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Abstract
We consider a gas of N weakly interacting bosons in the ground state. Such gases exhibit
Bose–Einstein condensation. The binding energy is defined as the energy it takes to remove
one particle from the gas. In this article, we prove an asymptotic expansion for the binding
energy, and compute the first orders explicitly for the homogeneous gas. Our result addresses
in particular a conjecture by Nam (Lett Math Phys 108(1):141–159, 2018), and provides an
asymptotic expansion of the ionization energy of bosonic atoms.
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1 Introduction andMain Results

We consider the N -particle Hamiltonian

H(N , w) =
N∑

i=1

Ti +
∑

1≤i< j≤N

w(xi − x j ), (1)

with Ti = −�i + V ext(xi ) and V ext, w : Rd → R, as an operator on the bosonic Hilbert
space

HN
sym = (L2(�)

)⊗s N , (2)

with⊗s the symmetric tensor product.We let the dimension d ≥ 1 and distinguish two cases:

• � = R
d , with V ext(x) → ∞ as |x | → ∞. In this case we call the system the trapped

Bose gas.
• � = T

d , the unit torus. In this case we set V ext = 0 and call the system the homogeneous
Bose gas.

We are interested in the mean-field limit, i.e., an interaction

w = λNv, with λN := (N − 1)−1, (3)

and v : Rd → R. The spectral properties of (1) in the mean-field limit have been extensively
studied; let us refer to [15] for a more general review of the mean-field and more singular
models. The leading order of the energy is described by the Hartree energy functional (9).
More recently, the next-to leading order of the low-lying eigenvalues and the corresponding
eigenfunctions has been understood rigorously in terms of Bogoliubov theory, see [11–13,
16, 19] for recent results, and [4] for Bogoliubov’s original paper. The eigenfunctions in
Bogoliubov theory are described in terms of quasi-free states (and the ground state is exactly
a quasi-free state). This allows in particular a perturbative expansion around Bogoliubov
theory with coefficients that can be explicitly computed, see [9]. In this article we explore the
consequences of this perturbative expansion in more detail by proving an expansion not just
for the energy of an N -body system, but for the binding energy. If the many-body system is
an atom, this quantity is known as the ionization energy.

Let us denote the ground state energy, i.e., the lowest eigenvalue of H(N , w), by E(N , w).
The binding energy is the energy necessary to remove one particle from the ground state,
i.e., it is defined as

�E(N , λNv) := E(N , λNv) − E(N − 1, λNv). (4)

Here, we assume that the Bose gases of N and N − 1 particles have the same coupling
constant λN . In [18], it was proven by Nam that for the homogeneous Bose gas

�E(N , λv) = λ(N − 1)̂v(0) + 1

N

(
eB −

∑

p∈(2πZ)d

p �=0

p2α2
p

1 − α2
p

+ o(1)

)
(5)

in the limit N → ∞ and λN → 1, where

αp := v̂(p)

p2 + v̂(p) +√p4 + 2p2v̂(p)
, eB := −1

2

∑

p∈(2πZ)d

p �=0

αp v̂(p), (6)
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and v̂(p) := ∫
v(x)e−i px dx for all p ∈ (2πZ)d denotes the Fourier transform of v. The

result holds for even and bounded v with nonnegative Fourier transform. We improve this
result in two directions:

• We prove an asymptotic expansion of �E(N , λNv) in powers of λN .
• We prove this expansion for both the homogeneous and the trapped Bose gas.

Note that Nam mentioned an extension of (5) to trapped bosons as an open problem and set
up a conjecture about this generalization, see [18, Conjecture 6]. We address this problem in
particular with Theorem 4 and elaborate on the conjecture in Remark 5 and Sect. 3.1.

The proof of an asymptotic expansion of the binding energy has become possible through
thework [9], where asymptotic expansions for the ground state, low energy excited states, and
their corresponding energies have been proven. Our article is an application of that expansion
for the ground state energy. Note that the work [9] was in turn inspired by an analogous result
for the dynamics [8]; see also the follow-up work [10]. Let us refer to [5] and [6] for reviews
of both results, and note that in [7] the results from [9] are applied to derive an Edgeworth
expansion for the fluctuations of bounded one-body operators with respect to the ground state
and low-energy excited states of the weakly interacting Bose gas.

In order to state our main results we need a few technical assumptions. These are the same
assumptions that were made for proving the asymptotic expansion of the ground state and
the ground state energy in [9]. We briefly list and explain these assumptions here and refer
to [9, Sect. 2.1] for more details.

Assumption 1 Let V ext : Rd → R be measurable, locally bounded and non-negative and let
V ext(x) tend to infinity as |x | → ∞, i.e.,

inf|x |>R
V ext(x) → ∞ as R → ∞. (7)

This assumption implies in particular that V ext is confining.

Assumption 2 Let v : Rd → R be measurable with v(−x) = v(x) and v �≡ 0, and assume
that there exists a constant C > 0 such that, in the sense of operators onQ(−�) = H1(Rd),

|v|2 ≤ C (1 − �) . (8)

Besides, assume that v is of positive type, i.e., that it has a non-negative Fourier transform.

Together, Assumptions 1 and 2 imply self-adjointness of H(N , λv) for any λ ∈ R (by
Kato–Rellich). Let us recall that it has been proven in many settings that weakly interacting
bosons exhibit Bose–Einstein condensation, which means a macroscopic occupation of the
one-particle state ϕ ∈ L2(�). In our setting the condensate wave function ϕ is the minimizer
of the Hartree energy functional

EH[φ] :=
∫ (

|∇φ(x)|2 + V ext(x)|φ(x)|2
)
dx + 1

2

∫
v(x − y)|φ(x)|2|φ(y)|2 dx dy. (9)

The corresponding Hartree energy is eH := infφ∈H1(�),‖φ‖=1 EH[φ] = EH[ϕ]. Assumptions
1 and 2 imply all necessary properties of the Hartree minimizer ϕ, in particular its existence
and uniqueness, and the existence of a spectral gap above the ground state of the one-body
Hartree operator h = T + v ∗ |ϕ|2.
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Assumption 3 Assume that there exist constants C1 ≥ 0 and 0 < C2 ≤ 1, as well as a
function ε : N → R

+
0 with

lim
N→∞ N− 1

3 ε(N ) ≤ C1,

such that

H(N , λNv) − NeH ≥ C2

N∑

j=1

h j − ε(N ) (10)

in the sense of operators on D(H(N , λNv)).

Assumptions 2 and 3 hold in particular for any bounded even v with nonnegative Fourier
transform [11], and for the three-dimensional repulsive Coulomb potential v(x) = |x |−1

[13]. Assumption 3 ensures complete Bose–Einstein condensation of the N -body state in the
Hartree minimizer ϕ with a sufficiently good rate. With these assumptions we can state our
main results.

Theorem 4 Consider the trapped Bose gas, i.e., the Hamiltonian

H(N , λNv) =
N∑

i=1

(− �i + V ext(xi )
)+ λN

∑

1≤i< j≤N

v(xi − x j ), (11)

and let Assumptions 1, 2, and 3 hold. Then, for any a ∈ N, the binding energy as defined in
(4) has an expansion

�E(N , λNv) =
a∑

j=0

λ
j
N E

binding
j + O(λa+1

N ). (12)

We have

Ebinding
0 = eH + 1

2
〈ϕ,
(
v ∗ |ϕ|2)ϕ〉 = 〈ϕ,

(− � + V ext + v ∗ |ϕ|2)ϕ〉, (13)

and the coefficients Ebinding
j for j ≥ 1 are stated in Proposition 10.

Proof The theorem follows from the corresponding expansions for E(N , λNv) and E(N −
1, λNv) in Proposition 10. ��

Remark 5 Let us compare this result with [18, Conjecture 6]. Note that here we have adapted
the conjecture to our notation.

Conjecture ([18, Conjecture 6]) Under appropriate conditions on T and v,

E(N , λv) − E(N − 1, λv) = A + CN−1 + o(N−1) (14)

as N → ∞ and λN → 1, with coefficients A and C as given in [18, Sect. 5] (or see Sect.3.1).

In particular, A = Ebinding
0 . However, the conjectured coefficient C is in general not equal to

Ebinding
1 , except for the homogeneous Bose gas. We elaborate on this in Sect. 3.1.
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Remark 6 Note that Theorem 4 also applies to bosonic atoms, where the binding energy is
referred to as ionization energy [1]. An atom with N spinless “bosonic electrons” and Z
nuclei is described by the Hamiltonian

H atom
N ,Z =

N∑

i=1

(
− �i − Z

|xi |
)

+
∑

1≤i< j≤N

1

|xi − x j | , (15)

acting on HN
sym. Rescaling the coordinates xi → λN xi and setting t = (N − 1)/Z leads to

λ2N H atom
N ,t =

N∑

i=1

(
− �i − 1

t |xi |
)

+ λN

∑

1≤i< j≤N

1

|xi − x j | . (16)

We consider the limit where N → ∞ with t fixed. It is known [14] that there is a critical
tc ∈ (1, 2) such that for t ≤ tc, the quantum problem and the corresponding Hartree energy
functional have unique ground states. That the first-order contribution of the ground state
energy is given by inf σ(HN ,t ) = NeH (t) + o(N ) as N → ∞, where eH (t) is the infimum
of the corresponding Hartree energy functional, was proved by Benguria and Lieb [2]. Bach
[1] showed that the first-order contribution to the ionization energy can be described as well
in terms of the Hartree energy. In [13, 17], it was then shown that the low-energy eigenvalues
of HN ,t below the essential spectrum are determined by Bogoliubov theory. As explained in
[9, Remark 3.6] the bosonic atom meets all the required criteria for an asymptotic expansion
of the low-energy eigenvalues in inverse powers of λN , similarly as in the case of confined
bosons. Since the proof of Theorem 4 is entirely based on the asymptotic expansion of the
low-energy eigenvalues, it also applies to the Hamiltonian (16) for bosonic atoms, and thus
provides an asymptotic expansion for the ionization energy.

Remark 7 Just as the results of [9], Theorem 4 holds under more general assumptions than
Assumptions 1, 2, and 3. These are the assumptions (A1) and (A2) in [13], our Assumption 3
(which is slightly stronger than (A3s) from [13]), and Inequality (8). We refer to [9, Remark
3.6] for more details. These more general assumptions can be satisfied for interactions v that
are not of positive type, for example, the two-dimensional Coulomb gas discussed in [13,
Sec. 3.2], where v(x) = − log |x |.

For the homogeneous case, Ebinding
0 = v̂(0) can be concluded from [19], and

Ebinding
1 = eB −

∑

p∈(2πZ)d p �=0

p2α2
p

1 − α2
p

= −
∑

p∈(2πZ)d p �=0

v̂(p)
αp

1 + αp
(17)

is already known from [18]. We compute here the next coefficient Ebinding
2 . In the following

theorem all summations are over the lattice (2πZ)d .

Theorem 8 For the homogeneous Bose gas the expansion (12) from Theorem 4 is true under
Assumption 2 with R

d replaced by T
d and Assumption 3. The second-order coefficient is

given by

Ebinding
2 =

∑

k �=0

k2γkσk
ε(k)

(
k2γkσk − f (k)

)
+ 6

∑

k,��=0
k+��=0

(
(k + �)2g2(k, �)

ε(k) + ε(�) + ε(k + �)

)
×

(
2σk+�γk+�g1(k, �)

ε(k + �)
− 3

(
σ 2
k+� + γ 2

k+�

)
g2(k, �)

ε(k) + ε(�) + ε(k + �)

)
,

(18)
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with

ε(p) :=
√
p4 + 2p2v̂(p), αp := v̂(p)

p2 + v̂(p) +√p4 + 2p2v̂(p)
,

σp := 1√
1 − α2

p

, γp := αpσp, (19)

and

f (k) := −
∑

��=0
��=k

v̂(k − �)γ�

(
σ 2
k σ� + 2σkγ�γk + σ�γ

2
k

)
− v̂(k)(σk − γk)

2
∑

��=0

γ 2
�

− 2σkγk
∑

��=0

v̂(�)γ�(σ� − γ�) + 2v̂(k)γk(σk − γk)
3 + 1

2
v̂(k)

(
σ 2
k + γ 2

k

)
,

(20a)

g1(k, �) := 1

2

[
v̂(k)

(
σk+�σ� + γk+�γ�

)(
σk − γk

)+ v̂(�)
(
σk+�σk + γk+�γk

)(
σ� − γ�

)

− v̂(k + �)
(
σ�γk + σkγ�

)(
σk+� − γk+�

)]
,

(20b)

g2(k, �) := −1

6

[
v̂(k)

(
γk+�σ� + σk+�γ�

)(
σk − γk

)+ v̂(�)
(
γk+�σk + σk+�γk

)(
σ� − γ�

)

+ v̂(k + �)
(
σ�γk + σkγ�

)(
σk+� − γk+�

)]
.

(20c)

Proof The quantity Ebinding
2 on the torus is computed in Sect. 3.2. ��

Note that our analysis can be extended to excited states in a similar way but we do not
pursue this here. An interesting open problemwould be to prove an expression for the binding
energy in the more singular Gross–Pitaevskii regime (see, e.g., [3] and [15]), where in three
dimensions w(x) = N 2v(Nx) for suitable N -independent v.

Remark 9 Note in particular that Ebinding
0 ≥ 0 and Ebinding

1 ≤ 0. The sign of Ebinding
2 is

not in general evident. However, for an interaction v̂(k) := v̂
( k



)
with  > 0 large a

straightforward computation yields the scaling behavior

Ebinding
2 () =

∑

k �=0

k2γk()σk()

εk()

∑

��=0
��=k

v̂
(k − �



)
γ�()σk()2σ�()

︸ ︷︷ ︸
=O(2)

+ O(), (21)

and thus we can conclude that Ebinding
2 () ≥ 0 for  large enough.

The rest of the article is organized as follows. In Sect. 2, we prove Proposition 10 which
immediately implies the proof of Theorem 4.More concretely, in Sect. 2.1, we first conjugate
H(N − 1, λNv) with a unitary map, which allows us to express the Hamiltonian in terms of
excitations around the condensate. This conjugated Hamiltonian can then be expanded in a
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power series inλ
1/2
N . Then, in Sect. 2.2,weprove the corresponding expansion of E(N−1, λv)

in Proposition 10. In Sect. 3, we compute Ebinding
1 in order to compare our result in detail with

[18]. Finally, in Sect. 3.2, we compute Ebinding
1 and Ebinding

2 explicitly for the homogeneous
Bose gas, i.e., we prove Theorem 8.

2 Proof of the Expansion

2.1 The Hamiltonians on the Excitation Fock Space

We fix ϕ to be the solution to the Hartree equation
(
T + v ∗ |ϕ|2 − 〈ϕ, (T + v ∗ |ϕ|2)ϕ〉

)
ϕ = 0, (22)

i.e., ϕ is the minimizer of the Hartree functional (9). Let us define

h(w) := T + w ∗ |ϕ|2 − μ(w), with μ(w) := 〈ϕ, (T + w ∗ |ϕ|2)ϕ〉, (23)

and eH(w) := 〈ϕ,
(
T + 1

2w ∗ |ϕ|2)ϕ〉. With this notation ϕ is the solution of h(v)ϕ = 0. The
N -body Hamiltonian (1) with interaction w can be rewritten as

H(N , w) = NeH
(
(N − 1)w

)+
N∑

j=1

h j
(
(N − 1)w

)+ 1

N − 1

∑

1≤i< j≤N

Wi j
(
(N − 1)w

)
,

(24)

where we defined

Wi j (w) := W (w)(xi , x j )

:= w(xi − x j ) − (w ∗ |ϕ|2)(xi ) − (w ∗ |ϕ|2)(x j ) + 〈ϕ,w ∗ |ϕ|2ϕ〉. (25)

With these definitions, the N -body Hamiltonian with interaction w = λNv = (N − 1)−1v

is

H(N ) := H(N , λNv) = NeH(v) +
N∑

j=1

h j (v) + 1

N − 1

∑

1≤i< j≤N

Wi j (v), (26)

and the (N − 1)-body Hamiltonian with the same coupling constant λN is

H̃(N − 1) := H(N − 1, λNv)

= (N − 1)eH(v − λNv) +
N−1∑

j=1

h j (v − λNv) + 1

N − 2

∑

1≤i< j≤N−1

Wi j (v − λNv),

(27)

where we used (N − 2)λNv = v − λNv. In order to prove Theorem 4 we derive asymptotic
expansions for the ground state energies of H(N ) and H̃(N − 1) separately and then use the
definition (4) of the binding energy.1 The expansion for H(N )was already proven in [9]. The

1 The advantage of this method is that the leading order in the expansions of the ground states of H(N )

and H̃(N − 1) is the same, and, up to a known unitary transformation, independent of N (it is given by
Bogoliubov theory, as explained around Eqs. (43) and (50)). This allows for a simple computation of all the
following orders. Alternatively, one may consider treating H̃(N − 1) as a perturbation of H(N ). However,
in this approach, the ground state of the unperturbed system will depend on N , making computations of the
following higher orders more difficult.
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adaption to H̃(N −1) requires some modifications since H̃(N −1) is not equal to H(N −1)
due to the fact that we keep the same coupling constant λN for both the Hamiltonians H(N )

and H̃(N − 1). In the rest of this section we explain the necessary modifications. With
these modifications, we then prove in Sect. 2.2 the expansion of the ground state energy of
H̃(N − 1).

For f , g ∈ L2(�), we introduce the usual creation and annihilation operators a∗( f ) and
a( f ), which satisfy the CCR [a( f ), a(g)] = 0 = [a∗( f ), a∗(g)], [a( f ), a∗(g)] = 〈 f , g〉.
For ease of notation we will often use the operator-valued distributions a∗

x and ax . Denoting
by f (x) the complex conjugate of f (x), these are defined by

a∗( f ) =
∫

dx f (x)a∗
x , a( f ) =

∫
dx f (x)ax . (28)

They satisfy the CCR [ax , ay] = 0 = [a∗
x , a

∗
y ] and [ax , a∗

y ] = δ(x− y). We define the second
quantization of a one-body operator A on L2(�) with integral kernel A(x, y) as

d�(A) =
∫

dx dy a∗
x A(x, y)ay . (29)

In particular, the excitation number operator is given by

N⊥ := d�(q), (30)

where q := 1 − p with p := |ϕ〉〈ϕ|.
Next, we perform a version of Bogoliubov’s c-number substitution [4] as it was introduced

in [13]. For this, we define a unitary map

UN ,ϕ : HN
sym → F≤N

⊥ :=
N⊕

k=0

k⊗

sym

{ϕ}⊥, � �→
N∑

j=0

q⊕ j
(

a(ϕ)N− j

√
(N − j)!�

)
. (31)

We callUN ,ϕ the excitation map and F≤N
⊥ the truncated excitation Fock space. Furthermore

F⊥ := ⊕∞
k=0
⊗k

sym{ϕ}⊥ denotes the excitation Fock space without truncation. Note that
every wave function � can be decomposed as

� =
N∑

k=0

ϕ⊗(N−k) ⊗s χ(k), with χ(k) ∈
k⊗

sym

{ϕ}⊥, (32)

and thatUN ,ϕ� = (χ(0), χ(1), . . . , χ(N )
)
. For general interactions w, we find by an explicit

computation, similar as in [9, 13] that

UN ,ϕ H(N , w)U∗
N ,ϕ = NeH

(
(N − 1)w

)+ H
exc(N , w) + H

extra(N , w), (33)

with

H
exc(N , w) = K0

(
(N − 1)w

)+ N − N⊥
N − 1

K1
(
(N − 1)w

)

+
(
K2
(
(N − 1)w

)√(N − N⊥)(N − N⊥ − 1)

N − 1
+ h.c.

)

+
(
K3
(
(N − 1)w

)√N − N⊥
N − 1

+ h.c.

)
+ 1

N − 1
K4
(
(N − 1)w

)
,

(34)

where h.c. denotes the Hermitian conjugate of the preceding term, and

H
extra(N , w) = √N − N⊥a

(
qh
(
(N − 1)w

)
ϕ
)+ h.c.. (35)
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Here, we have defined

K0(w) := d�(qh(w)q), (36a)

K1(w) := d�(K1(w)), (36b)

K2(w) := 1

2

∫
dx1 dx2 K2(w)(x1; x2)a∗

x1a
∗
x2 , (36c)

K3(w) :=
∫

dx1 dx2 dx3 K3(w)(x1, x2; x3)a∗
x1a

∗
x2ax3 , (36d)

K4(w) := 1

2

∫
dx1 dx2 dx3 dx4 K4(w)(x1, x2; x3, x4)a∗

x1a
∗
x2ax3ax4 , (36e)

with, setting K (w)(x, y) := ϕ(y)w(x − y)ϕ(x),

K1(w)(x1; x2) :=
∫

dy1 dy2 q(x1, y1)K (w)(y1, y2)q(y2, x2), (37a)

K2(w)(x1; x2) :=
∫

dy1 dy2 q(x1, y1)q(x2, y2)K (w)(y1, y2), (37b)

K3(w)(x1, x2; x3) :=
∫

dy1 dy2 q(x1, y1)q(x2, y2)W (w)(y1, y2)ϕ(y1)q(y2, x3),

(37c)

K4(w)(x1, x2; x3, x4) :=
∫

dy1 dy2 q(x1, y1)q(x2, y2)W (w)(y1, y2)q(y1, x3)q(y2, x4),

(37d)

where q(x, y) is the integral kernel of q and W was defined in (25).
We now map the Hamiltonians to their respective excitations spaces. For the N -body

Hamiltonian H(N ) from (26), Eq. (33) gives

UN ,ϕ H(N , λNv)U∗
N ,ϕ

= NeH
(
v
)+ H

exc(N , λNv) + H
extra(N , λNv)

= NeH
(
v
)+ K0(v) + N − N⊥

N − 1
K1(v) +

(
K2(v)

√
(N − N⊥)(N − N⊥ − 1)

N − 1
+ h.c.

)

+
(
K3(v)

√
N − N⊥
N − 1

+ h.c.

)
+ 1

N − 1
K4(v)

=: NeH
(
v
)+ H(N ), (38)

since Hextra(N , λNv) = 0 due to h(v)ϕ = 0. For the (N − 1)-body Hamiltonian H̃(N − 1)
from (27), Eq. (33) yields

UN−1,ϕ H(N − 1, λNv)U∗
N−1,ϕ

= (N − 1)eH
(
(N − 2)λNv

)+ H
exc(N − 1, λNv) + H

extra(N − 1, λNv)

= (N − 1)eH(v) − 1

2
〈ϕ, (v ∗ |ϕ|2)ϕ〉 + K0(v) − λN d�

(
q
[
v ∗ |ϕ|2 − 〈ϕ, v ∗ |ϕ|2ϕ〉]q)

+ N − N⊥ − 1

N − 1
K1(v) +

(
K2(v)

√
(N − 1 − N⊥)(N − 2 − N⊥)

N − 1
+ h.c.

)

+
((

K3(v) − a∗(q
(
v ∗ |ϕ|2)ϕ

)√
N − 1 − N⊥
N − 1

+ h.c.

)
+ λNK4(v)

123



   48 Page 10 of 18 L. Boßmann et al.

=: (N − 1)eH(v) − 1

2
〈ϕ, (v ∗ |ϕ|2)ϕ〉 + H̃(N − 1), (39)

where we used h(v)ϕ = 0. Note that here there is a contribution from H
extra.

Next, we expand H(N ) : F≤N
⊥ → F≤N

⊥ and H̃(N − 1) : F≤N−1
⊥ → F≤N−1

⊥ in power

series inλ
1/2
N .We beginwithH(N ). Following [9,Def. 3.9], it is convenient to extendH(N ) to

an operator onF⊥ asH(N )⊕E (−1)
N , where E (−1)

N := E (0)
N −(E (1)

N −E (0)
N ), with E (n)

N the eigen-

values of H(N ). Note that E (0)
N is non-degenerate, so E (−1)

N < E (0)
N . We continue to denote

this extended operator by H(N ). Following [9, Sect. 3.2], it is furthermore convenient to
treat the particle number conserving terms inH(N ) acting on F>N⊥ :=⊕∞

k=N+1
⊗k

sym{ϕ}⊥
separately. Thus, we write

H(N ) = H
<(N ) + H

>(N ), (40)

with

H
<(N ) := K0(v) + N − N⊥

N − 1
K1(v) +

(
K2(v)

√[(N − N⊥)(N − N⊥ − 1)]+
N − 1

+ h.c.

)

+
(
K3(v)

√[N − N⊥]+
N − 1

+ h.c.

)
+ 1

N − 1
K4(v),

(41)

where [·]+ denotes the positive part, and

H
>(N ) := 0 ⊕

(
E (−1)
N − K0(v) − N − N⊥

N − 1
K1(v) − 1

N − 1
K4(v)

)
, (42)

where ⊕ is to be understood w.r.t. the decomposition F⊥ = F≤N
⊥ ⊕ F>N⊥ . Here, we added

in H
<(N ) the action of the particle number conserving terms on F>N and subtracted them

again in H
>(N ). Then, a Taylor expansion of the square roots allows us to write, for any

a ∈ N,

H
<(N ) = H0 +

a∑

j=1

λ
j/2
N H j + λ

(a+1)/2
N Ra (43)

as was shown in [9, Proposition 3.12]. Here, H0 is the Bogoliubov Hamiltonian

H0 = K0(v) + K1(v) +
(
K2(v) + h.c.

)
, (44)

and

H1 := K3(v) + h.c., (45a)

H2 := −(N⊥ − 1)K1(v) −
(
K2(v)

(
N⊥ − 1

2

)
+ h.c.

)
+ K4(v), (45b)

H2 j−1 := c j−1

(
K3(v)

(N⊥ − 1
) j−1 + h.c.

)
, (45c)

H2 j :=
j∑

ν=0

d j,ν

(
K2(v)

(N⊥ − 1
)ν + h.c.

)
, (45d)

for j ≥ 2, with coefficients

c(�)
0 := 1, c(�)

j := (� − 1
2 )(� + 1

2 )(� + 3
2 ) · · · (� + j − 3

2 )

j ! , c j := c(0)
j ( j ≥ 1), (46a)
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d j,ν :=
ν∑

�=0

c(0)
� c(0)

ν−�c
(�)
j−ν ( j ≥ ν ≥ 0). (46b)

The remainder Ra , defined by (43), still depends on N , but can be estimated uniformly in
N in terms of powers of the number operator, and in terms of N⊥ and H0 for a ≤ 2 if v is
unbounded; see [9, Lemmas 3.11 and 5.2].

We now turn to H̃(N − 1). Analogously to above, we extend it to an operator on F⊥, and
write it as

H̃(N − 1) = H̃
<(N − 1) + H̃

>(N − 1), (47)

with

H̃
<(N − 1) := K0(v) − λN d�

(
q
[
v ∗ |ϕ|2 − 〈ϕ, v ∗ |ϕ|2ϕ〉]q)

+ N − N⊥ − 1

N − 1
K1(v) +

(
K2(v)

√[(N − 1 − N⊥)(N − 2 − N⊥)]+
N − 1

+ h.c.

)

+
((

K3(v) − a∗(q
(
v ∗ |ϕ|2)ϕ

)√[N − 1 − N⊥]+
N − 1

+ h.c.

)
+ λNK4(v),

(48)

and

H̃
>(N − 1) := 0 ⊕

(
Ẽ (−1)
N−1 − K0(v) + λN d�

(
q
[
v ∗ |ϕ|2 − 〈ϕ, v ∗ |ϕ|2ϕ〉]q)

− N − N⊥ − 1

N − 1
K1(v) − 1

N − 1
K4(v)

)
,

(49)

where here ⊕ is to be understood w.r.t. the decomposition F⊥ = F≤N−1
⊥ ⊕ F>N−1

⊥ , and

Ẽ (n)
N−1 denote the eigenvalues of H̃(N − 1), with Ẽ (−1)

N−1 := Ẽ (0)
N−1 − (Ẽ (1)

N−1 − Ẽ (0)
N−1). We

then expand H̃<(N − 1) for any a ∈ N as

H̃
<(N − 1) = H0 +

a∑

j=1

λ
j/2
N H̃ j + λ

(a+1)/2
N R̃a, (50)

where

H̃1 :=
(
K3(v) − a∗(q

(
v ∗ |ϕ|2)ϕ)

)
+ h.c., (51a)

H̃2 := − d�
(
q
[
v ∗ |ϕ|2 − 〈ϕ, v ∗ |ϕ|2ϕ〉]q)

− N⊥K1(v) −
(
K2(v)

(
N⊥ + 1

2

)
+ h.c.

)
+ K4(v),

(51b)

H̃2 j−1 := c j−1

(
K3(v) − a∗(q

(
v ∗ |ϕ|2)ϕ)

)
N j−1

⊥ + h.c., (51c)

H̃2 j :=
j∑

ν=0

d j,ν

(
K2(v)N ν⊥ + h.c.

)
(51d)

for j ≥ 2. The remainder R̃a can be bounded analogously to Ra , in particular uniformly in
N , as we will explain in the proof of Proposition 10. Note that the leading order term H0 is
the same in the expansions (43) and (50). The H̃ j Hamiltonians differ from the H j in the
following way:
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• K3(v) is replaced by K3(v) − a∗(q
(
v ∗ |ϕ|2)ϕ) =: K̃3(v),

• an extra term − d�
(
q
[
v ∗ |ϕ|2 − 〈ϕ, v ∗ |ϕ|2ϕ〉]q) is added for j = 2,

• N⊥ is replaced by N⊥ + 1.

Note that the formulas (51) can be simplified by using the properties of the coefficients c j and
d j,ν . Equivalently we could use the fact that (51) can be obtained from replacing N → N−1,
v → N−2

N−1v, and K3 → K̃3 in the Taylor expansion of H<(N ) from (43) in all terms except

the constant terms and those involvingK0. Then the H̃ j for j = 1 and j ≥ 3 can be expressed
in terms of the H j if one additionally replaces K3 by K̃3 wherever it occurs. For example,
we find for j = 1, 2, 3, 4 that

H̃1 = H1
∣∣
K3→K̃3

, H̃2 = H2 − H0 + d�
(
q
[
T − 〈ϕ, Tϕ〉]q), (52a)

H̃3 =
(
H3 − 1

2
H1

)∣∣∣
K3→K̃3

, H̃4 = H4. (52b)

2.2 Expansions of the Ground State Energies

One of the main results of [9] is an expansion of the ground state energy of H(N , λNv) in
powers of λN . Using the computations from Sect. 2.1 we can adapt this result to yield an
expansion of the ground state energy of H(N − 1, λNv) in powers of λN as well. We denote
the unique ground state of H0 from Eq. (44) by χ0, its ground state energy by E0, introduce
the projections

P0 := |χ0〉〈χ0|, Q0 := 1 − P0, (53)

and define

Ok :=

⎧
⎪⎪⎨

⎪⎪⎩

−P0 k = 0,

Q0
(
E0 − H0

)k k > 0.
(54)

Then the following holds.

Proposition 10 Let a ∈ N0 and let Assumptions 1, 2, and 3 hold. Then for sufficiently large
N there exist C(a) > 0 such that

∣∣∣∣∣E(N , λNv) − NeH − E0 −
a∑

�=1

λ�
N E�

∣∣∣∣∣ ≤ C(a)λa+1
N , (55)

with

E� =
2�∑

ν=1

∑

j∈Nν

| j |=2�

∑

m∈Nν−1
0|m|=ν−1

1

κ(m)

〈
χ0,H j1Om1 · · ·H jν−1Omν−1H jν χ0

〉
, (56)

where κ(m) := 1 + ∣∣{μ : mμ = 0
}∣∣ ∈ {1 . . . , ν − 1} is the number of operators P0 within

the scalar product. Furthermore,
∣∣∣∣∣E(N − 1, λNv) − (N − 1)eH + 1

2
〈ϕ, (v ∗ |ϕ|2)ϕ〉 − E0 −

a∑

�=1

λ�
N Ẽ�

∣∣∣∣∣ ≤ C(a)λa+1
N ,

(57)
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where Ẽ� is defined by Eq. (56) with H j replaced by H̃ j . The coefficients from Theorem 4

are given by Ebinding
j = E j − Ẽ j .

Note that χ0 and Ok are the same in the formulas for E� and Ẽ�, since the leading order
of both H

<(N ) and H̃<(N − 1) is the same, namely H0.

Proof The estimate (55) is proven in [9, Theorem 2]. It is based on Rayleigh–Schrödinger
perturbation theory applied toH(N ). More exactly, a rigorous expansion of the projection P
on the ground state of H(N ) is proven, and based on that an expansion of the ground state
energy E = TrH(N )P. The estimate (57) can be obtained with the same strategy, but here
the underlying Hamiltonian H̃(N − 1) is different. In order to make the proof from [9] work,
two things have to be checked:

(a) Estimates for H̃ j and R̃a . First, note that [9, Lemma 5.2] still holds when we replace
K3 by K̃3 and H(N ) by H̃(N − 1), i.e., we still have

‖K̃(∗)
3 φ‖ ≤ C‖(N⊥ + 1)3/2φ‖, (58a)

∥∥∥
[
H̃

<(N − 1), (N⊥ + 1)�
]
φ

∥∥∥F≤N−1
⊥

≤ C(�)‖(N⊥ + 1)�φ‖F≤N−1
⊥

, (58b)

for some C > 0 and C(�) > 0, and for all φ ∈ F⊥. Additionally, we have
∥∥H̃2φ

∥∥ ≤ C‖(N⊥ + 1)2φ‖ (59)

for some C > 0 and for all φ ∈ F⊥, so we can use the same bounds for H̃2 as we have
used forH2 in [9]. Since [9, Lemma 5.3 (a)] is proven directly by using [9, Lemma 5.2],
it also holds whenH j is replaced by H̃ j . The estimates for R̃a are obtained analogously.

(b) Occurrence of H̃>(N − 1). In Eq. (49) we have defined H̃>(N − 1) in such a way that
[9, Proposition 3.14] can be applied, meaning that the operator H̃>(N − 1) does not
contribute to P.

Thus, the proof of [9, Theorem 2] still works when we replaceH(N ) by H̃(N − 1), meaning
that (57) holds.

3 Explicit Computations

We use the notation

H
extra
1 := H1 − H̃1 = a∗(q

(
v ∗ |ϕ|2)ϕ)+ h.c., (60)

and abbreviate O := O1.

3.1 The Trapped Bose Gas

In this section we compute Ebinding
1 for the trapped Bose gas and compare the result with

Nam’s conjecture [18, Conjecture 6]. For � = 1, the formula (56) is E1 = 〈χ0,H2χ0〉 +
〈χ0,H1OH1χ0〉. Thus, using the formulas (52a), we find

Ebinding
1 = E1 − Ẽ1

= 〈χ0,H0χ0〉 − 〈χ0, d�
(
q
[
T − 〈ϕ, Tϕ〉]q)χ0〉 + 2Re〈χ0,H

extra
1 OH1χ0〉

−〈χ0,H
extra
1 OH

extra
1 χ0〉. (61)
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The main part of the conjecture is that

Ebinding
1 = C := 〈χ0,H0χ0〉 − 〈χ0, d�

(
q
[
T − 〈ϕ, Tϕ〉]q)χ0〉, (62)

which does not in general agree with the correct expression (61). Note, however, that it does
agree for the homogeneous Bose gas, since then Hextra

1 = 0.
The discrepancy can be explained as follows. Let χ denote the ground state ofH(N ). Our

results imply that

BN := 2Re〈χ , a∗(q
(
v ∗ |ϕ|2)ϕ)χ〉 = N−1/22Re〈χ0,H

extra
1 OH1χ0〉 + O(N−3/2), (63)

i.e, this term is O(N−1/2). This is in contrast to the prediction BN = o(N−1/2) from [18].
Moreover, a closer look at the estimates in [18] reveals that two bounds are proven, namely

Ebinding
1 ≥ C + N 1/2BN + o(1), (64a)

Ebinding
1 ≤ C + N 1/2BN + 2D + o(1), (64b)

where D := −〈χ0,H
extra
1 OH

extra
1 χ0〉 ≥ 0. The correct expression in the limit N → ∞,

however, is as in (61), i.e., Ebinding
1 = C + N 1/2BN + D.

3.2 The Homogeneous Bose Gas

For the homogeneous Bose gas ϕ(x) = 1, which implies v ∗ |ϕ|2 = v̂(0), q
(
v ∗ |ϕ|2)ϕ = 0

and thus Hextra
1 = 0, and Tϕ = 0. Then the formulas (52) simplify to

H̃1 = H1, H̃2 = H2 − H0 + d�(qTq), H̃3 = H3 − 1

2
H1, H̃4 = H4. (65)

Thus Eq. (61) becomes

Ebinding
1 = 〈χ0,

(
H0 − d�(qTq)

)
χ0〉 = E0 − 〈χ0, d�(qTq)χ0〉. (66)

In order to compute Ebinding
2 , note that Eq. (56) for � = 2 can be written as

E2 = 〈χ0,H4χ0〉 + 〈χ0,H3OH1χ0〉 + 〈χ0,H1OH3χ0〉 + 〈χ0,H2OH2χ0〉
+ 〈χ0,H2OH1OH1χ0〉 + 〈χ0,H1O(H2 − E1)OH1χ0〉 + 〈χ0,H1OH1OH2χ0〉
+ 〈χ0,H1OH1OH1OH1χ0〉.

(67)

Then a computation using (65), H0χ0 = E0χ0, Oχ0 = 0, and H0O = H0
Q0

E0−H0
=

−Q0 + E0O yields

Ebinding
2 := E2 − Ẽ2

= −2Re〈χ0, d�(qTq)OH2χ0〉 − 2Re〈χ0, d�(qTq)OH1OH1χ0〉
−〈χ0, d�(qTq)O d�(qTq)χ0〉 − 〈χ0,H1O

(
d�(qTq) − 〈χ0, d�(qTq)χ0〉

)
OH1χ0〉.

(68)

In the rest of this section all summations are over the lattice (2πZ)d . In Fourier representation,
the operators H0, d�(qTq), H1, and H2 read

H0 =
∑

k �=0

(
k2 + v̂(k)

)
a∗
k ak + 1

2

∑

k �=0

v̂(k)
(
a∗
k a

∗−k + aka−k
)
, (69a)
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d�(qTq) =
∑

k �=0

k2a∗
k ak, (69b)

H1 =
∑

k,��=0
k+��=0

v̂(k)a∗
k a

∗
�ak+� + h.c., (69c)

H2 = −
∑

k,��=0

v̂(k)a∗
�a

∗
k a�ak − 1

2

⎛

⎝
∑

k �=0

v̂(k)a∗
k a

∗−k

(∑

��=0

a∗
�a� − 1

2

)
+ h.c.

⎞

⎠

+ 1

2

∑

j,k,��=0
j−��=0, j+k−��=0

v̂( j − �)a∗
j a

∗
k a�a j+k−�.

(69d)

Furthermore, the Bogoliubov transformation UB that diagonalizes the Bogoliubov Hamil-
tonian H0 acts on creation and annihilation operators in the following way. For p �= 0,

UBapU
∗
B = σpap − γpa

∗−p, (70a)

UBa
∗
pU

∗
B = σpa

∗
p − γpa−p, (70b)

with σp and γp defined in (19). Then

UBH0U
∗
B = E0 +

∑

k �=0

ε(k)a∗
k ak, with ε(k) =

√
k4 + 2k2v̂(k), (71)

so the ground state of H0 is |χ0〉 = U∗
B |�〉. The unitary map UB consequently diagonalizes

O as well and we find

UBOU∗
B a∗

p1 . . . a∗
pn |�〉 = − 1

ε(p1) + . . . + ε(pn)
a∗
p1 . . . a∗

pn |�〉 (72)

for all 0 �= p1, . . . , pn ∈ (2πZ)d . We can now compute Ebinding
1 and Ebinding

2 explicitly.

Computation of Ebinding
1 . Using (69a) and (69b) in (66) we find

Ebinding
1 =

∑

k �=0

〈�,UB

(
v̂(k)a∗

k ak + 1

2
v̂(k)

(
a∗
k a

∗−k + aka−k
))
U∗

B�〉 = −
∑

k �=0

v̂(k)
αk

1 + αk
.

(73)

We can now either use a direct computation based on the definition of αp to show that (17)
holds, or we directly compute with (69b) that

Ebinding
1 = E0 −

∑

k �=0

k2〈�,UBa
∗
k akU

∗
B�〉 = E0 −

∑

k �=0

k2γ 2
k = E0 −

∑

k �=0

k2α2
k

1 − α2
k

. (74)

Computation of Ebinding
2 . We compute each term in (68) separately. First, note that

UB d�(qTq)U∗
B =

∑

k �=0

k2
((

σ 2
k + γ 2

k

)
a∗
k ak − σkγka

∗
k a

∗−k − σkγka−kak + γ 2
k

)
. (75)

Then, in order to compute

〈χ0, d�(qTq)OH2χ0〉 =
∑

��=0

�2σ�(−γ�) 〈a∗
�a

∗−��, (UBOU∗
B)UBH2U

∗
B�〉, (76)
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we only need to know the part ofUBH2U∗
B with two a∗ operators, sinceUBOU∗

B is particle-
number conserving. We find

〈a∗
k a

∗−k�,UBH2U
∗
B�〉 = 2HQP

2,a∗a∗(k) (77)

with

HQP
2,a∗a∗(k) = −1

2

∑

��=0
��=k

v̂(k − �)γ�

(
σ 2
k σ� + 2σkγ�γk + σ�γ

2
k

)
− 1

2
v̂(k)(σk − γk)

2
∑

��=0

γ 2
�

− σkγk
∑

��=0

v̂(�)γ�(σ� − γ�) + v̂(k)γk(σk − γk)
3 + 1

4
v̂(k)

(
σ 2
k + γ 2

k

)
.

(78)

This yields

−2Re〈χ0, d�(qTq)OH2χ0〉 = −2
∑

k �=0

k2γkσk
HQP
2,a∗a∗(k)

ε(k)
. (79)

Next, we compute directly that

−〈χ0, d�(qTq)O d�(qTq)χ0〉 =
∑

k �=0

k4σ 2
k γ 2

k

ε(k)
. (80)

For the computation of the remaining terms, note first that

UBH1U
∗
B =

∑

k,��=0
k+��=0

(
HQP
1,a∗a∗a∗(k, �)a∗

k a
∗
�a

∗−k−� + HQP
1,a∗aa(k, �)a

∗
k+�aka�

)
+ h.c., (81)

where HQP
1,a∗a∗a∗(k, �) and HQP

1,a∗aa(k, �) can be written in symmetrical form as

HQP
1,a∗a∗a∗ (k, �) = −1

6

[
v̂(k)

(
γk+�σ� + σk+�γ�

)(
σk − γk

)+ v̂(�)
(
γk+�σk + σk+�γk

)(
σ� − γ�

)

+ v̂(k + �)
(
σ�γk + σkγ�

)(
σk+� − γk+�

)]
, (82a)

HQP
1,a∗aa(k, �) = 1

2

[
v̂(k)

(
σk+�σ� + γk+�γ�

)(
σk − γk

)+ v̂(�)
(
σk+�σk + γk+�γk

)(
σ� − γ�

)

− v̂(k + �)
(
σ�γk + σkγ�

)(
σk+� − γk+�

)]
. (82b)

With that we find

− 2Re〈χ0, d�(qTq)OH1OH1χ0〉

= 12
∑

k,��=0
k+��=0

(k + �)2σk+�γk+�

(
HQP
1,a∗aa(k, �)

ε(k + �)

)(
HQP
1,a∗a∗a∗(k, �)

ε(k) + ε(�) + ε(k + �)

)
. (83)

Furthermore,

− 〈χ0,H1O

(
d�(qTq) − 〈χ0, d�(qTq)χ0〉

)
OH1χ0〉
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= −18
∑

k,��=0
k+��=0

(k + �)2
(
σ 2
k+� + γ 2

k+�

)( HQP
1,a∗a∗a∗(k, �)

ε(k) + ε(�) + ε(k + �)

)2

. (84)

Adding up (79), (80), (83), and (84) yields the expression (18) from Theorem 8.
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