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Atom-based quantum simulators have had many successes in tackling challenging quantum many-body
problems, owing to the precise and dynamical control that they provide over the systems’ parameters. They are,
however, often optimized to address a specific type of problem. Here, we present the design and implementation
of a 6Li-based quantum gas platform that provides wide-ranging capabilities and is able to address a variety of
quantum many-body problems. Our two-chamber architecture relies on a robust combination of gray molasses
and optical transport from a laser-cooling chamber to a glass cell with excellent optical access. There, we first
create unitary Fermi superfluids in a three-dimensional axially symmetric harmonic trap and characterize them
using in situ thermometry, reaching temperatures below 20 nK. This allows us to enter the deep superfluid regime
with samples of extreme diluteness, where the interparticle spacing is sufficiently large for direct single-atom
imaging. Second, we generate optical lattice potentials with triangular and honeycomb geometry in which
we study diffraction of molecular Bose-Einstein condensates, and show how going beyond the Kapitza-Dirac
regime allows us to unambiguously distinguish between the two geometries. With the ability to probe quantum
many-body physics in both discrete and continuous space, and its suitability for bulk and single-atom imaging,
our setup represents an important step towards achieving a wide-scope quantum simulator.
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I. INTRODUCTION

The last decades have seen the emergence of ultracold atom
experiments as powerful platforms for quantum simulation
of complex many-body systems [1,2]. The success of atom-
based quantum simulators stems from their ability to place
a large number of particles in a well-characterized, tunable,
and isolated environment. For example, the energy landscape
where particles evolve can be tailored to be uniform [3],
harmonic [4], periodic [5], disordered [6–11], or even tightly
confining in one or more directions to simulate a one-
dimensional (1D) or two-dimensional (2D) system [12–14].
Interparticle interactions can be short or long range, repulsive
or attractive, and vanishingly weak or as strong as allowed
by quantum mechanics [15,16]. The atomic or molecular
ensembles can be prepared in thermal equilibrium, out of
equilibrium, or be dynamically driven [17,18]. The quantum-
gas toolbox goes beyond these examples and offers many
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capabilities to create quantum systems with increasing com-
plexity, which was underlined by major breakthroughs over
the last two decades in our understanding of quantum mat-
ter [1,5,12], ranging from elucidating important properties of
the BEC-BCS crossover [19–22], to the study of Bose and
Fermi Hubbard models [5], to the exploration of topological
states of matter [18,23].

A limitation of current approaches, however, is that most
quantum-gas setups are optimized to address only a certain
type of problem. One often makes a choice between lattice or
continuous systems, short- or long-range interactions, single-
particle detection or bulk measurements, etc. In some cases,
this is unavoidable as the experiment is designed to harness
the properties of a specific atomic element or molecule. In
many other cases, however, such constraints do not apply
and combining experimental capabilities that had traditionally
been used on distinct types of quantum many-body systems
can have a useful impact on the ongoing quantum simulation
effort.

Recently, promising steps were made in that direction.
Optical tweezers, for instance, have been combined with opti-
cal lattices in order to study single-atom quantum walks in
two-dimensional lattices [24], as well as with quantum-gas
microscopy to realize bottom-up quantum simulation of the
Fermi-Hubbard model [25]. Other recent work demonstrated
the use of versatile energy landscapes on a given setup, for
example, utilizing tunable tailored optical potentials to inves-
tigate dynamical symmetries of 2D Bose gases in continuous
space under variable boundary conditions [26], optical lattices
with tunable geometry [27–29], or performing quantum-gas
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FIG. 1. Overview of the experimental apparatus (left panel) and sequence (right panel). 6Li atoms slowed by a Zeeman slower (A) are
collected in a magneto-optical trap (MOT) inside a spherical vacuum chamber (B), with a pair of coils (C) providing the magnetic gradient.
Atoms are then cooled to sub-Doppler temperatures using a gray molasses, loaded into an optical dipole trap—focused by a 1335-mm lens
(D)—and subsequently transported into a glass cell using a linear translation stage (E). Two pairs of coils around the glass cell (F, G) are
used to create the Feshbach bias field and apply a field curvature in the horizontal plane, respectively. The inset shows the glass cell with the
horizontal lattice beam (red lines) and the vertical lattice beam (orange lines). Either a triangular or a honeycomb lattice geometry is generated
by an appropriate choice of polarization, which is controlled by rotating a single half-wave plate (not shown) on the laser beam path at the
entrance of the glass cell. A microscope objective (H) with numerical aperture of 0.55 is positioned below the glass cell for high-resolution
imaging. Right: Laser-cooling steps and their typical duration in the experimental sequence. Cooling to degeneracy typically takes 12–16 s,
after which we can study a variety of lattice and continuum systems.

microscopy of both triangular and square lattices within the
same setup [30].

Here, we present a multipurpose quantum-gas platform for
the study of strongly correlated Fermi systems in both lat-
tice and continuous landscapes. Interacting fermionic systems
play a special role among the various quantum many-body
problems within reach of atom-based quantum simulators, as
their understanding constitutes a serious challenge of modern
physics. Indeed, theoretical approaches to tackling strongly
correlated fermionic systems are widely plagued by the infa-
mous sign problem, which limits the power of most unbiased
numerical techniques in the thermodynamic limit, often forc-
ing a resort to uncontrolled approximations, and in past years
the development of unbiased “sign-free” approaches has been
the subject of important ongoing efforts [31–38]. On the other
hand, the experimental advances in quantum simulation not
only have solved long-standing problems [39–43] but also
helped the cross-validation of novel theoretical methods, such
as the diagrammatic Monte Carlo methods [44–49].

Our experiment is based on fermionic 6Li, which has
proven to be a suitable atom to address a broad range of
topics, from the BEC-BCS crossover [19,20,22,41,43,50–55],
to few-body and Efimov physics [56–62], to quantum-gas
microscopy of lattice systems [63–66] including frustrated ge-
ometries [67], to interacting Rydberg ensembles [68], and to
novel cavity quantum electrodynamics effects, where photons
couple to strongly interacting matter [69].

We use our setup to study three paradigmatic systems:
the unitary Fermi gas in continuous space, the triangular lat-

tice, and the honeycomb lattice. Specifically, we first create
unitary Fermi gases in a well-characterized trapping potential
in three-dimensional continuous space and at controlled tem-
peratures, which we obtain using in situ thermometry based on
state-of-the-art thermodynamics [22,40]. Our coldest samples
are deeply in the superfluid regime with absolute tempera-
tures below 20 nK and an average interparticle spacing of
�1.3 µm, which brings their direct imaging via quantum-gas
microscopy within reach. Second, we present a versatile set of
lattice configurations, which we characterize via matter-wave
diffraction of a molecular Bose-Einstein condensate, in and
beyond the Kapitza-Dirac regime. In particular, in the case of
the triangular and honeycomb lattice geometries, we demon-
strate how Bragg diffraction can be used to quantitatively
discriminate between the two.

II. OVERVIEW OF THE APPARATUS

Our apparatus employs an all-optical strategy for produc-
ing deeply degenerate Fermi gases of 6Li atoms. A schematic
overview is shown in Fig. 1. Its design is divided into two
principal sections: (i) a preparation vacuum chamber in which
the atoms are cooled to tens of microkelvins and loaded into
an optical dipole trap (ODT), and (ii) a science glass cell to
which the atoms are optically transported by moving the ODT,
where they are evaporatively cooled to quantum degeneracy.
This two-chamber structure provides good optical access to
the science cell, which is crucial for our goal of tackling a
diverse set of quantum problems within the same apparatus.
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FIG. 2. Loading of ODT. Absorption images recorded on a
charge-coupled device (CCD) camera at various stages of the loading
process for the single-beam ODT used to transport the atoms to the
glass cell. Images taken after switching on the D1 gray molasses
for a duration of 5 ms (top), 15 ms (middle), and 30 ms (bottom).
The image axes are the physical camera axes, which are rotated with
respect to the ODT propagation axis.

In the following, we describe the general architecture of our
setup and our experimental sequence. Additional experimen-
tal details can be found in Appendix A.

A. Dipole trap loading

Our experimental sequence starts with a magneto-optical
trap (MOT) of 6Li atoms loaded from a Zeeman-slowed
atomic beam of lithium. After loading the MOT for typically
1.2 s, we apply a compression stage (CMOT) by increasing
the magnetic field gradient. We subsequently turn off the mag-
netic quadrupole field while keeping the MOT laser beams on
for 3 ms to hold the atoms until all transient magnetic fields
have fully decayed and only residual static magnetic fields re-
main. We refer to this stage as the D2 optical molasses phase.
When all transient magnetic fields have decayed, we switch
off the MOT beams, turn on the D1 laser-cooling beams for
3 ms to capture the atoms in a gray molasses, and then reduce
the intensity of the latter by half in 2 ms. A subsequent hold
time of 1 ms allows the atoms to thermalize, and we obtain
a cloud with phase-space densities (PSDs) of approximately
5 × 10−5 and temperatures down to 40 µK which allows di-
rect loading into an ODT (see Appendix A for details). This
strategy is similar to the one in Ref. [70].

The (single-beam) ODT is turned on during the D2 mo-
lasses stage and kept at maximal power of 156 W throughout
the gray molasses phase. It is derived from an ytterbium
fiber laser with a central wavelength of 1070 nm. At max-
imal power and with a beam waist of 90 µm, we obtain a
radial trapping frequency of 2π × 4 kHz and a trap depth
of kB × 600 µK, with kB the Boltzmann constant. With these
parameters, we typically load 5 × 106 atoms in the F = 1/2
state in the ground-state electronic manifold (F being the
hyperfine quantum number) at temperatures of 90 µK, which
remain nearly an order of magnitude smaller than the trap
depth of the ODT. In Fig. 2 we show integrated density distri-

1×106

FIG. 3. Number and radial temperature of atoms loaded in the
transport beam dipole trap as a function of hold time in the ODT.
Error bars denote one standard deviation of the mean from 15 mea-
surements. The red dashed line is an exponential saturation curve
which yields an initial heating rate of 16(3) µK/s. The blue dashed
line is an exponential decay fit of the atom number.

butions n̄ obtained by absorption imaging at different steps of
this loading process.

In anticipation of the optical transport to the science cell,
we have studied the evolution of atom number and tempera-
ture while holding the atoms in the static ODT. The results are
shown in Fig. 3, where radial temperature measurements are
obtained from the expansion of the atomic distribution after
a variable time of flight (TOF). We observe a slow heating of
the atoms that results in their escape from the trap at long hold
times. By fitting the evolution of the measured temperature
with an exponential saturation curve, we extract an initial
heating rate of 16(3) µK/s. This is larger than the estimated
off-resonant photon scattering rate of 3.4 µK/s and likely
caused by low-frequency laser intensity noise. However, on
the 1.2-s timescale of transport to the glass cell, heating and
atom loss are negligible.

B. Transport and evaporative cooling

We perform optical transport by shifting the ODT beam
focus over a distance of 32 cm in 1.2 s. This is achieved
using a motorized linear translation stage, carrying a pair of
mirrors as shown in Fig. 1. In order to ensure a smooth motion
and minimize heating and center-of-mass movement during
transport, we define the trajectory to be a quartic function
of time with a sigmoid shape, reaching a maximum velocity
of 0.53 m/s. The transport efficiency is larger than 97% and
yields samples of 5 × 106 atoms at a temperature of 125 µK
in the glass cell (see Appendix A).

At the glass cell the transport beam is crossed with a
perpendicular laser beam at 1064 nm, with a waist of w =
61(1) µm and a maximum power of 16 W, forming a crossed
dipole trap (CDT). The trapping potential due to the crossing
beam initially has little influence with a trap depth of only
∼100 µK. Then, the magnetic field is ramped in 200 ms to
832 G corresponding to the center of the broad Feshbach
resonance between the two lowest hyperfine ground states of
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FIG. 4. Thermometry of a unitary Fermi gas across the normal-to-superfluid transition. Left: In situ absorption images for decreasing final
trap power: (a) 300 mW, (b) 200 mW, (c) 125 mW, (d) 75 mW, (e) 30 mW, and (f) 20 mW. Right: The corresponding doubly integrated density
profiles (blue data points) and fit to the equation of state (light blue curve), yielding absolute temperature T and reduced temperature T/TF at
the center of the trap (both indicated in the respective panels).

6Li, which we denote |1〉 and |2〉. We prepare a spin-balanced
sample of these two states by performing an adiabatic radio-
frequency (RF) sweep, spanning frequency values from far
off-resonance to the resonant hyperfine transition frequency.
We maintain the magnetic field at 832 G, and hence strong
resonant interactions, throughout the evaporation process to
enhance elastic collision rates and achieve efficient evapora-
tive cooling.

We initiate evaporation using a 2.8-s exponential intensity
ramp-down of the transport trap to 18% of its maximum
power, at which point its trap depth becomes comparable
to the crossing dipole trap. Then we linearly decrease the
intensity of both arms simultaneously down to a trap depth
of approximately kB × 15 µK in 1.3 s. The transport trap is
subsequently switched off within 500 ms with an exponential
ramp-down. We end evaporation with a 0–4-s linear intensity
ramp-down of the laser beam perpendicular to the transport
direction. This single ODT provides a strong (weak) confine-
ment in the radial (axial) direction with a trap frequency of
2π × 620 Hz × √

PODT/W (2π × 2.5 Hz × √
PODT/W), with

PODT the ODT power, while the magnetic coils provide addi-
tional axial trapping with a frequency of 2π × 10 Hz, which

largely dominates at low ODT power. In situ absorption im-
ages taken during this evaporation step are shown in Fig. 4.
At the lowest trap depth, we obtain samples of 5.1(1) × 104

atoms per spin state at temperatures of 17(1) nK, well within
the degenerate regime. The total cycle time for the production
of a degenerate Fermi gas is 12–16 s depending on the desired
temperature (see Sec. III).

The optical access provided by the glass cell allows the
degenerate sample to be loaded into a variety of different
energy landscapes. We present below specific examples of
how we can study continuous (Sec. III) and discrete (Sec. IV)
systems.

III. STRONGLY INTERACTING FERMIONS IN
CONTINUOUS SPACE

The two-component quantum-degenerate samples of
fermions described above readily give access to the physics
of strongly interacting Fermi gases with tunable interpar-
ticle interactions and spin population. Indeed, the broad
Feshbach resonance between the two lowest hyperfine states
of 6Li is ideally suited for the study of BEC-BCS crossover
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physics [39] and more specifically the unitary regime, where
the scattering length a diverges.

The unitary Fermi gas represents one of the critical
challenges of quantum many-body physics and has been
the subject of major experimental and theoretical inter-
est [1,39,40], with relevance for the understanding of the
dilute neutron matter in the crust of neutron stars, and
the quark-gluon plasmas created in heavy-ion collisions at
∼1012 K [43,71]. Furthermore, because interactions do not in-
troduce any energy or length scale (as a result of the diverging
scattering length), the unitary Fermi gas features remarkable
universal properties [39,40,72]. For instance, all its thermo-
dynamic properties only depend on the ratio T/TF , of the
temperature T to the Fermi temperature TF = 1

kB

h̄2

2m (3π2n)2/3,
with n the density of the cloud and h̄ the Planck constant.

Due to the strong interactions, standard thermometry rely-
ing on time-of-flight expansion does not apply to the unitary
Fermi gas. Indeed, its expansion dynamics deviates from
the ballistic behavior already at temperatures well above the
superfluid transition temperature, and for many years this
hindered quantitative thermometry in the low-temperature
regime [40,73]. In most experiments, degeneracy of strongly
interacting fermionic gases is demonstrated using indirect or
nonquantitative methods [40,73], such as the appearance of
a bimodal density distribution in time-of-flight measurements
performed on the BEC side of the Feshbach resonance.

Here, in order to reliably extract the temperature of our pro-
duced sample in the degenerate regime, we use the universal
equation of state (EOS) of the homogeneous unitary Fermi gas
for the pressure:

P(μ, T ) = f (βμ), (1)

where β ≡ 1/(kBT ), which is precisely known from the MIT
measurement in Ref. [22]. Our absorption images indeed give
direct access to the pressure of the gas, P, via the rela-
tion [20,22,40,74,75]

P(μ, T ) = mωxωy

2π
¯̄n(z), (2)

where z is the axial coordinate, x, y the radial ones, ωx

and ωy the respective trapping frequencies, and ¯̄n(z) =∫
dx

∫
dy n(x, y, z) the doubly integrated density profile, with

one of the integrations already provided by the imaging.
Within the local density approximation, the chemical poten-
tial is given by μ = μ0 − mω2

z z2/2, with μ0 the chemical
potential at the center of the trap and ωz the axial trapping
frequency. By fitting the doubly integrated density profile of
the gas to the EOS, we are able to extract its temperature T .

Key to this approach is the accurate knowledge of the vari-
ation in the local chemical potential, which requires a precise
knowledge of the trapping potential. This is the motivation
for the use of a single ODT at the final stage of evaporation,
which, in combination with the magnetic curvature providing
trapping in the axial direction, allows us to create a clean
and well-calibrated trapping potential. We show in Fig. 4
in situ absorption images of our sample at different steps of the
evaporative cooling, and the corresponding values of T/TF at
the trap center. At the end of evaporation we obtain a cloud
at 17(1) nK with reduced temperatures of T/TF = 0.08(2),
well below the critical temperature of the normal-to-superfluid
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FIG. 5. Superfluid plateau in a spin-imbalanced unitary Fermi
gas. Doubly integrated density profiles for the majority (blue) and
minority (red) spin components are shown, obtained for a global
spin imbalance of P ≈ 0.25 and at an estimated temperature of T ∼
20 nK (averaged over 40 experimental realizations). The difference
between the two profiles (light blue points) shows a plateau in the
central region, indicating a superfluid core. Vertical lines denote the
separation between the superfluid (SF), partially polarized (PP), and
the fully polarized (FP) regions.

transition Tc/TF = 0.176 [22]. Our samples are deliberately
prepared at low densities, and we typically obtain a peak av-
erage interparticle distance of n−1/3 � 1.3 µm, which makes
them compatible with direct imaging via quantum gas mi-
croscopy, as this distance is twice larger than the 700-nm
lattice spacing (see Sec. IV), and is well resolved by our
imaging system [76].

A further, independent proof of superfluidity can be ob-
tained by observing the so-called superfluid plateau, resulting
from a phase separation that occurs when spin populations
are imbalanced [19,77,78]. Indeed, for a spin-population
imbalance below the Clogston-Chandrasekhar limit [39], a
harmonically trapped unitary Fermi gas with a majority of |1〉
and a minority of |2〉, will phase-separate into three regions:
a superfluid core of equal spin densities (n1 = n2), a partially
polarized (PP) phase with (n1 > n2) at intermediate distance
from the trap center, and a fully polarized (FP) phase (n1 �= 0
and n2 = 0) on the outer part of the trap [19,77,78]. In an
axially symmetric trap, the superfluid core can be revealed as
a plateau in the difference of the doubly integrated density
profiles of the two components [77,78].

We prepare a unitary Fermi gas with imbalanced spin pop-
ulation by adjusting the duration of the RF sweep that takes
place before evaporative cooling (see Sec. II A). As above,
the final stage of the evaporation takes place in the single
ODT, which is lowered to a trap depth of ∼kB × 200 nK.
In situ density profiles are then recorded through absorption
imaging of both spin states concurrently through double expo-
sure of the imaging camera. Figure 5 shows doubly integrated
density profiles for the majority and minority components
alongside their difference, which displays a marked central
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TABLE I. Different potential configurations available in the sci-
ence cell. The horizontal plane (XY ) can host a triangular (T) or
honeycomb (H) lattice, whereas in the vertical direction (Z) we can
confine the particles in a one-dimensional lattice, a light sheet, or a
crossed optical dipole trap.

�����XY
Z

Z lattice Light sheet Z CDT

Off 2D layers 2D gas 3D gas
Triangular Layered T lattice 2D T lattice 1D T array
Honeycomb Layered H lattice 2D H lattice 1D H array

plateau with an axial extent of 200 µm, signaling the presence
of a superfluid core. This is consistent with our quantitative
analysis, with recorded atom numbers N1 = 2.0(2) × 104 and
N2 = 1.2(1) × 104 for the majority and minority components,
respectively, giving a global spin imbalance P = N1−N2

N1+N2
≈

0.25, which is well below the Clogston-Chandrasekhar limit
Pc ∼ 0.75 [19,21,40,77–79]. This demonstrates the ability of-
fered by our apparatus to study the rich physics of strongly
interacting spin-imbalanced Fermi gases at ultralow tempera-
tures [39,40].

IV. OPTICAL LATTICES

Our experiment also allows the loading of ultracold
samples into optical lattices of adjustable triangular and hon-
eycomb geometry (see Table I). The laser beam configuration
used to generate these lattices is shown in the inset of Fig. 1.

In the horizontal (XY ) plane, a single laser beam in but-
terfly configuration forms three arms with relative angles of
approximately 120◦. Interference of the three arms can be
used to generate either a triangular or a honeycomb lattice
geometry by an appropriate choice of the arms’ polarization,
which is controlled by rotating a single half-wave plate. For
the triangular lattice, the polarization vectors of the three
lattice arms are parallel and lie along the vertical (Z) direction,
while for a honeycomb lattice the polarization vectors lie in
the XY plane [80,81]. The specific wave vector and polariza-
tion vector configurations are schematically illustrated in the
insets of Figs. 7 and 8. The same laser beams can also be used
in a noninterfering configuration to form a deep CDT merely
by rotating the aforementioned wave plate to set the polar-
ization of the incident beam at an angle of arctan(

√
2) � 55◦

with respect to the Z axis, such that the polarization vectors of
all lattice arms are mutually orthogonal.

In the Z direction, a one-dimensional lattice is created with
a pair of laser beams crossing at 90◦. The strength of the
interference between the two beams is tuned via an electroni-
cally controlled half-wave plate which allows for in-sequence
ramping from a CDT to a one-dimensional lattice. To comple-
ment the vertical lattice, which allows us to produce a stack
of 2D systems, our experiment also features the ability to
produce a single layer of atoms using a highly oblate laser
beam, or light sheet, propagating along the Y direction and
providing a strong vertical confinement of 65 kHz. Beams
for the XY and Z lattices, as well as the light sheet, are
created with three independent laser beams at 1064 nm, with

a maximum power of 40 W for the former two and 16 W for
the latter.

The triangular or honeycomb lattices in the XY plane can
therefore be combined with either the vertical lattice, allowing
us to create a stack of layers with tunable interlayer cou-
pling, or with the single light sheet, giving access to purely
2D physics that can be readily probed by single-atom imag-
ing [76]. In the following, we validate the multifunctionality
of our apparatus by a quantitative characterization of the two
XY lattices.

We first characterize the lattices using Kapitza-Dirac scat-
tering [82,83]. This technique consists of pulsing the lattice
potential on a matter wave and subsequently performing a
TOF expansion, yielding a diffraction pattern that reflects the
momenta imparted by the lattice, which provides a robust
calibration of the lattice depth and axes orientations. Indeed,
upon exposure to a lattice with trap depth U0 for a dura-
tion τ , the particles are distributed over several momentum
classes whose populations solely depend on the pulse area
θ = U0τ/(2h̄), under the condition that the particle motion
can be neglected during the pulse time (Raman-Nath approxi-
mation) [83]. This result can be readily generalized to the case
where the lattice arms have different intensities. For ultracold
systems, Kapitza-Dirac scattering has been first observed for
BECs (of bosonic atoms) [84], and, more recently, strongly
interacting molecular BECs were used to investigate the role
of interactions in the scattering from a one-dimensional lat-
tice [85].

For this measurement, instead of using the CDT described
in Sec. II B, we load the atom cloud in the CDT created by the
laser beams of the vertical lattice with their polarizations set to
be orthogonal. There we perform two successive evaporation
ramps of 1 s each, first at 832 G and then at 740 G to ensure
the formation of a large molecular BEC. After that, we ramp
the magnetic field deeper into the BEC side, down to 665 G
(10-ms ramp-down followed by a 10-ms holding time). At this
magnetic field the intermolecular scattering length is 600a0,
with a0 the Bohr radius, allowing us to neglect the effects
of interparticle interactions during TOF expansion given our
densities (na3 < 10−4). To perform the scattering experiment,
we first release the molecular BEC from the CDT for �1 µs
and then shine the triangular XY lattice on the molecular BEC
for a pulse time τ ranging from 500 ns to 1 µs with optical
power ranging between 0 and 4 W. We then perform a brief
TOF of 2 ms after which we take absorption images. Typical
diffraction patterns for various pulse areas are shown in Fig. 6.

From the diffraction pattern structure we deduce the beam
intersection angles with respect to the camera horizontal axis,
φ1, φ2, φ3, and the imbalance between the lattice arm inten-
sities. We find φ1 = 190◦, φ2 = 311◦, and φ3 = 72◦; a beam
imbalance ratio of 0.74:0.85:1.4; and a maximum achievable
lattice depth of 888(24) µK. We performed similar measure-
ments to characterize the one-dimensional vertical lattice, as
shown in Appendix B, resulting in a maximum lattice depth
of 401(13) µK and trap frequencies up to 701(11) kHz in
the vertical direction, allowing for wide tunability for the
confinement and tunneling in the vertical direction.

While the Kapitza-Dirac measurement is a reliable method
to calibrate the lattice depth and identify the lattice axes,
we find that it does not distinguish between the triangu-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(arb. units)

FIG. 6. Absorption images showing Kapitza-Dirac diffraction of
a molecular BEC taken after a 2-ms time of flight for different
values of the geometric average of the pulse area θ̄ . Images for
(a) θ̄ = 0, (b) θ̄ = 0.49, (c) θ̄ = 0.73, (d) θ̄ = 1.08, (e) θ̄ = 1.43,
(f) θ̄ = 1.74, (g) θ̄ = 2.05, (h) θ̄ = 2.43, and (i) θ̄ = 2.77 averaged
over 60 experimental realizations. See Appendix B for the corre-
sponding pulse times and potential depths.

lar and honeycomb configurations, as it yields the same
diffraction patterns in both cases, within a global fac-
tor. To understand this observation, we have developed a
general scattering model that we present in Appendix C,
together with a detailed theoretical analysis. Using the full
Hamiltonian of the problem, we find that lattice pulse times at
least on the order of the lattice trap period—hence beyond the
Kapitza-Dirac regime—are required to identify the triangular
and honeycomb geometries unambiguously. For these longer
pulse times, we enter the Bragg scattering regime [86], where
molecules from the condensate are transferred to a set of dis-
crete momentum states corresponding to wave vectors of the
reciprocal lattice. The dynamics at play can then be viewed as
resulting either from coherent two-photon processes involving
the modes making up the standing waves of the lattice [83],
or from the diabatic projection of the free-space momentum
eigenstates onto those of the lattice [87]. In the absence of
decoherence processes, the dynamics only depends on the
lattice recoil energy EL, and the two-photon Rabi frequencies
�12, �13, and �23 resulting from each pair of lattice arms.

The predicted difference in the diffraction dynamics
mainly originates from the sign of the off-diagonal terms
in the full Hamiltonian, which are exactly opposite for the
triangular and honeycomb lattices. This sign difference has
significant consequences as it tunes the two-photon process
closer to or further from resonance, with marked effects on
the momentum populations at sufficiently long timescales.

We perform Bragg scattering with lattice pulse times τ up
to 150 µs, and observe rich dynamics with striking differences
between the two configurations, which we unambiguously
differentiate and identify by comparison with our theoretical
predictions. Absorption images taken after a 1.5-ms TOF are
shown in Fig. 7 (Fig. 8) for the triangular (honeycomb) config-
uration, where we used a lattice power of 200 mW (400 mW),
such that h̄|�12| � h̄|�13| � h̄|�23| � EL. Quantitatively, we
also display the time evolution of the populations of the dif-
ferent diffraction orders in the two lattice geometries, which
are well reproduced by our model, using the intensity of each
lattice arm and a relaxation coefficient as fitting parameters.
The resulting traces are displayed in the bottom panels of
Figs. 7 and 8, and show excellent agreement with the pre-
dictions for both geometries. Bragg scattering thus provides
a sensitive way to characterize the trapping frequencies in dif-
ferent directions of optical lattices even when those are nearly
degenerate, which is a regime where traditional methods such
as amplitude or phase modulation or Raman spectroscopy are
less resolved due to thermal or Doppler broadening.

V. CONCLUSIONS

We have introduced a new platform for quantum simulation
experiments based on 6Li atoms. Our apparatus features two
chambers, with a laser-cooling chamber and a science cell
with excellent optical access. We combine the use of D1

gray molasses sub-Doppler cooling with the loading into a
mechanically movable optical dipole trap, which proves to
be robust and allows us to benefit from this two-chamber
architecture without major technical overhead. Thanks to an
all-optical cooling strategy that only relies on 671-nm and
near-infrared laser wavelengths, we reliably produce deeply
degenerate Fermi gases in approximately 15-s cycles. A key
characteristic of our apparatus is its versatility, which allows
placing the degenerate samples in a variety of energy land-
scapes without any hardware change.

We created unitary Fermi gases (in three-dimensional con-
tinuous space) at controlled temperatures, which we obtained
using in situ thermometry. With temperatures as low as
0.08TF, we prepared superfluid samples in a regime of high
diluteness corresponding to a peak interparticle spacing larger
than a micron, bringing their direct imaging via quantum gas
microscopy within reach [76].

We generated a versatile set of optical lattices enabling the
study of interacting fermionic matter in continuous 2D and
1D space, as well as in multiple lattice configurations. In the
horizontal plane, we showed the tunability from triangular
to honeycomb lattice, which we characterized via matter-
wave diffraction of a molecular Bose-Einstein condensate, in
and beyond the Kapitza-Dirac regime. We demonstrated how
Bragg diffraction can be used to quantitatively discriminate
between the two and overcome the limitations of standard
Kapitza-Dirac diffraction. In the vertical direction, trapping
can be provided by a one-dimensional lattice, allowing us to
create a stack of layers with tunable interlayer coupling, or
with a single light sheet, giving access to purely 2D physics.

The same lattices, in combination with the high-resolution
objective and Raman sideband cooling, also enable single-
atom imaging in this apparatus, which is already operational
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FIG. 7. Bragg scattering of a molecular BEC exposed to an optical lattice with triangular geometry. The configuration of the wave vectors
ki and polarization vectors εi used to generate the lattice is shown in the left inset, alongside a schematic depiction of the lattice geometry.
Experimental (top row) and simulated (bottom row) absorption images following a 1.5-ms TOF after exposing the cloud to the lattice for
a pulse duration τ of [(a), (g)] 0, [(b), (h)] 5, [(c), (i)] 9, [(d), (j)] 12, [(e), (k)] 18, and [(f), (l)] 132 µs. The bottom three panels show the
population (I) as a function of τ for the six first-order diffraction peaks. Corresponding peaks for each graph are indicated by the top-right
insets. Experimental data points are given with error bars representing one standard deviation together with results from the simulation (solid
lines). Data are averaged over 15 experimental realizations.

and is the subject of ongoing work [76]. Single-atom imaging
of dilute deeply degenerate Fermi gases offers the prospect
to directly access spin-resolved spatial correlation functions

of the unitary Fermi gas, which were never measured to date
and would provide a unique microscopic characterization of
this paradigmatic many-body system. Such observables are
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FIG. 8. Bragg scattering of a molecular BEC exposed to an optical lattice with honeycomb geometry. The configuration of the wave vectors
ki and polarization vectors εi used to generate the lattice is shown in the left inset, alongside a schematic depiction of the lattice geometry.
Absorption images taken following a 1.5-ms TOF after exposing the cloud to the lattice for a pulse duration τ of [(a), (g)] 0, [(b), (h)] 5, [(c),
(i)] 9, [(d), (j)] 12, [(e), (k)] 18, and [(f), (l)] 132 µs. The bottom three panels show the population (I) as a function of τ for the six first-order
diffraction peaks. Corresponding peaks for each graph are indicated by the top-right insets. Experimental data points are given with error bars
representing one standard deviation together with results from the simulation (solid lines). Data are averaged over 15 experimental realizations.
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particularly crucial in the regime of spin imbalance to probe
the physics of interacting Fermi polarons [88] or search for
the elusive Fulde-Ferrell-Larkin-Ovchinnikov phase [89,90]
that was predicted 60 years ago but never observed. Our setup
also offers the perspective to probe the microscopics of spin
systems in triangular and honeycomb lattices, where the inter-
play between magnetic correlations and frustration is expected
to give rise to a rich and highly debated phenomenology,
including possible spin liquid phases [91–102].

With its extended experimental capabilities, the quantum-
gas platform presented here enables a new approach for
atom-based quantum simulation, directed towards addressing
different classes of quantum many-body systems within the
same setup.
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APPENDIX A: EXPERIMENTAL APPARATUS AND
SEQUENCE

Here we present further information on the experimental
apparatus and sequence. Table II summarizes the typical laser
beam parameters of the laser-cooling stages. The MOT laser
beams, operating near the D2 transition (2S1/2 → 2P3/2), con-
sist of two retro-reflected beams and one counterpropagating
beam pair, all with a 1/e2 radius of 7.5 mm. After the MOT
stage we perform a compression (CMOT) by increasing the
magnetic field gradient from 10 to 25 G/cm over a period

TABLE II. Typical experimental parameters for the laser beams
involved in the laser-cooling stages. We refer to the two beams
involved in the D1 molasses stage as strong and weak, respectively,
as each contributes to cooling due to the 	 enhancement of the
gray molasses [103–105]. Angular momentum of the ground (Fg)
state and addressed transitions are given for each cooling step,
alongside detunings (δ) expressed in units of the natural linewidth
� = 2π × 5.87 MHz, laser intensities per arm (I) in units of the
saturation intensity Isat = 2.54 mW/cm2 of the D2 transition of 6Li,
as well as the total optical power used per cooling stage (Ptot ).

δ I Ptot

Laser beam Fg Transition ( �) (Isat) (mW)

(C)MOT cooling 3/2 D2 −3.4 3.6 35
(C)MOT repumper 1/2 D2 −3.4 1.3 13
D2 molasses cooling 3/2 D2 −1 0.2 4
D2 molasses repumper 1/2 D2 −1 0.1 1
D1 molasses strong 3/2 D1 4 ∼20 60
D1 molasses weak 1/2 D1 4 ∼1 2

TABLE III. Typical atom numbers (N), temperatures (T ), and
phase-space densities (PSDs) at the end of each stage of the cooling
sequence up to the end of the first evaporation step.

N T PSD

CMOT 1 × 109 1.2 mK 5.5 × 10−7

D2 molasses 1 × 109 800 µK 5.8 × 10−7

D1 molasses 5 × 108 50 µK 5.2 × 10−5

ODT capture 5 × 106 90 µK 3.4 × 10−4

ODT RF 2 × 106 per spin 125 µK 5.0 × 10−5

CDT balanced 3.4 × 105 per spin 23 µK 2.0 × 10−2

of 50 ms. We then suddenly switch off the magnetic field
gradients, while keeping the MOT laser beams on until all
transient magnetic gradients have decayed (we refer to this
as the D2 molasses phase, despite the presence of transient
magnetic fields). We subsequently capture the atoms in a
gray molasses, based on the D1 transition (2S1/2 → 2P1/2), for
which we use two retro-reflected beams with a 1/e2 radius
of 3 mm and one retro-reflected beam—overlapped with one
of the MOT arms—with a 1/e2 radius of 7.5 mm. Atoms are
then optically pumped into the F = 1/2 manifold by switch-
ing off the weak D1 molasses beams for 10 µs and moving
the strong beam frequency towards resonance. This ensures
that the atoms populate the two Zeeman sublevels used for
evaporative cooling.

We then capture the atoms in the ODT (ODT capture stage)
and transport them to the glass cell. To estimate the transport
efficiency, we measure the atom number after a round-trip
transport, i.e., to the glass cell and back to the MOT chamber.
This allows us to count the atom number under identical
conditions as before the transport. The efficiency ε is then
obtained by computing

ε =
√

NRT

N (
t )
,

where NRT is the atom number after the round trip and N (
t )
is the atom number after a hold time of 
t = 2.4 s in the MOT
chamber, corresponding to the duration of the round trip. We
obtain a transport efficiency of 97% with a standard error of
0.5%.

The atoms are subsequently loaded in the CDT and the
magnetic field is ramped to 832 G. The RF sweep is then
performed to equilibrate the population (ODT RF), and evap-
oration is initiated by lowering the power of the transport
beam until it becomes comparable to the power of the crossing
beam (CDT balanced). Typical atom numbers, temperatures,
and phase-space densities obtained at the end of each of these
cooling stages are presented in Table III.

In the glass cell, atoms are detected via absorption imag-
ing along either a horizontal or vertical axis. The majority
of the data presented here are obtained using the vertical
imaging system with a magnification of ∼6, which consists
of a microscope objective corrected to infinity followed by
a first focusing lens and a telescope projecting the image of
the atoms on an EMCCD camera (Andor iXon Ultra 888).
The lens setup is designed to easily switch to a magnification
of ∼60, which allows for single-atom imaging and the best
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TABLE IV. Pulse area θ , pulse time τ , and potential depth U0/kB

for each of the Kapitza-Dirac measurements shown in Fig. 6. Labels
(a) through (i) refer to the corresponding panels.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

θ 0.0 0.49 0.73 1.08 1.43 1.74 2.05 2.44 2.77
τ (µs) 0.0 1.00 1.00 0.80 0.80 0.60 0.60 0.50 0.50
U0/kB (µK) 0.0 3.8 5.5 10.3 13.6 22.2 26.3 37.0 42.1

performance of the microscope objective (not used here). The
latter features a numerical aperture of 0.56, an effective focal
length of 27 mm, with optimal resolution �1 µm over a field
of view of 200 µm. The imaging setup in the horizontal plane
consists of two lenses in a 4 f configuration and a CMOS
camera (Andor Zyla 5.5), resulting in a magnification of 1.5.

APPENDIX B: KAPITZA-DIRAC SCATTERING

Here we provide additional experimental parameters for
the Kapitza-Dirac measurements presented in the main text,
performed for the two-dimensional lattice triangular configu-
ration. We also present the Kapitza-Dirac measurements used
to characterize the one-dimensional vertical lattice.

Table IV shows the experimental parameters of the two-
dimensional lattice that were used for the Kapitza-Dirac
measurements shown in Fig. 6. Resulting momentum state
populations only depend on the pulse area θ = U0τ/(2h̄).

Similar to the measurements performed in the two-
dimensional lattice, we perform Kapitza-Dirac scattering in
the one-dimensional vertical lattice by preparing a molecular
BEC in the CDT at a magnetic field of 665 G. We then turn off
the CDT and pulse the lattice for a time τ = 450 ns at a vary-
ing laser power of the lattice beams P between 0.5 and 6.5 W,
leading to pulse areas θ between 0.3 and 3.86. After a brief
TOF of 1.8 ms we capture the resulting diffraction patterns
through absorption imaging along the horizontal imaging axis,
which we show in Fig. 9.

The simple geometry of the vertical lattice allows us to
describe these diffraction patterns with Bessel functions. Fol-

(arb. units)

FIG. 9. Kapitza-Dirac measurement in the one-dimensional ver-
tical lattice with τ = 450 ns. Each column shows an absorption
image taken at a specific laser power, varying from 0.5 to 6.5 W.
Values of the pulse area θ are obtained by fitting the population of
the momentum states to the respective Bessel functions, as shown in
Fig. 10.
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FIG. 10. Population in each momentum eigenstate (I ) for the
Kapitza-Dirac measurement shown in Fig. 9 as a function of pulse
area (θ ). We scale the horizontal axis to fit the experimental results
(data points) with the expected Bessel function behavior (solid lines).
Vertical error bars show experimental fluctuations at one standard
deviation, while horizontal error bars represent the uncertainty of the
fit at one standard deviation.

lowing Refs. [83,84] we write the light-shift potential of the
far-detuned lattice beams onto the molecules along the vertical
(z) direction as

U (z, t ) = U0 f 2(t ) sin2(k · z),

where f (t ) is the temporal envelope of the lattice beams, in
our case a block pulse of time τ , and k is the lattice wave vec-
tor. In the Raman-Nath regime, where we can ignore kinetic
energy contributions, we can use simple time evolution to find
the wave function |ψ (τ )〉 from the initial (zero-momentum)
wave function |p = 0〉:

|ψ (τ )〉 = exp

(
− i

h̄

∫ τ

0
dt U (z, t )

)
|p = 0〉.

The result can be rewritten in a sum of plane waves, i.e., mo-
mentum eigenstates |p = 2nh̄k〉 with n ∈ Z, with nth-order
Bessel functions (Jn) as prefactors. This leads to populations
in the respective momentum states of

Pn(θ ) = J2
n (θ ) with θ = U0τ

2h̄
.

We determine the population in each momentum state and
for each lattice beam power for the measurements shown in
Fig. 9. By fitting the results to the Bessel functions for the
respective momentum states, we calibrate the trap depth of
the vertical lattice as a function of the optical power of the
lattice beam, Pz. Note that we sum the population of the
eigenstates with the same absolute momentum. Resulting data
points and fits for the first three momentum states are shown
in Fig. 10, leading to an approximate atomic trap depth power
dependency of kB × 10 µK W−1 × Pz. We used a similar
approach to analyze the Kapitza-Dirac scattering results for
the XY lattice presented in the main text (Fig. 6).
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FIG. 11. Bragg scattering of a molecular BEC exposed to an optical lattice with [(a)–(c)] triangular and [(d)–(f)] honeycomb geometries.
Data of Figs. 7 and 8 for the full experimentally probed time domain. Population (I) as a function of pulse duration τ in the six first-order
diffraction peaks. Experimental data points averaged over 15 realizations are given with error bars representing one standard deviation.
Corresponding peaks are indicated by the top-right insets. The solid lines show the simulated population obtained from a fit to the model.

APPENDIX C: MODEL OF BEC SCATTERING OFF A
PERIODIC POTENTIAL

In this section we detail our model of the scattering of
a molecular BEC on a periodic potential V (r) that is simi-
lar to those presented in Refs. [28,106,107]. We apply this
model to the Bragg scattering measurements in the XY lattice
presented in Figs. 7, 8, 11, and 12, but it is also suitable
to describe Kapitza-Dirac scattering. We additionally derive
an effective two-level model for a triangular or honeycomb
lattice in the case where the intensities of all three lattice
beams are balanced and low enough to suppress occupation
of large momentum states.

The optical potential of the XY lattice is created by the
interference of three coplanar beams, which we write as

V (r) = −A
∣∣E1eik1·rε1 + E2eik2·rε2 + E3eik3·rε3

∣∣2
,

where A is a constant, r the position vector, and the Ei, ki, and
εi are respectively the electric field amplitude, wave vector,
and polarization vector for each of the three beams.

Expanding this potential leads to a constant term V0, as well
as six interference terms exp(i(ki − k j ) · r) for i �= j with
potentially different amplitudes depending on the local inten-
sity and polarization of the beams. These terms can equally
be seen as a position-dependent potential, or as a coupling
between different momentum states, since in the momentum
basis exp(i(ki − k j ) · r̂)|p〉 = |p + h̄(ki − k j )〉.

In our geometry, k1, k2, and k3 lie in the XY plane at 120◦
angles with each other. Considering an initial molecular BEC
prepared in a single momentum state |p = 0〉, the set of acces-
sible momentum states forms a (reciprocal) triangular Bravais
lattice {|n1b1 + n2b2〉, (n1, n2) ∈ Z2}. Specifically, we denote
the six nonzero momentum states surrounding the origin with
b1 = h̄(k1 − k2), b2 = h̄(k3 − k2), b3 = h̄(k3 − k1), b4 =
−b1, b5 = −b2, and b6 = −b3.

The Hamiltonian for this system is composed of kinetic and
potential energy terms H = T + V . Writing two momentum
eigenstates as |α〉 and |β〉, this gives

〈α|T |β〉 = δα,β

b2
α

2M
≡ δα,β h̄
α,

〈α|V |β〉 =

⎧⎪⎨
⎪⎩

h̄�i j

2
if

bα − bβ

h̄
= ki − k j, i �= j ∈ [1, . . . , 3]

0 otherwise,

where by construction h̄
1 = h̄
2 = · · · = h̄
6 =
3h̄2k2/(2M ) = EL; and the Rabi frequencies h̄�i j =
−2AEiEjε

∗
i · ε j depend on the relative intensity and

polarization of the lattice beams.
By diagonalizing this Hamiltonian, we are able to explore

the Bragg dynamics for different parameters, which show that
the evolution of the diffraction patterns as a function of the
lattice pulse are markedly different between the triangular and
the honeycomb lattices.
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FIG. 12. Bragg scattering of a molecular BEC exposed to a triangular lattice with P � 100 mW, corresponding to a two-photon Rabi
frequency |�| � 2π × 28(2) kHz. Absorption images taken after 1.5-ms TOF for (a) τ = 0, (b) τ = 5, (c) τ = 8, and (d) τ = 55 µs. The
main panel shows the integrated signal for the zero-order diffraction peak (red data points) and the first-order diffraction peaks (sum of the six
degenerate first-order peaks, blue data points) as a function of lattice pulse duration up to τ = 55 µs. Corresponding fits of the damped Rabi
oscillation (red and blue lines, respectively) are also shown, yielding an effective Rabi frequency of 2π × 64.3(5) kHz, close to the

√
6� value

predicted by our two-level model, and a relaxation time of 59(6) µs. The top-right inset shows the population over an extended range with τ

up to 150 µs.

Building on this analysis, we adjusted the experimental
parameters of the Bragg experiments as discussed in Sec. IV
and obtained the results shown in Figs. 7 and 8, where we
find excellent quantitative agreement between the experi-
ments and our prediction over the whole diffraction pattern
dynamics. Figure 11 shows the data of Figs. 7 and 8 plot-
ted over an extended time domain. Fits based on the model
are obtained by allowing the two-photon Rabi frequencies
�12, �13, �23 and a relaxation coefficient as fitting param-
eters, from which we extract the intensity of each lattice
beam. The fit for the two-photon Rabi frequencies yields
�12 = 2π × 44.8 (38.9) kHz, �13 = 2π × 65.0 (64.4) kHz,
and �23 = 2π × 59.8 (65.3) kHz for the triangular (honey-
comb) lattice. For the first 50 ms, the model gives coefficients
of determination of R2 = 0.81 and 0.69 for the triangular and
honeycomb configurations, respectively. Over the full range
of the dynamics we obtain R2 = 0.73 and 0.57, respectively.

The relaxation coefficient accounts for various sources of
decoherence that can arise during the Bragg dynamics. An
obvious source of decoherence stems from the inhomogeneity
of the lattice beams when the spatial extent of the molecular
BEC is not negligible compared to the beam sizes [87]. In
our fitting procedure, we therefore encode the relaxation by
using an effective size of the molecular BEC as a fitting
parameter. The fitted cloud sizes are 10.6(4) µm and 13(1) µm
for the triangular and honeycomb lattices, respectively. These
can be translated into a characteristic relaxation time of η �
35 µs (η � 50 µs) for the triangular (honeycomb) lattice,
where η enters as a damping time of a Gaussian envelope
exp[−t2/(2η2)]. We find that the fitted cloud size is 50%

(80%) larger than the measured size for the triangular (hon-
eycomb) lattice. This indicates that the lattice inhomogeneity
is indeed an important source of decoherence, but also signals
that other decohering processes are at play. Other sources
of decoherence include residual dimer-dimer collisions. The
most likely additional contribution is, however, a measure-
ment artifact resulting from shot-to-shot lattice beam intensity
fluctuations, which leads to an apparent decoherence. For
instance, an intensity fluctuation of 5% would yield a 100-µs
relaxation time.

While the analysis above shows that we have an accurate
description of the Bragg dynamics, the strong differences be-
tween the diffraction patterns resulting from the triangular and
honeycomb lattices may nevertheless seem counterintuitive.
Indeed, under inspection of the full Hamiltonian above, one
can see that the two cases only differ by a minus sign in the
expression of the matrix elements 〈α|V |β〉. To build intuition
on the importance of this sign difference and the role it can
play in the dynamics, we have developed a simplified model
that we describe below.

The full Hamiltonian above can be greatly simplified under
two assumptions. First, we assume that all three lattice arms
have equal intensity, such that we can write �1 = · · · =
�6 = � (chosen to be a real number for simplicity). For the
triangular lattice, all polarizations are parallel to each other,
leading to a negative Rabi frequency �triangular < 0, while for
the honeycomb lattice the relative angle between polarization
vectors leads to a sign reversal �honeycomb = −�triangular/2 >

0. Second, if we take the Rabi frequency � to be small com-
pared to the kinetic energy associated with the first nonzero
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momentum states 
, the occupation of large momentum states
is suppressed due to the off-resonant nature of the Raman pro-
cess. To the lowest approximation order we can therefore only
consider the first six nonzero momentum states (b1, . . . , b6),

which have the same kinetic energy h̄
 > 0 and therefore
couple resonantly to each other. In the (b0, b1, . . . , b6) basis,
with b0 = 0 the zero-momentum state, the Hamiltonian is
then

H = h̄

⎛
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Due to the coupling, however, the initial basis (b1, . . . , b6) of momentum states is not the most adapted to diagonalize the
Hamiltonian. We therefore simplify H further by performing the basis change (b0, b1, . . . , b6) → (b0, b̃1, . . . , b̃6), with b̃k =√

1/6
∑6

j=1 ei 2π (k−1) j
6 b j . This makes the Hamiltonian diagonal in the subspace (b̃1, . . . , b̃6) with associated energies Ek/h̄ =


 + � cos( 2π (k−1)
6 ). Furthermore, the new coupling constants �̃k = √

1/6
∑6

j=1 ei 2π (k−1) j
6 � are all zero except �̃1 = √

6�. The
Hamiltonian H̃ in this new basis becomes

H̃/h̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

6�
2 0 0 0 0 0√

6�
2 
 + � 0 0 0 0 0

0 0 
 + �
2 0 0 0 0

0 0 0 
 − �
2 0 0 0

0 0 0 0 
 − � 0 0

0 0 0 0 0 
 − �
2 0

0 0 0 0 0 0 
 + �
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Hamiltonian is thus reduced to a two-level system with
an effective detuning 
̃ = 
 + � and an effective Rabi fre-
quency �̃ = √

6�, meaning that, when starting with all atoms
in |p = 0〉, the system will oscillate between the initial state
and the symmetric superposition of the six first excited mo-
mentum states. The difference between the triangular and
honeycomb lattices (for a given coupling strength |�|) hence
comes from the sign of �. For the triangular lattice (� <

0), the resonant coupling of (b1, . . . , b6) brings the excited
state closer to resonance, whereas for the honeycomb lattice
(� > 0) it pushes the excited states further from resonance.
For a given lattice depth, we thus expect the triangular lat-
tice to transfer a larger fraction of atoms to excited states
than the honeycomb lattice. This qualitative difference is a
generic feature and holds beyond the low-intensity limit and
the balanced-intensity case, as is observed in the diffraction
patterns in Figs. 7 and 8.

As a validation of this simplified model, we perform Bragg
scattering measurements in a triangular lattice at low laser

power in order to approach the condition � � 
. The results
are shown in Fig. 12, where the diffraction patterns display a
predominant population of only the central peak and the first
nonzero momentum states, as expected in the low-intensity
regime. From these diffraction patterns, we extract two pop-
ulations: the one of zeroth order and the summed population
of all first-order diffraction peaks, which we plot as a function
of τ . We observe that the time evolution of the populations
is well fitted with damped Rabi oscillations, confirming the
two-level picture. From the fit, we obtain an effective Rabi
frequency |�̃| � 2π × 64.3(5) kHz and an effective detuning

̃ � 2π × 10(3) kHz, which are in agreement with the pre-
dicted values |�̃| = √

6|�| � 2π × 68(5) kHz and 
̃ = 
 +
� � 15(2) kHz, where |�| � 2π × 28(2) kHz is obtained
from an independent calibration and 
 = EL/h̄ = 2π ×
43 kHz directly stems from the lattice geometry. We attribute
the slight discrepancy on 
̃ to the fact that the two conditions
required for the simplified model are not perfectly fulfilled.
We also extract a relaxation time of 59(6) µs from the fit.
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