force
e2
/4πϵλ2

D on the central cation, the latter overall feels a net force of
the order of

λ2
DℓB

λ2
Dμ
(
∂u
∂z
(+λD) −

∂u
∂z
(−λD)) ∼

λDℓB

μ
∂2v

∂z2 . (46)

Since the electrolyte has a concentration c, the overall force exerted
on the liquid is

f ∼
cℓBλD

μ
∂2u
∂z2 , (47)

which shows that the presence of ions is equivalent to an additional
viscosity of the order of

Δη ∼
cℓBλD

μ
∼

1
μ

√
ℓBc. (48)

Importantly, this simple argument explains why this correction
scales as the inverse of the mobility μ, and identifies the quantity
ℓBc as the main relevant parameter.

Furthermore, the use of the truncated potential (38) can be jus-
tified from the theoretical point of view by comparing this Ansatz
to the so-called Poisson–Fermi equation introduced to account for
crowding effects in concentrated electrolytes,27

(1 − ℓc
2
∇

2
)∇

2V = −4πℓBρ, (49)

where ℓc is a measure of the ionic size. Solving Eq. (49) around a
point-like charge ρ = δ(r) and Fourier transforming yields

V(k) =
ℓB

k2
4π

1 + ℓc
2k2 ≃ 4π

ℓB

k2 [1 − ℓc
2k2
] ≃ 4π

ℓB

k2 cos 2kℓc, (50)

which corresponds to Eq. (38) with a = 2ℓc, strengthening our
otherwise uncontrolled approximation.

Finally, we can interpret the fact that truncating the potential
actually results in a larger viscosity correction. The charge structure
factor contains terms corresponding to cation–cation, anion–anion,
and cation–anion correlations. If no interaction cutoff nor short-
distance repulsion is introduced, then nothing prevents oppositely
charged ions to significantly overlap each other, being separated
by λD, which can become smaller than a at high concentrations.
If ions overlap, they essentially form a neutral pair that does not
interact with the environment and becomes ineffective at trans-
mitting momentum over large distances. Instead, if ions cannot be

TABLE I. Diffusion coefficients of ions at 25 ○C.

Ion D (10−9 m2/s)

Na+ 1.33
K+ 1.96
Li+ 1.03
Ag+3 1.65
Ca2+ 0.79
Mg2+ 0.705
Ba2+ 0.848
Sr2+ 0.794
Cd2+ 0.717
La3+ 0.629
Cl− 2.03
NO−3 1.9
SO2−

4 1.07
Br− 2.02

TABLE II. Fitted values of a and original papers of experimental datasets for the
studied salts.

Salt a (Å) References

NaCl 5.5 32
NaBr 8.5 14 and 18
NaNO3 9.0 14
KNO3 9.4 14
KF 6.5 32
KBr 5.0 32
KCl 6.5 32
LiCl 6.5 30 and 32
AgNO3 6.5 31
CaCl2 7.0 14
MgCl2 8.0 14
BaCl2 5.0 3 and 14
SrCl2 8.5 14
LaCl3 6.0 14
Na2SO4 8.5 14
Cd(NO3)2 7.5 14

closer than some finite distance a, then interactions are not entirely
screened off at high concentrations and the resulting ionic viscosity
continues to increase sharply.

B. Comparison with experimental data
In order to assert the validity of our model, we compare

our main result (7) [and its equivalent for multivalent salts, see
Eq. (41)] to experimental data accessible in the literature. We
mainly used the data collected by Isono,14 who systematically
reported the viscosity of a wide variety of electrolytes at temper-
atures ranging from 15 to 55 ○C and for concentrations between
0.05M and the saturation limit. His data unfortunately do not
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FIG. 5. Comparison between theory [Eq. (7)] and experimental data: effect of temperature and ion valence. Symbols: experimental data for KF, CaCl2, and LaCl3 at 25 ○C
(a)–(c) and 55 ○C (d). [Reproduced with permission from Isono, J. Chem. Eng. Data 29, 45–52 (1984). Copyright 1984 American Chemical Society and Goldsack and
Franchetto, Can. J. Chem. 56, 1442–1450 (1978). Copyright 1978 Canadian Science Publishing.] Solid line: this work, Eq. (7). Dashed line: Falkenhagen’s limiting law,
Eq. (32).

contain viscosity values at a very high dilution so that the Falken-
hagen regime Δη∝ c1/2 is often difficult to observe (see Fig. 2
for example). The validity of the Falkenhagen limiting law at low
concentrations, however, has been discussed elsewhere.28,29 In addi-
tion, we compared Isono’s data to experimental results by other
experimentalists.18,30–32 No difference was found between the dif-
ferent tested datasets, and nearly all compared favorably to our
model.

Overall, we tested Eq. (7) against data for the viscosity of the
following salts: NaF, NaCl, NaBr, NaNO3, KF, KCl, KBr, KNO3,
AgNO3, LiCl, CaCl2, MgCl2, BaCl2, SrCl2, LaCl3, Na2SO4, and
Cd(NO3)2.

Equation (7) contains three parameters that need to be speci-
fied: the Jones–Dole coefficient B(T), the ion diffusion coefficient
D, and the short-distance cutoff a.

For the diffusion coefficient, we used tabulated values at infi-
nite dilution (see Table I). Since its values are, in general, different
for cations and anions, we used Eq. (42) to determine the value
of the effective diffusion coefficient of the electrolyte. It should be
noted that the diffusion coefficients of electrolytes are found to
also depend on salt concentration;33 however, these observations are
obtained for a coarse-grained definition of the diffusion coefficient.
Since we are interested here in the microscopic dynamics of ions, we

assume that at the single-ion level, one may use the limit of infinite
dilution.

Since a can be thought of as a minimum approach distance
between two ions [see Fig. 4(a)], Avni and co-workers suggested set-
ting a to the sum of the two ionic radii (which can be determined
from crystallographic data, for example). This choice, however,
compares poorly to experimental data in our case. We found a bet-
ter agreement for higher values of a, which are more in line with
the hydrated diameter. As there is, in addition, an uncertainty on
the exact value of a (see Sec. II F), we used a as a fitting parameter
independent of temperature (see Table II).

The Jones–Dole coefficient B(T) was determined for each tem-
perature by examining experimental data for low concentrations.

Finally, note that ℓB itself depends on T, both directly through
Eq. (4) and indirectly through the dielectric constant of water
ϵ(T), which we determined from tabulated data.34 Like the diffu-
sion coefficient, ϵ(T) is known to depend on salt concentration
when measured over macroscopic samples, but since again we use
it here to describe the properties of water at the microscopic level
around individual ions, we used the value in the absence of salt. Tak-
ing this effect into account would amount to describing ion–water
interactions and the hydration shell around ions; these are already
encapsulated into B(T) and a, respectively.
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C. Results and discussion
Overall, we observed a very good agreement between experi-

ments and the model; see Fig. 5. Equation (7) quantitatively matched
with the literature data nearly up to the saturation limit, at all tested
temperatures [see Figs. 5(a)–5(c)], even for multivalent salts, such as
BaCl2 or LaCl3 [see Figs. 5(c) and 5(d)].

In most cases, the liquid’s viscosity increases with salt concen-
tration. This is not the case for certain salts, such as KCl, KBr, or
KNO3—the viscosity decreases in certain concentration and temper-
ature ranges. This effect, which is more pronounced for salts with
large, weakly charged anions, is thought to be caused by interactions
between ions and water molecules. It corresponds to negative values
of the Jones–Dole coefficient B(T), which are linked to changes in
the immediate environment of ions. In particular, salts that decrease
the liquid’s viscosity tend to be those with low hydration enthalpies
(for example, KCl, KBr, and KNO3—all have hydration enthalpies
below 700 kJ/mol35).

Our model is not able to predict which salt should result in a
negative viscosity increment, since it does not provide a prediction
for the B coefficient. The model, however, correctly predicts that vis-
cosity should increase sharply at high concentrations; see Fig. 5(f) in
the case of KNO3. In particular, the model provides a theoretical jus-
tification for the inclusion of an additional term in the Jones–Dole
equation, with a c3/2 scaling—other usual fitting Ansätze often lack a
theoretical ground.

The only deviation between the model and experimental data
was observed when the Jones–Dole coefficient B(T) changed sign.
While a good agreement was obtained for KCl, KBr, and KNO3 at
low temperature [where B(T) < 0 for these salts], the model com-
pared poorly to experimental data at higher temperatures, where
B(T) > 0. As this was only observed for salts for which B(T)
changes sign, we can suggest a modification in the hydration shell
of the ions to be at the source of this effect, for example. In all
other cases, the agreement was good in the entire temperature
range.

Finally, we observe that the fitted values of a are, for the most
part, well above the ionic radii of the corresponding salts. It should
be noted that the “correct” way of defining the ionic size depends
on the context; it seems that here one should consider hydrated
ions (with typical hydrated radii around 3–4 Å, corresponding
to a ∼ 6–8 Å).

IV. CONCLUSION
In this work, we derived a theoretical model for the vis-

cosity of concentrated electrolytes. Through the use of a field-
theoretical framework based on the Dean–Kawasaki equation, we
recovered and considerably extended the long-standing Falken-
hagen limiting law, providing a first theoretical insight into the
matter beyond the limit of infinite dilution. We showed that fluc-
tuations of charge result in an increase in viscous dissipation,
scaling as the salt concentration to the power 1.5 at high con-
centrations, in contrast to the traditional Jones–Dole equation and
similar empirical laws but in excellent agreement with experimental
data.

More importantly, we derived a general relation linking the
liquid’s microscopic structure factor to a macroscopic parameter like
viscosity:

Δηion−ion =
c

15(2π)2
kBT
D ∫ dqV(q)

d
dq
[q2C0

ρ(q)
∂C0

ρ

∂q
]. (51)

This result holds in principle regardless of the precise shapes
of the charge structure factor C0

ρ or the interaction potential V and
would be relevant in other contexts.

The conclusions of our work are twofold: first, it shows
the usefulness of the Dean–Kawasaki framework in establishing
fluctuation–dissipation relationships in complex contexts, such as
concentrated electrolytes. Indeed, direct computations of viscous
forces due to electrostatic interactions, in line with Falkenhagen’s
historical derivation, are particularly arduous and, therefore, only
tractable in simple cases, like that of infinite dilution. On the
contrary, our approach allows us to link quantities such as the
liquid’s viscosity to the charge structure factor, a more easily acces-
sible quantity not only in the theory but also in simulations or
experiments.26,36,37 This observation suggests manifold potential
extensions, e.g., by considering the effect of charge or density fluc-
tuations in the solvent as well, or ion transport in more complex
environments. In particular, accounting for charge fluctuations in
the solvent could allow us to shed light on the effect of ion–water
interactions. Another important extension would be to study the
effect of solid surfaces. In particular, the presence of surface charges
typically results in a local increase in the ion concentration near
walls, which could affect the viscosity of electrolytes e.g., in nano-
metric confinement found in a nanofluidic apparatus or in biological
membranes.38

Second, our somewhat formal and general framework does
allow us to catch a glimpse of the complexity and the non-
universality of ion transport, by allowing for differentiating the
behavior of salts with various chemical compositions. While we are,
at this stage, unable to fully rationalize specific deviations that cer-
tain salts display, we expect that this work will help to further the
understanding of ion transport at the nanoscale.
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