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Abstract Coupling of orbital motion to a spin degree of freedom gives rise to various transport phenomena
in quantum systems that are beyond the standard paradigms of classical physics. Here, we discuss features
of spin-orbit dynamics that can be visualized using a classical model with two coupled angular degrees of
freedom. Specifically, we demonstrate classical ‘spin’ filtering through our model and show that the interplay
between angular degrees of freedom and dissipation can lead to asymmetric ‘spin’ transport.

1 Introduction

Spin-orbit coupling (SOC) in classical and quantum systems is the interaction between spin and angular
degrees of freedom. Many known phenomena can be understood using the concept of SOC. For example,
synchronization of the Moon’s spinning motion with its orbital motion—only one side of the Moon faces the
Earth—is a result of spin-orbit coupling and energy dissipation in the Earth–Moon system [1–3]. In condensed
matter systems, the interaction between electron’s spin and its angular momentum is crucial for the physics
of spin-Hall effects [4,5], topological insulators [6], spin textures in disordered systems [7], spin-polarised
current [8], to name a few. In optics, polarization of light plays the role of a spin degree of freedom, allowing
one to observe similar phenomena [9,10].

It is also expected that SOC is key to recent observations of spin-polarised photocurrents from sub-
strates coated with self-assembled monolayers of chiral molecules (e.g. double-stranded DNA) [11,12]. These
observations introduced the concept of CISS (chiral-induced spin selectivity), which is triggering interest in
basic [13–15] as well as in applied research [13,16]. Certain aspects of CISS are still a subject of debate since
the origin and strength of SOC in the problem is not known [17–25]. State-of-the-art theoretical investigations
are going beyond one-electron transport, and focusing on the role of the environment that leads to non-linear
and non-unitary effects such as dephasing and energy dissipation [26–32]. Studies of the latter are important
beyond the CISS effect, as they contribute to a general understanding of the interplay between SOC and dis-
sipation, which is now being explored in various physical systems [33,34]. However, quantum analysis of
dissipation is often intricate and we suggest in this work to also study relevant classical systems for building
physical intuition for the SOC-dissipation interplay.
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Fig. 1 a Illustration of a system that we use to study the dynamics of two coupled rotational motions. The corresponding two
classical degrees of freedom are called ‘spin’, and ‘chirality’ (or ‘orbit’) in this paper, see the text for details. Correspondingly,
their interaction is referred to as spin-orbit coupling (SOC). b A chiral molecule in which an electron moves along the helical
structure is a basic element in studies of the CISS. It provides a motivation for introducing the classical model in (a)

In this paper, we introduce an arguably the simplest classical model where two rotational degrees of
freedom1 are coupled in the presence of dissipation, see Fig. 1. The model allows us to introduce the notions
of ‘spin’ and ‘chirality’, and find conditions for classical ‘spin filtering’ (analogous to CISS) in the weak SOC
limit. One important remark is in order here. Electron’s spin is a quantum property that cannot be represented
as a classical rotational motion. Therefore, our results may not explain the CISS effect. Our classical model
only provides an illustrative example of basic spin-orbit dynamics that can lead to spin filtering effects, and
can potentially be useful for constructing suitable quantum models in the future.

2 Framework

Generalized spin-orbit coupling To study the coupling between two classical rotational degrees of freedom,
we consider the basic time-reversal and rotationally symmetric Lagrangian:

L = β1θ̇
2
1 + β2θ̇

2
2 + γ θ̇1θ̇2 f (θ2 − θ1), (1)

where θ1 (θ2) is the ‘orbital’ (‘spin’) degree of freedom; β1 > 0, β2 > 0 and γ > 0 are parameters of
the system. θ1 and θ2 are classical variables defined for convenience on the real axis, i.e., θi ∈ (−∞, ∞).
Physically the system returns to itself if θi → θi + 2π . The function f determines the SOC and depends only
on the difference between θ1 and θ2, ensuring that the total angular momentum of the system is conserved (see
“Appendix B”). It is also periodic f (x) = f (x + 2π).

Without loss of generality, we set β1 = 1, β2 = β and assume that the maximal value of | f | is unity.
Our focus is on the case of weak SOC (γ → 0). This limit allows us to treat ‘orbit’ and ‘spin’ as separate
well-defined quantities because the energy exchange between these degrees of freedom is small. Weak SOC
is also relevant for CISS, as organic molecules consist of light atoms (carbon, hydrogen, oxygen, etc.).

Chirality and the spin projection We say that the system has left [right] chirality if θ̇1(t = 0) > 0
[θ̇1(t = 0) < 0]. This assumption is motivated by the tight-binding representation of a helical molecule, in
which the electron moves in one spatial dimension [26]. Naturally, the sign of θ̇1 can lead to non-trivial effects
only in the presence of SOC, i.e., for γ �= 0. In general, the sign of θ̇1 is not a conserved quantity, however,
for the systems we consider below (weak SOC), this will be the case.

By analogy, we say that θ̇2 > 0 [θ̇2 < 0] corresponds to ‘spin-up’ and ‘spin-down’ particles. Our work
shall illustrate that ‘spin filtering’ in principle does not require quantum nature of particles. In particular, ‘spin
filtering’ is possible with our classical interpretation of spins. We thus note that a deeper understanding of the
role of quantum physics in the CISS effect is required for developing CISS-based quantum technologies [35].

1 By ‘rotational degree of freedom’ (also ‘angular degree of freedom’ in this paper) we mean a degree of freedom that describes
a planar pendulum in zero gravity or a particle in a ring.
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Note that a simultaneous change of signs of θ̇1 and θ̇2 does not lead to any qualitative change, which is a
manifestation of time-reversal symmetry. Therefore, without loss of generality we shall consider θ̇1 > 0 and
change the sign of θ̇2 in the analysis of the system.

Dissipation To include dissipation into the system, we rely on the Rayleigh dissipation function, G, chosen
from empirical considerations [36]. In our case, we assume that frictional forces are proportional to velocities
so that G = (α1θ̇

2
1 + α2θ̇

2
2 )/2 (αi > 0), which leads to the equations of motion

∂L

∂θi
− αi θ̇i = d

dt

∂L

∂θ̇i
. (2)

We shall assume that there is no dissipation associated with the ‘spin’ degree of freedom α2 = 0, i.e., we
assume ‘spin-conserving’ interactions with the bath that causes dissipation, and write α = α1 for simplicity. It
is worth noting that, for the CISS effect, such an assumption is inherently reasonable, given long spin-relaxation
times in organic molecules [37].

3 Angle-Independent SOC

To provide some physical intuition into the problem, let us consider the simplest situation: f = 1. It corresponds
to the position-independent SOC, typical for condensed matter systems. The case for f = 1 is also the closest
analogue of the phenomenological quantum model of Ref. [32], which focuses on the interplay between
spin-orbit coupling and dissipation in the context of the CISS effect.

Before we proceed, we note that the simplest physical realization of Eq. (1) with f = 1 corresponds to
two uncoupled rotational degrees of freedom whose Lagrangian,

L = �̇2
1 + �̇2

2, (3)

upon the transformation �1 = θ1 + θ2 and �2 = θ2 has the form of Eq. (1) with β = 2 and γ = 2. Dynamics
of this system becomes non-trivial if we include dissipation coupled to θ̇1. Physically, this implies that the �2
degree of freedom defines a rest frame for the �1 degree of freedom.

For a general form of Eq. (1), we derive time evolution of θ1 and θ2 degrees of freedom

θ1 = θ0
1 + θ̇0

1
C

2α

(
1 − e− 2αt

C

)
, (4)

θ2 = θ0
2 +

[
γ

2β
θ̇0

1 + θ̇0
2

]
t − γC

4βα
θ̇0

1

(
1 − e− 2αt

C

)
, (5)

whereC = 4−γ 2/β,2 and superscript 0 means that the function should be taken at t = 0, e.g., θ0
1 = θ1(t = 0).

Note that the θ2-pendulum learns about the initial state of the θ1-pendulum only if γ and α are non-vanishing.3

This demonstrates the necessity to have both the SOC and dissipation for classical ‘spin filtering’ discussed
below.

At t → ∞, the orbital degree of freedom reaches the value θ
f

1 = θ0
1 + θ̇0

1C/(2α), and then its dynamics
stops. Using the picture of the CISS effect, this value can be interpreted as the distance an electron travels in a
molecule before it loses all of its energy associated with the orbital degree of freedom. To investigate θ

f
1 , we

assume that the initial energy, E , and |θ̇0
2 | (i.e., the ‘spin’ degree of freedom) are fixed. We derive

θ
f

1 = θ0
1 + C

2α

√
γ 2(θ̇0

2 )2 + 4(E − β(θ̇0
2 )2) − γ θ̇0

2

2
. (6)

The key observation here is that by changing the sign of θ̇2 we change the distance θ
f

1 . This can lead to ‘spin

filtering’, as the ‘spin-down’ (θ̇0
2 < 0) can travel farther than the ‘spin-up’ (θ̇0

2 > 0): 	θ
f

1 = Cγ |θ̇0
2 |/(2α).

To interpret this ‘spin filtering’ in the language of the CISS effect, note that if the total electron path in the

2 Note that at the special point β = γ 2/2 the system without dissipation can be parameterized by a single degree of freedom
θ1 + θ2.

3 Note that if α → 0 then (1 − e−2αt/C )/α → 2t/C .
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Fig. 2 Double pendulum that consists of two masses m1 and m2 attached to two massless rods of length l1 and l2. We interpret
the motion of the mass m2 as ‘spin’ dynamics, and the direction of the motion of the mass m1 as ‘chirality’

molecule is longer than lθ f
1 (θ̇0

2 > 0) but shorter than lθ f
1 (θ̇0

2 < 0) then only spin-down electrons can go
through the molecule (l sets the unit of length here).

One of the features of the ‘spin-filtering’ process for f = 1 is that (just like for systems with quantum SOC)
the value of θ̇0

1 must be changed together with ‘spin’ orientation to fix the total energy. As we demonstrate
in the following sections other classical SOC couplings can have f (θ2 − θ1) = 0 at t = 0, which is beyond
the typical setting in condensed matter physics. Such couplings allow us to investigate systems with the same
value of θ̇0

1 for different ‘spins’.
Finally, we interpret results of this section in terms of �1 and �2, see Eq. (3). In this case, θ̇0

1 = �̇0
1 − �̇0

2.
By fixing E and |�̇0

2|, we also fix |�̇0
1|. The change of sign �̇0

2 then naturally leads to a change in the value of

θ̇0
1 , which determines θ

f
1 and hence ‘spin filtering’ properties of the system.

4 Double Pendulum

Another physical system described by the Lagrangian from Eq. (1) is a planar double pendulum without gravity.
We use the standard parametrization of this textbook system: two point masses m1 and m2 attached to massless
rods of fixed lengths l1 and l2, see Fig. 2a, to write

L = Ml21
2

θ̇2
1 + m2l22

2
θ̇2

2 + m2l1l2θ̇1θ̇2 cos(θ1 − θ2), (7)

where M = m1 + m2. Note that f = cos(θ1 − θ2), meaning the SOC here depends on the relative angle
unlike the system in the previous section. Before we proceed we note that a planar double pendulum without
gravity has been studied extensively in classical mechanics, see, e.g., [38,39], however (to the best of our
knowledge) not in the context of the present work. To add dissipation, we use the following Rayleigh function
G = αl1θ̇2

1 /4, where the strength of dissipation is parameterized by α.
To find time dynamics of a dissipative double pendulum, we solve the Lagrange’s equations numerically

using a finite-difference method, see “Appendix A”. One remark is in order here. The double pendulum in a
gravitational field—the standard textbook example of a double pendulum—is a chaotic system [40] sensitive
to small perturbations, which can amplify numerical errors. In contrast, the double pendulum in zero gravity
is an integrable system, see, e.g., [38], making our calculations less prone to numerical errors.

To illustrate time evolution, we compute the instantaneous energy of the system, E(t) = L , for ‘spin-up’
and ‘spin-down’ dynamics. As we have many parameters, we rely on the following strategy to choose initial
conditions. First, we calculate trajectories of a non-dissipative system with θ0

1 −θ0
2 = π/2 and |θ̇0,↑

i | = |θ̇0,↓
i |.

This choice of initial velocities is possible as the spin-orbit interaction term vanishes at t = 0 [here, f (π/2) =
0]. The energy of the system is then ‘spin’-independent: E↑ = E↓. Second, we choose the initial conditions
from this trajectory by fixing θ0

1 − θ0
2 and finding the corresponding velocities. By choosing θi (t = 0) and

θ̇i (t = 0) in this way, we explore the dynamics of the system for different initial conditions, but for the same
value of the initial energy, E0.
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Fig. 3 a Energy decay of the system, normalized with the initial energy E0, as a function of t/T for spin-up (red) and spin-down
(black) systems at various α. The initial conditions are θ0

1 − θ0
2 = π/4, |θ̇0

1 | = 1, and |θ̇0
2 | = 30. Our units are chosen such that

l1 = 1 and M = 1. In these units, we take m2 = 0.1, m1 = 0.9, and l2 = 0.1. b Orbital period T as a function of α for ‘spin-up’
(red) and ‘spin-down’ (black). The initial conditions are as in (a). Inset: Difference in the orbital periods of ‘spin-down’ and
‘spin-up’, i.e., T↓ − T↑, versus α

Figure 3a shows time evolution of E↑ and E↓ for the initial conditions that correspond to θ0
1 − θ0

2 = π/4
at t = 0. To present this evolution in dimensionless form, we use the period of ‘orbital’ motion, T , see the
next section for a formal definition. Note that the dissipation of energy is almost independent of the spin. We
observed such a behavior for various initial conditions and parameters of the system. To understand this, note
that the sign of spin-orbit coupling is ill-defined for this system. Indeed, the function f changes its sign during
time evolution. As we explain in the next section, this is the reason there can be no efficient ‘spin filtering’.
Figure 3b shows the period of ‘orbital’ motion for different strength of dissipation. Note that by increasing the
value of α, one can force the period to strongly depend on ‘spin’. However, this can be used for ‘spin-filtering’
only if one is able to fix the initial conditions–other initial conditions would favor another ‘spin’.

5 General form of SOC

To study time dynamics with a general form of SOC, we first discuss the system without dissipation and show
that the period of ‘orbital’ motion depends on both ‘spin’ and ‘chirality’. Then, we connect the calculated
period to θ

f
1 , which is a suitable measure of classical ‘spin filtering’, see Sect. 3. Note that the system is

integrable (see “Appendix B”) for all values of γ . We focus only on weak SOC, which provides the most clear
physical picture of the dynamics.

Weak SOC without dissipation In the limit of weak SOC, i.e., γ → 0, the effect of SOC can be treated
perturbatively. We derive

θ̇1 � θ̇0
1 − γ (θ̇0

2 )2( f (x) − f (δ))

2(θ̇0
2 − θ̇0

1 )
, (8)

θ̇2 � θ̇0
2 + γ (θ̇0

1 )2( f (x) − f (δ))

2β(θ̇0
2 − θ̇0

1 )
, (9)

where x = θ̇0
2 t − θ̇0

1 t + δ, δ = θ2(t = 0) − θ1(t = 0), see “Appendix C”.

Let us now calculate the period T of ‘orbital’ motion, defined via
∫ T

0 θ̇1dt = 2π :

(
T

2π

)−1

� θ̇0
1 − γ (θ̇0

2 )2

2(θ̇0
2 − θ̇0

1 )
〈 f 〉, (10)

where 〈 f 〉 = ∫ T
0 ( f (x) − f (δ))dt/T . We see that the period for θ̇0

2 < 0 is different from the period with
θ̇0

2 > 0 if 〈 f 〉 �= 0. We fix θ̇0
1 , and write the difference in T between systems with ‘spin-up’ (θ̇0

2 > 0) and
‘spin-down’ (θ̇0

2 < 0) motions as

	T � 2πγ (θ̇0
2 )2〈 f 〉

θ̇0
1 ((θ̇0

2 )2 − (θ̇0
1 )2)

. (11)
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This difference depends on the strength of SOC and on the chirality, i.e., the sign of θ̇0
1 , as expected. Note

that 	T vanishes if 〈 f 〉 = 0 as, e.g., for f (x) = cos(x). This happens because the SOC changes its sign
during time evolution. In other words, the sign of γ is not well-defined for an oscillating function f with equal
contributions of positive and negative parts to 〈 f 〉.

Weak SOC with dissipation The dissipative system with weak SOC also allows us to derive an approximate
solution, see “Appendix D”. As we are interested in spin-filtering properties of the system, we calculate the
quantity θ

f
1

θ
f

1 = θ0
1 + 2θ̇0

1

α
− lim

z→∞

z∫

0

γ (θ̇0
2 )2( f (x) − f (δ))

2(θ0
2 − θ0

1 )
e

α(t−z)
2 dt, (12)

where x and δ are defined after Eq. (9). Note that this expression reproduces the result of Sect. 3 for f = 1.
We see that if ‘spin’ motion is fast in comparison to all other timescales of the problem, e.g., rate of

dissipation and ‘orbital’ motion, then we can use average values in place of f (x). In this case the period T
from Eq. (10) determines θ

f
1 : θ

f
1 � θ0

1 + 4π/(αT ). The difference in periods of ‘orbital’ motion for ‘spin up’
and ‘spin down’ then leads to classical ‘spin filtering’. According to Eq. (11), the ‘spin filtering’ effect occurs
even if θ̇

0,↑
i = θ̇

0,↓
i as long as 〈 f 〉 �= 0. This case can be realized with (for example) f (x) ∼ cos2(x) that can

enjoy f (δ) = 0. Although, this type of SOC does not have an obvious analogue in condensed matter physics,
it clearly shows that the interplay between ‘spin’ and ‘chirality’ can lead to ‘spin filtering’ even for identical
initial conditions.

6 Conclusions

In conclusion, we examined a classical dissipative system involving two coupled rotational degrees of freedom.
We identified two scenarios with respect to the form of spin-orbit coupling, f : (i) 〈 f 〉 �= 0, e.g. f = 1; (ii)
〈 f 〉 = 0, e.g. f (x) = cos(x). We demonstrated that the former case exhibits ‘spin-filtering’ effect that depends
on both the ‘chirality’ and ‘spin’ properties. It remains a possibility that ‘spin-filtering’ effects may manifest
in the latter case under specific initial conditions (see Fig. 3), however, this cannot be generalized universally.

We highlighted some similarities between our set-up and models of the CISS effect. It is essential to
acknowledge that classical rotational motion is not representative of an electron’s spin. Consequently, our
framework cannot provide an exhaustive explanation of the observed CISS effect. In addition, it is important to
note that our current model omits consideration of the substrate, a factor that could potentially have significant
implications in elucidating experimental outcomes [17,25,30,41,42]. Nevertheless, in the context of CISS, our
simple set-up provides a rudimentary model that can be used for illustrative purposes. Note a recent work [43]
where another classical analogue of the CISS effect is introduced for a similar purpose. However, unlike
the present work, Ref. [43] uses a complex system where a charged particle moves in a helical dissipative
environment, and where spin-orbit coupling is being generated by friction.

In the paper, we focused on the case when the ‘orbital’ and ‘spin’ degrees of freedom are defined in
the same plane, which naturally corresponds to Lzσz-type of spin-orbit coupling in quantum physics. It is
easy to design classical analogues of other cases, e.g., kzσz-type of SOC may loosely correspond to a double
pendulum without gravity with the ‘spin’ motion in a plane perpendicular to the ‘orbital’ motion. Subsequent
investigations could explore the ‘spin’ and ‘orbit’ motions in different planes, such an approach may unveil
phenomena not addressed in the current study, for instance, the emergence of classical geometric (Berry)
phases.

Acknowledgements We thank Mikhail Lemeshko and members of his group for many inspiring discussions; Alberto Cappellaro
for comments on the manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funding Open access funding provided by Institute of Science and Technology (IST Austria).

http://creativecommons.org/licenses/by/4.0/


Classical ‘Spin’ Filtering with Two Degrees of Freedom and Dissipation Page 7 of 10    12 

Appendix A Equations of Motion for a Double Pendulum

The Lagrangian for a double pendulum without dissipation reads as

L = 1

2
m1l

2
1 θ̇2

1 + 1

2
m2

[
l21 θ̇2

1 + l22 θ̇2
2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2)

]
. (A1)

To add dissipation to our model, we use the following function G = (l1αθ̇2
1 + l2αs θ̇

2
2 )/4, where for the sake

of generality we have assumed that both angular degrees of freedom are subject to dissipation. With this form,
we derive the following equations of motion

∂2θ1

∂t2 = −m2l1θ̇2
1 sin(2θ1 − 2θ2) − 2m2l2θ̇2

2 sin(θ1 − θ2) + αs θ̇2 cos(θ1 − θ2) − αθ̇1

l1(2m1 + m2 − m2 cos(2θ1 − 2θ2))
,

∂2θ2

∂t2 = m2l2θ̇2
2 sin(2θ1 − 2θ2) + 2l1(m1 + m2)θ̇

2
1 sin(θ1 − θ2) − αs

(m1+m2)
m2

θ̇2 + αθ̇1 cos(θ1 − θ2)

l2(2m1 + m2 − m2 cos(2θ1 − 2θ2))
.

We re-write these equations as a system of first-order differential equations by introducing vi = θ̇i , and use
the Runge–Kutta integration method to find a numerical solution. We benchmarked against analytically exact
results available for α = αs = 0 (see below) to investigate convergence of our results.

Appendix B General Solution to the System Without Dissipation

Here, we work in a co-moving frame defined by a set of variables φ1 = θ1 and φ2 = θ2 −θ1; the corresponding
Lagrangian is independent of φ1: L = φ̇2

1 + β(φ̇1 + φ̇2)
2 + γ φ̇1(φ̇1 + φ̇2) f (φ2). Following the standard

approach of classical mechanics, we introduce the generalized momenta pi = ∂L/∂φ̇i

p1 = 2φ̇1 + 2β(φ̇1 + φ̇2) + γ (2φ̇1 + φ̇2) f (φ2),

p2 = 2β(φ̇1 + φ̇2) + γ φ̇1 f (φ2),
(B2)

and study the system in the Hamiltonian formalism4:

H = p2
1 + A(φ2)p2

2 − 2B(φ2)p1 p2

C(φ2)
, (B3)

where A(φ2) = (1 + γ f (φ2) + β)/β, B(φ2) = (γ f (φ2) + 2β)/(2β), and C(φ2) = 4 − γ 2 f (φ2)
2/β. As

a result of rotational invariance, there is no dependence on φ1 and thus the total angular momentum, p1, is
conserved. The dynamics of the system effectively corresponds to one-body motion parameterized by p2, φ2.
The Hamiltonian H does not depend on time t explicitly – the energy is conserved H → E . To find other
integrals of motion, we use the equation

φ̇2 = ∂H

∂p2
→ φ̇2 = 2

C(φ2)
(A(φ2)p2 − B(φ2)p1) , (B4)

where the value of p2 (for a given φ2) can be determined from the energy constraint:

P2(φ2) = B(φ2)P1

A(φ2)
±

√(
B(φ2)P1

A(φ2)

)2

− P2
1 − C(φ2)E

A(φ2)
, (B5)

where we have used P1 = p1 and P2(φ2) = p2 to emphasize that p1 is a conserved quantity, and p2 depends
on φ2. The sign in the equation is determined by the initial condition. For φ̇2 �= 0,5 we calculate t (φ2)

t =
∫

C(φ2)dφ2

2(A(φ2)P2(φ2) − B(φ2)P1)
+ const1, (B6)

4 This Hamiltonian can also be written as H = (p1φ̇1 + p2φ̇2)/2, where φ̇2 = (2p2 − γ p1 f (φ2) + 2γ p2 f (φ2) − 2βp1 +
2βp2)/(4β − γ 2 f (φ2)

2) and φ̇1 = (2βp1 − 2βp2 − γ p2 f (φ2))/(4β − γ 2 f (φ2)
2).

5 If φ̇2 = 0 at some tφ̇2=0, one should consider time evolution on the intervals with t ≶ tφ̇2=0 separately and then smoothly
connect the resulting dynamics at tφ̇2=0.
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where const1 is an integral of motion. Without loss of generality, we can always redefine the origin of time-axis
such that const1 = 0. Now, one can also easily find φ1(φ2):

φ1 =
∫ P1 − B(φ2)P2(φ2)

A(φ2)P2(φ2) − B(φ2)P1
dφ2 + const2, (B7)

where const2 is the last integral of motion. One can get rid of it by properly choosing the system of coordinates.
The derived equations provide a complete picture of the effects of spin-orbit coupling in the introduced system.
To study this effect, it is convenient to introduce the phase φB

6 acquired by the φ2-pendulum after one period
of the φ1-pendulum

2π =
φ2(t=0)+φB∫

φ2(t=0)

P1 − B(φ2)P2(φ2)

A(φ2)P2(φ2) − B(φ2)P1
dφ2. (B8)

Using φB , we introduce the period of motion as

T =
φ2(t=0)+φB∫

φ2(t=0)

C(φ2)dφ2

2(A(φ2)P2(φ2) − B(φ2)P1)
. (B9)

The φ1-pendulum completes a full orbit after the time T . Within the CISS framework, T defines the time the
electron spends inside single-turn molecules. Note that for f = 1, θ

f
1 = θ0

1 + πC/(Tα), i.e., T is the only
initial-state-dependent parameter that defines how far the electron can move before it loses all of its kinetic
energy.

Appendix C Non-dissipative Dynamics with Weak SOC

The equations for θ1 and θ2 can be written as

θ̇1 = c1 + γ

2
c2 f (δ) − γ

2
θ̇2 f (θ2 − θ1) − γ

2

t∫

0

θ̇1θ̇2
∂ f (θ2 − θ1)

∂θ2
dt, (C10)

θ̇2 = c2 + γ

2β
c1 f (δ) − γ

2β
θ̇1 f (θ2 − θ1) + γ

2β

t∫

0

θ̇1θ̇2
∂ f (θ2 − θ1)

∂θ2
dt, (C11)

where δ = θ2(t = 0)−θ1(t = 0), and ci are constants determined by the initial conditions, i.e., ci = θ̇i (t = 0).
Let us now assume that the SOC is weak, i.e., γ → 0. This means that θ̇i � ci , which leads to the expressions
presented in the main text:

θ̇1 � c1 − γ c2

2
( f (c2t − c1t + δ) − f (δ)) − γ c1c2

2(c2 − c1)
( f (c2t − c1t + δ) − f (δ)), (C12)

θ̇2 � c2 − γ c1

2β
( f (c2t − c1t + δ) − f (δ)) + γ c1c2

2β(c2 − c1)
( f (c2t − c1t + δ) − f (δ)). (C13)

For the double pendulum, f (x) = cos(x), we can easily write the coordinates as well:

θ1 � θ1(t = 0) +
(
c1 + γ c2

2 cos(δ)

2(c2 − c1)

)
t − γ c2

2

2(c2 − c1)

sin(c2t − c1t + δ) − sin(δ)

c2 − c1
, (C14)

θ2 � θ2(t = 0) +
(
c2 − γ c2

1 cos(δ)

2β(c2 − c1)

)
t + γ c2

1

2β(c2 − c1)

sin(c2t − c1t + δ) − sin(δ)

c2 − c1
. (C15)

6 Note that this phase can be negative depending on the direction of the ‘spin’.
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Appendix D Weak Dissipation and SOC

For weak SOC and weak dissipation, we derive

θ̇1 � c1 − γ c2
2

2(c2 − c1)
( f (c2t − c1t + δ) − f (δ)) − γ1

2
θ1(t) + γ1

2
θ1(0), (D16)

θ̇2 � c2 + γ c2
1

2β(c2 − c1)
( f (c2t − c1t + δ) − f (δ)). (D17)

Note that the equation for θ̇2 is the same as for weak SOC (without dissipation). The orbital motion is modified
by the presence of dissipation as follows

θ1 = θ0
1 e

− αt
2 + e− αt

2

t∫

0

[
c1 + αθ0

1

2
− γ c2

2

2(c2 − c1)
( f (c2τ − c1τ + δ) − f (δ))

]
e

ατ
2 dτ. (D18)
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