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Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions
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We demonstrate the failure of the adiabatic Born-Oppenheimer approximation to describe the ground state
of a quantum impurity within an ultracold Fermi gas despite substantial mass differences between the bath
and impurity species. Increasing repulsion leads to the appearance of nonadiabatic couplings between the fast
bath and slow impurity degrees of freedom, which reduce the parity symmetry of the latter according to the
pseudo Jahn-Teller effect. The presence of this mechanism is associated to a conical intersection involving the
impurity position and the inverse of the interaction strength, which acts as a synthetic dimension. We elucidate
the presence of these effects via a detailed ground-state analysis involving the comparison of ab initio fully
correlated simulations with effective models. Our study suggests ultracold atomic ensembles as potent emulators
of complex molecular phenomena.
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I. INTRODUCTION

Landau’s postulate, which emerged from a discussion with
Teller in 1934, that the symmetry causing an energetically
degenerate state, is spontaneously lifted, led to the Jahn-Teller
effect stating the configuration of any nonlinear polyatomic
system in a degenerate electronic state undergoes spontaneous
distortions that remove the degeneracy [1–5]. This effect was
demonstrated theoretically and experimentally in various ar-
eas of physics, such as solid-state physics, molecular physics,
and material science, as well as in biology and chemistry
[6–12]. An extension of the Jahn-Teller effect was found in
pseudo-degenerate systems, in which strong vibronic cou-
plings between any two electronic states with an arbitrary
nonvanishing energetic gap cause an instability and distortion
of the polyatomic system. This is known as pseudo Jahn-Teller
effect [5,13–15]. Furthermore, it has been shown that the
(pseudo) Jahn-Teller effect is the only origin for spontaneous
symmetry breaking in those systems [3,14,16].

Ultracold quantum gases have proven to be a pristine
platform for quantum simulation due to their high degree of
versatility and controllability [17–24]. Furthermore, recently
a lot of theoretical [25–31] and experimental [32–35] effort
has been devoted to the understanding of the properties of
impurities immersed in Bose and Fermi gases. The emergent
properties of such ensembles are analogous to polarons. In the
condensed-matter setting these correspond to dressed states
of electrons by the vibrations of the surrounding material,
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playing an important role in understanding electron transport
of their host material [36–39]. Due to the excellent tunability
of interaction strength in ultracold atoms Bose and Fermi po-
larons have been studied extensively in the strong interaction
limit [40–63], beyond the regimes available within material
science. The above leads to the question whether ultracold
atoms can be employed to elucidate the qualitative features
of the electronic structure of molecular systems. Such investi-
gations can possibly lay the groundwork for observing new
phenomena or designing (artificial) molecules with desired
properties.

As a first step towards achieving this goal here we
propose a one-dimensional system characterized by large
mass imbalance in order to study effects associated with
nonadiabaticity and the pseudo Jahn-Teller effect. The ex-
perimental realizability of large mass imbalanced systems
has been demonstrated in [64] for 6Li − 40K mixtures. Such
a two-species mixture provides the opportunity to tune the
interaction between both components via Fano-Feshbach and
confinement-induced resonances [65–67] and apply species-
selective trapping geometries [68]. The control of individual
atoms [69] led to the possibility to design intriguing states of
matter such as the Mott insulator with just a few bosonic par-
ticles [70,71]. Later on this was also realized with fermionic
6Li atoms [72], which allowed experimentalists to study the
emergence of fundamental many-body effects like Cooper
pairing atom-by-atom [73]. In general, the few-particle plat-
form, which is the subject of our study, turned out to be
fruitful for the understanding of the fundamental processes of
many-body quantum physics [74–78]. Our setup consists of a
few-body bath of fermions interacting with a single massive
impurity. The confinement of the two species is controlled
independently by a distinct harmonic trapping confinement.
We examine the nonadiabatic physics in our system by
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comparing the results of the adiabatic Born-Oppenheimer
(BO) approximation with the numerically exact ab initio mul-
tilayer multiconfiguration time-dependent Hartree method for
atomic mixtures (ML-MCTDHX) [79–81]. Even on the basic
level of the ground-state energy and one-body density, we
point out large deviations among the two approaches evincing
significant nonadiabatic contributions, which become more
prominent for increasing interaction strength. The presence
of nonadiabaticity is further indicated by the correlation
properties of the two-body bath-impurity densities and the
interspecies entanglement captured by the von Neumann en-
tropy.

The decrease of these nonadiabatic effects is found to
be more sensitive on a increase of the trapping frequency
of the impurity as compared to an increase of its mass, as-
suming a common increment value. Given that the adiabatic
BO approximation becomes exact for each infinite mass and
infinite trapping frequency, this might not be the expected
behavior and indeed, this approximate approach shows a di-
verging behavior from the exact one. The above results can
be explained in terms of the pseudo Jahn-Teller effect. In
particular, we demonstrate that the bath-impurity system is
effectively described by a E ⊗ b system known to exhibit the
pseudo Jahn-Teller effect. In addition a detailed symmetry
analysis shows that a conical intersection emerges when the
impurity position and the inverse of the interaction strength
are employed as the slow coordinates of the system provided
that the number of bath particles is odd. The inverse of the
interaction strength in this context can be interpreted as an
additional synthetic dimension. Up to now synthetic dimen-
sions have been observed in various fields: such as Rydberg
atoms [82], optical lattices [83,84], photonics [85], the study
of gauge fields [86], and quantum simulations [87]. Analyz-
ing the potential energy curves for fixed interaction within a
multichannel BO approach reveals that more than one conical
intersection might occur. The associated (quasi-)degeneracy
points among the potential energy curves are explained in
terms of resonant bath particle transport through the impurity
when the impurity resides in the vicinity of specific positions.
These positions can be identified by the sharp increase of the
bath momentum in their vicinity and thus are captured by the
Born-Huang correction of the lowest potential energy surface.

Our paper is organized as follows. Section II introduces
the underlying impurity setup, where we introduce a one-
dimensional Hamiltonian describing the coupling of our
few-body bath and the impurity via s-wave interaction. In
Sec. III, we present the ab initio methods ML-MCTDHF
and a multichannel BO ansatz, which we apply to solve the
Schrödinger equation. Especially, we point out the relation
between the adiabatic BO approximation and our multichan-
nel BO ansatz. The basic ground-state analysis is performed
in Sec. IV. Comparing the adiabatic BO approximation with
the exact numerical result shows deviations for the impurity
energy as well as for the one-body density. In Sec. V we focus
on the correlation properties in terms of the von Neumann en-
tropy and two-body density. The dependence of the observed
effects on the impurity parameters is addressed in Sec. VI.
The existence and implications of the pseudo Jahn-Teller ef-
fect in our system are discussed in Sec. VII. We finish with
our conclusions and outline further perspectives in Sec. VIII.

FIG. 1. Schematic illustration of our many-body setup, consist-
ing of two different fermionic species. The majority atoms, referred
to as the bath, interact with a heavy and tightly confined impurity.
Both species are trapped in a species-dependent harmonic potential.

In Appendix A, the detailed derivation of the nonadiabatic
couplings for the multichannel BO ansatz is provided. This
is followed in Appendix B by an analysis of entanglement
within the adiabatic BO approximation. Appendix C contains
a convergence analysis of our two ab initio methods: ML-
MCTDHF and the multichannel BO approach in combination
with a configuration interaction method. Appendix D con-
tains a proof of an important theorem used in the main text.
Appendix E reviews the relevant for us properties of two in-
teracting confined fermions. The final Appendix F explicates
our analysis of the emergence of a E ⊗ ε conical intersection.

II. SETUP AND HAMILTONIAN

We consider a two-species setup of mass-imbalanced
and spin-polarized fermions confined in a one-dimensional
(species-dependent) parabolic trap, which is depicted in
Fig. 1. In particular, we focus on the particle imbalanced
case where a lighter majority species, denoted as B interacts
with a single heavy impurity I , via s-wave repulsion. The
Hamiltonian of our system reads Ĥ = ĤB + ĤI + ĤBI with
the corresponding terms being

Ĥσ =
Nσ∑
j=1

⎡
⎣− h̄2

2mσ

(
∂

∂xσ
j

)2

+ Vσ

(
xσ

j

)⎤⎦,

ĤBI =
NB∑

k=1

NI∑
j=1

gδ
(
xB

k − xI
j

)
,

(1)

where σ ∈ {B, I} and Vσ (x) = 1
2 mσω2

σ x2 denotes the har-
monic trapping potential for the associated species. In
addition, NB denotes the number of bath atoms (herewith we
mainly focus on the NB = 5 case) and NI = 1 is the number
of impurities. The effective interaction strength g corresponds
to the 1D s-wave contact-interaction strength between the two
distinct species [19]. Due to the Pauli principle, intraspecies
interaction is excluded since two fermions cannot occupy the
same state. Let us note here that g is dependent on the ex-
perimental transverse confinement length and the 3D s-wave
scattering length [88] and thus is tunable via confinement
and Fano-Feshbach resonances [89]. Here, we consider an
impurity species I that is heavier and more tightly trapped
compared to the bath species B, implying mI � mB and ωI �
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ωB, motivating a BO-like approach [90]. In what follows, we
mainly focus on the case mI = 4mB and ωI = 4ωB motivated
by corresponding state-of-the-art experiments with 6Li - 23Na
mixtures [91], which are representative of the qualitative be-
havior in this regime. In Sec. VI we provide a more detailed
analysis of the effects of varying mB and ωB in the ground state
of the system.

III. METHODOLOGY AND COMPUTATIONAL
APPROACH

In the following, we present the methods we employ for
the ground-state study of our system. Therefore, we have to
solve the stationary Schrödinger equation corresponding to
the Hamiltonian of Eq. (1). First, we will address the fully
correlated numerical ML-MCTDHX approach. Second, we
describe our multichannel BO approach, which is motivated
by the significant mass imbalance mI/mB in our system. Both
methods are numerically exact ab initio approaches suitable
for the solution of multicomponent fermionic systems [81].

A. The ML-MCTDHX method

ML-MCTDHX is a variational, ab initio and numerically
exact approach for the simulation of the nonequilibrium quan-
tum dynamics of bosonic and fermionic particles and mixtures
thereof, containing a single or both types of particles [79–81].
ML-MCTDHX relies on a multilayered ansatz that variation-
ally optimizes the involved quantum basis at different levels of
the complex structure of the total many-body wavefunction.

In particular, the total many-body wavefunction |�(t )〉 is
represented as a linear combination of j = 1, 2, ..., D distinct
orthonormal functions for each involved species |�σ

j (t )〉 with
σ = B, I ,

|�(t )〉 =
D∑

jB, jI =1

AjB, jI (t )|�B
jB (t )〉|�I

jI (t )〉, (2)

where AjB, jI (t ) are the corresponding time-dependent expan-
sion coefficients. This expansion is formally identical to a
truncated Schmidt decomposition of rank D, given by

|�(t )〉 =
D∑

k=1

√
λk (t )|�̃B

k (t )〉|�̃I
k (t )〉. (3)

The time-dependent expansion coefficients λk (t ) are de-
noted as Schmidt weights and |�̃σ

k (t )〉 are the corresponding
Schmidt modes. Especially, λk and |�̃σ

k (t )〉 represent the
eigenvalues and eigenstates of the σ -species reduced density
matrix, namely,

ρ (Nσ )
σ

(
x1, . . . , xNσ

, x′
1, . . . , x′

Nσ
, t
)

=
∫ Nσ̄∏

j=1

dxσ̄
j �

∗(xσ
1 = x′

1, . . . , xσ
Nσ

= x′
Nσ

, xσ̄
1 , . . . , xσ̄

Nσ̄
, t
)

× �
(
xσ

1 = x1, . . . , xσ
Nσ

= xNσ
, xσ̄

1 , . . . , xσ̄
Nσ̄

, t
)
, (4)

where σ̄ �= σ . Notice that within ML-
MCTDHX this density matrix can be
expressed as ρ (Nσ )

σ (x1, . . . , xNσ
, x′

1, . . . , x′
Nσ

, t ) =
〈x1, . . . , xNσ

|ρ̂ (Nσ )
σ (t )|x′

1, . . . , x′
Nσ

〉, where the density matrix

operator reads

ρ̂ (Nσ )
σ (t ) =

D∑
jσ , j′σ =1

jσ̄ =1

A∗
jσ , jσ̄ (t )Ajσ̄ , j′σ (t )︸ ︷︷ ︸
≡[ρ̂ (Nσ )

σ (t )] jσ , j′σ

|�σ
jσ (t )〉〈�σ

j′σ
(t )|. (5)

Therefore, λk and |�̃σ
k (t )〉 can be evaluated by diagonalizing

the matrix [ρ̂ (Nσ )
σ (t )] jσ , j′σ for jσ , j′σ = 1, . . . , D. The truncated

Schmidt decomposition of Eq. (3) exhibits a finite bipartite
entanglement of the system among the bath and impurity
species, if at least two λk (t )’s are nonvanishing. In the case,
λ1(t ) = 1 and λk (t ) = 0 for k = 2, . . . , D the total wavefunc-
tion |�(t )〉 is a tensor product of the species states and the
system is nonentangled. The expansion of Eq. (3) can be
thought of as an expansion in terms of entanglement modes
with D controlling the maximum number of allowed entan-
glement modes of the system.

The multilayered structure of our ansatz stems from the
fact that each species function |�σ

j (t )〉 is expanded in terms
of a time-dependent number-state basis set |�n(t )〉σ leading to∣∣�σ

j (t )
〉 =∑

�n
Bσ

j,�n(t )|�n(t )〉σ . (6)

On this level, |�n(t )〉σ could be determinants or permanents
for a fermionic or bosonic species σ respectively. Further,
Bσ

j,�n(t ) corresponds to the time-dependent expansion coef-
ficients with a particular number state |�n(t )〉σ , which is
built from dσ time-dependent variationally optimized single-
particle functions (SPFs) given by φσ

l (t ), l = 1, 2, ..., dσ with
�n = (n1, ..., ndσ ) corresponding to the contribution numbers.
On the lowest layer of the ML-MCTDHX variational ansatz,
the SPFs are represented on a time-independent primitive
basis. For the underlying case of spinless fermions, this refers
to a M-dimensional discrete variable representation (DVR)
represented by {|k〉}. Hence, the SPF of the σ species are given
by

∣∣φσ
j (t )
〉 = M∑

k=1

Cσ
jk (t )|k〉. (7)

In our investigation we choose M = 150 grid points of a
harmonic oscillator DVR.

To determine the variationally optimal ground state of
the Hamiltonian (1) corresponding to the (NB + NI )-body
wavefunction |�(t )〉 of Eqs. (2)–(7), the corresponding ML-
MCTDHX equations of motion are derived by employing the
Dirac-Frenkel [92,93] variational principle

〈δ�(t )|ih̄ ∂

∂t
− Ĥ |�(t )〉 = 0, (8)

for details see [81]. Hence, we have to solve numerically D2

linear differential equations of motion for AjB, jI (t ), which are
coupled to D( dB!

NB! + dI !
NI ! ) and dB + dI nonlinear integrodiffer-

ential equations for the expansion coefficients of the species
functions Bσ

j,�n(t ) and the SPFs Cσ
j,k (t ), respectively. Let us

note here that calculating the ground state of Eq. (1) can
be achieved by performing propagation in imaginary time.
Within this approach we perform a Wick rotation of the real
time t , which leads to the imaginary time τ = −it . This
substitution results in the energy of the propagated state of
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the corresponding equations of motion to decrease monotoni-
cally in time proportionately to ∝ e−(E (t )−E0 )t , where E0 is the
ground-state energy. Therefore, the ground state is obtained in
the limit of large propagation times τ → ∞ if the initial state
possesses a finite overlap with the ground state.

The key feature of ML-MCTDHX is the expansion of the
system’s many-body wavefunction with respect to a time-
dependent and variationally optimized basis, that can adapt
to the relevant interparticle correlations at the level of single-
particle, single-species, and total multispecies systems. The
involved Hilbert-space truncation is characterized by the cho-
sen orbital configuration space, which is characterized by C =
(D; dB; dI ). Furthermore, since we consider a single impurity
on the I species, there are no intraspecies interactions thus we
can set dI = D without loss of generality. In turn, the number
of Schmidt modes is taken large enough D = 12 to account
for interspecies entanglement. To account for the interspecies
interactions of the bath we consider a large enough number
of bath species orbitals dB = 18 to properly account for the
different states the bath atoms can occupy as a consequence
of the bath-impurity entanglement. For more information re-
garding the convergence of the ML-MCTDHX method, see
Appendix C.

B. Multichannel Born-Oppenheimer approach

Motivated by the assumption of a heavy, less-mobile im-
purity the comparison of our results with a BO-like approach
is justified. A general variational formulation of this approach
can be established in terms of the multichannel BO ansatz,

�
(
xB

1 , . . . , xB
NB

, xI
) =

M∑
j=1

� j,I (xI ) � j,B
(
xB

1 , . . . , xB
NB

; xI
)︸ ︷︷ ︸

≡〈xB
1 ,...,xB

NB
|� j,B (xI )〉

.

(9)

Here, we have introduced an orthonormal basis for
the bath species |� j,B(xI )〉 with j = 1, 2, . . . , exhibit-
ing a parametric dependence on xI . The impurity-species
wavefunctions � j,I (xI ) with the normalization condition∑M

j=1

∫
dxI |� j,I (xI )|2 = 1 correspond to the expansion coef-

ficients in the many-body basis of the coupled system. Using
the multichannel ansatz of Eq. (9) and employing the varia-
tional principle δ〈�|Ĥ−E |�〉

δ�∗
k,I (xI ) = 0, we derive the coupled set of

equations

E�k,I (xI ) = − h̄2

2mI

M∑
j,l=1

(
δk j

d

dxI
− iAk j (xI )

)

×
(

δ jl
d

dxI
− iA jl (xI )

)
�l,I (xI )

+
M∑

l=1

(
〈�k,B(xI )|ĤB + ĤBI |�l,B(xI )〉

+ δkl
1

2
mBω2

I x2
I + V ren

kl (xI )

)
�l,I (xI ), (10)

for k = 1, 2, . . . , M [94,95]. In this step, we intro-
duce the nonadiabatic derivative couplings Ak j (xI ) =

i〈�k,B(xI )| ∂� j,B

∂xI
(xI )〉 as an effective gauge field. In addition,

the last term in Eq. (10) refers to the potential renormalization,
which is given by

V ren
kl (xI ) = h̄2

2mI

〈
d�k,B

dxI
(xI )

∣∣∣∣1 − P̂M (xI )

∣∣∣∣d�l,B

dxI
(xI )

〉
, (11)

where the projector onto the subspace spanned by |�k,B(xI )〉
is defined as

P̂M (xI ) =
M∑

j=1

|� j,B(xI )〉〈� j,B(xI )|. (12)

In general, it is possible to define |�k,B(xI )〉 in terms of
any complete wave-function basis. However, the convenient
choice is to employ the eigenstates of ĤB + ĤBI for fixed xI ,
which leads to the diagonal matrix elements

〈�k,B(xI )|ĤB + ĤBI |�l,B(xI )〉 = δklεk (xI ), (13)

where the eigenvalues εk (xI ) are the corresponding potential
energy curves.

In the limit of infinite channels, M → ∞, the expansion of
Eq. (9) and the equations-of-motion of Eq. (10) are exact for
any mass ratio mB/mI . In particular, a mass ratio mB/mI � 1
is favorable, since it suppresses the off-diagonal nonadiabatic
coupling terms stemming from the gauge potential Ak j (xI ) and
potential renormalization terms V ren

kl (xI ). In this case, only
a few terms contribute significantly to the exact many-body
wavefunction, and consequently a relatively small value M
suffices for adequate convergence to the exact solution.

C. Variational and nonvariational adiabatic BO

Before proceeding let us comment on the reduction of the
above to the adiabatic BO approximation widely employed in
molecular physics [90]. If we restrict the ansatz of Eq. (9) to
M = 1 term, the variational equations of motion reduce to the
adiabatic BO approximation incorporating the Born-Huang
correction arising from V ren

11 (xI ), which is therefore charac-
terized as variational adiabatic Born-Oppenheimer (VABO)
approximation. The usual adiabatic BO approach consists
of dropping this additional term by considering V ren

11 (xI ) =
0 and will be denoted as nonvariational adiabatic Born-
Oppenheimer (NVABO) approximation. It can be shown that
the VABO approximation accounting for V ren

11 (xI ) �= 0 pos-
sesses a variational character and thus yields an upper bound
to the ground-state energy. In contrast, the usual NVABO
approximation, with V ren

11 (xI ) = 0, yields a lower bound for
the ground-state energy [96,97].1 Thus, the value of the term
V ren

11 (xI ) relative to the other parameters of the system is a
good indication for the correlations among distinct potential
energy curves as it provides an order of magnitude estimate
for the correlation energy related to the contribution of multi-
ple potential energy curves, Ecorr ≡ limM→∞ EM − EM=1. An
important caveat here is that the lower ground-state energy of

1Since a term is dropped this leads to a lower bound, which is
nonvariational. A proof for this can be found in [96]: Herein, it is
shown that the standard NVABO yields a lower bound.
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FIG. 2. (a) Ground-state/impurity-interaction energy [see Eq. (14)] and (b) von Neumann entropy SV N for varying interaction strength g
and within different levels of approximation (see legend). In all cases, NB = 5, mI = 4mB, and ωI = 4ωB.

NVABO does not imply a better quality of the correspond-
ing many-body state, but an approximation in terms of the
Hamiltonian. Indeed, the variational principle guarantees that
the energy of the NVABO ground state will be larger than the
VABO when the exact form of the Hamiltonian is considered.

In the following, we will rely on the above analyzed meth-
ods to investigate the relevant ground-state properties of our
system.

IV. BASIC GROUND-STATE PROPERTIES

Since, we consider the case of an impurity somewhat larger
than the mass of the bath particles, mI > mB, at first glance it
might seem sufficient to take into account the adiabatic BO
approximation. Hence, in the following we will compare the
ground-state properties of Eq. (1) within the fully correlated
ML-MCTDHX approach and the adiabatic BO approaches
(VABO and NVABO), which neglects the nonadiabatic con-
tributions of the underlying Hamiltonian. This will give us
an overview of the importance of the nonadiabaticity in our
system in its most elementary ground-state properties.

A. Impurity-interaction energy

We start our ground-state analysis by considering the im-
purity interaction energy, which is given by

Eie = Etot (g) − Etot (g = 0). (14)

Figure 2(a) reveals that all approaches show that stronger
repulsions lead to higher impurity-interaction energies, as
the interspecies interaction energy increases. In addition, all
approaches demonstrate that Eie shows a linear behavior for
weak interaction and a nonlinear one, characterized by a de-
creasing slope with increasing g. This is due to the change
of the many-body state of the system in order to reduce the
associated interaction energy penalty stemming from the spa-
tial overlap among the impurity I and bath B species. The
VABO approximation follows this linear trend for a larger
regime of g values leading to an overall stronger increase of

Eie, when compared to the other approaches. The comparison
of the variational with the NVABO approximation reveals that
the reason for this divergence is the inclusion of the V ren

11 (x)
term, which becomes important for g > 1. This leads to a
larger discrepancy between the lower-energy bound given by
the NVABO approximation and the upper (variational) bound,
which is represented by NVABO incorporating the Born-
Huang correction. The multichannel BO and ML-MCTDHX
approaches are able to correct the energy accounting for nona-
diabatic effects, which is a first indication for their importance
in our system. To get further insight regarding the mecha-
nisms for the discrepancy between the adiabatic BO result
and the two numerically exact ab initio methods, we study the
one-body density profiles provided by the above-mentioned
approaches.

B. One-body density

To resolve the spatial behavior for both the impurity and
the bath we resort to the on e-body density as a function of the
interaction strength, see Fig. 3. Here for the sake of brevity, we
only compare the VABO approximation and ML-MCTDHX.
In this section, we do not show the results of the multichannel
BO approach, since they agree very well with the results of
ML-MCTDHX. The results for the NVABO approximation
will be discussed later on, since, as discussed in Sec. III C, the
corresponding ground state stems from the approximation of
the Hamiltonian and thus there are several nuances associated
with it. For both the VABO and ML-MCTDHX, we observe
an outward displacement of the majority species for increas-
ing g, stemming from the gradual depletion of the density in
the region around x = 0, see Figs. 3(a) and 3(b). This behav-
ior is a result of the repulsive interaction between the two
species, as the heavy and tightly trapped impurity remains in
the trap center, pushing the bath particles outward. However,
it is obvious that the spatial profiles of the majority species
possess significant quantitative deviations among the two ap-
proaches. In particular, the VABO approach underappreciates
the density depletion for x = 0 and, also, underappreciates the
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FIG. 3. Interaction dependence of [(a), (b)] the bath ρ
(1)
B (x; t ), and [(c), (d)] the impurity species one-body density matrix ρ

(1)
I (x; t ). Panels

(a) and (c) refer to the VABO approximation, whereas (b) and (d) show the ML-MCTDHX results. In all cases, NB = 5, mI = 4mB, and
ωI = 4ωB.

development of the two density maxima at x = ±0.5 evident
within ML-MCTDHX, see Fig. 3(b). The comparison of the
impurity densities also shows clear qualitative deviations. In
particular, within ML-MCTDHX the profile remains essen-
tially unchanged possessing a Gaussian shape for all g values,
see Fig. 3(d), while within the adiabatic BO approximation,
see Fig. 3(c), the profile increasingly flattens and spreads out
spatially as g increases.

The above allow us to attribute the substantially larger
energy of the VABO approximation when compared to ML-
MCTDHX, see Fig. 2(a), to the larger spatial overlap of
the impurity and bath species in the former approach that
increases the interaction energy. Additionally, the VABO ap-
proximation results in a larger spreading of the density of
the impurity species, see Figs. 3(c) and 4(bi) with i = 1, 2, 3
resulting in additional contributions of potential energy when
compared to ML-MCTDHX. The above implies that the adi-
abatic treatment is not able to adequately describe the state of
the system and thus additional contributions stemming from

the nonadiabatic couplings need to be introduced in order to
properly account for it.

To elucidate further the shortcomings of the adiabatic ap-
proach let us examine the behavior of the effective potential
within the VABO and NVABO approximations. This effective
potential reads

ε̄(xI ) = VI (xI ) + ε1(xI ) + V ren
1,1 (xI ) − h̄ωBN2

B

2
. (15)

The first term denotes the harmonic trapping potential for
the impurity, see Eq. (1), while the second and third terms
are the potential energy curve and the Born-Huang potential
renormalization, see Eq. (11). The last term removes from
ε̄(xI ) the spatially constant energy offset stemming from the
noninteracting energy of the bath species. Recall that NVABO
does not contain the Born-Huang correction, i.e., V ren

1,1 (xI ) = 0
in ε̄(xI ).

Figure 4 provides the one-body densities within the VABO,
NVABO, and ML-MCTDHX approaches in combination with

FIG. 4. One-body density profiles for (ai) the bath and (bi) the impurity species within different levels of approximation (see legend) and
for selected values of the interaction strength, g = gi, with g1 = 0, g2 = 1 and g3 = 2. The panels (ci) indicate the effective potentials for the
corresponding g = gi, see Eq. (15), within the variational and NVABO approximations. In all cases, NB = 5, mI = 4mB, and ωI = 4ωB.
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FIG. 5. Bath-impurity two-body densities ρ2
BI (xB, xI ) within the (ai) VABO and (bi) the ML-MCTDHX approach and for selected

interaction strengths, g = gi, with g1 = 0, g2 = 1, and g3 = 2. The system refers to NB = 5 bath atoms interacting with an impurity with
mI = 4mB and ωI = 4ωB.

ε̄(xI ) for three different interaction strengths. By comparing
the effective potential within the VABO approximation, see
Fig. 4(ci), with i = 1, 2, 3, we observe that it deforms from
a harmonic potential for g = 0, see Fig. 4(c1), to a double
well structure for g > 3, see Fig. 4(c3). In contrast, NVABO
does not show this effect with the effective potential be-
ing parabolic for all considered interaction strengths. This
demonstrates that the Born-Huang term is responsible for the
emergence of the double-well structure in Fig. 4(c3).

The above analyzed behavior of the effective potential
explains the density discrepancies among the ML-MCTDHX
and the VABO approach. The transition from the harmonic
to a double-well one gives an explanation for the displace-
ment of the impurity from the trap center [62], see Fig. 4(bi),
with i = 2, 3, in contrast to the ML-MCTDHX approach. In
the case, that the V ren

11 (xI ) is completely dropped the impu-
rity density agrees much better to the ML-MCTDHX result.
However, notice that this term is accounted for in the exact
case, which is a strong indication of the presence of sizable
nonadiabatic effects that lead to the cancellation of this term
within ML-MCTDHX. Indeed, notice that dropping the Born-
Huang term does not fix the sizable quantitative deviation of
ρ

(1)
B (xB) within the variational BO approach when compared

to the numerically exact result, see Fig. 4(ai) for i = 2, 3. This
demonstrates the importance of nonadiabatic correlations in
capturing the correct state of the system.

V. CORRELATION PROPERTIES

Having analyzed the basic ground-state properties of
Eq. (1), let us elaborate on the emergent correlation patterns in
terms of the two-body density and the von Neumann entropy.

A. Two-body density

Figure 5 addresses the bath-impurity two-body densities
for the same interaction strengths as in Fig. 4. For both the
VABO and ML-MCTDHX approaches, we detect the emer-
gence of a correlation hole in ρ

(2)
BI (xB, xI ) for xB ≈ xI as the

interaction increases, see Figs. 5(ai) and 5(bi) with i = 2, 3.
Besides the emergence of this structure, the two-body den-

sities among the two distinct approaches are significantly
different. Notice that ρ

(2)
BI (xB, xI ) within the adiabatic BO

approach appears to be more pronounced oscillatory for vary-
ing xB but fixed xI when compared to the ML-MCTDHX
approach, see for instance Fig. 5(a2) for xI ≈ 0.1. This is
explained as follows. The two-body density within the VABO
and NVABO approximation reads

ρ
(2)
BI (xB, xI )

= |�1,I (xI )|2
∫ NB∏

j=2

dx j |�1,B(xB, x2, . . . , xNB ; xI )|2

︸ ︷︷ ︸
≡CBI (xB,xI )

, (16)

with the two-body correlator CBI (xB, xI ) being the one-body
density of the bath for a fixed delta-potential barrier at xI .
This implies that since the one-body density of the bath would
exhibit Friedel oscillations as it corresponds to a state of spin-
polarized fermions, so does CBI (xB, xI ) and thus ρ

(2)
BI (xB, xI )

for fixed xI . Thus the absence of these oscillations within
ML-MCTDHX, see Fig. 5(b2) and 5(b3), provides another
direct indication that more than a single bath eigenstate for
fixed impurity position is involved in the exact many-body
ground state.

B. von Neumann entropy

The observed difference in the correlations between the
adiabatic BO and ML-MCTDHX approaches (identified in the
interspecies two-body densities) carries over in the entangle-
ment among the two species. To demonstrate this we evaluate
the von Neumann entropy,

SVN = −TrI
[
ρ̂

(NB )
B log

(
ρ̂

(NB )
B

)]
= −TrB

[
ρ̂

(1)
I log

(
ρ̂

(1)
I

)]
,

(17)

where ρ̂ (Nσ )
σ = Trσ̄ [|�〉〈�|] refer the σ -species density ma-

trices resulting after the other species, σ̄ �= σ , is traced out
from the many-body wavefunction |�〉. The SV N results are
presented in Fig. 2(b) for all employed approaches. Clearly,
the adiabatic BO approximations (of both the VABO and
NVABO kind) overestimate the von Neumann entropy when
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FIG. 6. [(a),(c)] The impurity-interaction energy Eie and [(b),(d)] the von Neumann entropy SVN as a function of the interaction strength, g,
within [(a),(b)] the adiabatic BO approximation and [(c),(d)] the ML-MCTDHX approach and for different impurity parameters (see legend).
The NVABO and VABO results correspond to the lower and upper bounds of Eie respectively [see shaded regions in panel (a)], while in (b) we
provide only the VABO results for visual clarity. The inset of panel (c) provides a magnification of the corresponding Eie in the interaction
interval 3.5 < g < 5. In all cases NB = 5.

compared to the ML-MCTDHX case. The underlying rea-
son for this deviation can be traced back to the one-to-one
mapping between the position of the impurity xI and the
state of the bath |�1,B(xI )〉 that Eq. (9) implies for M =
1. This results in large uncertainties for the state of either
species when the other is traced out giving rise to entan-
glement. We show in Appendix B that this entanglement
depends on the impurity localization, with a more delocal-
ized impurity resulting in larger interspecies entanglement,
and on || ∂

∂xI
|�1,B(xI )〉|xI =0|| parametrizing how much the bath

state changes as the impurity spreads. While the former is
rather constant for increasing interaction, see Fig. 4(b1)–4(b3),
the latter substantially increases as evidenced in Fig. 5(a1)–
5(a3), explaining the increase of SV N within the adiabatic
BO approaches observed in Fig. 2(b). Beyond the adiabatic
approximation SV N is shown to be substantially smaller. This
is because the superposition of additional eigenstates of bath
allows to relax the one-to-one relation among xI and bath
states imposed by Eq. (9).

Here, one should notice also that SV N , within the
multichannel BO approach deviates remarkably from the
ML-MCTDHX approach, see Fig. 2(b), which is the first
discrepancy we observe among the two above-mentioned ap-
proaches. This deviation is not physical since both approaches
are asymptotically exact when the corresponding truncation
parameters increase to account for all possible states. This
discrepancy is rather an indication of the slow convergence
of the multichannel BO approach with increasing number
of configurations M (here M = 40 was employed), which is
evident when quantities addressing the total (NB + 1)-body
wavefunction are concerned, see also Appendix C. Never-

theless, notice that on a qualitative level the results of this
approach are valid and thus it can serve as an important
analysis tool, demonstrating how nonadiabatic effects modify
the many-body wavefunction from the adiabatic BO approxi-
mation case to the numerically exact ML-MCTDHX case.

VI. IMPACT OF IMPURITY PARAMETERS

Before proceeding to the analysis of the nonadiabatic cou-
pling terms, the importance of which is highlighted in Secs. IV
and V, it is instructive to comment on the influence of the
mass mI and trapping frequency ωI of the impurity. First, let
us compare the impurity energy and von Neumann entropy in
Fig. 6 between the (N)VABO (a) and (b) and ML-MCTDHX
(c) and (d) for different values of the impurity parameters ωI

and mI .
Figure 6(a) presents the energy bounds stemming from

the adiabatic BO approximation to the exact energy. It can
be seen that the lower bound provided by the NVABO
approximation is approximately the same for all considered
parameters. This result can be explained in terms of the
effective potential ε̄(xI ), see Eq. (15). As it can be seen in
Fig. 4(ci) for i = 1, 2, 3 ε̄(xI ), the NVABO approximation
leads to a parabolic potential of frequency almost equal to
ωeff

I ≈ ωI , with an additional energy shift stemming from
the bath-impurity density-density interactions. This behavior
stems from the fact that the potential energy curve ε1(xI )
hardly changes for different xI since the characteristic length
scale of its variation is determined by

√
h̄/(mBωB) and

is thus larger than the size of the impurity wavefunction
∼√

h̄/(mIωI ). In particular, by least-square fitting we can
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verify that even in the case of strong interactions, g = 5, the
potential energy curve-induced shift to the trapping frequency
is ωeff

I − ωI ≈ −0.09 for mI = 4 and ωI = 4, with this
deviation further decreasing when either impurity parameter
is increased (not shown here for brevity). Therefore, within
the NVABO approximation the effective Hamiltonian is

E�1,I (xI ) =
[
− h̄2

2mI

d2

dx2
I

+ 1

2
mIω

2
I x2

I + ε1(0)

]
�1,I (xI ),

(18)

and thus Eie ≈ ε1(0).
To explain the behavior of the upper bound of the impurity

energy we examine the influence of the potential energy peak
associated to V ren

11 (xI ), see Fig. 4(ci) with i = 1, 2, 3. Notice
that the spatial variation of this term does not depend on
the parameters of the impurity similarly to ε1(xI ), however,
its amplitude is inversely proportional to mI . Therefore, the
increase of ωI leads to the focusing of the impurity density in
the spatial extent where V ren

11 (xI ) is large, without deteriorating
the importance of this term. This explains the increase of
the impurity-interaction energy when ωI is twofold increased,
see Fig. 6(a). In contrast, the twofold increase of mI causes
the same focusing effect to the impurity density as its ωI

counterpart, but it suppresses the amplitude of V ren
11 (xI ) by a

factor of two. This causes the energy increase associated to
the Born-Huang term being roughly halved for mI = 8, ωI =
4 when compared to mI = 4, ωI = 8. This energy decrease
is evidenced by the energy difference of the VABO from
the NVABO approximation in the corresponding Fig. 6(a).
In summary, the deviation of the energy of the VABO and
NVABO approximation as expected reduces for massive im-
purities. However, as the confinement strength increases this
impurity energy uncertainty, stemming from comparing the
VABO and NVABO energy bounds, increases demonstrating
that the adiabatic BO approximation becomes worse.

In the VABO approximation the von Neumann entropy
decreases by the increase of either mI and mB see Fig. 6(b).
This effect can be attributed to the increased localization of the
impurity within its parabolic trap with a characteristic length
scale I = √

h̄/(mIωI ). As the discussion in Appendix B and
Sec. V B reveals, a more localized state implies a stronger
weight for |�1,B(0)〉 and thus a reduction of the entanglement
captured by SV N . The fact that a twofold increase of either mI

or ωI leads to the same value of SV N , see Fig. 6(b), stems from
the independence of |�1,B(xI )〉 on the impurity parameters.
Therefore, all correlation measures depend only on I which
is equal in both considered cases.

In the numerically exact case of ML-MCTDHX the von
Neumann entropy decreases similarly to the adiabatic BO
approximation when either mI or ωI increases, see Fig. 6(d).
However, the resulting increase of SV N is not equivalent to
the adiabatic BO case. This can be explained by the fact
that increasing ωI increases the energy gap among distinct
impurity states thus the impurity is forced to occupy excited
states more weakly. This means that according to the Schmidt
decomposition the Schmidt weights λk , with k > 1 should
reduce and as a consequence also SV N reduces. In contrast a
reduction of mI affects only the involved length scales and not

the energy ones and thus we expect that SV N is more sensitive
to an increase of ωI .

Less entanglement also means less opportunities to reduce
the bath-impurity interaction energy below its density-overlap
contribution. Notice that the latter can be argued to be similar
in both a twofold decrease of mI or ωI since the corresponding
length scale ′

I = I/
√

2 is equal in both cases. Indeed, the
impact of a twofold increase of the impurity mass mI on the
impurity energy is larger compared to a twofold increase in
the ωI , see Fig. 6(c) and its inset. Notably though the energy
difference for different parameters is not as prominent as in
the VABO approximation case, compare Fig. 6(c) to Fig. 6(a),
demonstrating the important role of the nonadiabatic deriva-
tive couplings in canceling the energy increase due to the
Born-Huang term.

VII. PSEUDO JAHN-TELLER EFFECT

The Jahn-Teller effect is known for giving rise to sponta-
neous symmetry breaking in molecular and condensed-matter
physics [1,3,5,14,16]. In the case, of degenerate states, nona-
diabatic couplings lift the degeneracy, which results in a
ground-state possessing a lower level of symmetry. In the
pseudo Jahn-Teller effect, also in a nondegenerate system, the
symmetry is reduced compared to the adiabatic approximation
due to the nonadiabatic couplings among the fast (bath) and
slow (impurity) degrees of freedom [5,15]. In this section, we
work out the symmetry breaking processes and the impact of
nonadiabatic effects, which we have pointed out in the above
ground-state analysis.

A. Origin of pseudo Jahn-Teller effect
in Fermi impurity systems

The first step in identifying the (pseudo) Jahn-Teller effect
in our setup is to identify the symmetries of our setup and
how these are reduced by the interaction [3]. In the case g = 0
our system possesses a parity symmetry for each individ-
ual component P̂BxB

i = −xB
i and P̂I xI = −xI . However, for

g �= 0 this symmetry ceases to hold since the interaction term
couples the two species and consequently the application of
either P̂I or P̂B alters the state of the system. Therefore, it is
interesting to examine how this reduction of symmetry affects
the impurity state and especially its correlation to the state
of its environment. In the spirit of the original Jahn-Teller
derivation [1,2], it is instructive to calculate the state of the
fast degree of freedom, being the bath state, at the high-
symmetry point |� j,B(xI = 0)〉 and then identify the leading
order coupling to the slow coordinate xI . The description
of our system is simplified by recasting the Hamiltonian in
terms of the shifted fast coordinates as ri = xi − xI . This co-
ordinate change is equivalent to the so-called Lee-Low-Pines
transformation [98–100]. The transformed Hamiltonian reads
Ĥ ′ = Ĥ0r + ĤPCM + ĤI + Ĥcoup. The first term refers to the
bath Hamiltonian

Ĥ0r =
NB∑
j=1

(
− h̄2

2mB

∂2

∂r2
j

+ 1

2
mBω2

Br2
j + gδ(r j )

)
. (19)

Notice that Ĥ0r is independent of the xI coordinate at the
cost of introducing a derivative interaction term, ĤPCM , propor-
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tional to 1/mI , corresponding to the kinetic energy of the bath
particles in the transformed frame. Namely, this term reads

ĤPCM = − h̄2

2mI

⎛
⎝ NB∑

j=1

∂

∂r j

⎞
⎠2

. (20)

This is a typical property of a system following the Lee-
Low-Pines transformation [38].2 The impurity Hamiltonian
corresponds to a harmonic oscillator with modified frequency

ĤI = − h̄2

2mI

∂2

∂x2
I

+ 1

2
mIω

2
Ieffx

2
I , (21)

where ωIeff = ωI

√
1 + mBω2

B

mI ω
2
I

. Finally, the coupling Hamilto-

nian contains a derivative and a linear coupling term

Ĥcoup =
NB∑
j=1

(
h̄2

mI

∂

∂r j

∂

∂xI
+ mBω2

Br jxI

)
. (22)

The single-particle behavior (for NB = 1) of Ĥ0r is well known
as this system admits an analytic solution [101–103], see
Appendix E. Importantly, we know that its eigenspectrum for
g → ∞ features an equidistant in energy ladder of pairs of
degenerate states. However, in the many-body bath case, NB >

1, especially for finite mI/mr the structure of the eigenspec-
trum is more involved. Nevertheless, regarding the ground
state of the Ĥ0r + ĤPCM system we can prove Theorem 1.

Theorem 1. The two lowest-energy eigenstates of Ĥ0r are
degenerate for odd NB provided that g → ∞ irrespectively of
the values of the remaining system parameters, i.e., mI/mB

and ωI/ωB.
This theorem does not carry over to the case of even NB

where this degeneracy can appear or not depending on the
values of the system parameters. We will show the proof of
the theorem 1 in Appendix D.

Let us now discuss the effect of the impurity on the bath
state in the limit g → ∞ in view of Theorem 1. Notice that
according to Eq. (21) the impurity lies in a harmonic oscillator
potential and thus xI is delocalized within a length scale  =√

h̄/(mIωIeff ). The spreading of the impurity within its con-
finement potential results in a back-reaction to the bath state
owing to Ĥcoup, see Eq. (22). According to the line of argu-
ments in Appendix D we can show that 〈�̃k|

∑NB
j=1 r̂ j |�̃k′ 〉 and

〈�̃k|
∑NB

j=1
∂

∂r j
|�̃k′ 〉 are nonzero only in the case that the eigen-

states |�̃k〉 and |�̃k′ 〉 of Ĥ0r + ĤPCM refer to the same �N . �N
corresponds to a good quantum number of the underlying sys-
tem referring to the particle difference of bath atoms in the r <

0 and r > 0 spatial regions. Furthermore, the bath-impurity
interaction Hamiltonian Ĥcoup does not involve a coupling

2In contrast to the bosonic case, for fermions it is more con-
venient not to absorb the ∝∑NB

j=1
∂2

∂r2
j

appearing in Eq. (20) as

a reparametrization of the bath mass mB → mBmI/(mB + mI ) in
Eq. (19) as such a choice avoids difficulties in calculations. This is
because this term scales ∝ N2

B owing to the Pauli exclusion principle,
in contrast to the overall ∝ NB scaling of the center-of-mass momen-
tum in ĤPCM .

among the two degenerate ground states referring to �N and
−δN , see also Appendix D, in the g → ∞ limit independently
of the position of the impurity, which takes nonzero values
for odd NB. Moving off from xI = 0 the coupling among the
impurity and bath degrees-of-freedom lifts the degeneracy of
the xI = 0 ground states owing to the different particle at r =
xB − xI > 0 and r = xB − xI < 0 associated with �N �= 0.
Since this coupling is linear, see Eq. (22), one of the potential
energy curves decreases when the position of the impurity
shifts from xI = 0 to either positive or negative values. Thus
the total many-body ground state obeys 〈�|x̂I |�〉 �= 0 for
either value of �N , which reduces the symmetry and corre-
sponds to a manifestation of the Jahn-Teller effect.

In the finite but large interaction range, g � 1, the phys-
ical situation changes since the analytical continuations of
the ψ jL(r) and ψ jR(r) states for finite g (see Appendix E)
are not completely localized in their respective domains L,
R but show a nonvanishing amplitude in the corresponding
other domain. Therefore a weak transport across the barrier
at r = 0 is allowed. This implies a finite “tunneling” integral
ti = 〈ψiL|Ĥ0r |ψiR〉 lifting the degeneracy of these two states.
Notice also that this tunneling is amplified by the derivative
interaction terms of Eq. (20) and that Ĥcoup can also lead to
coupling of these states. Precise derivations of ti can be found
in the Appendices E and F. Therefore, the exact crossing for
g → ∞ outlined above becomes avoided for finite g. Provided
that ti is small enough, or equivalently g is large enough, the
lifting of the xI = 0 degeneracy does not, however, change
the behavior of the system away from this high symmetry
point, where the energies of the states predominantly shift due
to the nonzero 〈�̃k|x̂I |�̃k〉 terms. The lowest-lying potential
energy curve possesses a double-well structure and conse-
quently the impurity lies in both wells in its ground state. Thus
strictly speaking 〈�|x̂I |�〉 = 0 but we can still claim that the
symmetry is broken since a small symmetry-breaking pertur-
bation would lift the degeneracy among the wells leading to
〈�|x̂I |�〉 �= 0. The above implies that for finite but strong
enough g we can identify signatures of the presence of the
Jahn-Teller effect (which occurs in a strict sense only in the
g → ∞ limit) and identify the reduction of the symmetry of
the system, despite of the absence of degeneracy at the high-
symmetry point. This consists a manifestation of the so-called
pseudo Jahn-Teller effect.

The above can be interpreted as the emergence of a conical
intersection [104] at the (0, 0) point of the parametric plane
(xI , 1/g), its emergence has been explicated in Appendix F
within the perturbative regime of both coordinates. Due to the
synthetic character of the 1/g effective coordinate, we denote
this as synthetic conical intersection [82]. As a summary of
the results of this section we provide a schematic of the
potential energy landscape in the vicinity of this synthetic
conical intersection in Fig. 7(a). A shift of the impurity po-
sition from xI = 0 in the g → ∞ limit lifts the degeneracy
of the states possessing different �N . This is evident in the
corresponding one-body density of the bath, ρ

(1)
k,B(xB; xI , g) =

〈�k,B(xI , g)|ρ̂ (1)
B |�k,B(xI , g)〉, see Figs. 7(b3) and 7(b4), where

the number of particles on the right and the left of the impurity
is directly observable by the number of ρ

(1)
k,B(xB; xI , g) humps

appearing in either region. In this case, the state with more
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FIG. 7. (a) Schematic of the conical intersection at the origin of the parametric plane (xI , 1/g), guaranteed by Theorem 1. The surrounding
panels (bi), with i = 1, . . . , 4, indicate the one-body densities of the bath, corresponding to the two participating potential energy surfaces
within the multichannel BO approach for a finite displacement from the point of the conical intersection (filled areas) when compared to the
point of the conical intersection (light blue curves). In all cases NB = 5.

particles in the wider region is energetically preferable, in
Fig. 7(b4) this region is xB < xI since xB > 0. For xI = 0 but
g finite the states are energetically separated in terms of their
different total many-body parity, owing to the finite tunneling
term ti ∝ −1/g, see Appendix F for more details. In particular,
the odd parity state (consisting of NB − 1 even-odd pairs of
single-particle states and an additional even state) is preferred
for g > 0, since ti < 0, while the even state (consisting of
NB − 1 even-odd pairs and an odd state) is preferred for g < 0,
since ti > 0. The parity of the states is not directly observable
in ρ

(1)
k,B(xB; xI , g), since both even and odd states will exhibit

a profile symmetric around xB = 0 as it can be verified in
Figs. 7(b1) and 7(b2). The difference in the content of even
parity single-particle states can be inferred by the slight dif-
ference of the densities with k = 1 and k = 2, stemming from
the interaction dependence of these states in contrast to the
odd parity ones, see also Appendix F. Since in the previous
sections we have working with finite g this tunneling effect
is the reason why the exact degeneracy at xI = 0 was not
observable in our results.

The detailed analysis of the geometric properties of this
conical intersection (beyond the perturbative regime), e.g., its
gauge structure and Berry phase, is left as an interesting future
perspective. Below we will analyze the manifestation of the
pseudo Jahn-Teller effect and its relation to the nonadiabatic
processes emerging in our few-body system.

B. Pseudo Jahn-Teller effect and potential energy curves

A first step in identifying the pseudo Jahn-Teller mecha-
nism analyzed above is to identify its effect in the potential
energy curves of the system. To achieve this, we expand
the transformed Hamiltonian Ĥ ′ [(19)–(22)] in terms of the
eigenstates of Ĥ0r + ĤPCM obtaining the effective Hamiltonian

〈�̃n|Ĥ ′|�̃m〉 =− h̄2

2mI
δn,m

d2

dx2
I

− i
h̄

mI
Pn,m

d

dxI

+ 1

2
mIω

2
Ieffx

2
I δn,m + mBω2

BXn,mxI + Enδn,m,

(23)

where Xn,m = 〈�̃n|
∑NB

j=1 r̂ j |�̃m〉 and Pn,m =
−ih̄〈�̃n|

∑NB
j=1

d
dr j

|�̃m〉. It can be shown that X00 = X11 = 0

and X01 �= 0, since the eigenstates |�̃m〉 are parity symmetric
for finite g, see also Appendix E. This effective Hamiltonian
within the manifold of the two energetically lowest states |�̃0〉
and |�̃1〉 realizes the so-called E ⊗ b model, which is known
to exhibit the pseudo Jahn-Teller effect. This model refers
to the so-called crude Born-Oppenheimer approximation
[105] being also the main tool employed for the proof of
Theorem 1 and our arguments of Sec. VII A. Despite the
fact that this approach is not accurate enough for quantitative
comparison with the multichannel BO approach for reasons
that will be explained later on, a qualitative comparison
among the two will illustrate how our above-mentioned
theoretical predictions materialize within accurate numerical
descriptions of our system.

The potential energy curves stemming from this model are
the eigenvalues of the effective potential

V (xI ) =
(

E0 + 1
2 mIω

2
Ieffx

2
I mBω2

BX01xI

mBω2
BX01xI E1 + 1

2 mIω
2
Ieffx

2
I

)
, (24)

for varying xI . The resulting potential energy curves are pre-
sented in Figs. 8(a) and 8(b) for ωI = 0.5ωB and ωI = 4ωB

respectively. In both cases mI = 4mB and g = 5, while the
two lowest-energy potential energy curves for g → ∞ are
also indicated by the dashed lines. Focusing especially in the
case of a weaker parabolic potential, ωI = 0.5, the develop-
ment of an avoided crossing among the first two potential
energy curves at xI = 0 is evident, see Fig. 8(a). This crossing
becomes an exact crossing for g → ∞. In contrast to this
behavior, for higher trapping frequencies the development of
this avoided crossing is not as pronounced due to the strong
confinement of the impurity, see Fig. 8(b). In this case even
for g → ∞ the lowest potential energy curve is almost flat
and thus we have a weak symmetry breaking in terms of the
〈�|x̂|�〉 expectation values, even when a symmetry breaking
perturbation is introduced.

Figures 8(c) and 8(d) provide the potential energy curves
for the same physical situations as for Figs. 8(a) and 8(b)
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FIG. 8. Comparison of the lowest potential energy curves within [(a), (b)] the E ⊗ b model (crude Born-Oppenheimer approximation), see
Eq. (23), and [(c), (d)] the multichannel BO approach for g = 5.0

√
h̄3ωB/mB and varying impurity parameters (see column label). The dashed

lines in (a) and (b) show the limiting case of the synthetic coordinate 1/g → 0 within the E ⊗ b model where the exact crossing between the
two lowest adjacent potential energy curves occurs for both trapping frequencies. Notice that the g → ∞ lines are offset downwards by δ = 1
energy units to demonstrate better the degree of pseudo degeneracy of the involved potential energy curves for finite g = 5.

respectively but within the multichannel BO approach. We
observe that for weak impurity confinement, ωI = 0.5ωB,
Fig. 8(c) showcases an avoided crossing among the first two
potential energy surfaces for xI = 0, similarly to the case of
Fig. 8(a). However, in contrast to the two state E ⊗ b model
more structures reminiscent of avoided crossings appear for
xI �= 0. We conjecture that this occurs because additional
degeneracies appear in the g → ∞ case giving rise to addi-
tional instances of the pseudo Jahn-Teller effect. These are
associated with many-body states where the bath atoms on
the left and the right side of the impurity differ by one but
possess equivalent energy (see also Sec. VII D). This change
in the confinement profile of the impurities leads to the den-
sity of the impurity being more localized in the multichannel
BO case, since the wells are narrower. Therefore, the sym-
metry breaking, which is associated to a doubly humped
density structure as shown within Sec. VII A, becomes less
apparent than within the E ⊗ b approach. Finally, notice that
due to the fact that more than two potential energy curves
are considered in the multichannel BO, additional avoided
crossings emerge among the excited potential energy curves
resulting to a more convoluted potential energy landscape.
Similarly to the E ⊗ b case the increase of ωI leads to less
prominent avoided crossings among the involved potential
energy curves, compare Figs. 8(d) and 8(b). Therefore, in
this case we do not expect an apparent symmetry breaking
in the densities in accordance with the singly peaked impu-
rity densities identified in Fig. 4(bi). However, the influence
of the pseudo Jahn-Teller effect can be identified by care-
fully studying the impurity state, as we will demonstrate in
Sec. VII C.

Before proceeding let us elaborate on the shortcomings of
the crude BO approach that allow only a qualitative compar-
ison among the E ⊗ b and the multichannel BO approaches
which already at this level show important discrepancies. First
notice that within the crude BO approximation the coupling
among the quasi-degenerate states is linear on both x̂I and p̂I

due to the structure of the coupling Hamiltonian (22) and the
truncation on the two lowest-lying states at xI = 0 spanning
the quasi-degenerate subspace. Indeed, the multichannel BO
approximation reveals that the coupling among the bath and
impurity states is significantly more complicated (not shown
here for brevity) stemming from the modification of the bath
state for different xI encoded in |� j,B(xI )〉, see Eq. (9). Since
the crude BO approach involves states independent on xI

an increasingly larger number of such states is required for
capturing the behavior of the system as the displacement of
the impurity from xI = 0 increases. Therefore, a quantitatively
accurate description of the system becomes numerically chal-
lenging and difficult to intuitively interpret. For this reason
the E ⊗ b model presented above is expected to be valid
only in the region of xI ≈ 0 and, indeed, as Fig. 8 reveals
qualitative deviations to the multichannel approach emerge
beyond this regime. In addition, even for xI ≈ 0 the potential
energy curves cannot be compared directly due to the different
gauge structure of the crude and multichannel BO approaches.
The gauge is characterized by the gauge field Ajk (xI ) ap-
pearing in the nonadiabatic couplings, i.e., the prefactors of

d
dxI

in Eqs. (10) and (23). It is related to the selection of
|�i,B(xI )〉 states in the multichannel BO ansatz, see Eq. (9).
It can be easily verified that A01(xI ) �= P01 and even after the
diagonalization of the effective potential, V (x) of Eq. (24), the
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FIG. 9. Occupation of the kth harmonic oscillator level by the impurity as captured by 〈�|P̂HO
k |�〉. (a) 〈�|P̂HO

k |�〉 for k = 0−3 (see
legend) for mI = 4mB and ωI = 4ωB within ML-MCTDHX. (b) Comparison of 〈�|P̂HO

k |�〉 for k = 0 (upper part) k = 1 (lower part) within
different levels of approximation (see legend) and the same impurity parameters as (a). (c) Comparison of 〈�|P̂HO

k |�〉 for k = 0 (upper part)
k = 1 (lower part) for different impurity parameters (see legend) within ML-MCTDHX. In all cases NB = 5.

corresponding gauge field

A′
01(xI ) = P01 +

1∑
j=0

U ∗
0 j (xI )

d

dxI
Uj1(xI ), (25)

where Ujk (xI ) are the matrix elements of the unitary matrix
stemming from the diagonalization of Eq. (24), is different
than the multichannel BO approach, i.e., A01(xI ) �= A′

01(xI ).

C. Indications of Jahn-Teller effect in the impurity state

The coupling induced by the pseudo Jahn-Teller effect can
be identified by analyzing the contributions to the impurity
state. To achieve this, we evaluate the expectation values of the
operators P̂HO

k = |ψHO
k,I 〉〈ψHO

k,I | ⊗ ÎB, which project the state
of the impurity to the k-lowest eigenstate of the harmonic
oscillator with I = √

h̄/(mIωI ), while acting as an identity
operator, ÎB, for the bath species. The corresponding expec-
tation values are related to the impurity one-body density via
〈�|P̂HO

k |�〉 = 〈ψHO
k,I |ρ̂ (1)

I |ψHO
k,I 〉 and are summarized in Fig. 9.

In all cases the largest contribution is the ground state of
the harmonic oscillator k = 0, which is expected due to the
parabolic form of the potential energy curve even for strong g,
see Fig. 8(d). Our ab initio results, see Fig. 9(a), further reveal
that the most strongly occupied out of the remaining harmonic
oscillator levels is the k = 1 mode, with the remainder of
the states providing significantly smaller contribution. Notice
that the k = 1 mode is parity odd and thus its simultaneous
contribution with the k = 0 implies a state that is slightly
displaced from x = 0 (i.e., a coherent state) in accordance to
our arguments for the pseudo Jahn-Teller effect. The contri-
bution of the k = 2 modes can be explained in terms of an
effective modification of the confinement frequency of the

impurity due to its interaction with the bath, which, as claimed
in Sec. VII B, is small but nonzero.

By comparing the contribution of the k = 0 and k = 1
states within different levels of approximation, see Fig. 9(b),
we can see that the depletion of the k = 0 mode and the
contribution of the k = 1 mode decrease as the accuracy of
the approach increases. This is because the adiabatic BO
approaches are affected the most by the modification of the
potential energy curves. Notice also that the effect of the
Born-Huang correction term is small since the VABO and
NVABO approaches yield almost indistinguishable results for
g < 2. This implies that the increase of the k = 1 mode is
not caused by the development of the double-well structure
in the effective potential identified in Figs. 10(c2) and 10(c3),
but it rather originates from the pseudo Jahn-Teller effect. As
the correlations among different potential energy curves are
included even partially, within the multichannel BO approach,
the population of the k = 1 mode decreases while it obtains
a minimum but finite value within the fully correlated ML-
MCTDHX approach. This is caused by the non-negligible
contributions of nonadiabatic effects that increase the popu-
lation of the excited state. As it can be seen already within
the E ⊗ b approach the excited potential energy curves are
more strongly confining at xI = 0, see Fig. 8(b) (this effect is
more prominent in Fig. 8(a) albeit for different mI than the
one used here), and thus the shift from zero of the impurity
state is smaller, decreasing the population of the k = 1 mode.

Figure 9(c) compares the behavior of PHO
k for varying mI

and ωI . We observe that an increase of either mI or ωI leads
to a decrease of the depletion of 〈�|P̂HO

0 |�〉 and a decrease of
the contribution of 〈�|P̂HO

1 |�〉. Both of these tendencies can
be explained by the fact that the impurity confining poten-
tial becomes tighter since d2V

dx2 ∝ mIω
2
I and as a consequence
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FIG. 10. (a) The profile of the potential renormalization (Born-Huang) term V ren
11 (x), see Eq. (11), for different interaction strength g (see

legend) within the multichannel BO approach. (bi) Parametric dependence of five lowest in energy single-particle eigenstates of ĤB + ĤBI ,
φi(xB; xI ), with i = 1, . . . , 5 on the impurity position xI for g = 5. In all cases NB = 5, mI = 4mB, and ωI = 4ωB.

the impurity gets more localized in the center of the trap
competing with the pseudo Jahn-Teller effect promoting its
displacement. Since this effect is quadratic on ωI the effect of
this parameter is more crucial than mI .

D. The Born-Huang term as a probe of nonadiabaticity

Before concluding let us address the important information
gained by studying the Born-Huang term, V ren

11 (xI ). Its profile
is provided in Fig. 10(a) for mI = 4mB, ωI = 4ωB and varying
interaction strength g. For all considered interactions, V ren

11 (xI )
possesses an inverted parabola shape with additional potential
peaks at specific points denoted as xk , with k = 0,±1,±2.
The amplitude of these peaks increases strongly with increas-
ing value of g, becoming the dominant feature of V ren

11 (xI )
at strong g, see Fig. 10(a) for g = 5. As we have claimed in
Sec. IV B this is the origin of the double-well structure of the
effective potential in the VABO approximation, see Eq. (15),
and it can be verified that for g = 5 the amplitude of the x0

peak is much larger than the gap among the two lowest energy
potential energy curves, see Fig. 8(d). However, as claimed in
Sec. IV B the effect of these potential peaks does not appear
in the impurity densities within the exact approaches and
therefore it is compensated by the nonadiabatic couplings in
the system.

The examination of this term within an alternative view-
point allows us to gain a deeper understanding regarding the
nonadiabatic processes present in the system. As it can be seen
by Eq. (11) the Born-Huang term corresponds to the change
of the kinetic energy of the bath depending on the position
of the impurity. This implies that the strong peaks of V ren

11 (xI )
at xk indicate that if the impurity resides in this region the
momentum of the bath particles increases. The fast motion of
bath particles can be thought as a probe of nonadiabaticity in
the system.

To understand why this occurs Fig. 10(bi), with i =
1, 2, . . . , 5, depicts the wavefunctions of the five occupied
orbitals, φi(xB; xI ) of |�1,B(xI )〉 corresponding to the lowest
energy potential energy curve where |�1,B(xI )〉 corresponds
to a single Slater determinant (A1) owing to the fact that the
bath is composed of spin-polarized fermions. By inspecting
φ1(xB; xI ), see Fig. 10(b1), we directly observe that within
the region −3 < xI � 0 the wavefunction gets localized on
xB > xI , while close to xI = 0 the xB < xI region starts to get
occupied resulting to an equal superposition at exactly xI = 0.
As xI increases the region xB > xI looses its population and at
xI = 0.5 only the region xI < xB is populated. This is exactly
what is expected from our discussion in Sec. VII A regarding
the avoided crossing due to the pseudo Jahn-Teller effect at
xI = 0. This is not a feature specific to φ1(xB; xI ) but it occurs
for all of the considered single-particle states, see the dotted
boxes of Fig. 10(bi), with i = 1−5 at xI ≈ 0.

Surprisingly, we can observe that this bath transport
through the impurity does not occur only for xI = 0 but it
appears also for nonvanishing impurity displacements, see
e.g., the boxes of Fig. 10(b2) at xI �= 0. In this case a state with
one node for xB > xI is coupled to the state without nodes for
xB < xI as xI ≈ 0.7 is approached. This reveals that further
exact crossings might be possible in the g → ∞ limit giving
rise to additional regions where the pseudo Jahn-Teller effect
is exhibited for finite g. Thus it would be interesting to connect
the avoided crossings exhibited in the potential energy curves,
see Fig. 8(c) in terms of the above mentioned regions at x �= 0.

The Born-Huang term can help us in this endeavor. In
Fig. 10(b5) we have indicated the positions of the peaks in
V ren

11 (xI ) on top of the profile of φ5(xB; xI ). It can be readily
observed that these peaks correlate almost exactly to some
of the points involving population transfer among the xB < xI

and xB > xI regions. This of course makes sense since such a
population transfer implies the motion of bath particles though
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the impurity and thus the increase of the kinetic energy of
the bath component. However, not all points where transfer
happens are associated with an increase of V ren

11 (xI ). This can
be understood as follows. Notice that each one of the cases for
φ5(xB; xI ) where no peak in V ren

11 (xI ) occurs aligns with a trans-
fer process in φ4(xB; xI ) [see the dashed boxes in Fig. 10(b4)
and the associated dashed lines connecting them to the boxes
of Fig. 10(b5)]. Finally, notice that such regions occur also
among lower-lying orbitals, see the boxes and connecting
lines in Fig. 10(bi) with i = 1−4.

The above discussed kinetic energy increase is a probe
for nonadiabaticity in the system since at the regions of xk ,
with k = 0,±1,±2, a strong nonadiabatic coupling among
the φ5(xB; xI ) and φ6(xB; xI ) is exhibited giving rise to a large
value of A01(xI ) (not shown here for brevity). In addition, we
can confirm that the points x±1 capture well the position of
the xI �= 0 avoided crossings of the first two potential energy
curves in Fig. 8(c), being consistent with the presence of the
pseudo Jahn-Teller effect in this spatial region.

VIII. SUMMARY AND OUTLOOK

We have performed a comprehensive ground-state analy-
sis of a fermionic few-particle setup consisting of five light
fermionic particles interacting with a single heavy impu-
rity. This setup demonstrates the failure of the adiabatic BO
approximation. In particular strong deviations are identified
between the numerically exact ML-MCTDHX approach and
the adiabatic BO approximation in the impurity energy and
one-body density, as well as the correlation properties given
by the two-body density and von Neumann entropy. These
results indicate the presence of strong nonadiabatic effects
in our system. In particular, we are able to interpret these
results by introducing the inverse of the interaction strength
as a synthetic dimension and analyzing the emergence of
the Jahn-Teller effect in the strong interaction limit of our
Fermi impurity system. Based on this we have shown that
our system approximately maps to a E ⊗ b system and thus
exhibits the pseudo Jahn-Teller effect for finite interactions,
associated with the breaking of the parity symmetry of the
impurity state. An increasing interaction strength between the
bath and impurity atoms leads to strong “vibronic” couplings
among the slow degrees-of-freedom of the impurity with the
fast motion of the bath atoms, explaining the previously iden-
tified nonadiabatic effects. By examining the potential energy
curves, we demonstrate at least one conical intersection at the
trap center and for infinitely strong interactions. Especially,
we have shown that the Born-Huang term of the lowest energy
potential energy curve can be employed as a measure for the
nonadiabaticity of the system indicating resonant transport of
the bath particles through the impurity.

Based on the above results several pathways of future
research become evident. First, by considering the time
propagation of the fermionic impurity system, the possibility
arises of probing the pseudo Jahn-Teller effect during the
impurity dynamics. This can be achieved by shifting the
center of the harmonic trapping potential for the impurity and
tracking the induced impurity dynamics, in terms of its dipole
and breathing modes. An intriguing perspective concerns
the effect of spin-orbit coupling in systems experiencing the

Jahn-Teller effect. The presence of spin-orbit coupling allows
for a direct relation of our ultracold setup to molecular physics
since the Jahn-Teller effect commonly appears in compounds
of heavy elements [5,106]. In addition, ultracold atom setups
allow for addressing the particle distribution in a spin-resolved
manner and thus encoding the Jahn-Teller induced
symmetry-breaking process on the spin state of the gas
can be a valuable resource for experimentally addressing our
findings. Notice that the (pseudo) Jahn-Teller effect can also
manifest in isotropically confined two and three-dimensional
ultracold gases. In such setups the interparticle repulsion is
relevant only in the case that the atoms do not have a relative
angular momentum and it has been shown that the interaction
energy can exceed the rotational barrier [101]. This can
lead to the formation of a conical intersection caused by the
displacement of the impurity from the trap center breaking the
rotational invariance of the confinement. Considering similar
quasiparticle systems, the question arises about symmetry
breaking effects in polarons, which can be investigated also
for higher-dimensional systems. One intriguing theoretical
question in this context is the relation of the nonadiabaticity
unveiled here with the well-known Anderson orthogonality
catastrophe [107,108].
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APPENDIX A: DETAILS ON THE CALCULATION OF
NONADIABATIC COUPLINGS WITHIN THE

MULTICHANNEL BO APPROACH

The assumption of a spin-polarized fermionic impurity
species greatly simplifies the complexity of evaluation of
the nonadiabatic couplings and the potential renormalization
terms appearing in Eq. (10). In particular, since the species
B does not possess interspecies interactions its eigenstates for
fixed impurity position |�k,B(xI )〉 can be exactly represented
in terms of a single Slater determinant

�k,B(x1, . . . , xN ; xI ) = 1√
N!

N!∑
j=1

sgn
(
Pj
)

× φPj (Ik
1 )(x1; xI ) . . . φPj (Ik

N )(xN ; xI ),
(A1)

where φ j (xB; xI ) for j = 1, 2, . . . are the NB = 1 eigenstates
of ĤB + ĤBI for a fixed value of xI with eigenenergy ε

(1)
j (xI ).

Ik
j , with j = 1, . . . , N parametrize the particular set of or-

bitals corresponding to the kth lowest in energy, εk (xI ) =∑N
j=1 ε

(1)
Ik

j
(xI ), eigenstate of the many-body system. In order

for this orbital set to be unique, we demand that it is ordered
in ascending order, i.e., Ik

j < Ik
j′ for j < j′. Notice that the

above is exactly equivalent to the standard prescription of
how the many-body eigenstates of noninteracting fermions are
mapped to the corresponding number states [109].
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The Slater determinant of Eq. (A1), allows us to express
the nonadiabatic couplings of the many-body bath species in
terms of the NB = 1 orbitals φ j (xB; xI ). To make the presenta-
tion of this process clearer, let us introduce the notation where
the many-body eigenstates |�k,B(xI )〉 are expressed in terms
of the occupied orbitals as |�{Ik

1 ,...,Ik
N }(xI )〉. Within this notation

the nonadiabatic derivative coupling matrix reads

Akl (xI ) = A{Ik
1 ,...,Ik

N }{I l
1,...,I

l
N }(xI )

= i

〈
�{Ik

1 ,...,Ik
N }(xI )

∣∣∣∣d�{I l
1,...,I

l
N }

dxI
(xI )

〉
. (A2)

By employing Eq. (A1) we derive

A{I1,...,IN }{J1,...,JN }(xI )

= i
N∑

l=1

N∑
k=1

(−1)k+l

〈
φIk (xI )

∣∣∣∣dφJl

dxI
(xI )

〉

× δ{I1,...,Ik−1,Ik+1,...,IN }{J1,...,Jl−1,Jl+1,...,JN }, (A3)

where the Kronecker delta symbol δS1S2 yields zero for two
different sets S1 and S2, and one in the case they are equivalent.
For a trapped system, such as the one described by Eq. (1), it
is known that the eigenbasis consists of real valued φ j (xB; xI )
states [110]. Then by considering that the momentum opera-
tor for the impurity species is Hermitian, we obtain that the
single-particle eigenfunctions fulfill〈

φ j (xI )

∣∣∣∣dφ j

dxI
(xI )

〉
= 0. (A4)

This fact allows us to simplify the expression of Eq. (A3)
further. In particular, A{I1,...,IN }{J1,...,JN }(xI ) vanishes except in
the case where a single orbital in the sets {I1, . . . , IN } and
{J1, . . . , JN } is different. The nonvanishing elements read

A{I1,...,IN }{I1,...,Ik−1,Ik+1,...,Il−1,Jl ,Il+1,...,IN }(xI )

= i(−1)k+l

〈
φIk (xI )

∣∣∣∣dφJl

dxI
(xI )

〉
, (A5)

where Jl �= Ik .
According to Eq. (10) the renormalization potential

V ren
kl (xI ) can be written as

V ren
kl (xI ) = h̄2

2mI

[
Bkl (xI ) −

M∑
r=1

A∗
rk (xI )Arl (xI )

]
, (A6)

where the B-matrix elements read

Bkl (xI ) =
〈

d�k,B

dxI
(xI )

∣∣∣∣d�l,B

dxI
(xI )

〉
. (A7)

An analogous procedure to the one applied above for the
nonadiabatic derivative couplings [see Eq. (A3)] yields that
the B-matrix elements read

B{I1,...,IN }{J1,...,JN }(xB)

=
N∑

k=1

N∑
l=1

(−1)k+l

〈
dφIk

dxI
(xI )

∣∣∣∣dφJl

dxI
(xI )

〉

× δ{I1,...,Ik−1,Ik+1,...,IN }{J1,...,Jl−1,Jl+1,...,JN }

− i
N∑

k=1

N∑
l=1

(−1)k+l

〈
dφIk

dxI
(xI )

∣∣∣∣φJl (xI )

〉

× A{I1,...,Ik−1,Ik+1,...,IN }{J1,...,Jl−1,Jl+1,...,JN }(xI ). (A8)

Owing to the properties of the nonadiabatic derivative cou-
plings, see Eq. (A5), we can distinguish three different cases
where the B-matrix elements are nonvanishing. First, if both
sets are equivalent, we obtain

B{I1,...,IN }{I1,...,IN }(xI ) =
N∑

k=1

〈
dφIk

dxI
(xI )

∣∣∣∣dφIk

dxI
(xI )

〉

−
N∑

k=1

N∑
l=1
l �=k

〈
φIl (xI )

∣∣∣∣dφIk

dxI
(xI )

〉2

. (A9)

Second, in the case that the sets are different by a single
orbital, we have

B{I1,...,IN }{I1,...,Ik−1,Ik+1,...,Il ,Jl ,Il+1,...,IN }(xI )

= (−1)k+l

[〈
dφIk

dxI
(xI )

∣∣∣∣dφJl

dxI
(xI )

〉
−

N∑
r=1
r �=k

〈
φIr (xI )

∣∣∣∣dφIk

dxI
(xI )

〉

×
〈
φIr (xI )

∣∣∣∣dφJl

dxI
(xI )

〉]
, (A10)

where we demand Jl �= Ik . Finally, the last case that B is
nonvanishing arises when the two sets differ by two indices.
Here, the B-matrix elements read

B{I1,...,IN }{I1,...,Ik−1,Ik+1,...,Il−1,Il+1,...,Ir+1,Jr ,Ir+2,...,Is+1,Js,Is+2,...,IN }(xI )

= (−1)k+r+l+s

(〈
φJr (xI )

∣∣∣∣dφIk

dxI
(xI )

〉〈
φIl (xI )

∣∣∣∣dφJs

dxI
(xI )

〉
−
〈
φJs (xI )

∣∣∣∣dφIk

dxI
(xI )

〉〈
φIl (xI )

∣∣∣∣dφJr

dxI
(xI )

〉

−
〈
φJr (xI )

∣∣∣∣dφIl

dxI
(xI )

〉〈
φIk (xI )

∣∣∣∣dφJs

dxI
(xI )

〉
+
〈
φJs (xI )

∣∣∣∣dφIl

dxI
(xI )

〉〈
φIk (xI )

∣∣∣∣dφJr

dxI
(xI )

〉)
, (A11)

where each of the indices Jr and Js has to be different to both Ik and Il .
The representation of the nonadiabatic derivative coupling (A5) and the renormalization potential (A11) allow for the

numerical solution of the effective Schrödinger equation (10).
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APPENDIX B: INTERSPECIES ENTANGLEMENT WITHIN
THE ADIABATIC BORN-OPPENHEIMER

APPROXIMATION

A perhaps not well-known fact regarding the adiabatic
BO approximation is that it involves entanglement between
the slow (nuclear) and fast (electronic) degrees of freedom.
This aspect has also been noted in the recent quantum chem-
ical literature [111,112]. The purpose of this section is to
demonstrate that this entanglement effect also appears in our
two-species one-dimensional system and provides a proper
mathematical framework for our arguments in Sec. V B.

Our starting point is the reduced-bath density matrix within
the adiabatic BO approximation where the impurity degrees-
of-freedom have been traced out,

ρ̂
(NB )
B =

∫
dxI |�1,I (xI )|2|�1,B(xI )〉〈�1,B(xI )|. (B1)

The above equation reveals that the impurity localization con-
trols the degree of entanglement. In particular, it can be easily
verified that for �1,I (xI ) = δ(xI − x0

I ) the state of the bath
is pure and thus there is no entanglement in the system. In
the general case it is difficult to analyze the entanglement
properties of the system. However, the assumption of a heavy
mI � mB and tightly confined ωI � ωB impurity enable us
to employ the approximation that the bath state |�1,B(xI )〉
changes at much longer length scales than �1,I (xI ) defin-
ing the size of the impurity state. Indeed, the length scale
associated to each species is σ = √

h̄/(mσωσ ) and thus B

controlling the xI dependence of |�1,B(xI )〉 is much longer
than the spatial region where the impurity localizes ∼I . This
allows us to expand the bath state in a Taylor series around the
equilibrium position of the impurity xI = 0 as

|�1,B(xI )〉 = |�1,B(0)〉 + xI
∂

∂xI
|�1,B(xI )〉

∣∣∣∣
xI =0

+ 1

2
x2

I

∂2

∂x2
I

|�1,B(xI )〉
∣∣∣∣
xI =0

+ O
(
x3

I

)
. (B2)

This expansion allows us to evaluate the integral appearing
in Eq. (B1) order by order. Since we operate in the regime
I � B, it is reasonable to consider that 〈�1,I |x̂n

I |�1,I〉/n
B is

a decreasing sequence in n and thus we consider that only its
first three terms for n = 0, 1, 2 are non-negligible. Within this
approximation the bath-density operator reads

ρ̂
(NB )
B = |�1,B(0)〉〈�1,B(0)| + 〈�1,I |x̂I |�1,I〉

×
(

|�1,B(0)〉
〈
∂�1,B

∂xI
(0)

∣∣∣∣+
∣∣∣∣∂�1,B

∂xI
(0)

〉
〈�1,B(0)|

)

+ 〈�1,I |x̂2
I |�1,I〉

(∣∣∣∣∂�1,B

∂xI
(0)

〉〈
∂�1,B

∂xI
(0)

∣∣∣∣
− 1

2
|�1,B(0)〉

〈
∂2�1,B

∂x2
I

(0)

∣∣∣∣
− 1

2

∣∣∣∣∂2�1,B

∂x2
I

(0)

〉
〈�1,B(0)|

)
+ O

(〈�1,I |x̂3
I |�1,I〉

)
. (B3)

This expression allows us to determine the matrix elements
of ρ̂

(NB )
B in the basis defined by the eigenstates of ĤB + ĤBI

[see Eq. (1)] for an impurity fixed at xI = 0, namely |� j,B(0)〉,
for j = 1, 2, . . . . Notice that since this basis is complete and
independent of the position of the impurity state enabling us
to employ the usual definitions for calculating the Schmidt
modes and von Neumann entropy. Within this prescription the
above-mentioned matrix elements read

〈�1,B(0)|ρ̂ (NB )
B |�1,B(0)〉

= 1 − 〈�1,I |x̂2
I |�1,I〉

∞∑
l=1

|A1l (0)|2 + O
(〈�1,I |x̂4

I |�1,I〉
)
,

〈�1,B(0)|ρ̂ (NB )
B |� j,B(0)〉

= −1

2
〈�1,I |x̂2

I |�1,I〉
∞∑

l=1

A∗
jl (0)A∗

l1(0)

+ O
(〈�1,I |x̂4

I |�1,I〉
)
,

〈� j,B(0)|ρ̂ (NB )
B |�k,B(0)〉

= 〈�1,I |x̂2
I |�1,I〉Aj1(0)A∗

k1(0),+O
(〈�1,I |x̂4

I |�1,I〉
)
,

(B4)

where j, k = 2, 3, . . . . The nonadiabatic couplings ap-
pear in Eq. (B4) since by definition they are equal
to Ak j (xI ) = i〈�k,B(xI )| ∂� j,B

∂xI
(xI )〉. Moreover, we have used

the completeness property of the |� j,B(xI )〉 states to

simplify 〈�k,B(xI )| ∂2� j,B

∂x2
I

(xI )〉 = −∑∞
l=1 Akl (xI )Al j (xI ) and

the parity symmetry for the impurity species yielding
〈�1,I |x̂2n+1

I |�1,I〉 = 0, for all n. Within first-order perturbation
theory for the dominant Schmidt mode we obtain

λ1 =1 − 〈�1,I |x̂2
I |�1,I〉

∞∑
l=1

|A1l (0)|2

+ O(〈�1,I |x̂4
I |�1,I〉). (B5)

While degenerate first order perturbation theory for the re-
maining modes yields

λ2 = 〈�1,I |x̂2
I |�1,I〉

∞∑
l=1

|A1l (0)|2 + O(〈�1,I |x̂4
I |�1,I〉),

λk =O(〈�1,I |x̂4
I |�1,I〉), for k = 3, 4, . . . , (B6)

It can be easily verified that higher-order perturbative cor-
rections yield higher-order terms in 〈�1,I |x̂n

I |�1,I〉 and are
consequently negligible according to our arguments. There-
fore, we can verify that the entanglement even in the case of
an impurity density with very small nonzero width is finite, as
the von Neumann entropy reads

SV N =〈�1,I |x̂2
I |�1,I〉

∞∑
l=1

|A1l (0)|2

×
[

1 − log

(
〈�1,I |x̂2

I |�1,I〉
∞∑

l=1

|A1l (0)|2
)]

+ O(〈�1,I |x̂4
I |�1,I〉). (B7)

Let us now comment on the above results. We see see that
there are only two parameters that enter the von Neumann
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entropy for a narrow impurity density distribution, these are its
width in terms of 〈�1,I |x̂2

I |�1,I〉 and the sum of nonadiabatic
couplings

∑∞
l=1 |A1l (0)|2. Notice that the latter quantity is

related to the norm of the derivative of |�1,B(xI )〉, namely,

|| ∂
∂xI

|�1,B(xI )〉|| =
√∑∞

l=1 |A1l (xI )|2. Therefore, we can con-
clude that SV N increases when the impurity width increases,
see also Fig. 6(b), and when the bath state becomes more
strongly dependent on xI , i.e., for higher g, see Fig. 2(b).
The latter can be independently verified by considering the
Feynman-Hellmann theorem

Ajk (xI ) = 〈� j,B(xI )| ∂ĤBI
∂xI

|�k,B(xI )〉
ε j (xI ) − εk (xI )

. (B8)

This shows that the nonadiabatic couplings should increase
with interaction since, first, the nominator is ∝ g and, second,
the energy differences in the denominator decrease due to the
closing of the gaps among the even and odd single-particle
bath eigenstates as the g → ∞ limit is approached, see also
Appendix E.

APPENDIX C: CONVERGENCE BEHAVIOR
OF ML-MCTDHX VERSUS TBH

To elucidate the degree of convergence of the employed ab
initio variational approaches namely the ML-MCTDHX and
the multichannel BO methods, we present here a comparative
analysis of the dependence of their results in the correspond-
ing parameters determining their numerical accuracy.

As discussed in Sec. III A the parameters that define the
multilayered truncation of the many-body wavefunction are
given by the orbital configuration C = (D; dB; dI ) and the
choice of the primitive basis and its size M. First, since
the primitive basis size hardly affects the CPU time of the
ML-MCTDHX calculations we have selected a large enough
basis of M = 150 grid points of the harmonic oscillator DVR
with ωDVR = 0.72 ωB, which is enough for convergence for
the employed interaction scales. Second, due to the fact that
we only consider a single impurity we can simplify the ansatz
to C = (D; dB; D) since at least D basis states for the impurity
species are required to give rise to D distinct Schmidt modes,
see Eq. (3). Thus below we analyze the convergence of the
ML-MCTDHX approach only in terms of the truncation in
terms of entanglement modes, controlled by D and the trunca-
tion in terms of bath orbitals dB.

For our chosen configuration C = (12, 18, 12), we employ
D = 12 basis states for each species in the top layer (yielding
D2 = 144 coefficients). In the middle layer, the many-body
basis of the bath species is constructed in terms of dB =
18 single-particle states [D × ( dB

NB
) = 102816 coefficients for

the many-body basis, dB × M = 2700 for the single-particle
states]. Since we consider a single impurity, the expansion in
terms of dI = 12 single-particle states yields dI × M = 1800
coefficients. Therefore, it is evident that dynamically updat-
ing the operators acting on this large amount of coefficients,
especially for the middle layer of the bath species, is computa-
tionally challenging. More specifically the most demanding of
our calculations referring to an interaction strength g = 5, em-
ploying the above mentioned basis size, took approximately

three months of computational time of an Intel Xeon X5650
CPU.

Regarding the multichannel BO method, the main pa-
rameter that controls the truncation is the choice of M in
Eq. (9), which corresponds to the number of potential energy
curves in Eq. (10). Additionally, the quality of the calcu-
lated nonadiabatic derivative couplings Akl (xI ) and potential
renormalization V ren

kl (xI ) is dictated by the choice of the prim-
itive basis. Here we have chosen an exponential DVR with
M = 1024 points permitting derivative evaluations by the fast
Fourier transform. By detailed analysis of the corresponding
Akl (xI ) and V ren

kl (xI ) matrices we have deemed that this choice
is adequate for the convergence of the corresponding matrices.

Finally, we compare the results of both variational methods
with the configuration interaction (CI) (or exact diagonal-
ization) approach with energy pruning, that recently has
attracted considerable attention in the few-fermion literature
[22,30,31]. Within this approach we generate the set of all
number states with noninteracting energy less than a given en-
ergy cutoff Ecut and then diagonalize the Hamiltonian, Eq. (1),
in the subspace spanned by them. In our case, the Hamiltonian
in the space spanned by the noninteracting harmonic oscillator
functions ψn,σ (x) reads

Ĥ = Ĥ0 + ĤI ,

Ĥ0 =
∞∑

n=0

h̄ωB

(
n + 1

2

)
ĉ†

n,Bĉn,B

+
∞∑

n=0

h̄ωI

(
n + 1

2

)
ĉ†

n,I ĉn,I ,

ĤI =
∞∑

n,l,m,k=0

Unlmkĉ†
n,Bĉ†

l,I ĉm,I ĉk,B, (C1)

where ĉ†
n,σ and ĉn,σ are the operators that create and annihi-

late a species σ particle in the nth single-particle eigenstate
respectively and Unlmk = ∫ dx ψ∗

n,B(x)ψ∗
l,I (x)ψm,I (x)ψk,B(x),

which can be calculated efficiently via employing the Gaus-
sian quadrature. As the basis of the many-body subspace we
use the number states |nB

1 , nB
2 , . . . , nN

B ; nI〉, that satisfy〈
nB

1 , nB
2 , . . . , nN

B ; nI |Ĥ0|nB
1 , nB

2 , . . . , nN
B ; nI

〉
=
(

N

2
+

N∑
j=1

nB
j

)
h̄ωB +

(
nI + 1

2

)
h̄ωI < Ecut. (C2)

Notice that this choice implies that there is a maximum
value of nB

i and nI that appears in this subspace and as a
consequence we have to calculate a finite number of Unlmk

elements. The only nondiagonal terms in this basis correspond
to the interaction terms of Eq. (C1). The matrix elements of
ĉ†

n,Bĉ†
l,I ĉm,I ĉk,B can be evaluated by using the indexing rules of

fermionic states described in Ref. [113]. From the above it is
clear that the only approximation the energy pruned CI uses is
the value of the energy cutoff Ecut that determines the size of
the corresponding subspace where the Hamiltonian of Eq. (1)
is diagonalized.

To estimate the convergence pattern of the multichannel
BO we compare how the energy and von Neumann entropy
converge to the exact value as the number of potential en-
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TABLE I. Impurity energy Eimp, and von Neumann entropy SV N , for different interaction strength g, within three different numerical
approaches. The dependence of these quantities on the parameters controlling the accuracy of the employed methods (see text) is also provided
for estimating the degree of their convergence to the exact limit.

ML-MCTDHX Energy-pruned CI Multichannel BO

D = dI = 10 and D = dI = 10 and D = dI = 12 and Ecut = 50 Ecut = 70 10 pec 24 pec 40 pec
dB = 10 dB = 15 dB = 18

Eimp(g = 1.0) 15.37 15.37 15.37 15.41 15.40 15.38 15.37 15.37
SVN(g = 1.0) × 10−3 9.74 9.70 9.17 8.90 9.42 18.99 15.61 14.31
Eimp(g = 2.0) 16.01 15.98 15.98 16.10 16.06 16.00 15.99 15.98
SVN(g = 2.0) × 10−3 26.00 25.87 24.79 25.39 26.27 46.93 39.26 36.35
Eimp(g = 5.0) 17.00 16.93 16.92 17.20 17.13 16.98 16.92 16.92
SVN(g = 5.0) × 10−3 62.52 62.28 61.71 64.93 65.67 101.07 87.29 82.04

ergy curves increases. We observe that already for M = 2
the multichannel BO approach possesses a significantly lower
energy than the energy pruned CI with Ecut = 70h̄ωB and
on par with ML-MCTDHX with orbital configuration C =
(10; 10; 10), see Table I, for all interaction strengths we have
studied, see Fig. 11(ai ) with i = 1, 2, 3. Energy convergence
is observed for M > 24, where it shows almost the same
value of energy and ML-MCTDHX with orbital configuration
C = (12, 18, 12). In contrast, even the less accurate versions
of the ML-MCTDHX and CI possess a von Neumann entropy
much closer to their converged results than the corresponding
multichannel BO result for M = 2 see Table I and Fig. 11(bi )
with i = 1, 2, 3. In particular, we observe that multichannel
BO does not show a von Neumann entropy convergence with
the value of SV N improving only by a factor of roughly two
with respect to the other two approaches even for the largest
M = 40 value we have studied.

Therefore, we rely on ML-MCTDHF for our exact nu-
merical results. Nevertheless, this comparison confirms the
accuracy and convergence of both used methods against the
same result for increasing accuracy control parameters.

APPENDIX D: PROOF OF THEOREM 1

The outline of the proof of Theorem 1 is as follows.
First we generate a complete many-body basis for the (NB +
1)–body system. Then we show that the parameter �N
characterizing this basis is a good quantum number for the
Hamiltonian of Eq. (19). Finally, by using the parity symmetry
property of Eq. (19) we demonstrate that all eigenstates with
�N �= 0 are necessarily degenerate with at least one eigen-
state with the opposite sign of �N . This proves Theorem 1
for NB odd since in this case �N = 0 is impossible.

We begin the proof of Theorem 1 by generating a complete
many-body basis for the (NB + 1)–body system. For g → ∞
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FIG. 11. (ai) Impurity interaction energy and (bi) von Neumann entropy as a function of the number of potential energy curves M,
within the multichannel BO approach for different interaction strengths g = gi, with g1 = 1, g1 = 2, and g1 = 5. The dashed lines provide
the corresponding results within the ML-MCTDHX and energy-pruned configuration interaction (CI) approaches with the highest accuracy.
This refers to D = dI = 12 and dB = 18 within ML-MCTDHX and Ecut = 70h̄ωB within the energy pruned configuration interaction approach.

013257-19



BECKER, KOUTENTAKIS, AND SCHMELCHER PHYSICAL REVIEW RESEARCH 6, 013257 (2024)

the single-particle system defined by Eq. (19) for NB = 1,
splits into two subsystems referring to r > 0 and r < 0. These
are separated by an impenetrable wall at r = 0, where the
wavefunctions have to vanish. Therefore, the single-particle
eigenstates of the system can be expressed in terms of the
eigenstates of the individual subsystems, ψ jL(r) �= 0 for r < 0
and ψ jR(r) �= 0 for r > 0 with j = 0, 1, . . . . Subsequently,
the Hamiltonian of the many-body system can be expanded
in terms of the number-states (Slater determinants) spanned
by ψ jL(r) and ψ jR(r). Each of these many-body states is

characterized by a definite value of the particle imbalance
among the subsystems, �N = NL − NR, where NL and NR

are the number of particles in the left and right subsystem
respectively. Of course, notice that NL + NR = NB holds.

Then we continue by showing that �N is a good quantum
number for the Hamiltonian of Eq. (19). It can be proven
that for any two Slater determinants |�k〉 involving the con-
tribution of the single-particle states Ik

m ∈ (N, {L, R}), with
m = 1, 2, . . . , NB, the derivative interaction term reads

〈�k|ĤPCM |�k′ 〉 = − h̄2

mI

N∑
n=1

N∑
l=1

n−1∑
m=1

l−1∑
r=1

(−1)n+m+l+r

(〈
ψIk

l

∣∣∣∣ ∂

∂r

∣∣∣∣ψIk′
n

〉〈
ψIk

r

∣∣∣∣ ∂

∂r

∣∣∣∣ψIk′
m

〉
−
〈
ψIk

r

∣∣∣∣ ∂

∂r

∣∣∣∣ψIk′
n

〉〈
ψIk

l

∣∣∣∣ ∂

∂r

∣∣∣∣ψIk′
m

〉)

× δ{Ik
1 ,...,Ik

r−1,I
k
r+1,...,I

k
l−1,I

k
l+1,...,I

k
N }{Ik′

1 ,...,Ik′
m−1,I

k′
m+1,...,I

k′
n−1,I

k′
n+1,...,I

k′
N }

− h̄2

mI

N∑
n=1

N∑
l=1

(−1)n+m

〈
ψIk

m

∣∣∣∣ ∂2

∂r2

∣∣∣∣ψIk′
n

〉
δ{Ik

1 ,...,Ik
m−1,I

k
m+1,...,I

k
N }{Ik′

1 ,...,Ik′
n−1,I

k′
n+1,...,I

k′
N }, (D1)

where the Kronecker delta symbol δS1S2 yields zero for two
different sets S1 and S2, and one in the case that they are equiv-
alent. Notice that since ψ jL(r) and ψ jR(r) are nonvanishing
in entirely separated spatial domains 〈ψ jL| ∂

∂r |ψkR〉 = 0 holds
for all j and k. This fact can also be verified independently
by evaluating the limits of the analytical solutions for finite g
in the case g → ∞, see Appendix E. Therefore, the quantity
inside the parenthesis of Eq. (D1) vanishes if there is a dif-
ferent number of L and R states among the {ψIk

l
(r), ψIk

r
(r)}

and {ψIk′
n

(r), ψIk′
m

(r)} sets. This implies that if �N is different
for |�k〉 and |�k′ 〉 then the corresponding interaction matrix
element, Eq. (D1), is zero. Thus a given number state couples
only with number states with the same value of �N and
consequently �N is a good quantum number. This implies
that eigenstates of Ĥ0r + ĤPCM can be characterized in terms
of �N .

Then by considering the symmetry properties of Eq. (19)
Theorem 1 can be explicitly proven. Since, Ĥ0r is parity sym-
metric [Ĥ0r, P̂r] = 0 holds, where P̂rri = −ri. Let us assume
an eigenstate (Ĥ0r + ĤPCM )|�̃k〉 = Ek|�̃k〉 with definite value
of �N = �Nk . Due to the fact that P̂rψ jL(r) = ψ jR(r) (for
an appropriate choice of the overall phases of the involved
single-particle states), the action of P̂r on |�̃k〉 results in the
shift of particle imbalance �Nk → −�Nk . This shows that
for �Nk �= 0 the eigenstates |�̃k〉 and P̂r |�̃k〉 are distinct and
degenerate. Therefore, owing to the fact that �N = 0 can only
hold for even NB, the ground state of Ĥ0r is always degenerate
for odd NB and in the g → ∞ limit independently of all other
system parameters, which proves the theorem. In the case
of even NB the above would hold only if the ground state
possesses �Nk �= 0, but since in this situation �Nk = 0 is
possible, a degeneracy does not necessarily occur.

APPENDIX E: SINGLE-PARTICLE PROPERTIES OF Ĥ0r

The symmetry properties of Ĥ0r , Eq. (19), were extensively
analyzed in Sec. VII A and Appendix D where several the-
oretical insights were obtained without having to consider

the precise form of its eigenspectrum. The purpose of this
Appendix is to review the basic properties of the analyti-
cally obtained single-particle (NB = 1) eigenspectrum of Ĥ0r ,
which will be used in Appendix F to illustrate the emergence
of a conical intersection in the vicinity of 1/g = xI = 0.

The eigenfuctions of Ĥ0r for NB = 1 read [101,103]

ψB
2n(r; g) = An(g)�( − εn(g))

2
√

πB
U

(
−εn(g),

1

2
,

r2

2
B

)
e
− r2

22
B ,

ψB
2n+1(r; g) = ψB

2n+1(r)

=
(
π l2

B

)−1/4√
22n+1(2n + 1)!

H2n+1

(
r

B

)
e
− r2

22
B , (E1)

where Hn(x) denotes the nth degree Hermite polynomial, �(x)
is the gamma, and U (α, β, x) is the confluent hypergeometric
function. The relevant length scale is B = √

h̄/(mBωB). The
normalization factor of parity-even states reads

An(g) = 2

√
�
(

1
2 − εn(g)

)
�(−εn(g))

1

ψ ( 1
2 − εn(g)) − ψ ( − εn(g))

,

(E2)

where ψ (x) is the digamma function. Finally, the effective
order εn(g) satisfies the consistency equation

�
(

1
2 − εn(g)

)
�(−εn(g))

= − g

2g0
, (E3)

with g0 =
√

h̄3ωB
mB

. This self-consistency equation shows that
n
2 � εn(g) � n+1

2 for n � 1 and −∞ < ε0(g) � 1/2. The up-
per bound of these inequalities gets saturated for g → +∞
while the lower saturates for g → −∞. The energy of the
system is a function of the effective order reads EB

2n(g) =
h̄ωr (2εn(g) + 1/2) for parity-even states, while EB

2n+1(g) =
EB

2n+1 = h̄ωr (2n + 1 + 1/2) for parity odd states.
The position, Rn,m(g) ≡ 〈ψB

n (g)|x̂|ψB
m(g)〉, and momentum,

Pn,m(g) ≡ 〈ψB
n (g)| p̂|ψB

m(g)〉, single-particle matrix elements
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are nonvanishing only in the case that states of different parity
are involved. The nonzero elements of these matrices read

R2λ+1,2κ (g) = (−1)λBAκ (g)√
2π1/4

√
(2λ + 1)!

2λ+1λ!

× 1

(λ − εκ (g))(λ + 1 − εκ (g))
,

P2λ+1,2κ (g) = i(−1)λh̄Aκ (g)√
2Bπ1/4

√
(2λ + 1)!

2λ+1λ!

× 2λ + 1 − 2εκ (g)

(λ − εκ (g))(λ + 1 − εκ (g))
, (E4)

for λ, κ = 0, 1, . . . . The final relevant for us property of
|ψB

n (g)〉 are their transformation properties for a shift of g →
g′ unveiled in Ref. [103]

∣∣ψB
2n(g′)

〉 = ∞∑
m=0

An(g′)Am(g)

EB
2m(g) − EB

2n(g′)

(
1

g′ − 1

g

)∣∣ψB
2m(g)

〉
,

∣∣ψB
2n+1(g′)

〉 = ∣∣ψB
2n+1(g)

〉
. (E5)

Let us briefly focus on the regime of g → ∞, which is
particularly interesting for discussing the pseudo Jahn-Teller
effect. In this case we can obtain an analytic asymptotic ex-
pression for the effective order that reads

εn+s(g) = 2n + 1

2
− En

g0

g
+ O

(
g2

0

g2

)
, (E6)

where En = [2(n + 1)]!/[22n+1n!(n + 1)!
√

π ] and s = 0 for
g > 0, s = 1 for g < 0. This shift in the index accounts for the
continuous transformation of the ψB

2n(x) state to the ψB
2(n+1)(x)

one as the g → ∞ (Tonk-Girardeau [114]) limit is crossed
from strong repulsive to attractive interactions. Notice that we
do not provide an expression for ε0 as g → −∞ since in this
case the bound-state energy diverges since ε0 → −∞. Finally,
by using Eq. (E5) we can show that

ψB
2(n+σ )(r; g)

= ψB
2n+1(|r|) + g0

g

∞∑
m=0
m �=n

√
EnEm

m − n
ψB

2m+1(|r|) + O
(

g2
0

g2

)
.

(E7)

The description of the behavior of the system for strong
interactions can be greatly simplified by transforming to a
basis where the fermions are localized as much as possible on
the left or right side of the x = 0 barrier. This can be achieved
by the following unitary transformation

ψκL(r; g) = −ψB
2κ+1(r; g) + (−1)κψB

2κ (r; g)√
2

,

ψκR(r; g) = ψB
2κ+1(r; g) − (−1)κψB

2κ (r; g)√
2

. (E8)

By the use of this basis and Eq. (E4) we can verify several im-
portant properties of these maximally localized states, which
will be elucidated further in Appendix F, see Eq. (F2).

APPENDIX F: SYNTHETIC CONICAL INTERSECTION AT
1/g = xI = 0

Based on the analytic properties of the NB = 1 eigen-
states of Ĥ0r (see Appendix E), characterizing the system at
xI = 1/g = 0, and by employing perturbation theory we can
demonstrate that our system maps to a E ⊗ ε in the vicinity
of xI = 1/g = 0.3 Such a proof is convoluted in the case that
mI is finite. However, in the infinite impurity mass case the
physical situation is substantially simplified. Then by simple
numerical arguments we can demonstrate that the finite mI

case behaves similarly to mI → ∞ provided that mI > mB.
The main simplification for mI → ∞ is that ĤPCM van-

ishes and as a consequence the eigenstates for g → ∞ can
be expressed as a single Slater determinant constructed from
the ψκL(r; g → ∞) and ψκR(r; g → ∞) states. In particu-
lar, the degenerate ground states at g → ∞, |�L〉 and |�R〉
(guaranteed to exist for odd NB owing to Theorem 1), are
characterized by the occupation numbers

IL
j =

{
( j, L) for j � NB+1

2 ,(
j − NB+3

2 , R
)

for NB+1
2 < j � NB,

IR
j =

{
( j, L) for j � NB−1

2 ,(
j − NB+1

2 , R
)

for NB−1
2 < j � NB.

(F1)

Therefore, within first-order perturbation theory we just
need to evaluate the matrix elements among these states, since
contributions outside this degenerate manifold are at least
second order in perturbation theory. It can be easily verified
that couplings among the above states can be induced by Ĥcoup

and Ĥ0r . The relevant matrix elements among the localized
single-particle states up to linear order in 1/g read

〈ψnL|Ĥ0r |ψnL〉 = 〈ψnR|Ĥ0r |ψnR〉

= h̄ωB

(
2n + 3

2

)
− 1

2
h̄ωBEn

g0

g
+ O

(
g2

0

g2

)
,

〈ψnL|Ĥ0r |ψnR〉 ≡ tn = −1

2
h̄ωBEn

g0

g
+ O

(
g2

0

g2

)
,

〈ψnL|x̂|ψnL〉 = −〈ψnR|x̂|ψnR〉

= −

⎛
⎜⎝X 2

n + g0

g

∞∑
m=0
m �=n

√
EnEm

2(n − m)

XnXm

(n − m)2 − 1
4

⎞
⎟⎠

+ O
(

g2
0

g2

)
,

〈ψnL|x̂|ψnR〉 = 〈ψnL| p̂|ψnL〉 = 〈ψnL| p̂|ψnR〉

= 〈ψnR| p̂|ψnR〉 = O
(

g2
0

g2

)
, (F2)

3We denote here the E ⊗ ε case, since we are considering here both
xI and 1/g as synthetic coordinates [15]. For a fixed 1/g the system
reduces to the E ⊗ b model as in Sec. VII B.
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FIG. 12. The contribution C(mI ; E ) of the mI → ∞ eigenstates
|�k〉 of a given energetic class characterized by E , to the finite mI

ground state |�̃0(mI )〉 for varying mI/mB. In all cases NB = 5 and
1/g = xI = 0 is considered. Notice the logarithmic scaling of both

axes, the dashed line corresponds to
m2

B
2m2

I
and is provided as a guide

to the eye.

with Xn = √
(2n + 1)!/(2n−1n!π1/4). Hence, the perturbative

Hamiltonian for the system reads

Ĥper = E0 − δE
g0

g
+ Jσ̂x

g0

g
+ �σ̂zx̂I + O

(
g2

0

g2

)
, (F3)

where E0 = h̄ωB(NB + NB + 1)/2, δE =
2−(NB+1)

3
√

π

(2NB+1)!(NB−1)!
( NB−1

2 )!( NB+1
2 )!

h̄ωB, J = − 1
2 h̄ωBE NB+1

2
, and � =

−X 2
NB+1

2

. In addition, we have mapped |�L〉 to the

pseudo-spin-↑ and |�R〉 to the pseudo-spin-↓ states, with the
Pauli matrices σ̂μ, μ ∈ {x, y, z} acting in the standard way
in the corresponding pseudo-spin-1/2 space. Notice that the
|�L〉 and |�R〉 states define a well-behaved pseudo-spin-1/2
subspace, in particular each state of the corresponding
Bloch-sphere, |θ, φ〉, reads

〈x1, . . . , xNB |θ, φ〉 = 1√
NB!

N!∑
j=1

sgn
(
Pj
)
ψ0L
(
xPj (1)

)
ψ0R
(
xPj (2)

)
. . . ψ NB−1

2 L

(
xPj (NB−2)

)
ψ NB−1

2 R

(
xPj (NB−1)

)
×
[
cos θ ψ NB+1

2 L

(
xPj (NB )

)+ eiφ sin θ ψ NB+1
2 R

(
xPj (NB )

)]
. (F4)

The above indicates that the system exhibits an E ⊗ ε

conical intersection at g0/g = 0 and xI = 0. All the related
symmetry requirements are satisfied, since, first, the degen-
erate |�L〉 and |�R〉 states give rise to a two-dimensional
representation of the SU(2) symmetry, see Eq. (F4). Second,
the two vibrational coordinates xI and g0/g couple to this
subspace so that to favor different superpositions of the de-
generate states.

In the case that mI is finite, the degenerate ground states
of the system guaranteed for NB odd owing to Theorem 1 do
not consist of a single Slater determinant due to the corre-
lations induced by ĤPCM . Therefore, the argumentation above
does not generalize straightforwardly in this case. However,
as we show in Fig. 12 the ground states of the system for
finite mI are almost equivalent to the case of mI → ∞ for a
wide range of masses. More specifically, Fig. 12 shows the
contribution of the mI → ∞ eigenstates, Ĥ0r |�k〉 = E |�k〉,
belonging to different energetic classes characterized by their
eigenenergy E , to the ground state of the system for finite mI ,

(Ĥ0r + ĤRCM )|�̃0(mI )〉 = E0(mI )|�̃0(mI )〉. This contribution
reads

C(mI ; E ) =
∑

|�k〉: Ĥ0r |�k〉=E |�k〉
|〈�k|�̃0(mI )〉|2. (F5)

Notice that, in all cases, NB = 5 and 1/g = xI = 0 is con-
sidered and |�̃0(mI )〉 is calculated via exact diagonalization
(see also Appendix C). Figure 12 shows that states apart from
|�L〉 and |�R〉 belonging to the class E = 14.5 contribute
negligibly to the ground state of the system, since C(mI ; E =
14.5) > 0.8 even in the case mI = mB. In addition, the popula-
tion of E � 16.5 exhibit a behavior ∝ m−1/2

I for mI > 10mB.
This indicates the fact that first-order perturbation theory,

〈�k|�L〉 ≈ 〈�k |Ĥcoup|�L〉
E0(mI →∞)−Ek

∝ 1
mI

is adequate to account for their
population. Motivated by these numerical evidence we can
show that the effective E ⊗ ε Hamiltonian of Eq. (F3) carries
over within first-order perturbation theory in 1/mI , albeit with
modified coefficients (not shown here for brevity).
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