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1 Introduction

The last decades have seen groundbreaking progress in nonperturbative aspects of quantum
field theory (QFT) using methods from quantum information theory. This started with
Srednicki’s calculation of entanglement entropy for a free scalar field, exhibiting the area
law [1]. Measures based on the entanglement entropy together with unitarity and causality
have established the irreversibility of the renormalization group in d = 1 + 1, 2 + 1 and
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3+1 spacetime dimensions for relativistic QFT [2–4].1 Results from conformal field theory
(CFT) [7] as well as free field theory [8] have led to new insights into the structure of
quantum field theory. Properties of relative entropy have led to energy bounds in QFT,
such as the Bekenstein bound [9], the generalized second law [10], the ANEC [11] and
the QNEC [12]. The observation of the area law in local models has also led to powerful
numerical methods for finding ground-states [13]. And starting from the proposal of Ryu
and Takayanagi [14, 15] that entanglement entropy in a CFT can be computed from a
surface of minimal area in anti-de-Sitter spacetime, ideas from quantum information have
led to fundamental developments in holography and quantum gravity.

Most of these results have been so far restricted to relativistic QFT. The reason is that
constraints from Lorentz symmetry and causality play a key role in the above approaches.
In contrast, much less is known about nonrelativistic QFT and, in particular, in field the-
ory at finite density as would be relevant for describing the continuum limit of quantum
matter. It has been suggested that entanglement entropy can present a non-monotonic be-
havior in certain nonrelativistic models and that this would imply that the renormalization
group may not be generically irreversible beyond Lorentz-invariant theories [16]. Works
on entanglement entropy for relativistic fermions with finite charge include [17–22]. Some
results on theories with nontrivial dynamical exponents include [23–26].

The goal of this work is to determine what quantum information can tell us about
relativistic field theory at finite density, obtained by turning on a chemical potential. In
some sense this is in between a relativistic field theory and completely nonrelativistic
models: the chemical potential is a relevant perturbation and hence at very short distances
we expect to recover Poincare invariance. It is therefore a natural starting point to try
to extend results from the relativistic context. Such models can also have Fermi surfaces,
and their study is then important for experimental applications (we will in fact derive new
predictions in this direction).

A key lesson from Lorentz invariant analyses is that, from the point of view of quantum
information measures, free QFTs provide a nontrivial playground for obtaining results that
usually apply more broadly. This point of view has been reviewed and advocated in [8].
Motivated by this, in this paper we study free Dirac fermions at finite density, employing
both analytical methods in quantum information theory as well as numerical simulations.
Furthermore, we restrict to the simplest case of d = 1 + 1 space-time dimensions. The
reason for this is that numerical calculations are easiest in this case; in spite of these
simplifications, the results are already nontrivial. We plan to extend our analysis to higher
dimensions in future work. We will find that information-theoretic measures exhibit a
behavior that is quite different from that in relativistic theories; this is related to the fact
that Fermi surfaces give rise to low energy excitations with long range entanglement.

After reviewing basic properties of Dirac fermions at finite density in section 2, the
rest of the work will be devoted to a detailed analysis of different quantum information
measures and their implications in QFT. The dynamics is determined by two relevant

1The C and A theorems for d = 1 + 1 and d = 3 + 1 respectively were proved originally using local
correlators in [5] and [6], respectively.
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parameters, the mass m and the charge that is proportional to the Fermi momentum kF .
We start with the entanglement entropy in section 3. We construct a cutoff independent
entropic c-function, and prove that it is non-monotonic. It reveals the competition between
m and kF along the renormalization group flow, and encodes in an explicit way the creation
of entanglement and long-range correlations associated to the Fermi surface. In section 4
we study the Renyi entropies at finite density. Previous works on lattice models, such
as [27], have found oscillatory behavior in these measures, and this was related to Friedel
oscillations in [28]. We analyze when and how these arise in continuum QFT, and explain
their origin in terms of a defect-based operator product expansion. Next, in section 5 we
consider the mutual information (and its Renyi generalization) between two intervals. We
follow [29] and represent each interval in terms of an operator product expansion with
local operators. We prove that the mutual information detects already at leading order
the presence of a Fermi surface, and we suggest why this is an interesting measure to
probe non-Fermi liquids. The analytic results are also verified numerically. Finally, in
section 6 we study the relative entropy, and a certain one-parameter generalization of it
that interpolates to the fidelity. These quantities measure the distinguishability between
states. We apply them to study the distinguishability between states in two different cases:
density matrices in distinct superselection charge sectors, and density matrices in the same
charge sector but with different relevant deformations. We also compare with numerical
results. We end in section 7 with a summary and discussion of future directions; some
properties that we require about lattice models are presented in appendix A.

2 Free Dirac fermions at finite density

In this section we briefly review the physics of Dirac fermions at finite density. The rest of
the work is devoted to analyzing measures from quantum information in this theory.

2.1 Continuum theory

A free Dirac fermion has a U(1) symmetry ψ → eiθψ. A finite charge density ne = 〈ψ†αψα〉
is obtained by turning on a chemical potential µF , which appears as an expectation value
for a background gauge field with nonzero time component. The action (with signature
gµν = (+− . . .−)) reads

S =
∫
dt dd−1x

(
ψ̄(i/∂ −m)ψ + µFψ

†ψ
)
. (2.1)

Both the mass and chemical potential are relevant operators that induce a nontrivial renor-
malization group (RG) flow from the UV CFT of a massless Dirac fermion. We follow the
conventions in [30], and our choice of Dirac matrices is described in appendix A.

The energy eigenvalues are

E± = −µF ±
√
p2 +m2 . (2.2)

In what follows we choose µF > 0. Then E− is always negative and as usual gives rise to
antiparticles; the branch E+ has vanishing energy at a finite momentum |p| = kF , with

kF =
√
µ2
F −m2 . (2.3)
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This defines a spherical Fermi surface. The ground state, described in more detail in
section 2.2, is obtained by filling these states up to E+ = 0. Note that we need

|µF | > |m| (2.4)

otherwise the Fermi level is below the gap, and no charge is added to the system.
In order to compute the time-ordered correlator, the appropriate iε prescription moves

the poles for the Green’s function to

p0 = E± − iε sgn(E±) . (2.5)

In other words [30, 31],

1
p̃2 −m2 →

1
2
√
p2 +m2

( 1
p0 − E+ + iε sgnE+

− 1
p0 − E− + iε sgnE−

)
, (2.6)

for the residue calculation, and we have defined p̃µ = (p0+µF , pi). The correlator then reads

〈T ψ̄α(x)ψβ(y)〉=−
∫

ddp

(2π)d
i(/̃p+m)βα
2
√
p2+m2 e

ip(x−y)
( 1
p0−E++iεsgnE+

− 1
p0−E−+iεsgnE−

)
.

(2.7)
For entanglement calculations below, let us compute the equal-time correlator. We can
choose x0 − y0 → 0+ so that 〈T ψ̄(x)ψ(y)〉 = 〈ψ̄(x)ψ(y)〉. Closing the p0 contour in the
upper half plane, where the Fourier factor eip0(x0−y0) gives an exponential suppression,
obtains

〈ψ̄(x)ψ(y)〉=
∫

dd−1p

(2π)d−1 e
−ip·(x−y) 1

2
√
p2 +m2

{
Θ(−E+)

(√
p2 +m2γ0 +γipi+m

)

−
(
−
√
p2 +m2γ0 +γipi+m

)}
. (2.8)

In order to compute the reduced density matrix, it will actually be more convenient
to work in terms of the correlator

C(x− y) = 〈ψ†(x)ψ(y)〉 =
∫

dd−1p

(2π)d−1 e
−ip·(x−y)

{
Θ(−E+)

(
1
2 + γ0γipi + γ0m

2
√
p2 +m2

)

+
(

1
2 −

γ0γipi + γ0m

2
√
p2 +m2

)}
. (2.9)

We recognize the finite density correlator as a deformation of the relativistic result,

CkF (x− y) = C0(x− y) +
∫
|p|<kF

dd−1p

(2π)d−1 e
−ip·(x−y)

(
1
2 + γ0γipi + γ0m

2
√
p2 +m2

)
, (2.10)

with
C0(x− y) =

∫
dd−1p

(2π)d−1 e
−ip·(x−y)

(
1
2 −

γ0γipi + γ0m

2
√
p2 +m2

)
. (2.11)
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2.2 Lattice model

The entanglement and Renyi entropies diverge in continuum QFT. A physical way to
regulate them is to put the theory on a lattice, and we will then use the real time method [8,
32] to evaluate the entanglement measures. In what follows we restrict to d = 1 + 1 space-
time dimensions.

We work with an infinite spatial lattice, x1 = na, n ∈ Z, and set the lattice spacing
a = 1. Symmetrizing the spatial derivative in (2.1) and discretizing the derivatives as
∂1ψ(x)→ (ψn+1 − ψn)/a, the lattice Hamiltonian reads

H =
∑
n

(
− i2(ψ†nγ0γ1(ψn+1 − ψn)− h.c.) +mψ†nγ

0ψn − µFψ†nψn
)

=
∑
i,j

ψ†iHijψj , (2.12)

where {(ψi)α, (ψ†j)β} = δijδαβ , being α, β spinor indices. We will now determine the ground
state and the equal time fermion Green’s function.

In momentum space,
ψn =

∫ π

−π

dk

2π ϕke
ikn , (2.13)

the Hamiltonian becomes

H =
∫ π

−π

dk

2π ϕ
†
k

(
sin(k)γ0γ1 +mγ0 − µF

)
ϕk =

∫
dk

2π ϕ
†
kM(k)ϕk. (2.14)

The energy eigenvalues are given by

ε±(k) = −µF ±
√

sin(k)2 +m2 , (2.15)

and the corresponding normalized eigenvectors are denoted by v±(k) respectively. The
Hamiltonian is then diagonalized in the new basis(

ck,+
c†−k,−

)
= U †(k)ϕk , (2.16)

with
U(k) = (v+(k) , v−(k)) (2.17)

the unitary matrix of eigenvectors of M(k), and becomes

H =
∫ π

−π

dk

2π
(
ε+(k)c†k,+ck,+ + (−ε−(k))c†k,−ck,−

)
(2.18)

after subtracting the zero-point energy. Unitarity of the transformation guarantees that
{ck,a, c†p,b} = 2πδ(k − p)δab, a, b = ±.

When µF = 0, the vacuum state is the zero-particle state |0〉, annihilated by all ck,±.
Once µF > 0, the new ground state is obtained by filling the negative energies ε+(k) < 0
in the particle band:

|G〉 =
∏

k , ε+(k)≤0
c†k,+|0〉. (2.19)
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The particles then fill a Fermi surface with Fermi momentum

kF = arcsin
(√

µ2
F −m2

)
, (2.20)

and another Fermi surface at ±(π − kF ).
The continuum limit is obtained by sending all the (dimensionless) energy quantities

in (2.15) to zero, keeping their ratios k/m and µF /m fixed. This then recovers (2.2).2 How-
ever, other properties are specific to the lattice. One is the well-known fermion doubling:
due to the periodicity of the dispersion relation with the lattice momentum, the model
gives two Fermi surfaces; see appendix A for more details. Another property is that once
µF =

√
1 +m2, the particle band is completely filled; so in our calculations below we will

always take µF ≤
√

1 +m2. This restriction disappears in the continuum limit, because
the momentum cutoff |k| < π/a→∞.

We are now ready to compute the correlation function in the lattice model,

Cij = 〈G|ψ†iψj |G〉 ≡ 〈ψ
†
iψj〉 =

∫
dk

2π e
−ik(i−j)〈ϕ†(k)ϕ(k)〉. (2.21)

Using the anticommutation relations and noticing the negative energy states filled in (2.19),
we have

〈ϕ†(k)ϕ(k)〉 = v†+(k)v+(k)Θ(−ε+(k)) + v†−(k)v−(k)Θ(−ε−(k)) . (2.22)

These terms are computed in (A.3) and (A.4) in appendix A, with the result

Cij =
∫ π

−π

dk

2π e
−ik(i−j)

(
1
2I−

sin(k)γ0γ1 +mγ0

2
√
m2 + sin(k)2

)

+
∫ π

−π

dk

2π e
−ik(i−j) Θ(−ε+(k))

(
1
2I + sin(k)γ0γ1 +mγ0

2
√
m2 + sin(k)2

)
. (2.23)

The first line is independent of the chemical potential, since Θ(−ε−(k)) = 1 for all k
in (2.22). This is the contribution from the filled antiparticle band. The second line is the
part that encodes the contribution from the Fermi surface of particles. This is the discrete
version of (2.9), and gives the right continuum limit.

2.3 Fermion dynamics

Since the model is Gaussian, the dynamics is completely determined by the propagator (2.9)
or its lattice version (2.23). We will now analyze the new features brought in by finite
density, and the interplay between the two relevant scales m and kF .

First, let us consider the massless limit m/kF → 0. As described in appendix A, it is
useful to choose the chiral basis γ0 = σ1, γ1 = iσ2. Then γ3 = γ0γ1 = −σ3. In terms of
left and right movers, ψ = (ψL, ψR), we obtain

S =
∫
dx0dx1

(
ψ†L(i(∂0 − ∂1) + µF )ψL + ψ†R(i(∂0 + ∂1) + µF )ψR

)
. (2.24)

2Equivalently, we can reintroduce the lattice spacing, to obtain the dispersion relation ε±(k) = −µF +√
sin(ka)2

a2 +m2. Taking a→ 0 gives (2.2).
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The chiral fermions decouple; each one has a semi-infinite Fermi surface that ends at
|p1| = µF . Furthermore, in this case the Fermi momentum is simply kF = µF .

The low energy theory is obtained by redefining

p1 = ±kF + p⊥ , (2.25)

and restricting to |p⊥| � |kF |. This gives two chiral fermions moving at the speed of light,

S =
∫
dp0dp⊥
(2π)2

(
ψ†L(p0 + p⊥)ψL + ψ†R(p0 − p⊥)ψR

)
. (2.26)

There is an equivalent way to think about this, which will be important below. Due
to the additional chiral symmetry, the theory has now two U(1)L × U(1)R symmetries,
that rotate ψL,R independently. The chemical potential can be removed by a unitary
local transformation,

ψL(x1) = e−ikF x
1
ψ′L(x1) , ψR(x1) = eikF x

1
ψ′R(x1) . (2.27)

This is not a symmetry, because the phase rotation depends on x1; it maps the theory with
chemical potential to one with no chemical potential. This is equivalent to changing the
origin of momentum space as in (2.25).

The equal time propagators for chiral fermions at zero density are

〈ψ′†L(x1)ψ′L(y1)〉 = − i

2π(x1 − y1) , 〈ψ
′†
R(x1)ψ′R(y1)〉 = i

2π(x1 − y1) . (2.28)

We can obtain the corresponding correlators at finite density by applying (2.27) to
this result:

〈ψ†L(x1)ψL(y1)〉 = − i

2π(x1 − y1)e
ikF (x1−y1) , 〈ψ†R(x1)ψR(y1)〉 = i

2π(x1 − y1)e
−ikF (x1−y1) .

(2.29)
The same result can be obtained directly from (2.9). This shows terms that oscillate with
frequency kF — a consequence of the Fermi surface. This is a key difference with the rela-
tivistic theory, and similar oscillating terms will be found also away from the massless limit.

Let us now consider the opposite nonrelativistic limit, m/kF → ∞. At energies and
momenta much smaller than the mass, the dispersion relation (2.2) becomes

E± ≈ −µF ± |m| ±
p2

2|m| . (2.30)

We choose the mass and chemical potential to be positive. Defining

µF = m+ µ̃F (2.31)

gives

E+ ≈ µ̃F + p2

2m , −E− ≈ 2m+ µ̃F + p2

2m . (2.32)

The antiparticles with energy −E− ≈ 2m decouple from the low energy theory, while the
particles reproduce the dispersion relation of a nonrelativistic fermion, with µ̃F playing the
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role of the chemical potential in the nonrelativistic theory. This fermion is spinless, and
we will denote it by ψ̃. It is related to the Dirac fermion by diagonalizing the Hamiltonian
as in (2.16) and taking m→∞; this gives

ψ̃(x) = 1√
2

(ψL(x) + ψR(x)) . (2.33)

The low energy effective theory is

Seff =
∫
dx0dx1 ψ̃†

(
i∂0 + ∂2

1
2m − µ̃F

)
ψ̃ . (2.34)

It describes a Fermi surface (two points) with Fermi momentum

k2
F

2m = µ̃F . (2.35)

Linearizing the dispersion relation around each of the Fermi points gives

p2

2m − µ̃F = ±vF p⊥ , p = ±(kF + p⊥) , vF = kF
m
. (2.36)

Restricting to momenta p⊥ much smaller than kF , and denoting the fermion near the left
or right Fermi points by ψ̃L,R respectively, obtains

S =
∫
dp0dp⊥
(2π)2

(
ψ̃†L(p0 + vF p⊥)ψ̃L + ψ̃†R(p0 − vF p⊥)ψ̃R

)
. (2.37)

This is the same as the theory of two chiral fermions (2.26), except that now they move
at the Fermi velocity vF instead of the speed of light. The massive theory at zero density
becomes trivially gapped at long distances, but at finite density kF > 0, two massless chiral
fermions emerge. This will lead to strong signatures in quantum information measures.

3 Entanglement entropy

We now begin our analysis of quantum information measures in field theory at finite den-
sity and their implications. In this section we consider the entanglement entropy (EE)
associated to the vacuum density matrix reduced to a region V in space,

S(V ) = −Tr(ρV log(ρV )) , ρV = TrV̄ (|0〉〈0|), (3.1)

where V̄ is the complement of V , and |0〉 is the vacuum state.
Our original motivation in this direction came from [16], who argued for a violation of

the irreversibility of the RG in nonrelativistic models. In more detail, a Fermi surface in d
space-time dimensions leads to a logarithmic violation of the area law of EE,

S(V ) ∼ (kF r)d−2 log(kF r) , (3.2)

where V is a spherical region of radius r. At large r, this grows faster than the leading
area law contribution,

S(V ) ∼ rd−2

εd−2 , (3.3)

– 8 –
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that appears in local models, such as QFTs with UV fixed points. This argument to-
wards a non-monotonic behavior is very suggestive, but various points need to be care-
fully understood.

First, the comparison is not well-defined in the continuum limit, because (3.3) is diver-
gent. Making this precise requires a finite quantum information measure. Another issue is
that the irreversibility of the RG in d > 2 is not based on the area term (3.3); instead, the
intrinsic quantities that decrease, F and A [3, 4], appear in subleading terms. Similar sub-
leading terms have not been evaluated for finite density field theory in d > 2. And finally,
it is necessary to determine whether the chemical potential acts like a standard relevant op-
erator whose effect becomes important at low energies or large radius as in (3.2). This can
be subtle, because a chemical potential modifies the structure of the ground state, which is
in a different superselection sector than the zero charge vacuum. In particular, it could be
clarifying to evaluate measures that can compare states in the same superselection sector.

Our goal is to analyze these points in the simplest setup of d = 1 + 1 Dirac fermions
at finite density which, as we shall see, is already nontrivial. Moreover, we would like to
shed light on the competition between the mass and the chemical potential. The mass
alone tends to give a trivial gapped state; but even with nonzero mass, the finite charge
gives emergent massless fermions, as discussed in section 2.3. This can produce long-range
entanglement, and we want to characterize how this creation of entanglement occurs.

Recall that for a 2d conformal field theory of central charge c and an interval of radius
r, the leading term in the EE is [7]

S(r) = c

3 log r

ε
(3.4)

with ε a short distance cutoff. The quantity

c(r) = r
dS(r)
dr

, (3.5)

is finite and is proportional to the intrinsic central charge c at fixed points. It is also well-
defined away from fixed points, in which case it decreases monotonically for unitary RG
flows in relativistic theories [2, 3]; this is the entropic version of the C-theorem. We will
compute the finite quantity (3.5) in the presence of a finite charge density, and use it to
study potential violations of monotonicity. We also study RG flows in a fixed superselection
sector, by comparing entropic c-functions with the same kF but different mass.

We perform numerical simulations using the real time approach [8, 32]; we work on the
lattice of section 2.2 and then take the continuum limit. Given that the theory is Gaussian,
the eigenvalues of the reduced density matrix ρV are determined by the eigenvalues of the
correlation matrix Cij = 〈ψ†iψj〉 constrained to V (i, j ∈ V ). In terms of this matrix
(see (2.23)), the entanglement entropy on the lattice reads

S(V ) = −Tr[C log(C) + (1− C) log(1− C)] . (3.6)

We will now analyze two separate cases: chiral fermions and fermions at finite mass.
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Figure 1. c(kF r) function for a chiral fermion at finite density. For kF → 0 and kF r fixed, the
plots tend to 1

3 , as in a CFT. In this case, the correlation matrices were as large as 4000 × 4000,
since there are two spin degrees of freedom per site. Note the scale values in the c-axis.

3.1 Chiral fermions

For massless chiral Dirac fermions, we found a local unitary transformation (2.27) that
maps the theory with finite charge to the relativistic zero charge model. Both two-point
functions Cij in the continuum limit have the same eigenvalues and, since the density
matrix is Gaussian and completely determined by the two-point function, their respective
density matrices also have the same eigenvalues. Therefore, quantum information measures
that depend only on the eigenvalues of the reduced density matrix, such as the EE, are the
same in both theories. This result is independent of the shape of the considered region V ,
so the statement also holds for an arbitrary number of intervals.
For an interval of length r, this implies

c(r) = 1
3 (3.7)

for chiral fermions at finite density. We provide a numerical check of this result in figure 1,
taking the continuum limit of the lattice model kF → 0, with kF r fixed. We present plots
of c(kF r) for several values of kF .3 This is consistent with previous works [17, 20, 21],
whose arguments were different from ours.

Given this, it is interesting to explore measures that are not just sensitive to the
eigenvalues of ρV , but also to the eigenvectors. This would distinguish chiral fermions with
zero and finite density. We return to this point in section 6 below.

3.2 Massive fermions at finite density

Let us now analyze the case of massive Dirac fermions. To develop analytical intuition,
it is useful to consider first the asymptotic UV and IR limits, together with the ultra-

3To compute c(kF r) = rS′(kF r), we used a mild discrete derivative that considers four consecutive
points and reduces numerical fluctuations (see the numerical appendix of [33]). More explicitly, ∂xψ(x) 7→
ψn+ 1

2
= 1

4 (ψn+1 + ψn − ψn−1 − ψn−2) for the n-th lattice site.

– 10 –



J
H
E
P
0
3
(
2
0
2
1
)
0
7
9

0 2 4 6 8

0.20

0.25

0.30

0.35

Figure 2. c(kF r) function for different regimes m/kF for a Dirac fermion at finite density. In
the limit r → 0, the simulations tend to 1

3 , the expected value for the UV fixed point. In the IR
limit, the simulations also tend to 1

3 , consistently with (2.37). Finally, the intermediate behavior is
strongly affected by the ratio m/kF . The entropic c-function is a finite quantity that exhibits the
non-monotonic behavior of the RG.

relativistic and nonrelativistic behaviors. From the point of view of the EE and entropic
c-function c(r), the UV corresponds to r � 1/m, 1/kF . The mass term is a standard
relevant deformation, and hence its effect is negligible in the UV. On the other hand,
as we discussed before, the charge density can be more subtle because it is changing the
ground state. Assuming it also behaves like a relevant deformation, the UV limit should
give c(r)→ 1/3. Our numerical results will show that this is indeed the case.

The functional form of c(r) depends strongly onm/kF . In the relativistic limitm/kF →
0, we expect a dependence close to that of chiral fermions in section 3.1. The nonrelativistic
limit m/kF � 1 is more nontrivial and interesting. From the point of view of the RG,
the effects of the mass should set in first, at scales of order mr ∼ 1, leading to a gapped
state and hence to c(r) → 0. However, even in this case, we expect at long distances
r � 1/m, 1/kF to obtain nonzero entanglement from long range correlations of the light
fermions in (2.37). Here we expect again c(r) → 1/3. Therefore, the entropic c-function
should exhibit a non-monotonic behavior in the nonrelativistic limit.

The numerical results are presented in figure 2, which shows c(kF r) for several values
of m/kF . We exhibit the ultrarelativisic m/kF � 1 and nonrelativistic m/kF � 1 limits,
as well as intermediate cases with m/kF ∼ 1.

The previous analytic considerations are verified by the numerical results. First, in all
cases we find c(r) → 1/3 in the UV limit r � 1/m, 1/kF . This is the expected UV fixed
point answer. Secondly, in the IR limit (mr � 1 and kF r � 1) the plots also tend to 1/3,
the expected result from (2.37). This is the 2d version of the logarithmic violation of the
area law (3.2). The intermediate behavior between these fixed points depends on m/kF .
In the relativistic regime m� kF , the effects of the non trivial charge always dominate in
the RG sense, and the behavior is similar to a chiral fermion.

– 11 –
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In the non-relativistic regime, c(r) rapidly decreases on scales mr ∼ 1. This is con-
sistent with the RG being dominated by the mass. For larger values of r, c(r) increases,
attaining a maximum at kF r ∼ 1, and finally asymptoting to 1/3. The minimum and
maximum in c(kF r) reflect the competition between the operators mψ̄ψ y µFψ†ψ; the first
tries to induce a mass gap and trivial entanglement, while the second (recall that µF > m)
tries to induce long-range entanglement. The entropic c-function then provides a finite
quantity that is measuring the creation of entanglement due to the finite density.

Let us analyze this behavior in more detail. A nonrelativistic fermion at zero density
is described by the Schrodinger action (2.34). It has a U(1) symmetry ψ̃ → eiαψ̃ with
conserved particle number Ne; crucially, Ne ≥ 0. This should be contrasted with the
original U(1) charge symmetry that has both positive and negative charges. The positivity
of Ne implies that the ground state is uniquely fixed as having zero charge at every (lattice)
point. Therefore it factorizes, |0〉 =

∏
i |0〉i and the entanglement entropy on a finite region

is trivial. This point was emphasized in [34]; it can also be obtained directly as the
m→∞ limit of the EE for a Dirac fermion. Now let us add some charge, so that the new
ground state has Ne > 0. There are many different ways to realize Ne, and the ground
state is no longer a product state. With respect to Ne, there are excitations with charge
excess or defect, particles and holes in condensed matter language. These excitations lead
to nontrivial entanglement, similarly to what happens with particles and antiparticles in
relativistic QFT. This creation of entanglement is detected by c(r).

Finally, let us analyze the RG flow within the same charge sector. One way to charac-
terize this is to compare the entropic c-functions for equal values of kF but
different masses:

∆c(r) = c(kF r,m1r)− c(kF r,m2r) . (3.8)

At long distance, this is changing the Fermi velocity vF . Numerically we found that ∆c(r)
also exhibits non-monotonic behavior.

To conclude, we have found non-monotonic behavior in the finite quantity c(r), putting
the considerations of [16] on a well-defined framework. Our results exhibit a breakdown of
RG irreversibility in 1+1 dimensions as measured by the entropic c-function, once Lorentz
invariance is broken. As a cross-check, we have also verified that the strong subadditive
inequality is always satisfied, as it should; in our case, this amounts to S′′(r) ≥ 0. In these
flows, cUV = cIR, so the weak version of irreversibility, which states that cUV ≥ cIR, is not
violated. One could also ask whether other c-functions are monotonic. Since the UV and
IR central charges are the same, this c-function would have to be a constant along the whole
flow and hence insensitive to the two different relevant couplings m and µ. But this is quite
implausible: at very short distances where we can focus on the effect of the relevant mass
term, the consistent c-functions monotonically decrease with scale.4 Given this, at larger
scales they would then have to increase to asymptote to the same central charge in the
IR. Therefore, generically we expect all c-functions to exhibit a non-monotonic behavior.
Other information-theoretic quantities do exhibit monotonic behavior (most notably the
relative entropy), and we discuss such measures in section 6.

4This includes the functional generalizations of the Zamolodchikov c-function in [35].
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4 Renyi entropies

In order to understand the entanglement spectrum in finite density QFT, in this section
we analyze the Renyi entropies,5

Sn(V ) = 1
1− n log(Tr(ρnV )) , cn(r) = r

dSn(r)
dr

. (4.1)

ref. [27] studied the XY model on a 1d lattice and found a surprising behavior in the Sn,
akin to Friedel oscillations in a metal. Their analytic prediction for the Sn in the large
distance limit log(2kF r)� n is

Sn(r) = n+ 1
6n log

(
r

ε

)
+Afn

cos(2kF r)
(2kF r)

2
n

+ . . . , (4.2)

with

fn = 2
1− n

(
Γ((1 + n−1)/2)
Γ((1− n−1)/2)

)2

. (4.3)

and A = 1 in their case.
We would like to determine whether this phenomenon occurs more generally in finite

density QFT in the continuum limit. In fact, it is possible to have oscillatory behavior on
the lattice, but with the amplitude of the oscillations vanishing in the continuum; we will
illustrate this in some of our numerical results. The massive Dirac theory provides again
a useful framework for understanding these points. Similarly to (3.6), the Renyi entropies
can be computed in terms of the two-point function C restricted to a spatial region V ,

Sn(V ) = 1
1− nTr [log(Cn + (1− C)n)] . (4.4)

The presence of charge density is crucial for such oscillatory behavior; however, this does
not seem to be enough and the mass term should play a role as well. Indeed we argued in
section 3.1 that, in the massless limit, the zero density and finite density QFTs have the
same spectrum for ρV . This predicts that the Renyi entropies should also be the same,
and since the relativistic theory (a CFT) has no Friedel oscillations [7, 8, 33], they should
not appear either at finite density.

With these motivations, in this section we evaluate explicitly the Renyi entropies and
study the emergence of Friedel oscillations both in massless and massive theories.

4.1 Numerical results

Let us begin with massless Dirac fermions on the lattice (2.12). This will provide an
example of Friedel oscillations in lattice models that disappear in the continuum limit.

5Besides giving the eigenvalues of ρV , the Renyi entropies are also important for the replica trick, where
the limit n→ 1 gives the EE.
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Figure 3. c2 and c3 functions for a chiral fermion at finite density. The continuum limit corresponds
to kF → 0 for kF r finite. The amplitudes of oscillations vanish in this limit, and the results converge
to (4.5). Note the scale values in the cn-axis.

Numerical results for Renyi entropies are presented in figure 3. They feature Friedel
oscillations; however, we find that the amplitude of such oscillations goes to zero in the
continuum limit, and illustrate this in the figure by plotting curves of decreasing kF
in units of the lattice spacing. This vanishing of the oscillation amplitude is in agree-
ment with the argument in section 3.1 that the result should be the same as in the
relativistic fixed point

cn = n+ 1
6n , (4.5)

with cn defined in (4.1). Reintroducing the lattice spacing a that was fixed before to a = 1,
the amplitude A introduced in (4.2) vanishes as (kFa)2 when the lattice spacing a → 0.
We show the convergence to the continuum limit kF → 0 keeping kF r fixed, as well as
the prediction (4.5).

Next, we consider the massive case. figure 4 shows our numerical results for c2 and c3
in different regimes of m/kF .

For n > 1 we find Friedel oscillations in the continuum limit, not only when m � kF
but in other ranges of m/kF as well. The oscillations have a constant mean value (4.5)
due to the long range contributions coming form the light fermions of the low energy
theory (2.37). Moreover, the long-distance dependence (4.2) also fits well away from the
nonrelativistic limit. This is presented in figure 5 for c2 and c3 in the m/kF � 1 limit; the
agreement with (4.2) is excellent.
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Figure 4. c2 and c3 functions for all regimes of Dirac fermions at finite density. In all of them,
except for m = 0, there are Friedel oscillations of period π as a function of kF r.
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Figure 5. Fits of c2 and c3 for m/kF = 0.1 with kF = 1/50. The fits were used following the
expression (4.2) and cn(r) = rS′

n(r). The free parameter of every fit is the amplitude A.
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4.2 Friedel oscillations and defect OPE

Friedel oscillations have been observed before in lattice systems with Fermi surfaces, such
as [27]; this reference also provided an analytic calculation that leads to (4.2), based on the
behavior of discrete Toeplitz matrices at large separation. Here we have found these effects
in continuum QFT, and we would like to understand their physical origin. In [28] it was
suggested that they arise from localized terms on the defect that defines the Renyi entropy,
by developing an argument given originally in [36]. In this subsection we will show how
such phenomenon can be understood using the defect operator product expansion (OPE).

The Renyi entropy trρnV for a region V can be thought of as the partition function in the
presence of a codimension 2 defect operator Σn

V , called a twist operator, that implements
the joining of the different replicas,

trρnV = 〈Σn
V 〉 . (4.6)

In d = 1 + 1 space-time dimensions, the defect is just two points (the endpoints of the
intervals); these local operators are the twist and anti-twist introduced first in [37] (see [7]
for a review). In higher dimensions, Σn

V is an extended codimension 2 defect.
We are interested in studying the behavior of a local operator O near the defect, and we

assume for now we have a CFT. We will discuss the application to our case momentarily.
Let us choose a local coordinate system where ~y are d − 2 coordinates tangential to the
defect, while xa are the two coordinates normal to the defect (located locally at xa = 0).
In the limit where the operator O is very close to the defect, we can use a defect OPE to
write it in terms of operators Ô localized at the defect:

O(xa, ~y) ∼
∑
k

bk|xa|∆̂k−∆Ôk(~y) , (4.7)

as discussed in [38–42]. Intuitively, the OPE coefficient bk measures the strength with which
O induces the operator Ôk localized on the defect. Similarly, the defect can be expanded
in terms of defect-localized operators, and this expansion is expected to exponentiate,

Σn
V ∼ e−

∫
dd−2y bΣk ε

∆̂k−(d−2) Ôk(~y) , (4.8)

by arguments similar to those in [43].6 For dimensional reasons, we have included the
factor ε∆̂k−(d−2), where ε is a short distance cutoff that defines a tubular region around
Σn
V . The OPE coefficients are fixed by independent calculations of correlation functions in

the conical geometry, such as

〈Σn
VO(xa, ~y)〉 , 〈Σn

VO(xa, ~y)O(x′a, ~y′)〉 , . . . (4.9)

see for instance [44] for a scalar field example.
6For d = 2, the twist operator is point-like so we expect an expansion in terms of local operators and not

with an exponential. This is not important for our argument below, which only uses the leading contribution
in this expansion.
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We won’t need the explicit OPE coefficients, but note that in general we expect bΣk ∼
n− 1 when n→ 1 since

〈Σn
VO(xa, ~y)〉 ∼ n− 1 (4.10)

(in this limit the defect is becoming trivial). Typically all operators allowed by symmetries
to have a nonzero expectation value in the conical geometry will contribute to the OPE,
and the dynamics is dominated by the one with smallest scaling dimension. Furthermore,
plugging (4.8) into (4.6) and writing explicitly the euclidean path integral, we have

trρnV ∼
∫
Dφe−S[φ]−

∫
dd−2y bΣk ε

∆̂k−(d−2) Ôk(~y) . (4.11)

Therefore the Ôk that enter the defect OPE appear as contributions to the action localized
on the defect.

In order to understand more explicitly the kinds of defect operators Ôk that can appear,
let us specialize to d = 2 and a single interval. We work with complex coordinates w; denote
the endpoints in the complex w plane by (u, v). The replicated manifoldMn corresponds
to an n-cover of the complex plane, branched over u and v. It can be mapped to C via the
uniformization map [7]

z =
(
w − u
w − v

)1/n
, (4.12)

where w ∈ Mn and z ∈ C. Under such a conformal transformation, a scalar primary
operator of dimension ∆ transforms as

O(w) =
(
dz

dw

)∆
O′(z) . (4.13)

Taking the OPE limit w → u and expanding the conformal factor, we find

O(w) ∼ |w − u|
∆
n
−∆O′(0) + . . . (4.14)

Given the OPE expansion (4.7), we interpret the right hand side as a defect operator
O′(0) of fractional dimension ∆/n induced by the bulk operator O(w). Finally, recall-
ing (4.8) and (4.11), we conclude that a conformal primary of dimension ∆ in the bulk,
with nonzero expectation value on the conical geometry, will induce a localized term con-
taining an operator of dimension ∆/n. This fact was suggested before in [36] based on
related behavior of boundary states and lattice effects near conical singularities. Here we
have understood it from the point of view of the defect OPE.

Let us apply these results to our setup. We work at long distance kF r � 1. The
low energy theory (2.37) is a CFT with two chiral fermions ψ̃L and ψ̃R. The ultravio-
let cutoff for this description is kF , so the natural value for the small distance param-
eter above is ε ∼ 1/kF . The lowest dimension operators with nonzero expectation value
〈Σn

VO(xa, ~y)〉 are constructed from fermion bilinears. Besides ψ̃†Lψ̃L and ψ̃†Rψ̃R, we have the
2kF density operator

ρ2kF = e2ikF x1
ψ̃†Lψ̃R + h.c. (4.15)
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Figure 6. Fits y = a + b
(
m
kF

)2
+ c

(
m
kF

)4
for the amplitude A in (4.2), for c2 and c3, with

kF = 1/50 and kF = 1/100. For a given n, one curve is under another one when diminishing kF ;
additional values of kF should be included in order to take the continuum limit. But already at
this order, we find that b is the same for the two values of kF , suggesting we are not far from the
continuum limit. We obtain b = 0.49 for n = 2 and b = 0.38 for n = 3.

that appears in the conserved current ψ̄γµψ of the microscopic theory. The two-point func-
tion for ρ2kF exhibits the familiar Friedel oscillations in Fermi liquids. When this operator
is very close to an endpoint of our entangling interval, we can still apply the transfor-
mation (4.12) that leads to (4.14); e2ikF x1 appears as a slowly-varying overall prefactor.
Therefore, the 2kF operator of ∆ = 1 leads to localized operators ρ̂2kF at the endpoints of
the interval, of dimension ∆̂ = 1/n and strength n−1 for n→ 1. The leading contribution
in this limit is

trρnV ∼
∫
Dψ̃ e−SCFT [ψ̃]

(
(n− 1)k−1/n

F (ρ̂2kF (u)
) (

(n− 1)k−1/n
F (ρ̂2kF (v)

)
∼ (n− 1)2 cos(2kF r)

(kF r)2/n . (4.16)

This identifies the Renyi entropy Friedel oscillations as arising from fractional 2kF operators
localized at the endpoints of the entangling region.7 Our approach also explains why the
oscillations vanish when n = 1, a point that was not clear in previous works.

In the relativistic limit m → 0 the Friedel oscillations in the Renyi entropy vanish
because the eigenvalues of the density matrix are the same as in the zero charge theory
in the continuum.8 The amplitude A of the oscillations should then have a perturbative
expansion in powers of (m/kF )2. We have checked this numerically, as seen in figure 6.
This suggests that it might be possible to perform the perturbative expansion analytically,
for instance using bosonization techniques [33, 46].

Finally, we note that the defect OPE approach is also general, and could be applied to
interacting theories at finite density, such as those that arise in non-Fermi liquids. Besides
the conserved current, other fermion bilinears with nontrivial anomalous dimension could

7This was proposed before by [28] based on the observation of localized operators given in [36].
8Furthermore, these oscillations are not expected in the Renyi entropies in the relativistic case, given

the reflection positivity inequalities of [45]. We thank H. Casini for pointing this out.
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contribute Friedel oscillations to the Renyi entropy, and this could be an interesting measure
for their nontrivial scaling.

5 Mutual information

The previous sections dealt with information measures associated to a single connected
region (an interval). On the other hand, measures based on two non-intersecting regions A
and B are very interesting to study because they can detect correlations between A and B.
In this section we will analyze the mutual information, defined in terms of EE entropies as

I(A,B) = S(A) + S(B)− S(A ∪B) ; (5.1)

we also consider the Renyi version, given by

In(A,B) = Sn(A) + Sn(B)− Sn(A ∪B) . (5.2)

There are various properties of the mutual information that motivate its study. First,
it measures the total amount of correlations between A and B. Given observables MA and
MB with connected correlation function C(MA,MB) = 〈MA⊗MB〉− 〈MA〉〈MB〉, we have
the bound [47]

I(A,B) ≥ C(MA,MB)
2||MA||2||MB||2

. (5.3)

The mutual information is then a good measure for the total correlations, some of which
can be missed by looking at specific correlation functions that could be small. From the
point of view of QFT, another important property is that divergent boundary contributions
cancel out so, unlike the EE, (5.1) is well-defined in the continuum limit.

For the purpose of this work, a key property is that In(A,B) admits an operator
product expansion (OPE) in the limit where the sizes rA, rB of A and B are much smaller
than the distance L between them [29]

rA
L
� 1 , rB

L
� 1 . (5.4)

As we review below in section 5.1, the basic idea is that the twist operator Σn
A that

implements tr(ρnA), can be expanded into a basis of local operators when we are far away
from A; and similarly for Σn

B. The connected part of the two-point function 〈Σn
AΣn

B〉, which
determines In, can then be expanded into a sum of correlation functions for operators
between A and B. For a CFT when the leading contribution comes from exchange of an
operator of dimension ∆, this gives

I ∼
(
rArB
L2

)∆
. (5.5)

We analyze how this is modified at finite density, finding that the mutual information
extracts detailed information about the dynamics. One of our main results is that a
Fermi surface and its long range correlations modifies the mutual information already at
leading order by introducing oscillating terms. The physical origin of these oscillations turns
out to be different from the Friedel oscillations above, and this provides a new quantum
information probe for (non)-Fermi liquids.
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5.1 Analysis via the OPE expansion of the mutual information

For the regions A and B we take two intervals of length r, separated by a distance L, and
focus on the limit (5.4). We have argued above that the spectrum of the density matrix
in the massless case is the same as that with zero charge, so we focus on m 6= 0 with a
finite charge density. We first evaluate the mutual information analytically using the OPE
expansion of [29], and in the next subsection we compare with numerical computations.

We recall from the discussion in section 4.2 that Renyi entropies are implemented in
terms of twist operators Σ. The Renyi entropy of the union A ∪B is then proportional to
the two-point function

trρnA∪B = 〈Σn
AΣn

B〉 . (5.6)

The idea of [29] is that far away from the region A the twist can be expanded as

Σn
A =

∑
{kj}

CA{kj}

n−1∏
j=0
Okj (r

j
A) , (5.7)

where Okj is an operator in the j-th copy, and kj is an index that determines the type of
operator. The OPE coefficients CA{kj} are obtained from expectation values of operators
far away from A in the presence of the defect,

lim
r→∞

〈Σn
A

n−1∏
i=0
Ok′i(r)〉 = lim

r→∞

∑
{kj}

CA{kj}

n−1∏
j=0
〈Ok′j (r)Okj (r

j
A)〉 . (5.8)

The leading contribution always comes from the identity operator, and can be normalized
to trρnA∪B

∣∣∣
O=1

= 1. If the next dominant contribution comes from an operator Okj ,
expanding log(trρnA∪B) gives a Renyi mutual information

In(A,B) ≈ 1
1− n

∑
{kj}

n−1∑
j=0

CA{kj}C
B
{kj} 〈Okj (r

j
A)Okj (r

j
B)〉 . (5.9)

In our case, the lowest dimension operators that contribute to (5.7) are fermion bilin-
ears. The independent bilinears in even d space-time dimensions can be chosen as

ψ̄αψβ : ψ̄ψ , ψ̄γµψ , ψ̄ψ , ψ̄[γµ, γν ]ψ , . . . , ψ̄γ∗dψ , (5.10)

with γ∗d = γ0 . . . γd−1 There are two kinds of contributions to (5.7): the two fermions on
different replicas, or both on the same replica. So at leading order,

Σn
A ∼

n−1∏
j=0

∏
j′ 6=j

CAαβjj′ ψ̄α(rjA)ψβ(rj
′

A) +
n−1∏
j=0

CAαβjj ψ̄α(rjA)ψβ(rjA) . (5.11)

The CAjj coefficients are proportional to n − 1 for n → 1; they contribute to the Renyi
mutual information but, since they appear squared in (5.9), they do not contribute to
the limit n → 1 that gives the mutual information [48–50]. In contrast, the coefficients
CAjj′ involving different replicas give a nonzero contribution to the mutual information.
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For Dirac fermions in d dimensions with m = kF = 0, the scaling dimension is ∆ =
(d−1)/2. From (5.8), the OPE coefficients scale like CA ∼ rd−1; plugging (5.11) into (5.6),
gives a scaling

In ∼
(
rArB
L2

)d−1
. (5.12)

Recall that the regions have characteristic sizes rA and rB, and L is the distance between
them. Furthermore, it turns out that only the bilinear ψ̄γµψ in (5.10) contributes to the
operator exchange between the two regions [50].

In the massive case with zero charge, correlation functions are exponentially suppressed
at long distances, and the same exponential suppression is seen in the mutual information.
Once kF 6= 0, however, the Fermi surface gives rise to long-range correlations as we found
above. In d spacetime dimensions, a Fermi surface behaves like a collection of massless
1 + 1-dimensional fermions, one for each patch of the Fermi surface. Therefore, we expect
to see a scaling behavior associated to a 2d CFT. This dynamical change in the effective
dimensionality is called “hyperscaling violation” [51–53]. Here we consider the case d =
1 + 1, for which there is no hyperscaling violation; previous work in higher dimensions
includes [54].

The leading effect at finite density is associated to oscillating terms in the fermionic
correlators. At large distances, these can be obtained using the low energy theory (2.37)
in terms of the left and right movers ψ̃L, ψ̃R; they have a linear dispersion relation with
velocity vF . The bilinears (5.10) exhibit oscillating terms when expressed in terms of these
low energy fields. For instance, the charge density contains a term

ψ̄(x)γ0ψ(x) ⊃ e2ikF x ψ̃†Lψ̃R + h.c. (5.13)

These contributions have the same scaling behavior as the non-oscillating terms that do
not mix ψ̃L and ψ̃R. Therefore, the (Renyi) mutual information in the long distance OPE
limit is

In ∼
r2

L2 (an + bn cos(2kFL+ φn) + . . .) , (5.14)

with an, bn some O(1) constants.
The main conclusion from this OPE calculation is that the mutual information detects

the presence of a Fermi surface already at leading order in r2/L2 via oscillating terms.
The charge density or Fermi momentum can be read off from the frequency of oscillations.
This applies both to the mutual information and to the Renyi mutual information. Note
that the origin of these oscillations is distinct from the Friedel oscillations in the Renyi
entropies obtained in section 4. Unlike the Renyi entropies, here we find oscillations in the
mutual information already at n = 1; they arise from long-distance correlations of fermion
bilinears such as (5.13), to which the mutual information is sensitive at leading order. In
the Renyi entropy case, the oscillations were coming from boundary operators localized at
the endpoints; these boundary effects cancel in the mutual information.

This is one of our main results, and we verify it numerically in the next subsection.
We believe that these properties make the mutual information and interesting probe for
finite density dynamics. While the present work focuses on free theories, we can also use
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Figure 7. I(kFL) for fixed r for massive Dirac fermions at finite density. The lengths r were
kF r = 2, kF r = 0.5 and kF r = 0.2 for m

kF
= 0.2, m

kF
= 1 and m

kF
= 5 respectively. Oscillations of

period π as function of kFL are present. Their amplitude vanishes when m/kF → 0.

the OPE for interacting Fermi surfaces with non-Fermi liquid behavior. Once the fermionic
quasiparticles acquire an anomalous dimension, their scaling dimension ∆f becomes greater
than 1/2. Based on the previous OPE analysis, we expect a mutual information of the form

I ∼
(
r2

L2

)2∆f

(a1 + b1 cos(2kFL+ φ1) + . . .) . (5.15)

Therefore the mutual information would detect both the non-Fermi liquid scaling dimension
as well as the Fermi momentum. The behavior of the Renyi mutual information is different,
because the charge density has protected dimension ∆J = 1 and contributes via the CAjj
in (5.11). This term vanishes when n→ 1 as we discussed before. Therefore we expect to
see two different scaling dependences in the Renyi mutual information. More generally, it
would be interesting to consider experimental applications of these results.

5.2 Numerical results

We now compute the mutual information numerically; the approach is similar to that of
sections 3 and 4. The new ingredient is the correlator matrix Cij with indices restricted to
the disconnected region A ∪ B. The mutual information (5.1) is then evaluated in terms
of (3.6); similarly, for In we use (4.4). We fix equal lengths r for the two intervals, and
vary their distance L, focusing on L� r.

Let us begin with the mutual information. The numerical results for I(kFL) at fixed
r are shown in figure 7. We compute three curves, corresponding to the ultra-relativistic
limit m/kF � 1, the nonrelativistic limit m/kF � 1 and an intermediate regime with
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Figure 8. The subfigures a), b) and c) show simulations of In(kFL) for fixed r for massive Dirac
fermions. The parameters are (kF r,m, mkF

) = (2, 1
500 , 0.2); (0.5, 1

200 , 1); (0.2, 1
100 , 5), respectively.

We observe Friedel oscillations of period π as a function of kFL, with amplitude dependent on
m
kF

. In the subfigure d) we check the agreement with (5.14). We fit (kFL)2I2(kFL) in the limit
kFL � 1 with m

kF
= 1, kF r = 5

3 and kF = 1
60 . The expression used was (kFL)2I2(kFL) =

A + B cos(2kFL)(kFL)C ; applying the fit to increasing ranges of kFL gives C → 0, in agreement
with (5.14).

m/kF ∼ 1. When m/kF → 0 we recover the CFT result, in agreement again with our
general argument above that the eigenvalues of density matrix are independent of kF in
this case. However, when m/kF 6= 0, the numerical simulation exhibits oscillating terms
with period π as function of kFL. A fit (see below) verifies the analytic prediction (5.14).

Next, we present our results for the Renyi mutual information in figure 8. Panels
a), b) and c) show the behavior for different masses and different values of the Renyi
parameter n. Finally, in panel d) we verify that the OPE limit prediction (5.14) is in
excellent agreement with the numerical results. Let us stress again that these Friedel-type
oscillations come from exchange of operators like (5.13) between the two regions; this effect
is distinct from the boundary effects that determine the Friedel oscillations in the Renyi
entropies. The numerical results are also consistent the cancellation of such contributions
in the mutual information.

6 Measures of distinguishability

In this last section of our analysis we turn our attention to a different question in quantum
information: how to distinguish two different density matrices ρ and σ. The main measure
for this is the relative entropy; we will also study certain one-parameter generalizations of
it. As discussed before, in QFT we can assign a density matrix to a region V in space,
obtained from the ground state by tracing over the Hilbert space of the complement. In the

– 23 –



J
H
E
P
0
3
(
2
0
2
1
)
0
7
9

context of renormalization group flows, two states naturally arise: the one associated to the
UV fixed point (call it σ), and another one (ρ) from the perturbed theory along the flow. A
measure of distinguishability between σ and ρ, like the relative entropy, provides a quantity
that is monotonic under increase of the region V , and encodes nonperturbative information
on the flow [4, 55–58]. In our setup of finite density field theory, we have an additional
motivation for looking at these quantities, which is that we would like to measure the
distinguishability between states in different superselection charge sectors. Let us present
first the discussion on the relative entropy, and focus afterwards on its generalizations.

6.1 Relative entropy

The relative entropy between two states ρ and σ is given by

Srel(ρ|σ) = tr(ρ log ρ)− tr(ρ log σ) . (6.1)

In terms of the modular Hamiltonian of σ = e−Kσ/tr(e−Kσ), it can be written as a difference
of free energies,

Srel(ρ|σ) = ∆〈Kσ〉 −∆S (6.2)

where ∆〈Kσ〉 = tr[(ρ − σ)Kσ] and ∆S = S(ρ) − S(σ). Operationally, it is a measure of
distinguishability between the two states. It vanishes when the two states are the same,
and becomes infinite if σ is pure and different from ρ. An important property is that the
relative entropy does not increase when restricted to a subsystem. In QFT, this means
that the relative entropy increases when increasing the size of the region.

In general, it is not easy to calculate the relative entropy analytically between two
states. However, it can be done when we compare a CFT to a CFT at finite density.
Recall that both have the same density matrix eigenvalues, but the eigenfunctions are
different, and the relative entropy should capture this. Let σ denote the reduced density
matrix with m = kF = 0 (the conformal fixed point), and let ρ be the density matrix for
m = 0 but kF 6= 0. The modular Hamiltonian for a CFT ground state reduced to a region
V that is a sphere of radius R is known explicitly [59],

Kσ = 2π
∫
V
dd−1x

R2 − ~x2

2R T 00(x) + c′ , (6.3)

where the Cauchy surface is at constant time. It arises by conformally mapping the sphere
to Rindler space, and noting that the modular Hamiltonian in the later case is just the
boost generator.

In our case, T 00 is the energy-momentum tensor for a massless relativistic Dirac
fermion,

T 00 = i

2(ψ̄γ0∂0ψ − (∂0ψ̄)γ0ψ) , (6.4)

so we can evaluate its expectation value in ρ and σ by taking coincidence limits of the
appropriate Green’s function in the finite charge and zero charge theories. Namely,

〈T 00〉 = i lim
x→y

∂y0〈ψ†(x)ψ(y)〉 . (6.5)
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The point-splitting divergence cancels out in ∆〈T 00〉; at equal times we find

∆〈T 00〉 = k2
F

2π . (6.6)

Replacing this into (6.3) and performing the integral there for d = 2 and an interval of
length r = 2R, we arrive at

Srel(ρ|σ) = ∆〈Kσ〉 = 1
6k

2
F r

2 . (6.7)

We thus find a super-extensive behavior in the relative entropy, coming from the modu-
lar Hamiltonian. This is a measure of the distinguishability between the massless fermionic
ground state with zero charge and finite charge. We will find the same behavior below
in numerical results. Interpreting the relative entropy as a difference of free energies as
in (6.2), we see that changing to a different superselection charge sector is like a reversible
adiabatic process: there is change in energy but the entropy stays constant. Here, this is
a consequence of the fact that both states have the same density matrix eigenvalues, and
hence ∆S = 0.

6.2 Relative Renyi entropies

There exists an interesting one-parameter generalization of relative entropy [60, 61]

Sα(ρ|σ) = − 1
1− α log Tr

(
σ

1−α
2α ρσ

1−α
2α
)α

, (6.8)

for α ∈ (0, 1) ∪ (1,∞) and

S1(ρ|σ) = Tr
(
ρ(log ρ− log σ)

)
,

S∞(ρ|σ) = log ‖ σ−1/2ρσ−1/2 ‖∞ .
(6.9)

These are usually referred to as relative Renyi entropies.
Let us focus on the range 1

2 ≤ α ≤ 1. When α = 1/2, (6.8) gives the fidelity distance,

S1/2(ρ|σ) = −2 log Tr
√
σ1/2ρσ1/2 = −2 logF (ρ, σ) , (6.10)

where F (ρ, σ) denotes the quantum fidelity. Therefore, the measures for 1
2 ≤ α ≤ 1

interpolate between quantum fidelity and quantum relative entropy.
The Sα have various nice properties. They are monotonically increasing in α [60, 62, 63]

d

dα
Sα(ρ|σ) ≥ 0 . (6.11)

Since both the fidelity distance and the relative entropy are positive, and equal to zero
only when ρ = σ, the same properties hold for the Sα,

Sα(ρ|σ) ≥ 0 , Sα(ρ|σ) = 0 for ρ = σ . (6.12)

Another important property is monotonicity when increasing the size of the algebra. For
two regions V ⊂ Ṽ , then

Sα(ρV |σV ) ≤ Sα(ρṼ |σṼ ), (6.13)
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for α ≥ 1/2. They also admit a representation similar to Uhlmann’s theorem for the
fidelity [64] as maximizing over purifications; see [58] for a review of this.

These properties make the Sα interesting quantum information measures for QFT.
We will compute these quantities for Dirac fermions at finite density, by comparing two
states σ and ρ corresponding to different choices of m and kF . For free fermions, an
explicit expression for the relative Renyi entropies can be found in terms of the two point
correlation function (see e.g. [58]),

Sα(ρ|σ) = − 1
1− α log

det
[
1 +

(
T

1−α
2α T ′T

1−α
2α
)α]

1
2(

det[1 + T ]
) 1−α

2
(

det[1 + T ′]
)α

2
, (6.14)

where
T = 1 + C

1− C , T T = T−1, T † = T , (6.15)

and CIJ = 1
2〈[wI , wJ ]〉 is defined in terms of the Majorana operators wI = (ψj +ψ†j , i(ψj −

ψ†j)). The correlation matrix C can be written in terms of Cij = 〈ψ†iψj〉,

C =
(

2i ImCT −i(1− 2 ReCT )
i(1− 2 ReCT ) 2i ImCT

)
. (6.16)

6.3 Numerical results

We proceed to evaluate numerically (6.14) for different states parametrized by the values
of the two relevant couplings m, kF . We also take α → 1 in order to obtain the rela-
tive entropy.9

Let us begin by discussing the sates with fixed m = 0, comparing kF = 0 (σ) and
kF = 1/20 (ρ). The results are shown in figure 9.

We find that all curves follow the functional dependence Sα = Aα(kF r)2, for a constant
parameter Aα. This means that the Renyi relative entropies exhibit a super-extensive
dependence on kF r. For α → 1, this agrees with the analytic results for the relative
entropy in section 6.1; in particular, the value A1 = 1

6 found in (6.7) is close to the lower
and upper bounds given by the numerical results with α ∼ 1. In this case, the super-
extensive dependence follows directly from the form (6.3) of the modular Hamiltonian for
a CFT. At present we do not have a similar analytic understanding for the nonlinear
relative entropies with α ∈ [1/2, 1), and it would be interesting to revisit this question in
future work.

Finally, let us discuss the case of two states with the same kF and different masses; the
reference state σ corresponds to the theory with m = 0, while ρ has m 6= 0. Both states
are in the same charge sector, and the Sα measure the distinguishability associated to the
RG flow caused by the mass. In particular, at low energies both theories have different
Fermi velocities. Numerical results for this situation are shown in figure 10.

Unlike the previous case, it is now harder to develop an analytic understanding. We
can already see this for the relative entropy, α = 1, for which the modular Hamiltonian

9Again, we have to divide the numerical result by two in order to account for the fermion doubling.
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Figure 9. Plot of Sα with α ∈ [0.5, 1.1] for m = 0, comparing states with kF = 0 and kF = 1/20.
A functional dependence Sα = Aα(kF r)2 is observed and plotted for all α considered. When α→ 1
the plots create a bound from above and from below to the relative entropy. The coefficients of the
fits are approximately Aα = 0.164 for α = 0.99 and Aα = 0.169 for α = 1.01; this agrees with the
analytic prediction A1 = 1/6 for α = 1 in (6.7).
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Figure 10. Plot for the relative Renyi entropies with α ∈ [0.5, 1.1] for kF = 1/20 and comparing
states with m = 0 and m = 1/10. The curves scale like ∼ (kF r)2 for small kF r, but higher powers
also arise for larger values.

is not known explicitly.10 The numerical results exhibit a dependence Sα ∼ (kF r)2 when
kF r � 1, which is modified at larger values of kF r. It is worth emphasizing that these
quantities are always monotonic, and as such they could provide nontrivial information
about the RG flow even for nonrelativistic QFT. In this direction, it would be interesting
to relate their behavior more explicitly to the dynamics of the theory. In particular, the
monotonicity ensures the absence of Friedel-type oscillations such as those detected in
previous sections. It would be interesting to pursue this direction further in future work.

10Other recent lattice works on the modular Hamiltonian include [65, 66].
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7 Conclusions and future directions

In this article we studied several measures of quantum information in finite density field
theory. We focused on free massive Dirac fermions at finite density in 1 + 1 space-time
dimensions. Despite the simplicity of the setup, some of the lessons reflected in these
measures are likely more general, and we would like to emphasize them here, together with
future directions suggested by our results.

We established that the entropic c-function (constructed from the logarithmic deriva-
tive of the entanglement entropy) is not monotonic. This is in stark contrast with the
behavior in Lorentz-invariant QFT, where this quantity obeys c′(r) ≤ 0, and this leads to
the C-theorem [2, 5]. We found cUV = cIR, but with nontrivial intermediate behavior that
encoded the competition between the charge density and the mass gap. Curiously, since
the UV and IR central charges are the same, the weak version of the theorem (cUV ≥ cIR)
is not violated. However, the relativistic sum rule implies that if cUV = cIR then there
is no RG flow (see e.g. [35]), and this is explicitly violated in our setup. In any case, the
entropic c-function provides a finite quantity that is sensitive to the creation of entangle-
ment associated to the Fermi surface, and it would be interesting to study its behavior in
interacting systems numerically.

The analysis of Renyi entropies also revealed nontrivial effects due to the Fermi surface,
most notably Friedel-type oscillations that modify the CFT result at subleading order.
These were observed before in lattice models [27]; we argued that they also arise in the
continuum theory when the chiral symmetry is absent (broken by the mass term). Using
a defect operator product expansion, these oscillations are found to arise from operators
of fractional dimension localized in the conical singularities of the replicated manifold, in
agreement with previous suggestions [28, 36]. The same argument applies to interacting
models, so this oscillatory dependence could be interesting for probing non-Fermi liquids.

The mutual information is an interesting and promising observable for theories of
quantum matter, because it measures correlations between different regions. We proved
that, in a long distance expansion, the mutual information detects the Fermi surface already
at leading order via new oscillatory terms. These are distinct from the Friedel oscillations
in the Renyi entropies. We also presented a generalization that accounts for nontrivial
anomalous dimensions. These features suggest that the mutual information and its Renyi
versions are very promising probes for correlated systems. It would also be interesting
to allow for time-dependent perturbations and include effects from out-of-time ordered
correlators. See e.g. [67, 68] for recent experimental progress on these fronts.

Finally, we studied the relative entropy (and its uni-parametric generalizations) as a
measure of distinguishability between different quantum states. The relative entropy ex-
hibits a super-extensive behavior for states in different superselection charge sectors, and it
is monotonic and finite. These properties make it useful for understanding nonperturbative
aspects of the RG at finite density. To continue along this line, it would be important to
determine how to extract intrinsic properties of fixed points from the relative entropy. This
was done for relativistic theories in [55, 56]. The structure of the energy-momentum tensor
correlators at finite density could also provide complementary information.
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It would be important to extend the present study to d > 2. In this case, Fermi surfaces
feature a logarithmic violation of the entropic area law [69], while the leading area term in
the EE is power-law divergent. This is related to hyperscaling violation [51–53], which is
absent in 1 + 1 dimensions. A fruitful direction may be to try to construct finite entropic
quantities from the EE or the relative entropy. It would of course be extremely interesting
to also consider interacting theories; as we have discussed before, some of our methods
extend to the interacting case. Along this line, it would be nice to evaluate the quantum
information measures explored here in holographic models, with the goal of shedding more
light on the elusive holographic Fermi surfaces [70].
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A Fermions on the lattice

In this appendix we collect some results on lattice fermions that are used in the main text.

A.1 Eigenvectors and correlator

To compute Cij we choose the chiral basis γ0 = σ1, γ1 = iσ2 and therefore γ3 = γ0γ1 = −σ3.
The eigenvectors are

v+(k) = N+

(
m

sin(k) +
√
m2 + sin(k)2

)
y v−(k) = N−

(
m

sin(k)−
√
m2 + sin(k)2

)
, (A.1)

with normalization constants N± as a consequence of the unitarity of U(k) = (v+(k), v−(k))

N2
+ = 1

2
√
m2 + sin(k)2(

√
m2 + sin(k)2 + sin(k))

,

N2
− = 1

2
√
m2 + sin(k)2(

√
m2 + sin(k)2 − sin(k))

.
(A.2)

Using m2 =
(√

m2 + sin(k)2 − sin(k)
) (√

m2 + sin(k)2 + sin(k)
)
, the outer product

of the eigenvectors becomes

v†+(k)v+(k)=

1
2−

sin(k)
2
√
m2+sin(k)2

m

2
√
m2+sin(k)2

m

2
√
m2+sin(k)2

1
2 + sin(k)

2
√
m2+sin(k)2

=1
2I+

mγ0

2
√
m2+sin(k)2 + sin(k)γ0γ1

2
√
m2+sin(k)2 ,

(A.3)

v†−(k)v−(k)=

1
2 + sin(k)

2
√
m2+sin(k)2 −

m

2
√
m2+sin(k)2

− m

2
√
m2+sin(k)2

1
2−

sin(k)
2
√
m2+sin(k)2

=1
2I−

mγ0

2
√
m2+sin(k)2−

sin(k)γ0γ1

2
√
m2+sin(k)2 .

(A.4)
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Figure 11. Left panel: S4 for m = 1/200 and kF = 0, distinguishing the parity (−1)n of r. Both
branches coincide when r � 1. Right panel: S4 for m = 1/200 and kF = 1/20; the even and odd
branches are shifted by π/2kF as a function of r.

A.2 Fermion doubling at finite density

The Dirac field on the lattice has been studied intensively in the past, starting from [71–73].
These works noticed the fermion doubling problem on the lattice; we need to revisit this
issue because of some new effects at finite density that need to be taken into account.

As noticed in these works, the dispersion relation (2.15) is symmetric under k → k+π.
This is a direct consequence of a discrete symmetry in the Hamiltonian (2.12),

ψn → Sψn , S = (−1)nγ0 . (A.5)

In the continuum low energy limit, we keep modes with k ∼ 0 but eliminate those modes
with high momentum k ∼ π. This is accomplished in terms of the combination

Ψ(x) ≡ lim
a→0

ψn+1 + ψn
2 , (A.6)

for x = na. This is an eigenvector of the discrete symmetry, Sψn = ψn.
In our context, when kF = 0 this doubling is simply taken into account by dividing the

entropies by two; see the left picture on figure 11. However, when kF 6= 0 we cannot just
do that because we find that the two branches exhibit oscillatory behavior and are not in
phase; this is illustrated in the right panel of figure 11. More precisely, the curves for even
and odd sites are shifted by π

2 as a function of kF r. Averaging the two curves would not
give the right result for the Renyi entropies. The origin of this shift can be seen already
when m = 0 and kF 6= 0, from the form of the correlator

Cij = C0
ij +

I sin[kF (i−j)]
π(i−j) i− j even

iγ0γ1 cos[kF (i−j)]−1
π(i−j) i− j odd,

(A.7)

with kF = arcsin
(√

µ2
F −m2

)
and

C0
ij = I

δij
2 +iγ0γ1 1−(−1)(i−j)

2π(i−j) . (A.8)
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Both branches are shifted by kF (i − j) → kF (i − j) ± π
2 in the finite density coefficients,

which becomes kF r → kF r ± π
2 in the continuum limit. When m 6= 0 we do not have

an analytic expression, but a similar behavior is seen in numerical calculations. We stress
that, unlike the fermion doubling, this shift is a property of the continuum. To address
this issue, we have chosen data given by even sites, and furthermore divided the Renyi
entropies and other measures by two to take into account the doubling.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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