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Figure 1: We model non-smooth friction (bunnies, left) and shock propagation (wall impact, right) in a single method.

ABSTRACT
We present a rigid body animation technique which prevents solids
from interpenetrating, dissipates energy through friction, and prop-
agates shocks through contacts. We employ the Alternating Direc-
tionMethod ofMultipliers (ADMM) to couple non-smooth Coulomb
friction with impact propagation, allowing efficient and accurate
non-smooth dynamics along with a correct transmission of impacts
through assemblies of rigid bodies. We further extend our method
to model adhesion, dynamic friction and lubricated contact.
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1 RELATEDWORK
Although the literature on rigid body contact and friction is rich
and diverse, no single method simulates non-smooth static fric-
tion while preserving symmetries and propagating impacts [Smith
et al. 2012]. For example, Gauss–Seidel-like solvers, which iterate
over all contacts [Erleben 2017; Müller et al. 2020] Traditional non-
smooth optimization based techniques [Acary et al. 2011; Nguyen
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and Brogliato 2018; Silcowitz et al. 2009] may be modified to include
shock propagation using impact laws, but they are often expensive.
Methods based on implicit integration of penalty methods [Fergu-
son et al. 2021; Lan et al. 2022; Macklin et al. 2020] are more efficient
but require a smoothed approximation of Coulomb friction.

Our method (1) retains the exact non-smooth friction, (2) in-
cludes shock propagation, and (3) models extended contact laws
like adhesion, for enhancing animations of rigid bodies assemblies.

2 OUR METHOD

ALGORITHM 1: Our solver for friction and shock propagation.

Detect and merge contacts (Sec. 2.3);
for 𝑘 ← 1, 2, . . . , 𝑁𝐺𝑆

𝑚𝑎𝑥 do
Solve the normal forces for r𝑁 (Sec. 2.1, 2.2);
Break if the error f𝐴𝐶

𝑇
(u𝑁 ; r𝑁 ) ≤ Y𝐴𝐶 (Sec 2.3);

Solve the static friction for r𝑇 |𝑆 (Sec. 2.1);
(Optional) Solve the dynamic friction part for r𝑇 |𝐷 (Sec. 2.4);

2.1 Dynamic equation with frictional contact
Following Moreau [1988], adding contact forces r of the Signorini–
Coulomb frictional contact law to a linear dynamic equationMv = f
(explicit Euler in our case) yields a system of the form{

Mv = f + H⊺r
u = Hv, (u, r) ∈ 𝐶`

(1)

Similarly to Tasora et al. [2021], we use an ADMM solver with
Nesterov acceleration to solve the constrained dynamics up to a
tolerance Y𝐴 = 10−4. However, we split the system according to the
normal and tangential components of the contacts, yielding two sys-
tems to be solved alternatively until convergence [Panagiotopoulos
1975]. Doing so allows shock propagation to be introduced when
solving for the normal components.
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2.2 Incorporating shock propagation
Following Smith et al. [2012], we solve only for approaching con-
tacts. We also use their strategy to handle inelastic collapse. We
limit the number of shock propagation iterations by allowing each
contact to appear at most 𝑁𝑆𝑃

𝑚𝑎𝑥 = 50 times and solve one global
system gathering all the contacts at the end.

2.3 Additional implementation details
We merge the contacts of each contiguous contact area with 𝐾-
means clustering (𝐾 = 3). This technique increases the performance
of the resolution at the cost of a simplified contact surface. For the
termination, we end Alg. 1 in𝑁𝐺𝑆

𝑚𝑎𝑥 = 10 iterations, or stop early via
a physical-based error metric with Alart and Curnier [1991]’s func-
tion f𝐴𝐶 (u, r) ≤ Y𝐴𝐶 (= 10−2). We use only the tangential part of
f𝐴𝐶 , as the normal component is invalid due to shock propagation.

2.4 Contact law extension
We add adhesion by simply shifting the constraint on r𝑁 to allow
negative values. To incorporate velocity-dependent friction, such
as dynamic friction or lubricated contacts, we compute a correc-
tion term r𝑇 |𝐷 = 𝑚𝐷 (𝛾

u𝑇 (r𝑇 |𝑆 , r𝑇 |𝐷 )) using backward Euler.
The function𝑚𝐷 models the smoothed discrepancy w.r.t. the static
regime r𝑇 |𝐷 ≈ r𝑇 − r𝑇 |𝑆 and 𝛾 a user-specified falloff parameter.

3 RESULTS
We implemented our algorithm in C++ using OpenMP for simple
loop parallelization. All examples, depicted in the accompanying
video, are run on a desktop computer with an AMD Ryzen 7 5800X
8-core processor and 64 GB of RAM.

Our method robustly handles contacts, even in the presence of
large mass ratio between the elements, or a low number of ADMM
iterations. The average computation time for a timestep varies
between a few microseconds to ∼ 2.4𝑠 for our scenes composed of
hundreds of rigid bodies. Shock propagation adds visual realism and
reduces the number of persisting contacts but at the cost of a large
overhead. For instance, for the Wall, shock propagation reduces
the number of contacts by 33%, but the computation time increases
from 1.5𝑠 to 2.4𝑠 per timestep. The non-smooth static friction is
accurately captured, and our extension convincingly emulates the
effects of dynamic friction and lubricated contacts.

Similarly to other local-global methods, monitoring the error
metric described in Sec. 2.3 shows a fast decrease over the first
iterations before a slowdown. Our contact merging scheme helps
accelerate the convergence. Disabling it in the Chain for exam-
ple yields a simulation where the chain wiggles spontaneously,
requiring an increase in ADMM precision to Y𝐴 = 10−6.

4 LIMITATIONS
Our approach is based on the Delassus operator W = HM−1H⊺

which robustly couples the local problems to the dynamic equation.
However, this operator becomes denser with elastic bodies and
can become ill-conditioned when contacts outnumber degrees of
freedom. Ergo, methods to simplify this operator (e.g. [Otaduy
et al. 2009; Zeng et al. 2022]), and to preserve a good convergence
rate even when contact points are overabundant [Alart 2014] are
potential and interesting future works.
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