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Abstract

Interpretation of extracellular recordings can be challenging due to the long range of electric

field. This challenge can be mitigated by estimating the current source density (CSD). Here

we introduce kCSD-python, an open Python package implementing Kernel Current

Source Density (kCSD) method and related tools to facilitate CSD analysis of experimental

data and the interpretation of results. We show how to counter the limitations imposed by

noise and assumptions in the method itself. kCSD-python allows CSD estimation for an

arbitrary distribution of electrodes in 1D, 2D, and 3D, assuming distributions of sources in

tissue, a slice, or in a single cell, and includes a range of diagnostic aids. We demonstrate

its features in a Jupyter Notebook tutorial which illustrates a typical analytical workflow and

main functionalities useful in validating analysis results.

Author summary

Recording electric potential with wires inserted in the brain is a standard method in neu-

roscientist’s arsenal for a century. This extracellular potential reflects electric activity of

billions of neural cells processing incoming information and our deepest thoughts. It is

difficult to interpret because the effect of every single cell activity propagates in space like

a wave in a lake after a stone is thrown. Therefore, every electric recording is a sum of bil-

lions of stronger and weaker contributions from close and remote cells, respectively. It is

easier to understand the local activity of the brain when we reconstruct the distribution of

the sources contributing to the measurements. This is similar to reconstructing the infor-

mation on where and when stones where thrown into the lake from wiggling of multiple

buoys placed on the water surface. The techniques for source reconstruction are called the

Current Source Density methods. Early techniques required distributions of electrodes on

regular grids. Our kernel Current Source Density method can reconstruct this activity

from arbitrary distribution of electrodes and can take into account measurement noise.
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Here we present our software toolbox, kCSD-python, which implements this method.

It comes with a number of tools for efficient estimation, for testing reliability of the results,

and with several tutorials showing how to use it.

This is a PLOS Computational Biology Software paper.

Introduction

Extracellular potential recordings are a mainstay of neurophysiology. However, the long range

of electric field still makes their interpretation challenging despite decades of research. Extra-

cellular potential in tissue is produced by transmembrane currents. Its low-frequency compo-

nent, called the Local Field Potential (LFP), is believed to mainly reflect the dendritic

processing of synaptic inputs [1, 2]. To facilitate understanding of the processes underlying the

recorded signal it is useful to estimate the density of transmembrane current sources (Current

Source Density, CSD) [3–8]. CSD gives direct access to physiologically relevant information,

which is often concealed in original data [5]. The relation between the CSD and the extracellu-

lar potential can be described by the Poisson equation

C ¼ � rðsrVÞ; ð1Þ

where C is the CSD, V is the extracellular potential,r is the gradient, and σ is the conductivity

tensor. For isotropic and homogeneous tissue Eq (1) reduces to

C ¼ � sDV ð2Þ

where Δ =r2 is the Laplacian, which can be solved:

VðxÞ ¼
1

4ps

Z

dx0
Cðx0Þ
jx � x0j

; ð3Þ

where x; x0 2 R3
. Eqs (2) and (3) show that knowing the potential in the whole space, we can

compute the CSD, and knowing the CSD in the whole space, we can compute the potential.

Experimentally, we can only access the potential at discrete electrode locations, so direct deter-

mination of the CSD in the whole space from Eq (2) is impossible.

To deal with this problem different methods for estimation of current sources have been

proposed since the middle of the 20th century [3, 4, 9–14]. Pitts et al. [3] first observed that

relation (1) could be used to estimate the sources from measured potential. To investigate the

activity in the spinal cord after dorsal root stimulation they proposed to use the second numer-

ical derivative of laplacian for estimation of CSD and made use of approximate translational

invariance of potentials along the spinal cord. This approach was further developed in the

early 1970s by Freeman, Nicholson, Haberly, and others, which established CSD estimation as

a practical approach to investigating relations between field potentials and local neural activity

[5].

A significant departure from the previous tradition was the work of Pettersen et al. [9], who

proposed a model-based inverse CSD method (iCSD) in 1D. They assumed parametric models

of source distribution, e.g. spline interpolated between regularly spaced electrodes, with

parameters being the measured potentials, including physical models of source behavior in the
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dimensions not probed, for example, assuming constant sources within cortical columns. This

work was further generalized to 2D and 3D recordings by Łęski et al. [10, 11] but major limita-

tions remained. Those were the requirements of using a regular grid of recordings for estima-

tion and tying estimation space to the experimental setup. Although some approaches to

handle simple challenges to irregularity, such as broken contacts or ill recordings, were consid-

ered [15], it was only the kernel CSD method [12], generalizing the inverse CSD, which first

separated conceptually and computationally the estimation space from the electrode setup.

This conceptual separation enabled, for instance, estimation of contributions to LFP from sin-

gle cells of known morphology [16].

Other model-based approaches were proposed to accommodate specific experimental con-

texts, such as propagating neuronal activity in the cortex [17, 18], or considered other estima-

tion schemes, e.g. based on Gaussian processes [14]. Kropf and Shmuel [19] investigated

properties of inverse and kernel CSD methods from the general perspective of discrete inverse

methods and proposed several new variants of these methods. This later inspired the analysis

and construction of eigensources, perfectly recoverable sources spanning reconstruction space

in kCSD [13].

Despite these conceptual developments not much software is available implementing these

different source reconstruction methods. The simplicity of the traditional approach arguably

might not require a dedicated package but inclusion of different smoothing approaches of [4]

is not available, for example. For the recent model-based methods the inverse CSD papers [9–

11] and the kernel CSD [12] were accompanied by MATLAB software which could be used on

other data sets. Perhaps a better approach is to use Elephant [Elephant (doi:10.5281/

zenodo.1186602; RRID:SCR_003833), Denker 2018], general purpose Python library for anal-

ysis of electrophysiological data, which implements inverse CSD, kCSD, and MoIkCSD, as

well as many other useful routines. In particular, the kCSD and MoIkCSD implementations in

Elephant are derived from early versions of the package we present here. An interesting

alternative to kCSD-python could be the GPCSD (Gaussian process current source density

estimation) [14]. While conceptually different, the results are effectively consistent with kCSD

in the cases tested, although the available functionality of the two packages is different.

Here, we present the first official release of kCSD-python, an open Python

toolbox implementing the kernel Current Source Density (kCSD) method [12, 13] and vari-

ants [16, 20]. It allows kCSD reconstruction of current sources for data from 1D setups (lami-

nar probes and equivalent electrode distributions), 2D (planar MEA, multi-shaft silicon

probes, Neuropixel or SiNAPS probes, etc), and 3D electrode setups (Utah arrays, multiple

electrodes placed independently in space with controlled positions), where the sources are

assumed to come from tissue (kCSD) or from single cells with known morphology (skCSD,

[16]). Fig 1 shows the different experimental scenarios for which this software can be used.

We also include some old and introduce some new diagnostic features which we found use-

ful in CSD analysis and illustrate the application of the package and the new diagnostic tools in

typical analysis workflow implemented as a Jupyter notebook [21] tutorial.

For reader convenience we first briefly restate the kCSD method [12, 13]. Then in the

Results section we introduce several new diagnostic tools included in the presented package.

First, we added the L-curve method for parameter selection. Then, to get informed on recon-

struction accuracy we introduce measurement uncertainty maps, which show how measure-

ment noise affects the estimated CSD, and reliability maps, which help build intuition on the

reliability of estimates for classes of possible sources for a given setup. We then briefly intro-

duce the new package which is extensively illustrated in the provided tutorial (S1 Text). This

Jupyter Notebook [21] tutorial, which is part of the toolbox, is provided to facilitate
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understanding and usage of the kCSD method. The tutorial enables the user to analyze the

CSD using simulated surrogate data (electrode positions and recordings) or actual recordings.

Design and implementation

Overview of kernel Current Source Density method

Here we review basic aspects of the kernel Current Source Density method. For details and

proofs see [12, 13]. Assume we have N electrodes placed at xj 2 R
k, j = 1, . . ., N, k 2 {1, 2, 3}.

To estimate CSD in the space of relevant dimension we cover the region of interest with a fam-

ily of CSD sources which we call basis sources, ~bjðxÞ; think of many little Gaussians. They

come with corresponding basis sources in the potential space, bj(x), which are contributions to

the potential from ~bjðxÞ where specific functional relation between them depends on the

dimensionality of space and assumed model of tissue, see below for examples. These basis

functions span a family of CSD and corresponding potential functions which can be expressed

Fig 1. Overview of experimental contexts where kCSD-python is applicable. 1D setups such as A) laminar probes

and equivalent (R, h—radii of the basis source along the electrode and perpendicular to the shaft); 2D setups, such as

B) multi-shaft silicon probes, Neuropixel or SiNAPS probes, or D) planar MEA (R—radius of the basis source in the

plane of the MEA, 2h—assumed thickness of the tissue contributing to the measurement, d—slice thickness); 3D

electrode setups, such as multiple multi-shaft silicon probes, Utah arrays, multiple electrodes placed independently in

space with controlled positions (R—radius of the basis source), where the sources are assumed to come C) from tissue

(kCSD) or E) from single cells with known morphology (skCSD).

https://doi.org/10.1371/journal.pcbi.1011941.g001
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as

CðxÞ ¼ a1
~b1ðxÞ þ � � � þ aM~bMðxÞ; ð4Þ

VðxÞ ¼ a1b1ðxÞ þ � � � þ aMbMðxÞ: ð5Þ

Using the basis sources we construct two functions which we call kernel and cross-kernel

functions [12, 13]

Kðx; x0Þ ¼
XM

i¼1

biðxÞbiðx
0Þ; ~Kðx; yÞ ¼

XM

i¼1

~biðxÞbiðyÞ: ð6Þ

Clearly, K is symmetric while ~K is not. With these kernel functions any CSD and corre-

sponding potential distributions can be written as

VðxÞ ¼
XL

j¼1

bjKðx; xjÞ ð7Þ

CðxÞ ¼
XL

j¼1

bj
~Kðx; xjÞ ð8Þ

for some L, βj, xj [12]. The first step of kernel Current Source Density method is kernel inter-

polation of the measured potential with kernel K. To avoid overfitting, correction for noise is

made by minimizing prediction error

err½V� ¼
XN

i¼1

ðV∗ðxiÞ � ViÞ
2
þ ljbj

2
: ð9Þ

From the Representer Theorem [22] we know this is minimized by Eq 7 with L = N and xj

the electrode positions

V∗ðxÞ ¼
XN

j¼1

bjKðx; xjÞ; ð10Þ

which gives

b ¼ ðKþ lIÞ� 1V; ð11Þ

where V is the vector of measured potentials Vi, λ is regularization parameter, and

Ki;j � Kðxi; xjÞ: ð12Þ

In the second step, we use cross-kernel ~Kðx; x0Þ, to estimate the CSD:

C∗ ¼ ~KðKþ lIÞ� 1V: ð13Þ

We use * to indicate estimated models of potential and sources.

We select the basis source functions ~bi so that they are convenient to work with numeri-

cally. Usually they are step functions or Gaussians with non-trivial support over regions which

are most natural for the problem at hand. Specific functional relation between bi and ~bi.
depends on the problem at hand, the dimensionality of space in which estimation is desired, as

well as on physical models of the medium, such as tissue conductivity, slice or brain geometry,
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etc. [9–11, 16, 20]. An overview relevant to the implementation of kCSD-python is provided

in the next section.

We considered CSD reconstruction for recordings from 1D (Fig 1A), 2D (Fig 1B) and 3D

setups (Fig 1C) under assumption of infinite tissue of constant conductivity [12], we used

method of images to improve reconstruction for slices of finite thickness on MEA under

medium of different conductivity (ACSF, [20]), (Fig 1D), and we considered reconstruction of

sources along single cells when we have reasons to trust the recorded signal to come from a

specific cell of known morphology [16], (Fig 1E). All these variants are implemented in the

present code. Fig 1 shows these scenarios.

In practical applications the challenges of the method include selection of basis and the rele-

vant parameters as well as reliability of the estimation. Some techniques were discussed before

[12, 13]. Here we introduce more techniques for parameter selection and for evaluating recon-

struction reliability, and we illustrate both new and old approaches with the provided package.

Basis sources in the source and potential spaces

In the simplest case of infinite, homogeneous and isotropic tissue in 3D (Fig 1C) we have

biðx; y; zÞ ¼
1

4ps

Z

dx0
Z

dy0
Z

dz0
~biðx0; y0; z0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ2 þ ðy � y0Þ2 þ ðz � z0Þ2
q : ð14Þ

In general, we can consider arbitrary conductivity and geometry of the tissue which may

force us to use approximate numerical methods, such as finite element schemes. For example,

[20] show an application of kCSD for a slice of finite thickness and specific geometry, as well

as a method of images approximation for kCSD for typical slices on multielectrode arrays

(recordings far from the boundary, slice much thinner than its planar extent), Fig 1D.

For laminar probes, Fig 1A), following [9], we assumed elementary current sources contrib-

uting to the potential of the form ~biðzÞHðx; yÞ. Here ~biðzÞ is the one-dimensional basis source

(we usually assume a Gaussian of radius R). Since information beyond the electrode axis is

unavailable we assume rotational symmetry around z. We usually assume H(x, y) a step func-

tion on a disk of radius h:

Hðx; yÞ ¼
1 x2 þ y2⩽h2;

0 otherwise:

(

This can be integrated yielding 1D potential basis functions of the form

biðzÞ ¼
1

2s

Z

dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz � z0Þ2 þ h2

q

� jz � z0j
� �

~biðz
0Þ: ð15Þ

For planar setups, Fig 1B) [11], we usually assume Gaussian basis sources ~biðx; yÞ, physically

contributing to the potential with ~biðx; yÞHðzÞ, where

HðzÞ ¼
1 � h⩽ z⩽ h

0 otherwise:

(
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This can be integrated to give the potential in the electrode plane:

biðx; yÞ ¼
1

2ps

Z

dx0
Z

dy0 arsinh
2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ2 þ ðy � y0Þ2
q

0

B
@

1

C
A~biðx

0; y0Þ: ð16Þ

This approach gives two parameters describing the CSD basis functions, the radius of the

relevant Gaussian, R, and the thickness of contributing layer in 2D case or radius of circular

sheath in 1D case (h). Note that if we assume aboveH(x, y) andH(z) to be Gaussian as well

with the same radius, in all three dimensionalities the individual contributions are spherically

symmetrical Gaussians. Therefore, the same 3D approach can be used. Further, it can be inte-

grated to yield potential in a closed form. Indeed, from Eq (14), taking

~bjð�xÞ ¼
1

ð
ffiffiffiffiffiffi
2p
p

RÞ3
exp
� ð�x � �xjÞ

2

2R2

we can show that

bjð�xÞ ¼
1

4psj�x � �xjj
erf
j�x � �xjj
ffiffiffi
2
p

R

� �

where

erfðrÞ ¼
2
ffiffiffi
�
p

Z r

0

e� t2dt:

This is also implemented in the present code.

Overview of the implementation

Here we focus on the code organization in the kCSD-python package which is a Python imple-

mentation of the kernel Current Source Density method [12] and its two variants ([20] and

[16]). Mathematical details of the kCSD algorithm are described above. The recommended

workflow and practical usage of the majority of tools from kCSD-python is presented in the

supplementary tutorial (S1 Text). Additional online tutorials and scripts generating all the fig-

ures from this article provide more help; see section on code availability below.

The package is divided into four main modules:

• KCSD—the core of the package. It is used to generate Current Source Density estimates

using kCSD method for a given configuration of electrode positions and recorded potentials

(in practice for 1D, 2D and 3D setups, as described in [12, 20]). Useful for the analysis of

experimental data.

• sKCSD—generates Current Source Density estimates for a single neuron with known mor-

phology using skCSD method [16]; Exemplary usage is shown in an online tutorial available

at https://kcsd-python.readthedocs.io/en/latest/TUTORIALS.html#skcsd-tutorial.

• ValidateKCSD—implements classes useful for validation of the quality of kCSD method

estimates. It is used for generation and analysis of surrogate data.

• VisibilityMap—implements classes generating reliability maps for a given configura-

tion of electrode positions. Exemplary usage is shown in an online tutorial available at

https://kcsd-python.readthedocs.io/en/latest/TUTORIALS.html#advanced-features.
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Within the KCSD module there is a base class for all kCSD variants called KCSD. Depend-

ing on the different physical assumptions and the dimensionality of electrode distribution,

which affects the relations between the basis sources in the potential and CSD space (see S1

Text), the following derived classes are provided:

• KCSD1D, KCSD2D, KCSD3D [12]—estimate the Current Source Density, for a given

configuration of electrode positions and recorded potentials, in the case of 1D, 2D and 3D

recording electrodes, respectively. Using these classes the region of interest, which is

spanned by the electrode positions by default, is covered by regularly placed basis sources

~bjðxÞ. Estimation points, locations in which reconstructed CSD is obtained, lie on a regular

grid too. Inherit KCSD class.

• MoIKCSD—This estimates the Current Source Density, for a given configuration of elec-

trode positions and recorded potentials, in the case of 2D recording electrodes from a MEA

electrode plane using the Method of Images [20]. Inherits KCSD2D class.

• oKCSD1D, oKCSD2D, oKCSD3D—estimate the CSD in explicitly specified region. Clas-

ses require to specify particular locations (not necessarily regular) where to place basis

sources ~bjðxÞ and also where to estimate the solution. Inherit KCSD1D, KCSD2D and

KCSD3D class respectively.

For all those classes the workflow is similar. To reconstruct the CSD for a given electrode

setup the user needs to call an appropriate class providing the electrode positions and the

recorded potentials as arguments. One may provide additional parameters determining basis

sources definition and placement (number, placement, shape/type) and which specify the esti-

mation space. During the class call the key objects such as the kernel matrix K (Eq 6) and the

cross-kernel matrix are created. Based on them the estimated CSD is obtained. S1 Text illus-

trates example usage of the kCSD-python package using simple 2D electrode setup and

KCSD2D class.

Results

Source reconstruction with kCSD from experimental data

Kernel CSD, just like other CSD estimation methods, is a tool helping interpret field potential

recordings. Its main advantages over previous methods are self-consistent CSD distributions

in whole brain regions, ease of estimation from arbitrarily distributed contacts, possibility of

restricting sources to specific regions, and separation of experimental setup (electrode distri-

bution) from analytical setup (choice and distribution of basis sources). It was used in several

projects where this flexibility was advantageous [13, 14, 16, 23–31].

A common usage of CSD analysis is identification of border layers in laminar structures,

and kCSD was also applied to that purpose, in particular in the studies of cortical activity and

the structure of the olfactory bulb. Kernel CSD was used extensively by Bijanzadeh, Nurminen

et al. [24, 25] in their study of distinct laminar processing of local and global context in primate

primary visual cortex. They computed CSD from the band-pass filtered (1–100Hz) and trial-

averaged LFPs. They used CSD responses to small stimuli flashed inside the receptive fields to

identify laminar borders, localize surround-evoked input activity to specific cortical layers,

study the laminar location of the subthreshold inputs, and measure the onset latency of the

surround stimuli. Sederberg et al. [27] used CSD analysis to functionally determine cortical

layers of the awake mouse from the average stimulus-evoked response, and to analyze the pre-

stimulus activity (in single trials) to localize sinks and sources generating the predictive signal
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used in their classifiers of awareness states. Their main reason for selecting kCSD was the ease

of handling irregular spacing between electrodes occurring even on regular grids of electrodes

when certain contacts do not satisfy quality control. Similarly, in their studies of activity in the

barrel cortex related to trace eyeblink conditioning, Silva-Prieto et al. [31] used 2D kCSD to

facilitate identification of borders of cortical columns and layers.

After identifying the olfactory bulb as a main source of high-frequency oscillations (130–

180 Hz) associated with a subanesthetic dose of ketamine in rodents, Hunt et al. [26] used

kCSD to localize laminar borders within the bulb, attribute the activity to specific cell types,

and to precisely estimate phase shifts between oscillations in OB and ventral striatum. In a sys-

tematic study of large-scale spatiotemporal circuit information within the olfactory bulb with a

high-density CMOS chip, Hu et al. [30] used kCSD to identify the fine details of sources and

sinks activity during the global activation of the entire OB circuit.

Some less standard applications of kCSD focused on the search for dominating sources of

specific LFP activity or combined this method with other analytical approaches. Studying

GABAergic inhibition effects on interictal dynamics in awake epileptic mice, Muldoon et al.

[23] used kCSD to consistently reveal a source in the CA1 pyramidal cell layer. Somewhat sur-

prisingly they found a correlation between the maximum value of the kCSD source located in

the pyramidal layer and the amplitude of interictal spikes recorded at the global/surface level

from the contralateral EEG. Fedor et al. [28] used kCSD to build a substrate closer to true

dynamics to establish a functional coherence map for microECoG recordings in a rat schizo-

phrenia model. Of particular use was the deblurring or deconvolving effect of CSD analysis.

From that perspective, it was similar in spirit to the work of Klein et al. [14], who used their

own Gaussian Process CSD method (GPCSD), largely consistent with kCSD, to estimate corti-

cal layer-specific phase coupling between two probes and showed that the same analysis

applied directly to LFPs did not recover these patterns.

The flexibility of basis source placement and electrode distribution as well as their concep-

tual and analytical independence inherent to kCSD allowed Cserpan et al. [16]) analysis of the

distribution of current sources along a known morphology of a hippocampal neuron from

LFPs recorded with a set of metal electrodes triggered on spikes of the studied cell (single cell

kCSD; sckCSD).

We recently showed how kCSD can be used in relatively common but non-obvious case of

recordings with Neuropixels probe [13]. This is an interesting case because the electrode posi-

tions do not span a regular 2D grid as considered in previous methods, such as traditional or

inverse CSD (iCSD). Also, the quasi-linear design with checker-board design of effectively 4

nearby linear probes situates this design on the border of 1D and 2D probes. Previously, such a

design would stimulate various ad hoc approaches to CSD analyses. With kCSD, which sepa-

rates conceptually and computationally estimation space from recording electrodes, it is easy

and natural to test different hypotheses of what is the effect of different analytical decisions.

[13] show that 2D analysis of Neuropixels recordings can in fact provide non-trivial 2D infor-

mation pointing to possible microcolumns within the barrel cortex while the eigensources

analysis allows to compare reliability of information recovered in the different directions, with

horizontal direction resolved only with 34th and 36th eigensources [13].

In [29] we used the kCSD method to accurately identify the spatial and temporal profiles of

source dynamics in different relevant bands of LFP activity within the rat olfactory bulb. In

slow frequencies (0.3–3 Hz) related to breathing we observed dipolar activity propagating

from glomerular layer, before emergence of 80–130 Hz activity, to EPL layer, as the 80–130 Hz

power rises in time. We found strong dipoles around the mitral layer in the high frequency

band.
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Parameter selection

An important part of kCSD estimation is selection of parameters, in particular the regulariza-

tion parameter, λ, but also the radius of the basis source, R. Previously we proposed to use

cross-validation [12]. Here we introduce L-curve approach [19, 32] for regularization. Both

these methods are implemented in kCSD-Python.

Cross-validation. To select parameters using cross-validation [12] we consider a range of

parameter values, λ 2 [λ0, λ1]. For any test value λ we select an electrode i = 1, . . .,N and ignore

it. With Eq (10) we build a model from the remaining measurements, V 0i
l
ðxÞ, and use it to pre-

dict the value at the ignored electrode, V 0i
l
ðxiÞ. Here

V 0i
l
ðxÞ ¼

X

j6¼i

b
0i
l;jKðx; xjÞ; ð17Þ

where the minimizing vector

b
0i
l
¼ ðK0i þ lI0iÞ� 1V0i

l
; ð18Þ

and where 0i means i-th column and row are removed from the given matrix (or vector). We

repeat this for all the electrodes i = 1, . . ., N and compare predictions from the remaining elec-

trodes against actual measurements:

prediction errorðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðV 0i
l
ðxiÞ � ViÞ

2

s

: ð19Þ

For the final analysis, λ giving minimum prediction error is selected. It is worth checking if

the global minimum is also a local minimum. If the λ selected is one of the limiting values this

may indicate that extending the range of λ might give a better result or that the problem is ill-

conditioned, for example too noisy, and we are either underfitting or overfitting, as we discuss

below for the L-curve. As a rule of thumb, the range of tested λ parameters should cover eigen-

values of the (12).

L-curve. Consider the error function, Eq (9), which we minimize to get the regularized

solution, Vλ = K βλ It is a sum of two terms we are simultaneously minimizing, prediction

error

%l ¼
XN

i¼1

ðVlðxiÞ � ViÞ
2
; ð20Þ

and the norm of the model

Zl ¼k VlðxÞ k2
F¼ jb

T
l
Kblj; ð21Þ

weighted with λ. Taking λ = 0 is equivalent to assuming noise-free data. In this case we are fit-

ting the model to the data, in practice, overfitting. On the other hand, taking large λ means

assuming very noisy data, and in practice ignoring measurements, which results in a flat,

underfitted solution. Between these extremes there is usually a solution such that if we decrease

λ, the prediction error, %, slightly decreases, while the norm of the model, η, increases fast, and

if we increase λ, the prediction error, %, increases fast, while the norm of the model, η, slightly

decreases; see Fig 2D.

This is apparent when the prediction error and the norm of the model are plotted in the

log-log scale. This curve follows the shape of the letter L, hence the name L-curve [33]. Several

methods have been proposed to measure the curvature of the L-curve and to identify optimal
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parameters [34]. In kCSD-python, we have implemented the triangle area method proposed

by [35]. To distinguish between convex and concave plots, the clockwise directed triangle area

is measured as negative Fig 2D shows this estimated curvature for our example as a function of

λ.

Fig 2. An example of the L-curve method for estimating kCSD parameters. A) The red points represent the potential used for CSD reconstruction.

The black points show the electrode positions. The ground truth is shown in panel C with the red dashed curve. The measurement was simulated by

adding small random noise to all the electrodes (32 values taken from a uniform distribution). The blue line shows a kernel interpolation of the

potential which is the first step of kCSD method. B) L-curve plot for a single R parameter. The apex of the L-curve is numerically computed from the

oriented area of directed triangles connecting the point on the L-curve with its two ends. C) Comparison of the true CSD and kCSD reconstruction for

parameters obtained with L-curve regularization. D) Estimation of L-curve curvature with triangle method (see the Methods).

https://doi.org/10.1371/journal.pcbi.1011941.g002
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To illustrate this method in the context of CSD reconstructions, we study an example of 1D

dipolar current source with a split negative pole (sink; see Fig 2C, True CSD, red dashed line).

We compute the potential at 32 electrodes (Fig 2A and 2C, black dots) with additive noise at

every electrode. Notice that if we want to interpret the recorded potential directly (Fig 2A, red

dots) it is difficult to discern the split sink. Fig 2D shows the estimated curvature for our exam-

ple as a function of λ. The optimal value of λ is found by maximizing the curvature of the log-

log plot of η versus %, Fig 2B. The red dot in Fig 2B and 2D, indicates the ideal λ parameter for

this setup obtained through the L-curve method.

Selection of multiple parameters. Often we need to tune not just λ but also other param-

eters. For example, for Gaussian basis sources we may want to decide on the width of the

Gaussian used, R. To obtain the optimal set of parameters in that case we compute the curva-

ture of the L-curve or the cross-validation error for some ranges of parameters considered and

select parameters corresponding to the maximum curvature / minimum error in the parame-

ter space. This is a simplification of the proposition by [36] which in practice we found very

effective.

As an example, in Fig 3. we show the results of such a scan for the problem shown in Fig 2.

The range of λ to be considered can be set by hand but by default we base it on the eigenvalues

of K. The smallest λ is set as the minimum eigenvalue of K which here was around 1e-10. We

set maximum λ at the standard deviation of the eigenvalues, which here was around 1e-3. The

range of R values studied was from the minimum interelectrode distance to half the maximum

interelectrode distance. Note that for very inhomogeneous distributions of electrodes this

approach may be inadequate.

What we find is that apart from a global minimum in R, λ space there is a range of R values

fixing which we can find optimal λ(R) which leads to very close curvatures / CV-errors / esti-

mation results. What happens is that within some limits we may achieve similar smoothing

effects changing either λ or R. Bigger λ means more smoothing, but bigger Rmeans broader

basis functions and effectively also smoother reconstruction space. This is why the CV-error

and curvature landscapes are relatively flat, or have these marked valleys observed in Fig 3.

This effect supports the robustness of the kCSD approach.

Reconstruction accuracy

With the kCSD procedure one can easily estimate optimal CSD consistent with the obtained

data. However, so far we have not discussed the estimation of errors in the reconstruction.

Since the errors may be due to several factors—the procedure itself, measurement noise, incor-

rect assumptions—one may approach this challenge in different ways.

First, to understand the effects of the selected basis sources and setup, one may consider the

estimation operator ~KðKþ lÞ� 1
and the space of solutions it spans. This space is given by the

eigensources, introduced and described thoroughly in [13]. The orthogonal complement of

this space in the original estimation space, spanned by ~bjðxÞ basis functions is not accessible to

the kCSD method. The study of eigensources facilitates understanding which CSD features

can be reconstructed and which are inaccessible.

Second, to consider the impact of the measurement noise on the reconstruction, for any

specific recording consider the following model-based procedure. Reconstruct CSD from data

with optimal parameters. Compute potential from estimated CSD. Add random noise to each

computed potential. The noise could be estimated from data, either as a measure of fluctua-

tions on a given electrode for a running signal, or from variability of evoked potentials. Then,

for any realization of noise, compute the estimation of CSD. The pool of estimated CSD gives

an estimation of the error at any given point where the estimation is made.
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This computation can be much simplified by taking advantage of the linearity of the resol-

vent, E ¼ ~KðKþ lIÞ� 1
. Then, the i-th column (Ei) represents contribution of unitary change

of i-th measured potential (the i-th element of the vector V) to the estimated CSD (C �). As the

contribution is proportional to the change, the column can be considered an Error Propagation
Map for i-th measurement (Fig 4A). Note that these vectors (the columns of the resolvent, Ei)

Fig 3. A) L-curve curvature and B) CV-error for the problem studied in Fig 2. Observe that in both cases there are ranges of promising

candidate parameter pairs, R, λ, which can give good reconstruction given the measured data. Red dots shows local extrema for each value of R
fixed. See text for discussion of this effect.

https://doi.org/10.1371/journal.pcbi.1011941.g003

Fig 4. A) Error propagation maps for 3 × 3 regular grid of electrodes. Every panel represents the contribution of the potential measured at the

corresponding electrode marked with a black circle (˚) to the reconstructed CSD. Every other electrode is marked with a black cross (×). B) Map of CSD

measurement uncertainty for 3 × 3 regular grid of electrodes. The CSD measurement uncertainty is represented by variance of the CSD reconstruction

caused by the uncertainty in measurement of the potentials. It is assumed that measurement errors for electrodes are mutually independent and follow

standard normal distribution (εi � N ð0; 1Þ). Location of electrodes is marked with red crosses (×).

https://doi.org/10.1371/journal.pcbi.1011941.g004
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also happen to form another basis of the solution space, an alternative to the basis of

eigensources.

If εi is an error of i-th measurement, then its contribution to C � is εiEi. Moreover, if the

measurement errors follow multivariate normal

ε � N ð0;SVÞ; ð22Þ

then

V � N ðVexact;SVÞ; ð23Þ

and the estimated CSD also follows multivariate normal

C ∗
� N ðEVexact;ESVE

TÞ: ð24Þ

The diagonal of E SVET represents a map of CSD measurement uncertainty (uncertainty

attributed to the noise in the measurement, Fig 4B). In the special case when εi are mutually

independent and of equal variance σ2, the map of CSD measurement uncertainty can be calcu-

lated as a diagonal of Cov½C �� ¼ EETs2.

Third, one can study reconstruction accuracy for a meaningful family of test functions.

This could be the Fourier modes for rectangular regions or a collection of Gaussian test func-

tions, centered in different places, of single or multiple radii. For each of these test functions

one would compute the potential, perform reconstruction, and compare the results with the

original at every point. Finally, one could average this information over multiple different test

sources computing a single Reliability Map, which we now introduce.

Reliability maps. Assume the standard kCSD setup, that is a region R � Rn
where we

want to estimate the sources, set of electrode positions, xi, and perhaps additional information,

such as morphology for skCSD [16]. We now want to characterize the predictive power of the

combination of our setup and our selected basis, ~bi. To do this we select a family of test func-

tions, Ci(x), for example Gaussian test functions, centered in different places, of multiple radii,

or products of Fourier modes, etc. Then, for each Ci we compute Vi ¼ ACi by forward model-

ing, generating a surrogate dataset. Next, we apply the standard kCSD reconstruction proce-

dure obtaining estimation of the tested ground truth, ~Ci. We can then compute reconstruction

error using point-wise modification of the Relative Difference Measure (RDM) proposed by

[37]:

erriðxÞ ¼

�
�
�
�
�

~CiðxÞ
k ~Ci k

�
CiðxÞ
k Ci k

�
�
�
�
�
∗
k Ci k

maxx2RjCij
; ð25Þ

where i = 1, 2, . . . enumerates different ground truth profiles. A simple measure of reconstruc-

tion accuracy is then given by the average over these profiles:

ReliabilityðxÞ≔herriðxÞii2½1;M� ¼
PM

i¼1
erriðxÞ
M

: ð26Þ

Fig 5 shows an example reliability map for the case of 10x10 electrode distribution.

The class of functions used were the families of small and large sources mentioned above.

We used eight mirror symmetries of the grid in computation.

We can use the reliability map as another source of information about the precision of

reconstruction, which is shown in Fig 6. In A) we show some dipolar source which is used to

compute the potential on a grid of electrodes shown in B). Fig 6C) shows reconstructed

sources superimposed on the reliability map. Panel D) shows the difference between the
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Fig 5. Reliability map created according to formula (25) and (26) for 10x10 regular grid of electrodes with noise-

free symmetrized data. Black dots represent locations of contacts used in the study. Values on the map can be

interpreted as follows: the closer to 0, the higher reconstruction accuracy might be achieved for a given measurement

condition.

https://doi.org/10.1371/journal.pcbi.1011941.g005

Fig 6. Example use of reliability maps. A) Example dipolar source (ground truth) which is used to compute the potential on a grid of electrodes shown

in B). C) shows reconstructed sources superimposed on the reliability map. D) shows the difference between the ground truth and the reconstruction.

https://doi.org/10.1371/journal.pcbi.1011941.g006
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ground truth and reconstruction. Note that plots such as those shown in the panels A) and D)

are feasible only for simulated or model data, where we know actual sources and use them to

validate the method. On the other hand, plots shown in panel B and C represent what can be

routinely computed for experimental data. This functionality is implemented in kCSD-
python and illustrated in the provided tutorial.

Another interesting question is the effect of broken or missing electrodes on the reconstruc-

tion. Formally one can attempt kCSD reconstruction from a single signal but it is naive to

expect much insight this way. It is thus natural to ask what information can be obtained from a

given setup and what we lose when part of it becomes inaccessible.

Fig 7 shows the effect of removing electrodes on the reconstruction. Fig 7A shows average

error of kCSD method across many random ground truth sources for a regular grid of 10x10

electrodes. Fig 7B to D show the increase of average reconstruction error as we remove 5 (B),

10 (C) and 20 (D) contacts. To emphasize the errors we show the difference between the reli-

ability map for the broken grid minus the original one. Note the different scales in plots B–D

versus A The consecutive rows show similar results when only small sources were used (E–H),

or only large sources were used (I–L). Random sources in Fig 7A are both small and large

sources (mentioned in the Results). This shows, among others, as we explained, that the reli-

ability maps depend on the test function space, however, we feel they are more intuitive to

understand than the individual eigensources spanning the solution space [13].

The sources of error in kCSD estimation and how to deal with them. Kernel CSD

method assumes a set of electrode positions and a corresponding set of recordings. Addition-

ally, single cell kCSD requires morphology of the cell which contributed to the recordings and

its position relative to the electrodes. Each of these may be subject to errors.

In analysis, we assume that the electrode positions are known precisely. This is a justified

assumption in the case of multi-shaft silicon probes or integrated CMOS-MEA but not neces-

sarily when multiple laminar probes are placed independently within the brain or for many

other scenarios. For example, for SEEG electrodes in human patients used in presurgical evalu-

ation we expect the localization errors due to the workflows used clinically to be significant.

We do not provide dedicated tools to study the effects of misplaced electrodes on the recon-

structed CSD, however, this can be achieved easily with the provided package if needed. The

location of the cell relative to the electrodes is much more questionable, especially in 3D. Nev-

ertheless, the necessary data to perform skCSD today are too scarce to start addressing these

issues.

On the other hand we do assume that the recordings are noisy and we use regularization to

counteract the effects of noise. We have no mechanism to differentiate between electrodes

with varying degrees of noise to compensate this differently. However, we observed that for

cases with very bad electrodes, similar results are obtained for the analysis of complete data

and analysis of partial data with bad electrodes removed from the analysis. The difference was

in λ selected which was larger when broken electrodes were included in the analysis. Depend-

ing on the situation, if there is a big difference in the noise visible in different channels, an opti-

mal strategy may be to discard the noisy data and perform reconstruction from the good

channels only, which kCSD permits. In the end, data analysis remains an art and a healthy

dose of common sense is always recommended.

The main limitation of the method itself lies in the character of any inverse problem. Here

it means that there is an infinite number of possible CSD distributions each consistent with

the recorded potential. It is thus necessary to impose conditions which allow unique recon-

struction and this is what every variant of CSD method is about. In kCSD this condition is the

minimization of regularized prediction error. In practical terms one may think of the function

space in which we are making the reconstruction. This space is spanned by the eigensources
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we discussed before [13]. We feel it is useful to consider both this space as well as its comple-

ment, that is the set of CSD functions whose contribution to every potential is zero. This can

facilitate understanding of which features of the underlying sources can be recovered and

which are inaccessible to the given setup. While for the most common regular setups, such as

rectangular or hexagonal MEA grids or multi-shaft probes, intuitions from Fourier analysis

largely carry over, in less regular cases this quickly becomes non-obvious.

Fig 7. Average error (Eq 25) of kCSD method across random small and large (A), only small (E) and only large (I) sources for regular 10x10

electrodes grid and the same grid with broken 5 (B, F, J), 10 (C, G, K) and 20 (D, H, L) contacts. Plots (B, C, D, F, G, H, J, K, L) show difference

between average error for regular grid and grid with broken contacts. Estimation was made in noise free scenario, R parameter selected in cross-

validation. Black dots represent locations of contacts used in the study.

https://doi.org/10.1371/journal.pcbi.1011941.g007
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To facilitate intuition building in the provided toolbox we include tools to compute the

eigensources for a given setup. We also proposed here reliability maps, heuristic tools to build

intuition regarding which parts of the reconstructed CSD can be trusted and which seem

doubtful. These reliability maps are built around specific test ground truth distributions and

some default parameters facilitating validation for any given setup are provided. Due to the

open source nature of the provided toolbox more complex analysis is possible if the setup or

experimental context require that.

Availability and future directions

This paper introduces the kCSD-python package, an implementation of the kernel Current

Source Density method [12] and its two variants ([20] and [16]). It is open source and available

under the modified BSD License (3-Clause BSD) on GitHub (https://github.com/Neuroinflab/

kCSD-python). It utilizes the continuous integration provided by Travis CI. It supports Python

3.8, 3.9, 3.10, and 3.11 versions and has minimal library requirements (numpy, scipy, and

matplotlib). It can be installed using the Python package installer (pip) or using the Ana-

conda python package environment (conda). Details of the installation can be found in the

package documentation at https://kcsd-python.readthedocs.io/en/latest/INSTALL.html.

The package contains a set of tools for kCSD analysis and to validate the results obtained

from this analysis. To facilitate the uptake of this resource, the package comes with extensive

tutorials implemented in Jupyter Notebooks. These tutorials allow users to test different con-

figurations of current sources and electrodes to see the method in action. The users can analyze

their data or explore the method with data generated in silico. These provisions illustrate the

advantages and limitations of kCSD method to its users. The tutorials can also be accessed

without any installation on a web browser via Google Colaboratory [Google CoLab (RRID:

SCR_018009)]. The package is extensively documented (https://kcsd-python.readthedocs.io)

and includes all the necessary scripts to generate the figures in this manuscript.

An extensive tutorial overview of the kCSD-python package is provided in S1 Text. Its

goal is to show how to use kCSD-python to perform CSD analysis, how to apply the pro-

vided analysis tools, and how to validate the results. We first consider a regular grid of ideal

(noise-free) electrodes, where we compute the potentials from a known test source (the ground

truth). We then use these potentials to reconstruct the sources which we compare with ground

truth (Basic features). Then, we explore the effects of noise on the reconstruction and test the

robustness of the method (Noisy electrodes). In the final part of the tutorial we look at how the

errors in the estimation depend on the sources and the electrode configuration by testing the

effects of broken electrodes on reconstruction (Broken electrodes).

S1 Fig shows error propagation maps, which we introduce below, for a 1D regular grid of

12 electrodes. S2 Fig shows an example of 3D kCSD source reconstruction. S3 Fig shows an

example of skCSD reconstruction (single cell kernel CSD) which corresponds to Fig 8 from

[16]. The simulation, reconstruction, and visualization, have all been re-implemented in

Python.

We also provide some pre-computed examples of CSD estimations using our library for

users to explore. We provide these as .pdf files available at https://doi.org/10.18150/

KRYNCA. Here, the files small_srcs_3D_all.pdf and large_srcs_3D_all.pdf
show 100 example setups of 3D kCSD reconstructions from small and large sources. Similarly,

files small_srcs_all.pdf and large_srcs_all.pdf show 100 example setups of

2D kCSD reconstructions from small and large sources. “Smallness” and “largeness” of sources

are defined by the ratios of typical spatial scales of the source relative to interelectrode

distances.
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Throughout this work and in the toolbox we assumed the purely ohmic character of the tis-

sue. This has been debated in recent years [8, 38, 39] and it is true that more complex biophysi-

cal models of the tissue, taking into account frequency-dependent conductivity or diffusion

currents, could influence the practice of source reconstruction or its interpretation. However,

the available data indicate that in the range of frequencies of physiological interest these effects

are small. While one should keep eyes open on the new data as they become available and keep

in mind the different possible sources which may affect the reconstruction or interpretation,

we believe that the traditional view of ohmic tissue is an adequate basis for typical experimental

situations and going beyond that would probably require additional dedicated measurement

for the experiment at hand which may not always be feasible. For example, as we discussed in

[20], the specimen variability of the cortical conductivity in the rat is much bigger than the var-

iability between different directions within a given rat [40]. This means that unless we have

conductivity measurements for our specific rat we are probably making smaller errors assum-

ing isotropic conductivity than taking different values from the literature. We feel there is not

enough data to justify the inclusion of more complex terms in the standard CSD analysis to be

applied throughout the brains and species.

In this manuscript and in the kCSD-python toolbox we also assumed constant conduc-

tivity (with the exception of the MoI case). We are convinced this is a reasonable approxima-

tion for typical depth recordings. In general, however, this approximation needs to be justified

or alternative models of tissue need to be considered. In principle, the kCSD method can be

applied to a variety of tissue models as long as the basis potentials can be computed from the

basis sources while incorporating the geometric and conductivity changes.

For example, [20] considered a cortical slice placed on a microelectrode array (MEA) in

which they included the geometry of the slice and modeled the saline-slice interface with

changing conductivity in the forward model. They found that the Method of Images (MoI)

gives a good approximation to the full solution obtained using a finite-element model (FEM).

This approximation was incorporated within the kCSD method as the MoIkCSD variant and

is available in the kCSD-python package.

It is possible to generalize kCSD to reconstruct sources from recordings of multiple electri-

cal modalities—LFP, ECoG, and EEG. In this case one needs to include the head geometry and

the changing tissue properties within the forward model and in the kCSD method. The aniso-

tropic (white matter tracts) and inhomogeneous (varying between skull, cerebrospinal fluid,

gray matter, and white matter) electrical conductivity changes can be approximated using data

obtained with imaging techniques such as MRI, CT or DTI. Such sophisticated head models

require numerical solutions such as finite element modeling (FEM) to compute the basis

potentials from the basis sources. We are currently working on this approach to make it

generic for any animal head and to eventually utilize it as a source localization method for

human data, for example, to localize foci of pharmacologically intractable epilepsy seizures in

humans. We call this extension kernel Electrical Source Imaging (kESI).

Supporting information

S1 Text. kCSD-python package tutorial.

(PDF)

S1 Fig. Error propagation maps for 1D regular grid of 12 electrodes. Every panel represents

the CSD contribution (red line) of the potential measured at the corresponding electrode, for

which the potential is 1 (green line).

(TIF)
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S2 Fig. An example of 3D kCSD source reconstruction. Each column shows five consecutive

parallel cuts through a box of size 1. A) Ground truth for the CSD seed of 16. B) Estimated

potential; black dots indicate electrodes where potential is collected for further reconstruction.

C) 3D kCSD reconstruction from the measured potentials, λ = 0. D) 3D kCSD reconstruction

with cross-validation.

(TIF)

S3 Fig. An example of skCSD reconstruction [16] of somatic current injection together

with random synaptic input patterns for a retinal ganglion cell model. A) Somatic mem-

brane potential. B) Current density and its C) skCSD reconstruction in the segment space.

Projection of D) ground truth and E) skCSD reconstruction on the neuron’s morphology at 5

s of the simulation. We simulated a multicompartmental model of a mouse retinal ganglion

cell (morphology [41] obtained from NeuroMorpho.Org [42]) with Hodgkin-Huxley sodium,

potassium, and leakage channels in the soma (hh mechanism) in NEURON simulation envi-

ronment. For calculation of the measured extracellular potentials we used LFPy package [43].

The model neuron was stimulated by an injection of oscillatory current to the soma (with fre-

quency of 24.5 1/ms and amplitude of 3.6 nA) together with random synaptic inputs (weight

of 0.04 μS) to the dendritic tree. The activity of the model neuron was measured by a rectangu-

lar grid of 100 electrodes (10 × 10, -400 μm × 400μm). The figure corresponds to Fig 8 from

[16].

(TIF)
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References

1. Nunez PL, Srinivasan R. Electric Fields of the Brain. 2nd ed. New York: Oxford University Press;

2006.
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