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with machine learning noise mitigation
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Quantum computers are increasing in size and quality but are still very noisy. Error mitigation extends the size
of the quantum circuits that noisy devices can meaningfully execute. However, state-of-the-art error mitigation
methods are hard to implement and the limited qubit connectivity in superconducting qubit devices restricts most
applications to the hardware’s native topology. Here we show a quantum approximate optimization algorithm
(QAOA) on nonplanar random regular graphs with up to 40 nodes enabled by a machine learning-based error
mitigation. We use a swap network with careful decision-variable-to-qubit mapping and a feed-forward neural
network to optimize a depth-two QAOA on up to 40 qubits. We observe a meaningful parameter optimization
for the largest graph which requires running quantum circuits with 958 two-qubit gates. Our paper emphasizes
the need to mitigate samples, and not only expectation values, in quantum approximate optimization. These
results are a step towards executing quantum approximate optimization at a scale that is not classically simulable.
Reaching such system sizes is key to properly understanding the true potential of heuristic algorithms like QAOA.

DOI: 10.1103/PhysRevResearch.6.013223

I. INTRODUCTION

Quantum information processing holds the promise of
drastically speeding up a number of interesting computational
tasks ranging from optimization [1], chemistry [2], finance
[3], machine learning [4,5], and high-energy physics [6,7].
The size and quality of noisy quantum computers is progress-
ing rapidly. In particular, error mitigation tools [8,9], e.g.,
zero-noise extrapolation (ZNE) [8,10] and probabilistic error
cancellation (PEC) [8], extend the reach of noisy hardware
[11].

In ZNE, multiple logically equivalent copies of a circuit are
run under different noise amplification factors c. Based on the
noisy results, extrapolation to the zero-noise limit produces a
biased estimation of the noiseless expectation value. ZNE can
be performed with pulses, which results in small stretch fac-
tors c close to one [11]. However, pulse-based ZNE is almost
impossible for users of a cloud-based quantum computer to
implement due to the onerous calibration. As an alternative,
digital ZNE folds gates such as CNOTs which produce large
stretch factors c = 2m + 1, where m is the number of times
a gate is folded [12]. If the original circuit is deep com-
pared to the noise, then the first fold m = 1 results in noise
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rendering the extrapolation useless. Partial folding prevents
this by folding a subset of the gates in a circuit [13].

PEC learns a sparse model of the noise [14]. The non-
physical inverse of the noise channel is applied through a
quasiprobability distribution to recover an unbiased expec-
tation value. However, the large shot overhead of PEC can
be prohibitive. This is why large experiments resort to [rob-
abilistic error amplification (PEA), a form of ZNE in which
the learnt error channels are amplified [15]. PEA avoids pulse
calibration but requires an onerous noise learning like PEC.

Pulse-based approaches can also error mitigate variational
algorithms enabled by, e.g., open pulse [16]. Scaled cross-
resonance gates [17,18] can implement ZNE [19] and reduce
the schedule duration without calibrating pulses [20]. Other
approaches, inspired by optimal control [21], leave it up to
the classical optimizer to shape the pulses resulting in shorter
schedules [22,23].

Supervised learning benefits a wide range of scientific
fields, including quantum physics [24]. In particular, it can
mitigate hardware noise in quantum computations. Kim et al.
[25] adjusted the probabilities estimated from measurements
of quantum circuits with neural networks. They show an
effective reduction in errors with a method that scales ex-
ponentially with system size. Czarnik et al. [26] proposed
a scalable method to error mitigate observables, rather than
the full state vector, with linear regression. They efficiently
generated training data by computing expectation values of
Clifford circuits on noiseless simulators and noisy quantum
hardware. Similarly, Strikis et al. [27] presented a method
that learns noise mitigation from Clifford data. They error
mitigated a quantum circuit by simulating multiple versions of
it in which non-Clifford gates are replaced with gates that are
efficient to simulate classically. These methods successfully
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mitigate noise on both real quantum hardware and simulations
of imperfect quantum computers.

Combinatorial problems are regularly encountered in prac-
tical settings such as finance and vehicle routing. The quantum
approximate optimization algorithm (QAOA) [28] may help
solve such problems by mapping the cost function to a spin
Hamiltonian and finding its ground state with a suitable vari-
ational ansatz [29]. Crucially, many problems of practical
interest are nonplanar [30], but common superconducting
qubit architectures have a grid [31] or heavy-hexagonal [32]
coupling map. Recently, QAOA experiments with a connec-
tivity matching the hardware coupling map have been reported
for 27 [20] and 127 [33] qubits with up to QAOA depth-two.
By contrast to industry relevant problems, these instances are
very sparse. Moreover, classical solvers perform well, espe-
cially on sparse problems [34]. While brute-force classical
simulation methods of quantum circuits can handle up to
around 50 qubits [35,36] tensor-product-based methods are
capable of simulating much larger QAOA circuits. For exam-
ple, Lykov et al. [37] reported simulating a single depth-one
QAOA amplitude with up to 210 qubits and 1785 gates on a
supercomputer. There is, therefore, a dire need to implement
denser and larger problems than those in current demonstra-
tions on hardware.

In this paper, we make two contributions. Inspired by
Refs. [26,27], we present an error mitigation strategy based on
a neural network that uses measurements of noisy observables
and compares them to their ideal values. Second, we go one
step beyond the hardware-native topology by implementing
in hardware random regular-three (RR3) graphs with up to 40
nodes. We achieve this by combining swap networks [20,31],
and the SAT-based initial mapping of Matsuo et al. [38], which
was so far only numerically studied.

This paper is structured as follows. In Sec. II, we intro-
duce the QAOA and discuss its implementation on hardware.
Setion III discusses machine-learning assisted quantum error
mitigation. In Sec. IV, we combine the QAOA implementa-
tion advances of Sec. II and the error mitigation approach of
Sec. III to train depth-two QAOA circuits on hardware. We
discuss our results and conclude in Sec. V.

II. QUANTUM APPROXIMATE OPTIMIZATION
ALGORITHM

The QAOA was initially developed to solve the maxi-
mum cut (MAXCUT) problem [28], but it also applies to any
quadratic unconstrained binary optimization (QUBO) as ex-
emplified by Refs. [39–41]. MAXCUT requires cutting the set
of nodes V of a given undirected graph G = (V, E ) into two
groups to maximize the number of edges in E traversed by the
cut. This problem, as many others, is equivalent to finding the
ground state of an Ising Hamiltonian for an n-qubit system,
where n = |V | is the number of decision variables [29].

A depth-p QAOA for an unweighted MAXCUT minimizes
the expectation value of the cost function Hamiltonian HC =∑

(i, j)εE σ z
i σ z

j under the variational state:

|β, γ〉 =
p∏

i=1

e−iβiHB e−iγiHC |+〉⊗n. (1)

The initial product state |+〉⊗n is an equal superposition
of all possible solutions. It is also the ground state of the
mixer Hamiltonian HB = −∑n

i σ x
i [28]. The circuit depth,

controlled by p, determines the number of applications of
the Hamiltonians. A classical optimizer varies the angles
β = (β1, . . . , βp) and γ = (γ1, . . . , γp) to minimize the en-
ergy expectation value E (β, γ ) = 〈HC〉 in a closed-loop with
the quantum computer until the parameters β, γ converge.
We denote the optimized parameters by θ� = (β�, γ�) =
arg minβ,γ E (β, γ ).

A. Implementation on superconducting hardware

In hardware, e−iβiHB is trivially implemented by single-
qubit RX rotations applied to all qubits. The cost-operator,
however, creates a network of RZZ gates that matches the
graph connectivity. Noisy quantum hardware can run graphs
with many nodes if their topology matches the connectivity
of the qubits [33]. However, SWAP gates must be inserted
in the circuit when the structure of G does not match the
native coupling map between the qubits. This severely limits
the number of nodes that can be considered [20,42].

Transpiler passes are responsible for routing quantum cir-
cuits, i.e., inserting SWAP gates. Transpilers that do not
account for gate commutativity in e−iγk HC are suboptimal [20].
Commutation-aware transpiler passes have thus been devel-
oped [43,44]. Predetermined networks of SWAP gates quickly
transpile blocks of commuting two-qubit circuits and pro-
duce low-depth circuits compared to other methods [20,31].
However, for problems that are not fully connected, such
as MAXCUT on RR3 graphs, predetermined swap networks
produce even shallower quantum circuits if the initial mapping
from the decision variables to the physical qubits is optimized
to minimize the number of swap layers [38].

In this paper, we map the quantum circuits to the best line
of qubits on the hardware using alternating layers of SWAP
gates [20,31]. The line of qubits is chosen according to the
fidelity of the CNOT gates as reported by the back end, see
Appendix A. Furthermore, since RR3 graphs are sparse, we
reorder the decision variables of the problem to minimize the
number of SWAP layers. This is done by a SAT description
of the initial mapping problem [38]. Details on the graph gen-
eration, transpilation, and SAT mapping are in Appendix A.
We first consider two RR3 graphs with 30 and 40 nodes that
can be mapped to the hardware with a total of six and seven
swap layers, respectively, once the SAT initial mapping is
solved. The resulting circuits are transpiled to the hardware
native gate set {X,

√
X , RZ (θ ), ECR}. Here X and

√
X are

the Pauli X gate and its square root. RZ (θ ) is a rotational Z
gate with angle θ and ECR is the echoed cross-resonance gate
[45,46]. The ECR gate is equivalent to the standard two-qubit
entangling CNOT gate up to single-qubit rotations.

RR3 graphs with 30 and 40 nodes result in large and
dense quantum circuits. For example, a depth-one QAOA
creates circuits with 305 and 479 ECR gates for |V | = 30 and
|V | = 40, respectively, see Fig. 1(e) which also shows that
these circuits leave little space for error suppression methods
such as dynamical decoupling [47]. We run the circuits on
ibm_brisbane and scan the values (γ1, β1) from π/2 to π

in 25 steps to investigate if there is a signal without error

013223-2



LARGE-SCALE QUANTUM APPROXIMATE … PHYSICAL REVIEW RESEARCH 6, 013223 (2024)

FIG. 1. (a), (b) Depth-one energy landscapes, measured on
ibm_brisbane and an ideal simulator, respectively, of a 30-node
RR3 graph. The circuit (not shown) has 305 ECR gates, 639 X
and

√
X gates, and 804 virtual RZ gates. (c), (d) The depth-one

energy landscapes, measured on ibm_brisbane and an ideal simu-
lator, respectively, of a 40 node RR3 graph. The white stars indicate
a minima of the noiseless simulations. They reveal a small shift in
the corresponding minimum of the hardware-measured data. (e) The
quantum circuit of the depth-one QAOA of a RR3 40 node graph
transpiled to a line of qubits with seven layers of SWAP gates and
a SAT-based initial mapping. The circuit has 479 ECR gates (dark
blue), 1021 X and

√
X gates (blue), and 1275 virtual RZ gates (light

green).

mitigation. We compare the hardware results to an efficient
simulation of depth-one QAOA as described in Appendix F
of Ref. [48]. The structure of the measured landscape matches
the simulations, compare Figs. 1(a) and 1(c) to 1(b) and 1(d),
respectively. For the 30 and 40 node graphs, the contrast,
i.e., maximum less minimum, of the hardware-measured land-
scape is 43.0% and 33.8% of the contrast of the simulations,
respectively, see the color scales in Fig. 1. The location of
the hardware and simulation minima are identical in γ and
shifted in β by one grid point, i.e., 65 mrad. Crucially, these
results indicate that, despite the large gate count, the quantum
computer produces a signal that we can further error mitigate
to optimize the parameters of QAOA circuits with p > 1.

III. MACHINE LEARNING ASSISTED
ERROR MITIGATION

Inspired by Refs. [25–27], we mitigate errors in the energy
expectation value with supervised machine learning. We ex-
plore a machine-learning approach based on a neural network

to error mitigate QAOA circuits with p > 1 during the opti-
mization of γ and β.

A. Supervised machine learning

A supervised machine-learning model requires input data
X = {Xi}M

i=1 and target data Y = {Yi}M
i=1 to learn the relation

between X and Y and make predictions on unseen data. Here,
M is the data size. We build X from noisy local expectation
values and Y from the corresponding exact, noise-free, expec-
tation values. The machine-learning model learns the relation
from noisy data to the noise-free data. Our proposed method
has three steps. First, we generate noisy input data X on a
quantum computer. Second, we simulate the quantum circuits
classically to obtain noise-free target data Y . Finally, we train
a machine-learning model to learn the mapping from noisy to
noise-free data. The trained model then error mitigates new,
i.e., unseen, data.

B. Feed-forward neural network

There is a large number of sophisticated supervised
machine learning models. Here, we use a standard fully con-
nected feed-forward neural network (FFNN) [49] due to its
simplicity and ease of use. A FFNN is a series of layers.
Each layer has multiple neurons that are fully connected to
all the neurons in the subsequent layer. This architecture
allows the FFNN to model complex nonlinear relationships
between the input and output data. We construct our FFNN
with an input layer, a single hidden layer, and an output
layer. Variational algorithms typically minimize the expecta-
tion value of a Hamiltonian built from a linear combination
of Pauli expectation values

∑
i αiPi with αi a coefficient and

Pi a Pauli operator. To error mitigate a variational algorithm
with a FFNN, the output layer must yield quantities that
can be optimized. We therefore cchoose as output layer the
correlators that build up the cost function to minimize. The
input is a set of noisy observables measured on the quantum
computer. The FFNN thus maps noisy observables 〈P′

i 〉N ,
measured on hardware, to error mitigated observables 〈Pi〉M.
The subscripts N and M indicate noisy and error mitigated
observables, respectively.

In the following, we apply the general ideas outlined
above to QAOA on a graph G = (V, E ) with |V | = n nodes.
We choose an input layer with n(n + 1)/2 neurons. n of
these neurons correspond to n noisy local Pauli-Z observables
〈σ z

i 〉N . The other n(n − 1)/2 neurons correspond to all pos-
sible 〈σ z

i σ z
j 〉N correlators, where i, j = 1, 2, ..., n. The output

layer is made of |E | neurons; one for each correlator 〈σ z
i σ z

j 〉M
corresponding to an edge (i, j) ∈ E . Therefore, a RR3 graph
uses a FFNN with 3n/2 output neurons. The number of
neurons in the hidden layer is the average of the input and
output number of neurons. This construction is illustrated in
Fig. 2. A trained FFNN helps us run the QAOA on a quantum
computer. Noisy observables are fed into the FFNN for error
mitigation. The value of the output neurons is summed to pro-
duce an error-mitigated estimation of the energy expectation
value E (β, γ )M = ∑

i, j∈E 〈σ z
i σ z

j 〉M. This helps optimize γ

and β.
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FIG. 2. Schematic of the error mitigation with a trained FFNN. The QAOA circuits of graph G = (V, E ) are run and the noisy expectation
values 〈σ z

i 〉N ∀ i ∈ V and 〈σ z
i σ z

j 〉N ∀ i, j ∈ V are computed from the sampled counts. These expectation values are the input to a FFNN which
outputs the noise mitigated correlators 〈σ z

i σ z
j 〉M ∀ (i, j) ∈ E . The noise mitigated cost function to optimize is

∑
(i, j)∈E 〈σ z

i σ z
j 〉M.

C. Efficient training data generation

Training the FFNN requires input data X and target data
Y . We generate X and Y by transforming the circuits to error
mitigate into classically efficiently simulable circuits. This
can be done in multiple ways. According to Ref. [26], it is
advantageous to bias the training data towards the state of
interest. The QAOA seeks the ground state of HC , typically
a classical product state. It applies the unitaries e−iβkHB and
e−iγk HC to drive the initial equal superposition |+〉⊗n towards
the ground state of HC . To generate the training data, we could
restrict the angles βk and γk to reduce e−iβkHB and e−iγk HC

to Clifford circuits. This would, however, result in a small
training data set and may not be possible if the edges in E
have noninteger weights. Alternatively, we could randomly
replace each RZ rotation in the transpiled circuit of e−iγk HC

by a Clifford gate such as I , S, and Z . However, this alters
the graph G by giving the edges in E random weights. This
may be undesirable as the structure of the QUBO of interest
is changed.

These considerations motivate us to train the FFNN on data
obtained by sampling over random product states that have
undergone a noise process qualitatively similar to the QAOA
without altering G. First, we change the initial state from an
equal superposition to a random partition of V by randomly
applying X gates to the qubits. This initial state is followed by
circuit instructions that generate noise similar to the noise in
the QAOA. The cost operator (up to SWAP gates which we
omit in the following for simplicity) is

e−iγk HC =
∏

(i, j)∈E

e−iγkσ
z
i σ z

i =
∏

(i, j)∈E

CXi, jR
j
Z (2γk )CXi, j, (2)

where CXi, j is a CNOT gate between qubits i and j and Ri
Z is a

rotation around the Z axis of qubit i. By setting γk = 0, the op-
erator e−iγk HC reduces to the identity (up to SWAP gates) and
the QAOA circuit produces product states that we efficiently
simulate classically. To retain the noise characteristics, we re-
place the Ri

Z gates with barriers to prevent the transpiler from
removing the CNOT gates; see Fig. 3. Since Ri

Z is implemented
by virtual phase changes [50], the duration and magnitude
of all pulses played on the hardware are unchanged. This
preserves the effect of T1, T2, cross-talk, and other forms of
errors. In detail, we generate training data with a set of M

random states,

|β〉 =
p∏

i=1

e−iβiHB
∏

(k,l )∈E

CX2
k,l [p jX |0〉 j + (1 − p j )|0〉 j]

⊗n,

(3)

which are used to measure the observables for the input data
X . Here, each βi is a uniform random variable in [0, 2π ] and
p j is a Bernoulli random binary variable that applies an X
gate on qubit j if successful. We choose a 1/2 probability of
success for p j . To compute the target data, we use CX2

k,l =
I, the resulting state is a trivial product state for which it is
straightforward to efficiently compute the exact expectation
values required for the target data Y .

FIG. 3. (a) Part of a QAOA cost operator. The dotted and dashed
gates correspond to an RZZ gate with and without a SWAP gate
transpiled to CNOT gates. (b) The RZ gates are replaced by barriers
to prevent CNOT gate cancellation. This preserves the noise structure
of the circuit. (c) Training data generation. M random input cuts are
created by randomly applying X gates to the qubits. These states
are propagated through p alternating networks of CNOT gates, cor-
responding to simplified e−iγ HC operators, and mixer layers e−iβHB .
These circuits are run on hardware to create the input data X and
efficiently simulated classically to generate the ideal output data Y .
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FIG. 4. Training of a FFNN on simulated data. (a) Loss function
(dark blue) and R2 score (light green) as a function of the training
iteration. The inset is the ten-node RR3 graph with node color indi-
cating the MAXCUT. (b) Correlators corresponding to edges in the
inset graph in (a) before error mitigation versus their ideal value. If
the device was noiseless, all the correlators would lie on the dashed
line. (c) The correlators of (b) but after error mitigation by the FFNN.
If the error mitigation were perfect, all the correlators would lie on
the dashed line.

IV. MACHINE-LEARNING ERROR-MITIGATED QAOA

We now apply the FFNN error mitigation discussed in
Sec. III and the QAOA execution methods discussed in Sec. II
to run depth-two QAOA. We first exemplify the error mitiga-
tion in a small ten-qubit simulation and then turn to larger RR3
graphs with 10, 20, 30, and 40 nodes executed on hardware.

A. Simulations

We build a noise model with short-lived qubits. Their T1

and T2 times are sampled from a Gaussian distribution with
10 µs mean and 10 ns standard deviation. Based on these dura-
tions, a thermal relaxation noise channel is applied to the CNOT

gates lasting τCNOT = 300 ns. This is a strong noise model for
the 102 CNOT gates in the QAOA circuit as understood, e.g.,
by e−τCNOT/T1 , which gives 97% as proxy for the gate fidelity.
The other circuit instructions are noiseless.

We sample 300 random cuts to create the training data
following Sec. III C. We train the FFNN with 90% of this
data and the other 10% serves as validation data [51]. In this
example, the FFNN achieves a mean squared error (MSE)
of 3.3% on the training data and an R2 score of 71.8% on
the validation data; see Fig. 4(a). The FFNN thus captures
71.8% of the variation in the validation data. Furthermore, we
generate an additional 20 test data points. The corresponding
non-error-mitigated correlators are damped towards an expec-
tation value of zero; see Fig. 4(b). The MSE between these
20 × |E | = 300 non-error-mitigated and ideal 〈σ z

i σ z
j 〉 correla-

tors is 11%. This number drops to 7% after the correlators are
error mitigated with the FFNN. Furthermore, we observe that
the error-mitigated correlators better follow the trend set by
their ideal values; see Fig. 4(c).

FIG. 5. Optimization of a noisy QAOA. (a) The solid and dotted
lines show the error-mitigated cost function and the non-error-
mitigated cost function, respectively, during the optimization of the
former. The dashed line shows the non-error-mitigated cost function
as it is being optimized. (b) QAOA parameters for the error mitigated
optimization (solid lines) and the non-error-mitigated optimization
(dashed lines).

In a separate simulation, we increase the strength of the
noise by lengthening the CNOT gates. At a duration of 400 ns,
the FFNN cannot learn an error mitigation since the noise is
too strong. We observe that the squared error does not reach
low values and the predicted correlators are close to zero (data
not shown).

We now optimize a p = 2 QAOA with 300 ns CNOT gates
twice; once by optimizing the error-mitigated cost function
EM = ∑

(i, j)∈E 〈σ z
j σ

z
j 〉M, blue data in Fig. 5(a), and once

by optimizing the non-error-mitigated cost function EN =∑
(i, j)∈E 〈σ z

j σ
z
j 〉N , red data in Fig. 5(a). We use COBYLA with

θ = (γ1, γ2, β1, β2) initialized from a Trotterized quantum an-
nealing schedule [52]. Each circuit is run with 4096 shots.

The error-mitigated energy reaches lower values than the
non-error-mitigated energy; see Fig. 5(a). Both optimizations
converge within 40 iterations; see Fig. 5(b). Furthermore,
when the error-mitigated cost function is optimized, the corre-
sponding non-error-mitigated cost function, dotted blue curve
in Fig. 5(a), reaches lower values than a direct optimization
of the non-error-mitigated cost function; red dashed curve in
Fig. 5(a). This shows that with the error mitigation on, the
optimizer finds better values of θ. To further illustrate this,
we compute the energy distribution of sampled bitstrings. We
compare the distribution of the cost function of each sampled
bitstring of the initial and last values of θ labeled θ0 and θ�

respectively. The sampling is done with the noisy simulator,
Figs. 6(a) and 6(c), and a noiseless simulator, Figs. 6(b) and
6(d). Sampling from a noisy |θ�〉 produces a distribution that
is nearly identical to the one obtained by sampling from a
noisy |θ0〉, see Figs. 6(a) and 6(c). However, sampling from
a noiseless |θ�〉 produces a better distribution than sampling
from a noiseless |θ0〉, see Figs. 6(a) and 6(b). This suggests
that the error mitigation helps find better values of θ despite
the fact that we cannot see this by sampling bitstrings from
noisy QAOA states.

Finally, we repeat these simulations 20 times. In each
simulation, we train a FFNN and optimize θ. This produces
different optimization results due to the randomness of the
noise. The optimization is carried out twice, once on EM
and once on EN . After the optimization, we sample 4096 bit-
strings from a noiseless simulation of the QAOA circuit with
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FIG. 6. Distribution of the cost function of each individual sam-
pled bitstring for the optimization in Fig. 5. (a) and (b) correspond
to the optimization with the error-mitigated cost function (solid lines
in Fig. 5). (c) and (d) correspond to the optimization with the non-
error-mitigated cost function (dashed lines in Fig. 5).

the optimized parameters θ�. We compute the energy distribu-
tion of these bitstrings and report the expectation value. This
expectation value is −3.78 ± 2.12 and −2.63 ± 2.01 when
EM and EN is optimized, respectively. These results indicate
that error mitigation tends to help the classical optimizer find
better QAOA parameter values. However, we observe in seven
out of 20 simulations that an optimization of the noisy QAOA
cost function EN produces better parameters, as measured by
a noiseless sampling of bitstrings, than an optimization of the
error mitigated cost function EM. In all simulations, except
one, the error mitigated cost function EM has a lower energy
than the non-error-mitigated cost function EN .

B. Hardware

We now optimize the parameters γ1, γ2, β1, and β2 with
COBYLA of a depth-two QAOA for RR3 graphs on super-
conducting qubit hardware. As a cost function, we minimize
the energy EM = ∑

(i, j)∈E 〈σ z
i σ z

j 〉M computed with error-
mitigated correlators produced by FFNNs. Before each run,
the FFNN is trained, as described in Sec. III, with 3000 train-
ing points evaluated with 1024 shots each.

For RR3 graphs with 30 nodes, the quantum circuits have
a total of 610 ECR gates, 1297 X and

√
X gates, and 1577

RZ gates, see Fig. 7. Graphs with 40 nodes have a total of
958 ECR gates. While these circuits are extremely deep and
wide, they still contain a significant signal. When running the
QAOA optimization on hardware we observe a minimization
of EM for all graphs, see dark purple curves in Figs. 8(a), 8(d),
8(g), and 8(j). The non-error-mitigated cost function EN (light
purple curves) also decreases. In all cases, the optimization of
γi and βi converges in about 20 to 40 iterations of COBYLA,
see Figs. 8(b), 8(e), 8(h), and 8(k). We compare the distribu-
tion of the sampled bitstrings obtained from QAOA circuits
with the initial points θ0 to the distribution obtained with the
optimized θ�. We see an improvement in the distribution, i.e.,
a bias towards lower values, for all RR3 graphs—compare the
dark blue and light teal curves in Figs. 8(c), 8(f), 8(i), and
8(l). This is consistent with the interpretation that there is a
meaningful signal in the corresponding circuits. We report
the mean μ of each distribution (vertical lines in Fig. 8)
as an approximation ratio α(μ) = (μ − 〈HC〉max)/(〈HC〉min −
〈HC〉max) contained in [0, 1]. The optimized parameters pro-
duce an α(μ) of 71.6%, 64.0%, 59.6%, and 58.3% for the 10,
20, 30, and 40 node graphs.

We optimize the parameters θ with ECR-based circuits
since all parameters are in virtual RZ gates. This preserves the
amplitude and duration of all pulses in the schedule thus facili-
tating noise mitigation. Pulse-efficient transpilation moves the
parameters from the RZ gates into the cross-resonance pulses
[17,18]. This shortens the pulse schedule but changes its noise
properties. For example, a pulse-efficient transpilation of an
RZZ (θ )-SWAP pair, as shown in Fig. 3(a), reduces their du-
ration by up to 20%, depending on θ . The shorter schedules
produce better bitstrings than the fixed-duration schedules
with parameters in RZ gates. We run the pulse-efficient cir-
cuits for the last points θ�. This results in an improved α(μ)
of 76.0%, 65.5%, 60.8%, and 58.6% over the same circuit
without pulse-efficient transpilation for the 10, 20, 30, and 40
node graphs, respectively—compare the dash-dotted red line
to the solid teal line in Figs. 8(c), 8(f), 8(i), and 8(l).

The best bitstrings sampled from the distributions shown in
Figs. 8(c), 8(f), 8(i), and 8(l) have a cut value of 13 (MAXCUT),
26 (MAXCUT), 35 (0.833), and 44 (0.786) for the 10, 20, 30,
and 40 node graphs, respectively. The numbers in parenthesis
indicate the approximation ratio. These bitstrings were ob-
served a total of 1619, 124, 474, and 988 times, respectively,
out of the 3 × 4096 shots in the distributions.

To distinguish the impact of hardware noise on the bit-
string distribution from limitations of the depth-two QAOA

FIG. 7. Depth-two QAOA circuit of a 30 node RR3 containing 610 ECR gates (dark blue), 1297 single-qubit X and
√

X gates (blue), and
1577 virtual RZ gates (teal).
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FIG. 8. Depth-two QAOA data acquired on ibm_brisbane. The graphs are shown as insets with node colors indicating the MAXCUT found
with CPLEX [53]. (a), (d), (g), (j) Error-mitigated cost function EM obtained from FFNNs at each iteration of COBYLA. The nonmitigated
cost function EN , is also shown as EM is optimized. EN and EM thus represent the same quantities as the blue dotted and blue solid lines
in Fig. 5(a), respectively. (b), (e), (h), (k) QAOA parameters during the optimization. (c), (f), (i), (l) Distribution of the energy of the sampled
bit strings. The dark blue and light teal lines correspond to bitstrings sampled from the QAOA circuits with the initial and last parameters θ0

and θ�, respectively. The red lines correspond to sampling from a pulse-efficient circuit. The solid black lines in (c) and (f) indicate the energy
of the MAXCUT. In (i) and (l), this energy lies outside of the x-axis range. We indicate it as a triangle with the energy as a number. The black
dotted vertical lines indicate the noiseless expectation value obtained with θ�.

ansatz, we compute the noiseless expectation value of the cost
Hamiltonian HC = ∑

(i, j)∈E σ z
i σ z

j . We evaluate HC at the last
point θ� obtained from the noisy hardware optimization. This
computation is made fast, even for a 40-node graph, with
quantum circuits based on the light cone of each correlator
σ z

i σ z
j . This method is detailed in Appendix B. The noiseless

expectation value is indicated as a dotted line in Figs. 8(c),
8(f), 8(i), and 8(l). The corresponding approximation ratios
α(μ) are 82.8%, 74.2%, 72.6%, and 72.4% for the 10, 20,
30, and 40 node graphs, respectively. These values show the
potential improvement in the bitstring value distribution if
hardware noise could be reduced.

V. DISCUSSION AND CONCLUSION

Many machine-learning tools can error mitigate an ex-
pectation value. The first contribution of this paper is a
user-friendly FFNN-based error mitigation strategy with a
problem-inspired methodology to generate the training data.
Here, the FFNN is trained once before the variational opti-
mization. It tries to match training data acquired at randomly
sampled values of β for which all values of γ are set to zero
with RZ gates replaced by barriers. This preserves the circuit
structure and makes it easy to simulate classically. We observe
that the FFNN performs better on validation data than a linear
regression as the circuit size is increased, see Appendix C.
The data from the optimization with error mitigation show that
the FFNN reduces the effect of noise on the cost function at
unseen values of β and γ . Other data-generation approaches

are possible and could be investigated in future work, which
may also explore other machine-learning tools such as random
forests, as done in Ref. [54].

Our second contribution is to implement nonplanar RR3
graphs on hardware by leveraging the SAT mapping of Matsuo
et al. [38] and swap networks [20,31]. We observe a meaning-
ful signal for a depth-two QAOA with up to 40 nodes. The
swap networks with 2, 4, 6, and 7 layers that we implement
on 10, 20, 30, and 40 qubits can generate graph densities
of up to 40%, 30%, 27%, and 22%, respectively. The corre-
sponding circuits have impressive gate counts. We attribute
hardware improvements of the Eagle quantum processors,
shown in Fig. 9, to this success. For example, the T1 times
of ibm_brisbane are more than twice as large as those of
ibmq_mumbai, see Fig. 9(a), which was used in the 27 qubit
experiment in Ref. [20]. The cumulative distribution function
of the gate error of ibm_brisbane and ibmq_mumbai is ap-
proximatively the same, see Fig. 9(c). However, ibm_brisbane
has 127 qubits while ibmq_mumbai only has 27 qubits. This
allows us to run the 40-qubit RR3 graph on the best line of
qubits. For example, the product of the fidelity of the 39 gates
on the best line with 40 qubits on ibm_brisbane is 76.5%, see
Appendix A. By contrast, the product of all 28 two-qubit gate
fidelities on ibmq_mumbai only reaches 72.8% despite there
being fewer gates.

Circuits with 40 nodes can be simulated classically. In
particular, computing 〈HC〉 of a depth-p QAOA for a RR3
graph produces an effective light cone with at most

∑p
k=0 2k+1

qubits in the circuits, i.e., 14 in our p = 2 case. This allows
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FIG. 9. Properties of the Eagle quantum processors used in this
paper, ibm_brisbane and ibm_kyiv, compared to the Falcon processor
used in Ref. [20], i.e., ibmq_mumbai. The data are presented as
cumulative distribution functions (CDFs).

us to confirm that optimizing the error-mitigated correlators
produces good variational parameters. As quantum computers
increase in size and quality, such a classical verification will
no longer be possible. Crucially, our hardware demonstration
is much larger than many current experiments which typi-
cally employ up to 20 qubits [55]. Furthermore, reproducing
even depth-one QAOA samples is classically intractable [56].
Our paper is thus a step towards implementing QAOA on
hardware that cannot be classically simulated. Future work
must focus on implementing deeper circuits on hardware with
more connectivity. Our work also serves as a benchmark to
track quantum hardware progress, as done, e.g., with complete
graphs [57]. We anticipate that hardware improvements, e.g.,
increasing T1 times, and novel architectures, based on, e.g.,
tunable couplers [58,59], will enable larger simulations.

The depth-one QAOA results, shown in Sec. II, exhibit
the parameter concentration already observed in the literature
[60–64]. This may be important to quickly generate good yet
suboptimal solutions to combinatorial optimization problems
without having to optimize the variational parameters for each
problem instance [20].

The objective of QAOA is to sample good or even optimal
solutions from a quantum state |θ�〉 that minimizes the energy
HC , i.e., to find xopt = argminxHC (x). The state is obtained by
minimizing the expectation value of HC . The error-mitigation
method we present helps find good parameters γ and β. How-
ever, quantum approximate optimization needs tools that error
mitigate samples. Noiseless simulations of 〈HC〉 computed
with the optimal parameters show that a significant gain is
obtainable if samples could be error mitigated. Recently, Bar-
ron et al. showed that a noise dependent sampling overhead
produces good solution samples [65]. This makes sense in the
context of optimization as long as the total samples drawn is
at least less than the 2n cost of a brute-force search and ideally
less than the sampling complexity of the best classical bench-
mark. Hardware improvements in, e.g., the fidelity of a layer
of gates [66] and noise-aware transpilers [67,68], will reduce
this sampling overhead. Furthermore, proper QAOA bench-

marks must compare to state-of-the-art solvers [34], such as
Gurobi and CPLEX, and randomized rounding algorithms
[69]. For example, for RR3 graphs there is an approximation
algorithm that achieves an approximation ratio of 0.9326 [70].
Such benchmarking is an important task in itself, which our
methods enable on hardware.

For variational algorithms, like the variational eigensolver
applied in a chemistry setting [71,72], error-mitigating ex-
pectation values are often sufficient, e.g., to compute the
energy spectrum of molecules [73,74]. The FFNN-based er-
ror mitigation method we present is directly transferable to
such settings, which increases its applicability. Furthermore,
the transpiler methodology we leverage works with any non-
hardware-native block of commuting two-qubit gates. It thus
applies to circuits other than QAOA such as graph states
[75], and algorithms that implement e−iHCt including Ising
simulations [19].

The code for these results is available at Ref. [76].
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APPENDIX A: RR3 GRAPH TRANSPILATION

Random regular graphs are sparse. When their corre-
sponding QAOA circuit is transpiled to the hardware with
predetermined swap layers, certain edges may require a large
number of swap layers. By wisely choosing the initial map-
ping between decision variables and physical qubits, we
reduce the number of swap layers needed. A SAT-based
approach to this initial mapping problem was proposed by
Matsuo et al. [38]. Here, the initial mapping problem is for-
mulated as a SAT problem that is satisfiable if e−iγ HC can be
routed to hardware with � swap layers. A binary search over �

finds the initial mapping that minimizes the number of layers.
We label the minimum number of swap layers by �∗.

1. Graph generation

We generate 100 RR3 graphs with n nodes for each n ∈
{10, 20, 30, 40}. Each graph is mapped to a line of n qubits
with the SAT approach. The distribution of the number of
swap layers at the different sizes n is shown in Table I. With
the SAT mapping, there are graph instances with 10, 20, 30,
and 40 nodes that can be implemented with 2, 4, 6, and 7 swap
layers, respectively. This is a large reduction compared to a
trivial mapping which typically requires n − 2 swap layers
[38]. The experiments in the main text are done on graphs
that require the smallest number of swap layers.
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TABLE I. Number of RR3 graphs that required �∗ swap layers
after an initial mapping found through solving SAT problems. At
each graph size with n nodes, 100 graph instances were generated.
For instance, out of 100 random instances of RR3 graphs with 40
nodes, three could be mapped to a line of qubits with seven swap
layers.

Number Number of swap layers �∗

of nodes 2 3 4 5 6 7 8 9 10

10 26 40 34
20 13 55 32
30 18 64 18
40 3 17 67 13

2. Qubit selection

ibm_brisbane has 127 qubits, i.e., 87 more than the largest
graph we study, see Fig. 10. We, therefore, select the best line
of qubits to execute the quantum circuits on. For each pair of
nodes i and j in the back end’s coupling map, we enumerate
all paths of length |V | connecting them. Next, we compute
the path fidelity for each path pk as

∏
(i, j)∈pk

(1 − EECR,i, j )
and select the best one. Here, EECR,i, j is the error of the ECR
gate between qubits i and j. On ibm_brisbane, there are 1336,
15814, 125918, and 754462 lines of 10, 20, 30, and 40 qubits,
respectively. The best measured respective path fidelities are
95.9%, 89.5%, 82.8%, and 76.5%.

APPENDIX B: LIGHT-CONE QAOA

For low-depth QAOA and sparse graphs, such as RR3,
we can efficiently compute the expectation value 〈HC〉 =∑

(i, j)∈E 〈σ z
i σ z

j 〉 by considering the light cone of each correla-
tor σ z

i σ z
j . Indeed, for depth-one QAOA, each correlator σ z

i σ z
j

is only impacted by the gates applied to nodes in the direct

FIG. 10. Coupling map of ibm_brisbane showing the qubit con-
nectivity. The black qubits form the 40-qubit line with the best path
fidelity as measured by the quality of the ECR gates.

FIG. 11. (a) Subgraph of a RR3 graph with all nodes up to a
distance two from the nodes i and j for which we want to compute
the correlator 〈σ z

i σ z
j 〉. (b) Quantum circuit for the graph in (a). The

dumbbells represent parameterized RZZ rotations and the dark and
light grey boxes are Hadamards and RX gates, respectively. The wire
colors in (b) correspond to the color of the nodes in the graph in (a).

neighborhood of i and j, i.e., distance-one nodes, see Fig. 11.
For depth-two QAOA, we must consider all nodes that are at
most at a distance of two away from i and j in E . Therefore,
to compute 〈HC〉 for depth-two QAOA, we create |E | circuits
each with at most 14 nodes. In the circuit corresponding to

FIG. 12. Comparison of a FFNN and a linear regression. (a),
(b) Distribution of the MSE of a validation data set for the ten and 40
node graphs, respectively. (c) MSE averaged over all ten validation
data sets as a function of graph size. (d) Difference between the MSE
of the FFNN and the linear regression.
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FIG. 13. Run on ibm_kyiv. The training data was comprised of 300 circuits and the FFNN had one hidden layer with 100 nodes in all
instances. The underlying graphs and other displayed quantities are identical to those in Fig. 8 of the main text.

〈σ z
i σ z

j 〉, we only measure the qubits that map to nodes i and j,
see Fig. 11(b).

APPENDIX C: MODEL COMPARISON

Here, we compare the FFNN to a linear regression. The
comparison is done on the hardware-measured data presented

in Fig. 8 of the main text. We resample the 3000 training data
points ten times to generate ten training data sets made of
80% of the data, i.e., 2400 sets of |V |(|V | + 1)/2 expectation
values, and ten validation sets made of the remaining 20%
of the data. We train both a FFNN and a linear model on
the ten data sets with 80% of the data. Here, we employ the
MLPRegressor and the LinearRegression from sklearn.

FIG. 14. Run on ibm_nazca. The training data were comprised of 3000 circuits and the FFNN had one hidden layer with a number of
nodes made of the average of the input and output. The underlying graphs and other displayed quantities are identical to those in Fig. 8 of the
main text.
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Next, we compute the MSE between the 3|V |/2 predicted ZZ
correlators and their ideal value. This results in a distribution
of MSEs across the 600 validation data points for each of
the ten validation data sets. We observe an increase in the
MSE as the graph size increases. Furthermore, the MSE of
the linear model increases faster than the MSE of the FFNN
as the graph size increases, as exemplified by comparing
Figs. 12(a) and 12(b) for one of the ten validation sets. Next,
we compute the average over all MSEs at each graph size and
the associated standard deviation of this mean, see Fig. 12(c)
and their difference in 12(d). As the number of nodes in the
graph increase, the error of the FFNN becomes significantly
lower than the error of the linear model. This test suggests
that for the particular circuits that we employed, the FFNN
performs better than the linear model as the size of the quan-
tum circuit increases. This may be due to effects such as
cross-talk and unitary gate errors, e.g., over- and underro-

tations, that are not captured by a linear model like the
depolarizing channel [26].

APPENDIX D: ADDITIONAL HARDWARE RUNS

Here, we present depth-two QAOA data acquired on
ibm_kyiv and ibm_nazca in addition to the data acquired on
ibm_brisbane, see Figs. 13 and 14, respectively. The data
acquired on ibm_nazca was gathered under the same settings
as the data on ibm_brisbane. The data acquired on ibm_kyiv
is produced with a smaller number of training circuits, i.e.,
300 instead of 3000, and the hidden layer of the FFNN had
100 nodes for each graph size. By contrast, the FFNN trained
for ibm_brisbane and ibm_nazca had a number of hidden
neurons equal to the average of the input and output number
of neurons.
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