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Abstract

Point sets, geometric networks, and arrangements of hyperplanes are fundamental objects in
discrete geometry that have captivated mathematicians for centuries, if not millennia. This
thesis seeks to cast new light on these structures by illustrating specific instances where a
topological perspective, specifically through discrete Morse theory and persistent homology,
provides valuable insights.
At first glance, the topology of these geometric objects might seem uneventful: point sets
essentially lack of topology, arrangements of hyperplanes are a decomposition of Rd, which
is a contractible space, and the topology of a network primarily involves the enumeration
of connected components and cycles within the network. However, beneath this apparent
simplicity, there lies an array of intriguing structures, a small subset of which will be uncovered
in this thesis.
Focused on three case studies, each addressing one of the mentioned objects, this work
will showcase connections that intertwine topology with diverse fields such as combinatorial
geometry, algorithms and data structures, and emerging applications like spatial biology.
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CHAPTER 1
Introduction

The shapes that exist in the natural world are fundamental building blocks dictating the
structure, function, and behaviour of living organisms. Consider the intricate folds and
convolutions of the human brain, which house a multitude of cognitive processes and define the
uniqueness of human intelligence. In the realm of biology, understanding the shapes of proteins
and their complex interactions is crucial to unlocking the mysteries of cellular functions and
discovering potential targets for therapeutic intervention. Furthermore, the striking patterns of
leaves in plants not only contribute to their visual allure but also reveal essential adaptations
to environmental conditions, enabling them to thrive in various habitats. From the formation
of organ structures to the evolution of species, the profound influence of shapes permeates
the very fabric of life, driving scientific inquiries across disciplines.
Exploring shapes has long captivated mathematicians, sparking the development of fresh
mathematical concepts and principles. In ancient times, the study of geometry emerged as
humanity’s first attempt to formalize and understand the shapes that surrounded them. The
Greeks, notably Euclid, provided a rigorous foundation for geometric principles, introducing
axiomatic reasoning and the notion of proofs [67]. However, as mathematical thinking
advanced, the focus shifted from measuring shapes to understanding their intrinsic properties.
A notable such example was observed by Leonhard Euler, who noticed a relation between
the number of vertices, the number of edges and the number of faces in a bounded convex
polyhedron. Indeed, he showed that their alternating sum always adds up to 2. This is often
considered as the starting point of the mathematical field of topology : it is a global statement
that does not depend on the precise geometry of the shape. It took more than a century to
find a satisfying framework that includes Euler’s original observation as a special case. In fact,
Euler’s formula was generalized to arbitrary d-dimensional polytopes by Schläfli (1852) [100]
but the first correct proof was given 50 years later by Poincaré [90].
The first result that we will prove in this thesis is reminiscent, at least in spirit (and certainly
not in impact), to Euler’s formula from the 18th century. Specifically, we show that there is a
system of independent equations that control the combinatorial structure of an arrangement
of hyperplanes in Euclidean space. The latter is a decomposition of Rd into connected open
cells of dimensions 0, 1, · · · , d. Just like in Euler’s case such equations are given in terms of
alternating sums. Our result fits into a well established paradigm: using topological methods
to study questions in discrete geometry; see survey articles [13, 111] and books [81]. The latter
reference illustrates the most striking example of such paradigm by showcasing the applications
of the Borsuk-Ulam theorem – a celebrated topological result – in combinatorial geometry. The
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1. Introduction

theorem states that for every continuous function from a d-sphere to d-dimensional Euclidean
space, there exist a pair of antipodal points (opposite points) on the sphere that map to the
same point in Euclidean space. Perhaps surprisingly at first, the theorem finds use in problems
related to fair division and graph coloring, providing elegant solutions that bridge the abstract
realm of topology with challenging combinatorial problems.
Besides being interesting in their own right, arrangements of hyperplanes have served as a
unifying structure for many problems in discrete and computational geometry [106, Chapter
28]. In the preface to his book Algorithms in Combinatorial Geometry [42], Edelsbrunner
writes: "[...] arrangements of hyperplanes are at the very heart of computational geometry
and this is my belief now more than ever". One of the main reasons for Edelsbrunner’s claim,
which is of particular importance for this thesis, is the duality between finite sets of points
and finite sets of hyperplanes. In fact, in the same book [42, Chapter 12] the author describes
a collection of problems stated for point configurations and solved by operating on their
corresponding dual arrangements.
For the specific problem treated in Chapter 3, this duality allows us to reformulate questions
about splitting finite point sets as questions about a discrete function defined on a corresponding
arrangement. To avoid the case analysis needed to distinguish bounded and unbounded cells,
we work with arrangements of great-spheres on Sd rather than of hyperplanes in Rd. Assuming
non-vertical great-spheres (which do not pass through the north-pole and the south-pole)
the depth function maps every cell of the arrangement to the number of great-spheres that
separate the cell from the north-pole.
Aspects of this function have been studied in the past, such as the maximum number of
chambers (top-dimensional cells) at a given depth, which relates to counting k-sets in a set of
n points, which are subsets of k points that can be separated from the remaining n − k points
by a straight line; see e.g. [53]. Giving tight bounds on the number of k-sets is still open, with
substantial gaps between the current best upper and lower bounds in all dimensions larger
than or equal to 2. We propose to focus on the topological aspects of the depth function,
in particular the occurrence of critical cells of different types. In the top dimension, we have
a chamber containing the north-pole (a minimum at depth 0), a chamber containing the
south-pole (a maximum at depth n), and otherwise only non-critical chambers connecting the
minimum to the maximum. There is nothing much topological to learn from such a bi-polar
depth function, but its restrictions to common intersections of great-spheres display a richer
topology, which can be studied with methods from discrete Morse theory [55] and persistent
homology [43]. The core result presented in Chapter 3 is a system of Dehn–Sommerville type
relations for level sets of the depth function. We will also show how this system can be used
to rederive known cell-counting formulas for order-k Voronoi tessellations in R2 [73] and R3

[10]. These tessellations are partitions Rd on the basis of the first k closest sites (without
distinguishing order among them). Can the persistent homology on the restrictions of the
depth function to one-dimensional subarrangements be used to improve the current best upper
bound for the number of k-sets in R2?
Motivated by the question above, the Chapter 4 of the thesis delves into the study of
continuous functions defined on compact one-dimensional spaces such as the the unit circle,
the unit interval, and more general geometric networks. Such maps are ubiquitous and arise in
developmental biology (e.g. rythmic gene expression [34]), physiology (e.g. heart-rate [63]), and
numerous other fields. We focus on the persistence homology of these functions, with the goal
of using the persistent diagrams as practical bookkeeping devices for relevant combinatorial
quantities. It will become apparent in Chapter 4 that the persistent homology of functions
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on one dimensional spaces exhibits strikingly combinatorial characteristics. We will show how
this distinctive feature allows for a geometric characterization of persistent pairs, enabling the
derivation of elementary proofs for theorems related to the symmetry of persistence diagrams.
In particular, our analysis identifies branching points and endpoints within networks as the
sole sources of asymmetry.
Another implication of the geometric characterization of persistent pairs that we will derive in
Chapter 4 is a relation between the variation and the total persistence of maps on networks.
The variation of a real-valued map quantifies the total amount of local change in the map.
According to the Koksma–Hlawka inequality, the error of a numerical integration is bounded
from above by the variation of the map times the discrepancy of the points at which the
map is evaluated [68, 70]. For a 1-dimensional, compact, and piecewise differentiable map,
the variation is the integral of the absolute derivative. It is also the total persistence of the
map, as we will prove in Chapter 4. The variation is thus a numerical summary of the more
detailed information expressed in the persistence diagram. Not unlike the Fourier transform,
this diagram decomposes the variation into different scales.
Furthermore, we will show how the structural results proven in this chapter have algorithmic
implications. Specifically, they serve as the foundations for fast algorithms to maintain a
collection of sorted lists together with their persistence diagrams. In fact, our structural results
have culminated in the development of a new data structure designed to efficiently update and
manage persistence information in the specific setting of functions defined on intervals (e.g.
time series). In essence, the combinatorial nature of persistence in the 1-dimensional setting
not only enhances our understanding of persistence itself but also unlocks new avenues for
practical applications across disciplines where the analysis of time series data holds substantial
significance.
The relationship between topology and combinatorics constitutes a dynamic interplay rather
than a one-way street, where both disciplines mutually inform and enrich one another. While
topological methods serve as powerful tools for solving intricate combinatorial problems, the
converse is also true—topology can be effectively approached through a combinatorial lens.
It’s interesting to observe that the combinatorial approach to topology actually emerged before
the use of topological methods in combinatorial problems. Historically, combinatorial topology,
a predecessor of algebraic topology, characterized an era where topological invariants of spaces,
like the Betti numbers, were perceived as derivable from combinatorial decompositions—such
as decompositions into simplicial complexes.
In contemporary domains such as Topological Data Analysis [43], this reciprocal interdepen-
dence thrives, highlighting the indispensable reliance on discrete combinatorial structures
for computing topological descriptors, notably persistent homology. The ability to govern
the scale of these combinatorial structures stands pivotal, enabling efficient computational
methodologies. Chapter 5 of this thesis will illuminate this interdependence by introducing a
novel and efficient combinatorial structure tailored to investigate spatial interactions within
point set data.
The investigation is driven by recent impactful technological advances in biology. Up until
recently, extracting genetic information from a cell, including gene expression, necessitated
tissue dissociation, leading to the loss of individual cell spatial data. However, the emergence
of cutting-edge technologies, such as multiplex imaging and spatial transcriptomics, now allows
direct observation of cellular phenotypes while retaining their original spatial context within the
tissue microenvironment. These breakthroughs present new avenues for unraveling molecular
organization, deciphering intra-tumor heterogeneity, and identifying biomarkers indicative of
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1. Introduction

responses to existing treatments. They not only open new directions in biological research
but also create a pressing need for methodologies that effectively characterize the intricate
geometry underlying cellular arrangements.

The theory of alpha complexes introduced by Edelsbrunner and collaborators [44, 48] is a
compelling starting point to achieve this goal since it was originally designed to quantitatively
describe the spatial configuration of a point set. The idea behind the mathematical construction
is to grow discs around each data point with an increasingly larger radius and track the evolution
of the homological features (i.e. the connected components and the cycles) as the radius
grows. Persistent homology allows not only to identify radii at which homological features
appear and disappear, but also pair these events to quantify how long each feature persists.
The persistence of each homological feature is compactly stored in a “bookkeeping device”
called the persistent diagram [43]. Motivated by the complex spatial interactions between
multiple cell types in the tumor microenvironment, we extend the theory of alpha complexes
to the setting where the input points are labeled according to the cellular phenotype of the
cell they represent.

The necessary step needed to describe not only the shape of each point set separately, but
also how such shapes relate to each other, is to study the inclusion map between the union
of disks of one color (say red) into the union of disks of multiple colors (say red and blue)
as their radii grow. For example, if a cycle is present in the union of red disks at a certain
radius, it might or might not also be present in the union of the red and blue disks. If it is,
such cycle will be in the image of the induced map in homology, while if it is not, it will be in
the kernel. This observation led us to engineer a collection of homological quantifiers that
describe what happens to the persistent homology of one set when we also consider points
belonging to another set. The persistent homology of chromatic sets was introduced in [25],
where we proved various relations between the homological quantifiers involved.

In [9], we showed that the continuous structures induced by the union of disks can be efficiently
computed using a new carefully designed combinatorial representation, which we named the
chromatic alpha complex. This structure uses an extra dimension for each color beyond the
first to capture the interaction between colors. Counter-balancing the increase in dimension,
we showed that the combinatorial size of the complex is moderate for small number of colors
[9]. For example, we give linear bounds on the expected size for randomly colored points in
two dimensions. The compelling mathematical properties of the algorithm, such as its stability
with respect to small perturbations of the point set and its computational efficiency, encourage
the use of chromatic alpha complexes in biomedical settings.

Collectively, these projects exemplify the versatility of topological methods and their profound
connection with questions in combinatorics and geometry, as well as algorithms and data
structures. The final chapter will suggest that topological thinking can transcend the tradi-
tional confines of mathematics and computer science, and serve as a powerful tool for the
computational scientist.

Outline. Chapter 2 will provide the necessary background in discrete and combinatorial
geometry that the rest of the thesis builds on. This includes introducing Voronoi tessellations,
Delaunay mosaics and their relation with arrangements of hyperplanes. The remainder of the
thesis will illustrate three case studies, each focused on a specific discrete geometric structure,
where we gained insights by studying these objects from a topological perspective. In Chapter
3, we will delve into the study of arrangements of hyperplanes and derive formulas connecting
the number of cells across various dimensions. In Chapter 4, we will explore the persistent
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homology of functions on geometric networks, and provide a geometric characterisation of
the persistent pairs in this setting. Chapter 5 will focus on the generalization of the alpha
complex construction to scenarios where points have a label associated with them. We will
describe the framework, illustrate its properties and prove combinatorial bounds for its size.

Disclaimer. The order in which the chapters are presented is mostly chronological, illustrating
the author’s personal journey through his PhD studies. The narrative style not only captures
the evolution of his understanding but also reflects his changing tastes, marking a shift from
theoretical to applied focus towards the thesis’s conclusion. An effort has been made to weave
the topics into a cohesive story, yet deviations in the narrative are inevitable. These deviations
are not mere digressions but represent unexpected discoveries — moments of serendipity that
are intrinsic to the nature of mathematical exploration. The thesis builds heavily on five
research papers [9, 25, 11, 12, 27] that the author worked on during his PhD. If you have
already read them carefully, you should probably stop here as not much else is in this thesis
besides speculations at the end of each chapter.
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CHAPTER 2
Discrete and Combinatorial Geometry

In this chapter, we examine foundational concepts in discrete and combinatorial geometry,
essential for the subsequent sections of this thesis. For a thorough and detailed exploration of
this field, readers are encouraged to consult [42].
We will introduce convex polytopes, Voronoi tessellations, and Delaunay mosaics, while
highlighting how arrangements of hyperplanes serve as a cohesive framework, linking these
concepts together. This chapter examines the structure and size of these objects, which is an
essential prerequisite for determining what is the most efficient way to compute them, as well
as determining how long it takes to do so.

2.1 Convex Polytopes
The study of convex polytopes in Euclidean space of two and three dimensions is one of
the oldest branches of mathematics. In fact, they were already studied by Plato in the
fourth century BC, who hypothesized in one of his dialogues, the Timaeus, that the classical
elements were made of five regular solids: the tetrahedron, cube, octahedron, dodecahedron,
and icosahedron. In a survey article on convex polytopes [65], Grünbaum and Shephard
remarked that there were three developments which foreshadowed the modern theory of convex
polytopes.

1. The publication of Euclid’s Elements [67] and the five Platonic solids. In modern terms,
these are the regular 3-polytopes, where regular means that the faces are congruent
(identical in shape and size) regular polygons (all angles congruent and all edges
congruent), and the same number of faces meet at each vertex.

2. Euler’s Theorem, already mentioned in the introduction, which states that v − e + f = 2
holds for any 3-dimensional polytope, where v, e and f denote the number of vertices,
edges and facets, respectively.

3. The discovery of polytopes in dimensions greater or equal to four by Schläfli [100].

Perhaps surprisingly, many of the interesting properties of polytopes have been discovered
comparatively recently. After introducing some terminology, we will recall some of these
properties and we recommend [110] for a comprehensive introduction to convex polytopes.
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2. Discrete and Combinatorial Geometry

Key definitions. A set X is convex if it has the property that for any pair of points
x, y ∈ Rd, the line segment connecting x to y lies entirely in X. Note that the intersection
of convex sets in also convex. A hyperplane h is a (d − 1)-dimensional affine subspace of
Rd. It divides Rd into two closed halves, which we refer to as half-spaces. A polyhedron is
an intersection of finitely many half-spaces, and is therefore convex. A (convex) polytope
is a bounded polyhedron. Every convex polytope can alternatively be constructed by taking
the convex hull of its vertices [110, Sect. 1.1]. This is the intersection of all convex sets
that contain all vertices of the polytope. The dimension of a polytope is the dimension of
the smallest Euclidean space which contains it. See Figure 2.1 for three examples of convex
polytopes in R3.

Figure 2.1: Examples of 3-dimensional polytopes: a tetrahedron, a cube and an octahedron.

A hyperplane h supports a closed bounded convex set X if h ∩ X ̸= 0, and X lies in one of
the two closed half-spaces bounded by h. If h supports X, then h ∩ X is called a face of
X. In the case of polytopes, each face is itself a polytope. Every point in the boundary of a
polytope P lies on some supporting hyperplane of P , and so belongs to some face of P . To
summarize, for a d-polytope P the following properties hold.

1. The faces of P are polytopes.

2. P possesses faces of every dimension 0, 1, · · · , d − 1. A 0-face is called a vertex, a
1-face is called an edge, and a (d − 1)-face is called a facet of P . If σ is a face of τ , we
say that τ is a coface of σ.

3. Every face of a face of P is also a face of P .

The convex hull of d + 1 affinely independent points is a d-polytope known as a d-simplex (a
3-simplex is often called a tetrahedron). If all the proper faces of a d-polytope P are simplices,
then P is called a simplicial polytope.
Two polytopes P and P ∗ in Rd are dual if there is a bijection between their faces such that
for two dual faces σ and σ∗, dim σ + dim σ∗ = d, and τ is a facet (or cofacet) of σ∗ if and
only if its dual cell τ ∗ is a cofacet (or facet) of σ∗, respectively. A dual of a simplicial polytope
is called a simple polytope. Note that the dual polytope of a cube is an octahedron, while a
tetrahedron is dual to itself.
The face lattice of a polytope P is the set of all faces of P , partially ordered by inclusion.
Two polytopes have isomorphic face lattices if there exists a one-to-one inclusion-preserving
mapping between them. The combinatorial theory of polytopes may be regarded as a study of
the face-lattices; it is concerned with combinatorial equivalence classes of polytopes rather
than with polytopes themselves.
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2.1. Convex Polytopes

Face Counting. The f -vector of a convex polytope is given by (f0, · · · , fd−1), where fi

enumerates the number of i-dimensional faces in the d-dimensional polytope. Since the
problem of characterising the face-lattices of polytopes has proved too difficult, it is natural to
attempt the apparently simpler one of characterising the f -vectors of polytopes. The theorem
below takes a step in that direction.

Theorem 2.1.1 (Euler–Poincaré Relation). The f -vector of a polytope satisfies the Eu-
ler–Poincaré relation:

f0 − f1 + f2 − · · · + (−1)d−1fd−1 = 1 − (−1)d

equivalently,
d∑︂

i=−1
(−1)ifi = 0,

where f−1 denotes the number of empty faces (= 1) and fd = 1 counts the entire polytope.

Proof. See [42, Theorem 6.8].

In other words, the f -vectors of all polytopes P lie on a certain hyperplane in Euclidian space.

Dehn-Sommerville Equations. For simplicial (and simple) polytopes it turns out that
other remarkable equations – besides the Euler-Poincaré formula – hold among the number of
i-faces. These equations were discovered by Dehn for d = 4, 5 in 1905 [32] and by Sommerville
in the general case in 1927 [103]. For d = 3, every edge belongs to two facets and every facet
has three edges. It follows that 2f1 = 3f2. Together with Euler’s formula f0 − f1 + f2 = 2,
we see that f1 = 3f0 − 6 and f2 = 2f0 − 4, namely, that the number of vertices of a simplicial
3-polytope determines its number of edges and faces, these being linear functions of the
number of vertices. More generally, the following relations for simple polytopes hold.

Theorem 2.1.2 (Dehn-Sommerville Equations). Let P ⊆ Rd be a simple polytope. Then

d∑︂
i=k

(−1)i
(︂

i
k

)︂
fi =

d∑︂
i=d−k

(−1)d−i
(︂

i
d−k

)︂
fi,

for all 0 ≤ k ≤ d.

Proof. See [42, Theorem 6.10].

Note that when k = 0, this becomes Euler’s formula. We refer to [64, Section 9.2] for a more
in depth introduction to the Dehn–Sommerville relations for convex polytopes.

The Upper Bound Theorem and Cyclic Polytopes. For a polytope of dimension d
with n vertices, what is the maximal number of i-faces it can possess? This question is not
only important from a theoretical point of view but also from a computational point of view
because of its implications for algorithms in combinatorial optimization and in computational
geometry. The answer to the above problem is that there is a class of polytopes called cyclic
polytopes such that the cyclic d-polytope, Cd(n), has the maximum number of i-faces among
all d-polytopes with n vertices. This result stated by Motzkin in 1957 became known as the
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2. Discrete and Combinatorial Geometry

upper bound conjecture until it was proved by McMullen in 1970 [82] . It is now known as the
Upper Bound Theorem.

For fixed positive integers d and n the cyclic polytope Cd(n) is the convex hull of n distinct
points on the moment curve (t, t2, · · · , td). Figure 2.2, which is borrowed from [106, Chapter
15], shows (a projection of) a 3-dimensional cyclic polytope.

Figure 2.2: A 3-dimensional cyclic polytope with 6 vertices

2.2 Voronoi Tessellations, Delaunay Mosaics and Alpha
Complexes

Given some number of points in the plane, their Voronoi tessellation divides the plane according
to the nearest-neighbor rule: each point is associated with the region of the plane closest
to it; see Figure 2.3. The concept of Voronoi tessellation has independently emerged, and

Figure 2.3: A Voronoi tessellation in the plane.

proven useful, in various fields of science. Different names particular to the respective field
have been used, such as Wigner-Seitz zones in chemistry and physics, domains of action in
crystallography, and Thiessen polygons in meteorology and geography. The mathematicians
Dirichlet [38] and Voronoi [107] were the first to formally introduce this concept, even though
Descartes had drawings of Voronoi tessellations about a century earlier in his book on the
principles of philosophy [31]. His illustrations show a decomposition of space into convex
regions, each consisting of matter revolving around one of the fixed stars [6]. Dirichlet and
Voronoi used it for the study of quadratic forms; the sites are integer lattice points, and
influence of each site is measured by the Euclidean distance. See [42, 6, 56] for standard
reference in the subject.
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2.2. Voronoi Tessellations, Delaunay Mosaics and Alpha Complexes

Key definitions. Letting A ⊆ Rd be a finite set of points, the Voronoi domain of a ∈ A,
denoted dom(a, A), is the set of points x ∈ Rd that satisfy ∥x − a∥ ≤ ∥x − b∥ for all b ∈ A.
Observe that dom(a, A) is the intersection of finitely many closed half-spaces and therefore a
closed convex polyhedron. The Voronoi tessellation of A, denoted Vor(A), is the collection
of Voronoi domains defined by the points in A. These domains cover Rd while their interiors
are pairwise disjoint. Nevertheless, a collection of these polyhedra may overlap in a shared
face, which we refer to as a Voronoi cell. For a generic set, A, the dimension of a Voronoi cell
is determined by the number of Voronoi domains that contain it.

Definition 2.2.1 (Generic Point Set). We call a point set, A ⊆ Rd, generic if, for every
1 ≤ p ≤ d, no p + 2 points in A lie on a common (p − 1)-dimensional sphere in Rd.

Then, indeed, the common intersection of any p + 1 Voronoi domains is either empty or a
convex polyhedron of dimension d − p. Note that our notion of genericity allows for more
than p + 1 points on a p-dimensional affine subspace.

Writing n = #A, it is clear that Vor(A) has precisely n d-cells. For d = 2, this implies
that there are at most 3n edges and at most 2n vertices. More generally for n points in Rd,
the Voronoi tessellation has O(n⌈d/2⌉) cells. While this bound is tight, the number of cells
depends on the relative position of the points and is much smaller for many sets. For example,
the Voronoi tessellation of n points chosen uniformly at random inside the unit cube in a
constant-dimensional Euclidean space has only O(n) cells in expectation; see e.g. [41].

The Delaunay mosaic of A ⊆ Rd, denoted Del(A), is the dual of the Voronoi tessellation of
A. To be specific, consider a p-cell of Vor(A), and observe that it is the common intersection
of m ≥ d − p + 1 Voronoi domains. Assuming this collection of domains is maximal, and
writing a1, a2, . . . , am for the points in A that generate them, we call the convex hull of the
ai the dual Delaunay cell of the Voronoi p-cell. Its dimension is q = d − p. The Delaunay
mosaic of A is the collection of Delaunay cells dual to cells of Vor(A).
We note that Del(A) is a polyhedral complex; that is: it consists of closed polyhedral cells
such that the boundary of each cell is the union of lower-dimensional cells in the complex.
Similarly, the collection of cells of Vor(A) is a polyhedral complex, but note that Vor(A) is,
by definition, only the collection of Voronoi domains, which is not a complex.

Figure 2.4: A Delaunay mosaic in the plane.

Call a (d − 1)-dimensional sphere empty of points in A if no point in A is enclosed by the
sphere. The points may lie on the sphere or outside the sphere, but they are not allowed to lie
inside the sphere. It is not difficult to see that the convex hull of m points in A is a cell in
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Del(A) iff these m points lie on an empty (d − 1)-sphere, while all other points in A lie strictly
outside this sphere. Indeed, the center of such an empty sphere is a point in the interior of
the dual Voronoi cell, and the Voronoi domains generated by the m points all share the cell.

When A ⊆ Rd is generic, all cells in Del(A) are simplices, so Del(A) is a simplicial complex in
Rd. Correspondingly, every p-cell of Vor(A) is the common intersection of exactly d − p + 1
Voronoi domains, so the common intersection of any d + 2 Voronoi domains is necessarily
empty. This is what we call a simple decomposition of Rd. In this case, the Delaunay mosaic is
isomorphic to the nerve of the Voronoi tessellation, which consists of all collections of domains
in Vor(A) that have a non-empty common intersection. The assumption that A be generic
often simplifies matters, and it can be simulated computationally [47] to avoid cumbersome
special cases.

Write Ar for the set of points at distance at most r from at least one data point, and note that
the Voronoi tessellation decomposes Ar into convex sets, each the intersection of a round ball
with a convex polyhedron, see left panel of Figure 2.5. Taking the dual of this decomposition,
we get the alpha complex for radius r, denoted Alf r(A), which we observe is a subcomplex
of the Delaunay mosaic; see the right panel of Figure 2.5. The alpha shape for radius r is the
part of R2 covered by the simplices of Alf r(A). Since the Delaunay mosaic is generically a
simplicial complex, so is Alf r(A) for every r. When r increases, Alf r(A) stays constant or
gains new simplices. It follows that for each simplex there is a threshold beyond which the
simplex belongs to the alpha complex. Write Rad : Del(A) → R for the function that maps
each simplex to this threshold, refer to Rad as the radius function on the Delaunay mosaic,
and observe that the alpha complexes are its sublevel sets: Alf r(A) = Rad−1[0, r] for every
0 ≤ r ≤ ∞. The radius function on the Delaunay mosaic was first introduced in [44], along
with its sublevel sets. Three-dimensional alpha shapes have found ample applications in shape
modeling [48, 59, 78] and in the analysis of biomolecules [45].

Figure 2.5: Left: the Voronoi decomposition of the union of balls centered at the data points.
Right: the dual alpha complex.

Given simplices α ⊆ γ in a simplicial complex K, write [α, γ] for the simplices β that satisfy
α ⊆ β ⊆ γ; that is: [α, γ] is an interval in the face poset of K. Given a monotonic function
f : K → R, an interval of f is an interval on which f is constant, and it is maximal if it is
not contained in a larger interval of f .

Definition 2.2.2 (Generalized Discrete Morse Function). A monotonic function on a simplicial
complex, f : K → R, is generalized discrete Morse if the maximal intervals of f partition K.
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Equivalently, f is generalized discrete Morse if every level set, Kt = f−1(t), is the disjoint
union of maximal intervals. Discrete Morse theory was introduced by Forman [55]. In parallel,
Edelsbrunner developed the wrap algorithm in an industrial setting, asking for the connection
to discrete Morse theory, which was later established by Bauer and Edelsbrunner [8].

Theorem 2.2.1 ([8, Corollary 4.6]). Let A ⊆ Rd be finite and generic. Then Rad : Del(A) →
R is a generalized discrete Morse function.

The significance of this result is that we can construct each alpha complex by adding one
interval at a time. If this interval consists of two or more simplices, then the addition does not
affect the homotopy type of the complex. Indeed, the complex before is a deformation retract
of the complex after the addition of the interval. On the other hand, if the interval consists of
a single simplex, then the addition of this simplex changes the homology of the complex in a
controlled manner.

Lifting. Voronoi tessellations and Delaunay mosaics correspond to certain convex polytopes
in one dimension higher. To see this, consider a finite set of points A in the Euclidean space
Rd and lift them onto a paraboloid living in Rd+1. The Delaunay triangulation of A is the
projection of the downward-facing faces of the convex hull of the set of lifted points. The
connection has first been studied by Brown [15] and then refined by Edelsbrunner and Seidel
[50]. We illustrate the concept precisely in two dimensions.

Let P = {(x1, x2, x3)|x3 = x2
1 + x2

2} denote the paraboloid depicted in Figure 2.6. For each
point a = (a1, a2) in the plane, let a′ = (a1, a2, a2

1 + a2
2) denote its lifted image onto P .

Figure 2.6: Lifting circles onto the paraboloid

Lemma 2.2.1 (Lifted Circles). Let C be a circle in the plane. Then C ′ is the intersection of
the paraboloid P with a plane.

Proof. Suppose that C is given by the equation

r2 = (x1 − c1)2 + (x2 − c2)2 = x2
1 + x2

2 − 2x1c1 − 2x2c2 + c2
1 + c2

2.

By substituting x2
1 + x2

2 = x3 we obtain

x3 − 2x1c1 − 2x2c2 + c2
1 + c2

2 − r2 = 0

for the points of C ′. This equation defines a plane in 3-dimensions.
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This lemma has an interesting consequence. To make it precise, consider the lower boundary
of the convex hull of the lifted points, by which we mean the part of the boundary of the
convex hull which is visible from the (x1, x2)-plane. Then the following lemma holds.
Lemma 2.2.2 (Delaunay and Convex Hulls). Each cell of the Delaunay mosaic of A is the
vertical projection onto the (x1, x2)-plane of a face in the lower boundary of the convex hull
of A′.

Similarly, Voronoi tessellations can be obtained as projection of certain hyperplanes in one
dimension up. For a ∈ R2 let Ha denote the plane of tangency to the paraboloid P at the lifted
point a′. This is the graph of the affine map ha : R2 → R defined by ha(x) = 2⟨x, a⟩ − ∥a∥2.
Note that ha encodes the squared Euclidean distance from a; namely ∥x − a∥2 = ∥x∥2 −ha(x).
For any point b ∈ A the (vertical) distance between the lifted point b′ on the paraboloid and
the tangent plane at a is

b′ − ha(b) = ∥b∥2 − (2⟨b, a⟩ − ∥a∥2)
= ∥a − b∥2.

In words, given points a and b, wherever the tangent plane at a is higher than the tangent
plane at b, we are closer to a than to b. We use h+

a to denote the half-space of points on or
above ha, and h−

a for the half-space of points on or below ha.
By taking the tangent planes at all the lifted points in the set, we obtain an arrangement of
planes that decomposes R3 into convex cells. Roughly speaking, looking at this arrangement
“from above”, yields the Voronoi tessellation of A. To make this precise, we introduce the upper
envelope of a plane arrangement, which is the point-wise maximum of the affine functions
defining it.
Lemma 2.2.3 (Voronoi and Plane Arrangement). Each cell of the Voronoi tessellation of
A is the vertical projection onto the (x1, x2)-plane of a face of the upper envelope of the
corresponding plane arrangement.

Note that the lemma holds in higher dimensions too. Namely, the Voronoi tessellation of points
in Rd can be obtain from projecting the faces of the upper envelope of the corresponding
plane arrangement in Rd+1.

Algorithms. The deep connection mentioned above has algorithmic consequences, as any
(d + 1)-dimensional convex hull algorithm can be used to compute a d-dimensional Delaunay
mosaic and Voronoi tessellation. For completeness, we include a Table 2.7 from [106, Chapter
27], showing the various algorithms that can be used to compute Delaunay mosaic for points
in Euclidean space; in fact the divide-and-conquer, incremental, and gift-wrapping algorithms
are specialized convex hull algorithms. Running times are given both for worst-case inputs,
and for inputs chosen uniformly at random inside a sphere, with expectation taken over input
distribution.
The flipping algorithm starts with an arbitrary triangulation and flips the edges according to a
local condition which ensures that we obtain the Delaunay triangulation. The plane sweep
algorithm computes a planar Delaunay triangulation using a horizontal line that sweeps upward
across the plane. The planar divide-and-conquer algorithm uses a splitting line to partition the
point set into two equal halves, recursively computes the Delaunay triangulation of each half,
and then merges the two subtriangulations in linear time. The incremental algorithm adds
sites one by one, updating the Delaunay triangulation after each addition.
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Figure 2.7: Algorithms Delaunay mosaic for points in Euclidean space

2.3 Higher-order Complexes
Higher-order Voronoi tessellations are natural and useful generalizations of classical Voronoi
tessellations. Given a set A of n point sites in d-space, and an integer k between 1 and n − 1,
the order-k Voronoi tessellation of A, Vork(A), partitions the space into regions such that
each point within a fixed region has the same k closest sites. Vor1(A) is just the classical
Voronoi tessellation of A. The regions of Vork(A) are convex polyhedra, as they arise as the
intersection of halfspaces bounded by bisecting hyperplanes of the sites. A subset M of k
sites in A has a non-empty region in Vork(A) if there is a sphere that encloses M but no site
in A \ M . In fact, the region of M in Vork(A) just is the set of centers of all such spheres.
Two differences to the classical Voronoi tessellation are apparent. A region need not contain
its defining sites, and the bisector of two sites may contribute more than one facet. See the
left panel of Figure 2.8, which illustrates a planar order-1 and order-2 Voronoi tessellation
superimposed.
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Figure 2.8: Left panel: starting with the blue (order-1) Voronoi tessellation of the points, we
construct the order-2 Voronoi tessellation by dividing up the order-1 regions with solid black
lines and merging them across the blue lines. Right panel: the bisectors of a and all other
points divide the plane into the Brillouin zones of a. The highlighted second Brillouin zone is
where a expands from the order-1 to the order-2 Voronoi tessellation; compare with left panel.

While Voronoi tessellations go back more than 100 years to the seminal work of Voronoi [107]
or earlier, higher order Voronoi tessellations have been introduced only recently, by Shamos
and Hoey [97] in computational geometry and by Gabor Fejes Toth [54] in discrete geometry.
Particularly important for this thesis is the incremental algorithm of Lee [73], which also serves
as inductive counting argument and establishes that the order-k Voronoi tessellation of n
points in R2 has Θ(kn) vertices, edges, and regions. This implies that the first k higher order
Voronoi tessellations have size Θ(k2n). The latter bound was extended to Θ(k⌈ d+1

2 ⌉n⌊ d+1
2 ⌋) in
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Rd by Clarkson and Shor [20]. Indeed, it is easy to give tight bounds on the total size, over
all orders 1 ≤ k ≤ n − 1, but there are no good bounds known for individual orders beyond 2
dimensions.

To illustrate the difficulties, we mention that the size of the (order-1) Voronoi tessellation of n
points in R3 depends not only on n but also on how the points are distributed in space. If the
points are uniformly distributed within the unit cube, the expected size is Θ(n), but if the
points are placed on the moment curve, then the size is Θ(n2). On the other hand, the total
size, over all orders, depends only on n and is therefore the same for both sets. This suggests
that for large values of k, the uniformly distributed points have larger Voronoi tessellations
than the points on the moment curve, and this has been experimentally quantified in [49].

Key definitions. Let A be a finite set of points in Rd and write n = #A for the cardinality.
For any subset Q ⊆ A, the region of Q is the set of points in Rd that are at least as close
to the points in Q as to the points not in Q. Each such region is a d-dimensional convex
polyhedron, and the common intersection of any collection of regions, each defined by the
same number of points, is either empty or a face common to all of them. We follow [73, 97]
in defining the order-k Voronoi tessellation of A, denoted Vork(A), as the polyhedral complex
whose cells are the regions defined by subsets Q of size k together with all their faces; see
Figure 2.8, left panel. By definition, the order-0 tessellation consists of a single region, which
is the entire Rd.

The set of points in Rd for which a ∈ A is the k-th nearest is the k-th Brillouin zone of
a. As illustrated in the right panel in Figure 2.8, this set consists of a number of regions in
the arrangement formed by the bisectors of a and the other points in A. The first Brillouin
zone is a convex polyhedron, and each of the other zones has the homotopy type of a sphere.
Furthermore, the union of the first k zones is star-convex, with a in the kernel; see [54].
Importantly, for k ≥ 2, every region in the k-th Brillouin zone is a d-dimensional convex
polytope whose boundary can be partitioned into the near boundary, which is visible from a,
the far boundary, which is not visible from a, and the silhouette, which separates the near and
far boundaries. By convexity, the silhouette is homeomorphic to a (d − 2)-sphere that splits
the boundary into two pieces, each homeomorphic to an open (d − 1)-ball.

Lemma 2.2.3 extends to the setting of higher-order Voronoi tessellations. Consider the
collection of d-dimensional planes in Rd+1 obtained by mapping each point a ∈ A to the affine
function ha : Rd → R defined by ha(x) = 2⟨x, a⟩ − ∥a∥2. Note that ha encodes the squared
Euclidean distance from a: ∥x − a∥2 = ∥x∥2 − ha(x). The graph of ha is a (non-vertical)
d-plane in Rd+1. The collection of d-planes decomposes Rd+1 into convex cells of dimension
0 ≤ i ≤ d + 1, referred to as the arrangement of d-planes. We call the (d + 1)-cells chambers,
and the d-cells facets. For 1 ≤ k ≤ n, the k-th level of the arrangement is the set of points
(x, y) ∈ Rd × R such that ha(x) < y for at most k − 1 affine maps and ha(x) > y for at
most n − k affine maps. The k-th belt is the set of points between the k-th level and the
(k + 1)-st level.

Lemma 2.3.1 ([50, From Arrangement to Tessellation]). Let A be a set of n points in Rd,
let 0 ≤ k ≤ n, and recall that A defines an arrangement of n non-vertical d-planes in Rd+1.

• There is a bijection between the regions of Vork(A) and the chambers of the k-th belt
such that each region is the vertical projection of the corresponding chamber.
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• The k-th Brillouin zone of a ∈ A is the vertical projection of the k-th level intersected
with the d-plane defined by a.

2.4 Arrangements
In his book Lectures on Discrete Geometry, Matoušek starts the chapter on arrangements
[80, Chapter 6] with the following quote: “Arrangements of lines in the plane and their
higher-dimensional generalization, arrangements of hyperplanes in Rd, are a basic geometric
structure whose significance is comparable to that of convex polytopes. In fact, arrangements
and convex polytopes are quite closely related: A cell in a hyperplane arrangement is a convex
polyhedron, and conversely, each hyperplane arrangement in Rd corresponds canonically to a
convex polytope in Rd+1 of a special type, the so-called zonotope”. While this thesis does
not delve into this connection further, it’s worth noting, especially when considered alongside
Lemma 2.3.1, that arrangements serve as a cohesive structure unifying the geometric objects
discussed in this chapter.

Line arrangements. Consider a finite set of n lines in the Euclidean plane. The lines induce
a decomposition of R2 into connected open cells, which we call an arrangement of lines or
line arrangement. A 0-dimensional cell (a vertex) is the intersection point of two lines in
L; a 1-dimensional cell (an edge) is a maximal connected portion of a line in L that is not
intersected by any other line in L; and a 2-dimensional cell (a face) is a maximal connected
region of R2 not intersected by any line in L. An arrangement of lines is simple if no three
lines go through a point, and no two lines are parallel. The complexity of L is its number of
vertices, edges and faces. In a simple arrangement of n lines, every pair of lines intersects in
a vertex. We therefore have

(︂
n
2

)︂
vertices. Furthermore, each line is subdivided into n edges,

giving n2 edges in total. The number of faces can be deduced using the Euler characteristic,
which is 1 for the entire plane. Hence #f = 1 − #v + #e = 1 −

(︂
n
2

)︂
+ n2 = 1 + n(n + 1)/2.

The k-level of a line arrangement is the polygonal chain formed by the edges that have exactly
k − 1 other lines directly below them. Finding matching upper and lower bounds for the
complexity of a k-level remains a major open problem in discrete geometry. It is often referred
as the dual version of the two-dimensional k-set problem. We summarize the known results for
the case k = n/2 (with n even) in the paragraph below. We state them in the primal version
using the notion of halving line.

Halving lines. Assuming n is an even positive integer, a halving line of a set of n points
in R2 has n/2 points on each side. To determine the maximum number of halving lines n
points can have is one of the most vexing combinatorial questions in discrete geometry. The
earliest non-trivial results were a lower bound of Ω(n log n) and an upper bound of O(n

√
n);

see [52, 53, 76]. The upper bound was improved to O(n
√

n/ log∗ n) in [85]. The current
best bounds are Ω(n exp (c

√
log n)), for some positive constant c, due to Geza Tóth [105],

and O(n4/3) due to Tamal Dey [35]. For sets with minimum distance 1 and diameter O(
√

n),
the upper bound can be further improved to O(n7/6); see [51, Theorem 2]. In contrast to
counting halving lines, bounding the number of lines that separate at most k points from the
rest much easier and a tight upper bound of kn for k < n/2 can be found in [2]; see also
[62, 109].

17



2. Discrete and Combinatorial Geometry

Spherical arrangements. Analogously to the two dimensional case, an arrangement of
hyperplanes in Rd is a decomposition of Rd into connected open cells of dimensions 0, 1, · · · , d
[106, Chapter 28]. To finesse the inconvenience of unbounded cells, it is sometimes convenient
to work with arrangements of (d − 1)-dimensional great-sphere instead of hyperplanes; and
consider the arrangement formed by these great-spheres in Sd. Besides having only bounded
cells, the great-sphere arrangement is centrally symmetric and thus has two antipodal cells for
each bounded cell and each pair of diametrically opposite unbounded cells in the hyperplane
arrangement. See Figure 2.9. Two points in Sd are distinguished: the north-pole at the very

Figure 2.9: An arrangement of four lines in R2 on the left and the corresponding arrangement
of four great-circles in S2 on the right.

top and the south-pole at the very bottom of the sphere . We assume that none of the
great-spheres passes through the two poles. Letting σ be a great-sphere in Sd, we write σ−

for the closed lower hemisphere bounded by σ, which contains the south-pole, and we write
σ+ for the closed upper hemisphere, which contains the north-pole.
Letting A be the collection of great-spheres, each cell in the arrangement corresponds to a
tri-partition, A = A− ⊔ A0 ⊔ A+, such that the cell is the common intersection of the lower
hemispheres σ−, with σ ∈ A−, the great-spheres σ, with σ ∈ A0, and the upper hemispheres
σ+, with σ ∈ A+.
We write A for the arrangement defined by A, we refer to a cell of dimension p as a p-cell,
and for p = 0, 1, 2, d − 1, d, we call it a vertex, edge, polygon, facet, chamber, respectively.
The faces of a cell are the cells contained in it, which includes the cell itself.

The intersection of great-spheres is again a great-sphere, albeit of a smaller dimension. To
avoid any confusion, we will explicitly mention the dimension if it is less than d − 1. We call
the arrangement simple if all great-spheres avoid the two poles and the common intersection
of any d − p great-spheres is a p-dimensional great-sphere in Sd. This implies that any d
great-spheres intersect in a pair of antipodal points, and any d + 1 or more great-spheres
have an empty common intersection. For each 0 ≤ p ≤ d, we write Cp = Cp(A) for the
number of p-cells in the arrangement, and Cp(n, d) for the maximum over all arrangements of
n great-spheres in Sd. Importantly, the number of cells is maximized if the arrangement is
simple, and in this case it depends on the number of great-spheres but not on the great-spheres
themselves. A fundamental question in the study of arrangements is how complex a certain
arrangement (or portion of it) can be. Answering this question is often a prerequisite to the
analysis of algorithms to construct arrangements.

Proposition 2.4.1 (Number of Cells). Any simple arrangement of n ≥ d great-spheres in Sd

has Cp(n, d) = 2
[︂(︂

d
p

)︂(︂
n
d

)︂
+

(︂
d−2
p−2

)︂(︂
n

d−2

)︂
+ . . . +

(︂
d−2i
p−2i

)︂(︂
n

d−2i

)︂]︂
p-cells, in which i = ⌊p/2⌋.
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The formula for the number of p-cells is not new and can be derived from similar formulas
for arrangements in d-dimensional real projective space [64, Section 18.1] or in d-dimensional
Euclidean space [42, Section 1.2].
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CHAPTER 3
Arrangements of Hyperplanes

The core result of this chapter, which is based on [11], is a system of Dehn–Sommerville
type relations for level sets of the depth function on spherical arrangements. This is different
but related to the more direct generalization of the Dehn–Sommerville relations to levels in
arrangements proved by Linhart, Yao and Phillip [74]. Similar to their classic relatives and
the generalization in [74], our relations are based on double-counting, but instead counting
cells, we take sums of topological indicators. To state the relations, let A be an arrangement
of n great-spheres in Sd, and write Cp

k(A) for the number of p-cells at depth k in A. For
each p-cell, consider the alternating sum of its faces at the same depth, and write Ep

k(A) for
the sum of such alternating sums over all p-cells at depth k. If A is simple, then we have a
system of linear relations for 0 ≤ p ≤ d and 0 ≤ k ≤ n − d + p:∑︂p

i=0(−1)i
(︂

d−i
d−p

)︂
Ei

k(A) = Cp
k(A) =

∑︂p

i=0

(︂
d−i
d−p

)︂
Ei

k+i−p(A), (3.1)

which we refer to as Dehn–Sommerville–Euler relations. The system has applications to cyclic
polytopes—which are convex hulls of finitely many points on the moment curve—and the
broader class of neighborly polytopes—which are characterized by the property that every
(q − 1)-simplex spanned by q ≤ d/2 vertices is a face of the polytope. A celebrated result in
the field is the Upper Bound Theorem proved by McMullen [82], which states that every cyclic
polytope has at least as many faces of any dimension as the convex hull of any other set of n
points in Rd. All cyclic polytopes with n vertices in Rd have isomorphic face complexes with
a structure that is simple enough to allow for counting the faces, and expressions for these
numbers can be found in textbooks, such as [110]. In contrast, neighborly polytopes with n
vertices in Rd can have non-isomorphic face complexes, but they still have the same number of
faces in every dimension. Within our framework, the structural simplicity is expressed by having
bi-polar restrictions of the depth function to the intersection of any q ≤ d/2 great-spheres. We
call an arrangement in Sd that has this property a neighborly arrangement. Writing p = d − q
and counting only the cells of the subarrangement, B, in the intersection of the q great-spheres,
straightforward topological arguments imply

Ep
k(B) =

⎧⎪⎨⎪⎩
1 for k = 0,
0 for 1 ≤ k ≤ n + p − d − 1,

(−1)p for k = n + p − d.
(3.2)

Together with the Dehn–Sommerville–Euler relations in (3.1), this implies expressions in n, d,
p, and k for the number of p-faces, for every 0 ≤ p ≤ d, and thus generalizes the result for
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convex polytopes to levels in neighborly arrangements. Surprisingly, the neighborly property
not only determines the number of faces of the convex hull but in fact of every level of the
corresponding dual arrangement. The special case of cyclic polytopes, in which the hyperplanes
are dual to points on the moment curve, has been solved in [3].

3.1 Depth Function
Given a set A of n great-spheres in Sd, none passing through the two poles, we define the
depth of a point x ∈ Sd as the number of great-spheres σ ∈ A with x ∈ σ− \ σ. In words,
the depth of the point is the number of great-spheres that cross the shortest arc connecting
x to the north-pole. If x and y are two interior points of the same cell, then they have
the same depth. Recalling that A is the arrangement defined by A, we introduce the depth
function, θ : A → [0, n], which we define by mapping each cell to the depth of its interior
points. Depending on the situation, we think of θ as a discrete function on the arrangement
or a piecewise constant function on Sd, namely constant in the interior of every cell in A.

Let c be a p-cell in A, with corresponding tri-partition A− ⊔ A0 ⊔ A+. The depth of every
interior point x ∈ c is θ(x) = θ(c) = #A−, and if the arrangement is simple, then p = d−#A0.
Let b ⊆ c be a face of dimension i ≤ p, with corresponding tri-partition B− ⊔ B0 ⊔ B+.
We have B− ⊆ A−, A0 ⊆ B0, B+ ⊆ A+, and if the arrangement is simple, we also have
i = d − #B0. Given the depth of c, this implies the following bounds on the depth of b:

Lemma 3.1.1 (Depth of Face). Let A be a simple arrangement of great-spheres in Sd. For
every i-face, b, of a p-cell, c, we have max{0, θ(c) + i − p} ≤ θ(b) ≤ θ(c), and both bounds
on the depth of b are tight.

Proof. Since the arrangement is simple, we have #B− ≥ #A− −[#B0 −#A0] = #A− +i−p,
which implies the first inequality. The second inequality follows from #B− ≤ #A−, which
holds for general and not necessarily simple arrangements.

To prove the second inequality is tight, we show the existence of a p-cell that shares b with c
and has the same depth as b. To this end, consider the tri-partition (B+ ∪X)⊔ (B0 \X)⊔B−,
in which X ⊆ B0 has cardinality p − i. The cell defined by this tri-partition is non-empty
because it contains b as a face. Furthermore, this cell has dimension p and the same depth as
b. The proof that the first inequality is tight is symmetric and omitted.

To relate this concept to the prior literature, we mention that [42, Chapter 3] introduces the
k-th level of an arrangement of n non-vertical hyperplanes in d dimensions as the points
x ∈ Rd below fewer than k and above fewer than n−k of the hyperplanes. In other words, the
k-th level consists of all facets at depth k − 1 and all their faces. Assuming the arrangement
is simple, Lemma 3.1.1 implies that a p-cell belongs to the k-th level iff its depth is between
k − d + p and k − 1.

3.2 Sublevel Sets
Assume that A has at least one vertex, which in the simple case is implied by n ≥ d. For
0 ≤ k ≤ n, we write Ak = θ−1[0, k] for the sublevel set of θ at k. It consists of all cells in A
whose depth is k or less. Recall that θ is monotonic, by which we mean that the depth of
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every cell is at least as large as the depth of any of its faces. It follows that Ak is a complex,
with well defined Euler characteristic :

χ(Ak) =
∑︂

c∈Ak
(−1)dim c. (3.3)

The right-hand side of (3.3) explains how the Euler characteristic changes from Ak−1 to Ak,
namely by adding the alternating sum of all cells at depth k. By Lemma 3.1.1, every cell at
depth k is a face of a chamber at depth k. We can therefore construct Ak from Ak−1 by
adding all chambers at depth k together with their faces at the same depth. This motivates
the following two definitions.

Definition 3.2.1 (Relative Euler and Depth Characteristic). For a cell c ∈ A, let F = F (c)
be the complex of faces, which includes c, and let F0 ⊆ F be a subcomplex. The relative
Euler characteristic of the pair of complexes is χ(F, F0) = ∑︁

b∈F \F0(−1)dim b. If F0 is the
set of faces b ⊆ c with θ(b) < θ(c), denoted U = U(c), we call ε(c) = χ(F, U) the depth
characteristic of c, and we call c critical for θ if ε(c) ̸= 0.

For example, if all faces have the same depth as c, then the depth characteristic of c is
ε(c) = χ(F, ∅) = 1, and if all proper faces have depth strictly less than c, then the depth
characteristic of c is ε(c) = χ(F, F \ {c}) = (−1)dim c. In both cases, c is critical.

Lemma 3.2.1 (Relative and Absolute Euler Characteristic). Let F = F (c) be the face
complex of a cell, c, in an arrangement, and let F0 ⊆ F be a subcomplex. Then the relative
Euler characteristic of the pair is χ(F, F0) = 1 − χ(F0).

Proof. By definition, χ(F, F0) + χ(F0) is the sum of (−1)dim b over all cells b ∈ F \ F0 as
well as all b ∈ F0, and therefore over all b ∈ F . Hence, this sum is χ(F ), which is equal to 1
because c is closed and convex. The claimed equation follows.

We write Cp
k = Cp

k(A) for the number of p-cells at depth k, and Ep
k = Ep

k(A) = ∑︁
c ε(c) for

the sum of depth characteristics over all p-cells at depth k. To see the motivation behind
taking sums of depth characteristics, consider the subcomplex of cells at depth at most k in a
p-dimensional subarrangement of the d-dimensional arrangement. It is pure p-dimensional,
by which we mean that every cell in this subcomplex is a face of a p-cell. Furthermore, the
Euler characteristic of this pure complex is the sum of depth characteristics of its p-cells.
In other words, we can construct the subarrangement by adding its p-cells in the order of
non-decreasing depth. Whenever we add a p-cell, c, we also add the yet missing faces, and
we know that ε(c) is the increment to the Euler characteristic of the subcomplex. Hence, Ep

k

is the increment to the total Euler characteristic of the subcomplexes in the p-dimensional
subarrangements when we add the p-cells at depth k together with their yet missing faces.

3.3 Local Configurations
Most arguments in the subsequent technical sections accumulate local quantities, each counting
faces or cofaces of a cell. In a simple arrangement, the coface structure depends only on the
dimension, so we study it first.
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3.3.1 Coface Structure
In the generic case, the local neighborhood of a vertex in an arrangement in Sd looks like
that of the origin in the arrangement of the d coordinate planes in Rd. Each of these (d − 1)-
planes bounds an open half-space in which the corresponding coordinate is strictly negative.
Accordingly, we define the depth of a point x ∈ Rd as the number of negative coordinates,
and the depth of a cell in the arrangement as the depth of its interior points. To study this
arrangement, consider [−1, 1]d ⊆ Rd and let Sp(d) be the number of q-sides of the d-cube, in
which we write q = d − p. The dual correspondence provides an incidence reversing bijection
between the p-cells of the arrangement and the q-sides of the cube. We label each side with

1
1

2

0

2 1

1 1
0

0

2

0
1

0
0

2 2
1

1

3

1

1
0

Figure 3.1: The neighborhood of the origin in R3 and the dual cube centered at the origin. The
labels of the sides are the depths of the corresponding cells in the arrangement of coordinate
planes.

the depth of the corresponding cell in the arrangement, and write Sp
k(d) for the number of

q-sides labeled k. As illustrated in Figure 3.1, this amounts to labeling Sd
k(d) =

(︂
d
k

)︂
vertices

with k, for 0 ≤ k ≤ d, and labeling each side with the minimum label of its vertices. Note
that the label of a q-side cannot exceed d − q = p.

Lemma 3.3.1 (Coface Structure of Vertex). Consider the arrangement defined by the d
coordinate planes in Rd.

(i) For 0 ≤ k ≤ p ≤ d, the number of p-cells at depth k is Sp
k(d) =

(︂
d−k
d−p

)︂(︂
d
k

)︂
.

(ii) There is one cell at depth d, namely the negative orthant, and for 0 ≤ k < d, the
alternating sum of cells at depth k vanishes; that is: ∑︁d

p=k(−1)pSp
k(d) = 0.

Proof. The p-cells counted in (i) correspond to the q-sides with label k, in which p + q = d.
To count these q-sides, we recall that the d-cube has

(︂
d
k

)︂
vertices at depth k. For each such

vertex, u, consider the largest side for which u is the vertex with minimum label. This largest
side is a cube of dimension d − k, which contains

(︂
d−k

q

)︂
q-sides incident to u. We thus get

Sp
k(d) =

(︂
d−k

q

)︂(︂
d
k

)︂
=

(︂
d−k
d−p

)︂(︂
d
k

)︂
(3.4)

q-sides with label k, which proves (i).
To see (ii), consider a (d − k)-cube with label k. The alternating sum of sides with the same
label is ∑︁d−k

q=0(−1)q
(︂

d−k
q

)︂
, which vanishes for d − k > 0, and equals 1 for d − k = 0. Likewise,
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the sum of alternating sums over all (d − k)-sides with label k vanishes for d − k > 0 and
equals 1 for k = d. This implies (ii) by duality.

It is easy to generalize Lemma 3.3.1 from a vertex to a cell of dimension i ≥ 0. To see
this geometrically, we slice the i-cell and its cofaces with a (d − i)-plane orthogonal to the
i-cell. In this slice, the i-cell appears as a vertex, and each coface of dimension p appears as a
(p − i)-cell.

Corollary 3.3.1 (Coface Structure of Cell). Consider the arrangement defined by the d
coordinate planes in Rd, and let c be an i-cell at depth 0 ≤ ℓ ≤ i.

(i) For 0 ≤ k − ℓ ≤ p − i ≤ d − i, the number of p-cells at depth k that contain c is
Sp−i

k−ℓ(d − i) =
(︂

d−i−k+ℓ
d−p

)︂(︂
d−i
k−ℓ

)︂
.

(ii) There is one cell at depth d, and for ℓ ≤ k < d, the alternating sum of cells at depth k
that contain c vanishes; that is: ∑︁d

p=k(−1)pSp−i
k−ℓ(d − i) = 0.

3.3.2 Face Structure
The face structure of a cell in a simple arrangement is not quite as predictable as its coface
structure. Nevertheless, we can say something about it. As before, we write F = F (c) for the
face complex of a cell, c, and we let F0 ⊆ F be a subcomplex. Furthermore, we write

X(F, F0) =
∑︂

b∈F \F0
(−1)dim bχ(F (b), F0 ∩ F (b)) (3.5)

for the alternating sum of relative Euler characteristics.

Lemma 3.3.2 (Face Structure of Cell). Let c be a cell in a simple arrangement of great-spheres
in Sd, and let F0 ⊆ F (c) be a subcomplex of the face complex of the cell. Then X(F, F0) = 1
if F0 ̸= F and X(F, F0) = 0 if F0 = F .

Proof. If F0 = F , then X(F, F0) is a sum without terms, which is 0. We can therefore assume
F0 ≠ F , which implies c ∈ F \ F0. Fix a cell a ∈ F \ F0 with dimension i = dim a less than
or equal to p = dim c. It contributes (−1)i+j for every j-cell b ∈ F \ F0 that contains a as a
face. The contribution of a to X(F, F0) is therefore (−1)i ∑︁p

j=1(−1)j
(︂

p−i
j−i

)︂
, which vanishes

for all i < p and is equal to 1 for i = p. Hence, the only non-zero contribution to X(F, F0) is
for a = c, which implies the claim.

There is a symmetric form of the lemma, which we get by introducing the codepth function,
ϑ : A → [0, n] defined by ϑ(x) = n − q − θ(x), where q is the number of great-spheres that
pass through x. Observe that ϑ(x) is the number of great-spheres that cross the shortest arc
connecting x to the south-pole. We write Bp

ℓ (A) for the number of p-cells with codepth ℓ. If
the arrangement is simple, then

Bp
ℓ(A) = Cp

k(A), with k + ℓ + (d − p) = n. (3.6)

Indeed, there are d − p great-spheres that contain a p-cell, c, and if k great-spheres pass above
c, then ℓ = n − (k + d − p) great-spheres pass below c. Recall that ε(c) = χ(F, U) is the
depth characteristic, in which F = F (c) is the face complex, and U ⊆ F is the subcomplex
of faces at depth strictly less than θ(c). Symmetrically, we call δ(c) = χ(F, L) the codepth
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characteristic of c, in which F = F (c) as before, and L ⊆ F is the subcomplex of faces at
codepth strictly less than ϑ(c). In a simple arrangement, the two characteristics agree on
even-dimensional cells, and they are the negative of each other for odd-dimensional cells.

Lemma 3.3.3 (Depth and Codepth Characteristics). For a p-cell, c, in a simple arrangement
of great-spheres, we have δ(c) = (−1)pε(c).

Proof. The boundary of c is a (p − 1)-sphere, which is decomposed by the complex of proper
faces of c. We write L for the proper faces with codepth strictly less than ϑ(c), and U for the
proper faces with depth strictly less than θ(c). L and U exhaust the proper faces of c. More
precisely, L and U partition the (p − 1)-faces, and each of the two subcomplexes is the closure
of its set of (p − 1)-faces. Hence, L ∩ U consists of all (p − 2)-faces shared by a (p − 1)-face
in L and another (p − 1)-face in U , together with all faces of these (p − 2)-faces. Since the
arrangement is simple, the cells in L ∩ U decompose a (p − 2)-manifold.

Case 1: p is odd. Then L ∩ U decomposes an odd-dimensional manifold. By Poincaré
duality, χ(L ∩ U) = 0. The Euler characteristic of the boundary of c is 2, which implies
χ(L) + χ(U) − χ(L ∩ U) = χ(L) + χ(U) = 2. By Lemma 3.2.1, ε(c) = 1 − χ(U) and
therefore δ(c) = 1 − χ(L) = 1 − [2 − χ(U)] = −ε(c), as claimed.

Case 2: p is even. The boundary of c is an odd-dimensional sphere, so its Euler characteristic
vanishes. By Alexander duality, χ(L) = χ(U), and by Lemma 3.2.1, ε(c) = 1 − χ(U)
and δ(c) = 1 − χ(L), which implies δ(c) = ε(c), as claimed.

3.4 Relations
In this section, we prove linear relations for the cells at given depths. The relations are similar
to the classic Dehn–Sommerville relations for convex polytopes, and we prove them the same
way by straightforward double counting; see [64, Section 9.2]. We begin with the easy bi-polar
case.

3.4.1 Bi-polar Depth Functions
We recall that the depth function on an arrangement of great-spheres is bi-polar if there is a
chamber above all great-spheres. By construction, the arrangement and its depth function
are antipodal, which implies that there is also a chamber below all great-spheres. With the
great-spheres given in Sd, the depth function on Sd is necessarily bi-polar, but its restrictions
to subarrangements inside the common intersection of one or more great-spheres are not
necessarily bi-polar.

Theorem 3.4.1 (Bi-polar Depth Functions). Let A be a simple arrangement of n ≥ d
great-spheres in Sd, let B be the p-dimensional subarrangement inside the intersection of d − p
of the great-spheres, and assume that the restriction of the depth function to B is bi-polar.
Then

Ep
k(B) =

⎧⎪⎨⎪⎩
1 for k = 0,
0 for 1 ≤ k ≤ n − d + p − 1,

(−1)p for k = n − d + p.
(3.7)
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Proof. Let cN be the (p-dimensional) chamber at depth 0 in B, and let cS be the antipodal
chamber at depth n − d + p. We write Sp for the intersection of the d − p great-spheres, fix a
point N ∈ Sp inside the interior of cN , and let S ∈ Sp in the interior of cS be the antipodal
point. We partition Sp \ {N, S} into open fibers, each half a great-circle connecting N to
S. Along each fiber, the depth is non-decreasing. Consider the set of fibers that intersect a
chamber c ̸= cN , cS. They partition the boundary of c into the upper boundary, along which
the fibers enter the chamber, the lower boundary, along which the fibers exit the chamber,
and the silhouette, along which the fibers touch but do not enter the chamber. Since c is
p-dimensional and spherically convex (the common intersection of closed hemispheres) this
implies that the silhouette is a (p − 2)-sphere, and the upper and lower boundaries are open
(p − 1)-balls. The depth characteristic of c is (−1)p−1—for the open lower boundary—plus
(−1)p—for the chamber itself. It follows that the depth characteristic of c vanishes, and so
does the depth characteristic of every other chamber, except for cN and cS. Because cN has
the same depth as its entire boundary, we have ε(cN) = 1, and because cS has larger depth
than its entire boundary, we have ε(cS) = (−1)p. This implies (3.7).

3.4.2 Alternating Sums of Depth Characteristics
In the general case, the restrictions of the depth function to subarrangements are not necessarily
bi-polar. The depth characteristics may therefore violate (3.7), but they satisfy a system of
linear relations, as we prove next.
Theorem 3.4.2 (Dehn–Sommerville–Euler for Levels). Let A be a simple arrangement of
n ≥ d great-spheres in Sd. Then for every dimension 0 ≤ p ≤ d, we have∑︂p

i=0(−1)i
(︂

d−i
p−i

)︂
Ei

k(A) = Cp
k(A) =

∑︂p

i=0

(︂
d−i
p−i

)︂
Ei

k+i−p(A) for 0 ≤ k ≤ n − d + p. (3.8)

Proof. Let c be a p-cell at depth k, let F = F (c) be the face complex of c, and let U ⊆ F
be the subcomplex of faces at depth strictly less than k. Note that U does not contain c, so
U ̸= F , and Lemma 3.3.2 implies X(F, U) = 1. Taking the sum over all p-cells at depth k
thus gives the number of such p-cells, which is Cp

k(A). By Corollary 3.3.1 (i), a single i-cell
contributes to the alternating sums of Sp−i

0 (d − i) =
(︂

d−i
p−i

)︂
p-cells, which implies that the first

sum in (3.8) is the total alternating sum of depth characteristics over all cells at depth k
and dimension at most p. The second relation in (3.8) is the upside-down version of the first
relation. Indeed, we can substitute codepth for depth and get the following relation using the
notation of Section 3.3.2:

Bp
ℓ(A) =

∑︂p

i=0(−1)i
(︂

d−i
p−i

)︂
Di

ℓ(A). (3.9)
To translate this back in term of depth, we set ℓ = n − (k + d − p) so that a p-cell at codepth
ℓ has depth n − (ℓ + d − p) = k. Hence, Bp

ℓ (A) = Cp
k(A). To write the Ds in terms of

the Es, we multiply with (−1)i because of Lemma 3.3.3, and we change the index from
ℓ = n − (k + d − p) to k + i − p = n − (ℓ + d − i) because of (3.6). This gives the right
relation in (3.8).

As an example consider the case d = 2. We get equations (3.10), (3.11), (3.12) by setting
p = 0, 1, 2 in (3.8):

E0
k = C0

k = E0
k , (3.10)

2E0
k − E1

k = C1
k = 2E0

k−1 + E1
k , (3.11)

E0
k − E1

k + E2
k = C2

k = E0
k−2 + E1

k−1 + E2
k , (3.12)
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Equation (3.10) just says that the depth characteristic of every vertex is 1. (3.11) implies
E1

k = E0
k − E0

k−1, and (3.12) implies E1
k + E1

k−1 = E0
k − E0

k−2, which follows from the relation
implied by (3.11). Note that adding the depth characteristics of the edges gives a telescoping
series, which implies E1

0 + E1
1 + . . . + E1

k = E0
k .

3.4.3 Alternating Sums of Cells
For comparison, we state the more traditional version of the Dehn–Sommerville relations,
which apply to cell complexes; see [83] and [74, Theorem 1]. It counts the p-cells at depth k,
which together with all their faces form a cell complex. For each dimension 0 ≤ i ≤ p, this
includes all i-cells at depths k + i − p to k.

Proposition 3.4.1 (Dehn–Sommerville for Levels). Let A be a simple arrangement of n ≥ d
great-spheres in Sd. For every dimension 0 ≤ p ≤ d, we have

Cp
k(A) =

∑︂p

i=0(−1)i
(︂

d−i
d−p

)︂ ∑︂p−i

j=0

(︂
p−i

p−i−j

)︂
Ci

k+i−p+j(A) for 0 ≤ k ≤ n − d + p. (3.13)

We get a non-trivial relation in (3.13) for p = 1, which asserts C1
k = dC0

k−1 + dC0
k − C1

k .
Indeed, twice the number of edges is the sum of vertex degrees. For p = 2, we get

C2
k =

(︂
d
2

)︂
C0

k − (d − 1)C1
k + C2

k + (d − 1)dC0
k−1 − (d − 1)C1

k−1 +
(︂

d
2

)︂
C0

k−2, (3.14)

in which the polygons cancel and the rest is equivalent to the relation for p = 1. More
generally, the term on left-hand side of (3.13) cancels whenever p is even.

3.5 Application to Higher-order Voronoi Tessellations
In this section, we give evidence for the unifying power of the system of Dehn–Sommerville–
Euler relations by rederiving cell-counting formulas for higher-order Voronoi tessellations proved
in [10, 73]. The difference forms of the relations are particularly convenient, which we present
in dimensions 3 and 4.

3.5.1 Two Dimensions
Before discussing the 2-dimensional order-k Voronoi tessellations, we introduce the 3-dimensional
difference relations implied by Theorems 3.4.1 and 3.4.2.

Corollary 3.5.1 (Difference Relations in S3). Let A be a simple arrangement of n ≥ 3
great-spheres in S3. Then

E1
k(A) = 3

2 [E0
k(A) − E0

k−1(A)], for 0 ≤ k ≤ n, (3.15)
E2

k(A) = 1
3 [E1

k(A) − E1
k−1(A)] + 2, for 0 ≤ k ≤ n, (3.16)

E3
k(A) =

⎧⎪⎨⎪⎩
1 for k = 0,
0 for 1 ≤ k ≤ n − 1,

−1 for k = n.
(3.17)

Proof. We get (3.15) by setting d = 3 and p = 1 in (3.8) and (3.17) by setting d = p = 3 in
(3.7). To get (3.16), we begin by setting d = p = 3 in (3.8), which gives

E2
k − E2

k−1 = [E0
k−3 − E0

k ] + [E1
k−2 + E1

k ] + 2E3
k = 1

3 [E1
k − 2E1

k−1 + E1
k−2] + 2E3

k , (3.18)
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in which we use E0
k−3 − E0

k = −2
3 [E1

k + E1
k−1 + E1

k−2] implied by (3.15). Moving E2
k−1 to

the right-hand side and substituting it recursively implies (3.16) because ∑︁k
ℓ=0 E3

ℓ = 1 by
(3.17).

If every 2-dimensional subarrangement is bipolar, then each arrangement of n − 1 great-circles
inside a great-sphere has polygons of predictable depth characteristics, namely a minimum
(with depth characteristic 1) at depth 0, a maximum (with depth characteristic 1) at depth
n − 1, and otherwise only non-critical polygons connecting the minimum to the maximum.
Hence,

E2
k(A) =

{︄
n for k = 0, n − 1,
0 for 1 ≤ k ≤ n − 2,

(3.19)

E1
k(A) = 3n − 6(k + 1) for 0 ≤ k ≤ n − 2, (3.20)

E0
k(A) = 2n(k + 1) − 4

(︂
k+2

2

)︂
for 0 ≤ k ≤ n − 3, (3.21)

in which we get (3.20) from (3.19) and (3.16), and we get (3.21) from (3.20) and (3.15). For
values of k outside the given limits, the sums of Euler characteristics are zero.

As defined in [97], the order-k Voronoi tessellation of n points in R2 is a decomposition of
the plane into closed convex regions such that any two points in a region share the same k
nearest points in the given set; but see also [54]. It can be obtained by mapping each of the n
points, u = (u1, u2), to the plane x3 = u1x1 + u2x2 + 1

2(u2
1 + u2

2), forming the arrangement of
the n planes, and projecting the chambers at depth k to the regions of the tessellation. The
boundaries of the regions are obtained by projecting the edges at depth k − 1 and the vertices
at depths k − 2 and k − 1. In 1982, Der-Tsai Lee counted the regions, edges, and vertices in
these tessellations [73], and found that the numbers depend on n and k but barely on how the
points are placed in the plane. Indeed, if we modify the setting slightly by turning the planes
into great-spheres—as explained in Section 2.4—then a general position assumption suffices
for these numbers to depend solely on n and k. Using Theorem 3.4.2 and the expressions
for Ep

ℓ in the case of bipolar 2-dimensional subarrangements given in (3.21), (3.20), (3.19),
(3.17), we get

C0
k−2 + C0

k−1 = E0
k−2 + E0

k−1 = 2(n − k)(2k − 1) − 2k, (3.22)
C1

k−1 = 3E0
k−2 + E1

k = 3(n − k)(2k − 1) − 3k, (3.23)
C3

k = E0
k−3 + E0

k−2 + E0
k−1 + E0

k = (n − k)(2k − 1) − k + 2 (3.24)

for the number of vertices, edges, and regions. Modulo the difference between R2 and S2,
these are the same expressions as in [73].

3.5.2 Three Dimensions
Before discussing the 3-dimensional order-k Voronoi tessellations, we introduce the 4-dimensional
difference relations implied by Theorems 3.4.1 and 3.4.2.
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Corollary 3.5.2 (Difference Relations in S4). Let A be a simple arrangement of n ≥ 4
great-spheres in S4. Then

E1
k(A) = 2[E0

k(A) − E0
k−1(A)], for 0 ≤ k ≤ n, (3.25)

E2
k(A) = 1

2 [E1
k(A) − E1

k−1(A)] +
∑︂k

ℓ=0 E3
ℓ , for 0 ≤ k ≤ n, (3.26)

E4
k(A) =

{︄
1 for k = 0, n,
0 for 1 ≤ k ≤ n − 1.

(3.27)

Proof. We get (3.25) by setting d = 4 and p = 1 in (3.8), and we get (3.27) by setting
d = p = 4 in (3.7). To get (3.26), we begin by setting d = 4 and p = 3 in (3.8), which gives

E2
k − E2

k−1 = 2[E0
k−3 − E0

k ] + 3
2 [E1

k−2 + E1
k ] = 1

2 [E1
k − 2E1

k−1 + E1
k−2] + E3

k , (3.28)

in which we use 2[E0
k−3 − E0

k ] = −[E1
k + E1

k−1 + E1
k−2] implied by (3.25). Moving E2

k−1 to
the right-hand side and substituting iteratively, we get (3.26).

Note the absence of any relation for E3
k . However, if we assume that all 3-dimensional

subarrangements are bipolar, there is additional information about the facets and therefore
also about the polygons:

E3
k(A) =

⎧⎪⎨⎪⎩
n for k = 0,
0 for 1 ≤ k ≤ n − 2,

−n for k = n − 1,
(3.29)

E2
k(A) = 1

2 [E1
k(A) − E1

k−1(A)] + n, for 0 ≤ k ≤ n − 2, (3.30)

in which we get (3.30) from (3.29) and (3.26).

By straightforward generalization from 2 to 3 dimensions, the order-k Voronoi tessellation of n
points in R3 decomposes space into convex regions, each associated with the k nearest of the
n points. In analogy to the 2-dimensional case, we map the points to 3-planes in R4—or to
great-spheres in S4—so that the tessellation is the projection of a subset of the cells. Despite
this similarity, the expressions for the number of cells of the 2-dimensional tessellations derived
by Lee in 1982 [73] have been extended to 3 dimensions only recently. The main reason for
such delay is that the number of cells do not only depend on n and k, but also on how the
points are distributed in space. Indeed, compared to the 2-dimensional case, we have the
same number of relations but one more variable. Specifically, we have relations (3.25), (3.30),
(3.29), (3.27), and we count vertices, edges, polygons, and (3-dimensional) regions, which
are obtained by projecting the C0

k−1 + C0
k−2 + C0

k−3 vertices at depths k − 1, k − 2, k − 3,
the C1

k−1 + C1
k−2 edges at depths k − 1, k − 2, the C2

k−1 polygons at depth k − 1, and the
C4

k chambers at depth k. Using Theorem 3.4.2 and the four mentioned relations for bipolar
3-dimensional subarrangements, we get

E0
k−3 + E0

k−2 + E0
k−1 = E2

k−3 + E2
k−2 + E2

k−1 − n
2 [3k2 − 3k + 2], (3.31)

4E0
k−2 − E1

k−2 + 4E0
k−1 − E1

k−1 = 2E2
k−2 + 4E2

k−1 + 2E2
k − 2n[2k2 − 2k + 1], (3.32)

6E0
k−1 − 3E1

k−1 + E2
k−1 = E2

k−2 + E2
k−1 − 3n[k2 − k], (3.33)

E0
k − E1

k + E2
k − E3

k + E4
k = E2

k−2 − n
2 [k2 − k + 2] (3.34)

for the number of vertices, edges, polygons, and regions in the order-k Voronoi tessellation for
1 ≤ k ≤ n − 1, in which E2

k = ∑︁k
m=0

∑︁m
ℓ=0 E2

ℓ . To see that these are the same expressions as
in [10], we note that E2

k = Nk+1 and E2
k = Jk+1 in the notation of that paper.
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3.6 Application to Neighborly Arrangements
Recall that an arrangement in Sd is neighborly if the great-spheres are dual to the vertices of
a neighborly polytope. Equivalently, all subarrangements of dimension p ≥ d/2 have bi-polar
depth functions. We generalize the face-counting formulas for neighborly polytopes to the
levels in neighborly arrangements. In particular, we show that the number of p-cells at depth k
is a function of n, d, p, and k alone. For the special case of cyclic polytopes, this was proved
before by Andrezejak and Welzl [3, Theorem 5.1], who also derived explicit formulas for the
number of cells.

3.6.1 Equations in Matrix Form
We write d = 2t − 1 for odd d and d = 2t for even d. Let A be a neighborly arrangement
of n great-spheres in Sd, so all subarrangements of dimension t ≤ p ≤ d are bi-polar. By
Theorem 3.4.1, the Ep

k are simple functions in n, d, p, and k, for all t ≤ p ≤ d. In addition,
we get t independent relations for every k from Theorem 3.4.2. Specifically, for every odd
p between 0 and d, we get a relation by equating the left-hand side of (3.1) with the right-
hand side of (3.1). This gives what we call a giant linear system with variables E0

k to Et−1
k

for 0 ≤ k ≤ n. To describe it, we introduce the t × t matrices Md. For odd d, it is a
straightforward configuration of binomial coefficients, which is however interrupted by −2s
replacing −

(︂
2t−j
2i−2

)︂
= −1 in row i and column j whenever 2t − j = 2i − 2:

M2t−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(︂
2t−1

0

)︂
−

(︂
2t−2

0

)︂ (︂
2t−3

0

)︂
−

(︂
2t−4

0

)︂
. . . ±

(︂
t
0

)︂
(︂

2t−1
2

)︂
−

(︂
2t−2

2

)︂ (︂
2t−3

2

)︂
−

(︂
2t−4

0

)︂
. . . ±

(︂
t
2

)︂
... ... ... ... . . . ...(︂

2t−1
2t−4

)︂
−

(︂
2t−2
2t−4

)︂ (︂
2t−3
2t−4

)︂
−2 . . . 0(︂

2t−1
2t−2

)︂
−2 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.35)

These replacements will be important shortly. For even d, the matrix M2t has the same
number of entries, with

(︂
2t−j+1

2i−1

)︂
in row i and column j replacing

(︂
2t−j
2i−2

)︂
in M2t−1. The

−2s and 0s are the same in both matrices. In d dimensions, the giant system is given by a
t(n + 1) × t(n + 1) matrix, with n + 1 copies of Md along the diagonal. All entries to the
lower left of this diagonal of t × t blocks are zero, while there are sporadic non-zero entries to
the upper right.

Lemma 3.6.1 (Invertible Blocks Imply Invertible Systems). For every d ≥ 1, if Md is invertible,
then the giant system of linear relations in d dimensions is invertible.

Proof. If Md is invertible, then we can use row and column operations to turn Md into an
upper triangular matrix with non-zero entries along the diagonal. Applying the same operations
to the giant matrix, we get a giant upper triangular matrix with non-zero entries along the
entire diagonal.

3.6.2 Everything Modulo 2
We prove the invertibility of M2t−1 by proving that its determinant is odd. Equivalently, we
write P2t−1 for the matrix M2t−1 in which every entry is replaced by its parity, and we show
that the mod 2 determinant of P2t−1 is 1. Before doing so, we show that the invertibility of
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M2t−1 implies the invertibility of M2t. Let N2t be the matrix M2t after dividing each column
by the largest power of 2 that divides all its entries, and write P2t for the matrix N2t in which
every entry is replaced by its parity.

Lemma 3.6.2 (Odd Imply Even Invertible Blocks). P2t = P2t−1.

Proof. Recall that the entry in row i and column j is
(︂

2t−j
2i−2

)︂
in M2t−1 and

(︂
2t−j+1

2i−1

)︂
in M2t,

unless this entry is −2 or 0, in which case it is the same in the two matrices. Assuming the
former case, the ratio of the two entries is

(︂
2t−j+1

2i−1

)︂
/

(︂
2t−j
2i−2

)︂
= (2t − j + 1)/(2i − 1). Since

2i − 1 is odd, the largest power of 2 that divides
(︂

2t−j+1
2i−1

)︂
is the largest power of 2 that divides(︂

2t−j
2i−2

)︂
times the largest power of 2 that divides 2t − j + 1. The latter is the same for all

entries in a column. We thus divide column j in M2t by the largest power of 2 that divides
2t − j + 1, which is 1 for all even j. The even columns of M2t are the ones that contain the
−2s, so after dividing, the parities of corresponding terms in M2t and M2t−1 are the same.
Equivalently, P2t = P2t−1.

Henceforth, we focus on the odd case. We use a consequence of Kummer’s Theorem [71] to
get the parity version of M2t−1:

Lemma 3.6.3 (Odd Binomial Coefficients). For all 0 ≤ k ≤ n,
(︂

n
k

)︂
is odd iff the binary

representations of n, k, and n − k satisfy n2 = k2 xor (n − k)2.

In words: the 1s in the binary representations of k and n−k are at disjoint positions. It follows
that the positions of the 1s in the binary representation of k are a subset of the positions of the
1s in the binary representation of n, and similarly for n − k and n. A compelling visualization
of Lemma 3.6.3 is the Pascal triangle in binary, whose 1s form the Sierpinski gasket as shown
in Figure 3.2. To transform the Sierpinski gasket into a matrix that contains P2t−1, for every

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

Figure 3.2: The Pascal triangle in modulo 2: the blue bricks are odd entries, and the white
bricks (not shown) are even entries.

t ≥ 1, we drop every other up-slope (whose label, given along the down-slope in Figure 3.2,
is odd), we draw the remaining up-slopes as rows, and we draw the horizontal lines in the
gasket as columns. Finally, we convert the last 1 in each row to a 0. These are the binomial
coefficients that change from −1 to −2 in M2t−1; see Figure 3.3.
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Figure 3.3: Each blue and pink square is a 1 in the matrix, and each white square is a 0 (only
those originally equal to −2 are shown). The bold black frames mark the exponential blocks,
the bold red frame marks the 11-th block, P21, and the pink boxes inside the red frame mark
the tops and bottoms of the NE- and SW-incursions that arise in its reduction.

3.6.3 Reducing Exponential Blocks
Observe that P2t−1 is the submatrix consisting of the rows labeled 2i, for 0 ≤ i ≤ t − 1, and
the columns labeled j, for t ≤ j ≤ 2t − 1; see Figure 3.3. We call this the t-th block. For the
time being, we focus on exponential blocks, for which t is a power of 2. Note the symmetry
between the upper and lower halves of an exponential block: the bottom is a copy of the
top, except that the last 1 in each row is turned into a 0. We use this property to reduce
exponential blocks.

Reduction 3.6.1 (Exponential Block). Let P2t−1 be an exponential block, with t = 2n, and
write s = 2n−1. We reduce P2t−1 in three steps:

1. For 0 ≤ i ≤ s − 1, add the row with label 2i + 2s to the row with label 2i. Thereafter,
we have a 1 in each row and each even column, and otherwise only 0s in the upper half
of the exponential block.

2. Zero out the even columns in the lower half using the rows in the upper half. After
consolidating the lower half by removing the even columns, which are all zero, we get
an upper triangular matrix with 1s in the diagonal.

3. Reduce this upper triangular matrix to the s × s identity matrix. Adding the even
columns back, we have a 1 in each row and each odd column, and otherwise only 0s in
the lower half of the exponential block.

Assuming t = 2n, the above reduction algorithm turns P2t−1 into a t × t permutation matrix,
whose determinant is of course 1. This is the parity of the determinant of M2t−1, which is
therefore non-zero. To extend this result to integers, t, that are not necessarily powers of 2,
we need a few properties of an exponential block. Being a square matrix with t = 2n rows and
columns, it decomposes into four quarters of s = 2n−1 rows and columns each. By combining
the NE- and NW-quarters, we get the northern half of the exponential block, and we draw the
line from its bottom-left to top-right corners, calling it the northern diagonal ; see Figure 3.3.
Similarly, we merge the SE- and SW-quarters to get the southern half and draw the southern
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diagonal from the bottom-left to top-right corner. Note that the southern half of P2t−1 is
a copy of everything to the right of the northern half, namely the exponential blocks of size
1, 2, 4, . . . , 2n−1 plus the 0s below and to the right of them.

An NE-incursion is a submatrix whose bottom-left corner lies on the southern diagonal and
whose top-right corner is the top-right corner of the exponential block. As an example consider
the rows labeled 0 to 20 and columns labeled 21 to 16, which is an NE-incursion of P31 in
Figure 3.3. We decompose the NE-incursion into three rectangular matrices stacked on top
of each other: the top, the middle, and the bottom, in which the top and bottom are twice
as wide as they are high, and the middle fills the space in between. Importantly, the middle
is zero, and the top and bottom combine to a square matrix whose structure is such that
Reduction 3.6.1 can reduce it to the identity matrix.
Symmetrically, an SW-incursion is a submatrix whose top-right corner lies on the northern
diagonal and whose bottom-left corner is the bottom-left corner of the exponential block.
As an example consider the rows labeled 6 to 14 and columns labeled 15 to 14, which is an
SW-incursion of P15 in Figure 3.3. As before, we decompose the SW-incursion into three
rectangular matrices, in which the top and bottom are twice as wide as they are high, and the
middle consists of the remaining rows in between. The top and bottom combine again to a
square matrix that can be reduced to the identity matrix by Reduction 3.6.1. However, the
middle is not necessarily zero. On the other hand, all entries to the right of the top but still
within the exponential block are zero.

3.6.4 Reducing General Blocks
We thus have the necessary ingredients to reduce a not necessarily exponential block, P2t−1.
Assuming t is not a power of 2, let u be the power of 2 such that u/2 < t < u, and write
s = u/2. The overlap of P2t−1 with P2u−1 is an NE-incursion of the latter.

Reduction 3.6.2 (NE-incursion). Let I be the overlap of P2t−1 and P2u−1. We reduce I and
zero out portions of P2t−1 outside I:

1. Combine the top and bottom of I and reduce it using Reduction 3.6.1.

2. Add back the middle, which we recall is 0.

3. Use the columns of the reduced I to zero out the rectangular regions of P2t−1 to the
right of the top and bottom of I.

Step 1 may contaminate the regions to the right of the bottom of I with non-zero entries,
but Step 3 cleans up the contamination at the end. We are thus left with an un-reduced
submatrix of size (u − t) × (u − t), which we denote P ′

2t−1. It is a bottom-left submatrix
but not necessarily an SW-incursion of P2s−1. Assuming s < 2(u − t), there is a largest
SW-incursion of P2s−1 contained in P ′

2t−1, which has the same number of rows as P ′
2t−1.

Reduction 3.6.3 (SW-incursion). Assume s < 2(u − t) and let J be the largest SW-incursion
of P2s−1 contained in P ′

2t−1. We reduce J as follows:

1. Combine the top and bottom of J and reduce it using Reduction 3.6.1.
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2. Add back the middle and zero it out using row operations.

We note that the regions of P ′
2t−1 to the right of the top and bottom of J are zero because

J is an SW-incursion, and P ′
2t−1 is contained in P2s−1. Step 1 preserves this property, so

Step 2 can zero out the middle without contaminating the remaining un-reduced matrix of
size (s − u + t) × (s − u + t), which we denote P ′′

2t−1.

It is also possible that s ≥ 2(u− t), in which case there is no non-empty SW-incursion of P2s−1
contained in P ′

2t−1. We thus substitute the SW-quarter of P2s−1 for P2s−1, or the SW-quarter
of that SW-quarter, etc. This square matrix is a copy of the exponential block of the same
size, so Reduction 3.6.3 still applies. Similarly, P ′′

2t−1 is a copy of the (s − u + t)-th block.
Since s − u + t < t, we can reduce it by induction. The correctness of the reduction algorithms
implies

Lemma 3.6.4 (Blocks are Invertible). For every d ≥ 1, Md is invertible.

Proof. For d = 2t − 1, Reductions 3.6.1, 3.6.2, 3.6.3 together with induction imply that P2t−1
can be reduced to the identity matrix. By Lemma 3.6.2 this is also the case for P2t. Since Pd

is the parity version of Md, this implies that Md is invertible.

3.6.5 Number of Cells
The invertibility of the blocks implies the invertibility of the giant linear systems, which implies
that the number of cells in the levels of neighborly arrangements are independent of the
geometry of the great-spheres defining the arrangement.

Theorem 3.6.1 (Neighborly Arrangements). Let A be a neighborly arrangement of n ≥ d
great-spheres in Sd. Then the Ep

k(A) and the Cp
k(A) are functions of n, d, p, and k.

Proof. By Lemma 3.6.4, the matrix Md is invertible, which by Lemma 3.6.1 implies that the
giant linear system created from Theorems 3.4.1 and 3.4.2 is invertible. Hence, the Ep

k(A)
of the d-dimensional arrangement are determined; that is: they are functions of n, d, p, and
k, but not of the great-spheres defining the arrangement. By Theorem 3.4.2, the Cp

k(A) are
determined by the Ep

k(A), so they are also functions of n, d, p, and k.

As an example, consider a neighborly arrangement of n great-spheres in S4. All subarrangements
of dimension 2, 3, and 4 have bi-polar depth functions, so we get the Ep

k for p = 2, 3, 4 from
Theorem 3.4.1, and we use Theorem 3.4.2 to get them for p = 0, 1:

E0
k = 1

2(k + 1)n(n − k − 3) for 0 ≤ k ≤ n − 4, (3.36)
E1

k = n(n − 2k − 3) for 0 ≤ k ≤ n − 3, (3.37)
E2

k =
(︂

n
2

)︂
, 0,

(︂
n
2

)︂
for k = 0, 1 ≤ k ≤ n − 3, k = n − 2, (3.38)

E3
k = n, 0, −n for k = 0, 1 ≤ k ≤ n − 2, k = n − 1, (3.39)

E4
k = 1, 0, 1 for k = 0, 1 ≤ k ≤ n − 1, k = n. (3.40)
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Using the relations C0
k = E0

k , C1
k = 4E0

k − E1
k , etc., from Theorem 3.4.2, we get the number

of cells with given depth:

C0
k = 1

2(k + 1)n(n − k − 3) for 0 ≤ k ≤ n − 4, (3.41)
C1

k = n[n(2k + 1) − 2k2 − 6k − 3] for 0 ≤ k ≤ n − 3, (3.42)
C2

k =
(︂

n
2

)︂
, 3nk(n − k − 2),

(︂
n
2

)︂
for k = 0, 1 ≤ k ≤ n − 3, k = n − 2, (3.43)

C3
k = n, n[(2k − 1)n − 2k2 − 2k + 3], 6

(︂
n
2

)︂
, 2

(︂
n
2

)︂
, n

for k = 0, 1 ≤ k ≤ n − 4, k = n − 3, k = n − 2, k = n − 1, (3.44)
C4

k = 1, 1
2n[n(k − 1) − k2 + 3], n(n − 3),

(︂
n
2

)︂
, n, 1

for k = 0, 1 ≤ k ≤ n − 4, k = n − 3, k = n − 2, k = n − 1, k = n. (3.45)

3.7 Discussion and Open Problems
The main contribution of the paper that this chapter builds on [11] is the introduction of the
discrete depth function as a topological framework to approach questions in discrete geometry,
and the establishment of the system of Dehn–Sommerville–Euler relations for levels of this
function. We have illustrated the use of this system by rederiving known cell-counting formulas
for order-k Voronoi tessellations in R2 and R3, and by extending the classic face-counting
formulas for neighborly polytopes to the levels in neighborly arrangements. This work suggests
further research to deepen our understanding of the framework:

• Establish effective relations expressing the connections between the restrictions of the
depth function to subarrangements.

• Relate the stability of the persistence diagrams of restrictions of the depth function to
combinatorial questions in geometry.

While our framework sheds new light on well studied questions in discrete geometry, there is
plenty of work that remains. The following questions are of particular interest:

• Give bounds on the topological quantities that arise in counting the regions of order-k
Voronoi tessellations. As established in [10], the relevant quantity in R3 is the double sum
of depth characteristics of the 2-dimensional cells (the polygons) in the corresponding
arrangement of great-spheres in S4. How do these results extend beyond 3 dimensions?

• Generalize the results on neighborly arrangements to counting the k-sets of general sets
of n points in Rd. Specifically, use the framework of depth functions to improve the
current best upper bounds on the maximum number of k-sets, which are O(n4/3) in R2

[35], O(n5/2) in R3 [99], and O(nd−εd) for a small constant ϵd > 0 in Rd [112].
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CHAPTER 4
Geometric Networks

This chapter, which is based on [12, 27], draws its direct inspiration from the final open
question posed at the conclusion of the previous section: can persistent homology of the
depth map, defined for n points in R2, be leveraged to establish new bounds on the number
of halving lines? Despite diligent efforts, we have yet to find a definitive answer. However,
these endeavors have not been futile; they have sparked a more in-depth exploration into the
persistence of functions on one-dimensional compact spaces, which we call geometric networks.
This chapter delves into these discoveries and their subsequent algorithmic implications, which
are discussed towards the chapter’s end. Our exploration begins by defining the spaces under
consideration and their extended persistent homology.
The core result in this chapter is a local characterization of the pairing of critical points in
persistent homology for continuous functions defined on geometric networks. The charac-
terization is formulated in terms of windows, each the product of a connected subset of the
geometric network and the range of the function restricted to this subset.

4.1 Maps and Spaces
Let f : S1 → R be a continuous map on the unit circle; see Figure 4.1. We call f generic
if there is no non-empty open interval along which f is constant, so all critical points are
isolated, and the values of these critical points are distinct. A minimum of such a map is a
point a ∈ S1 for which there exists a neighborhood, N(a) ⊆ S1, such that f(a) < f(x) for
all x ∈ N(a). Symmetrically, a maximum is a point a ∈ S1 such that f(a) > f(x) for all
x ∈ N(a). The minima and maxima alternate in a trip around the circle, which implies that
there are equally many of them. There is exactly one global minimum, a0, and one global
maximum, b0, which satisfy f(a0) ≤ f(x) ≤ f(b0) for all x ∈ S1. We note that the stability
of the persistence diagram [21] makes the assumption of distinct critical values unnecessary,
but we include it in the definition of genericity to simplify arguments at many places.
By a geometric network we mean the realization of an abstract graph in some Euclidean space:
each vertex is mapped to a point, and each edge to a curve connecting the images of its
vertices. We are not concerned with the details of the embedding, except that different vertices
map to different points, and curves do not intersect except possibly at shared endpoints. For
convenience, we restrict ourselves to finite graphs in which every vertex has degree 1 or 3.
The constraint on the vertex degrees is not really a limitation since we can replace a degree-k
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2π0

Figure 4.1: Left: the graph of a generic function on the circle with the global maximum at
0 = 2π. The six minima alternate with the six maxima. Right: the persistence diagram of the
map. The two points that correspond to the global min-max pair are marked by crosses, while
all other points are marked by small circles.

vertex by a tree with k − 2 vertices, all of degree 3, and if the edges in the tree approach zero
length, we can recover the original topology in the limit. Similar substitutions can be used to
model multi-edges and cycles. If a geometric network is connected and without cycle, we call
it a geometric tree.

Besides minima and maxima, geometric networks contain two other types of critical points
that play a central role in our analysis: the endpoints (degree-1 vertices) and branching points
(degree-3 vertices). An endpoint has ↘-type or ↗-type if its value is larger or smaller than
the values of the points in a sufficiently small neighborhood, respectively. Similarly, we allow
for two types of degree-3 vertices: y-type (one ↘- and two ↗-type vertices glued to each
other) and λ-type (one ↗- and two ↘-type vertices glued to each other). We call the function
f : G → R generic if all critical points are isolated and their values are distinct. A critical
value of f is the value of a critical point; all other values are non-critical.

Call f : G → R piecewise differentiable if there is a decomposition of G into a finite number
of curves such that the restriction of f to the interior of each curve is differentiable. For
example, if G is a straight-line embedding of a finite graph, and f is the linear extension of its
values at the vertices, then f is piecewise linear and therefore also piecewise differentiable.
We define the variation of a piecewise differential map as the integral, over all interior points
of the curves in the decomposition, of the absolute value of the derivative at these points.

We treat the circle separately and before considering more general geometric networks because
it is the only connected 1-manifold among them.

4.2 Extended Persistent Homology
In a nutshell, persistent homology is the embodiment of the idea that features exist on many
scale levels, and rather than preferring one scale over another, it quantifies the features in
terms of the range of scales during which they appear. The concept of persistent homology
has been introduced for components by Frosini and Landi [57] and for general homology
groups by Robins [95] and independently by Edelsbrunner, Letscher, and Zomorodian [46].
The latter paper gives the first fast algorithm for persistence. A generalization of the notion
of persistence to coefficient groups that are not fields can be found in [113], but will be not
be treated in this thesis.
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4.2.1 Homology with Z/2Z Coefficients
To keep the algebraic discussion of homology as elementary as possible, we use modulo-2
arithmetic; that is: we construct homology groups with Z/2Z coefficients. For compact
1-dimensional spaces, such groups are straightforward objects, so we can side-step the formal
introduction of homology. For a more comprehensive treatment, we recommend standard texts
in algebraic topology, for example Hatcher [66].

Given a map, f : S1 → R, the sublevel set at t ∈ R is ft = f−1(−∞, t], and the superlevel
set is f t = f−1[t, ∞). Let A0 and B0 be the values of the global minimum and the global
maximum, respectively. For a non-critical value, t, we have the following three cases:

• t < A0: ft = ∅ and f t = S1;

• A0 < t < B0: ft consists of a positive number of connected components, each a
closed arc with non-empty interior, and f t consists of the same number of connected
components of the same type;

• t > B0: ft = S1 and f t = ∅.

We use homology to formally distinguish between these cases. In particular, the rank of
H0(ft) is the number of connected components of the sublevel set, and the rank of H1(ft)
is the number of cycles. Note that we have no cycle for t < B0 and one cycle for t > B0.
Compare this with the homology of S1 relative to f t, denoted Hi(S1, f t), where we have
rank H0(S1, f t) = rank H1(ft) = 0 for t < B0 and rank H0(S1, f t) = rank H1(ft) = 1 for
t > B0. More interesting is the case i = 1, for which the relative homology group counts the
open arcs in S1 \ f t. By Lefschetz duality, the (absolute) homology groups and the relative
homology groups are isomorphic: Hi(ft) ≃ H1−i(S1, f t), for i = 0, 1 and for all non-critical
values, t of f . This is an elementary insight for the circle and is also true for higher-dimensional
manifolds. It does not hold for more general spaces, not even for the unit interval. On the other
hand, both homology and relative homology generalize and can be used to count connected
components and cycles in geometric networks and the sub- and superlevel sets of maps on
them.

4.2.2 Persistent Homology
Persistent homology arises when we keep track of sub- and superlevel sets while t changes
continuously. We again take advantage of the relative simplicity provided by the restriction to
compact 1-dimensional spaces and avoid the introduction of the concept in full generality. For
more comprehensive background, we refer to [43]. Specifically, we use the framework that is
referred to as extended persistent homology, which is constructed in two phases, first growing
the sublevel set until it exhausts the space, and second doing the same with the superlevel set.
We explain this for a generic map on the unit circle.

In Phase One, we increase t from −∞ to ∞ and use H0(ft) and H1(ft) to do the book-keeping.
A connected component is born when t passes the value of a minimum, and the component
dies merging into another, older component when t passes the value of a maximum. There is
one exception: when t passes B0, then no component dies and instead a cycle is born. We pair
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up the minimum, a, and the maximum, b, responsible for the birth and death of a component
and represent the two events by the point (f(a), f(b)) in the plane.

In Phase Two, we decrease t from ∞ to −∞ and use H0(S1, f t) and H1(S1, f t) to do the
book-keeping. We enter Phase Two with a component born at A0 = f(a0) and a cycle born
at B0 = f(b0), both of which did not yet die. The component dies in relative homology right
at the beginning of Phase Two, when t passes B0 (from the top going down), while the cycle
lasts until the end, and dies when t passes A0. This gives two pairs represented by the points
(A0, B0) and (B0, A0). During Phase Two, a (relative 1-dimensional) cycle is born when t
passes the value of a (non-global) maximum, and this cycle dies when t passes the value of a
(non-global) minimum. Like in Phase One, we pair up the maximum, b, with the minimum,
a, responsible for the birth and death of the cycle and represent the two events by the point
(f(b), f(a)) in the plane.

4.2.3 Persistence Diagrams
The events during the two phases are recorded in the persistence diagram of f , denoted
Dgm(f), which is a multi-set of points, each marking the birth and death of a component
or cycle; see Figure 4.1. We distinguish between three disjoint subdiagrams, Dgm(f) =
Ord(f) ⊔ Rel(f) ⊔ Ess(f), in which the ordinary subdiagram records the pairs in Phase One,
the relative subdiagram records the pairs in Phase Two, and the essential subdiagram records the
pairs that straddle the two phases. Whenever convenient, we list the dimension as a subscript,
writing Dgmi(f) for the points that represent i-dimensional homology classes, and similarly for
the subdiagrams. For a 1-dimensional map, we have Ord(f) = Ord0(f), Rel(f) = Rel1(f),
but Ess(f) = Ess0(f) ⊔ Ess1(f). Recall that for a map on the unit circle, Lefschetz duality
implies that the pairs in Phase One are the same as in Phase Two, only reversed. Similarly, for
every pair straddling the two phases, there is also the reversed pair straddling the two phases.
This implies that Dgm(f) is symmetric across the main diagonal, with the caveat that a point
(f(a), f(b)) ∈ Dgmi(f) maps to the point (f(b), f(a)) ∈ Dgm1−i(f); see Figure 4.1 and
[22] for details. This property no longer holds for maps on non-manifold spaces, such as the
unit interval, geometric trees, and general geometric networks. Nevertheless, the persistence
diagram and its subdiagrams are useful book-keeping tools for the homology of the sub- and
superlevel sets of maps on such more general spaces. Specifically, the ordinary subdiagram
records the components of the sublevel set that are born and die during Phase One. The
essential subdiagram records the homology of the geometric network, since its classes are born
but do not die during Phase One. Finally, the relative subdiagram records the relative cycles
in the network modulo the superlevel set.

For a point (A, B) ∈ Dgm(f), we think of |B − A| as the life-time or persistence of the
corresponding component or cycle. Taking the sum, over all points in the multi-set, we get
what we call the total persistence of f :

∥Dgm(f)∥1 =
∑︂

(A,B)∈Dgm(f) |B − A|. (4.1)

For a map on the unit circle, the global minimum and the global maximum contribute 2|B0−A0|
to this measure. Everything beyond that is due to wrinkles in the map and may be regarded
as a measure of how interesting or noisy the map is.

An important property of persistence diagrams is their stability, which was first proved in [21].
Assuming f and g are generic maps on the same compact geometric network, this theorem
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asserts that the bottleneck distance between Dgm(f) and Dgm(g) is bounded from above
by ∥f − g∥∞. It follows that every continuous map has a generic perturbation whose total
persistence is arbitrarily close to that of the original map. It also implies that the restriction
to maps whose critical points have distinct values is unnecessary while convenient.

4.3 The Circle Case
We consider generic maps on the unit circle and introduce the notion of a window to characterize
the critical points paired by persistent homology. After establishing this connection, we get
elementary proofs of fundamental properties of maps on the circle.

Let a be a minimum and b a maximum of a generic map, f : S1 → R, write A = f(a),
B = f(b), and let J = J(a, b) be the connected component of f−1[A, B] that contains both
a and b. It may be a closed interval, the entire circle, or empty if no such component exists.
We call W (a, b) = J × [A, B] the frame with support J spanned by a and b, and we say
W (a, b) covers the points x ∈ J . When J is an interval, a and b decompose it into three
(closed) subintervals, which we read in a direction so that a precedes b: Jin before a, Jmid

between a and b, and Jout after b. Correspondingly, we call Jin × [A, B], Jmid × [A, B], and
Jout × [A, B] the in-, mid-, and out-panels of W (a, b). We orient the in- and mid-panels away
from the minimum, while we leave the out-panel without orientation; see Figure 4.2.

Definition 4.3.1 (Windows for Circles). Let a be a (non-global) minimum and b a (non-global)
maximum, and assume that J(a, b) is non-empty. We call W (a, b), a triple-panel window with
simple wave if the values at the endpoints of Jin, Jmid, Jout are B, A, B, A in this sequence.

a p QL q Rbvusr P

Figure 4.2: The triple-panel window with simple wave spanned by a and b. There are two
children in the in-panel, spanned by r, s and u, v, there is one child in mid-panel, spanned by
q, p, and there is no child in the out-panel. The triple-panel windows spanned by r, s and u, v
overlap, while the corresponding double-panel windows are disjoint.

We will sometimes consider a double-panel window, which consists of the in-panel and the
mid-panel. It contains the graph of the component in the sublevel set that grows from the
minimum until it merges with another component at the corresponding maximum. We show
that the windows with wave characterize the paired critical points, while noting that the global
min-max pair is special and not subject to the following claim.

Theorem 4.3.1 (Characterization for Circles). Let f : S1 → R be generic, let a be a (non-
global) minimum with f(a) = A, and b a (non-global) maximum with f(b) = B. Then
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(A, B) and (B, A) are points in the ordinary and relative subdiagrams of Dgm(f) iff the frame
spanned by a and b is a triple-panel window with simple wave.

Proof. “⇐=”. Let a, b span W (a, b) = [L, R] × [A, B], and assume that a is to the left of b,
as in Figure 4.2. Consider the component of ft that contains a as t increases from −∞ to ∞.
This component is born at t = A. Since A ≤ f(x) ≤ B for all L ≤ x ≤ b, the component
grows—occasionally by incorporating other, younger components—but never dies before t
reaches B. At t = B, the component meets another component at b, and since W (a, b) is a
triple-panel window with wave, this other component is older. It follows that a, b are paired.

“=⇒”. We suppose that a, b are paired. In other words, a component of ft is born at t = A,
and a remains the point with minimum value in this component until t = B, when the
component merges with another, older component. Let [L, b] and [b, X] be the components
right before merging. The graph of f restricted to [L, b] describes the history of the component
born at t = A, which implies that it is contained in [L, b] × [A, B]. The other component is
born earlier, so [b, X] contains points that have the same value as a. Let R be the leftmost
such point. By construction, the graph of f restricted to [L, R] is contained in [L, R] × [A, B],
which implies that W (a, b) is a triple-panel window with simple wave.

In addition to the points in the ordinary and relative subdiagrams—which are characterized
by Theorem 4.3.1—Dgm(f) contains two more points, namely (A0, B0) and (B0, A0) in
the essential subdiagram. With A0 < B0 the values of the global minimum and the global
maximum, the first point represents the component and the second the cycle of the circle. There
is no ambiguity which critical points of f are paired in persistent homology. Theorem 4.3.1
thus implies that for every minimum there is a unique maximum such that the corresponding
frame is a window.

4.3.1 Nesting of Windows
As illustrated in Figure 4.2, two windows can be nested (one is a subset of the other), they
can be disjoint, and they can overlap. We will see that any overlap is limited. We call W (u, v)
a child of W (a, b), and W (a, b) a parent of W (u, v), if W (u, v) is nested inside one of the
panels of W (a, b), and there is no other window nested between the two.

Lemma 4.3.1 (Nesting in Circle). Let f : S1 → R be generic, and let W (a, b) be a triple-panel
window with simple wave and supports Jin, Jmid, Jout of its panels. If W (u, v) is another
triple-panel window and u ∈ Jin, Jmid, Jout, then W (u, v) is nested inside the corresponding
panel of W (a, b).

Proof. We first consider the mid-panel of W (a, b), which we assume is oriented from left
to right, so a < b. Moving from x = a to x = b, we encounter an alternating sequence
of minima and maxima, starting with a and ending with b. If a and b are the only critical
points in this sequence, then the statement is vacuously true. Otherwise, let a < p < b be
the minimum with the smallest value, f(p). There is at least one maximum to its left, and
we let a < q < p be the maximum with the largest value, f(q); see Figure 4.2. Drawing a
horizontal line from (p, f(p)) to the left, we intersect the graph of f in (P, f(p)), and drawing a
horizontal line from (q, f(q)) to the right, we intersect the graph in (Q, f(q)). By construction,
a < P < q < p < Q < b as well as f(p) ≤ f(x) ≤ f(q) for all P ≤ x ≤ Q. Hence, W (p, q)
is a triple-panel window with simple wave nested inside the mid-panel of W (a, b). To continue,
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we subdivide [a, b] at q and p, and apply the same argument in each of the three sections to
get a pairing of all critical points in the interior of [a, b]. Their frames are therefore triple-panel
windows with simple waves nested inside mid-panel of W (a, b). Repeating the argument for
the in-panel and the out-panel, we obtain the desired claim.

Recall that a double-panel window is obtained by dropping the out-panel. The double-panel
windows can be nested or disjoint, but in contrast to the triple-panel windows, they cannot
overlap. Indeed by Lemma 4.3.1, non-nested windows do not cover each other’s critical points.
It follows that the overlap is limited to the in-panel of one and the out-panel of the other
window. Since we drop the out-panel, double-panel windows cannot overlap.

4.3.2 Consequences: Symmetry and Variation
We use the hierarchies of triple- and double-panel windows to prove two folklore results about
real-valued maps on the circle. The first is a statement of symmetry that follows from Alexander
duality. Given a multiset of points in R2, such as Dgm(f), we write Dgm◦(f) for the central
reflection, which negates coordinates. Similarly, we write DgmR(f) for the reflection across
the major diagonal, which switches coordinates, and Dgmr(f) for the reflection across the
minor diagonal, which negates and switches coordinates.

Corollary 4.3.1 (Strong Symmetry for Circles). Let f : S1 → R be generic. Then Dgm(f) =
DgmR(f) and Dgm(−f) = Dgmr(f).

Proof. A window with simple wave of f is also such a window of −f . Hence, (A, B) ∈ Ord(f)
iff (B, A) ∈ Rel(f). Recall also that Ess(f) consists of two points, (A0, B0) and (B0, A0),
in which A0 = minx f(x) and B0 = maxx f(x). This implies Dgm(f) = DgmR(f).

To relate f with −f , note that both have the same critical points, except that minima
switch with maxima. Since W (a, b) = J × [A, B] is a triple-panel window of f iff W (b, a) =
J × [−B, −A] is a triple-panel window of −f , this implies that we get the diagram of −f by
negating and switching the coordinates; that is: Dgm(−f) = Dgmr(f).

To state the second result, we recall that the variation of a 1-dimensional function is the total
amount of climbing up and down. We claim that for f : S1 → R, this is the total persistence
of f , which we recall is the sum of |B − A| over all points (A, B) ∈ Dgm(f).

Corollary 4.3.2 (Variation for Circles). Let f : S1 → R be generic. Then the variation equals
the total persistence of f : Var(f) = ∥Dgm(f)∥1.

Proof. We use induction, considering the double-panel windows defined by min-max pairs of
f in a sequence in which the children precede their parents. Observe that f restricted to
the support of a double-panel window without children consists of two monotonic pieces. Its
contribution to the variation of f is twice the height of the window, and so is its contribution
to the total persistence. Indeed, the min-max pair corresponds to a point each in the ordinary
and the relative subdiagrams, or it corresponds to two points in the essential subdiagram.
After recording these contributions, we locally flatten f to remove the double-panel window
and continue the inductive argument.
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The relation between the variation and the total persistence of a map on S1 expressed in
Corollary 4.3.2 was known before. For example, it is used to measure to what extent a
noisy cyclic map is periodic [34]. Its generalization to maps on geometric networks stated in
Corollary 4.5.2 is however new.

4.4 The Tree Case
In this section, we consider networks without cycles, which if connected are trees. We begin
with a single edge and continue with geometric trees whose interior vertices have degree 3.

4.4.1 Maps on the Interval
The simplest compact 1-dimensional space that is not a 1-manifold is a line segment, which
we refer to as an interval and parametrize from 0 to 1. Recall that a map f : [0, 1] → R
is generic if the minima, maxima, and endpoints are isolated and their values are distinct.
Theorem 4.3.1 applies in the interior of the interval, but we need new kinds of windows that
cover the endpoints. Let a be a minimum or ↗-type endpoint and b a maximum or ↘-type
endpoint of f , write A = f(a) and B = f(b), and recall that J = J(a, b) is the component
of f−1[A, B] that contains both a and b, with J = ∅ if no such component exists.

Definition 4.4.1 (Windows for Intervals). Let a be a (non-global) minimum or ↗-type
endpoint, and b a (non-global) maximum. We call the non-empty frame, W (a, b) = J × [A, B],
a triple-panel window with short wave if its in-, mid-, out-panels are delimited by 0 ≤ a < b <
x < 1 or by 1 ≥ a > b > x > 0 such that f(x) = A.

Observe that Definition 4.4.1 allows for the cases a = 0 and a = 1. As illustrated in Figure 4.3,
a window with short wave covers exactly one endpoint of the interval, and this endpoint is
either a or a ↘-type endpoint. The case in which the window covers both endpoints is also
possible but different and introduced in Definition 4.5.1. In contrast to windows with simple
wave, windows with short wave do not come in symmetric pairs; that is: if W (a, b) is a window
with short wave of f , then W (b, a) is not a window with short wave of −f .

0 a b x x b a 1
Figure 4.3: Two triple-panel windows with short wave, oriented from left to right on the left
and from right to left on the right. Both cases may degenerate to zero-width in-panels. The
black points correspond to endpoints of the interval. There are different ways how a frame
can fail to be a window, one being that f(x) > f(a).

Because of the asymmetry of windows with short wave, the extension of Theorem 4.3.1 to
intervals requires a separate treatment of the ordinary and relative subdiagrams of Dgm(f).

Theorem 4.4.1 (Characterization for Intervals). Let f : [0, 1] → R be generic, let a be a
minimum or ↗-type endpoint, with f(a) = A, and let b be a maximum or ↘-type endpoint,
with f(b) = B. Then
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(i) (A, B) ∈ Ord(f) iff W (a, b) is a triple-panel window with simple or short wave of f ,

(ii) (B, A) ∈ Rel(f) iff W (b, a) is a triple-panel window with simple or short wave of −f .

Proof. The pairs in (i) correspond to components of the sublevel set, which are counted by
H0, while the points in (ii) correspond to relative cycles, which are counted by H1. The proof
of (i) is almost verbatim the same as that of Theorem 4.3.1, and we omit the details.

Write I = [0, 1] and recall that f t = f−1[t, ∞). To prove (ii), we explain the details of how
H0(f t) and H1(I, f t) are related. To this end, we decrease t from ∞ to −∞ and show that
the two groups change their ranks in parallel, with only one exception at t = B0, the value
of the global maximum, when H0(f t) goes from rank 0 to 1 while H1(I, f t) remains at rank
0. For this purpose, we consider the long exact sequence of the pair (I, f t). We recall that
exactness means that the image of a map is the kernel of the next map in order along the
sequence; see [43, Section IV.4] or [66, Section 2.1] for details. In the 1-dimensional case, all
homology groups of dimension other than 0 and 1 are trivial, so the long exact sequence is
rather short:

0 → H1(f t) → H1(I) → H1(I, f t) → H0(f t) → H0(I) → H0(I, f t) → 0. (4.2)

We have rank H0(I) = 1 and rank H1(I) = rank H1(f t) = 0 for every t. There are only four
possibly non-trivial groups, which we related to each other in a case analysis.

• For t > B0, the only non-trivial groups are H0(I) and H0(I, ∅), which both have rank 1.
In particular, H1(I, f t) and H0(f t) are both trivial and therefore isomorphic.

• For t ≤ B0, H0(I, f t) is trivial, so by the exactness of (4.2), rank H1(I, f t) =
rank H0(f t) − 1.

To finish the argument, we remove the class born at t = B0 from all groups H0(f t) to get
two isomorphic persistence modules. It follows that the implied pairing of the critical values is
the same, whether we track the components of f t or the relative cycles of (I, f t). Claim (ii)
thus follows from (i).

In addition to the points in the ordinary and relative subdiagrams—which are characterized by
Theorem 4.4.1—Dgm(f) contains one more point, namely (A0, B0) in the essential subdiagram.
This point will be discussed in Section 4.5.

4.4.2 Maps on Geometric Trees
If we glue intervals at their endpoints without forming a cycle in the process, we get a geometric
tree, A = (V, E), with vertices, V , and edges, E. We restrict ourselves to degree-3 trees, in
which each vertex is an endpoint of either one or three edges. We call f : A → R generic if
all critical points are isolated, they have distict values, and every degree-3 vertex is either a
y-type or a λ-type vertex. It is tempting to consider ↗- and y-type vertices as minima and
↘- and λ-type vertices as maxima, but note that components of sublevel sets are born at
↗-type but not at y-type vertices, and they die at λ-type but not at ↘-type vertices.
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Geometric trees introduce the topological phenomenon of branching, which requires yet another
extension of the notion of window with wave. Let a be a minimum or ↗-type vertex, with
f(a) = A, and b a maximum or λ-type vertex, with f(b) = B. Recall that J = J(a, b) is the
component of f−1[A, B] that contains both a and b, which is a geometric tree, and that a, b
subdivide J into subtrees Jin, Jmid, Jout.

Definition 4.4.2 (Windows for Geometric Trees). We call a non-empty frame, W (a, b) =
J × [A, B], a triple-panel window with branching wave if f(x) > A for every point x ̸= a in
Jin ∪ Jmid, and f(y) = A for at least one point y ̸= b in Jout.

Note that the triple-panel windows with simple and short wave satisfy the conditions of
Definition 4.4.2, but there are also others, as illustrated in Figure 4.4. We can now generalize
Theorem 4.4.1 from intervals to geometric trees.

a b

Figure 4.4: A triple-panel window with branching wave, W (a, b). There is a branching point
in the in-panel on the left and another in the out-panel on the right. Branching points and
endpoints are marked in black. Note that W (b, a) violates the conditions in Definition 4.4.2
for the negated map.

Theorem 4.4.2 (Characterization for Geometric Trees). Let f : A → R be a generic map
on a compact geometric degree-3 tree, let a be a minimum, ↗-type, or y-type vertex, with
f(a) = A, and let b be a maximum, λ-type, or ↘-type vertex, with f(b) = B. Then

(i) (A, B) ∈ Ord(f) iff W (a, b) is a triple-panel window with branching wave of f ,

(ii) (B, A) ∈ Rel(f) iff W (b, a) is a triple-panel window with branching wave of −f .

Proof. The proof is almost verbatim the same as that of Theorem 4.4.1. We thus restrict
ourselves to discussing what happens at the branching points as we monitor the sublevel set of
f while t moves from −∞ to ∞. A connected component is born at a minimum or a ↗-type
vertex, a, and it dies at a maximum or a λ-type vertex, b. There is neither a birth nor a death
when t passes the value of a ↘-type vertex or a y-type vertex.
Assume b is a λ-type vertex. For A < t < B, we have a ∈ ft and b ̸∈ ft. At t = B, the
component of the sublevel set that contains a merges with another, older component and
therefore dies. Indeed, this other component approaches b from the other branch leading up
to b, and after t passes B, the component extends along the branch leaving b upwards.

Note that every vertex is paired only once: the ↗-type and λ-type vertices in Phase One, and
the ↘-type and y-type vertices in Phase Two. This is in contrast to the critical points in the
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interior of the edges, which are paired twice. Indeed, according to Definition 4.4.2, W (a, b) is
not a window of f if a is a y-type vertex or b is a ↘-type vertex. Symmetrically, W (b, a) is
not a window of −f if b is a λ-type vertex or a is a ↗-type vertex. In addition to the points in
the ordinary and relative subdiagrams—which are characterized by Theorem 4.4.2—Dgm(f)
contains one point representing the one component, which is the entire geometric tree, in the
essential subdiagram.

4.4.3 Consequences: Symmetry and Variation
For a map, f , on a geometric tree, the upside-down version of a window of f is not necessarily
a window of −f . The strong symmetry statement in Corollary 4.3.1 thus fails to generalize
and must be replaced by a weaker statement of symmetry. Recall that Dgm◦(f) and Dgmr(f)
are the reflections of Dgm(f) through the origin and across the minor diagonal.

Corollary 4.4.1 (Weak Symmetry for Geometric Trees). Let f : A → R be a generic map on
a compact geometric tree. Then Dgm(−f) = Ord◦(f) ⊔ Rel◦(f) ⊔ Essr(f).

Proof. Recall that Dgm(f) = Ord(f) ⊔ Rel(f) ⊔ Ess(f). By Theorem 4.4.2, the triple-panel
windows with branching wave of f characterize Ord(f), and those of −f characterize Rel(f).
For −f , we turn all windows upside-down, which switches and negates coordinates as well as
switches the phases in which the windows are constructed. Hence, Ord(−f) = Rel◦(f) and
Rel(−f) = Ord◦(f). There is only one point (A0, B0) ∈ Ess(f), in which A0 and B0 are the
values of the global minimum and the global maximum of f . Similarly Ess(−f) consists of a
single point, (−B0, −A0), which completes the proof.

In contrast, Corollary 4.3.2 does generalize to geometric trees. However, the windows with
non-simple wave complicate the proof of this generalization.

Corollary 4.4.2 (Variation for Geometric Trees). Let f : A → R be a generic map on a
geometric tree. Then the variation equals the total persistence: Var(f) = ∥Dgm(f)∥1.

Proof. To formulate the proof strategy, we interpret each point (A, B) ∈ Dgm(f) as the
interval with endpoints A and B on the real line. We will show that for each non-critical value,
t ∈ R, the cardinality of f−1(t) is equal to the number of intervals in Dgm(f) that contain t.
The claimed equation follows.

To begin, we add every minimum and maximum of f as a vertex to A, so that f is monotonic
on every edge of the thus subdivided geometric tree. We have six types of vertices, two each
of degree 1, 2, and 3. We are interested in the change of the sublevel set and the superlevel
set when t passes the value of a vertex:

• ↗-type endpoint: a component of ft is born;

• ↘-type endpoint: a cycle of (A, f t) is born, unless the endpoint is the global maximum,
in which case a component of ft dies.

• minimum: a component of ft is born and a cycle of (A, f t) dies;

• maximum: a component of ft dies, and a cycle of (A, f t) is born, unless the maximum
is the global maximum, in which case another component of ft dies;
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• y-type vertex: a cycle of (A, f t) dies;

• λ-type vertex: a component of ft dies.

We now increase t from −∞ to ∞. The births and deaths of components correspond to
start- and end-points of intervals, while the births and deaths of cycles correspond to end-
and start-points of intervals, respectively. Accordingly, the number of intervals that contain t
increases by 1 when t passes the value of a ↗-type endpoint or a y-type vertex, it decreases
by 1 when t passes a ↘-type endpoint or a λ-type vertex, it increases by 2 when t passes a
minimum, and it decreases by 2 when t passes a maximum. The induction basis is provided by
t smaller than the value of the global minimum, when there are no intervals that contain t and
there are no points in f−1(t). The induction step is the observation that #f−1(t) changes in
the same way as the number of intervals that contain t, namely #f−1(t) increases by 1 when
t passes the value of a ↗-type endpoint or a y-vertex, etc.

4.5 The Geometric Network Case
In this section, we take the step from maps on the unit circle and on geometric trees to maps
on more general geometric networks. In contrast to a geometric tree, we do not assume that
a geometric network is connected.

4.5.1 Stable Marriage
We call an element of H1(G) a cycle, which by definition is an even degree and not necessarily
connected subgraph of the network. We relate the global minima and maxima of the cycles in
G to each other using the notion of a stable marriage. Let f : G → R be a generic map on a
compact geometric network, and write k = rank H1(G) for the rank of the cycle space. For
Λ ∈ H1(G), we introduce notation for the global minimum and maximum of f along Λ:

lo(Λ) = arg minx∈Λ f(x), (4.3)
hi(Λ) = arg maxx∈Λ f(x), (4.4)

calling them the low point and the high point of the cycle. If cycles Λ ̸= Λ′ have the same low
point, then genericity implies the existence of a common arc that contains the shared low point in
its interior. This arc does not belong to the sum, hence f(lo(Λ + Λ′)) > f(lo(Λ)) = f(lo(Λ′)).
The symmetric inequality holds for cycles with shared high point. Write Lo(f) and Hi(f) for
the collections of low and high points of all cycles. We begin by proving that both collections
have cardinality k.

Lemma 4.5.1 (Low and High Points). Let f : G → R be a generic map on a compact
geometric network. Then #Lo(f) = #Hi(f) = rank H1(G).

Proof. It suffices to prove that #Lo(f) is equal to k = rank H1(G) as the other equality is
symmetric. Since H1(G) is a vector space, every one of its bases consists of k cycles. Let
Λ1, Λ2, . . . , Λk be a basis that maximizes ∑︁k

i=1 f(lo(Λi)). We claim that their low points are
distinct. Indeed, if lo(Λi) = lo(Λj) with i ̸= j, then f(lo(Λi + Λj)) > f(lo(Λj)) and we can
substitute Λi + Λj for Λj to get a new basis with larger sum of values. This contradiction
implies lo(Λi) ̸= lo(Λj) whenever i ̸= j and therefore #Lo(f) ≥ k.
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To get #Lo(f) ≤ k, we observe that the low point of a sum of cycles in the basis (with
distinct low points) is the lowest low point of these cycles and therefore one of the k low
points we already observed exist. Thus, #Lo(f) = k, as claimed.

Since there are equally many low and high points, we can pair them up. Of particular interest is
the solution to a stable marriage problem [58]. To formulate it, we call b ∈ Hi(f) a candidate
of a ∈ Lo(f), and vice versa, if there exists a cycle, Λ, with a = lo(Λ) and b = hi(Λ). Among
its candidates, a low point prefers high points with small function values, and a high point
prefers low points with large function values. We write hi(a) and lo(b) for the favorites among
their candidates and claim that everybody can be paired with its favorite.

Lemma 4.5.2 (Stable Marriage). Let Lo(f) and Hi(f) be the low and high points of a
generic map on a compact geometric network, f : G → R. Then µ : Lo(f) → Hi(f) defined
by µ(a) = hi(a) is a bijection, and it satisfies µ−1(b) = lo(b).

Proof. We show b = hi(a) iff a = lo(b), for all a ∈ Lo(f) and b ∈ Hi(f), which implies the
claim. To reach a contradiction, suppose b = hi(a) but a′ = lo(b) with a′ ̸= a. By definition
of favorite, there exists a cycle, Λ, with lo(Λ) = a and hi(Λ) = b. Hence, a is a candidate of
b. However, since a′ ̸= a is the favorite of b, this implies f(a′) > f(a). Let Λ′ be the cycle
with lo(Λ′) = a′ and hi(Λ′) = b. Then lo(Λ + Λ′) = a and f(hi(Λ + Λ′)) < f(b), which
contradicts that b is the favorite of a.

4.5.2 Maps on Geometric Networks
The components and cycles of G give rise to points in the 0- and 1-dimensional essential
subdiagrams of Dgm(f). They need new kinds of windows to be recognized. The more
interesting case is that of a cycle. Let a ∈ Lo(f), b ∈ Hi(f), and recall the definition of
J = J(a, b). If a and b are candidates of each other, then J ̸= ∅ as it contains at least the
cycles whose low and high points are a and b. Even if a and b are not candidates of each
other, J ̸= ∅ is possible, but then it does not contain any cycle through the two points.

Definition 4.5.1 (Windows for Geometric Networks). Let a ∈ G be a minimum, ↗-type,
or y-type vertex, with f(a) = A, and b ∈ G a maximum, ↘-type, or λ-type vertex, with
f(b) = B. Recall that J = J(a, b) is the component of f−1[A, B] that contains both a and b,
with J = ∅ if no such component exists.

(i) W (a, b) = J × [A, B] is a window of component if J is an entire component of G.

(ii) W (a, b) is a window of cycle if J contains a cycle that passes through a and b such
that J \ {a, b} is not connected.

The window of cycle is illustrated in Figure 4.5: (a, A) and (b, B) lie on the lower and upper
boundaries of the cylindrical strip. If W (a, b) does not satisfy the conditions in Definition 4.5.1
(ii), then cutting the strip along vertical lines at a and b does not split it into two connected
pieces. On the other hand, if W (a, b) is a window of cycle, then the two cuts split the strip
into two components. Note that a window with wave can neither be a window of component
nor of cycle. On the other hand, it is possible that a window of component is also a window
of cycle.
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(b, f(b))

(a, f(a))

Figure 4.5: A window of cycle. If the two arms met at the ends, this would be a violation of
the conditions in Definition 4.5.1 (ii) since cutting at a and b would not disconnect the strip.

The proof of Lemma 4.5.2 implies that W (a, b) is a window of cycle iff a and b are each
other’s favorites. We show that this is also equivalent to being paired in persistent homology.

Theorem 4.5.1 (Characterization for Compact Geometric Networks). Let f : G → R be a
generic map on a compact geometric network, let a be a minimum, ↗-type, or y-type vertex,
with A = f(a), and let b be a maximum, ↘-type, or λ-type vertex, with B = f(b). Then

(i) (A, B) ∈ Ess0(f) iff W (a, b) is a window of component,

(ii) (B, A) ∈ Ess1(f) iff W (a, b) is a window of cycle.

Proof. (i) is obvious enough so we omit the proof. To see (ii), assume a and b are each other’s
favorites, and let Λ be a cycle whose low and high points are a and b. When t ∈ R reaches B
in Phase One, Λ is born along with all cycles Λ + Λ′, in which Λ′ is a cycle born before Λ. All
these cycles die when t reaches A in Phase Two. Indeed, if Λ′ died earlier, then Λ + Λ′ would
become homologous to Λ, but since Λ is born after Λ′, the sum of the two cycles cannot die
yet. On the other hand, Λ + Λ′ dies at t = A because it becomes homologous to Λ′, which
was born earlier.

The characterization of points in the essential subdiagram of Dgm(f) in Theorem 4.5.1
together with the characterization of the points in the ordinary and relative subdiagrams in
Theorem 4.4.2 completes the proof of the Main Theorem stated in the Introduction.

4.5.3 Consequences: Symmetry and Variation
The weak symmetry assertion for geometric trees stated in Corollary 4.4.1 generalizes to
geometric networks.

Corollary 4.5.1 (Weak Symmetry for Geometric Networks). Let f : G → R be a generic map
on a compact geometric network. Then Dgm(−f) = Ord◦(f) ⊔ Rel◦(f) ⊔ Essr(f).

Proof. The argument for the triple-panel windows with wave is the same as in the proof of
Corollary 4.4.1. Since geometric networks are not necessarily connected, we can have more
than one window of component, which is different for geometric trees, which are connected.
Nevertheless, the argument for such windows is the same as in the proof of Corollary 4.4.1.

It remains to argue about the cycles in the network. By Lemma 4.5.2, the cycles are represented
by pairing their low and high points in a symmetric manner. Specifically, each low point is
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paired with the lowest candidate high point, and because the candidate relation is symmetric,
this is equivalent to pairing each high point with the highest candidate low point. Each such
pair generated in Phase One corresponds to a point (A, B) ∈ Ess(f), and by symmetry to a
point (−B, −A) ∈ Ess(−f), which completes the proof.

The equality of the variation and the total persistence generalizes from circles and geometric
trees to geometric networks. We can reuse the proof of Corollary 4.4.2, which we complement
with an argument about cycles.

Corollary 4.5.2 (Variation for Geometric Networks). Let f : G → R be a generic map
on a compact geometric network. Then the variation is the total persistence: Var(f) =
∥Dgm(f)∥1.

Proof. We cut each cycle in G at its high point to obtain a geometric network, G′, with one less
cycle. Let η : G′ → G be the surjection that reverses the cut, and let g : G′ → R be defined
by g(x) = f(η(x)). Since the maps are essentially the same, we have Var(g) = Var(f).

To show that the total persistence remains the same, let Λ be a cycle in G, a = lo(Λ) its
low point, and b = hi(Λ) its high point. Assume that W (a, b) is a window of cycle, so that
(A, B) ∈ Ess1(f), in which A = f(a) and B = f(b), as usual. The cut at b removes the
cycle and thus the point (A, B) from the diagram. There is a second window, generated by b
and another point x ∈ G, whose corresponding point, (B, X), is removed from the diagram.
In lieu of b, we get two ↗-type endpoints in G′, which we denote b′ and b′′. By definition of
η, we have g(b′) = g(b′′) = B. Since b′ and b′′ are endpoints, they are paired only once. By
the local characterization of windows in Theorems 4.3.1, 4.4.1, 4.4.2, 4.5.1, all windows of f
other than W (a, b) and W (b, x) are also windows of g. Hence b′ and b′′ can only be paired
with a and x. We thus get two new points, (B, A) and (B, X) in Dgm(g). Their persistence
is the same as that of the two points they replace, so ∥Dgm(g)∥1 = ∥Dgm(f)∥1.

We now repeat the argument, cutting one cycle at the time, until we reach a collection of
geometric trees. Corollary 4.4.2 implies that the variation is equal to the total persistence.
Since both quantities did not change during the process, we thus established the equality also
for compact geometric networks.

4.6 Maintaining Persistence for Time Series data
Can we leverage the structural results of this chapter to update the persistent homology of
one-dimensional data as the function, or the space, undergo a local change? The question was
tackled in a joint effort with Herbert, as well as Monika Henzinger and her student Lara Ost,
whose expertise is in the design of efficient algorithms and data structures. This subsection is
taken from our joint paper [27] recently published at SODA and aims to summarize the key
findings of the project. Instead of working with geometric networks, this section focuses on
the simpler setting of functions on intervals, often referred to as time series; see Figure 4.6 for
an example of such map.

Setting. We restrict ourselves to one-dimensional input data, i.e., a list of m points (or
items) in an interval of R with each item i being assigned a value f(i). Persistent homology
has been applied to such time series data in multiple contexts, for example to heart-rate data
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Figure 4.6: The graph of a generic map on a closed interval. All windows shown are with
simple wave, except for the leftmost window, whose wave is short. The global window as well
as the (tiny) windows caused by the hooks are not shown. The light-blue shaded out-panels
are part of the triple- but not of the double-panel windows.

[19, 63], gene expression data [34, 88], and financial data [60]. The persistent homology of
one-dimensional data can be derived from the merge tree [102], which records more detailed
information about the structure of the persistence diagram, called the history of the connected
components in the filtration of sublevel sets. Without recovering this history, the persistence
information can be computed in O(m) time [61]. To the best of our knowledge, the new O(m)
time algorithm that we introduced in our SODA paper [27] is the first linear-time algorithm
that can also recover the history, which we store in the augmented persistence diagram of the
filtration of sublevel sets. This diagram is the extended persistence diagram of [22], which we
introduced in Section 4.2.3, together with a relation that encodes the merge tree. We draw an
arrow between two points in the persistent diagram whenever the corresponding windows are
nested, and there is no other window nested between the two. See Figure 4.7 for an example.

Figure 4.7: Left: a real-valued map on a closed interval, f , with three minima and two maxima.
Right: the map −f drawn upside-down. Middle: the augmented persistence diagram with
two (blue) points in the ordinary subdiagram Ord(f) above the diagonal, three (pink) points
in the relative subdiagram Rel(f) below the diagonal, and one (green) point in the essential
subdiagram Ess(f).

As the data may change, it is an interesting question whether persistent homology can be
maintained efficiently under update operations. The historically first such algorithm [24] takes
time linear in the complex size per swap in the ordering of the simplices; see also [77, 89]. For
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one-dimensional data this corresponds to a change of the value of an item, which reduces to a
sequence of interchanges of f -values, each costing time linear in the size of the persistence
diagram. More recently, [36] has shown that this can be strengthened to logarithmic time if
the input complex is a graph. Our paper [27] is the first to maintain the persistent homology
of dynamically changing one-dimensional input with a tailor-made data structure under a
larger suite of update operations, which includes the insertion of a new item, the deletion of
an item, the adjustment of the value of an item, the cutting of a list of items into two, and
the concatenation of two lists into one.

The running time per operation is O(log n + k), in which n is the current number of critical
items, and k is the number of changes to the augmented persistence diagram caused by the
operation.

Our novel dynamic data structure is based on the characterization of the items in the persistence
diagram through windows, as recently established in [12]. The main data structure is a binary
tree ordered by position as well as value (see [108] for the introduction of such a binary
tree), a path-decomposition of this tree dictated by persistent homology such that each path
represents a window, and a final relaxation obtained by splitting each path into a left trail of
nodes with right children on the path and a right trail of nodes with left children on the path.
This split of each path into two trails is crucial for our results, and without it, the update time
would have a linear dependence on the depth of the tree, which might be Θ(n).

Data Structures Overview. We propose a novel collection of data structures—some classic
and some new—for maintaining nested windows. We show that using these data structures
allows us to maintain the augmented persistence diagram to reflect the change from one map
to another in the desired time bound. We maintain the following data structures:

(1) a doubly-linked list of all items, critical or not, ordered by their positions in the interval;

(2) two binary search trees, called dictionaries, one storing the minima and the other storing
the maxima, both ordered by their positions in the interval;

(3) two banana trees (described next) representing the information in the augmented
persistence diagram by storing the minima and maxima while reflecting their ordering by
position as well as by function value.

Note that the minima and maxima are subsets of all items and are therefore represented in
all of the above data structures. To reduce the special cases in the algorithms, we add two
artificial items, called hooks, at the very beginning and the very end of the interval. They
make sure that the formerly first and last items are proper minima or maxima, but we ignore
them and the technicalities involved in this overview and give slightly simplified descriptions of
the data structures and the algorithms.

Banana Trees. We introduce these trees in three stages. In the first stage, we organize all
windows in a full binary tree, whose leaves are the minima and whose internal nodes are the
maxima, such that (i) the in-order traversal of the tree visits the nodes in increasing order
of their positions in the interval, and (ii) the nodes along any path from a leaf to the root
are ordered by increasing function value. Such a tree always exists and it is unique. In the
following, we do not distinguish between a node in the tree and the critical item it represents.
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In the second stage, we add a special root labeled with value larger than the global maximum
whose only child is the previous root. Call the resulting tree T and note that it has an equal
number of leaves and internal nodes. We then form paths, each starting at a leaf, a, and
ending at an internal node, b, such that a and b span a window, W (a, b). Call this path
P (a, b). Based on structural properties of T , this leads to a partition of T into edge-disjoint
(but not vertex-disjoint) paths; see the left drawing in Figure 4.8. The node b ending the path
that starts at a is locally determined: it is the first internal node encountered while walking
up from a, such that a and the descending leaf with minimum function value lie on different
sides (in different subtrees) of this internal node. Hence, every maximum on the path from a
to b spans a window that is immediately nested in W (a, b). It follows that every maximum, b,
belongs to two paths: P (a, b) and P (p, q) such that W (a, b) is immediately nested in W (p, q).
This even holds for the root (of the full binary tree), which spans a path and also belongs to
the path that ends at the special root. Given a map, f , the tree, T , and its partition into
paths are unique. The strict dependence on f may force T to be unbalanced, and indeed have
linear depth, so that efficient maintenance algorithms are challenging. This is why we need
another modification.

Figure 4.8: The path-decomposed binary tree associated to the map in Figure 4.6 with special
root, β, on the left, and the corresponding banana tree on the right.

In the third stage, we split each path into two trails; see the right drawing in Figure 4.8. The
left trail of P (a, b) contains a and every maximum u on P (a, b) with u ≤ a, while the right
trail contains a and every maximum u on P (a, b) with a ≤ u. A node v on P (a, b) is the
right child of its parent, u, in the binary tree iff u is on the left trail. Furthermore, v is the left
child of u iff u is on the right trail. Thus, to which trail u belongs to can be decided based
on local information at u. To simplify language, we also give a second name to the trails. If
a < b, then W (a, b) consists of the in-panel on the left, the mid-panel in the middle, and the
out-panel on the right. In this case, u belongs to the left trail iff the window it spans is nested
inside the in-panel, so we alternatively call the left trail the in-trail, and we alternatively call
the right trail the mid-trail. If b < a, then the right trail is the in-trail and the left trail is the
mid-trail. So what happened to the out-trail? It is indeed needed, but only if W (a, b) is with
simple wave. Such a window corresponds to P (a, b) in the banana tree of f and to P (b, a) in
the banana tree of −f . The out-panel of W (a, b) is the in-panel of W (b, a), so we can get
information about the out-panel from the in-panel of the same window in the other banana
tree when we need it.

To speed up the algorithms, we maintain various pointers, such as between the occurrences
of the same critical item in the banana trees, the dictionaries, and the doubly-linked list, for
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example. Importantly, every internal node, b, stores a pointer to the descending leaf with
minimum function value, low(b), and every leaf, a, stores a pointer to the endpoint of its
path, dth(a). Observe that q = dth(low(b)) is the maximum that spans the window in which
W (a, b) is immediately nested, so this window can be obtained in constant time.

Construction. While the main focus of the paper [27] is the maintenance of the data structures
through local updates, we also consider the construction from scratch. It is straightforward
to derive the augmented persistence diagram during a single traversal of the banana trees
in linear time, so the question we study is how fast this diagram can be constructed from a
given one-dimensional input list. Assuming all non-critical items have been removed and we
are given the remaining sequence of n critical items, there are standard algorithms that can
be adapted to construct the banana trees in O(n log n) time. There is also an O(n) time
algorithm for computing the persistence diagram [61], but this algorithm does not extend to
the augmented persistence diagram. To the best of our knowledge our algorithm is the first to
construct the augmented persistence diagram in O(n) time.

The main structure of the algorithm is a left-to-right scan of the data. We interpret the item
i with value ci = f(i) as the point (i, ci) in the plane and maintain a decreasing staircase
such that all processed items are points on or below the staircase. Each step of the staircase
corresponds to an unfinished banana. One of the difficulties is that before a banana is
completed, we do not know whether it will be attached to a left or a right trail. We tentatively
assume it will be attached to a left trail but are prepared to move the banana to the other
side when this turns out to be necessary. When we process the next item, we may remove any
number of steps, turning each into a finished banana, but we can add at most one new step.
Since a step that is removed was added earlier, this proves that the algorithm runs in O(1)
amortized time per item, and therefore in O(n) time altogether.

Local Maintenance. Given a list of m items with real function values, we consider the
operations that insert a new item, delete an item, and change the value of an item. All
three operations reduce to a sequence of interchanges—which can be between two maxima
or between two minima—possibly preceded by an anti-cancellation or a slide, and possibly
succeeded by a cancellation or a slide. In a slide, a minimum or maximum next to a non-
critical item becomes non-critical, and the non-critical item becomes a minimum or maximum,
respectively. Similarly in a cancellation, a minimum and a neighboring maximum simultaneously
become non-critical. Here we will focus on the interchanges, because they are most common
as well as most interesting, and on the anti-cancellations, because they pose an unexpected
challenge.

Consider two maxima, b and q, of f , and assume f(b) < f(q) before the interchange. To
avoid confusing language, we write g(b) and g(q) for the values after the operation but assume
that f and g agree on all items except for b. Furthermore, we assume that g(b) > g(q) and
that b and q are the only two items for which the ordering by f -value differs from the ordering
by g-value. In many cases, the interchange of b and q does not affect the banana trees. Indeed,
only if b is a child of q is it necessary to update the order of the two nodes. And even if b
and q are consecutive maxima on a path, there is no structural change unless b and q also
belong to a common trail. This is the main reason for splitting each path into two trails as
explained in the third stage of the introduction of the banana trees: to avoid any cost to occur
for interchanges that have no structural affect on the augmented persistence diagram. When
b and q interchange while belonging to different trails, then the banana tree is oblivious to
this change and requires no update. On the other hand, if b and q belong to the same trail,
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then they swap positions along this trail, and there is a change of the augmented persistence
diagram that pays for the time it takes to update the banana tree.

The interchange of two minima, a and p, is quite different because it does not affect the
ordered binary tree at the first stage of the banana tree. However, the interchange affects the
path-decomposition, so some of the bananas may have to be updated. To be specific, assume
f(a) > f(p) before and g(a) < g(p) after the operation. As before, we also assume that f
and g agree on all items except for a, and that a and p are the only two items for which the
ordering by f -value differs from the ordering by g-value. Let b and q be the internal nodes
so that P (a, b) and P (p, q) are paths in the decomposition of the banana tree of f . The
interchange of a and p has no effect on the banana tree, unless b is a node on P (p, q). If b lies
on P (p, q), then we extend P (a, b) to P (a, q) and we shorten P (p, q) to P (p, b). The nodes
u on the path from b to the child of q change their pointer from low(u) = p to low(u) = a.
There can be arbitrarily many such nodes, but each change causes the adjustment of an arrow
in the extended persistence diagram, to which it can be charged in the running time analysis.

This shows that it is possible to perform an interchange of two minima within the desired time
bound, but it is not clear how to find them. Considering the scenario in which a decreases
its value continuously, it may cause a sequence of interchanges with other minima, but since
these minima are not sorted by function value, it is not clear how to find them, and how
to ignore the ones without structural consequences. Here is where the relation between the
banana trees of f and −f becomes important. The minima of f are the maxima of −f , so
the interchange of two minima in the banana tree of f corresponds to the interchange of
two maxima in the banana tree of −f . We already know how to find the interchanges of
two maxima and how to ignore the ones without structural consequences, so we use them
to identify the interchanges of minima. More precisely, we prove that the interchange of the
minima, a and p of f , affects the structure of the banana tree of f only if the interchange
of the maxima, a and p of −f , affect the structure of the banana tree of −f . The converse
does not hold, but the implication suffices since the interchange of the maxima of −f leads
to a change in the extended persistence diagram which can be charged for the interchange of
the minima, which costs only O(1) time if there are no structural adjustments.

Next, we sketch what happens in the remaining operations. A slide occurs if a maximum
decreases its value so that it becomes non-critical, while a neighboring non-critical item
becomes a maximum. However, if this neighboring item is a maximum, then both items
become non-critical at the same time, in which case the operation is called a cancellation.
There are also the symmetric operations in which a minimum increases its value and becomes
non-critical, while a neighboring item changes from non-critical to minimum (a slide) or from
maximum to non-critical (a cancellation). The corresponding updates are easily performed
within the required time bounds.

A more delicate operation is the anti-cancellation, in which two neighboring non-critical items
become critical at the same moment in time. Let a and b be these two items and assume a
is a minimum and b is a maximum after the operation, so g(a) < g(b) and, by assumption,
f(a′) > f(a) > f(b) > f(b′), in which a′, a, b, b′ are four consecutive items in the list. Hence,
a and b are not present in the banana tree of f , but P (a, b) is a path in the path-decomposed
tree of g, so a, b form a minimal banana in the banana tree of g. All we need to do is find
the correct place to attach this banana, but this turns out to be difficult. We first explain
why it is difficult, then present an algorithm that works within the current data structure, and
finally sketch a modification of the data structure that accelerates the anti-cancellation to
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O(log n) time. While this leads to a speed-up in the worst case for this type of operation, it
slows down other operations by a logarithmic factor.

We use mirrors to explain in what situation an anti-cancellation is difficult. Their representation
in the banana tree is indirect: the maximum is the upper end of a mid-trail, and its mirror is
the upper end of the matching in-trail. In the tree, the two upper ends are the same node,
but if we traverse the trails of the banana trees in sequence, we visit them at different times,
and these times correspond to the positions along the interval, which are different for the
maximum and its mirror. Every maximum has at most one mirror, so adding all mirrors to the
list increases it to less than double the original size. Nevertheless, it is easy to construct a case
in which there is a long subsequence of mirrors, and these mirrors are consecutive with the
exception of a and b appearing somewhere in their midst. In this situation, finding the correct
attachment of P (a, b) in the banana tree of g needs the mirrors immediately to the left and
right of b. The data structure as described provides no fast search mechanisms among the
mirrors, so we find the correct attachment by linear search starting from the first maximum to
the left of a. Suppose we pass k mirrors before we find this attachment. Then we have a
nested sequence of k windows, and W (a, b) is nested inside all of them. Hence, there is one
new immediate nesting pair, while the transitive closure of the nesting relation gains k new
pairs. The cost of the anti-cancellation can be charged to the change of this transitive closure.
In many cases, the change in the transitive closure will be comparable in size to that of the
transitive reduction, but it can also be significantly larger, like in the case we just described.
We thus entertain alternatives.

There is a modification of the data structure that allows for fast searches among subsequences
of mirrors: for any consecutive min-max pair in the list, store the mirrors between them in
a binary search tree. In practice, there will be many very small such trees, but it is possible
that the mirrors accumulate and produce a few large trees. With this modification, an anti-
cancellation can be performed in O(log n) time. Note however, that these binary search trees
have to be maintained, which adds a factor of O(log n) to the time of every operation, in
particular to every interchange, of which there can be many.

Topological Maintenance. We call an operation topological if it cuts the list of points into
two, or it concatenates two lists into one. More challenging topological operations, such as
gluing the two ends of a list to form a cyclic list, or gluing several lists to form a geometric
tree or more complicated geometric network are feasible but have not yet been worked out in
detail.

When we cut the list of data into two, we split the banana trees of the map and its negative
into two each. We mention both banana trees since we need information from the other to
be able to split one within the desired time bound. Splitting one banana tree is superficially
similar to splitting a binary search tree, but more involved. Let f : [1, m] → R be the map
before the operation and g : [0, ℓ] → R and h : [ℓ + 1, m] → R the maps after the operation.
We write z = ℓ + 1

2 for the position at which the time series is cut. Since the banana trees
are determined by the maps, we need to understand the difference between the windows of f
and those of g and h. Whether or not a frame of f is also a window depends solely on the
restriction of f to the support of the frame. To decide about the future of a window of f , let
[x, y] be its support. This window is also a window of g if y < z, and it is also a window of
h if z < x. The windows that need attention are the ones with x < z < y. A triple-panel
window consists of three panels, so we distinguish between three cases:
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• W (a, b) suffers an injury if z cuts through the in-panel. Then a and b lie on the same
side of z and they still span a window, albeit with short wave.

• W (a, b) suffers a fatality if z cuts through the mid-panel. Then a and b lie on different
sides of z and need to find new partnering critical items to span new windows.

• W (a, b) suffers a scare if z cuts through the out-panel. These windows are difficult to
find in the banana tree of f , but they are easy to find in the banana tree of −f , in
which W (b, a) suffers an injury.

The splitting of the banana tree proceeds in three steps: first, find the smallest banana that
suffers an injury, fatality, or scare; second, find the remaining such bananas; and third, split the
banana tree of f into the banana trees of g and h. We address all three steps and highlight
the most interesting feature in each.

The first step is difficult because of the lack of an appropriate search mechanism in the banana
tree. To explain this, we recall that the banana tree stores the mirrors implicitly, as the upper
ends of the in-trails. Like in the case of an anti-cancellation, the challenging case is when
mirrors accumulate and we have to locate z in their midst. As before, we locate z by linear
search, scanning the mirrors in the order of decreasing function value. In contrast to the
anti-cancellation, we can now charge the cost for the search to the changes in the extended
persistence diagram. Indeed, every mirror we pass belongs to a window that experiences a
scare. Such a window of f is neither a window of g nor of h, so its spanning critical items will
re-pair and span new windows after the operation.
The second step traverses a path upward from the smallest affected banana we just identified.
In each step of the traversal, we determine the corresponding window and push it onto the
stacks of windows that experience an injury, fatality, or scare. A window that experiences an
injury remains a window, but now with short instead of simple wave. Whether this window
with short wave belongs to the banana tree of g or that of h depends on whether the spanning
minimum is to the right or the left of the spanning maximum. A window that experiences a
fatality falls apart, with one of the two spanning critical items in g and the other in h. Finally,
a window that experiences a scare stops to be a window, in spite of having both critical points
in g or in h. As mentioned earlier, such a window is difficult to find in the banana tree of
f , but it is easy to find in the banana tree of −f , where it experiences an injury. We thus
process both banana trees simultaneously, and distributed the windows or their corresponding
bananas as needed. The upward traversal halts when we reach the spine of the tree, by which
we mean the sequence of left children that start at the root, or the sequence of right children
that start at the root. This is important because moving further until we reach the root is not
necessary and can be costly because the spine can be arbitrarily long and the steps towards
the root cannot be charged to changes in the extended persistence diagram.
The third step re-pairs the critical items of the windows that experience a fatality or scare. All
new windows are with short wave, for else they would be windows of f before the splitting,
which is a contradiction. Hence, their bananas belong to the spines of the banana trees of
g and h. The bananas in the spines have the particularly simple structure that their critical
items come in sequence. For the right spine of the banana tree of g, this sequence increases
from right to left, for the left spine of the banana tree of h, the sequence increases from left
to right, and both are consistent with the sequence in which we collect the corresponding
windows in the second step. It follows that the available critical items can be paired up in
sequence, which takes O(1) time per item.
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Corresponding to the concatenation of two lists, we pairwise glue the banana trees of the two
maps. The operation is the inverse of splitting, so we omit further details. A final word about
the cost paid by the changes in the augmented persistence diagram. How do we compare one
diagram with two, which we get after splitting? To deal with this issue, we consider the maps
g and h to be one map, namely a map on two intervals. Then we still have one augmented
persistence diagram and the symmetric difference between the diagrams before and after the
operation is well defined.

4.7 Discussion and Open Problems
Over the past year, Lara Ost has been implementing the data structure and its algorithms,
and the first experiments seem to suggest that updates can be performed extremely fast. We
will hopefully be able to share more concrete results soon. With such an implementation, we
can deepen our understanding of the persistence of random lists, which in turn can be used
as a baseline for our understanding of non-random time series, such as heart rate data. In
scenarios where data is constantly being added, as is the case of heart rate data collected
with smartwatches, the relevance of dynamic algorithms becomes evident. What is less clear
is whether the information encoded in the persistence pairs represents a biologically relevant
signal in such contexts.

The theoretical foundations for our dynamic algorithms are described in [12], where maps are
defined on 1-dimensional domains, which include but go beyond intervals are described. Can
the banana trees be extended to geometric trees (which allow for bifurcations) and geometric
networks (which allow for bifurcations as well as loops) without deterioration of the asymptotic
running time? Because of the unconventional representation of trees in terms of bananas (pairs
of parallel trails), we finally ask whether there are other dynamic data structure questions that
can benefit from this representation.
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CHAPTER 5
Chromatic Point Sets

In this chapter, which builds upon [9, 25], we develop a novel topological approach to quantify
spatial interactions between several point sets, differentiated by color. The objective is to
formulate a mathematical language capable of addressing questions such as: “how, how often,
and at what scale do blue points surround groups of red points?”, or “are there cycles made
out of blue, red, and green points that make essential use of all three colors?”. We tackle
these questions from a multi-scale homological perspective, with the goal of disentangling
patterns such as the ones shown in Figure 5.1. Before delving into the mathematical aspects
of the problem, let’s recall how we came to think about it in the first place.

1+2

1+1

1+0

2+0

3+02+1

Figure 5.1: Mingling patterns distinguished by the number of colors needed to form a cycle
and the number of additional colors needed to fill this cycle. The drawings are caricatures of
similar patterns for cycles different from circles and fillings different from disks. The patterns
are but a first attempt to differentiate types of interactions, and they are by no means precise
or exhaustive. For example, two additional colors can fill a cycle in at least two different
ways (see the pattern of type 1+2): in a collaboration as suggested in the drawing, or each
individually, like two different patterns of type 1+1.

5.1 Motivation: Cellular Arrangements
Recent advances in technologies, including multiplexed imaging and spatial transcriptomics,
have opened new avenues for observing both cellular location and phenotypes in native tissue
environments, providing new opportunities for understanding the organizational principle
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in biological systems [86]. This is particularly relevant in cancer research, where several
recent studies have shown that the complex spatial arrangement formed by cancer cells and
a collection of immune cells can provide mechanistic insights into disease progression and
unveil biomarkers of response to existing treatments [104]. An example of such study is [96],
where the authors demonstrated that the complex spatial arrangement of a specific type of
immune cell, the tumor-infiltrating lymphocytes (TILs), is shown to be associated with disease
progression and treatment response. However, the authors only considered the distribution
of the lymphocytes, neglecting the distributions of other immune and cancer cells. Is their
spatial arrangement clinically relevant? More subtly, instead of studying the patterns of the
distribution of each cell type separately, would it be clinically useful to study the interactions
between the distributions of cell types? Addressing this gap requires a mathematical model
that can quantitatively describe the interactions between cell type distributions. Reading [96]
while conducting research at Owkin motivated the author to think about how to approach this
question topologically.
As an example, consider Figure 5.2, depicting a highly structured cellular arrangement in a
healthy human lung. Such pattern, which is likely formed around a blood vessel, prompts the
question: how can we quantitatively and precisely describe such system?

Figure 5.2: Two-dimensional cellular arrangement in a healthy human lung.

Persistent homology [46], when tailored to point set data, suggests itself as a natural candidate
to achieve this goal. In fact, methods from topological data analysis have recently been
applied in oncology, yielding critical insights in the treatment prognosis [30, 75, 37], tumor
segmentation and diagnosis [91, 29, 28], disease classification [84, 5], and cellular architecture
of tumor cells [98, 72, 7]. In this chapter, we focus on the latter application and we refer to
[16] for a comprehensive survey on the different applications of TDA in oncology and [92] for
the applications of topological methods in genomics and evolution.
It is worth noting that the rapid development of spatial transcriptomics is also shedding light
on the complex relationship between a cell’s microenvironment and its functional state [93].
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Scientists in this field are starting to uncover how genetic changes influence cellular architecture
and, and in parallel, how micro-environmental factors can alter cellular states, a concept known
as plasticity. This leads to crucial questions about the causal relationships between intrinsic
cellular properties and extrinsic ones (i.e. related to their environment), and the extent to
which these factors influence metastatic tendencies of cancer cells. The author intends to
focus on these research questions during his upcoming postdoctoral research.

Mathematical formulation and contributions To formally model such a system, we
use points with an extra label, a color, to represent cells and their associated phenotypes.
Methods from the field of topological data analysis [17], which are particularly suited for point
cloud data, suggest themselves as a natural candidate to extract geometric features from such
datasets. Specifically, when points have no labels, an appropriate filtration of the Delaunay
mosaic, called the alpha filtration [48], can be used to quantitatively describe the spatial
configuration of the point set. We seek for an analogous concept amenable to the setting
in which points have an associated color. A solution for two colors was proposed by Reani
and Bobrowski [94], which we generalize to arbitrarily many colors and whose structural and
combinatorial properties we study. Given a locally finite set in Rd and a coloring with s + 1
colors, this generalization places the points of different colors on s + 1 parallel copies of Rd,
which intersect an orthogonal copy of Rs at the vertices of the standard s-simplex. This is a
locally finite set in Rd+s, and the chromatic Delaunay mosaic of the colored set in Rd is, by
definition, the Delaunay mosaic of the set in Rd+s. A similar set-up was used in [18] for the
purpose of geometric morphing between s + 1 shapes, so our work also sheds light on that
proposal to construct a shape space.

The structural results we wish to highlight are as follows: (1) the chromatic Delaunay mosaic
contains the chromatic Delaunay mosaic as well as the Delaunay mosaic of any subset of the
s + 1 colors as a subcomplex; in particular, it contains the Delaunay mosaic of each color
individually and of all colors as subcomplexes; (2) the d-dimensional section of the colorful
cells in the chromatic Delaunay mosaic (the cells that have at least one vertex of each color)
is dual to the overlay of the s + 1 mono-chromatic Voronoi tessellations.

Our combinatorial results help gauge the extent to which chromatic Delaunay mosaics can be
used in applications. By the size of a mosaic we mean the number of cells, which we relate
to the number of the points, denoted n. The dimension, d, and the number of colors, s + 1,
are assumed to be constants. We also consider locally finite but possibly infinite sets, namely
Delone sets and Poisson point processes as examples of packed sets and random sets in Rd,
respectively. Here and later, we use the term ‘packed’ as a vague notion for locally finite sets
of points that are, in a sense, d-dimensionally distributed. To facilitate the comparison with
the results for finite sets, we count the points and cells within a sufficiently large ball centered
at the origin.

As shown in Table 5.1, we have upper bounds for all three types of point sets assuming the
colors are assigned at random. For any points and packed points, the bounds are formally
stated in Theorems 5.3.1 and 5.3.2, and they are asymptotically tight. Not all bounds stated in
Table 5.1 will be treated in this thesis – only the ones marked in bold will – and the interested
reader should consult [9] for further details. Note the conspicuous absence of the number of
colors in most bounds given, and this despite the fact that the chromatic Delaunay mosaic is
a (d + s)-dimensional complex.
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chromatic Delaunay mosaic in Rd+s D. mosaic in Rd+s

any points packed points random points (one color)

any colors nmin{d,⌈ d+s
2 ⌉} min{m2, n2} in R2 (∗) ? n⌈ d+s

2 ⌉
Section 5.3 [9, Theor. 4.7] [20]

random colors n⌈d/2⌉ n n
Theorem 5.3.1 Theorem 5.3.2 [9, Theor. 5.1, 5.2]

Table 5.1: Asymptotic size bounds for chromatic Delaunay mosaics of n points in Rd with
s + 1 colors. Constant factors are not shown. For the case of a packed set and any colors, we
have a result only in R2 (∗), in which m is the spread (the diameter divided by the minimum
interpoint distance), which is at least a constant times √

n. For comparison, we state the
known maximum size of the (mono-chromatic) Delaunay mosaic of n points in Rd+s in the
last column on the right [20].

5.2 Chromatic Complexes
The main concepts in this section are the chromatic Delaunay mosaics and Voronoi tessellations,
which generalize the bi-chromatic construction in [94] to more than two colors.

5.2.1 Chromatic Delaunay Mosaics and Chromatic Voronoi
Tessellation

Throughout this section, we let A be n points in Rd, σ = {0, 1, . . . , s} a collection of colors,
χ : A → σ a coloring, and Aj = χ−1(j) the subset of points with color j, for 0 ≤ j ≤ s.
We recall that the standard s-simplex is the convex hull of the s + 1 unit coordinate vectors
in Rs+1. To map this simplex to s dimensions, we identify Rs with the s-plane defined by
x1 + x2 + . . . + xs+1 = 1 in Rs+1 and parametrize it with the inherited s + 1 barycentric
coordinates. A subset of t + 1 ≤ s + 1 unit coordinate vectors defines the standard t-simplex,
which we map to Rt by parametrizing it with the t + 1 barycentric coordinates inherited from
Rt+1. We are ready to construct the chromatic Delaunay mosaic of χ, denoted Del(χ). We
start by writing Rs+d = Rs × Rd, implying the explicit embeddings of Rs and Rd into Rs+d,
and then construct Del(χ) in three steps:

Step 1: let u0, u1, . . . , us be the vertices of the standard s-simplex in Rs;

Step 2: set A′ = A′
0 ⊔ A′

1 ⊔ . . . ⊔ A′
s, in which A′

j = uj + Aj ⊆ uj +Rd, for each 0 ≤ j ≤ s;

Step 3: construct Del(χ) = Del(A′);

see Figure 5.3. As Del(χ) is essentially a standard Delaunay mosaic, the paper can also be
viewed as a study of Delaunay mosaics of point clouds restricted to a specific collection of
affine spaces.
Similarly, we apply the construction to a subset of the colors, τ ⊆ σ, and write Del(χ|τ), in
which χ|τ is our notation for the restriction of χ to χ−1(τ). This mosaic lives in Rt+d, in
which t = 1 + #τ . It is not difficult to see that Del(χ|τ) is a subcomplex of Del(χ). To state
this property formally, we call a cell in Del(χ) τ -colored if the colors of its vertices belong to
τ , and τ -colorful if it is τ -colored and has a vertex of every color in τ . Every cell is τ -colorful
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Figure 5.3: The chromatic Delaunay mosaic of three finite sets in R1 together with the
stratification of space into membranes. The points of each set are placed on a copy of
R1 orthogonal to the 2-plane that carries the standard triangle constructed in Step 1. The
stratification consists of a 1-dimensional membrane geometrically located between the three
lines, and three 2-dimensional membranes, one between any two of the lines.

for the smallest subset, τ ⊆ σ, for which the cell is τ -colored. This implies that we get a
partition of the cells into 2s+1 − 1 classes. Note that the τ -colored cells form a subcomplex of
Del(A), while the τ -colorful cells generally do not.

Lemma 5.2.1 (Sub-chromatic Delaunay Subcomplexes). Let A ⊆ Rd be finite, χ : A → σ a
coloring, and τ ⊆ σ. Then the subcomplex of τ -colored cells in Del(χ) is Del(χ|τ).

Proof. Let H be a hyperplane in Rd+s that passes through all points with color in τ such that
all other points in A′ are contained in an open half-space bounded by H. The cells of Del(χ|τ)
are characterized by the existence of an empty (t + d − 1)-sphere in H that passes through
the vertices of the cell and through no other points with color in τ . Since all points with color
in σ \ τ lie in an open half-space bounded by H, we can extend this (t + d − 1)-sphere to an
empty (d + s − 1)-sphere that passes through the same points. Hence, Del(χ|τ) ⊆ Del(χ),
which implies the claim because Del(χ|τ) exhausts all τ -colored cells in Del(χ).

The chromatic Voronoi tessellation of χ : A → σ is the Voronoi tessellation of A′ ⊆ Rd+s, and
we write Vor(χ) = Vor(A′). There is a bijection between the cells of Vor(χ) and Del(χ),
denoted by mapping ν to ν∗ ∈ Del(χ), such that dim ν + dim ν∗ = d + s and µ is a face
of ν iff ν∗ is a face of µ∗. We call ν τ -colored or τ -colorful if ν∗ is τ -colored or τ -colorful,
respectively. For each τ ⊆ σ, we define the τ -membrane of χ as the union of the interiors
of the τ -colorful cells of Vor(χ), denoted M(τ). Since the interiors of the cells in Vor(χ)
partition Rd+s, and the interior of each cell belongs to exactly one membrane, the membranes
are pairwise disjoint and partition Rd+s; see Figure 5.3.

Lemma 5.2.2 (Stratification into Membranes). Let A ⊆ Rd be finite, σ = {0, 1, . . . , s}, and
χ : A → σ a coloring.
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1. For each non-empty τ ⊆ σ, M(τ) is a manifold homeomorphic to Rs−t+d, with t =
#τ − 1.

2. The collection of M(τ) forms a stratification of Rd+s with strata of dimension d to
d + s, in which the p-stratum is the disjoint union of all M(τ) with #τ = d + s − p + 1.

Proof. We begin with τ = σ. Let w ∈ Rd and consider w + Rs, which is an s-plane parallel
to Rs and therefore orthogonal to Rd. By Pythagoras’ theorem, the squared distance between
points x ∈ w + Rs and y ∈ Rd is ∥x − w∥2 + ∥w − y∥2. Letting a be the point in A closest
to x, this implies that a is the closest point in A to any point in w +Rs. Similarly, if a′

j is the
point in A′

j closest to x, then a′
j is the closest point in A′

j to any point in w + Rs. There
is a unique point z(w) ∈ w + Rs at equal distance to a′

0, a′
1, . . . , a′

s. Hence, z(w) ∈ M(σ)
and it is indeed the only point of w + Rs in M(σ). It follows that M(σ) is the image of
z : Rd → Rd+s defined by mapping w to z(w). Note that z is continuous and its inverse is a
projection, so M(σ) is homeomorphic to Rd. It is the stratum of the lowest dimension, d, in
the claimed stratification.
To describe the remainder of the stratification, let V (σ) be the Voronoi tessellation of
u0, u1, . . . , us in Rs. Since the uj are the vertices of the standard s-simplex, this tessellation
consists of a vertex at 0 ∈ Rs, s + 1 half-lines emanating from 0,

(︂
s+1

2

)︂
2-dimensional wedges

connecting the half-lines in pairs, etc. Returning to w + Rs, we observe that it slices the
stratification of Rd+s in a translate of this s-dimensional Voronoi tessellation, z(w) + V (σ).
Varying w over all points of Rd, we get the claimed stratification of Rd+s.

How does Del(χ) relate to Del(A)? In the relatively straightforward simplicial case, Del(χ)
contains a subcomplex whose projection to Rd is Del(A); see Figure 5.4. In the general and
therefore not necessarily simplicial case, we can for example have a convex quadrangle in
Del(A) that is the projection of a tetrahedron in Del(χ). We formulate the relationship that
allows for this and similar cases in terms of the nerves of Vor(A) and Vor(χ), which are
possibly high-dimensional abstract simplicial complexes.

Figure 5.4: Left: the Delaunay mosaic of a bi-colored set in the plane, Del(A). Middle: the
chromatic Delaunay mosaic, Del(χ), with colorful triangles left unfilled for clarity. Right: the
subcomplex of Del(χ) that is isomorphic to Del(A).

Lemma 5.2.3 (Projection to Delaunay Mosaic). Let A ⊆ Rd be finite, σ = {0, 1, . . . , s}, and
χ : A → σ a coloring. Then the nerve of the (d + s)-cells of Vor(χ) in Rd+s has a subcomplex
that projects to the nerve of the d-cells of Vor(A) in Rd.

Proof. Recall that k + 1 points in A are the vertices of a cell in Del(A) iff there is an empty
(d − 1)-sphere, S, that passes through these k + 1 points and through no other points of A.
The nerve of the corresponding k + 1 Voronoi d-cells is a k-simplex.
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Following the construction of the chromatic Delaunay mosaic, we copy S to uj + S for each
j ∈ σ. Let S ′ be the (d + s − 1)-sphere in Rd+s whose intersection with uj + Rd is uj + S,
for every j ∈ σ. It should be clear that S ′ exists: its center projected to Rs is the barycenter
of the standard s-simplex and projected to Rd is the center of S. By construction, S ′ is
empty and passes through the points uj + a with a ∈ S and χ(a) = j, and through no other
points of A′. The nerve of the corresponding (d + s)-cells in Vor(χ) is again isomorphic to
a k-simplex, and its projection to Rd is the k-simplex isomorphic to the nerve of the k + 1
Voronoi d-cells we started with. The claim follows.

5.2.2 Overlay of Mono-chromatic Voronoi Tessellations
Related to the strata are the overlays of tessellations. Given A ⊆ Rd, σ = {0, 1, . . . , s},
and χ : A → {0, 1, . . . , s}, the overlay of the s + 1 mono-chromatic Voronoi tessellations,
denoted Vor(Aj | j ∈ σ), is the decomposition of Rd obtained by drawing the Voronoi cells of
dimension at most d−1 on top of each other; see Figure 5.5. More formally, each d-dimensional
cell in the overlay is the common intersection of s + 1 d-cells, one in each Vor(Aj) for j ∈ σ,
and the overlay consists of these d-dimensional cells and their faces. Even if the points in A
are in general position, the overlay is not necessarily a simple decomposition of Rd.

Figure 5.5: The overlay of a blue and a orange Voronoi tessellation in the plane. In the generic
case, each of its vertices is either a vertex of a mono-chromatic tessellation, which has degree
3, or the crossing of two edges, which has degree 4.

Lemma 5.2.4 (Membranes and Overlays). Let A ⊆ Rd be finite, χ : A → {0, 1, . . . , s} a
coloring, and Aj = χ−1(j) for 0 ≤ j ≤ s. For each τ ⊆ σ, Vor(Aj | j ∈ τ) is the projection
of the τ -membrane, M(τ), to Rd.

Proof. We begin with τ = σ. By Lemma 5.2.2, M(σ) is a manifold of dimension d, and
in the proof of this lemma we learn that the orthogonal projection, π : M(σ) → Rd, is a
homeomorphism. Indeed, π−1 is the restriction of z : Rd → Rd+s defined there. Since M(σ)
is decomposed into cells of Vor(χ), z is piecewise linear, so it suffices to prove that the linear
pieces are the images of the cells in Vor(Aj | j ∈ σ).
Let νj be a d-cell of Vor(Aj) and write aj ∈ Aj for the point that generates νj , for 0 ≤ j ≤ s.
Assume that ν = ν0 ∩ ν1 ∩ . . . ∩ νs has non-empty interior, so it is a d-cell of the overlay.
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Correspondingly, the image of every point x ∈ ν, z(x) = π−1(x), is equidistant from the
points uj + aj, for 0 ≤ j ≤ s. It follows that the image of ν is a subset of a linear piece in
M(σ). For every neighboring d-cell of ν in the overlay, we change one of the aj, so their
images belong to different linear pieces of M(σ). This implies that the image of ν is a linear
piece of M(σ), as required.

To generalize, let τ ⊆ σ and use the above argument to conclude that Vor(Aj | j ∈ τ)
is the projection of the τ -membrane to Rd. Recall that Vor(χ|τ) decomposes Rt+d, and
by Lemma 5.2.1, the extrusion of the τ -membrane in Vor(χ|τ) along the remaining s − t
coordinate directions in Rd+s contains the τ -membrane in Vor(χ). Moreover, the projections
of the two τ -membranes—one in Vor(χ|τ) and the other in Vor(χ)—to Rd are identical,
which implies the claim.

5.2.3 Chromatic Alpha Complexes
A direct analogy of the characterization of the Delaunay complex with empty spheres is the
characterization of the chromatic Delaunay complex with what we call empty stacks. A σ-stack
in Rd is a collection of s + 1 concentric (d − 1)-spheres, one for each color in σ; see Figure 5.6.
We drop σ from the notation if it is clear from the context. The radius of the stack is the
maximum radius of its spheres, and its center is the common center of the spheres. We label
the spheres Sj , j ∈ σ, and say the stack is empty if Sj is empty of points in Aj = χ−1(j), for
each j ∈ σ. We say the stack passes through ν ⊆ A if Sj passes through all the points of
ν ∩ Aj, for each color j ∈ σ.

Lemma 5.2.5. Let χ : A → σ be a chromatic point set in Rd, write Aj = χ−1(j), and let
ν ⊆ A be a collection of points. Then ν ∈ Del(χ) iff there exists an empty stack of spheres
that passes through ν.

Proof. Let νj = ν ∩Aj be the j-colored points in ν, for each j ∈ σ. The existence of an empty
sphere, Sj , with center x that passes through νj is equivalent to x being in the intersection of
the corresponding Voronoi domains: x ∈ ⋂︁

a∈νj
dom(a, Aj). Therefore, there exists an empty

stack passing through ν centered at x iff x ∈ ⋂︁
a∈νj

dom(a, Aj) for each j ∈ σ. This is the
defining property of ν being in Del(χ), namely that ⋂︁

a∈ν dom(a, Aχ(a)) is non-empty.

Like in the mono-chromatic setting, we define chromatic alpha complexes as sublevel sets of
the radius function defined on the chromatic Delaunay complex. We recall that the radius of
a stack is the radius of its largest sphere.

Definition 5.2.1. Let χ : A → σ be a chromatic point set, and Rad : Del(χ) → R the radius
function defined by mapping ν ∈ Del(χ) to the radius of the smallest empty stack that passes
through ν. The chromatic alpha complex of χ with radius r ∈ R is Alf r(χ) = Rad−1[0, r].

Using the empty spheres and the empty stacks characterizations (Lemma 5.2.5), we can see
a clear relation between alpha complexes and chromatic alpha complexes. If there exists an
empty (d − 1)-sphere, S, of radius r passing through ν ⊆ A, then there also exists an empty
stack of radius r passing through ν. Indeed, we can take Sj = S for each j ∈ σ. Similarly, an
empty sphere, S, that passes through points ν ⊆ Aj of the same color is itself an empty stack
when we set Si to be a sphere with zero radius for i ̸= j. However, the same simplex can
have a different radius in Del(A) and in Del(χ): the smallest empty sphere can have strictly
larger radius than the smallest empty stack passing through the same points; see Figure 5.7.
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Figure 5.6: Two empty stacks in R2 that pass through one blue point, two green points,
and one orange point forming a simplex ν ∈ Del(χ). (In fact, the stack on the right passes
through two orange points, so it also passes through the one orange point that lies on the left
orange circle.) The set of centers of all empty stacks that pass through these four points is
the intersection of three Voronoi cells: a blue 2-cell, a green 1-cell, and an orange 2-cell. The
right panel shows the smallest empty stack in this collection: its center lies on the boundary
of the intersection of Voronoi cells, which is the reason why one of its circles passes through
an extra point.

Figure 5.7: An obtuse triangle with two blue points and an orange point at the obtuse angle.
On the left: the smallest empty sphere that passes through the three points. It has strictly
larger radius than the smallest empty stack that passes through the three points, which is
shown on the right. Therefore, the triangle belongs to both, the Delaunay complex and the
chromatic Delaunay complex, but it has a different value in the two radius functions.

An important reason why the alpha complex is useful in the mono-chromatic setting is its
correspondence to the union of balls growing from the input points. From the topological
point of view, studying the growing union of balls is equivalent to studying the growing alpha
complex. In the following, we draw an analogous connection for chromatic alpha complexes.
One important distinction is that there is more structure to be preserved in the chromatic
setting: not only the topological spaces themselves, but also how they are related to each
other. For example, for a bi-chromatic point set as in Figure 5.8, we study the inclusion of the
union of the blue disks into the union of all disks. We prove that we can equivalently study
the inclusions of the blue alpha complex into the chromatic alpha complex.
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Figure 5.8: On the left: a chromatic set together with Voronoi tessellations of the blue and
orange points overlaid, and one chromatic Voronoi ball highlighted. On the right: the union
of blue disks and the union of orange disks; we study, e.g., the inclusion of the blue area into
the union of all the disks.

For a point a ∈ A in a chromatic set χ : A → σ, we define its (chromatic) Voronoi ball of
radius r as the intersection of the ball of radius r with the Voronoi domain within its color
class:

B′
r(a, χ) = B′

r(a, Aχ(a)) = Br(a) ∩ dom(a, Aχ(a)). (5.1)

Let ν ⊆ A be a set of points. Like in the proof of Lemma 5.2.5, we observe that x is the
center of an empty stack of radius r passing through ν iff x is contained in the intersection
of the Voronoi balls of radius r centered at the points in ν; that is: x ∈ ⋂︁

a∈ν B′
r(a, χ). This

implies that Alf r(χ) is isomorphic to the nerve of all Voronoi balls B′
r(a, χ), a ∈ A. Since

the union of the Voronoi balls is the same as the union of the balls, the Nerve Theorem yields
the following:

Lemma 5.2.6. Alf r(χ) ≃ Alf r(A), and both are homotopy equivalent to the union of balls,⋃︁
a∈A Br(a).

We are currently studying the structural properties of the radius function Rad : Del(χ) → R
as well as algorithms for its efficient computation. A second version of our paper [25] will
contain these results, which informally spoil here. Under a suitable notion of general position,
the chromatic radius function is generalized discrete Morse, extending the result of Bauer and
Edelsbrunner in the monochromatic case 2.2.1.

5.3 Combinatorial Bounds
In this section, we are interested in the size of the chromatic Delaunay mosaic or, equivalently, of
the overlays between the mono-chromatic Voronoi tessellations. We study extremal questions,
in which we maximize over the point sets and their colorings, but we also consider random
colorings. Refer to Table 5.1 for a summary of our results. We start by explaining how we get
the bound in row 1, column 1.

We aim to give a bound on the size of any Del(χ). Consider first the case in which there are
equally many colors and dimensions: d = s + 1. For the lower bound, we assign each color to
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about n/d points, and we place the points with color j in sequence on the j-th coordinate axis.
This gives a constant times nd colorful crossings. For the upper bound, we use the general
bound on the number of simplices in a Delaunay mosaic of n (uncolored) points in Rd+s given
in [20], which for d + s = 2d − 1 gives O(nd).
We get nd as an upper bound also for the case in which there are more colors than dimensions:
d < s + 1. To see this, note that any crossing involves at most d colors, so multiplying the
bound for d = s + 1 with

(︂
s+1

d

)︂
, which is a constant, suffices.

This leaves the case d > s + 1. Here we use the moment curve, which in Rd is the set of
points (t, t2, . . . , td), t ∈ R. The upper bound is constant times n⌈(d + s)/2⌉ again from the
general case of n points in Rd+s. For the lower bound, we assign each color to about n/s + 1

points, place the points of the first color on the moment curve in Rd−s (which we assume is
spanned by the first d − s coordinate axes of Rd), and the points of each other color on one
of the s remaining coordinate axes. We get a constant times n⌈(d − s)/2⌉ vertices in the Voronoi
tessellation of the first color within Rd−s. Each such vertex expands to the orthogonal s-plane
in the Voronoi tessellation of the first color within Rd, and this s-plane intersects the grid
formed by the other s colors in a constant times ns crossings. The total number of crossings
is therefore a constant times n⌈(d − s)/2⌉ · ns = n⌈(d + s)/2⌉, as required.

5.3.1 Few Spherical k-sets Imply Small Expected Overlays
Let A be a set of n points in Rd. We call a subset of k ≤ n points a spherical k-set of A
if there is a sphere that separates the k from the remaining n − k points. Note that this
differs from the classic notion of a k-set, for which there is a hyperplane that separates the k
points of the k-set from the remaining n − k points. In this section, we relate the number of
spherical k-sets with the expected size of the overlay of mono-chromatic Voronoi tessellations
for random colorings of A. Specifically, we prove the following lemma.

Lemma 5.3.1 (Spherical k-sets and Overlay). Let c, d, e be positive constants, and A a set
of n points in Rd such that for every 1 ≤ k ≤ n, the number of spherical k-sets is O(kcne).
Let furthermore s ≥ 0 be a constant, let σ = {0, 1, . . . , s}, and write Aj = χ−1(j), in which
χ : A → σ is a random coloring. Then the expected size of Vor(Aj | j ∈ σ) is O(ne).

Proof. We assume that the points in A are in general position and write Aj = χ−1(j). Suppose
we pick s + 1 cells, one from each Vor(Aj), and write ij − 1 for their co-dimensions. The
common intersection of the s + 1 cells is either empty or a cell of co-dimension ∑︁s

j=0(ij − 1).
This is a vertex only if ∑︁s

j=0(ij − 1) = d or, equivalently, ∑︁s
j=0 ij = d + s + 1. To bound the

expected size of the overlay, we bound the expected number of such vertices in the overlay,
which is the sum of their probabilities to belong to the overlay. Below we argue that each
spherical k-set can give rise to only a limited number of vertices, and we give a bound on the
probability of any of them to appear in a random coloring.

Fix any d + s + 1 points from A and a coloring χ : A → {0, 1, . . . , s} such that every color is
assigned to at least one of these d + s + 1 points. Writing ij for the number of points with
color j, we have ∑︁s

j=0 ij = d + s + 1 and 1 ≤ ij ≤ d + 1 for each j. Let Ej be the set of
points y ∈ Rd at equal distance to the ij points with color j; it is a plane of co-dimension
ij − 1. Since ∑︁s

j=0(ij − 1) = d and the d + s + 1 points are in general position, the common
intersection of the Ej is a point x ∈ Rd. This point is a vertex of the overlay iff there is a
stack of spheres, S0, S1, . . . , Ss, with common center, x, such that Sj passes through the ij
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points with color j, and all other points in Aj = χ−1(j) lie outside Sj . Suppose that S0 is the
largest of the s + 1 spheres. Let k be the number of points on or inside S0, note that this is a
spherical k-set, and recall that there are at most O(kcne) such sets by assumption. Other
than the i0 ≤ d + 1 points on S0, all points in the spherical k-set must have color different
from 0. The probability of this is s/(s + 1) to the power k − i0 ≥ k − d − 1. The number of
possible overlay vertices whose largest sphere of the corresponding stack of spheres separates
the same spherical k-set is at most

(︂
k

d+s+1

)︂
(s + 1)d+s+1. This is the product of the number

of subsets of size d + s + 1 and the number of different colorings of such a set. Writing X for
the number of vertices in the overlay, we thus get

E[X] <
∑︂n

k=d+s+1 O(kcne) ·
(︂

k
d+s+1

)︂
(s + 1)d+s+1 ·

(︃
s

s + 1

)︃k−d−1
(5.2)

< O(ne) ·
∑︂∞

k=0
(s + 1)2d+s+2

sd+1 · kc+d+s+1 ·
(︃

s

s + 1

)︃k

. (5.3)

The first factor within the latter sum is constant, the second is a constant degree polynomial,
and the last factor is an exponential that vanishes as k goes to infinity. Because of the
exponential decay, the sum converges to a constant that depends on c, d, and s but not on n.
It follows that the number of vertices in the overlay is O(ne).

Observe that every vertex of the overlay belongs to only a constant number of cells of
dimension 1 to d. Every such cell has at least one vertex, which implies that the number of
cells of any dimension in the overlay is O(ne).

As originally proved by Lee [73], the number of spherical k-sets of n points in R2 is less than
2kn. The expected size of the overlay of the mono-chromatic Voronoi tessellations for a
random coloring in R2 is therefore O(n). To get a result for general dimensions, we note that
the spherical k-sets in Rd correspond to (linear) k-sets in Rd+1 via lifting to a paraboloid. For
the latter, Clarkson and Shor [20] proved that the number of ℓ-sets, for ℓ = 1, 2, . . . , k, is
O(k⌈(d+1)/2⌉n⌊(d+1)/2⌋). Lemma 5.3.1 thus implies the following theorem.

Theorem 5.3.1 (Overlay Size for Random Coloring). Let d and s be constants, let A be a
set of n points in Rd, let σ = {0, 1, . . . , s}, and write Aj = χ−1(j), in which χ : A → σ is a
random coloring. Then the expected number of cells in Vor(Aj | j ∈ σ) is O(n⌈d/2⌉).

This bound is asymptotically tight since even a single Voronoi tessellation of n points in Rd

can have Ω(n⌈d/2⌉) vertices, for example if the points are chosen on the moment curve in Rd.

5.3.2 Delone Sets Have Small Expected Overlays
We start by showing that packed sets without big holes have few spherical k-sets. To formalize
this claim, we recall that A ⊆ Rd is a Delone set if there are constants 0 < r < R < ∞ such
that every open ball of radius r contains at most one point of A, and every closed ball of
radius R contains at least one point of A. The proof of the claim makes use of an extension
of Voronoi tessellations to higher order. To define it, let B ⊆ A and write dom(B, A) for
the points x ∈ Rd that satisfy ∥x − b∥ ≤ ∥x − a∥ for all b ∈ B and all a ∈ A \ B. Now fix
an integer k ≥ 1 and note that the cells dom(B, A) with #B = k cover the entire Rd. The
collection of the dom(B, A) with #B = k is referred to as the order-k Voronoi tessellation of
A, denoted Vork(A). Note that Vor1(A) = Vor(A). Note also that there is a non-empty cell,
dom(B, A), in Vork(A) iff B is a spherical k-set. For counting purposes, we say a spherical
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k-set, B ⊆ A, corresponds to a point, b ∈ A, if there is a sphere that separates B from A \ B
and b is the point in A closest to the center of this sphere. Since the separating sphere is
generally not unique, B may correspond to more than one point in A.

Lemma 5.3.2 (Bounded Correspondence). Let A ⊆ Rd be a Delone set. Then every point in
A corresponds to at most O(kd+1) spherical k-sets of A.

Proof. Let x be a point in Rd and suppose that it lies in the interior of a d-cell of the order-k
Voronoi tessellation of A. Assuming this cell is dom(B, A), then B is the unique spherical
k-set that is separated from A \ B by a sphere with center x. Letting t be the radius of one
such sphere, we have krd ≤ (t+ r)d because the sphere with center x and radius t+ r encloses
k disjoint open balls of radius r. Furthermore, (t − R)d ≤ kRd because the closed balls of
radius R centered at the points of B cover the ball with center x and radius t − R. Hence

( d
√

k − 1)r ≤ t ≤ ( d
√

k + 1)R. (5.4)

Let b ∈ A be a point with x ∈ dom(b, A). Since A is Delone, dom(b, A) is covered by the
ball with center b and radius R. It follows that the sphere with center b and radius ( d

√
k + 2)R

encloses all spherical k-sets that correspond to b. The number of points in A enclosed by this
sphere satisfies

ℓ ≤
[︂(︂

d
√

k + 2
)︂

R + r
]︂d

/rd, (5.5)

which is O(k) because r and R and therefore R/r are positive constants. For a finite set in
Rd, the number of ways it can be split into two by a sphere is less than the (d + 1)-st power
of its cardinality. Hence, there are at most O(kd+1) spherical k-sets that correspond to b.

Delone sets are necessarily infinite, so we let Ω be the closed ball with radius ω centered at
the origin, and count a spherical k-set, B ⊆ A, only if there is a sphere that separates B from
A \ B whose center is in Ω.

Theorem 5.3.2 (Overlay Size for Delone Set). Let d and s be constants, let A ⊆ Rd be a
Delone set, let σ = {0, 1, . . . , s}, let χ : A → σ be a random coloring, and let Ω be the ball of
points at distance at most ω > R from the origin. Writing n = #(A ∩ Ω) and Aj = χ−1(j),
the expected number of cells in Vor(Aj | j ∈ σ) that have at least one vertex in Ω is O(n).

Proof. Let 0 < r < R < ∞ be constants for which A is Delone, and note that the number
of points of A at distance at most ω + R from the origin is O(n). Any spherical k-set that
has a separating sphere with center in Ω corresponds to a point in this slightly larger ball, so
Lemma 5.3.2 implies that the number of such spherical k-sets is O(kd+1n).

We count the vertices of the overlay using Lemma 5.3.1 but restricted to crossings inside Ω.
We have c = d + 1 and e = 1, so we get an expected number of O(n) vertices in Ω. Assuming
general position, every vertex belongs to only a constant number of cells, which implies the
claimed bound on the number of cells with at least one vertex in Ω.

A vertex of the overlay corresponds to an (d + s)-cell in the chromatic Delaunay mosaic whose
circumcenter project to the vertex. Theorem 5.3.2 thus counts the cells in the chromatic
Delaunay mosaic that are faces of (d + s)-cells whose circumcenters project into Ω.

73



5. Chromatic Point Sets

5.4 Persistent Homology of Chromatic Alpha Complexes
In this section, we review the background needed to turn the chromatic alpha complexes into
persistence diagrams, and we advocate the use of six such diagrams, which we refer to as a
6-pack. In addition, we discuss the relations between the diagrams in a 6-pack, and how to go
beyond a 6-pack if the interest in in more than mutual interactions.

5.4.1 Kernel, Image, Cokernel Persistence
The goal of this subsection is to introduce the framework of persistent homology [43], together
with its kernel, image, and cokernel generalizations [23]. We keep the formalism to a minimum
by limiting ourselves to simplicial complexes and Z/2Z coefficients.

Homology with Z/2Z Coefficients

Loosely speaking, homology is an algebraic framework that defines and counts holes in a shape.
Given a simplicial complex, K, a p-chain is a subset of p-simplices. The sum of two p-chains
is the symmetric difference of the two sets: if a p-simplex belongs to both chains, the two
copies erase each other, as 1 + 1 = 0 in modulo-2 arithmetic. The boundary of a p-simplex is
the set of (p − 1)-dimensional faces, which is a (p − 1)-chain. The p-chains with the sum
operation form a group, Cp(K), and the boundary operator, ∂p : Cp(K) → Cp−1(K), maps a
p-chain to the sum of its simplices’ boundaries. A p-cycle is a p-chain with empty boundary, a
filling of this p-cycle is a (p + 1)-chain whose boundary is the p-cycle, and a p-boundary is
a p-cycle for which there exits a filling. The p-boundaries and the p-cycles form groups by
themselves, and since every p-boundary is a p-cycle, and every p-cycle is a p-chain, we get
three nested groups: Bp(K) ⊆ Zp(K) ⊆ Cp(K). Two p-cycles are homologous if their sum
has a filling or, equivalently, adding a p-boundary to one p-cycle gives the other p-cycle. Being
homologous is an equivalence relation, whose equivalence classes are the elements of the p-th
homology group: Hp(K) = Zp(K)/Bp(K). All mentioned groups are vector spaces, so the
ranks are their dimensions. Of particular importance is the p-th Betti number of K, which is
the rank of the p-th homology group: rank Hp(K) = rank Zp(K) − rank Bp(K).

Let L be a subcomplex of K. Relative homology describes the connectivity of the topological
pair (K, L), which geometrically represents K with the subspace L identified as a single
point. The chain groups are the quotients Cp(K, L) = Cp(K)

/︂
Cp(L). Cycle and boundary

subgroups are defined as before, and their quotients are the relative homology groups of the
pair, denoted Hp(K, L). The homology groups and their relative cousins are related by the
following long exact sequence:

. . . → Hp(L) → Hp(K) → Hp(K, L) → Hp−1(L) → . . . (5.6)
A well known basic property of long exact sequences is that the alternating sum of dimensions
of the vector spaces vanishes.
Lemma 5.4.1. Let Li ⊆ Ki be simplicial complexes. Then∑︂

p∈Z
(−1)p[rank Hp(Li) − rank Hp(Ki) + rank Hp(Ki, Li)] = 0. (5.7)

Proof. By definition of exactness, the rank of each homology group in (5.6) can be written as
the sum of two non-negative integers such that it shares one with the preceding group and
the other with the succeeding group along the sequence. Since only finitely many groups have
non-zero ranks, this implies that the alternating sum of ranks vanishes.
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Persistent Homology

In the following, let f : K → R be monotonic, with values r1 < r2 < . . . < rn, and
let Ki = f−1(−∞, ri] be its i-th sublevel set. Applying the p-th homology functor to
∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn, we get a sequence of vector spaces:

Hp(K0) → . . . → Hp(Ki−1) → Hp(Ki) → . . . → Hp(Kj−1) → Hp(Kj) → . . . → Hp(Kn).
(5.8)

There is one such sequence for each dimension, p. The inclusions Ki ⊆ Kj induce maps
fji : Hp(Ki) → Hp(Kj) for all 0 ≤ i ≤ j ≤ n. This sequence is called a persistence module.
It can be written as a direct sum of indecomposable modules of the form . . . → 0 → k →
. . . → k → 0 → . . ., where k = Z/2Z, all maps between these 1-dimensional vector spaces
are identities, and all others are zero maps. Each indecomposable module has a concrete
interpretation, namely a birth followed by a death of a homology class. Specifically, we have
such an indecomposable module from position i to position j − 1 if

• there is a class, γ ∈ Hp(Ki) that does not belong to the image of fii−1, and

• fj−1
i (γ) does not belong to the image of fj−1

i−1 , but fji (γ) belongs to the image of fji−1.

We say γ is born at Ki and dies entering Kj. We record this information with the point
(f(ri), f(rj)), noting that the second coordinate is ∞ if the class is born but never dies.
The resulting multi-set of points in the extended plane is the p-th persistence diagram of f ,
denoted Dgmp(f). Sometimes, we drop the index and write Dgm(f) for the disjoint union of
the Dgmp(f) over all dimensions, p.

If L is a subcomplex of K, we get a filtration, Li, by restricting f to L. The inclusions of
the pairs (K0, L0) ⊆ (K1, L1) ⊆ . . . ⊆ (Kn, Ln) give rise to a sequence of relative homology
groups,

Hp(K0, L0) → . . . → Hp(Ki−1, Li−1) → Hp(Ki, Li) → . . .→ Hp(Kn, Ln). (5.9)

Applying the above definitions to this sequence yields the p-th relative persistent diagram.

An important property of the persistence diagram is its stability. Specifically, the bottleneck
distance between the diagrams of f, g : K → R is bounded from above by the L∞-distance
between the two maps:

W∞(Dgmp(f), Dgmp(g)) ≤ ∥f − g∥∞; (5.10)

see [21]. The persistence of a point in the persistence diagram is the vertical distance to
the diagonal, |f(rj) − f(ri)|, and the 1-norm is the sum of persistences of the points in the
diagram, denoted ∥Dgm(f)∥1. To cope with points at infinity, we use a cut-off, C, which we
effectively substitute for ∞. This gives finite 1-norms and preserves relationships implied by
exact sequences, as expressed in Theorem 5.4.1.
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Kernels, Images, and Cokernels

Let L ⊆ K be simplicial complexes, fK : K → R monotonic, and fL : L → R the restriction
of fK to L. Taking sublevel sets, we get two parallel persistence modules and maps from one
module to the other:

Hp(K0) → . . . → Hp(Ki) → Hp(Ki+1) → . . . → Hp(Kn)
↑ . . . ↑ ↑ . . . ↑

Hp(L0) → . . . → Hp(Li) → Hp(Li+1) → . . . → Hp(Ln).
(5.11)

Write κi : Hp(Li) → Hp(Ki) for the vertical maps, which are induced by the inclusions Li ⊆ Ki,
for 0 ≤ i ≤ n. These maps have kernels, images, and cokernels, which form persistence
modules of their own:

kerp κ0 → . . . → kerp κi → kerp κi+1 → . . . → kerp κn,
imp κ0 → . . . → imp κi → imp κi+1 → . . . → imp κn,
cokp κ0 → . . . → cokp κi → cokp κi+1 → . . . → cokp κn.

(5.12)

These persistence modules were introduced and studied in [23]. Following the notation in
that paper, we write Dgm(ker fL → fK), Dgm(im fL → fK), and Dgm(cok fL → fK) for
the corresponding persistence diagrams. These diagrams are also stable under perturbations
of the monotonic function, and they can be computed efficiently. We omit details and refer to
[23], in particular for the matrix reduction algorithms, which we have implemented [39] to
study the meaning of these derived persistence diagrams for chromatic point sets.

5.4.2 6-pack of Persistent Diagrams
The main new concept in this section is a collection of six related persistence diagrams, which
we use to quantify the way different point sets mingle. We call this collection a 6-pack. A
6-pack can be defined for any pair of topological spaces L ⊆ K with a filtration on K. We
explain the construction on a concrete example: the blue circle on an orange background in
Figure 5.9. Let K = Del(χ) be the chromatic Delaunay complex of the portrayed chromatic
set, and let L ⊆ K be the blue subcomplex, consisting of those simplices in K that only have
blue vertices. Let fK : K → R be the chromatic radius function, and write fL and fK,L for
the restrictions of fK to L and K \ L. The radius function and its restrictions give rise to
three persistence modules, and we get three additional persistence modules for the kernel,
the image, and the cokernel of the map on homology induced by the inclusion L ⊆ K. The
persistence diagrams in the 6-pack are arranged as in Table 5.2, in a manner that lends itself
to comparing the information between them.

kernel: Dgm(ker fL → fK) relative: Dgm(fK,L) cokernel: Dgm(cok fL → fK)
domain: Dgm(fL) image: Dgm(im fL → fK) codomain: Dgm(fK)

Table 5.2: The arrangement of the persistence diagrams in the 6-pack for the pair L ⊆ K
in two rows and three columns. Read the six positions in a circle so that the diagram of the
domain lies between those of the kernel and the image, the diagram of the image lies between
those of the domain and the codomain, etc.

Figure 5.10 displays the 6-pack for the pair L ⊆ K in the left panel of Figure 5.9. Not
surprisingly, the circle of blue points gives rise to a persistent 1-cycle in L captured in the
diagram of the domain. At the time of its birth, this 1-cycle includes into a non-trivial 1-cycle
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Figure 5.9: A bi-chromatic point set on the left, and a tri-chromatic point set on the right.
The dotted line indicates the separation of green from orange points that form the background
for the blue circle.

in K, so we get a point with the same birth-coordinate in the diagram of the image. When
the circle is filled by orange disks, it becomes a trivial 1-cycle in K, which is marked by its
death in the image and the simultaneous birth in the kernel. Eventually, the blue circle is
filled by blue disks, so it dies in the domain and simultaneously in the kernel. To summarize,
the point (a, c) in the diagram of the domain splits into two points, (a, b) in the diagram
of the image, and (b, c) in the diagram of the kernel. While the split into two like this is a
common phenomenon, not all points split in this manner; see the relations in the subsequence
subsection. The point (b, c) can also be seen one dimension higher in the relative persisence
diagram of the pair. Indeed, there is a non-bounding 2-cycle in the quotient space once the
blue circle is filled by orange disks. Similarly, the point (a, b) can also be found in the diagram
of the codomain. Both occurrences of (a, b) correspond to the 1-cycle representing the blue
circle in homology, which explains why the point is missing in the diagram of the cokernel.

Note that other natural choices of L are the orange subcomplex or the union of the blue and
orange subcomplexes, which is a choice that is symmetric with respect to the colors. We now
revisit some of these observations in a more general setting, where the pair of topological
spaces, L ⊆ K, is not necessarily formed by chromatic complexes.

5.4.3 Relations between Diagrams in a 6-pack
The inclusion of sublevel sets Li ⊆ Ki induces a map on homology κi : H(Li) → H(Ki). This
map has a component in each dimension, p, and we write kerp κi, imp κi, cokp κi for the
kernel, image, cokernel of κi in dimension p.

Lemma 5.4.2. Let Li ⊆ Ki be simplicial complexes and κi : H(Li) → H(Ki) the induced
map on homology. For each dimension, p, there are short exact sequences

0 → kerp κi → Hp(Li) → imp κi → 0, (5.13)
0 → imp κi → Hp(Ki) → cokp κi → 0, (5.14)
0 → cokp κi → Hp(Ki, Li) → kerp−1 κi → 0. (5.15)

Proof. The first two exact sequences are obvious from the definitions and the isomorphism
theorem. To see the third exact sequence, we recall the long exact sequence of the pair, see
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#pts 1-norm, C=1
dim 0 13 0.1874
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Figure 5.10: The 6-pack for the bi-chromatic point set in the left panel of Figure 5.9. The
domain, L, is the blue subcomplex of the codomain, K, which is the 3-dimensional chromatic
Delaunay mosaic of the blue and orange points.

Equation (5.6). Working with field coefficients, all homology groups are vector spaces and thus
split. In particular, Hp(Li) ≃ kerp κi ⊕ imp κi, in which kerp κi and imp κi are the images
of the incoming and outgoing maps. We can therefore substitute kerp κi → 0 → imp κi for
Hp(Li). By the same token, we substitute imp κi → 0 → cokp κi for Hp(Ki), and we remove
0 → imp κi → imp κi to get

. . . → kerp κi → 0 → cokp κi → Hp(Ki, Li) → kerp−1 κi → 0 → cokp−1 κi → . . . , (5.16)

which contains the required third short exact sequence.

It follows that the ranks of kerp κi and imp κi add up to the rank of Hp(Li), etc. This implies
relations between the 1-norms of corresponding persistence diagrams.

Theorem 5.4.1. Let L ⊆ K be simplicial complexes, fK : K → R monotonic, and fL, fK,L

the restrictions of fK to L and K \ L. For each dimension, p, and any fixed cut-off for the
1-norms, C > 0,

∥Dgmp(fL)∥1 = ∥Dgmp(ker fL → fK)∥1 + ∥Dgmp(im fL → fK)∥1, (5.17)
∥Dgmp(fK)∥1 = ∥Dgmp(im fL → fK)∥1 + ∥Dgmp(cok fL → fK)∥1, (5.18)

∥Dgmp(fK,L)∥1 = ∥Dgmp(cok fL → fK)∥1 + ∥Dgmp−1(ker fL → fK)∥1. (5.19)
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Proof. We prove (5.17). We write 0 ≤ r1, r2, . . . , rn for the values of fK smaller than C. In
addition, set r0 = −∞ and use the cut-off rn+1 = C for the 1-norms. Letting Li = fL

−1[0, ri],
note that Li = fL

−1[0, r] for all ri ≤ r < ri+1, and hence the ranks of the various groups are
constant between two contiguous values. We can therefore write the 1-norm of Dgmp(fL) as
a sum of n contributions, and similar for the 1-norms of the kernel and image diagrams:

∥Dgmp(fL)∥1 =
∑︂n

i=0(ri+1 − ri) rank Hp(Li), (5.20)
∥Dgmp(ker fL → fK)∥1 =

∑︂n

i=0(ri+1 − ri) rank kerp κi, (5.21)
∥Dgmp(im fL → fK)∥1 =

∑︂n

i=0(ri+1 − ri) rank imp κi. (5.22)

We thus get (5.17) from (5.13). With the same argument applied to Ki, image, and cokernel,
we get (5.18) from (5.14), and applied to (Ki, Li), cokernel, and kernel, we get (5.19) from
(5.15).

We note that similar equations do not hold for the 0-norm, which counts the points in the
diagrams. Putting the equations in Theorem 5.4.1 together yields a vanishing alternating sum:∑︂

p∈Z
(−1)p

[︂
∥Dgmp(fL)∥1 − ∥Dgmp(fK)∥1 + ∥Dgmp(fK,L)∥1

]︂
= 0. (5.23)

While there are relations between the diagrams in a 6-pack, no single diagram is necessarily
determined by the others. Figure 5.11 shows one such example.

Figure 5.11: Example showing that five diagrams do not imply the sixth. The two filtrations
differ by a single 2-dimensional cell added in the respective fourth steps of the filtrations.
Correspondingly, five of the 1-dimensional persistence diagrams (shown as barcodes) are the
same, while the highlighted diagrams of the codomain differ on the two sides.

Further relations among the diagrams in a 6-pack are suggested by the case-by-case analysis
for simultaneous occurrence of births and deaths in various groups provided in [23]. For
example, consider the triple ker κi, H(Li), im κi. At a given radius, the rank of each group
can change by at most one. The short exact sequence (5.13) reduces the twenty-six non-trivial
combinations of changes down to only six. Out of those, [23] gives examples for five of them
and shows that the sixth, death-nothing-birth, cannot occur because a death in ker κi always
implies a death in H(Li). This is an additional relation, which is not implied directly by (5.13).
The same case is excluded for the triple in (5.14). Analogously, one can show that the case
death-nothing-birth is excluded for the triple cokp κi, Hp(Ki, Li), kerp−1 κi.
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5.4.4 Relations between 6-packs of a Triplet
The framework described so far is amenable to a pair of complexes L ⊆ K, filtered by a
monotonic function. This section addresses the next simplest case: when we have a sequence
of three nested complexes, M ⊆ L ⊆ K, which gives rise to four long exact sequences:

. . . → Hp(L) → Hp(K) → Hp(K, L) → Hp−1(L) → . . . , (5.24)
. . . → Hp(M) → Hp(K) → Hp(K, M) → Hp−1(M) → . . . , (5.25)
. . . → Hp(M) → Hp(L) → Hp(L, M) → Hp−1(M) → . . . , (5.26)

. . . → Hp(L, M) → Hp(K, M) → Hp(K, L) → Hp−1(L, M) → . . . . (5.27)

To shed light on how they relate to each other, we draw them as sine-like curves, each directed

Figure 5.12: The four exact sequences for three complexes drawn along sine-like curves in the
plane. After each half-period, the dimension of the homology group drops by one.

from left to right, with the homology groups sitting at the crossings between the curves; see
Figure 5.12. Observe that the upper left triangular diagram commutes, which implies

ker [Hp(M) → Hp(L)] ⊆ ker [Hp(M) → Hp(K)], (5.28)
im [Hp(M) → Hp(K)] ⊆ im [Hp(L) → Hp(K)] (5.29)

for all dimensions p. Similar inclusions follow from the commutativity of the other regions
in the arrangement of curves. The four inclusions that give rise to the sequences (5.24)
to (5.27) yield four 6-packs, among which six diagrams appear twice, namely, Dgm(fK),
Dgm(fL), Dgm(fM), Dgm(fK,L), Dgm(fK,M), Dgm(fL,M). Therefore, we have eighteen
unique diagrams, some of which are closely related.

5.4.5 A Tri-chromatic Case Study
While two colors give rise to interesting patterns, more colors do more so. With the increase
in the number of colors, there is an explosive increase of configurations to study. We
suggest looking at the relations between k-chromatic subcomplexes of Del(χ), which are the
subcomplexes composed of all simplices with at most k colors. In this section, we focus on
the tri-chromatic case, with colors σ = {0, 1, 2}. Let M be the 1-chromatic subcomplex,
L the 2-chromatic subcomplex, and K the full 3-chromatic Delaunay complex. As before,
fK : K → R is the chromatic squared radius function, and fL, fM , fK,L, fK,M , fL,M are its
restrictions. A cycle can be formed by points of 1, 2, or 3 colors, and it can be filled by points
of 0, 1, or 2 additional colors. Requiring that the sum of two numbers is at most 3, we get the
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six mingling types sketched in Figure 5.1. Note that these six patterns are not independent.
For example, the pattern 1+2 also gives rise to pattern 1+0, because the cycle gets filled
by its own color eventually. However, different patterns corresponding to the same cycle will
generally have different persistence, which quantifies which patterns is a better fit. Without a
claim on completeness, we list where in the 6-pack one can find prominent cases of each of
these six patterns.

Case 1+0: Dgm(fM). The complex M is the disjoint union of the three mono-chromatic
Delaunay mosaics. The diagram records the mono-chromatic cycles.

Case 2+0: Dgm(cok fM → fL). The complex L contains all mono- and bi-chromatic cycles,
and it shares the former with M . Therefore, we look at the cokernel to keep only the
cycles that need two colors to be formed. A cycle dies either when it is filled by its own
two colors, or when one of the two colors suffices to form a homologous cycle.

Case 3+0: Dgm(cok fL → fK). As in the previous case, we look at the cokernel to capture
cycles that are formed by all three colors, but not yet by any two.

Case 1+1: Dgm(ker fM → fL). A birth in this diagram occurs when a cycle formed by one
color is filled by an additional one, and it persists until it is filled by its own color.

Case 2+1: Dgm(ker fL,M → fK,M). The idea is similar to Case 1+1: we look at cycles
formed by two colors that are filled when also using the third. Unlike the previous case,
we consider the quotient spaces to filter out the mono-chromatic cycles.

Case 1+2: Dgm(cok fL,M → fK,M). Mono-chromatic p-cycles filled by the other colors
appear in the pair (K, M) as (p + 1)-cycles. Those that are filled by exactly one other
color also appear in (L, M). We use the cokernel to filter them out.

We now look more closely at the concrete example displayed in the right panel of Figure 5.9:
a circle of blue points with split background of green and orange points; compare with the
mingling pattern 1+2. Focusing on this pattern, we search the 6-pack of the inclusion of the
pairs (L, M) ⊆ (K, M) in Figure 5.13. As suggested in Case 1+2 above, we expect a clear
signal in the cokernel diagram, and indeed we see a single prominant point representing a
2-dimensional relative class. By construction, this class is born when the mono-chromatic
1-cycle is filled with two extra colors, and its persistence indicates how much longer it takes to
fill the 1-cycle with just one extra color. Compare this with the even more prominent point in
the diagram of the codomain, Dgm(fK,M). This point represents the same 1-cycle, but it
expresses different information because it is not sensitive to whether the 1-cycle is filled by
one or two additional colors.

It is interesting to interpret the two high persistence points in the diagram of the domain,
which records classes in H(Li, Mi). Since the background consists of two colors, it fills the blue
1-cycle with only one additional color twice, once with green and another time with orange.
Both classes die at the same moment, namely when the blue cycle is filled by its own color.

5.5 Towards Defining the Topological Mingling Numbers
Just like alpha complexes can be used to quantify the shape of a point set, can chromatic
alpha complexes to used to quantify the mingling of finite sets of points? This subsection
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#pts 1-norm, C=1
dim 1 11 1.0274
dim 2 1 0.1449
total 12 1.1723
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Figure 5.13: The 6-pack of (L, M) ⊆ (K, M) for the data in the right panel of Figure 5.9. M ,
L, and K are the 1-, 2- and 3-chromatic subcomplexes of the chromatic Delaunay complex.

aims to collect the first thoughts of what is clearly a work in progress. We start by saying that
this is not an easy task, for instance, which of the 3 coloring of the same point set would you
say showcases a more mingled configuration in Figure 5.14?

Figure 5.14: The overlay of the Voronoi tessellations for three coloring of the same point set.

When points of different colors are well-separated, say by a hyperplane, the kernel diagram is
empty in every dimension. As we slowly mix the point sets, homology classes start migrating
from the image diagram to the kernel diagram. Note that the sum of the 1-norm of the two
diagrams is constant given a coloring of the point set. Can the share of homological information
in the kernel diagram be used to obtain a set of quantifiers for how mixed or mingled two
point sets are? Are those numbers really matching our intuition of what topological mixedness
should be in all homological dimension? If yes, that would great as one could appeal to the

82



5.5. Towards Defining the Topological Mingling Numbers

stability of the persistent diagrams with respect to small perturbations in the input point set,
to obtain provably stable topological mingling numbers.

We have started investigating this question for two dimensional Euclidean bi-colored lattices
(red and blue). As a first step, we are interested in understanding the 0-dimensional image
share, which is the one norm of the image diagram, divided by the one norm of the domain
diagram, where the latter is the union of the red and blue subcomplexes. Note that the
information contained in the 0-dimensional persistent diagram is nothing more than a list of
numbers representing the death radii of the connected components, and this is exactly the list
of lengths of the edges in the minimum spanning tree of the point set divided by 2. As the
image share depends on the coloring of the point set, a natural question arises: given a point
set, how big can the sum of the lenghts of the blue and the red spanning trees get if we are
allowed to chose the coloring?

To be more precise, let A ⊆ R2 be finite, write MST (A) for the minimum spanning tree of
A, and let |MST (A)| be its Euclidean length. We note that the MST of A is generally not
unique, but its length is.

Definition 5.5.1 (Minimum MST-ratio). Let A ⊆ Rd be finite and χ : A → {0, 1, . . . , s} a
coloring. Hence, A = A1 ⊔ A2 ⊔ . . . ⊔ As is a partition of A, in which we write Aj = χ−1(j).
The MST-ratio of this partition is

µ(χ) = |MST (A)|∑︁s
j=0 |MST (Aj)|

, (5.30)

and the minimum MST-ratio of A is µs(A) = minχ µ(χ), in which the minimum is taken
over all partitions into s + 1 subsets.

We are interested in how small and how big the minimum MST-ratio can be. A manuscript is
under development, where we prove tight bounds for the minimum MST-ratio for bi-colored
lattices in R2: inf min = 0.5 and sup min = 0.8 [26].

Recently, Dumitrescu, Pach and Tóth studied the problem for bicolored points randomly
sampled in the unit square in R2 [40]. In their setting, they maximize the inverse of our
MST-ratio for a bipartition of the point set P into red and blue points, denoted R and B
respectively. They showed that for a set of n random points uniformly distributed in [0, 1]2,
and any ϵ > 0, the following (expected) ratio

|MST (R)| + |MST (B)|
|MST (P )| ,

in a maximizing partition is at least
√

2 − ϵ with probability tending to 1 as the number of
points tends to infinity.
It would be interesting to investigate the distribution of this number for random colorings (as
opposed to only the maximizing one) in order to develop an intuition for the ratio’s dependence
on the coloring. Figure 5.15 shows a curious plot of the ratio studied by Pach and coauthors for
100 points randomly sampled from the square (repeated 1000 times). Each point is assigned
the red color with probability 0.5. The mean is not much more than

√
2 = 1.414 · · · , which is

surprising as the coloring is not chosen to maximize the ratio, but randomly. We believe this
not to be a coincidence and we are working on strengthening their result [40, Theorem 4].

83



5. Chromatic Point Sets

Figure 5.15: The MST ratio for 100 points randomly sampled from the square (repeated 1000
times). Each point is assigned color red with probability 0.5.

We plan to study the analogous ratio in higher dimensions and establish a better understanding
of the average and extremal cases. This will serve as a baseline against which to compare real
data, which often comes with a predefined coloring, such as the phenotype of a cell in our
favorite biological application.

5.6 Discussion and Open Problems
The main contribution of the papers that this chapter builds on is the extension of the theory
of alpha complexes to the setting where points are assigned a label. The work reported
in this chapter suggests new directions of mathematical research aimed at solidifying our
understanding of the chromatic setting. We list two possible directions.

• Develop a chromatic variant of Forman’s discrete Morse theory [55]. Two concrete
questions are the extension of the collapsibility of the Čech complex to the alpha complex
proved in the mono-chromatic case [8] and the further collapse of Alf r(χ) to Alf r(A).

• In many biological questions, the mingling between different populations of cells changes
over time; see e.g. the study of cell segregation in early development [79] and an early
topological approach in [69]. It would therefore be useful to extend the vineyard
algorithm [24] to the chromatic setting introduced in this paper.
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