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Abstract
A linearly ordered (LO) k-colouring of a hypergraph is a colouring of its vertices with colours 1, . . . , k

such that each edge contains a unique maximal colour. Deciding whether an input hypergraph
admits LO k-colouring with a fixed number of colours is NP-complete (and in the special case of
graphs, LO colouring coincides with the usual graph colouring).

Here, we investigate the complexity of approximating the “linearly ordered chromatic number”
of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform
hypergraph, distinguish between the case that it is LO 3-colourable, and the case that it is not even
LO 4-colourable. We prove this result by a combination of algebraic, topological, and combinatorial
methods, building on and extending a topological approach for studying approximate graph colouring
introduced by Krokhin, Opršal, Wrochna, and Živný (2023).
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1 Introduction

Deciding whether a given finite graph is 3-colourable (or, more generally, k-colourable, for
a fixed k ≥ 3) was one of the first problems shown to be NP-complete by Karp [17]. Since
then, the complexity of approximating the chromatic number of a graph has been studied
extensively. The best-known polynomial-time algorithm approximates the chromatic number
of an n-vertex graph within a factor of O(n (log log n)2

(log n)3 ) (Halldórsson [16]); conversely, it is
known that the chromatic number cannot be approximated in polynomial time within a
factor of n1−ε, for any fixed ε > 0, unless P = NP (Zuckerman [31]). However, this hardness
result only applies to graphs whose chromatic number grows with the number of vertices,
and the case of graphs with bounded chromatic number is much less well understood.

Given an input graph G that is promised to be 3-colourable, what is the complexity of
finding a colouring of G with some larger number k > 3 of colours? Khanna, Linial, and
Safra [19] showed that this problem is NP-hard for k = 4, and it is generally believed that
the problem is NP-hard for any constant k. However, surprisingly little is known, and the
only improvement and best result to date, hardness for k = 5, was obtained only relatively
recently by Bulín, Krokhin, and Opršal [9]. On the other hand, the best polynomial-time
algorithm, due to Kawarabayashi and Thorup [18], uses a number of colours (slightly less
less than n1/5) that depends on the number n of vertices of the input graph.

More generally, it is a long-standing conjecture that finding a k-colouring of a c-colourable
graph is NP-hard for all constants k ≥ c ≥ 3, but the complexity of this approximate graph
colouring problem remains wide open. The results from [9] generalise to give hardness for
k = 2c − 1 and all c ≥ 3. For c ≥ 6, this was improved by Wrochna and Živný [29], who
showed that it is hard to colour c-colourable graphs with k =

(
c

⌊c/2⌋
)

colours. We remark that
conditional hardness (assuming different variants of Khot’s Unique Games Conjecture) for
approximate graph coloring for all k ≥ c ≥ 3 was obtained by Dinur, Mossel, and Regev [12],
Guruswami and Sandeep [15], and Braverman, Khot, Lifshitz, and Mulzer [6].

Given the slow progress on approximate graph colouring, we believe there is substantial
value in developing and extending the available methods for studying this problem and
related questions, and we hope that the present paper contributes to this effort. As our main
result (Theorem 1.1 below), we establish NP-hardness of a relevant hypergraph colouring
problem that falls into a general scope of promise constraint satisfaction problems; in the
process, we considerably extend a topological approach and toolkit for studying approximate
colouring that was introduced by Krokhin, Opršal, Wrochna, and Živný [21, 29, 23].

Graph colouring is a special case of the constraint satisfaction problem (CSP), which has
several different, but equivalent formulations. For us, the most relevant formulation is in
terms of homomorphisms between relational structures. The starting point is the observation
that finding a k-colouring of a graph G is the same as finding a graph homomorphism (an
edge-preserving map) G → Kk where Kk is the complete graph with k vertices. The general
formulation of the constraint satisfaction problem is then as follows (see Section 2.1 below for
more details): Fix a relational structure A (e.g., a graph, or a uniform hypergraph), which
parametrises the problem. CSP(A) is then the problem of deciding whether a given structure
X allows a homomorphism X → A. One of the celebrated results in the complexity theory
of CSPs is the Dichotomy Theorem of Bulatov [8] and Zhuk [30], which asserts that for every
finite relational structure A, CSP(A) is either NP-complete, or solvable in polynomial time.

The framework of CSPs can be extended to promise constraint satisfaction problems
(PCSPs), which include approximate graph colouring. PCSPs were first introduced by
Austrin, Guruswami, and Håstad [1], and the general theory of these problems was further
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developed by Brakensiek and Guruswami [5], and by Barto, Bulín, Krokhin, and Opršal [3].
Formally, a PCSP is parametrised by two relational structures A and B such that there exists
a homomorphism A → B. Given an input structure X, the goal is then to distinguish between
the case that there is a homomorphism X → A, and the case that there does not even exist a
homomorphism X → B (these cases are distinct but not necessarily complementary, and no
output is required in case neither holds); we denote this decision problem by PCSP(A, B). For
example, PCSP(K3, Kk) is the problem of distinguishing, given an input graph G, between
the case that G is 3-colourable and the case that G is not k-colourable. This is the decision
version of the approximate graph colouring problem whose search version we introduced
above. We remark that the decision problem reduces to the search version, hence hardness
of the former implies hardness of the latter.

PCSPs encapsulate a wide variety of problems, including versions of hypergraph colouring
studied by Dinur, Regev, and Smyth [13] and Brakensiek and Guruswami [4]. A variant of
hypergraph colouring that is closely connected to approximate graph colouring and generalises
(monotone1)1-in-3SAT is linearly ordered (LO) hypergraph colouring. A linearly ordered
k-colouring of a hypergraph H is an assignment of the colours [k] = {1, . . . , k} to the
vertices of H such that, for every hyperedge, the maximal colour assigned to elements of
that hyperedge occurs exactly once. Note that for graphs, linearly ordered colouring is the
same as graph colouring. Moreover, LO 2-colouring of 3-uniform hypergraphs corresponds to
(monotone) 1-in-3SAT (by viewing the edges of the hypergraph as clauses). In the present
paper, we focus on 3-uniform hypergraphs; whether such a graph has an LO k-colouring can
be expressed as CSP(LOk) for a specific relational structure LOk with one ternary relation
(see Section 2.1); in particular, 1-in-3SAT corresponds to CSP(LO2).

The promise version of LO hypergraph colouring was introduced by Barto, Battistelli,
and Berg [2], who studied the promise 1-in-3SAT problem. More precisely, let B be a fixed
ternary structure such that there is a homomorphism LO2 → B. Then PCSP(LO2, B) is
the following decision problem: Given an instance X of 1-in-3SAT, distinguish between
the case that X is satisfiable, and the case that there is no homomorphism X → B. For
structures B with three elements, Barto et al. [2] obtained an almost complete dichotomy;
the only remaining unresolved case is B = LO3, i.e., the complexity of PCSP(LO2, LO3).
They conjectured that this problem is NP-hard, and more generally that PCSP(LOc, LOk) is
NP-hard for all k ≥ c ≥ 2 [2, Conjecture 27]. Subsequently, the following conjecture emerged
and circulated as folklore (first formally stated by Nakajima and Živný [27]): PCSP(LO2, B)
is either solved by the affine integer programming relaxation, or NP-hard (see Ciardo, Kozik,
Krokhin, Nakajima, and Živný [10] for recent progress in this direction).

Promise LO hypergraph colouring was further studied by Nakajima and Živný [26],
who found close connections between promise LO hypergraph colouring and approximate
graph colouring. In particular, they provide a polynomial time algorithm for LO-colouring
2-colourable 3-uniform hypergraphs with a superconstant number of colours, by adapting
methods used for similar algorithms for approximate graph colouring, e.g., [18]. In the other
direction, NP-hardness of PCSP(LOk, LOc) for 4 ≤ k ≤ c follows relatively easily from
NP-hardness of the approximate graph colouring PCSP(Kk−1, Kc−1), as was observed by
Nakajima and Živný and by Austrin (personal communications).2

1 In the present paper, we will only consider the monotone version of 1-in-3SAT, i.e., the case where
clauses contain no negated variable, and we will often omit the adjective “monotone” in what follows.

2 To see why, observe that (LOk, LOc) promise primitive-positive defines (Kk−1, Kc−1); in particular,
we can define x ≠ y by ∃z · R(z, z, x) ∧ R(z, z, y) ∧ R(x, y, z). We then see that if R is interpreted in
LOk, then the required z exists if and only if x ̸= y, as required.
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Our main result is the following, which cannot be obtained using these arguments.

▶ Theorem 1.1. PCSP(LO3, LO4) is NP-complete.

Apart from the intrinsic interest of LO hypergraph colouring, we believe that the main
contribution of this paper is on a technical level, by extending the topological approach
of [23] and bringing to bear more advanced methods from algebraic topology, in particular
equivariant obstruction theory. To our knowledge, this paper is the first that uses these
methods in the PCSP context; we view this as a “proof of concept” and believe these tools
will be useful to make further progress on approximate graph colouring and related problems.

The proof of Theorem 1.1 has two main parts. For a natural number n, let (LO3)n be the
n-fold power of the relational structure LO3 (see Section 2.2). In the first part of the proof,
we use topological methods to show (Lemma 3.2 below) that with every homomorphism
f : (LO3)n → LO4, we can associate an affine map χ(f) : Zn

3 → Z3 (i.e., a map of the
form (x1, . . . , xn) 7→

∑n
i=1 αixi, for some αi ∈ Z3 and

∑n
i=1 αi ≡ 1 (mod 3)); moreover, the

assignment f 7→ χ(f) preserves natural minor relations that arise from maps π : [n] → [m],
i.e., χ is a minion homomorphism (see Section 2.2 for the precise definitions).

In the second part of the proof, we show by combinatorial arguments that the maps
χ(f) : Zn

3 → Z3 form a very restricted subclass of affine maps: They are projections Zn
3 → Z3,

(x1, . . . , xn) 7→ xi (Corollary 3.4). Theorem 1.1 then follows from a hardness criterion
(Theorem 2.6) obtained as part of a general algebraic theory of PCSPs [3].

In a nutshell, topology enters in the first part of the proof as follows. First, with every
homomorphism f : (LO3)n → LO4 we associate a continuous map f∗ : T n → P 2, where T n

is the n-dimensional torus (the n-fold power of the circle S1) and P 2 is a suitable target
space that will be described in more detail later; moreover, the cyclic group Z3 naturally
acts on both T n and P 2, and the map f∗ preserves these symmetries (it is equivariant).
This first step uses homomorphism complexes (a well-known construction in topological
combinatorics that goes back to the work of Lovász [24], see Section 2.3). Second, we show
that equivariant continuous maps T n → P 2, when considered up to a natural equivalence
relation of symmetry-preserving continuous deformation (equivariant homotopy), are in
bijection with affine maps Zn

3 → Z3. This second step uses equivariant obstruction theory.3
We remark that, with some additional work, our method could be extended to prove

NP-hardness of PCSP(LOk, LO2k−2) (but as remarked above, this already follows from
known hardness results for approximate graph colouring).

2 Preliminaries

We use the notation [n] for the n-element set {1, . . . , n}, and identify tuples a ∈ An with
functions a : [n] → A, and we use the notation ai for the ith entry of a tuple. We denote by
1X the identity function on a set X.

2.1 Promise CSPs
We start by recalling some fundamental notions from the theory of promise constraint
satisfaction problems, following the presentation of [3] and [22].

3 By contrast, the topological argument in [23] required understanding maps from T n to the circle S1

that preserve natural Z2-symmetries on both spaces, again up to equivariant homotopy; such maps can
be classified by more elementary arguments using the fundamental group because S1 is 1-dimensional.
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A relational structure is a tuple A = (A; RA
1 , . . . , RA

k ), where A is a set, and RA
i ⊆ Aar(Ri)

is a relation of arity ar(Ri). The signature of A is the tuple (ar(R1), . . . , ar(Rk)). For two
relational structures A = (A; RA

1 , . . . , RA
k ) and B = (B; RB

1 , . . . , RB
k ) with the same signature,

a homomorphism from A to B, denoted h : A → B, is a function h : A → B that preserves
all relations, i.e., such that h(a) ∈ RB

i for each i ∈ {1, . . . , k} and a ∈ RA
i where h(a) denotes

the componentwise application of h on the elements of a. To express the existence of such a
homomorphism, we will also use the notation A → B. The set of all homomorphisms from
A to B is denoted by hom(A, B).

Our focus is on structures with a single ternary relation R, i.e., pairs (A; RA) with
RA ⊆ A3. Moreover, most structures in this paper have a symmetric relation, i.e., the
relation RA is invariant under permuting coordinates. Such structures can be also viewed as
3-uniform hypergraphs, keeping in mind that edges of the form (a, a, b) are allowed.

▶ Definition 2.1 (Promise CSP). Fix two relational structures such that A → B. The
promise CSP with template A, B, denoted by PCSP(A, B), is a computational problem that
has two versions:

In the search version of the problem, we are given a relational structure X with the same
signature as A and B, we are promised that X → A, and we are tasked with finding a
homomorphism h : X → B.
In the decision version of the problem, we are given a relational structure X, and we
must answer Yes if X → A, and No if X ̸→ B. (These cases are mutually exclusive since
A → B and homomorphisms compose.)

The decision version reduces to the search version; thus for proving the hardness of both
versions of problems, it is sufficient to prove the hardness of the decision version of the
problem, and in order to prove tractability of both versions, it is enough to provide an
efficient algorithm for the search version.

To complete this section, we define the relational structure LOk, k ∈ N, that appears
in our main result. The domain of LOk is {1, . . . , k}, and LOk has one ternary relation,
containing precisely those triples (a, b, c) which contain a unique maximum. In other words,
(a, b, c) ∈ RLOk if and only if a = b < c, a = c < b, b = c < a, or all three elements a, b, c are
distinct. For example, (1, 1, 2) or (1, 2, 3) are triples of the relation of LO3, but not (2, 2, 1).

2.2 Polymorphisms and a hardness condition
Our proof of Theorem 1.1 uses a hardness criterion (Theorem 2.6 below) obtained as part of
a general algebraic theory of PCSPs developed in [3], which we will briefly review.

▶ Definition 2.2. Given a structure A, we define its n-fold power to be the structure An

with the domain An and

RAn

i = {(a1, . . . , aar(Ri)) | (a1(i), . . . , aar(Ri)(i)) ∈ RA for all i ∈ [n]}

for each i.
An n-ary polymorphism from a structure A to a structure B is a homomorphism from

An to B. We denote the set of all polymorphisms from A to B by pol(A, B), and the set of
all n-ary polymorphisms by pol(n)(A, B).4

4 Untraditionally, we use lowercase notation for polymorphisms to highlight that we are not considering
any topology on them contrary to the homomorphism complexes introduced below.

STACS 2024
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Concretely, in the special case of structures with a ternary relation, a polymorphism is
a mapping f : An → B such that, for all triples (u1, v1, w1), . . . , (un, vn, wn) ∈ RA, we have

(f(u1, . . . , un), f(v1, . . . , vn), f(w1, . . . , wn)) ∈ RB.

Polymorphisms are enough to describe the complexity of a PCSP up to certain log-space
reductions. Loosely speaking, the more complex the polymorphisms are, the easier the
problem is. We will use a hardness criterion that essentially states that the problem is hard if
the polymorphisms have no interesting structure. To define what do we mean by interesting
structure, we have to define the notions of minor, minion and minion homomorphism.

▶ Definition 2.3. Fix two sets A and B, and let f : An → B, π : [n] → [m] be functions.
The π-minor of f is the function g : Am → B defined by g(x) = f(x ◦ π), i.e., such that

g(x1, . . . , xm) = f(xπ(1), . . . , xπ(n))

for all x1, . . . , xm ∈ A. We denote the π-minor of f by fπ.

Abstracting from the fact that the polymorphism of any template are closed under taking
minors leads to the following notion of (abstract) minions:5

▶ Definition 2.4. An (abstract) minion M is a collection of sets M (n), where n > 0 is an
integer, and mappings πM : M (n) → M (m) where π : [n] → [m] such that πM ◦σM = (π◦σ)M

for each π and σ, and (1[n])M = 1M (n) .6

The polymorphisms of a template A, B form a minion M defined by M (n) = pol(n)(A, B),
and πM (f) = fπ. With a slight abuse of notation, we will use the symbol pol(A, B) for this
minion. Conversely, if M is an abstract minion, we will call πM (f) the π-minor of f , and
write fπ instead of πM (f).

An important example is the minion of projections denoted by P. Abstractly, it can be
defined by P(n) = [n] and πP = π. Equivalently, and perhaps more concretely, P can also
be described as follows: Given a finite set A with at least two elements and integers i ≤ n,
the i-th n-ary projection on A is the function pi : An → A defined by pi(x1, . . . , xn) = xi.
The set of coordinate projections is closed under minors as described above and forms a
minion isomorphic to P. In particular, P is also isomorphic to the polymorphism minion
pol(LO2, LO2).

▶ Definition 2.5. A minion homomorphism from a minion M to a minion N is a collection
of mappings ξn : M (n) → N (n) that preserve taking minors, i.e., such that for each π : [n] →
[m], ξm ◦ πM = πN ◦ ξn. We denote such a homomorphism simply by ξ : M → N , and
write ξ(f) instead of ξn(f) when the index is clear from the context.7

Using the minion P, we can now formulate the following hardness criterion (which follows
from [3, Theorem 3.1 and Example 2.17] and can also be derived from [3, Corollary 5.2]; see
also Section 5.1 of that paper for more details).

▶ Theorem 2.6 ([3, corollary of Theorem 3.1]). For every promise template A, B such that
there is a minion homomorphism ξ : pol(A, B) → P, PCSP(A, B) is NP-complete.

5 Abstract minions as defined here are a generalization of so-called function minions defined in [3]; the
relation between a function minion and an abstract minion is analogous to the distinction between a
permutation group and a group.

6 In the language of category theory, a minion is defined as a functor from the category of finite sets
to the category of sets, which satisfies a non-triviality condition: M (X) = ∅ if and only X = ∅. The
definition given abuses the fact that the sets [n] form a skeleton of the category of finite sets.

7 A minion homomorphism is a natural transformation between the two functors.



M. Filakovský, T.-V. Nakajima, J. Opršal, G. Tasinato, and U. Wagner 34:7

2.3 Homomorphism complexes
We will need a number of notions from topological combinatorics, which we will review briefly
now. We refer the reader to [25] for a detailed and accessible introduction (see also [23], in
particular for further background on homomorphism complexes).

A (finite, abstract) simplicial complex K is finite system of sets that is downward closed
under inclusion, i.e., F ⊆ G ∈ K implies F ∈ K. The (finite) set V =

⋃
K is called the set of

vertices of K, and the sets in K are called simplices or faces of the simplicial complex. A
simplicial map f : K → L between simplicial complexes is a map between the vertex sets that
preserves simplices, i.e., f(F ) ∈ L for all F ∈ K.

An important way of constructing simplicial complexes is the following: Let P be
a partially ordered set (poset). A chain in P is a subset {p0, . . . , pk} ⊆ P such that
p0 < p2 < · · · < pk. The set of all chains in P is a simplicial complex, called the order
complex of P . Note that an order-preserving map between posets naturally induces a
simplicial map between the corresponding order complexes.

With every simplicial complex K, one can associate a topological space |K|, called the
underlying space or geometric realization of K, as follows: Identify the vertex set of K with a set
of points in general position in a sufficiently high-dimensional Euclidean space (here, general
position means that the points in F ∪ G are affinely independent for all F, G ∈ K). Then, in
particular, the convex hull conv(F ) is a geometric simplex for every F ∈ K, and the geometric
realization can be defined as the union |K| =

⋃
F ∈K conv(F ) of these geometric simplices (see,

e.g., [25, Lemma 1.6.2]). We also say that the simplicial complex K is a triangulation of the
space |K|. Every simplicial map f : K → L between abstract simplicial complexes induces
a continuous map |f | : |K| → |L| between their geometric realizations. In what follows, we
will often blur the distinction between a simplicial complex and its geometric realization
(especially when considering properties that do not depend on a particular triangulation).

Following [25, Section 5.9], we define homomorphism complexes as order complexes of
the poset of multihomomorphisms from one structure to another.8

▶ Definition 2.7. Suppose A, B are relational structures. A multihomomorphism from A
to B is a function f : A → 2B \ {∅} such that, for each relational symbol R and all tuples
(u1, . . . , uk) ∈ RA, we have that

f(u1) × · · · × f(uk) ⊆ RB.

We denote the set of all such multihomomorphisms by mhom(A, B).

Multihomomorphisms are partially ordered by component-wise comparison, i.e., f ≤ g if
f(u) ⊆ g(u) for all u ∈ A. They can also be composed in a natural way, i.e., if f ∈ hom(A, B)
and g ∈ mhom(B, C), then (g ◦ f)(a) =

⋃
b∈f(a) g(b) is a multihomomorphism from A to C.

▶ Definition 2.8. Let A and B be two structures of the same signature. The homomorphism
complex Hom(A, B) is the order complex of the poset of multihomomorphisms from A to B,
i.e., the vertices of this simplicial complex are multihomomorphisms from A to B, and faces
correspond to chains f1 < f2 < · · · < fk of such multihomomorphisms.

8 There are several alternative definitions of homomorphism complexes that lead to topologically equivalent
spaces; e.g., the definition given here is the barycentric subdivision of the version of the homomorphism
complex defined in [23, Definition 3.3].
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By the discussion above, every homomorphism f : A → B induces a simplicial map
f∗ : Hom(C, A) → Hom(C, B) between homomorphism complexes, and hence a continuous
map between the corresponding spaces (defined on vertices by mapping a multihomomorphism
m to the composition f ◦ m, and then extended linearly).

In the case of graphs, the homomorphism complex Hom(K2, G) is commonly used9 to
study graph colourings, including in [23]. In the present paper, we work instead with the
homomorphism complex Hom(R3, A) where R3 is the structure with 3 elements and all
rainbow tuples, i.e., tuples (a, b, c) such that a, b, and c are pairwise distinct; this structure is
a hypergraph analogue of the graph K2.

Note that a homomorphism h : R3 → A can be identified with a triple (h(1), h(2), h(3)) ∈
RA; conversely, every triple (a, b, c) ∈ RA also corresponds to a homomorphism as long
as RA is symmetric. Similarly, a multihomomorphism m can be identified with a triple
(m(1), m(2), m(3)) of subsets of A such that m(1) × m(2) × m(3) ⊆ RA.

2.4 Group actions

Throughout this paper, we will work with actions of the cyclic group Z3 on various objects
(relational structures, simplicial complexes, topological spaces, groups, etc.) by structure-
preserving maps (homomorphisms, simplicial maps, continuous maps, etc.). Thinking of
Z3 as the multiplicative group with three elements 1, ω, ω2 (with the understanding that
ωi · ωj = ωi+j (mod 3) and ω0 = 1), such an action is described by describing the action of
the generator ω. Thus, specifying the action of Z3 on a structure A amounts to specifying
a homomorphism ω : A → A such that ω3 = 1A (hence, ω is necessarily an isomorphism;
note that we are abusing notation here, writing ω both for the generator of the group and
the isomorphism by which it acts). Analogously, an action of Z3 on a simplicial complex
(or a topological space) is described by specifying a simplicial isomorphism (respectively, a
homeomorphism) ω of order 3 from the complex (or space) to itself. We will mostly work
with actions that are free, which in our special case of Z3-actions simply means that ω has
no fixed points.

In particular, consider the action of Z3 that acts on R3 by cyclically permuting elements.
This action induces an action on multihomomorphisms h : R3 → A by pre-composition, and
this action extends naturally to an action of Z3 on Hom(R3, A).10

It is not hard to show that the action on Hom(R3, A) is free as long as A has no constant
tuples: If a multihomomorphism m is a fixed point of a non-trivial element of Z3, then
m(1) = m(2) = m(3), and since m(1) ̸= ∅ and m(1) × m(2) × m(3) ⊆ RA then RA contains
a constant tuple (a, a, a) for any a ∈ m(1). Consequently, we may observe that the action
does not fix any face of the complex.

For every homomorphism f : A → B, the induced simplicial map f∗ : Hom(R3, A) →
Hom(R3, B) (defined on vertices by mapping multihomomorphism m to the composition
f ◦ m) is equivariant; as remarked above, we will often identify f∗ with the corresponding
continuous map between the underlying spaces.

9 Some papers use a different complex, the so-called box complex, that leads to a homotopically equivalent
(see below) space.

10 This is analogous to the action of Z2 on graph homomorphism complexes Hom(K2, G) used, for example,
in [23].
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2.5 Homotopy
Two continuous maps f, g : X → Y between topological spaces are called homotopic, denoted
f ∼ g, if there is a continuous map h : X × [0, 1] → Y such that h(x, 0) = f(x) and
h(x, 1) = g(x); the map h is called a homotopy from f to g. Note that a homotopy can also
be through of as a family of maps h(·, t) : X → Y that varies continuously with t ∈ [0, 1]. In
what follows, X and Y will often be given as simplicial complexes, but we emphasize that
we will generally not assume that the maps (or homotopies) between them are simplicial
maps. Two spaces X and Y are said to be homotopy equivalent if there are continuous maps
f : X → Y and g : Y → X such that fg ∼ 1Y and gf ∼ 1X .

These notions naturally generalize to the setting of spaces with group actions. If Z3 acts
on two spaces X and Y then a continuous map f : X → Y is (Z3-)equivariant if f preserves
the action, i.e., f ◦ ω = ω ◦ f . Two equivariant maps f, g : X → Y are said to be equivariantly
homotopic, denoted by f ∼Z3 g, if there exists an equivariant homotopy between them, i.e., a
homotopy h : X × [0, 1] → Y from f to g such that all maps h(·, t) : X → Y are equivariant.
We denote by [X, Y ]Z3 the set of all equivariant homotopy classes of (equivariant) maps from
X to Y , i.e.,

[X, Y ]Z3 = {[f ] | f : X → Y is equivariant}

where [f ] denotes the set of all equivariant maps g such that f ∼Z3 g.

3 Overview of the proof

We give a brief overview of the proof and the core techniques used. The result is proved
by a combination of topological, combinatorial, and algebraic methods. In particular, the
hardness is provided by analysing the polymorphisms of the template together with a hardness
criterion from [3], see Theorem 2.6. In short, our goal is to provide a minion homomorphism
from the polymorphism minion pol(LO3, LO4) to the minion of projections P (which is
incidentally isomorphic to the polymorphism minion of 3SAT). The core of our contribution
is in providing deep-enough understanding of polymorphisms of our template so that the
minion homomorphism follows. The proof has two parts: topological and combinatorial.

3.1 Topology
The first part builds on the topological method introduced by Krokhin, Opršal, Wrochna,
and Živný [21, 29, 23]. The core idea is that, similarly to approximate graph colouring, there
are unreasonably many polymorphisms between the linear-ordering hypergraphs, but most
of them are very similar. This means that each polymorphism contains a lot of noise but
relatively little information. We use topology to remove this noise, and uncover a signal.
This is done by considering the polymorphisms “up to homotopy” – essentially claiming that
the homotopy class of a polymorphism carries the information and everything else is noise.

In order to formalise this idea, we consider for each hypergraph A the topological space
Hom(R3, A). Consequently, we get that each the homomorphism f : A → B induces a
continuous map f∗ : Hom(R3, A) → Hom(R3, B). Consequently, we identify two homo-
morphisms f, g if f∗ and g∗ are homotopic to each other. The same is then extended to
polymorphisms, although this requires to overcome a few subtle technical issues. The key
observation for this extension is that the power of a homomorphism complex is homotopically
equivalent to a homomorphism complex of the corresponding power (see, e.g., [20]).
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This general idea requires a refinement to avoid trivial collapses, i.e., we have to avoid
the case when f∗ is homotopic to a constant map which is always a continuous map between
topological spaces. In our case, this is avoided by keeping track of the action of Z3 on
the spaces Hom(R3, A) and Hom(R3, B) described in the preliminaries. Consequently, we
consider maps only up to Z3-equivariant homotopy (note that the map f∗ induced by a
homomorphism is always equivariant). Further in this exposition, we will silently assume
that the action is always present, and all notions are equivariant – the formal proof below is
presented with the action in mind.

At this point we sketched how to construct a map that assigns to a polymorphism
f : An → B, an equivariant continuous map f∗ : Hom(R3, An) → Hom(R3, B). This map
does not necessarily preserve minors, nevertheless, it preserves minors up to homotopy, i.e.,
for each π : [n] → [m], we have that (fπ)∗ and (f∗)π are equivariantly homotopic (this is since
Hom(R3, A)n and Hom(R3, An) are only homotopically equivalent and not homeomorphic).
This allows us to define a minion homomorphism between the polymorphism minion pol(A, B)
and the minion of “homotopy classes of continuous maps” from powers of Hom(R3, A) to
Hom(R3, B).

▶ Definition 3.1. Let X and Y be two topological spaces with an action of G. The minion
of homotopy classes of equivariant polymorphisms from X to Y is the minion hpol(X, Y )
defined by

hpol(n)(X, Y ) = [Xn, Y ]G

and [f ]π = [fπ].

Note that minors are well-defined in this minion since if f and g are equivariantly
homotopic, then so are fπ and gπ for all maps π. Hence, we have a minion homomorphism

ζ : pol(A, B) → hpol(Hom(R3, A), Hom(R3, B)).

This part of the proof follows [23], namely this minion homomorphism can be constructed by
following the proof of [23, Lemma 3.22] while substituting R3 for K2, and Z3 for Z2. We
give a general categorical proof in the full version of this paper [14, Appendix C].

In order to describe the minion hpol(Hom(R3, A), Hom(R3, B)), we need to classify all
homotopy classes of maps between the corresponding topological spaces. The problem of
classifying maps between two spaces up to homotopy is well-studied in algebraic topology,
although it can be immensely difficult, e.g., maps between spheres of dimensions m and n

(i.e., [Sn, Sm]) has been classified for many pairs m, n, but the classification for infinitely
many remaining cases is still open, and it is considered to be a central open problem in
algebraic topology. We take advantage of the topological methods developed to solve these
problems. Moreover, we may simplify the matters considerably by replacing the spaces
Hom(R3, LO3) and Hom(R3, LO4) with spaces that allow equivariant maps to and from,
resp., these spaces, and are better behaved from the topological perspective. This is due to
the fact that if there are equivariant maps X ′ → X and Y → Y ′, then there is a minion
homomorphism

η : hpol(X, Y ) → hpol(X ′, Y ′).

This minion homomorphism is defined in the same way as a minion homomorphism from
pol(A, B) to pol(A′, B′) if A′, B′ is a homomorphic relaxation of A, B, i.e., if A′ → A and
B → B′ [3, Lemma 4.8(1)]. To substantiate our choice of X ′ and Y ′, let us start with
describing some topological properties of the spaces Hom(R3, LO3) and Hom(R3, LO4).
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(b) S1 in Hom(R3, LO3).
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(c) Hom(R3, LO4).

Figure 1 Some representations of spaces Hom(R3, LO3) and Hom(R3, LO4) up to Z3 homotopy
equivalence.

It may be observed that the space Hom(R3, LO3) is homotopically equivalent to the
simplicial complex depicted in Fig. 1a where the Z3 acts on each row cyclically. We choose
X ′ so that X ′ → Hom(R3, LO3), and its powers are topologically simple but non-trivial.
A natural choice is S1 which can be obtained from the simplicial complex by removing all
horizontal edges. The action of Z3 on the circle can be then equivalently described as a
rotation by 2π/3. Consequently, the powers of this space are n-dimensional tori T n with
component-wise (diagonal) action of Z3; by definition T n is the n-th power of S1.

The space Hom(R3, LO4) is a bit more complicated, in particular it is not homotop-
ically equivalent to a 1-dimensional space. Up to equivalence, it is the order complex of
the partial order depicted in Fig. 1c where Z3 acts on rows cyclically.11 It may be ob-
served that Hom(R3, LO4) is simply connected, i.e., that π1(Hom(R3, LO4)) = 0, and that
π2(Hom(R3, LO4)) is a non-trivial group. Moreover, the action of Z3 on Hom(R3, LO4)
induces a non-trivial action of Z3 on π2(Hom(R3, LO4)). The precise group and action is
described in the full version of this article [14, Appendix A], nevertheless it is irrelevant
for us at this point. The space that we use to replace Hom(R3, LO4), and denote by P 2,
shares these two properties with Hom(R3, LO4), and moreover πn(P 2) = 0 for all n > 2.
Spaces which have only one non-trivial homotopy group (and are sufficiently “nice”) are
called Eilenberg-MacLane spaces, and denoted by K(G, n) where πn(K(G, n)) = G is the
only non-trivial homotopy group. These spaces are well-defined up to homotopy equivalence.
They are also closely connected with cohomology: One of the core statements of obstruction
theory provides a bijection [X, K(G, n)] ≃ Hn(X; G) for each Abelian group G and n ≥ 1.
Consequently, it is much easier to classify maps into an Eilenberg-MacLane space up to
homotopy. The space P 2 is in fact an Eilenberg-MacLane space K(G, 2) where G is a suitable
group with a free action of Z3, it is chosen in such a way that it allows an equivariant
homomorphism Hom(R3, LO4) → P 2 while allowing for much easier classification of maps
into it.

Next, we prove that the minion hpol(S1, P 2) is isomorphic to the minion Z3 of affine maps
modulo 3, i.e., maps Zn

3 → Z3 of the form (x1, . . . , xn) 7→
∑n

i=1 αixi where α1, . . . , αn ∈ Z3
are fixed constants such that

∑n
i=1 αi = 1 (mod 3). We construct this minion homomorphism

by classifying equivariant continuous maps from T n with the diagonal action of Z3 to P 2.
Since we are interested in equivariant maps and equivariant homotopy, we use a version of
equivariant cohomology, called Bredon cohomology, introduced in [7]. For our purpose, this
equivariant cohomology is defined analogously to regular cohomology except the coefficients

11 In the proof we will not need such a precise description of the space, and we will only provide an
equivariant map Hom(R3, LO4) → L4 where L4 is the space represented by the poset in Fig. 1c.
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have a Z3-action, and this action together with the action of Z3 on the space is taken into
account in all computations. The space P 2 has the property that for every Z3-space X

such that there is an equivariant map X → P 2, there is a bijection [X, P 2]Z3 ≃ H2
Z3

(X; G)
where G is the group with a Z3 action described above. Again, this is a consequence of the
equivariant obstruction theory. We then compute that

H2
Z3

(T n; G) ≃ Zn−1
3 ,

and hence observe that there are 3n−1 elements in hpol(n)(S1, P 2). This means that
hpol(S1, P 2) and Z3 have the same number of elements of each arity. To obtain the
required minion isomorphism, we provide a minion homomorphism

Z3 → [S1, P 2]Z3 ,

and show that it is injective. More precisely, this homomorphism is given by assigning to
each affine map f : Zn

3 → Z3 (or a tuple of its coefficients), a continuous map µ(f) : T n → P 2,
and showing that if f ≠ g then µ(f) and µ(g) are not equivariantly homotopic, and that
µ(fπ) and µ(f)π are equivariantly homotopic for all π. Since both minions have the same
number of elements of each arity (and this number is finite), µ is bijective, and hence a
minion isomorphism. All these computations are presented in detail in the full version of
this paper [14, Appendix B].

The above isomorphism together with the composition of ζ, η, and ξ provides the following
lemma.

▶ Lemma 3.2. There is a minion homomorphism χ : pol(LO3, LO4) → Z3 where Z3
denotes the minion of affine maps over Z3.

This minion homomorphism is not enough to prove NP-hardness. Although we could
conclude from it, for example, that PCSP(LO3, LO4) is not solved by any level of Sherali-
Adams hierarchy (this is a direct consequence of [11, Theorems 3.3 and 5.2]). To provide
hardness, we need to further analyse the image of χ which is done using combinatorial
arguments.

3.2 Combinatorics
In the second part, which is a combinatorial argument presented in Section 4, we show that
the image of χ avoids all the affine maps except of projections. This is done by analysing
binary polymorphisms from LO3 to LO4.

We use the notion of reconfiguration of homomorphisms to achieve this. Loosely speaking,
a homomorphism f is reconfigurable to a homomorphism g if there is a path of homomorphism
starting with f and ending with g such that neighbouring homomorphisms differ in at most
one value. (For graphs and hypergraphs without tuples with repeated entries this can be taken
as a definition, but with repeated entries there are two sensible notions of reconfigurations
that do not necessary align.) The connection between reconfigurability and topology was
described by Wrochna [28], and we use these ideas to connect reconfigurability with our
minion homomorphism ξ.

We show that any binary polymorphism f : LO2
3 → LO4 is reconfigurable to an essentially

unary polymorphism, i.e., that there is an increasing function h : LO3 → LO4 such that f

is reconfigurable to the map (x, y) 7→ h(x) or to the map (x, y) 7→ h(y). Further, we show
that if f and g are reconfigurable to each other, then χ(f) = χ(g). Together with the above,



M. Filakovský, T.-V. Nakajima, J. Opršal, G. Tasinato, and U. Wagner 34:13

this means the image of χ2 : hpol(2)(S1, P 2) → Z
(2)

3 omits an element. More precisely, we
have the following lemma where P3 denotes the minion of projections on a three element set
(which is a subminion of Z3).

▶ Lemma 3.3. For each binary polymorphism f ∈ pol(2)(LO3, LO4), χ(f) ∈ P
(2)
3 .

This lemma is then enough to show that the image of χ omits all affine maps except
projections.

▶ Corollary 3.4. χ is a minion homomorphism pol(LO3, LO4) → P3.

Proof. We show that if a subminion M ⊆ Z3 contains any non-projection then it contains
the map g : (x, y) 7→ 2x + 2y. Let f ∈ M (n) depends on at least 2 coordinates, and let
f(x1, . . . , xn) = α1x1 + · · · + αnxn. First assume that αi = 2 for some i. Then the binary
minor given by π : [n] → [2] defined by π(i) = 1 and π(j) = 2 if j ̸= i is g since its first
coordinate is 2 and the second is 1 − 2 = 2 (mod 3). Otherwise, we have that αi ∈ {0, 1}
for all i. In particular, there are i ̸= j such that αi = αk = 1 since f depends on at least 2
coordinates. Consequently, the minor defined by π′ : [n] → [2] where π′(i) = π′(j) = 1 and
π′(k) = 2 for k /∈ {i, j} is again g by a similar argument.

Finally, the image of ξ is a subminion of Z3, and since it omits g and every subminion of
Z3 contains P3, it is equal to P3 which yields the desired. ◀

As mentioned before, the above corollary combined with Theorem 2.6 provides the main
result of this paper, the NP-completeness of PCSP(LO3, LO4) (Theorem 1.1).

4 Combinatorics of reconfigurations

The goal of this section is a careful combinatorial analysis of the binary polymorphisms. In
particular, we will describe how the minion homomorphism ξ : pol(LO3, LO4) → P acts on
binary polymorphisms. This is the key to the argument that the image of ξ is the projection
minion and the whole of pol(Z3).

We say that two polymorphisms f, g ∈ pol(n)(LO3, LO4) are reconfigurable one to the
other if a path between f and g exists within the homomorphism complex Hom(LOn

3 , LO4).
(Note that every polymorphism is a homomorphism LOn

3 → LO4, and hence a vertex of the
homomorphism complex.)

We will use the following combinatorial criterion that ensures that two polymorphisms
are reconfigurable to each other. The proof is subtly dependent on some properties of the
structure LO4.

▶ Lemma 4.1. Let A be a symmetric relational structure. If f, g : A → LO4 are two
homomorphisms such that f and g differ in exactly one value, i.e., there is d ∈ A such that
for all a ∈ A \ {d} we have f(a) = g(a), then f and g are reconfigurable.

Proof. We first claim that under the above assumption, the multifunction m : A → 2[4] given
by m(a) = {f(a), g(a)} is a multihomomorphism. Assume that (a, b, c) ∈ RA. Observe that
for any x ∈ A \ {d} we have f(x) = g(x) and hence m(x) = {f(x)} = {g(x)}. We now have
cases depending on how many times d appears in {a, b, c}.
d does not appear. In this case m(a) × m(b) × m(c) = {(f(a), f(b), f(c))} ⊆ RLO4 .
d appears once. Suppose d = a, d ≠ b, d ̸= c; then m(a) × m(b) × m(c) = {f(a), g(a)} ×

{f(b)} × {f(c)} = {(f(a), f(b), f(c)), (g(a), g(b), g(c))} ⊆ RLO4 , as f(b) = g(b), f(c) =
g(c).
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d appears twice. Suppose d = a = b, d ̸= c; then as (f(a), f(b), f(c)) = (f(d), f(d), f(c)) ∈
RLO4 and likewise (g(d), g(d), g(c)) ∈ RLO4 , we have f(d) < f(c) and g(d) < g(c) = f(c).
Consequently, m(a) × m(b) × m(c) = {f(d), g(d)}2 × {f(c)} ⊆ RLO4 , since every tuple
has a unique maximum, namely f(c).

d appears thrice. This case (i.e., d = a = b = c) is impossible, as A → LO4, and thus A
has no constant tuples.

Thus m is a multihomomorphism in all cases.
We can now define a path p : [0, 1] → Hom(LO3, LO4) by p(0) = f , p(1/2) = m, p(1) = g,

and extending linearly. ◀

We note, without a proof, if f and g are reconfigurable, then there is a sequence
f = f0, . . . , fk = g such that fi and fi+1 differ in exactly one point. A polymorphism
f ∈ pol(2)(LO3, LO4) has, as its domain, the set [3]2, and thus it can naturally be represented
as a matrix:

f(1, 1) f(1, 2) f(1, 3)
f(2, 1) f(2, 2) f(2, 3)
f(3, 1) f(3, 2) f(3, 3)

.

When we speak of “rows” or “columns” of f this is what is meant.
We show the following lemma from which we will be able to derive that each binary

polymorphism is reconfigurable to an essentially unary one. (Recall that a function f : An →
B is essentially unary if it depends on at most one input coordinate.) The lemma is an
analogue of the Trash Colour Lemma for polymorphisms from Kd to K2d−2.

▶ Lemma 4.2. For each f ∈ pol(2)(LO3, LO4) there exists an increasing function h ∈
pol(1)(LO3, LO4), a coordinate i ∈ {1, 2}, and a colour t ∈ [4] (called trash colour) such that

f(x1, x2) ∈ {h(xi), t}

for all x1, x2 ∈ [3].

Proof. Throughout we will implicitly use the fact that if a < b and c < d then f(a, c) < f(b, d),
as ((a, c), (a, c), (b, d)) ∈ RLO2

3 .
First, we claim that every colour c ∈ [4] appears inside only one row or only one column of

f , i.e., that either there is a ∈ [3] such that f(x, y) = c implies x = a, or there is b ∈ [3] such
that f(x, y) = c implies y = b. For contradiction, assume that this is not the case, i.e., there
are x, y and x′, y′ ∈ [3] such that f(x, y) = f(x′, y′) = c, x ≠ x′, and y ̸= y′. The claim is
proved by case analysis as follows. First, observe that either x < x′ and y > y′, or x > x′

and y < y′, since otherwise (x, y) and (x′, y′) are comparable, and hence f(x, y) ̸= f(x′, y′).
Since the two cases are symmetric, we may assume without loss of generality that x < x′

and y > y′. Furthermore, since ((x, y), (x′, y′), (x, y′)) ∈ RLO2
3 , and f(x, y) = f(x′, y′) = c,

we have f(x, y′) > c. Similarly, as x′ > x, y > y′ we have that f(x′, y) > f(x, y′) > c. This
means that c ∈ {1, 2}. We consider each case separately.

Case c = 1. We claim that x = y′ = 1 since if x > 1, then f(1, y′) < f(x, y) =
1, and similarly if y′ > 1. This implies that f(1, 1) > 1 since ((1, 1), (x, x′), (y, y′)) =
((1, 1), (1, y), (x′, 1)) ∈ RLO2

3 and f(x, y) = f(x′, y′) = 1. As 1 < f(1, 1) < f(2, 2) < f(3, 3) ≤
4, we have that f(1, 1) = 2, f(2, 2) = 3, and f(3, 3) = 4. We now have three cases.
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y = 3. We argue that f(1, 2) has no possible value. First, the value 1 is not possible
since ((1, 2), (x, y), (x′, y′)) = ((1, 2), (1, 3), (x′, 1)) ∈ RLO2

3 , f(x, y) = 1, and f(x′, y′) = 1.
f(1, 2) = 2 is not possible since ((1, 2), (1, 1), (x′, y′)) = ((1, 1), (1, 2), (x′, 1)) ∈ RLO2

3 ,
and f(x′, y′) = 1, f(1, 1) = 2. f(1, 2) = 3 is not possible since ((1, 2), (2, 2), (x, y)) =
((1, 2), (2, 2), (1, 3)) ∈ RLO2

3 , and f(x, y) = 1, f(2, 2) = 3. Finally, f(1, 2) < f(3, 3) = 4,
so f(1, 2) ̸= 4.

x′ = 3. Here the contradiction follows analogously to the previous case.
x′ = y = 2. We consider the pair of values f(1, 3) and f(3, 1). First, we have f(1, 3) >

f(1, 2) = f(x, y) = 1 and f(3, 1) > f(2, 1) = f(x′, y′) = 1. As ((1, 3), (1, 1), (x′, y′)) =
((1, 3), (1, 1), (2, 1)) ∈ RLO2

3 and f(1, 1) = 2, f(x′, y′) = 2 we have that f(1, 3) ̸= 2;
symmetrically f(3, 1) ̸= 2. We also have f(1, 3) ̸= 3 since ((1, 3), (x, y), (2, 2)) =
((1, 3), (1, 2), (2, 2)) ∈ RLO2

3 and f(1, 2) = 1, f(2, 2) = 3; symmetrically f(3, 1) ̸= 2.
Thus f(1, 3) = f(3, 1) = 4. However, then (f(1, 2), f(1, 3), f(3, 1)) = (1, 4, 4) ̸∈ RLO4 ,
which is not possible, as ((1, 2), (1, 3), (3, 1)) ∈ RLO2

3 , which yields our contradiction.

Case c = 2. As f(x′, y) > f(x, y′) > c = 2, we have that f(x, y′) = 3 and f(x′, y) = 4.
Since f(x, y′) = 3 then either x > 1 or y′ > 1, otherwise f(3, 3) > f(2, 2) > f(1, 1) = 3 yields
a contradiction. By symmetry it is enough to discuss the case y′ = 2 and y = 3. Finally, we
have f(x, 1) < f(x′, 2) = 2, hence f(x, 1) = 1 which is in contradiction with

(1, 2, 2) = (f(x, 1), f(x′, 2), f(x, 3)) ∈ RLO4 .

Thus we get a contradiction in all cases, and hence each colour appears in only one row or
only one column.

We say that a colour c ∈ [4] is of column type if f(x, y) = c implies x = ac for some fixed
ac ∈ [3], and is of row type if f(x, y) = c implies y = bc for some bc ∈ [3]. Note that a colour
can be both row and column type, in which case we may choose either. We claim that there
are at least three colours that share a type – otherwise there are two colours of row type
and two colours of column type which would leave an element of LO2

3 uncoloured. A similar
observation also yields that there has to be three colours of the same type that cover all rows
or all columns, i.e., such that the constants ac or bc (depending on the type) are pairwise
distinct. Let us assume they are of the column type; the other case is symmetric. Further,
we may assume that the forth colour is of the row type, since if two colours share a column,
then one of the colours appears only once, and can be therefore considered to be of row type.

We define h(a) to be the colour c of column type with ac = a, then we have f(x, y) ∈
{h(x), t} where t is the colour of the row type. Finally, we argue that h is increasing. This is
since there are y < y′ with y ̸= bt and y′ ̸= bt, and consequently

h(1) = f(1, y) < f(2, y′) = h(2) = f(2, y) < f(3, y′) = h(3).

This concludes the proof of the lemma. ◀

▶ Lemma 4.3. Every binary polymorphism f ∈ pol(2)(LO3, LO4) is reconfigurable to an
essentially unary polymorphism.

Proof. The proof relies on Lemma 4.2. We prove our result by induction on the number of
appearances of the trash colour. The result is clear if the trash colour never appears; so assume
it appears at least once. Thus suppose without loss of generality that f(x, y) ∈ {h(x), t} for
some increasing h ∈ pol(1)(LO3, LO4), and that in particular f(x0, y0) = t. Furthermore,
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suppose that among all such pairs, (x0, y0) is the one that maximises x0. We claim that
f ′(x, y), which is equal to f(x, y) everywhere except that f ′(x0, y0) = h(x0) is also a
polymorphism, which gives us our inductive step.

Consider any ((x, y), (x′, y′), (x′′, y′′)) ∈ RLO2
3 ; if (x0, y0) ̸∈ {(x, y), (x′, y′), (x′′, y′′)}, then

(f ′(x, y), f ′(x′, y′), f ′(x′′, y′′)) = (f(x, y), f(x′, y′), f(x′′, y′′)) ∈ RLO4 , so assume without loss
of generality that (x′′, y′′) = (x0, y0). We now have two cases, depending on where the unique
maximum of (f(x, y), f(x′, y′), f(x0, y0)) ∈ RLO4 falls.

f(x, y) is the unique maximum. In this case, f(x, y) > f(x0, y0) = t and f(x, y) >

f(x′, y′). We must show that f ′(x0, y0) = h(x0) ̸= f(x, y). Since we know that f(x, y) ̸= t

and thus f(x, y) = h(x), and furthermore that h is increasing, this is the same as showing
that x ̸= x0. Suppose for contradiction that x = x0; thus x′ > x. If f(x′, y) = h(x′) >

h(x), then f(x, y) would not be the unique maximum, so f(x′, y) = t. This contradicts
the choice of (x0, y0), as x′ > x0.

f(x′, y′) is the unique maximum. This case is identical to the previous case.
f(x0, y0) is the unique maximum. It follows that f(x, y) < t and f(x′, y′) < t, hence
f(x, y) = h(x) and f(x′, y′) = h(x′). Thus since (x, x′, x0) ∈ RLO3 and h is increasing, it
follows that (f ′(x, y), f ′(x′, y′), f ′(x0, y0)) = (h(x), h(x′), h(x0)) ∈ RLO4 .

Thus we see that this f ′ is indeed a polymorphism, and contains one fewer trash colour.
Thus our conclusion follows. ◀

In Figure 2, we can see the reconfiguration graph of pol(2)(LO3, LO4). This shows how
one can reconfigure all polymorphisms to essentially unary ones. In the diagram, we show a
polymorphism in its matrix representation.

It can be also observed that unary polymorphisms that depend on the same coordinate are
reconfigurable to each other. Moreover, since every connected component of Hom(LO2

3, LO4)
contains a homomorphism, and hence a unary one, we can derive from these observation that
Hom(LO2

3, LO4) has at most two connected components. In the full version [14, Appendix B],
we also prove that it has at least two components using topological methods.

Finally, we conclude with the statement that we actually use in the proof, which follows
from well-known properties of homomorphism complexes.

▶ Lemma 4.4. Let A, B, and C be three structures, G a group acting on A, and assume
that f, g ∈ hom(B, C) are reconfigurable. Then the induced maps f∗, g∗ : Hom(A, B) →
Hom(A, C) are G-homotopic.

Proof. First, observe that the composition of multihomomorphisms as a map mhom(A, B) →
mhom(B, C) → mhom(A, C) is monotone. This means that the composition extends linearly
to a continuous map

c : Hom(B, C) × Hom(A, B) → Hom(A, C)

(see also [20, Section 18.4.3]). Since the composition is associative, we obtain that the map c

is equivariant (under an action of any automorphism of A on the second coordinate).
Finally, we have that f∗(x) = c(f, x) by the definition of f∗, and analogously, g∗(x) =

c(g, x). Consequently, if h : [0, 1] → Hom(B, C) is an arc connecting f and g, i.e., such that
h(0) = f and h(1) = g, then the map H : [0, 1] × Hom(A, B) → Hom(A, C) defined by

H(t, x) = c(h(t), x)

is a homotopy between f∗ and g∗. This H is also equivariant since c is equivariant. ◀
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The following corollary then follows directly from the above and Lemma 4.3.

▶ Corollary 4.5. For every binary polymorphism f ∈ pol(2)(LO3, LO4), the induced map
f∗ : Hom(R3, LO3)2 → Hom(R3, LO4) is equivariantly homotopic either to the map (x, y) 7→
i∗(x), or to the map (x, y) 7→ i∗(y) where i : LO3 → LO4 is the inclusion.

References
1 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ε)-Sat is NP-hard. SIAM Jounal

on Computing, 46(5):1554–1573, 2017. doi:10.1137/15M1006507.
2 Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric promise constraint satisfaction

problems: Beyond the Boolean case. In Markus Bläser and Benjamin Monmege, editors,
38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021,
March 16–19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages
10:1–10:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
STACS.2021.10.

3 Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise
constraint satisfaction. J. ACM, 68(4):28:1–66, 2021. doi:10.1145/3457606.

4 Joshua Brakensiek and Venkatesan Guruswami. New hardness results for graph and hypergraph
colorings. In Ran Raz, editor, Conference on Computational Complexity (CCC 2016), volume 50
of LIPIcs, pages 14:1–14:27, Dagstuhl, Germany, 2016. Schloss Dagstuhl–LZI. doi:10.4230/
LIPIcs.CCC.2016.14.

5 Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Algebraic
structure and a symmetric Boolean dichotomy. SIAM Jounal on Computing, 50(6):1663–1700,
2021. doi:10.1137/19M128212X.

6 Mark Braverman, Subhash Khot, Noam Lifshitz, and Dor Minzer. An invariance principle for
the multi-slice, with applications. In 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science—FOCS 2021, pages 228–236. IEEE Computer Soc., Los Alamitos, CA,
2022. doi:10.1109/FOCS52979.2021.00030.

7 Glen E. Bredon. Equivariant Cohomology Theories, volume 34 of Lecture Notes in Mathematics.
Springer Berlin Heidelberg, 1967. doi:10.1007/BFb0082690.

8 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 319–330, Berkeley, CA, USA,
2017. IEEE. doi:10.1109/FOCS.2017.37.

9 Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint sat-
isfaction. In Proc. of the 51st Annual ACM-SIGACT Symposium on the Theory of Computing,
STOC 2019, pages 602–613, New York, USA, 2019. ACM. doi:10.1145/3313276.3316300.

10 Lorenzo Ciardo, Marcin Kozik, Andrei A. Krokhin, Tamio-Vesa Nakajima, and Stanislav
Živný. On the complexity of the approximate hypergraph homomorphism problem, 2023.
doi:10.48550/arXiv.2302.03456.

11 Víctor Dalmau and Jakub Opršal. Local consistency as a reduction between constraint
satisfaction problems, 2023. doi:10.48550/arXiv.2301.05084.

12 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring.
SIAM J. Comput., 39(3):843–873, 2009. doi:10.1137/07068062X.

13 Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph coloring.
Combinatorica, 25(5):519–535, 2005. doi:10.1007/s00493-005-0032-4.

14 Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner.
Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs, 2023. doi:
10.48550/arXiv.2312.12981.

15 Venkatesan Guruswami and Sai Sandeep. d-to-1 hardness of coloring 3-colorable graphs with
O(1) colors. In 47th International Colloquium on Automata, Languages, and Programming,
volume 168 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 62, 12. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2020. doi:10.4230/LIPIcs.ICALP.2020.62.

STACS 2024

https://doi.org/10.1137/15M1006507
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://doi.org/10.1145/3457606
https://doi.org/10.4230/LIPIcs.CCC.2016.14
https://doi.org/10.4230/LIPIcs.CCC.2016.14
https://doi.org/10.1137/19M128212X
https://doi.org/10.1109/FOCS52979.2021.00030
https://doi.org/10.1007/BFb0082690
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1145/3313276.3316300
https://doi.org/10.48550/arXiv.2302.03456
https://doi.org/10.48550/arXiv.2301.05084
https://doi.org/10.1137/07068062X
https://doi.org/10.1007/s00493-005-0032-4
https://doi.org/10.48550/arXiv.2312.12981
https://doi.org/10.48550/arXiv.2312.12981
https://doi.org/10.4230/LIPIcs.ICALP.2020.62


34:18 Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs

16 Magnús M. Halldórsson. A still better performance guarantee for approximate graph coloring.
Inform. Process. Lett., 45(1):19–23, 1993. doi:10.1016/0020-0190(93)90246-6.

17 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller,
James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations:
Proceedings of a symposium on the Complexity of Computer Computations, Mar 20–22,
1972, Yorktown Heights, New York, pages 85–103, Boston, MA, 1972. Springer US. doi:
10.1007/978-1-4684-2001-2_9.

18 Ken-ichi Kawarabayashi and Mikkel Thorup. Coloring 3-colorable graphs with less than n1/5

colors. J. ACM, 64(1):4:1–4:23, 2017. doi:10.1145/3001582.
19 Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the

chromatic number. Combinatorica, 20(3):393–415, 2000. doi:10.1007/s004930070013.
20 Dmitry Kozlov. Combinatorial algebraic topology, volume 21 of Algorithms and Computation

in Mathematics. Springer, 2008. doi:10.1007/978-3-540-71962-5.
21 Andrei Krokhin and Jakub Opršal. The complexity of 3-colouring H-colourable graphs. In

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS’19), pages
1227–1239, Baltimore, MD, USA, 2019. IEEE. doi:10.1109/FOCS.2019.00076.

22 Andrei Krokhin and Jakub Opršal. An invitation to the promise constraint satisfaction
problem. ACM SIGLOG News, 9(3):30–59, 2022. doi:10.1145/3559736.3559740.

23 Andrei A. Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. Topology and
adjunction in promise constraint satisfaction. SIAM Journal on Computing, 52(1):38–79, 2023.
doi:10.1137/20M1378223.

24 László Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory
Ser. A, 25(3):319–324, 1978. doi:10.1016/0097-3165(78)90022-5.

25 Jiří Matoušek. Using the Borsuk-Ulam Theorem. Lectures on Topological Methods
in Combinatorics and Geometry. Springer-Verlag Berlin Heidelberg, first edition, 2003.
doi:10.1007/978-3-540-76649-0.

26 Tamio-Vesa Nakajima and Stanislav Živný. Linearly ordered colourings of hypergraphs. ACM
Trans. Comput. Theory, 14(3–4), February 2023. doi:10.1145/3570909.

27 Tamio-Vesa Nakajima and Stanislav Živný. Boolean symmetric vs. functional PCSP dichotomy.
In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–12, 2023. doi:10.1109/LICS56636.2023.10175746.

28 Marcin Wrochna. Homomorphism reconfiguration via homotopy. SIAM J. Discret. Math.,
34(1):328–350, 2020. doi:10.1137/17M1122578.

29 Marcin Wrochna and Stanislav Živný. Improved hardness for H-colourings of G-colourable
graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’20), pages 1426–1435, Salt Lake City, UT, USA, 2020. SIAM. doi:
10.1137/1.9781611975994.86.

30 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020.
doi:10.1145/3402029.

31 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory Comput., 3:103–128, 2007. doi:10.4086/toc.2007.v003a006.

https://doi.org/10.1016/0020-0190(93)90246-6
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3001582
https://doi.org/10.1007/s004930070013
https://doi.org/10.1007/978-3-540-71962-5
https://doi.org/10.1109/FOCS.2019.00076
https://doi.org/10.1145/3559736.3559740
https://doi.org/10.1137/20M1378223
https://doi.org/10.1016/0097-3165(78)90022-5
https://doi.org/10.1007/978-3-540-76649-0
https://doi.org/10.1145/3570909
https://doi.org/10.1109/LICS56636.2023.10175746
https://doi.org/10.1137/17M1122578
https://doi.org/10.1137/1.9781611975994.86
https://doi.org/10.1137/1.9781611975994.86
https://doi.org/10.1145/3402029
https://doi.org/10.4086/toc.2007.v003a006


M. Filakovský, T.-V. Nakajima, J. Opršal, G. Tasinato, and U. Wagner 34:19

A Graph of reconfigurations of binary polymorphisms
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Figure 2 Graph of reconfigurations of pol(2)(LO3, LO4).
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