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1. Introduction

Let f ∈ Z[X] be an irreducible polynomial of degree k, without a fixed square divisor. 
We denote by Sf (N) the number of positive integers n � N such that f(n) is square-free. 
It is expected that

Sf (N) = cfN + o(N), (1.1)

as N → ∞, where

cf =
∏

p prime

(
1 − ρf (p2)

p2

)

and ρf (m) = #{n ∈ Z/mZ : f(n) ≡ 0 mod m}, for any positive integer m. When 
k � 3 this expectation follows from pioneering work of Hooley [16]. (In fact, when k = 3, 
Reuss [23] has produced an asymptotic formula for Sf (N) with a power saving error 
term.) However for polynomials of degree k � 4 we only have a conditional treatment 
under the abc-conjecture, thanks to work of Granville [14].

In this paper, for k � 4, we lend support to the expectation (1.1) by showing that 
it holds for almost all polynomials of degree k, when they are ordered by naive height. 
This sits in the framework of a great deal of recent work aimed at understanding the 
average size of various arithmetic functions over the values of random polynomials, with 
a focus on the von Mangoldt function Λ, the Liouville function λ and variants of the r-
function [1,3,6,12,26]. Questions about square-free values of polynomials are easier than 
the corresponding primality questions. On the other hand, we establish results with 
substantially less averaging than what is used in the best known result [6] for prime 
polynomial values.

For positive integers H and k � 2, let

Fk(H) = {a0 + · · · + akX
k ∈ Z[X] : (a0, a1, . . . , ak) ∈ Bk(H)},

where

Bk(H) =
{

(a0, . . . , ak) ∈ Zk+1 : gcd(a0, a1, . . . , ak) = 1
|a0|, |a1|, . . . , |ak| � H

}
.

For the problem of counting square-free values of polynomials, we are primarily interested 
in the largest allowable range of H, with respect to N , for which we can prove the 
existence of δ > 0 such that

1
#Fk(H)

∑
|Sf (N) − cfN | � N1−δ. (1.2)
f∈Fk(H)
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(See Section 2.1 for a precise definition of the symbol �.) A result of the form (1.2)
would confirm that (1.1) holds unconditionally, on average over the polynomials of naive 
height at most H.

Obviously, we would like to be able to take H as small as possible, with respect to N , 
in assessing the validity of (1.2).

First we recall that Filaseta [11] has shown that almost all polynomials assume at 
least one square-free value (in fact the result of [11] is slightly more general). However, 
here we are interested in more precise counting results.

Let A � 1 and let ε > 0. The second author has shown in [25, Theorem 1.1] that there 
exists δ > 0, depending only on ε such that (1.2) holds provided that

NA � H � Nk−1+ε,

and provided that we allow the implied constant to depend on A and ε. In this paper 
we revisit this argument using tools from the geometry of numbers and the determinant 
method, in order to increase the range of H, as follows.

Theorem 1.1. Let A � 1 and k � 4 be fixed. Assume that

NA � H � Nk−3+ε,

for ε > 0. Then there exists δ > 0, depending only on ε, such that (1.2) holds, with the 
implied constant depending only on A, k and ε.

This is our main result. In fact, in Theorem 4.1 we also a more general upper bound 
for the left hand side of (1.2), from which Theorem 1.1 follows. An alternative approach 
to this problem is available through modifying the proof of [6, Theorem 2.2] to treat the 
function

F (n) = μ2(n) −
∑
d2|n
d�D

μ(d),

for suitable D � 1. This has been carried out by Jelinek [18]. While this approach does 
not seem to offer an improvement over the range of H in Theorem 1.1, it does allow one 
to average over only two of the coefficients.

Inspired by recent work on Vinogradov’s mean value theorem we can also treat a 
related problem in which we only vary one coefficient. Let

g(X) = b1X + · · · + bkX
k ∈ Z[X]

be given and note that g(0) = 0. Then we may consider the set

Gg(H) = {a + g(X) ∈ Z[X] : a ∈ Ig(H)},
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where

Ig(H) = {a ∈ Z : gcd(a, b1, . . . , bk) = 1, |a| � H}.

While the approach of [25] also applies to polynomials from Gg(H), we supplement it with 
some new bounds for residues of polynomials falling in short intervals, which complement 
those of [2,8,9,13,19]. To formulate the result, we define

η(k) =
{

2−k+1, if 2 � k � 5,
1/(k(k − 1)), if k � 6,

(1.3)

with which notation we have following result.

Theorem 1.2. Let k � 2 be fixed and assume that

H � N (k−1)/2+η(k)+ε,

for ε > 0. Then, for a fixed polynomial g ∈ Z[X] of degree k, there exists δ > 0 depending 
only on ε such that

1
#Gg(H)

∑
f∈Gg(H)

|Sf (N) − cfN | � N1−δ,

with the implied constant depending only on A, k and ε.

In Theorem 4.2 we prove a more general version of this result, without making any 
assumptions about the relative sizes of H and N . We note that the range for H in 
Theorem 1.2 is significantly broader than in Theorem 1.1, which seems counterintuitive, 
since we have less averaging in Theorem 1.2. However, the problem stems from the fact 
that the values of polynomials f(n) with f ∈ Fk(H) and 1 � n � N could be of order 
HNk, while for f ∈ Gg(H) they are of much smaller order H + Nk, which has a strong 
effect on the set of moduli for which we have to sieve.

Acknowledgements. The authors are very grateful to the referee for helpful comments. 
This work started during a very enjoyable visit by the second author to IST Austria whose 
hospitality and support are very much appreciated. The first author was supported by 
FWF grant P 36278 and the second author by ARC grant DP230100534.
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2. Preliminaries

2.1. Notation and conventions

We adopt the Vinogradov notation �, that is,

C � D ⇐⇒ C = O(D) ⇐⇒ |C| � cD

for some constant c > 0 which is allowed to depend on the integer parameter k � 1 and 
the real parameters A, ε > 0. For a finite set S we use #S to denote its cardinality. We 
also write e(z) = exp(2πiz) and em(z) = e(z/m). In what follows we make frequent use 
of the bound

τ(r) � |r|o(1), for r ∈ Z, r 	= 0, (2.1)

for the divisor function τ , and its cousins, as explained in [17, Equation (1.81)], for 
example. Finally, as usual, μ(r) denotes the Möbius function.

2.2. Lattice points in boxes

We use some tools from the geometry of numbers, as explained in Cassels [7]. Let

Λ = {u1b1 + · · · + usbs : (u1, . . . , us) ∈ Zs}

be an s-dimensional lattice defined by s linearly independent vectors b1, . . . , bs ∈ Zs. 
We denote by λ1 � . . . � λs the successive minima of Λ, which for j = 1, . . . , d is defined 
to be

λj = inf{λ > 0 : λBs contains j linearly independent elements of Λ},

where λBs is the homothetic image of Bs of the unit ball Bs ⊆ Rs at the origin with 
the coefficient λ.

We also recall that the discriminant Δ of Λ is an invariant that is independent of the 
choice of basis for Λ. We have

Δ � λ1 . . . λs � Δ, (2.2)

where the implied constant only depends on s.
Next, we need the following consequence of the classical result of Schmidt [24, 

Lemma 2] on counting lattice points in boxes.

Lemma 2.1. Let λ1 be the smallest successive minimum of a full rank lattice Λ ⊆ Zs and 
let Δ be its discriminant. Then
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# (Λ ∩ [−H,H]s) � Hs

Δ +
(
H

λ1

)s−1

+ 1,

where the implied constant depends only on s.

Proof. By [24, Lemma 2], we have the following asymptotic formula

∣∣∣∣# (Λ ∩ [−H,H]s) − (2H + 1)s

Δ

∣∣∣∣ �
s−1∑
j=0

Hj

λ1 . . . λj
.

It follows that

# (Λ ∩ [−H,H]s) � Hs

Δ +
s−1∑
j=0

(
H

λ1

)j

,

which yields the result. �
2.3. Univariate polynomial congruences

For f ∈ Z[X], we define

ρf (m) = #{n ∈ Z/mZ : f(n) ≡ 0 mod m}. (2.3)

The associated discriminant Δf ∈ Z is a form of degree k(k − 1)/2 in the coefficients of 
f , if f has degree k.

To estimate ρf (m) we may use the following result, in which the content of f is the 
greatest common divisor of the coefficients of f .

Lemma 2.2. Let p be a prime and let k ∈ N. Let f ∈ Z[X] be a polynomial of degree k. 
Assume that Δf 	= 0 and f has content coprime to p. Then

ρf (pj) � kmin
{
pj(1−

1
k ), pj−1

}
.

Additionally, if p � Δf , then ρf (pk) � d.

Proof. The final statement of the lemma is a straightforward consequence of Lagrange’s 
theorem and Hensel’s lemma. For the remaining bounds, the first bound follows from 
work of Stewart [27, Corollary 2 and Equation (44)] and the second bound is a conse-
quence of Lagrange’s theorem. �

The next bound is an easy consequence of Lemma 2.2 and the Chinese remainder 
theorem.
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Corollary 2.3. Let f ∈ Z[X] be a polynomial of degree k with content 1. For any square-
free positive integer q we have

ρf (q2) � qo(1) gcd (Δf , q) .

Note that the bound of Lemma 2.3 also holds for Δf = 0. We also need to look at 
averages of ρf (m), for which we require the following useful result.

Lemma 2.4. Let f ∈ Z[X] be a polynomial of degree k with Δf 	= 0 and content 1. Then
∑

m�M

ρf (m) � M1+o(1),

uniformly over f .

Proof. Any m ∈ N admits a factorisation m = e1e
2
2 . . . e

k−1
k−1h where

μ2(e1 . . . ek−1) = gcd(e1 . . . ek−1, h) = 1

and h is k-full. Combining Lemma 2.2 with the Chinese remainder theorem, we deduce 
that

ρf (m) = ρf (e1)ρf (e2
2) · · · ρf (ek−1

k−1)ρf (h) � mo(1) · e2e
2
3 · · · ek−2

k−1h
1−1/k.

Hence we deduce that
∑

m�M

ρf (m) � Mo(1)
∑
h�M
h k-full

h1−1/k
∑

ek−1�M

ek−2
k−1 · · ·

∑
e2�M

e2 ·
M

e2
2 · · · ek−1

k−1h

� M1+o(1)
∑
h�M
h k-full

1
h1/k

∑
ek−1�M

1
ek−1

· · ·
∑

e2�M

1
e2

.

The sums over e2, . . . , ek−1 contribute O((logM)k−2). Moreover, the sum over h con-
tributes O(logM), since there are O(B1/k) k-full positive integers in the dyadic interval 
(B/2, B], for any B � 1 and the result follows. �
2.4. Polynomial values with a large square divisor

For a given polynomial f ∈ Z[X], we are interested in the size of

Qf (S,N) = #
{
(n, r, s) ∈ Z3 : 1 � n � N, 1 � s � S, f(n) = sr2} ,

for given N, S � 1. For a polynomial f ∈ Fk(H) with Δf 	= 0, this quantity has been 
estimated in [22, Theorem 1.3], with the outcome that
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Qf (S,N) � N1/2S3/4(HN)o(1).

The following result improves on this via the determinant method.

Lemma 2.5. Assume that f ∈ Fk(H) is not of the form f(X) = g2 for some g ∈ C[X]. 
Then

Qf (S,N) �
(
N1/2S1/2 + S

)
(HN)o(1).

Proof. Note that the bound is trivial if S > N and so we may proceed under the 
assumption that S � N . We fix a choice of s and begin by breaking into residue classes 
modulo s, giving

Qf (S,N) �
∑

0<s�S

s−1∑
ν=0

f(ν)≡0 mod s

N(s, ν),

where

N(s, ν) = #
{
(n, r) ∈ Z2 : 1 � n � N, n ≡ ν mod s, f(n) = sr2}

� #
{
(u, r) ∈ Z2 : u � N/s + 1, f(ν + su) = sr2} .

At this point we call upon work of Heath-Brown [15, Theorem 15]. Given ε > 0 and an 
absolutely irreducible polynomial F ∈ Z[u, v] of degree D, this shows that there are at 
most

(UV )o(1) exp
(

logU log V
log T

)
(2.4)

choices of (u, v) ∈ Z2 such that |u| � U , |v| � V and F (u, v) = 0. Here T is defined to be 
the maximum of Ue1V e2 , taken over all monomials ue1ve2 which appear in F (u, v) with 
non-zero coefficient. Moreover, this is uniform over all absolutely irreducible polynomials 
F of a given degree D.

Next, we show that

F (u, v) = f(ν + su) − sv2 (2.5)

is absolutely irreducible. Suppose for a contradiction that F = F1F2, for two polynomials 
F1, F2 ∈ C[u, v] of non-zero degree. Since v appears in F (u, v) only with a scalar factor, 
both F1 and F2 must depend on v. Clearly they have to take the shape

Fi(u, v) = fi(u) + siv, for i = 1, 2.
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Since F (u, v) has no linear term in v we have s2f1(u) = −s1f2(u), and hence the poly-
nomial f(ν + su) = f1(u)f2(u) is proportional to a perfect square. This is impossible 
under our assumption on f(u).

We now apply the bound (2.4) with U = N/s +1 and the polynomials F given by (2.5). 
In particular we may take T � V 2 and it follows that

Qf (S,N) � (NH)o(1)
∑

0<s�S

ρf (s)
(
N

s
+ 1

)1/2

,

where ρf (s) is defined in (2.3). We now appeal to Lemma 2.4, which we combine with 
partial summation, to obtain the desired upper bound after recalling that S � N . �
2.5. Exponential sums and discrepancy

Given a sequence ξn ∈ [0, 1) for n ∈ N, we denote by Δ(N) its discrepancy

Δ(N) = sup
α∈[0,1)

|#{n � N : ξn � α} − αN | .

As explained in [21, Theorem 2.5], for example, the celebrated Erdős-Turán inequality, 
allows us to give an upper bound on the discrepancy Δ(N) in terms of exponential sums.

Lemma 2.6. Let ξn, n ∈ N, be a sequence in [0, 1). Then for any integer L � 1, its 
discrepancy Δ(N) satisfies

Δ(N) � N

L
+

L∑
h=1

1
h

∣∣∣∣∣
N∑

n=1
e(hξn)

∣∣∣∣∣ .
We proceed by recalling some bounds of exponential sums with polynomial arguments. 

We make use of a bound which follows from the recent spectacular results of Bourgain, 
Demeter and Guth [5] (for k � 4) and Wooley [28,29] (for k = 3), towards the optimal 
form of the Vinogradov mean value theorem.

The current state-of-the-art bounds for Weyl sums has been conveniently summarised 
by Bourgain [4]. We need the following special case covered by [4, Theorems 4 and 5], 
for which we do not assume anything about the arithmetic structure of the modulus.

Lemma 2.7. For any fixed polynomial g ∈ Z[X] of degree k � 2 and any integers m, N � 1
we have ∣∣∣∣∣

N∑
n=1

em (hg(n))

∣∣∣∣∣ � N1+o(1)
(

gcd(h,m)
m

+ 1
N

+ m

gcd(h,m)Nk

)η(k)

,

where η(k) is given by (1.3).
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3. Solutions to families of polynomial congruences

3.1. Preliminaries

Let Uk(m, H, N) be the number of solution to the congruence

a0 + a1n + · · · + akn
k ≡ 0 (mod m),

in the variables

(a0, . . . , ak) ∈ Bk(H) and 1 � n � N.

Similarly, for given g ∈ Z[X], let Wg(m, H, N) be the number of solution to the congru-
ence

a + g(n) ≡ 0 (mod m),

in the variables

a ∈ Ig(H) and 1 � n � N.

It is observed in [25, Equation (3.2)] that we have the trivial upper bounds

Uk(m,H,N) � Hk(H/m + 1)N

and

Wg(m,H,N) � (H/m + 1)N. (3.1)

Our aim is to improve on these bounds in appropriate ranges of H and N .

3.2. Using exponential sum bounds and discrepancy

Our next result is based on treating the question of estimating Wg(m, H, N) as a 
question of unifomity of distribution and hence we use the tools from Section 2.5.

Lemma 3.1. Let g ∈ Z[T ] be of degree k � 2. For any positive integers H � m and N , 
we have

Wg(m,H,N) = HN

m
+ O

(
N

(
1
m

+ 1
N

+ m

Nk

)η(k)

(mN)o(1)
)

where η(k) is given by (1.3).
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Proof. We observe that Wg(m, H, N) is the number of fractional parts {g(n)/m} which 
fall in the interval [1 −H/m, 1]. Hence, on taking L = N in Lemma 2.6, we obtain

Wg(m,H,N) = HN

m
+ O(Δ), (3.2)

where

Δ � 1 +
N∑

h=1

1
h

∣∣∣∣∣
N∑

n=1
em

(
hg(n)
m

)∣∣∣∣∣ . (3.3)

Lemma 2.7 yields

N∑
h=1

1
h

∣∣∣∣∣
N∑

n=1
em

(
hg(n)
m

)∣∣∣∣∣
� N1+o(1)

N∑
h=1

1
h

(
gcd(h,m)

m
+ 1

N
+ m

gcd(h,m)Nk

)η(k)

� N1+o(1)
N∑

h=1

1
h

(
gcd(h,m)

m
+ 1

N
+ m

Nk

)η(k)

� N1+o(1)
N∑

h=1

gcd(h,m)η(k)

hmη(k) + N1+o(1)
(

1
N

+ m

Nk

)η(k) N∑
h=1

1
h

= N1+o(1)

mη(k)

N∑
h=1

gcd(h,m)η(k)

h
+ N1+o(1)

(
1
N

+ m

Nk

)η(k)

.

Furthermore,

N∑
h=1

gcd(h,m)η(k)

h
�

∑
r|m

rη(k)
N∑

h=1
gcd(h,m)=r

1
h
�

∑
r|m

rη(k)
∑

1�h�N/r

1
hr

� τ(m) logN.

Recalling (2.1), the lemma follows from (3.2) and (3.3). �
3.3. Using the geometry of numbers

We now use Lemma 2.1 to estimate Uk(q2, H, N) on average over square-free integers 
q in a dyadic interval.
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Lemma 3.2. For Q � 1, we have
∑
q∼Q

μ2(q)Uk(q2, H,N) � Z(NQ)o(1),

where

Z = Hk+1N

Q
+ NQ + HkQ + HkNQ2/(k+1).

Proof. For m, n ∈ N we define the lattice

Λm,n =
{
a ∈ Zk+1 : a · n ≡ 0 (mod m)

}
,

where n =
(
1, n, . . . , nk

)
∈ Nk+1 and a ·n is the scalar product. Note that Λm,n has full 

rank and let Δm,n be the discriminant. We claim that

Δm,n = m. (3.4)

To see this we note that mZk+1 ⊆ Λm,n ⊆ Zk+1. Hence, since the discriminant of Λm,n

is the index of Λm,n in Zk+1, we obtain

Δm,n = [Zk+1,Λm,n] = [Zk+1 : mZk+1]
[Λm,n : mZk+1] .

The numerator is mk+1 and denominator is the number of cosets of Λm,n modulo m. 
Since gcd(n, m) = gcd(1, n, . . . , nk, m) = 1, it follows that there are mk values of a
modulo m such that a · n ≡ 0 (mod m). The claim (3.4) is now clear.

By Lemma 2.1, we have

Uk(q2, H,N) �
∑

1�n�N

(
Hk+1

q2 + Hk

s(q2, n)k + 1
)

where s(q2, n) is the smallest successive minima of Λq2,n. Therefore,

Uk(q2, H,N) � Hk+1N

q2 + N + HkSk(q,N), (3.5)

where

Sk(q,N) =
∑

1�n�N

1
s(q2, n)k .

Since s(q2, n) is the smallest successive minimum of Λq2,n, it follows from (2.2)
and (3.4) that s(q2, n)k+1 � Δq2,n = q2, whence
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s(q2, n) � q2/(k+1).

We now define an integer I � logQ by the inequalities

2I−1 < Q2/(k+1) � 2I

and write

Sk(q,N) �
I∑

i=0

∑
1�n�N

s(q2,n)∼2i

1
s(q2, n)k �

I∑
i=0

2−ik
∑

1�n�N
s(q2,n)∼2i

1. (3.6)

Note that if s(q2, n) � t then there is a non-zero vector c ∈ Λq2,n such that ‖c‖2 � t. 
Therefore

∑
1�n�N

s(q2,n)∼2i

1 �
∑

c=(c0,...,ck)∈Zk+1

0<‖c‖2�2i

ρfc(q2, N), (3.7)

where

fc(X) = c0 + c1X + · · · + ckX
k

and

ρf (m,N) = #{n ∈ [1, N ] : f(n) ≡ 0 mod m}. (3.8)

Using (3.6) and then changing the order of summation in (3.7), we obtain

∑
q∼Q

μ2(q)Sk(q,N) �
I∑

i=0
2−ikR

(
Q,N, 2i

)
, (3.9)

where

R(Q,N, t) =
∑

c∈Zk+1

0<‖c‖2�t

∑
q∼Q

μ2(q)ρfc(q2, N).

But clearly

R(Q,N, t) �
∑

c∈Zk+1

0<‖c‖2�t

∑
q�Q

∑
n�N

q2|fc(n)

1

�
∑
n�N

∑
c∈Zk+1

‖c‖2�t

#
{
q � Q : q2 | fc(n)

}
.
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If fc(n) = 0 then there are Q choices for q. Let c be a non-zero vector such that fc has 
a root over Z. Then fc must be reducible over Z. There are at most tk+o(1) choices of 
non-zero vectors c for which fc is reducible over Z, on appealing to work of Kuba [20]. 
(See also [10] and the references therein.) Moreover, each such vector c yields at most k
choices for n. If fc(n) 	= 0, on the other hand, then we have at most (tN)o(1) choices for 
q by the divisor bound (2.1). Hence we arrive at the bound

R(Q,N, t) �
(
Qtk + Ntk+1) (Nt)o(1).

On returning to (3.9), we therefore obtain

∑
q∼Q

μ2(q)Sk(q,N) �
I∑

i=0

(
Q + N2i

)
(2iQ)o(1)

�
(
Q + NQ2/(k+1)

)
Qo(1).

We substitute this into (3.5) and sum over q. This yields

∑
q∼Q

μ2(q)Uk(q2, H,N) � Hk+1N

Q
+ NQ +

(
Q + NQ2/(k+1)

)
Hk(NQ)o(1),

and the result now follows. �
4. Proofs of main results

4.1. Proof of Theorem 1.1

Fix a choice of A � 1. We proceed under the assumption that N1/k � H � NA, 
and allow all of our implied constants to depend on A. There are O(Hk+o(1)) choices of 
polynomials f ∈ Fk(H) for which f fails to be irreducible, the latter bound following 
from work of Kuba [20], as in the proof of Lemma 3.2. The overall contribution from such 
f is therefore O(Hk+o(1)N). We may henceforth restrict to the set F∗

k (H) of irreducible 
polynomials f ∈ Fk(H).

Our argument proceeds along standard lines, beginning with an application of Möbius 
inversion to interpret

μ2(n) =
∑
d2|n

μ(d)

as a sum over divisors. This leads to the expression

Sf (H) =
∑
√

μ(d)ρf (d2, N),

d� HNk
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where ρf (m, N) is given by (3.8). Hence, for arbitrary E � D � 1, we have

Sf (N) = Mf (N) + O(R(1)
f (N)) + O(R(2)

f (N)),

where

Mf (N) =
∑
d�D

μ(d)ρf (d2, N)

and

R
(1)
f (N) =

∑
D<d�E

μ2(d)ρf (d2, N), R
(2)
f (N) =

∑
E<d�

√
HNk

μ2(d)ρf (d2, N).

To begin with, it is shown in [25, Equation (4.8)] that

Mf (N) = cfN + O
(
DHo(1) + ND−1Ho(1)

)
, (4.1)

where the implied constant in this estimate depends only on k.
Next, on recalling the notation Qf (S, N) that has been defined in Section 2.4, we may 

write

R
(2)
f (N) � Qf (S,N) + Q−f (S,N),

for some S � HNk/E2. Thus, Lemma 2.5 implies that

R
(2)
f (N) �

(
N1/2

(
HNk

E2

)1/2

+ HNk

E2

)
(HN)o(1). (4.2)

Turning to the remaining error term R(1)
f (N), we are only able to estimate it well 

on average over f ∈ F∗
k (H). Recall the definition of Uk(d2, H, N) from Section 3.1. On 

changing the order of summation, we obtain
∑

f∈F∗
k (H)

R
(1)
f (N) �

∑
D<d�E

μ2(d)Uk(d2, H,N).

To estimate the right hand side, we use Lemma 3.2. After splitting the summation range 
in dyadic intervals, we derive

∑
f∈F∗

k (H)

R
(1)
f (N) �

(
Hk+1N

D
+ NE + HkE + HkNE2/(k+1)

)
Ho(1).

Since we are assuming N � Hk, we may drop the second term in this estimate. Hence
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∑
f∈F∗

k (H)

R
(1)
f (N) �

(
Hk+1N

D
+ HkE + HkNE2/(k+1)

)
Ho(1). (4.3)

On accounting for the O(Hk+o(1)) choices of f ∈ Fk(H) \ F∗
k (H), it therefore follows 

from (4.1)–(4.3) that
∑

f∈Fk(H)

|Sf (N) − cfN | � Hk+o(1)N +
(
D + ND−1)Hk+1+o(1)

+
(
N1/2

(
HNk

E2

)1/2

+ HNk

E2

)
Hk+1+o(1)

+
(
Hk+1N

D
+ HkE + HkNE2/(k+1)

)
Ho(1).

Hence, on noting that #Fk(H)  Hk+1, it follows that

1
#Fk(H)

∑
f∈Fk(H)

|Sf (N) − cfN | � ΔHo(1),

where

Δ = D + N

D
+ E

H
+ NE2/(k+1)

H
+ H1/2N (k+1)/2

E
+ HNk

E2 .

We take D = N1/2, leading to

1
#Fk(H)

∑
f∈Fk(H)

|Sf (N) − cfN | � Δ0H
o(1),

where

Δ0 = inf√
N�E�

√
HNk

Δ0(E)

and

Δ0(E) = N1/2 + E

H
+ NE2/(k+1)

H
+ H1/2N (k+1)/2

E
+ HNk

E2 .

We expect the dominant contribution to come from the second and fourth terms and so 
we choose

E = min
{
H3/4N (k+1)/4,

√
HNk

}
,

in order to minimise their contribution. Note that E �
√
N with this choice. This 

therefore leads to the bound



236 T.D. Browning, I.E. Shparlinski / Journal of Number Theory 261 (2024) 220–240
Δ0 � N1/2 + N (k+1)/4

H1/4 + N3/2

H1−3/(2k+2) + N (k−1)/2

H1/2 ,

which thereby concludes the proof of the following result.

Theorem 4.1. Let A � 1 and k � 2 be fixed and assume that H, N → ∞ in such a way 
that N1/k � H � NA. Then we have

1
#Fk(H)

∑
f∈Fk(H)

|Sf (N) − cfN |

�
(
N1/2 + N (k+1)/4

H1/4 + N3/2

H1−3/(2k+2) + N (k−1)/2

H1/2

)
Ho(1).

To deduce Theorem 1.1 we assume that k � 4 and proceed to assess when each of 
the terms is O(N1−δ) for some δ > 0. The first term is obviously satisfactory. One sees 
that the second term and fourth terms are satisfactory if H � Nk−3+ε for some ε > 0. 
Finally, the third term is only satisfactory if H � N1/2+3/(4k−2)+ε, but this is implied 
by the latter condition. This completes the proof of Theorem 1.1.

4.2. Proof of Theorem 1.2

The aim of this section is to estimate the quantity

Σ =
∑

f∈Gg(H)

|Sf (N) − cfN | .

It is convenient to define

M = max{H,Nk},

so that f(n) = a + g(n) = O(M) if f ∈ Gg(H) and 1 � n � N . Mimicking the previous 
argument and using (4.1), we obtain

Σ � DH1+o(1) + NH1+o(1)

D
+

∑
D<d�c

√
M

Wg(d2, H,N), (4.4)

where c > 0 is a constant depending only on the polynomial g and Wg(d2, H, N) is 
defined in Section 3.1.

Suppose first that H � Nk. Then we simply apply (3.1) and get

Σ � DH1+o(1) + NH1+o(1)

D
+

∑
D<d�c

√
H

(H/d2 + 1)N

�
(
DH + HN

D
+ H1/2N

)
Ho(1).
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Taking D = N1/2, we derive

Σ �
(
HN1/2 + H1/2N

)
Ho(1) � H1+o(1)N1/2, (4.5)

if H � Nk.
We may henceforth assume that H � Nk and thus M = Nk. We now choose D = N1/2

and two more parameters F and E with F � E � N1/2. Then we may write
∑

N1/2<d�c
√
M

Wg(d2, H,N) = W1 + W2 + W3 (4.6)

where

W1 =
∑

N1/2<d�E

Wk(d2, H,N),

W2 =
∑

E<d�F

Wk(d2, H,N),

W3 =
∑

F<d�cNk/2

Wk(d2, H,N).

To begin with, we appeal to (3.1) to estimate

W1 �
∑

N1/2<d�E

(H/d2 + 1)N � HN1/2 + EN. (4.7)

It is convenient to choose E = max{H1/2, N1/2}, so that

W1 � HN1/2 + H1/2N. (4.8)

Indeed, for H � N we have E = N1/2 and thus W1 = 0, while for H > N we have 
E = H1/2 and (4.8) follows from (4.7).

Therefore, combining (4.4), (4.6) and (4.8), we obtain

Σ � H1+o(1)N1/2 + H1/2N + W2 + W3. (4.9)

It remains to estimate W2 and W3.
To estimate W2 we appeal to Lemma 3.1 to derive

W2 �
∑

E<d�F

(
HN

d2 + N1+o(1)
(

1
d2 + 1

N
+ d2

Nk

)η(k))
,

where η(k) is given by (1.3). Therefore, noticing that we have

1
<

1

d2 N
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for d > E � N1/2, we obtain

W2 � HN/E + FN1−η(k)+o(1) + F 1+2η(k)N1−kη(k)+o(1)

� HN1/2 + FN1−η(k)+o(1) + F 1+2η(k)N1−kη(k)+o(1).
(4.10)

Finally, as in the proof of Theorem 4.1, we treat W3 via Lemma 2.5. Recalling our 
assumption H � Nk and observing that there are O(1) choices of f ∈ Gg(H) that fail to 
be irreducible, we derive

W3 �
(
N + HN1/2 (Nk/F 2)1/2 + HNk/F 2

)
No(1)

�
(
N + HN (k+1)/2/F + HNk/F 2

)
No(1).

(4.11)

We now observe that if N (k+1)/2/F � N , which is equivalent to F � N (k−1)/2, then the 
bound becomes trivial. Thus we always assume that

F � N (k−1)/2,

in which case we see that the third term in (4.11) is dominated by the second term.
Substituting the bounds (4.10) and (4.11) in (4.9), we are led to the upper bound

Σ �
(
HN1/2 + H1/2N + FN1−η(k) + F 1+2η(k)N1−kη(k) + HN (k+1)/2/F

)
Ho(1).

Since F � N (k−1)/2, we see that FN1−η(k) � F 1+2η(k)N1−kη(k) and so

Σ �
(
HN1/2 + H1/2N + F 1+2η(k)N1−kη(k) + HN (k+1)/2/F

)
Ho(1). (4.12)

To optimise (4.12), we choose

F = max
{(

HN (k−1)/2+kη(k)
)1/(2+2η(k))

, N (k−1)/2
}

for which

F 1+2η(k)N1−kη(k) = HN (k+1)/2/F

= H1− 1
2+2η(k)N (k+3)/4− (k+1)η(k)

4+4η(k) .

After substitution in (4.12), this completes our treatment of the case H � Nk. Taken 
together with (4.5), and observing that #Gg(H)  H, this therefore concludes the proof 
of the following theorem.
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Theorem 4.2. For a fixed polynomial g ∈ Z[X] of degree k � 2, we have

1
#Gg(H)

∑
f∈Gg(H)

|Sf (N) − cfN |

�
(
N1/2 + N

H1/2 + N (k+1)/2−η(k)

H
+ N (k+3)/4− (k+1)η(k)

4+4η(k)

H
1

2+2η(k)

)
Ho(1),

where η(k) is given by (1.3).

Finally, to deduce Theorem 1.2 we need to discover when each of the terms is O(N1−δ)
for some δ > 0. The first term is obviously satisfactory. One sees that the second term 
is satisfactory if H � Nε for any ε > 0. Finally, the fourth term is only satisfactory if 
H � N (k−1)/2+η(k)+ε, under which assumption the third term is also satisfactory. This 
therefore completes the proof of Theorem 1.2.
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