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Abstract
We consider the sharp interface limit of a Navier–Stokes/Allen Cahn equation in a bounded
smooth domain in two space dimensions, in the case of vanishing mobility mε = √

ε, where
the small parameter ε > 0 related to the thickness of the diffuse interface is sent to zero. For
well-prepared initial data and sufficiently small times, we rigorously prove convergence to
the classical two-phase Navier–Stokes systemwith surface tension. The idea of the proof is to
use asymptotic expansions to construct an approximate solution and to estimate the difference
of the exact and approximate solutions with a spectral estimate for the (at the approximate
solution) linearized Allen–Cahn operator. In the calculations we use a fractional order ansatz
and new ansatz terms in higher orders leading to a suitable ε-scaled and coupled model
problem. Moreover, we apply the novel idea of introducing ε-dependent coordinates.

Mathematics Subject Classification Primary: 76T99; Secondary: 35Q30 · 35Q35 · 35R35 ·
76D05 · 76D45

1 Introduction andmain result

Two-phase flows of macroscopically immiscible fluids is an important research area with
many applications. There are two important model categories: sharp interface models and
diffuse interface models. For sharp interface models the interface separating the fluids is
assumed to be a hypersurface. These models usually consist of an evolution law for the
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hypersurface, coupled to equations in the bulk domains and on the interface. Solutions often
develop singularities in finite time, in particular when the interface changes its topology. In
contrast, diffuse interface models use a typically smooth order parameter (e.g. the density or
volume fraction of the two fluids) that distinguishes the bulk domains and inbetween typi-
cally has steep gradients in a small transition zone (also called diffuse interface), which is
proportional to a small parameter, e.g. ε > 0. In applications the diffuse interface can be
interpreted as microscopically small mixing region of the fluids. Quantities defined on the
hypersurface in sharp interface models typically have a diffuse analogue that is defined in
the diffuse interface. An important example is the relation of surface tension and capillary
stress tensor, see Anderson et al. [9]. Diffuse interface models may bemore suited to describe
phenomena acting on length scales related to the interface thickness, e.g. interface thicking
phenomena, complicated contact angle behaviour and topology changes, cf. [9]. Moreover,
topology changes typically are no problem from an analytical or numerical point of view
in contrast to sharp interface models. However, both model types are usually derived from
physical principles or observations and can be used to model the same situations in applica-
tions. This motivates to study the connection between diffuse and sharp interface models by
sending the small parameter ε (related to the thickness of the diffuse interface) to zero. Such
limits are known as “sharp interface limits”.

Let T0 > 0, � ⊆ R
2 be a bounded smooth domain and ε > 0 be small. For vε : � ×

[0, T0] → R
2, pε, cε : � × [0, T0] → R we consider the following Navier–Stokes/Allen–

Cahn system for small ε > 0:

∂tvε + vε · ∇vε − div(2ν(cε)Dvε) + ∇ pε = −ε div(∇cε ⊗ ∇cε) in � × (0, T0), (1.1)

div vε = 0 in � × (0, T0), (1.2)

∂t cε + vε · ∇cε = mε

[
�cε − 1

ε2
f ′(cε)

]
in � × (0, T0), (1.3)

(vε, cε)|∂� = (0, −1) on ∂� × (0, T0), (1.4)

(vε, cε)|t=0 = (v0,ε, c0,ε) in �, (1.5)

where vε, pε have the interpretation of a mean fluid velocity and pressure, respectively, and
cε has the role of an order parameter distinguishing two components of a fluid mixture.
Moreover, ν : R → (0,∞) is a smooth concentration-dependent viscosity, mε := √

ε is the
mobility and f : R → [0,∞) is a suitable smooth double-well potential with wells of equal
depth, e.g. f (c) = 1

8 (c
2 − 1)2, specified below. For simplicity in the following analysis we

assume that ν′ : R → R is even. Furthermore, Dvε = 1
2 (∇vε + (∇vε)

T ) is the symmetrized
gradient and the operators ∇, � and div are defined to act on spatial variables only. Finally,
note that ∇cε ⊗ ∇cε is a contribution to the stress tensor that represents capillary stresses
due to surface tension effects in the (typically small) mixing region. The above model was
introduced by Liu and Shen in [26] for constant viscosity along with a Navier–Stokes/Cahn-
Hilliard variant in order to describe two-phase incompressible Newtonian fluids with the
diffuse interface approach. The model was later derived in a thermodynamically consistent
way by Jiang et al. [21] via an energetic variational approach including the case of different
densities. Moreover, they showed global existence of weak solutions in 3D and global well-
posedness and longtime behaviour of strong solutions in 2D.

We are interested in the sharp interface limit ε → 0 for the above system (1.1)–(1.5).
For well-prepared initial data and small times, we will rigorously prove the convergence of
(1.1)–(1.5) to the following classical two-phase Navier–Stokes equationwith surface tension:

∂tv
±
0 + v±

0 · ∇v±
0 − ν±�v±

0 + ∇ p±
0 = 0 in �±

t , t ∈ [0, T0], (1.6)
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div v±
0 = 0 in �±

t , t ∈ [0, T0], (1.7)

�2ν± Dv±
0 − p±

0 I�n�t = −σ H�tn�t on �t , t ∈ [0, T0], (1.8)

�v±
0 � = 0 on �t , t ∈ [0, T0], (1.9)

V�t = n�t · v±
0 on �t , t ∈ [0, T0], (1.10)

v−
0 |∂� = 0 on ∂� × (0, T0), (1.11)

�0 = �0, v±
0 |t=0 = v±

0,0 in �±
0 , (1.12)

where T0 > 0, ν± := ν(±1), � is the disjoint union of �+
t ,�−

t and �t for every t ∈ [0, T0],
�±

t are smooth domains, �t = ∂�+
t ⊆ � and n�t is the interior normal of �t with respect

to �+
t . The jump �u�(., t) in x ∈ �t of a quantity u defined on �+

t ∪ �−
t is defined as

�u�(x, t) = lim
r→0+

[
u(x + rn�t (x), t) − u(x − rn�t (x), t)

]
.

Moreover, H�t is the (mean) curvature and V�t is the normal velocity of �t with respect to
n�t . Furthermore, (�0, v±

0,0) are suitable initial data. For the following we denote

�± =
⋃

t∈[0,T0]
�±

t × {t}, � =
⋃

t∈[0,T0]
�t × {t}.

The surface tension constant σ is determined by σ = ∫
R

θ ′
0(ρ)2dρ, where θ0 is the well-

known optimal profile, i.e., the unique solution of

−θ ′′
0 + f ′(θ0) = 0 in R, lim

ρ→±∞ θ0(ρ) = ±1, θ0(0) = 0. (1.13)

As in Abels and Liu [5] we assume for the double well potential f : R → R that it is smooth
and satisfies the assumptions

f ′(±1) = 0, f ′′(±1) > 0, f (s) = f (−s) > 0 for all s ∈ (−1, 1).

Then there is a unique solution θ0 : R → R of (1.13), which is monotone. Moreover, for
every m ∈ N0, there is some Cm > 0 such that

|∂m
ρ (θ0(ρ) ∓ 1)| ≤ Cme−α|ρ| for all ρ ∈ R with ρ ≷ 0,

where α = min(
√

f ′′(−1),
√

f ′′(1)). Since f is assumed to be even, θ0 is odd and θ ′
0 is

even.
Strong solutions for the problem (1.6)–(1.12) have been studied extensively in the literature

starting with the results by Denisova and Solonnikov [14]. For further references we refer to
Köhne et al. [24] and the monograph by Prüss and Simonett [30], where in particular local
well-posedness in an L p-setting is shown. Existence of a notion of weak solutions, called
varifold-solutions, globally in time was shown in [1]. Weak-strong uniqueness for these kind
of solutions was shown by Hensel and Fischer [16].

Let us now comment on the choice of vanishing mobility mε = √
ε → 0 in (1.4). In [2]

a non-convergence result was shown for a convective Allen–Cahn equation for a mobility
mε = m0ε

α , where m0 > 0 is a constant and α > 2, and formal asymptotic calculations
were carried out for the case α = 0, 1. Hence for constant mobility mε = m0 the formal limit
is a transport equation coupled to mean curvature flow, whereas for the case mε = m0ε the
formal limit is a pure transport equation, cf. (1.10) above. It is possible to adapt the formal
calculations to the case of mobilities mε = m0ε

α for all exponents α ∈ [0, 1] (with the same
limit system for α ∈ (0, 1]), the expansions just become more tedious and lengthy due to
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the fractional order ansatz. In Abels and Fei [3] the case of mε = 1, α = 0 was studied and
rigorous convergence to a two-phaseNavier–Stokes systemcoupledwithmean curvature flow
was shown as expected from the formal asymptotic expansions as long as a smooth solution
of the limit system exists. However, for this limit system there is no conservation of mass
and hence it could be considered physically less relevant compared to the classical two-phase
Navier–Stokes system with surface tension, where one has pure transport of the interface.
This clearly motivates the study of the case of vanishing mobility mε for ε → 0. To the best
of our knowledge there is no rigorous convergence result in the case of vanishing mobility
in the literature. The choice of mε = √

ε and α = 1
2 for our result is motivated as follows:

for the arguments in [3], the exponent α = 1
2 is critical in a heuristic sense by calculating

the orders for α = 1 and by assuming some linear depencence on α. The cases α ∈ (0, 1
2 ]

should work formally with the strategy in [3], but we decided to simply choose α = 1
2 , in

particular in order to have simpler asymptotic expansions with just
√

ε-spacing in the sums.
We note that in a joint-work with Fischer the first and third author show convergence for more
general scalings of mε > 0 using the relative entropy method. In this work the convergence
is obtained in weaker norms (and assuming same viscosities for simplicity), but it also holds
for three space dimensions, see [4].

Our strategy to prove the sharp interface limit is via rigorous asymptotic expansions.
The method goes back to de Mottoni and Schatzman [13] who first applied it to prove the
rigorous sharp interface limit for the Allen–Cahn equation. The strategy works as follows:
it is assumed that there exists a smooth solution to the limit sharp interface problem locally
in time (usually this is no restriction). Then in the first step, one rigorously constructs an
approximate solution to the diffuse interface system via rigorous asymptotic expansions
based on the evolving hypersurface that is part of the solution to the limit problem. In the
second step, one estimates the difference between the exact and approximate solution with
the aid of a spectral estimate for a linear operator depending on the diffuse interface equation
and the approximate solution. Comparison principles are not needed for the method and one
even obtains the typical profile of solutions across the diffuse interface. The strategy was
applied to many other sharp interface limits as well, see Moser [28] for a list of results. Let
us just mention the famous result by Alikakos et al. [8] for the Cahn-Hilliard equation, Abels
and Liu [5] for a Stokes/Allen–Cahn system, Abels and Marquardt [6, 7] for a Stokes/Cahn–
Hilliard system, and the recent result Abels and Fei [3] for the Navier–Stokes/Allen Cahn
system with constant mobility.

In general, rigorous results for sharp interface limits can be grouped into results concerning
strong solutions for the limit system, in particular before singularities appear, and global
time results using some weak notion for the sharp interface system. As described above,
our result relies on the existence of a smooth solution for the limit system and assumes
sufficiently small times. Another important strategy for sharp interface limits using strong
solutions is the relative entropy method, see Fischer et al. [17] where the convergence of
the Allen–Cahn-equation to mean curvature flow is considered and Hensel and Liu [19],
where the Navier–Stokes/Allen–Cahn system with constant mobility (but equal viscosities)
is considered, cf. [28] for more references concerning the relative entropy method. Weak
notions used for global time results for the Allen–Cahn equation are viscosity solutions
[10, 11, 15, 23], varifold solutions [20, 22, 27], BV-solutions ([25]; conditional result) and
a solution concept inbetween [18]. In [3] there are more references for results on Navier–
Stokes/Cahn–Hilliard-type models.

The following theorem is ourmain result about convergence of (1.1)–(1.5) to (1.6)–(1.12):
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Theorem 1.1 Let T0 > 0, mε = √
ε for all ε > 0, and (v±

0 , �) be a smooth solution
of the two-phase Navier–Stokes system with surface tension (1.6)–(1.12) on [0, T0] with
c0,ε(x, t) ∈ [−1, 1] for all (x, t) ∈ � × [0, T0], ε ∈ (0, 1]. Let N ∈ N, N ≥ 3. Then
there exist cA = cA(N , ε), vA = vA(N , ε) ∈ H1(0, T0; L2(�)) ∩ L2(0, T0; H2(�)) for
ε ∈ (0, 1], uniformly bounded in these spaces and ‖cA‖∞ ≤ 1 + c with c > 0 independent
of ε ∈ (0, 1], such that the following holds:

Let (vε, cε) be strong solutions of (1.1)–(1.5) with initial values v0,ε, c0,ε such that

‖c0,ε − cA|t=0‖L2(�) + ε2‖∇(c0,ε − cA|t=0)‖L2(�) + ‖v0,ε − vA|t=0‖L2(�) ≤ CεN+ 1
2

(1.14)

for all ε ∈ (0, 1] and some C > 0. Then there are some ε0 ∈ (0, 1], R > 0 and T1 ∈ (0, T0]
small such that for all ε ∈ (0, ε0] and some CR > 0 it holds

‖cε − cA‖L∞(0,T1;L2(�)) + ε
1
4 ‖∇(cε − cA)‖L2((�×(0,T1))\�(δ)) ≤ RεN+ 1

2 ,

(1.15)

ε
1
4 ‖∇τ ε (cε − cA)‖L2((�×(0,T1))∩�(2δ)) + ε‖∇(cε − cA)‖L2((�×(0,T1))∩�(2δ)) ≤ RεN+ 1

2 ,

(1.16)

ε2‖∇(cε − cA)‖L∞(0,T1;L2(�)) + ε2+
1
4 ‖∇2(cε − cA)‖L2(�×(0,T1)) ≤ RεN+ 1

2 ,

(1.17)

‖vε − vA‖
H

1
2 (0,T1;L2(�))

+ ‖vε − vA‖L∞(0,T1;L2(�))∩L2(0,T1;H1(�)) ≤ CRεN+ 1
4 ,

(1.18)

where �(δ̃) are standard tubular neighbourhoods for δ̃ ∈ [0, 3δ], δ > 0 small and ∇τ ε is
a suitable (approximate) tangential gradient, see Sect.2.1. Moreover, let d� be the signed
distance to �. Then

cA = ζ(d�)θ0(ρε) ± χ�±(1 − ζ(d�)) + O(ε
3
2 ) in L∞((0, T0) × �), (1.19)

vA = v+
0 (x, t)η(ρε) + v−

0 (x, t)(1 − η(ρε)) + O(
√

ε) in L∞(0, T0; L p(�)), (1.20)

where ερε = d� + O(
√

ε) in �(3δ), p ∈ [1,∞) is arbitrary, ζ : R → [0, 1] is smooth such
that supp ζ ⊆ [−2δ, 2δ] and ζ ≡ 1 on [−δ, δ], and η : R → [0, 1] is smooth such that η = 0
in (−∞,−1], η = 1 in [1,∞), η − 1

2 is odd and η′ ≥ 0 in R. In particular,

lim
ε→0

cA = ±1 uniformly on compact subsets of �±.

Remark 1.2 Note that for strong solutions of (1.1)–(1.5) we have the energy inequality

sup
t∈[0,T0]

∫
�

1
2 |vε(t)|2 + ε

2 |∇cε(t)|2 + 1
ε

f (cε(t)) dx +
∫ T0

0

∫
�

|Dvε|2 + mε

ε
|με|2 dx dt ≤ E0,ε,

(1.21)

where με = −ε�cε + 1
ε

f ′(cε) and

E0,ε :=
∫

�

1
2 |v0,ε|2 dx +

∫
�

( ε
2 |∇c0,ε|2 + 1

ε
f (c0,ε)) dx .

Therefore the left-hand side of (1.21) is uniformly bounded in ε ∈ (0, 1) if supε∈(0,1) E0,ε <

∞. Using a Taylor expansion for f and the form of cA, vA in Sect. 4 below, one can show
this bound under the assumption (1.14).
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Let us comment on the novelty of our contribution. We use a similar strategy as in Abels
and Fei [3]. Compared to [3], we consider the case of vanishing mobility mε = √

ε in (1.4),
leading to the classical two-phase Navier–Stokes system with surface tension (1.6)–(1.12) in
the sharp interface limit instead of the coupling with mean curvature flow in (1.11) obtained
in [3]. Some remarks on the choice of the scaling for the mobility were included before. Note
that our choice turns out to be critical for the arguments we use, and therefore we need to take
time small in our result compared to [3]. Moreover, we need fractional order expansions with√

ε-spacing in the terms, cf. Sect. 3 below. Additionally, note that in [3] a new type of ansatz
in higher orders was introduced based on a linearization idea that simplified the previous
works [5–7]. However, a direct modification with uncoupled equations for the higher order
ansatz terms as in [3] does not lead to suitable estimates and hence is not enough to close the
argument in our case. Therefore we modify this type of ansatz and obtain as model problem
a coupled system (and another uncoupled problem in higher order) with suitable scaling in ε,
see Sects. 2.3 and4 below. Moreover, we even have a term at order O(

√
ε) in the expansion

of the distance function which leads to problems when applying spectral estimates within
standard tubular neighbourhood coordinates. Thereforewe use the novel idea ofworkingwith
ε-dependent coordinates, in particular as framework for the spectral estimates, cf. Sects. 2.1
and2.4 below.

Finally, let us summarize the structure of the paper. Section2 contains the required pre-
liminaries, i.e., ε-dependent coordinates, estimates of remainder terms, the (coupled and
uncoupled) model problems with scalings in ε as well as spectral estimates based on the
ε-scaled coordinates. The asymptotic expansion is done in Sect. 3, where the novelty lies
in the expansion in integer powers of

√
ε instead of integer powers of ε. The sophisticated

higher order ansatz terms and remainder estimates are the content of Sect. 4. Finally, the main
result is proven in Sect. 5, where a major part is the control of the error in the velocities in
Sect. 5.1.

2 Preliminaries

Throughout themanuscriptNdenotes the set of natural numbers (without 0) andN0 = N∪{0}.
Let U ⊆ R

N be open, m ∈ N0, p ∈ [1,∞] and X be a Banach space. Then we denote with
L p(U ; X) and W m

p (U ; X) the standard Lebesgue and Sobolev spaces. In the case X = R

we write L p(U ) and W m
p (U ), respectively. Moreover, if U has finite measure, we define for

1 ≤ q ≤ ∞ and k ∈ N0

Lq
(0)(U ) :=

{
f ∈ Lq(U ) :

∫
U

f (x) dx = 0

}
, W k

q,(0)(U ) := W k
q (U ) ∩ Lq

(0)(U ).

Finally, note that we use the convention that ∇, div and � only act on spatial variables and
not on rescaled ones.

2.1 Coordinates

Let � ⊆ R
2 be a domain, T0 > 0 and � =⋃t∈[0,T0] �t × {t} be a smooth evolving compact

closed curve contained in �. Then � is divided into two disjoint connected components
�±

t such that ∂�+
t = �t for all t ∈ [0, T0]. We parametrize �t for every t ∈ [0, T0]

over the torus T
1 = R/2πZ with an X0 : T1 × [0, T0] → � such that ∂s X0(s, t) �= 0

for all s ∈ T
1, t ∈ [0, T0]. Moreover, we denote the corresponding tubular neighbourhood
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coordinates with (d0, S0) : �(3δ) → [−3δ, 3δ] × T
1, where �(δ̃) := {d0 ∈ (−δ̃, δ̃)} is a

relatively open neighbourhood of� in�×[0, T0] for δ̃ ∈ (0, 3δ] and δ > 0 is small such that
�(3δ) ⊆ � × [0, T0]. Here d0(·, t) is the signed distance function to �t for every t ∈ [0, T0]
and d0(x, t) ≷ 0 in �±

t . We set �t (δ̃) := {x ∈ � : (x, t) ∈ �(δ̃)} for δ̃ ∈ (0, 3δ] and we also
write d� := d0. Moreover, we denote with

τ (s, t) := ∂s X0(s, t)

|∂s X0(s, t)| and n(s, t) :=
(
0 −1
1 0

)
τ (s, t), for (s, t) ∈ T

1 × [0, T0]

the unit tangent and normal vectors of �t at X0(s, t), where X0 is chosen such that n(s, t) is
the interior normal with respect to �+(t) for all t ∈ [0, T0]. Moreover, we define

n�t (x) := n(s, t) for all x = X0(s, t) ∈ �t ,

and let V�t and H�t be the normal velocity and (mean) curvature of �t with respect to n�t

for t ∈ [0, T0]. We denote

V (s, t) := V�t |X0(s,t), H(s, t) := H�t |X0(s,t) for all (s, t) ∈ T
1 × [0, T0].

Here and in the following u|X0 : T1 × [0, T0] → R is defined by

u|X0(s, t) := u|X0(s,t) := u(X0(s, t)) for all (s, t) ∈ T
1 × [0, T0]

for a function u defined on a set containing �. It is well known that

|∇d�|2≡ 1, ∇d� · ∇S0 = 0 in �(3δ),

∇d�|X0 = n, ∂t d�|X0 = −V , �d�|X0 = −H on T1 × [0, T0].
Later we will need a suitable ε-perturbation of the standard tubular neighbourhood coor-

dinate system. Therefore we consider for η > 0 and ε ∈ (0, ε0]
dε(x, t) := d0(x, t) + εηd̃ε(x, t), (2.1)

Sε(x, t) := S0(x, t) + εη S̃ε(x, t)/2π for (x, t) ∈ �(3δ), (2.2)

where (d̃ε, S̃ε) : �(3δ) → R
2 are smooth with Ck-norm uniformly bounded with respect to

ε ∈ (0, ε0] for every k ∈ N, and we assume that

d̃ε = 0 on �(3δ)\�(δ′) (2.3)

for some δ′ ∈ (0, 3δ). For small ε these coordinates also have suitable properties similar to
a tubular neighbourhood system because of the following theorem.

Theorem 2.1 (ε-Coordinates) For ε1 > 0 sufficiently small and every ε ∈ (0, ε1] the ε-
coordinates (dε, Sε, idt ) : �(3δ) → [−3δ, 3δ] × T

1 × [0, T0] are well-defined and yield a
smooth diffeomorphism with inverse Xε . Moreover, for ε1 small

�(δ) ⊆ �ε( 3δ2 ) ⊆ �(2δ) ⊆ �ε( 9δ4 ) ⊆ �( 5δ2 ) ⊆ �ε( 11δ4 ) ⊆ �(3δ) (2.4)

for all ε ∈ (0, ε1], where for δ′ > 0

�ε(δ′) := {(x, t) ∈ �(3δ) : dε(x, t) ∈ (−δ′, δ′)
}
.

Moreover, for every k ∈ N the Ck-norms of dε, Sε are uniformly bounded.
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Proof Because of (2.3) we obtain that (dε, Sε, idt ) : �(3δ) → [−3δ, 3δ] × T
1 × [0, T0]

is well-defined and smooth for ε > 0 small. Moreover, because of compactness and the
definitions it holds that D(dε, Sε, idt ) is invertible pointwise in �(3δ) for ε > 0 small. Hence
(dε, Sε, idt ) is a local diffeomorphism. Furthermore, a compactness and extension argument
shows that (d0, S0, idt ) is globally bi-Lipschitz. This extends to (dε, Sε, idt ) with uniform
constants for ε > 0 small. Injectivity of (dε, Sε, idt ) directly follows and surjectivity can now
be proven by showing that the image is open and closed in the connected space [−3δ, 3δ]×T

1.
The additional statement is clear from the definitions for ε > 0 small. ��

As before we define

�ε
t (δ̃) := {x ∈ � : (x, t) ∈ �ε(δ̃)} for δ̃ ∈ (0, 3δ].

Remark 2.2 In order to transform integrals with Xε later, we define Jε : [−3δ, 3δ] × T
1 ×

[0, T0] → (0,∞) by

Jε := | det DXε| = 1√|∇dε|2|∇Sε|2 − (∇dε · ∇Sε)2
◦ Xε. (2.5)

Furthermore, we denote

nε(x, t) := ∇dε(x, t) for all (x, t) ∈ �(3δ).

For the following we assume that

|nε|2 = |∇dε|2 = 1 + O(ε2), nε · ∇Sε = O(ε2) (2.6)

in Ck
b (�(3δ)) for all k ∈ N, which we will assure in the following constuction. The following

identity will be useful in relation with divergence free functions:

∂r Xε(r , s, t) ⊗ nε(Xε(r , s, t), t) + ∂s Xε(r , s, t) ⊗ ∇Sε(Xε(r , s, t), t) = I (2.7)

for all r ∈ (−3δ, 3δ), s ∈ T
1, t ∈ [0, T0]. It is a consequence of differentiating

Xε(dε(x, t), Sε(x, t)) = x for all (x, t) ∈ �ε(3δ).

This motivates to define for suitable ψ

∇τ εψ := ∇Sε[∂s(ψ ◦ Xε)]◦X−1
ε . (2.8)

Then

∇ψ = ∇τ εψ + nε(∂r Xε ◦ X−1
ε · ∇)ψ.

Moreover, (2.7) implies

∂r Xε(r , s, t) = nε(Xε(r , s, t), t) + O(ε2) = nε(Xε(0, s, t), t) + O(ε2) (2.9)

in Ck
b (�(3δ)) for all k ∈ N due to (2.6) and

∂rnε(Xε(r , s, t)) = ∇nε(Xε(r , s, t)) · ∂r Xε(r , s, t) = O(ε2)

in Ck
b (�(3δ)) for all k ∈ N. In particular this shows

(∂r Xε) ◦ X−1
ε · ∇u = ∂nε u + O(ε2)
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for every sufficiently smooth u : �(3δ) → R, where ∂nε u := nε · ∇u. Similarly, by multi-
plying (2.7) with ∇Sε(Xε(r , s, t), t) one obtains

∂s Xε(r , s, t) = |∇S(Xε(r , s, t))|−2∇S(Xε(r , s, t) + O(ε2)

in Ck
b (�(3δ)) for all k ∈ N.

Remark 2.3 Let a : �(3δ) → R be smooth in normal direction and assume a = 0 on �, then
ã : �(3δ) → R with

ã(x, t) :=
{

a(x,t)
d�(x,t) for all (x, t) ∈ �(3δ) \ �,

∂na(x, t) for all (x, t) ∈ �

is well-defined, smooth in normal direction and tangential regularity is conserved. In partic-
ular ã is smooth provided that a is smooth. This can be shown with a Taylor expansion in
d� .

A similar statement, based on a Taylor expansion in normal direction for Sobolev functions,
is given by the following lemma and will be useful to estimate remainder terms.

Lemma 2.4 Let t ∈ [0, T0], ε ∈ (0, ε1) with ε1 > 0 as in Theorem 2.1, δ′ ∈ [2δ, 3δ] and
a ∈ W k

p(�t (δ
′)) for some k ∈ N, 1 < p < ∞. Then there are rk,ε,t ∈ L p(�t (δ

′)) such that

a(x) =
k−1∑
j=0

(∂
j
nε

a)(Pε(x, t))
dε(x, t) j

j ! + dε(x, t)krk,ε,t (x) for all x ∈ �t (δ
′),

where Pε(x, t) := Xε(0, Sε(x, t), t), nε(x, t) = ∇dε(x, t), and

‖rk,ε,t‖L p(�t (δ′)) ≤ Ck‖a‖W k
p(�t (δ′)). (2.10)

for some Ck independent of ε, t , and a.

Proof Since smooth functions are dense in W k
p(�t (δ

′)), we can assume that a is smooth. We
define the auxiliary function �x,t (r) := Xε(r , Sε(x, t), t) for all r ∈ [−δ′, δ′]. Then by a
one-dimensional Taylor expansion

a(x) = a(�x,t (dε(x, t))

=
k−1∑
j=0

d j

dr j
(a(�x,t (r)))|r=0

dε(x, t) j

j ! +
∫ dε(x,t)

0

dk(a(�x,t (r)))

drk

(dε(x, t) − r)k−1

(k − 1)! dr

=
k−1∑
j=0

(∂
j
nε

a)(Pε(x, t))
dε(x, t) j

j ! + dε(x, t)krk,ε,t (x)

where

rk,ε,t (x) = 1

dε(x, t)

∫ dε(x,t)

0

dk(a(�x (r)))

drk

(1 − r/dε(x, t))k−1

(k − 1)! dr .

Now using that by Hardy’s inequality

(∫ δ′

−δ′

∣∣∣∣∣
1

r̃

∫ r̃

0

∣∣∣∣d
k(a(�x,t (r)))

drk

∣∣∣∣ dr

∣∣∣∣∣
p

dr̃

) 1
p

≤ C p

(∫ δ′

−δ′

∣∣∣∣d
k(a(�x,t (r)))

drk

∣∣∣∣
p

dr

) 1
p

one easily shows (2.10). ��
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For the following let h : T1 × [0, T0] → R be sufficiently smooth. Then we have

∇�ε
t h(r , s, t) := ∇x (h(Sε(x, t), t) = ∇Sε(x, t)∂sh(s, t),

��ε
t h(r , s, t) := �x (h(Sε(x, t), t) = (�Sε)(x, t) · ∂sh(s, t) + |∇Sε(x, t)|2∂2s h(s, t)

(2.11)

for all (x, t) ∈ �(3δ), where r ∈ (−3δ, 3δ) and s ∈ T
1 are determined by x = Xε(r , s, t).

Therefore we define for every sufficiently smoth h : T1 × [0, T0] → R

(∇�ε
t
h)(s, t) := (∇�ε

t h)(0, s, t), (��ε
t
h)(s, t) := (��ε

t h)(0, s, t) for all s ∈ T
1, t ∈ [0, T0].

We note that coefficients of the differences

(∇�ε
t h)(r , s, t) − (∇�ε

t
h)(s, t), (��ε

t h)(r , s, t) − (��ε
t
h)(s, t)

vanish for r = 0, which corresponds to x ∈ �ε
t .

Finally, let Ut ⊆ R
2, t ∈ [0, T ], be open sets and U := ⋃

t∈[0,T ] Ut . Then we define for
s ≥ 0

L2(0, T ; Hs(Ut )) := {g ∈ L2(U) : g(·, t) ∈ Hs(Ut ) for a.e. t ∈ (0, T ), ‖g(·, t)‖Hs (Ut ) ∈ L2(0, T )
}
,

‖g‖L2(0,T ;Hs (Ut ))
:=
(∫ T

0
‖g(·, t)‖2Hs (Ut )

dt

) 1
2

,

L2(0, T ; Hs(�t )) := {g ∈ L2(�) : g ◦ X0 ∈ L2(0, T ; H s(T1))
}
,

‖g‖L2(0,T ;Hs (�t ))
:= ‖g ◦ X0‖L2(0,T ;Hs (T1)).

2.2 The stretched variable and remainder terms

In the following we will use a “stretched variable”, which is defined by

ρ = ρε := dε(x, t)

ε
for (x, t) ∈ �(3δ), ε ∈ (0, ε1], (2.12)

where dε : �(3δ) → R is as in the previous subsection and ε1 > 0 is as in Theorem 2.1. In
particular, it satisfies

|∇dε(x, t)| = 1 + ε2bε(x, t) for all (x, t) ∈ �(3δ),

where bε and all its derivatives are uniformly bounded in ε ∈ (0, ε1] for some ε1 > 0
sufficiently small.

For a systematic treatment of the remainder terms, we introduce:

Definition 2.5 For any k ∈ R and α > 0, Rk,α denotes the vector space of family of
continuous functions r̂ε : R × �(3δ) → R, indexed by ε ∈ (0, 1), which are continuously
differentiable with respect to n�t for all t ∈ [0, T0] such that

|∂ j
n�t

r̂ε(ρ, x, t)| ≤ Ce−α|ρ|εk for all ρ ∈ R, (x, t) ∈ �(3δ), j = 0, 1, ε ∈ (0, 1) (2.13)

for some C > 0 independent of ρ ∈ R, (x, t) ∈ �(3δ), ε ∈ (0, 1).R0
k,α is the subclass of all

(r̂ε)ε∈(0,1) ∈ Rk,α such that r̂ε(ρ, x, t) = 0 for all ρ ∈ R, x ∈ �t , t ∈ [0, T0].
We remark that Rk,α andR0

k,α are closed under multiplication andRk,α ⊂ Rk−1,α .
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Lemma 2.6 Let 0 < ε ≤ ε1, dε be defined as before, δ′ ∈ [ δ
2 , 3δ] and (r̂ε)0<ε<1 ∈

L2(T1; L1(R) ∩ L2(R)), (aε)ε∈(0,1) ⊆ C(�(3δ)) such that

|aε(x, t)| ≤ C |dε(x, t)| j for all (x, t) ∈ �(3δ), ε ∈ (0, ε1]
for some C > 0 independent of ε, x, t and j ∈ N0. Then there is some C > 0, independent
of 0 < ε ≤ ε1, ε1 ∈ (0, 1) such that for each t ∈ [0, T ]

rε(x) := aε(x, t)r̂ε

(
dε(x, t)

ε
, Sε(x, t)

)
for x ∈ �t (3δ)

satisfies

‖rεϕ‖L1(�ε
t (δ′)) ≤ Cε1+ j‖ρ j r̂ε‖L2(T1;L1(R))‖ϕ‖H1(�ε

t (δ′)), (2.14)

‖rε‖L2(�ε
t (δ′)) ≤ Cε

1
2+ j‖ρ j r̂ε‖L2(T1;L2(R)) (2.15)

uniformly for all ϕ ∈ H1(�ε
t (δ

′)), t ∈ [0, T0], and ε ∈ (0, ε1].
Proof With the aid of the change of variables x = Xε(r , s), where r = dε(x, t), s = Sε(x, t),
we obtain

‖rεϕ‖L1(�ε
t (δ′)) =

∫ δ′

−δ′

∫
T1

|aε(Xε(r , s, t), t)| ∣∣r̂ε

( r
ε
, s, t

)∣∣ |ϕ(Xε(r , s, t))|Jε(r , s, t) ds dr

≤ C
∫
T1

∫
R

|r j ||r̂ε(
r
ε
, s, t)| dr sup

r∈(−δ′,δ′)
|ϕ(Xε(r , s, t))| ds

≤ Cε1+ j

(∫
T1

∣∣∣∣
∫
R

|ρ j r̂ε(ρ, s, t)| dρ
∣∣∣∣
2

ds

) 1
2
(∫

T1
sup

|r |≤δ′
|ϕ(Xε(r , s, t))|2 ds

) 1
2

≤ Cε1+ j ‖ρ j r̂ε‖L2(T1;L1(R))‖ϕ‖H1(�ε
t (δ′))

for all ε ∈ (0, ε1], t ∈ [0, T0], and ϕ ∈ H1(�). This proves the first estimate.
In the same way we estimate

‖rε‖2L2(�ε
t ( 3δ2 ))

=
∫ δ′

−δ′

∫
T1

|aε(Xε(r , s, t), t)|2 ∣∣r̂ε

( r
ε
, s, t

)∣∣2 Jε(r , s, t) ds dr

≤ C
∫
T1

∫
R

|r j |2|r̂ε(
r
ε
, s, t)|2 dr ds = Cε1+2 j‖ρ j r̂ε‖2L2(T1×R)

for all ε ∈ (0, ε1] and t ∈ [0, T0], which shows the second estimate. ��
Lemma 2.7 Let g ∈ S(R) and ζ ∈ C∞

0 (R) with supp ζ ⊆ [− 5δ
2 , 5δ

2 ]. Then there is constant
C > 0 such that for all t ∈ [0, T0], a ∈ H1(T1) and ϕ ∈ H1(�)d ∩ L2

σ (�) we have∣∣∣∣
∫

�t (3δ)
ζ ◦ d�g′(ρε(x, t))a(Sε(x, t))nε ⊗ nε : ∇ϕ(x) dx

∣∣∣∣ ≤ Cε
3
2 ‖a‖H1(T1)‖ϕ‖H1(3δ),

where nε = ∇dε.

Proof We use that

− nε

|nε| ⊗ nε

|nε| : ∇ϕ =
(
I − nε

|nε| ⊗ nε

|nε|
)

︸ ︷︷ ︸
Pε :=

: ∇ϕ (2.16)
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since divϕ = 0. This together with εnε · ∇g(ρε(x, t)) = g′(ρε(x, t))|nε|2 yields

I :=
∣∣∣∣
∫

�t (3δ)
ζ ◦ d�g′(ρε(x, t))a(Sε(x, t))nε ⊗ nε : ∇ϕ dx

∣∣∣∣
=
∣∣∣∣∣
∫

�t (
5δ
2 )

ζ ◦ d�ε(nε · ∇g(ρε(x, t)))a(Sε(x, t))
nε

|nε| ⊗ nε

|nε| : ∇ϕ dx

∣∣∣∣∣
≤
∣∣∣∣∣
∫

�t (
5δ
2 )

εg(ρε(x, t))nε · ∇ (ζ ◦ d�a(Sε(x, t))Pε : ∇ϕ) dx

∣∣∣∣∣
+
∣∣∣∣∣
∫

�t (
5δ
2 )

εg(ρε(x, t)) div nε (ζ ◦ d�a(Sε(x, t))Pε : ∇ϕ) dx

∣∣∣∣∣
for all ε ∈ (0, ε1), t ∈ [0, T0], where we used integration by parts in the last step. Using
product rule we obtain

I ≤
∣∣∣∣∣
∫

�t (
5δ
2 )

εg(ρε(x, t))Pε : ∇ [ζ ◦ d�a(Sε(x, t))(nε · ∇)ϕ] dx

∣∣∣∣∣
+
∣∣∣∣∣
∫

�t (
5δ
2 )

εg(ρε(x, t))(a(Sε(x, t))Qε + (∂sa)(Sε(x, t))Rε) : ∇ϕ dx

∣∣∣∣∣
for some uniformly bounded Qε,Rε . Hence another integration by parts leads to

I ≤
∣∣∣∣∣
∫

�t (
5δ
2 )

ζ ◦ d�εPε(∇g(ρε(x, t)))a(Sε(x, t)) · (nε · ∇)ϕ dx

∣∣∣∣∣
+ εC

∫
�ε

t (
11δ
4 )

|g(ρε(x, t))||a(Sε(x, t))| + |(∂sa)(Sε(x, t))||∇ϕ| dx,

where

Pε(∇g(ρε(x, t))) = Pε

(
nε

1

ε
g′(ρε(x, t)

)
= 0.

Now using g ∈ S(R) and (2.15) we obtain

I ≤ Cε
3
2 ‖a‖H1(T1) ‖ϕ‖H1(�t (2δ)) .

This finishes the proof. ��

2.3 Parabolic equations on evolving hypersurfaces

For T ∈ (0,∞) and r ∈ [0, 1] we shall denote the function spaces

XT ,r := L2(0, T ; H2+r (T1)) ∩ H1(0, T ; Hr (T1)), XT := XT , 12
.

We equip XT with the norm

‖u‖XT = ‖u‖L2(0,T ;H5/2(T1)) + ‖u‖H1(0,T ;H1/2(T1)) + ‖u|t=0‖H3/2(T1).

Then it holds

XT ↪→ C([0, T ]; H3/2(T1)) ∩ L4(0, T ; H2(T1)) (2.17)
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and the operator norm of the embedding is uniformly bounded in T .
In the following theorem we derive uniform estimates for a class of degenerate parabolic

partial differential equations.

Theorem 2.8 Let 0 < T ≤ T1 < ∞ and κ ∈ (0, 1], r ∈ [0, 1] and aκ , bκ , cκ : T1×[0, T ] →
R be twice continuously differentiable with uniformly bounded C2-norms with respect to
κ ∈ (0, 1]. Moreover, let there be some c0 > 0, independent of κ , such that cκ (s, t) ≥ c0
for all (s, t) ∈ T

1 × [0, T ]. For every g ∈ L2(0, T ; Hr (T1)) and h0 ∈ H1+r (T1) there is a
unique solution h ∈ XT ,r of

∂t h + aκ∂sh + bκh − κcκ∂2s h = g on T
1 × [0, T ], (2.18)

h|t=0 = h0 on T
1. (2.19)

Moreover, there is some C = C(T1) > 0 independent of κ ∈ (0, 1], T ∈ (0, T1], h, gκ , h0

such that

‖h‖C([0,T ];Hr (T1)) + √
κ‖h‖L2(0,T ;H1+r (T1)) ≤ C

(‖g‖L1(0,T ;Hr (T1)) + ‖h0‖Hr (T1)

)
(2.20)√

κ‖h‖C([0,T ];H1+r (T1)) + κ‖h‖L2(0,T ;H2+r (T1)) ≤ C
(‖g‖L2(0,T ;Hr (T1)) + ‖h0‖H1+r (T1)

)
.

(2.21)

Remark 2.9 Note that Theorem 2.8 can be applied for right hand sides gκ depending on κ .

Proof of Theorem 2.8 Existence of a unique solution follows by standard results on linear
parabolic equations. Therefore we only need to prove the uniform estimates.

First we consider the case r = 0. Then testing (2.18) with h and integrating with respect
to t we obtain

sup
0≤t≤T

‖h(t)‖2L2(T1)
+ κc0

2

∫ T

0

∫
T1

|∂sh|2 ds dt

≤ C sup
s∈T1,t∈[0,T ]

(|∂saκ (s, t)| + |bκ (s, t)| + |∂scκ (s, t)|2)
∫ T

0

∫
T1

|h|2 ds dt

+
∫ T

0
‖g(t)‖L2(T1) dt sup

0≤t≤T
‖h(t)‖L2(T1).

Hence Young’s and Gronwall’s inequality imply (2.20).
Next let r = 1. Then differentiating (2.18) with respect to s yields for h̃ = ∂sh

∂t h̃ + ãκ∂s h̃ + b̃κ h̃ − κcκ∂2s h̃ = ∂s g on T
1 × [0, T ], (2.22)

for some ãκ , b̃κ : T1×[0, T ] → R, which are smooth and haveC1-norms uniformly bounded
in κ ∈ (0, 1]. Hence the same estimate as before yields

‖∂sh‖C([0,T ];L2(T1)) + √
κ‖∂sh‖L2(0,T ;H1(T1)) ≤ C

(‖g‖L1(0,T ;H1(T1)) + ‖h0‖H1(T1)

)
for some C > 0 independent of κ ∈ (0, 1], T ∈ (0, T1] and g, h0. This implies (2.20) in the
case r = 1. Finally, (2.20) for the case r ∈ [0, 1] follows by interpolation.

In order to prove (2.21) in the case r = 0 we test (2.18) with −κ∂2s h and obtain

κ
d

dt

∫
T1

|∂sh|2
2

ds + κ2
∫
T1

cκ |∂2s h|2 ds = κ

∫
T1

aκ∂sh∂2s h ds −
∫
T1

(g + bκh)κ∂2s h ds,
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where

κ

∫
T1

aκ∂sh∂2s h ds = −κ

∫
T1

∂saκ

|∂sh|2
2

ds ≤ Cκ‖h(t)‖2H1(T1)
,

−
∫
T1

(g + bκh)κ∂2s h ds ≤ C(‖g(t)‖L2(T1) + ‖h(t)‖L2(T1))κ‖∂2s h(t)‖L2(T1).

Hence integration in time, (2.20) with r = 0 and Young’s inequality finally yield (2.21).
In the case r = 1 we use again that h̃ = ∂sh solves (2.22). Testing this equation with

−κ∂2s h̃ yields in the same way as before

κ
d

dt

∫
T1

|∂s h̃|2
2

ds + κ2
∫
T1

cκ |∂2s h̃|2 ds = κ

∫
T1

ãκ∂s h̃∂2s h̃ ds −
∫
T1

(∂s g + b̃κ h̃)κ∂2s h ds

where

κ

∫
T1

ãκ∂s h̃∂2s h̃ ds = −κ

∫
T1

∂s ãκ

|∂s h̃|2
2

ds ≤ Cκ‖h̃(t)‖2H1(T1)
,

−
∫
T1

(∂s g + b̃κ h̃)κ∂2s h̃ ds ≤ C(‖∂s g(t)‖L2(T1) + ‖∂sh(t)‖L2(T1))κ‖∂2s h̃(t)‖L2(T1).

Therefore integration in time, (2.20) with r = 1 and Young’s inequality yield (2.21) in the
case r = 1. Finally, the case r ∈ (0, 1) follows again by interpolation.

For the construction of the approximate solutions we will essentially use solution to the
following linearized system:

∂tw±
ε + w±

ε · ∇v±
0 + v±

0 · ∇w±
ε − ν±�w±

ε + ∇q±
ε = f± in�ε,±

t , t ∈ (0, T ), (2.23)

divw±
ε = 0 in �

ε,±
t , t ∈ (0, T ), (2.24)

�wε� = 0, �νDwε − qεI� · nε − σ(��ε hε) ◦ Sεnε = 0 on �ε
t , t ∈ (0, T ), (2.25)

w−
ε |∂� = 0 on ∂� × (0, T ), (2.26)

w±
ε |t=0 = w0 in �

ε,±
0 , (2.27)

together with

∂t hε + (nε · wε) ◦ Xε|r=0 + aε∂shε + bεhε − κε��ε hε

= (nε · u) ◦ Xε|r=0 in T
1 × (0, T ), (2.28)

hε|t=0 = h0 in T
1, (2.29)

wherew±
ε = wε|�ε,± , q±

ε = q|�ε,± , nε = ∇dε and u : �× (0, T ) → R
2 is given. Moreover,

T ∈ (0, T0]
�

ε,±
t := (�±

t \ �t (3δ)
) ∪ {x ∈ �t (3δ) : dε(x, t) ≷ 0}, �ε,± :=

⋃
t∈[0,T ]

�
ε,±
t × {t},

�ε
t := {x ∈ �t (3δ) : dε(x, t) = 0}, �ε :=

⋃
t∈[0,T ]

�ε
t × {t}

and

��ε hε(s, t) := (�Sε)(x, t)|x=Xε(0,s,t) · ∂shε(s, t) + |∇Sε(x, t)|2|x=Xε(0,s,t)∂
2
s hε(s, t)
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for all s ∈ T
1, t ∈ (0, T ). We note that by chain rule

�(hε(Sε(x, t), t)) = ��ε hε(Sε(x, t), t) for all x ∈ �(3δ), t ∈ (0, T )

for every sufficiently smooth hε : T1 × (0, T ) → R.
More precisely, (2.23)–(2.25) are understood in the following weak sense:

〈∂twε(t),ϕ〉V (�)′,V (�) +
∫

�

(wε · ∇v0 + v0 · ∇wε) · ϕ dx +
∑
±

∫
�

ε,±
t (t)

ν± Dwε : Dϕ dx

= 〈f(t),ϕ〉V (�)′,V (�) + σ

∫
�ε

t

(��ε hε) ◦ Sεnε · ϕ dσ (2.30)

for all ϕ ∈ V (�) := H1
0 (�)2 ∩ L2

σ (�) and almost every t ∈ (0, T ), where as usual

L2
σ (�) = {ϕ ∈ C∞

0 (�)d : divϕ = 0}L2(�)d

.

Theorem 2.10 For ε ∈ (0, 1] let κε ∈ (0, 1], aε, bε : T1 × [0, T ] → R be continu-
ously differentiable with uniformly bounded C1-norms with respect to ε ∈ (0, 1]. Then
for every f ∈ L2(0, T ; V (�)′)d , u ∈ H1(0, T ; V (�)′) ∩ L2(0, T ; V (�)), w0 ∈ L2

σ (�),
and h0 ∈ H1(T1) there is a unique solution wε ∈ H1(0, T ; V (�)′) ∩ L2(0, T ; V (�)),
hε ∈ H1(0, T ; L2(T1))∩L2(0, T ; H2(T1)) of (2.23)–(2.30). Moreover, there is some C > 0
independent of ε ∈ (0, 1], h, g, h0, and T ∈ (0, T0] such that

‖hε‖L∞(0,T ;H1) + √
κε‖∂2s hε‖L2((0,T )×T1) + ‖wε‖H1(0,T ;V (�)′) + ‖wε‖L2(0,T ;H1)

≤ C
(‖f‖L2(0,T ;V (�)′) + ‖u‖L2(0,T ;H1) + ‖∂tu‖L2(0,T ;V (�)′) + ‖w0‖L2 + ‖h0‖H1

)
.

(2.31)

Finally, if additionally f ∈ L2(0, T ; L2(�)2), w0 ∈ V (�), and h0 ∈ H
3
2 (T1), then

‖hε‖
H1(0,T ;H

1
2 )∩L2(0,T ;H

5
2 )

+ ‖wε‖H1(0,T ;L2) + ‖wε‖L2(0,T ;H2(�
ε,±
t ))

≤ C

κε

(‖f‖L2((0,T )×�) + ‖u‖L2(0,T ;H1) + ‖∂tu‖L2(0,T ;V (�)′) + ‖w0‖H1 + ‖h0‖H1
)

(2.32)

Proof First of all existence of a unique solution wε ∈ H1(0, T ; V (�)′) ∩ L2(0, T ; V (�)),
hε ∈ H1(0, T ; H−1(T1)) ∩ L2(0, T ; H1(T1)) follows from the standard theory of abstract
parabolic evolution equations for the Gelfand triple

V = V (�) × H1(T1), H = L2
σ (�) × L2(T1), V ′ = V (�)′ × H−1(T1).

Moreover, hε ∈ H1(0, T ; L2(T1)) ∩ L2(0, T ; H2(T1)) follows from standard regularity
theory since nε · wε ◦ Xε|r=0 ∈ L2(0, T ; L2(T1)). Hence it only remains to show the
uniform estimates.

Proof of (2.31): First of all we can reduce to the case u = 0 simply by replacing w by
w − u in the equations, where w0 is replaced by w0 − u|t=0 and f has to be replaced by f̃
defined by

〈 f̃ (t),ϕ〉 := 〈f(t),ϕ〉
− 〈∂tu(t),ϕ〉V (�)′,V (�) +

∫
�

(u · ∇v0 + v0 · ∇u) · ϕ dx +
∑
±

∫
�

ε,±
t (t)

ν± Du : Dϕ dx
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for all ϕ ∈ V (�) and t ∈ (0, T ). Adding u afterwards to wε yields the desired solution.
Since

‖ f̃ ‖L2(0,T ;V (�)′) ≤ ‖f‖L2(0,T ;V (�)′) + C
(‖u‖L2(0,T ;H1) + ‖∂tu‖L2(0,T ;V (�)′)

)
one also obtains (2.31).

Now let u ≡ 0. Choosing ϕ = wε in (2.30) and testing (2.28) with |∂s Xε(0, s, t)|��ε hε

we obtain

d

dt

(∫
�

|wε(t)|2
2

dx +
∫
T1

|∇Sε|2|∂shε(t)|2
2

|∂s Xε(0, s, t)| ds

)
+
∑
±

∫
�±

2ν±|Dwε|2 dx

+ κε

∫
T1

|∂s Xε(0, s, t)||∇Sε|4|∂2s hε(t)|2 ds = 〈f, ϕ〉V (�)′,V (�) −
∑
±

∫
�±(t)

w±
ε · ∇v±

0 · w±
ε dx

+
∫
T1

(ãε∂shε + b̃εhε)∂
2
s hε ds +

∫
T1

(
c̃ε∂shε(t) + d̃εhε(t)

)
∂shε(t) dx

≤
(

‖f‖L2(�) + ‖wε‖L2(�) + ‖a‖
H− 1

2 (�ε
t )

+ ‖(hε, ∂shε)‖L2(T1)

) (‖wε‖H1(�) + ‖∂shε‖L2(T1)

)

for some smooth and uniformly bounded ãε, b̃ε, c̃ε, d̃ε : T1 × [0, T ] → R, where we note
that∫

�ε
t

��ε hε ◦ Sεnε · wε dσ =
∫
T1

(nε · wε)(Xε(0, s, t))��ε hε(s, t)|∂s Xε(0, s, t)| ds and

∫
T1

(ãε∂shε + b̃εhε)∂
2
s hε ds = −

∫
T1

(
(∂s ãε)

|∂shε|2
2

+ ∂s(b̃εhε)∂shε

)
ds.

Hence Young’s and Gronwall’s inequality yield the desired estimate (2.31).
Proof of (2.32): Now assume additionally that f ∈ L2(0, T ; L2(�)2), w0 ∈ V (�) and

h0 ∈ H
3
2 (T1). (Note that we do not reduce to the case u ≡ 0 in this case since this is not com-

patiblewith the assumed regularity foru.) The estimate of ‖hε‖
H1(0,T ;H

1
2 (T1))∩L2(0,T ;H

5
2 (T1))

follows directly from (2.21) for r = 1
2 and (2.31) using the equation (2.28). Hence

‖��ε h ◦ Sε‖
H

1
4 (0,T ;L2(�ε

t ))∩L2(0,T ;H
1
2 (�ε

t ))

≤ C

κε

(
‖f‖L2((0,T )×�) + ‖g‖

H
1
4 (0,T ;L2)∩L2(0,T ;H

1
2 )

+ ‖w0‖H1 + ‖h0‖H1

)

Now the estimate of ‖wε‖H1(0,T ;L2) +‖wε‖L2(0,T ;H2(�
ε,±
t ))

follows from standard estimates
for the two-phase Stokes system, cf. e.g. [30] for the case that the interface �ε

t is independent
of t ∈ (0, T ). The result in the present case that �ε

t evolves smoothly with respect to t can be
shown by the same perturbation argument as in the proof of Theorem A.14 in the appendix.

��

2.4 Spectral estimate

For the spectral estimate in ε-coordinates as in Sect. 2.1 let ε1 > 0 be as in Theorem 2.1 and
assume that (2.6) hold true. Moreover, we consider the rescaled variable

ρε(x, t) := dε(x, t)

ε
for (x, t) ∈ �(3δ). (2.33)
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Finally, we assume the following structure of the approximate solution: let

c̃A
ε (x, t) := θ0(ρε(x, t)) + εμ pε(Sε, t)θ1(ρε) + O(ε2), (2.34)

whereμ ∈ [1, 2) and pε : T1×[0, T0] → R ismeasurablewith ‖pε‖∞ ≤ C and θ1 ∈ L∞(R)

with ∫
R

f ′′′(θ0)(θ ′
0)

2θ1 dρ = 0. (2.35)

We set

cA
ε := ζ(

d0
δ

)c̃A
ε + (1 − ζ(

d0
δ

))(χ�+(t) − χ�−(t)) in �, (2.36)

where ζ : R → R is a smooth cutoff-function with ζ = 1 for |r | ≤ 2 and ζ = 0 for |r | ≥ 5
2 .

The following spectral estimate will be a key ingredient for the proof of convergence.

Lemma 2.11 (Spectral estimate) Let the above assumptions in this section hold. Then there
are some uniform CL , cL > 0, ε0 ∈ (0, ε1] such that for every ψ ∈ H1(�), t ∈ [0, T0], and
ε ∈ (0, ε0] we have∫

�

(
|∇ψ |2 + f ′′(cA

ε (., t))

ε2
ψ2
)

dx

≥ −CL‖ψ‖2L2(�)
+ ‖∇ψ‖2

L2(�\�ε
t ( 3δ2 ))

+ cL‖∇τ εψ‖2
L2(�ε

t ( 3δ2 ))
,

where ∇τ εψ is as in (2.8) and �ε
t (

3δ
2 ) := �ε( 3δ2 ) ∩ (R2 × {t}) with Xε, �ε( 3δ2 )), and ε1 are

as in Theorem 2.1.

Remark 2.12 Because of (2.4) and |∇ψ | ≥ c|∇τεψ | (see e.g. the proof below), the result also
holds for �t (2δ) instead of �ε

t (
3δ
2 ) with a possibly smaller constant cL .

Proof of Lemma 2.11 First, due to (2.4) and the definition (2.36) of cA
ε , we obtain that for

ε > 0 small it holds

f ′′(cA
ε ) ≥ 0 in �ε(

3δ
2 ).

Therefore let us first consider the integral over �ε(
3δ
2 ): we can transform it into (dε, Sε)-

coordinates and get
∫

�ε(
3δ
2 )

(
|∇ψ |2 + f ′′(cA

ε )

ε2
ψ2
)
dx =

∫
T1

∫ 3δ
2

− 3δ
2

[
|∇ψ |2 ◦ Xε + f ′′(c̃A

ε )

ε2
ψ2

ε

]
Jε dr ds,

where we have set ψε := ψ ◦ Xε and Jε is defined in (2.5). Via the chain rule we have the
following transformation identity:

|∇ψ |2 ◦ Xε = (∇(r ,s)ψε)
�
( |∇dε|2 ∇dε · ∇Sε

∇dε · ∇Sε |∇Sε|2
)∣∣∣∣

Xε

∇(r ,s)ψε. (2.37)

Therefore the asymptotics (2.6) together with Young’s inequality yields for ε small

|∇ψ |2 ◦ Xε ≥ (1 − Cε2)|∂rψε|2 + 1

2
|∇τεψ |2 ◦ Xε.

Altogether we obtain
∫

�

(
|∇ψ |2 + f ′′(cA

ε (., t))

ε2
ψ2
)
dx ≥ ‖∇ψ‖2

L2(�\�ε
t ( 3δ2 ))

+ 1

2
‖∇τε ψ‖2

L2(�ε
t ( 3δ2 ))

− C‖ψ‖2
L2(�ε

t ( 3δ2 ))
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+ (1 − Cε2)

∫
T1

∫ 3δ
2

− 3δ
2

[
|∂r ψε|2 + f ′′(c̃A

ε (., t))

ε2
ψ2

ε

]
Jε dr ds.

(2.38)

The last term on the right hand side of (2.38) can be treated by well-known scaling and
perturbation arguments as well as the spectral properties of differential operators on the real
line similar to Chen [12]. More precisely, except for the dependency of Jε on ε (which is
not a problem because it is uniform in ε) the abstract 1D-spectral estimates in Moser [29,
Section 5.1.3] are applicable after rescaling and yield the desired estimate. This shows the
spectral estimate in Lemma 2.11. ��

Furthermore, we need more refined estimates of spectral decomposition type:

Corollary 2.13 Let the previous assumptions be valid and let t ∈ [0, T0] and ψ ∈
H1(�ε

t (
3δ
2 )), where �ε

t (
3δ
2 ) = {x ∈ � : (x, t) ∈ �ε( 3δ2 )} with �ε( 3δ2 ) from Theorem 2.1.

Moreover, let �ε ∈ R be such that
∫

�ε
t ( 3δ2 )

|∇ψ |2 + f ′′ (cA
ε (., t)

)
ε2

ψ2dx ≤ �ε

ε
(2.39)

and denote Iε := (− 3δ
2ε , 3δ

2ε

)
. Then, for ε > 0 small enough, there exist functions Zε ∈

H1(T1), ψR
ε ∈ H1(�ε

t (
3δ
2 )) and smooth �ε : Iε × T

1 → R such that

ψ(x) = ε− 1
2 Zε(s)

(
βεθ

′
0(ρ) + �ε(ρ, s)

)+ ψR
ε (x) for all x ∈ �ε

t (
3δ
2 ) (2.40)

where

s = Sε(x, t), ρ = dε(x, t)

ε
(2.41)

for almost all x ∈ �ε
t (

3δ
2 ) and βε := ‖θ ′

0‖−1
L2(Iε)

. Moreover,

‖ψR
ε ‖2

L2
(
�ε

t ( 3δ4 )
) ≤ C

(
ε�ε + ε2 ‖ψ‖2

L2
(
�ε

t ( 3δ2 )
)
)

, (2.42)

‖Zε‖2H1(T1)
+ ‖∇τ εψ‖2

L2(�ε
t ( 3δ2 ))

+ ‖ψR
ε ‖2

H1
(
�ε

t ( 3δ2 )
) ≤ C

(
‖ψ‖2

L2
(
�ε

t ( 3δ2 )
) + �ε

ε

)
,

(2.43)

and with Jε from (2.5)

sup
s∈T1

(∫
Iε

(
�ε(ρ, s)2 + ∂ρ�ε(ρ, s)2

)
Jε (ερ, s, t) dρ

)
≤ Cε2. (2.44)

Proof One can proceed similar to Abels, Marquardt [6, Corollary 2.12]. Here one uses
the transformation into the ε-coordinates from Theorem 2.1 and spectral properties of 1D-
differential operators on the real line similar to Chen [12], cf. also Moser [29, Section 5.1.3].

This yields the result with ‖Zε Jε(0, ., t)
1
2 ‖H1(T1) instead of ‖Zε‖H1(T1) on the left hand

side of (2.43). However, the additional factor is not a problem, because one can control

Jε(0, ., t)− 1
2 in C1(T1) independent of ε using the form (2.5) and the assumptions on dε

and Sε . Hence with the chain rule we obtain ‖Zε‖H1(T1) ≤ C‖Zε Jε(0, ., t)
1
2 ‖H1(T1) and the

result follows. ��
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Remark 2.14 For u ∈ H1(�ε
t (

3δ
2 )) let us introduce the ε-dependent norms

‖u‖Vε = inf

{
‖Z‖H1(T1) + ‖v‖H1(�ε

t ( 3δ2 )) + 1

ε
‖v‖L2(�ε

t ( 3δ2 )) : Z ∈ H1(T1), v ∈ H1(�ε
t (

3δ
2 )),

u(x) = 1√
ε

Z(s)θ ′
0(ρ) + v(x) for all x ∈ �ε

t (
3δ
2 )

}
,

with the abbreviations from (2.41). Corollary 2.13 yields

‖u‖2Vε
+ ‖∇τε u‖2

L2(�ε
t ( 3δ2 ))

≤ C

(∫
�ε

t ( 3δ2 )

|∇u|2 + 1

ε2
f ′′(cA

ε (., t))u2 dx + ‖u‖2
L2(�ε

t ( 3δ2 ))

)
.

Here note that βε from Corollary 2.13 is bounded uniformly for ε small and in order to obtain
the estimate one has to take care of the �ε-term from Corollary 2.13. However, this can be
done by using the estimates in Corollary 2.13 and a rescaling argument.

We note that for every ε > 0 the norm ‖.‖Vε is equivalent to the standard norm in H1( 3δ2 ))

(with ε-dependent constants). For the estimates of some critical remainder terms the choice
of this norm will be essential. To estimate such remainder terms the following lemma will
be used.

Lemma 2.15 Fix t ∈ [0, T0]. Let u ∈ H1(�ε
t (

3δ
2 )) and rε : �ε

t (
3δ
2 ) → R be a finite sum of

terms of the form

a(ρ)wε(Sε),

where a ∈ R0,α , wε ∈ L2(T1) and such that∫
R

rε(ρ, s, t)θ ′
0(ρ) dρ = 0 for all s ∈ T

1. (2.45)

Then there are constants C > 0, ε0 ∈ (0, ε1] independent of t ∈ [0, T0] such that for
ε ∈ (0, ε0] ∣∣∣∣∣

∫
�ε

t ( 3δ2 )

rεu dx

∣∣∣∣∣ ≤ Cε
3
2 ‖wε‖L2(T1)‖u‖Vε .

Proof This can be done in the analogous way as in [3, Lemma 2.11]. ��
Remark 2.16 If we define dual norm

‖ f ‖V ′
ε

:= sup
‖ϕ‖Vε ≤1

|〈 f , ϕ〉| for f ∈ (H1( 3δ2 )))′,

the lemma states that ∥∥∥∥∥
∫

�ε
t ( 3δ2 )

gε · dx

∥∥∥∥∥
V ′

ε

≤ Cε
3
2 ‖wε‖L2(T1).

3 Formally matched asymptotics

In this section we will discuss the construction of the approximate solutions except some
higher order terms, which will be added in the next section. In comparision with previous
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works the main difference is that we obtain an expansion in terms of integer powers of ε
1
2 ,

which means we consider expansions in terms of εk with k ∈ 1
2N0.

First of all we note that

div(∇cε ⊗ ∇cε) = 1

2
∇(|∇cε|2

)+ �cε∇cε.

Therefore we can rewrite (1.1)–(1.3) as

∂tvε + vε · ∇vε − div(2ν(cε)Dvε) + ∇ pε = −ε�cε∇cε, (3.1)

div vε = 0, (3.2)

∂t cε + vε · ∇cε = ε
1
2 �cε − ε− 3

2 f ′(cε) (3.3)

in � × (0, T0) by replacing pε by pε + 1
2 |∇cε|2.

3.1 The outer expansion

We assume that in �±\� the solutions of (3.1)–(3.3) have the expansions

cε(x, t) ≈
∑

k∈ 1
2N0

εkc±
k (x, t), vε(x, t) ≈

∑
k∈ 1

2N0

εkv±
k (x, t),

pε(x, t) ≈
∑

k∈ 1
2N−2

εk p±
k (x, t),

where N−2 = N0 ∪ {−1,−2} and c±
k , v

±
k and p±

k are smooth functions defined in �±. Here
ϕε(x, t) ≈∑k≥0,k∈ 1

2N0
εkϕ±

k (x, t) for ϕε = cε, vε (analogously for pε) is understood in the

sense that for any N ∈ 1
2N0 we have

ϕε(x, t) −
∑

k∈ 1
2N0,k≤N

εkϕ±
k (x, t) = O(εN+ 1

2 ) in �±

and the same if ϕε and ϕk are replaced by ∂
j

t ∂α
x ϕε and ∂

j
t ∂α

x ϕ±
k , respectively, for any j ∈ N0,

α ∈ N
n
0.

Plugging this ansatz into (3.1)–(3.3) and (1.4), using a Taylor expansion for f ′ and ν, the

Dirichlet boundary condition for cε , and matching theO(ε−1),O(ε− 1
2 ) terms one obtains in

a standard manner (cf. e.g. [3, Appendix])

c±
0 = ±1, c±

k = 0 for k ≥ 1

2
, ∇ p±

−1 = ∇ p±
− 1

2
= 0 in �± (3.4)

and

∂tv
±
k + v±

0 · ∇v±
k + v±

k · ∇v±
0 − ν±�v±

k + ∇ p±
k = −

∑
j∈ 1

2N, 12 ≤ j≤k− 1
2

v±
j · ∇v±

k− j in �±, (3.5)

div v±
k = 0 in �±, (3.6)

v−
k |∂� = 0 on ∂� (3.7)

for every k ≥ 0. For simplicity we take

p±
−1 = p±

− 1
2

= 0. (3.8)
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Remark 3.1 As in [3, 5] we extend (c±
k , v±

k , p±
k ), k ≥ 0, defined on �±, to �± ∪�(3δ) such

that div v±
k = 0 in �± ∪ �(3δ) for all k ≥ 0. We refer to [3, Remark A.1] for the details.

For the following we define

W±
k (x, t) = ∂tv

±
k (x, t) +

∑
j∈ 1

2N0, j≤k

v±
k− j · ∇v±

j − ν±�v±
k (x, t) + ∇ p±

k (x, t) (3.9)

W± =
∑

k∈ 1
2N0

εkW±
k , (3.10)

for (x, t) ∈ �± ∪ �(2δ). Because of (3.5), it holds W±
k (x, t) = 0 for all (x, t) ∈ �±.

3.2 The inner expansion

Close to the interface � we introduce a stretched variable

ρ = ρ(x, t) := dε(x, t)

ε
for all (x, t) ∈ �(3δ) (3.11)

for ε ∈ (0, 1), where dε : �(3δ) → R satisfies

|∇dε(x, t)|2 ≈ 1 for all (x, t) ∈ �(3δ), (3.12)

which has to be understood as |∇dε(x, t)|2 = 1 + O(εN+ 1
2 ) for any N ∈ 1

2N0 similary
as before. Formally, dε is the signed distance function to �ε , which is the 0-level set of cε.
Moreover, we assume the asymptotic expansion

dε(x, t) ≈
∑

k∈ 1
2N0

εkdk(x, t) for (x, t) ∈ �(3δ)

understood in the same way as before, where d0(x, t) = d�t (x) for all (x, t) ∈ �(3δ). Here
and in the following we assume already that (v±

0 , p±
0 , �) is a smooth solution of (1.6)–(1.12),

although these equations can also be derived throughout the formal expansion. Since for the
asymptotic expansion as ε → 0 only small values of ε > 0 matter, we may assume that

|dε(x, t) − d0(x, t) − √
εd1/2(x, t)| ≤ M0ε for all (x, t) ∈ �(3δ) (3.13)

for some M0 > 0. Moreover, we choose η : R → [0, 1] such that η = 0 in (−∞,−1], η = 1
in [1,∞), η − 1

2 is odd and η′ ≥ 0 in R. Then we have by integration by parts
∫ +∞

−∞
ν(θ0)η

′(ρ) dρ =
[
ν(θ0(ρ))

(
η(ρ) − 1

2

)]∣∣∣∣
∞

ρ=−∞
= ν+ + ν−

2
=: ν (3.14)

since ν′(θ0) is even by the assumptions on ν′. Furthermore, we define

ηε,±(ρ, x, t) = η(−M − 1 ± ρ ∓ ε− 1
2 d1/2(x, t)) for ρ ∈ R, (x, t) ∈ �(3δ).

Remark 3.2 In the following we will insert terms W±ηε,± in the equation to ensure some
matching conditions. We have to make sure that these terms vanish if ρ = dε(x,t)

ε
. Because of

(3.13), we have for ρ = dε(x,t)
ε

and (x, t) ∈ �(3δ)with d�(x, t) ≥ 0 that ρ−ε− 1
2 d1/2(x, t) ≥

−M . Hence ηε,−(ρ, x, t) = 0 and, since (x, t) ∈ �+, we have W+(x, t) = 0. Altogether

W+ηε,+ + W−ηε,− = 0 in �+.

In the same way one shows this in �−.
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For the inner expansion we use the ansatz

cε(x, t) = ĉε

(
ρ, x, t

)
, vε(x, t) = v̂ε

(
ρ, x, t

)
, pε(x, t) = p̂ε

(
ρ, x, t

)
for (x, t) ∈ �(3δ), where ρ ∈ R is as in (3.11), and use it in the expansion of (3.1)–(3.3) for
smooth ĉε, p̂ε : R × �(3δ) → R, v̂ε : R × �(3δ) → R

2.
We use that

div(2ν(cε)Dvε) = ε−2∂ρ

(
ν(ĉε)∂ρ v̂ε

)− ε−1∂ρ

(
ν(ĉε) div v̂ε

)∇dε

+ ε−1∂ρ

(
2ν(ĉε)Dv̂ε

)) · ∇dε + ε−1 div
(
2ν(ĉε)Dd v̂ε

)+ div
(
2ν(ĉε)Dv̂ε

)
, (3.15)

provided (3.2) holds, where

Dv̂ε = 1

2
(∇v̂ε + (∇v̂ε)

T ), Dd v̂ε = 1

2

(
∂ρ v̂ε ⊗ ∇dε + (∂ρ v̂ε ⊗ ∇dε)

T ).
Moreover, we note that

∇cε = ε−1∂ρ ĉε∇dε + ∇ ĉε,

�cε = ε−2∂ρρ ĉε + 2ε−1∇∂ρ ĉε · ∇dε + ε−1∂ρ ĉε�dε + �ĉε,

where we have used (3.12). This yields

ε�cε∇cε = ε−2∂ρ ĉε∂ρρ ĉε∇dε + ε−1
Aε + Bε + εCε, (3.16)

where

Aε = ∂ρρ ĉε∇ ĉε + 2∇∂ρ ĉε · ∇dε∂ρ ĉε∇dε + (∂ρ ĉε

)2
�dε∇dε,

Bε = 2∇∂ρ ĉε · ∇dε∇ ĉε + ∂ρ ĉε�dε∇ ĉε + ∂ρ ĉε�ĉε∇dε,

Cε = �ĉε∇ ĉε.

Hence for ρ as in (3.11) the system (3.1)–(3.3) is equivalent to

∂ρ

(
ν(ĉε)∂ρ v̂ε

) = 2∂ρ ĉε∂ρρ ĉε∇dε + ε

(
∂ρ v̂ε∂t dε + v̂ε · ∇dε∂ρ v̂ε + ∂ρ p̂ε∇dε + Aε

− ∂ρ

(
2ν(ĉε)Dv̂ε

) · ∇dε − div
(
2ν(ĉε)Dd v̂ε

)+ ∂ρ

(
ν(ĉε) div v̂ε

)∇dε

)

+ ε2
(

∂t v̂ε + v̂ε · ∇v̂ε + ∇ p̂ε − div
(
2ν(ĉε)Dv̂ε

)+ W+ηε,+ + W−ηε,−
)

+ ε2Bε + ε3Cε + (ν(θ0)η
′(ρ)

)′uε

(
dε − ερ

)+ εlεη′(ρ)
(
dε − ερ

)
,

(3.17)

∂ρ v̂ε · nε = −ε divx v̂ε + uε · ∇dεη
′(ρ)

(
dε − ερ

)
, (3.18)

∂2ρ ĉε − f ′(ĉε) = ε
1
2

(
∂ρ ĉε∂t dε + ∂ρ ĉεv̂ε · ∇dε

)
− ε

(
∂ρ ĉε�dε + 2∇∂ρ ĉε · ∇dε

)

+ ε
3
2

(
∂t ĉε + v̂ε · ∇ ĉε

)
− ε2�ĉε + ε

1
2 ĝε (dε − ερ) . (3.19)

We note that by the definition of W± the right-hand side of (3.17) converges exponentially
to zero as |ρ| → ∞. Here we introduced uε(x, t) and lε(x, t) for (x, t) ∈ �(3δ) in a similar
manner as in [8]. lε will ensure the compatibility conditions in �(3δ)\� for (3.17) and uε

will ensure the matching conditions for vε on �(3δ)\�. Moreover, an auxiliary function
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ĝε(ρ, x, t) = εgεη
′(ρ) − θ ′

0(ρ)φ̂ε is introduced, which is used to satisfy the compatibility
conditions in �(3δ)\� for (3.19). Note that the extra terms vanish on the relevant set

Sε := {(ρ, x, t) ∈ R × �(3δ) : ρ = dε(x,t)
ε

}
.

By the definition of ĝε we have

ε
1
2 ĝε (dε − ερ) = −ε

5
2 η′(ρ)ρgε + ε

3
2
(
η′(ρ)gεdε + θ ′

0(ρ)ρφε
)− ε

1
2 θ ′

0(ρ)φ̂εdε.

More precisely, we choose the auxiliary functions to have expansions of the form

φ̂ε(ρ, x, t) = φ̂0(ρ, x, t) + ε
1
2 φ̂ 1

2
(ρ, x, t) in �(3δ)

with

φ̂0 = ∂t d� + v̂0 · ∇d�

d�

, (3.20)

φ̂ 1
2

=
∂t d 1

2
+ v̂0 · ∇d 1

2
+ v̂ 1

2
· ∇d� − φ̂0d 1

2
− �d�

d�

, (3.21)

and

uε(x, t) ≈
∑

k∈ 1
2N0

uk(x, t)εk, gε(x, t) ≈
∑

k∈ 1
2N0

gk(x, t)εk, lε(x, t) ≈
∑

k∈ 1
2N0

lk(x, t)εk

(3.22)

for (x, t) ∈ �(3δ). We note that φ̂0, φ̂ 1
2
are defined on � as limits d� → 0, which exist due

to (1.10), (3.30), and since it will turn out that v̂|� = v±
0 |� , cf. (3.53) below. In particular,

φ̂0 = ∇(∂t d� + v̂0 · ∇d�

) · ∇d� = ∇(v̂0 · ∇d�) · ∇d� on �, (3.23)

φ̂ 1
2

= ∇(∂t d 1
2

+ v̂0 · ∇d 1
2

+ v̂ 1
2

· ∇d� − φ̂0d 1
2

− �d�

) · ∇d� on � (3.24)

since ∇d� · ∇∂t d� = 1
2∂t |∇d�|2 = 0. Here, in order to obtain (3.1)–(3.3) (approximately),

the equations above only have to hold in Sε = {
(ρ, x, t) ∈ R × �(3δ) : ρ = dε(x,t)

ε

}
.

But in the following we consider them as ordinary differential equations in ρ ∈ R, where
(x, t) ∈ �(3δ) are seen as fixed parameters. Thus we require from now on that (3.17)–(3.19)
are fulfilled even for all (ρ, x, t) ∈ R × �(3δ).

Furthermore, we assume that we have the expansions

ĉε(ρ, x, t) ≈
∑

k∈ 1
2N0

εk ĉk(ρ, x, t), v̂ε(ρ, x, t) ≈
∑

k∈ 1
2N0

εk v̂k(ρ, x, t),

p̂ε(ρ, x, t) ≈
∑

k∈ 1
2N−2

εk p̂k(ρ, x, t).

understood in the same way as before. Actually, in the expansion it turns out that ĉ0 = θ0
and ĉ 1

2
= ĉ1 = 0. To simplify the following presentation we already assume ĉ 1

2
= ĉ1 = 0.

As usual we normalize ĉk such that

ĉk(0, x, t) = 0 for all (x, t) ∈ �(3δ), k ≥ 0. (3.25)
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In order to match the inner and outer expansions, we require that for all k the so-called
inner–outer matching conditions

sup
(x,t)∈�(3δ)

∣∣∣∂m
x ∂n

t ∂ l
ρ

(
ϕ(±ρ, x, t) − ϕ±(x, t)

)∣∣∣ ≤ Ce−αρ, (3.26)

where ϕ = ĉk, v̂k with k ≥ 0 and p̂k with k ≥ −1 hold for constants α, C > 0 and all ρ > 0,
m, n, l ≥ 0.

For the non-linear terms � = ν, f ′ we use the expansion

�(cε) = �(ĉ0) +
N+2∑
k= 3

2

εk�′(ĉ0)ĉk +
N+2∑
k= 5

2

εk�k−1(ĉ0, ĉ 3
2
, . . . , ĉk−1)

+ εN+ 5
2 �N+ 3

2
(cε, ĉ0, ĉ 3

2
, . . . , ĉN+ 3

2
) (3.27)

where we have used ĉ1/2 = ĉ1 = 0. Here�k−1(ĉ0, ĉ 3
2
, . . . , ĉk−1) and�N+ 3

2
(cε, ĉ0, ĉ 3

2
, . . . ,

ĉN+ 3
2
) are polynomials in ĉ 3

2
, . . . , ĉk−1 with coefficients that depend smoothly on ĉ0 and

(ĉ0, cε), respectively.
Using this expansion in (3.12) we obtain

|∇dε|2 ≈ |∇d0|2︸ ︷︷ ︸
=1

+2ε
1
2 ∇d0 · ∇d1/2 +

∑
k≥1,k∈ 1

2N0

εk
∑

0≤i≤k,i∈ 1
2N0

∇di · ∇dk−i .

Hence, in order to satisfy (3.12) (up to higher order terms in ε) in �(3δ) we choose dk ,
k = 1

2 , 1,
3
2 , . . . successively such that

∇d0 · ∇d1/2 = 0, in �(3δ), (3.28)

∇d0 · ∇dk = −1

2

∑
1
2≤i≤k− 1

2 ,i∈ 1
2N0

∇di · ∇dk−i for k ≥ 1, k ∈ 1

2
N0, in�(3δ). (3.29)

Furthermore, we choose d1/2 such that

∂t d 1
2

+ v̂0 · ∇d 1
2

+ v̂ 1
2

· ∇d� − φ̂0d 1
2

− �d� = 0 on �, (3.30)

which will ensure that (3.21) is well-defined and we can choose ĉ1 = 0, cf. (3.36) below.
In what follows (see Corollary 3.7 below) we will find that v̂0, v̂ 1

2
· ∇d� and φ̂0 will be

independent of ρ on �.
To proceed we use that for D = A,B,C

Dε(ρ, x, t) =
∑

k∈ 1
2N0

εk
Dk(ρ, x, t) for all ρ ∈ R, (x, t) ∈ �(3δ)

since ĉε , dε and their derivatives have a corresponding expansion.
Matching the O(ε0)-terms in the Allen–Cahn equation (3.19), we find

ĉ0(ρ, x, t) = θ0(ρ) for all ρ ∈ R, (x, t) ∈ �(3δ). (3.31)

Matching the O(ε0)-terms in the transformed momentum equation (3.17) and the divergence
equation (3.18), we derive the following ordinary differential equations in ρ:

∂ρ

(
ν(θ0)

(
∂ρ v̂0 − u0d�η′)) = (2θ ′

0θ
′′
0 + ∂ρ p̂−1

)∇d�, (3.32)
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(
∂ρ v̂0 − u0d�η′) · ∇d� = 0, (3.33)

where the right-hand side vanishes for the choice p−1(ρ) = 1
2θ

′
0(ρ)2. Matching the O(ε

1
2 )-

order terms in the Allen–Cahn equation (3.19), we find

∂2ρ ĉ 1
2

− f ′′(θ0)ĉ 1
2

= θ ′
0

(
∂t d� + v̂0 · ∇d� − φ̂0d�

) = 0,

which is compatiblewith the choice ĉ 1
2

= 0 above. Herewe have used (3.20) and (3.25). Then

matching the O(ε
1
2 )-order terms in the transformed momentum equation and the divergence

equation, we obtain the following ordinary differential equations with respect to ρ:

∂ρ

(
ν(θ0)

(
∂ρ v̂ 1

2
− (u 1

2
d� + u0d 1

2
)η′)) = (2θ ′

0θ
′′
0 + ∂ρ p̂−1

)∇d 1
2

+ ∂ρ p̂− 1
2
∇d�, (3.34)

(
∂ρ v̂ 1

2
− (u 1

2
d� + u0d 1

2
)η′) · ∇d� = (−∂ρ v̂0 + u0d�η′) · ∇d 1

2
. (3.35)

Furthermore comparing the O(ε)-order terms in the Allen–Cahn equation (3.19), we have

∂2ρ ĉ1 − f ′′(θ0)ĉ1 = θ ′
0

(
∂t d 1

2
+ v̂0 · ∇d 1

2
+ v̂ 1

2
· ∇d� − φ̂0d 1

2
− φ̂ 1

2
d� − �d�

) = 0,

(3.36)

which again justifies the choice ĉ1 = 0.
Then matching the O(ε)-order terms in the transformed momentum equation and the

divergence equation, we obtain the following ordinary differential equations

∂ρ

(
ν(θ0)

(
∂ρ v̂1 − (u1d� + u0d1)η

′)) = 2θ ′
0θ

′′
0 ∇d1 + ∂ρ v̂0∂t d� + v̂0 · ∇d�∂ρ v̂0

− ∂ρ

(
2ν(θ0)Dv̂0

) · ∇d� − div
(
2ν(θ0)Dd v̂0

)+ ∂ρ

(
ν(θ0) div v̂0

)∇d�

+
∑

i∈{−1,− 1
2 ,0}

∂ρ p̂i∇d−i + A0 + ∇ p̂−1 + (ν(θ0)η
′)′(u 1

2
d 1

2
− u0ρ

)+ l0d�η′, (3.37)

and

(
∂ρ v̂1 − (u1d� + u0d1)η

′) · ∇d� = −
∑

i∈{0, 12 }
∂ρ v̂i∇d1−i − divx v̂0 − u0 · ∇d�η′ρ

+ η′ ∑
i∈{ 12 ,1}

u0 · ∇di d1−i + η′ ∑
i∈{0, 12 }

u 1
2

· ∇di d 1
2−i . (3.38)

Similarly, comparing the O(εk)-order terms for k ≥ 3
2 in the transformed momentum equa-

tion (3.17), the divergence equation (3.18) and the Allen–Cahn equation (3.19), we obtain
the following ordinary differential equations
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∂ρ

(
ν(θ0)

(
∂ρ v̂k − (ukd� + u0dk)η

′))
= −

∑
i∈{k−1,k− 1

2 ,k}
∂ρ

(
ν̂i ∂ρ v̂k−i

)+ 2∂ρ(∂ρ ĉkθ
′
0)∇d� + 2∂ρ(∂ρ ĉk− 1

2
θ ′
0)∇d 1

2
+ 2∂ρ(∂ρ ĉk−1θ

′
0)∇d1

+
∑

i∈{0,k−1}
∂ρ v̂i ∂t dk−1−i + ∂ρ v̂0

∑
i∈{0,k−1}

v̂i · ∇dk−1−i + ∂ρ v̂k−1v̂0 · ∇d�

+ θ ′′
0 ∇ ĉk−1 + (θ ′

0)
2(�d�∇dk−1 + �dk−1∇d�

)+ η′(ρ)
∑

i∈{0,k−1}
li dk−1−i

− 2∇d� ·
∑

i∈{0,k−1}
∂ρ(ν̂i Dv̂k−1−i ) − 2∇dk−1 · ∂ρ(ν̂0Dv̂0) − 2 div(ν̂0(Dd v̂)k−1) − 2 div(ν̂k−1Dd v̂0)

+ ∇d�

∑
i∈{0,k−1}

∂ρ(ν̂i div v̂k−1−i ) + ∇dk−1∂ρ(ν̂0 div v̂0) +
∑

i∈{0,k−1}
∂ρ p̂i ∇dk−1−i

+ ∂ρ

(
ν(θ0)η

′) ∑
i∈{ 12 ,1,k− 1

2 ,k−1}
ui dk−i − ∂ρ

(
ν(θ0)η

′)ρuk−1 + R1,k− 3
2
, (3.39)

(
∂ρ v̂k − η′(ukd� + u0dk)) · ∇d�

= −
∑

i∈{0, 12 ,1,k−1,k− 1
2 }

∂ρ v̂i∇dk−i − div v̂k−1 + η′u0 ·
∑

i∈{ 12 ,1,k−1,k− 1
2 ,k}

∇di dk−i

+ η′u 1
2

·
∑

i∈{ 12 ,k−1,k− 1
2 }

∇di dk− 1
2−i + η′u1 ·

∑
i∈{0,k−1}

∇di dk−1−i

+ η′uk− 1
2

·
∑

i∈{0, 12 }
∇di d 1

2−i + η′uk−1 ·
∑

i∈{0,1}
∇di d1−i

− ρη′ ∑
i∈{0,k−1}

ui · ∇dk−1−i + R2,k− 3
2
, (3.40)

and

∂2ρ ĉk − f ′′(θ0)ĉk = f̂ ′
k−1 + θ ′

0∂t dk− 1
2

+ ∂ρ ĉk− 1
2
∂t d� + ∂ρ ĉk−1∂t d 1

2

+ θ ′
0

∑
i∈{0, 12 ,k−1,k− 1

2 }
v̂i · ∇dk− 1

2−i + ∂ρ ĉk− 1
2
v̂0 · ∇d� + ∂ρ ĉk−1

∑
i∈{0, 12 }

v̂i · ∇d 1
2−i

−
∑

i∈{0,k−1}
∂ρ ĉi�dk−1−i − 2∇∂ρ ĉk−1 · ∇d� − θ ′

0

∑
i∈{0, 12 }

φ̂i dk− 1
2−i

+ η′gk− 3
2
d� + R3,k− 3

2
, (3.41)

where

(
Dd v̂

)
k−1 = 1

2

(
∂ρ v̂k−1 ⊗ ∇d� + (∂ρ v̂k−1 ⊗ ∇d�)T )+ 1

2

(
∂ρ v̂0 ⊗ ∇dk−1 + (∂ρ v̂0 ⊗ ∇dk−1)

T )

andR1,k− 3
2
,R2,k− 3

2
,R3,k− 3

2
depend on the terms up to k − 3

2 order and converge exponen-

tially to zero as |ρ| → ∞ because of the choice of W ±
k and div v±

k = 0 for all k ∈ 1
2N0.
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3.3 Existence of expansion terms

The following two lemmas are used to solve the ordinary differential equations with respect
to ρ and can be found in [3, Lemma A.2 and Lemma A.3] with f replaced by f ′.

Lemma 3.3 Let U ⊂ R
n be an open subset and let A : R × U → R, (ρ, x) �→ A(ρ, x) be

given and smooth. Assume that there exists A±(x) such that the decay property A(±ρ, x) −
A±(x) = O(e−αρ) as ρ → ∞ is fulfilled. Then for every x ∈ U the system

wρρ(ρ, x) − f ′′(θ0(ρ))w(ρ, x) = A(ρ, x) for all ρ ∈ R,

w(0, x) = 0, w(·, x) ∈ L∞(R)
(3.42)

has a smooth and bounded solution if and only if∫
R

A(ρ, x)θ ′
0(ρ) dρ = 0. (3.43)

In addition, if the solution exists, then it is unique and satisfies for all x ∈ U

∂�
ρ

(
w(±ρ, x) + A±(x)

f ′′(±1)

)
= O(e−αρ) as ρ → ∞, l = 0, 1, 2. (3.44)

Furthermore, if A(ρ, x) satisfies for all x ∈ U

∂m
x ∂�

ρ

(
A(±ρ, x) − A±(x)

)
= O(e−αρ) as ρ → ∞

for all m ∈ {0, · · · , M} and l ∈ {0, · · · , L}, then

∂m
x ∂�

ρ

(
w(±ρ, x) + A±(x)

f ′′(±1)

)
= O(e−αρ) as ρ → ∞ (3.45)

for all m ∈ {0, · · · , M} and l ∈ {0, · · · , L}.
Lemma 3.4 Let U ⊂ R

n be an open subset and let B : R × U → R, (ρ, x) �→ B(ρ, x) be
given and smooth. Assume that for all x ∈ U the decay property B(±ρ, x) = O(e−αρ) as
ρ → ∞ is fulfilled. Then for each x ∈ U the problem

∂ρ

(
ν(θ0)∂ρw(ρ, x)

) = B(ρ, x) for all ρ ∈ R (3.46)

has a solution w(·, x) ∈ C2(R) ∩ L∞(R) if and only if∫
R

B(ρ, x)dρ = 0. (3.47)

Furthermore, if w∗(ρ, x) is such a solution, then all the solutions can be written as

w(ρ, x) = w∗(ρ, x) + c(x), ρ ∈ R (3.48)

where c : U → R is an arbitrary function. In particular, if (3.47) holds,

w∗(ρ, x) =
∫ ρ

0

1

ν(θ0)

∫ r

−∞
B(s, x)ds dr , ρ ∈ R (3.49)

is a solution. Additionally, if (3.47) holds for all x ∈ U and there exist M, L ∈ N such that

∂m
x ∂ l

ρ B(±ρ, x) = O(e−αρ) as ρ → +∞ (3.50)
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for all m ∈ {0, · · · , M} and l ∈ {0, · · · , L}, then there exists smooth functions w+(x) and
w−(x) such that

∂m
x ∂ l

ρ

(
w(±ρ, x) − w±(x)

) = O(e−αρ) as ρ → +∞ (3.51)

for all m ∈ {0, · · · , M} and l ∈ {0, · · · , L + 2}.
Remark 3.5 We note the statements on the asymptotics “O(e−αρ) as ρ → ∞” in Lemma 3.3
and Lemma 3.4 hold true uniformly with respect to x ∈ U provided A(±ρ, x) − A±(x) =
O(e−αρ) and B(±ρ, x) = O(e−αρ) as ρ → ∞ hold true uniformly with respect to x ∈ U .

3.3.1 Solving lower order terms

Solving p̂−1, v0, u0, and v±
0 : Firstly, using the matching conditions (3.26) and (3.25) we get

ĉ0 = θ0 satisfying (1.13). Moreover, it follows from (3.32) multiplied with ∇d� and (3.33)
that

0 = ∂ρ

(
ν(θ0)(∂ρ v̂0 − u0d�η′(ρ)) · ∇d�

) = 2θ ′
0θ

′′
0 + ∂ρ p̂−1 in R × �(3δ),

where we used ∇ = ∇x and |∇d�|2 ≡ 1. Hence

p̂−1(ρ, x, t) = −(θ ′
0(ρ))2 and

v̂0(ρ, x, t) = v0(x, t) + u0(x, t)d�

(
η(ρ) − 1

2

)
(3.52)

for all ρ ∈ R, (x, t) ∈ �(3δ) and some function v0 : �(3δ) → R
2 due to Lemma 3.4. Using

the matching conditions we obtain

v+
0 (x, t) = v0(x, t) + 1

2
u0(x, t)d�(x, t), v−

0 (x, t) = v0(x, t) − 1

2
u0(x, t)d�(x, t)

and therefore

v0(x, t) = 1

2

(
v+
0 (x, t) + v−

0 (x, t)
)
, u0(x, t)d�(x, t) = v+

0 (x, t) − v−
0 (x, t)

for all (x, t) ∈ �(3δ). The latter is consistent with (1.9) and yields

v̂0(ρ, x, t) = v+
0 (x, t)η(ρ) + v−

0 (x, t)(1 − η(ρ)), (3.53)

and

u0(x, t) =

⎧⎪⎨
⎪⎩

v+
0 (x,t)−v−

0 (x,t)
d�(x,t) if (x, t) ∈ �(3δ)\�,

n · ∇(v+
0 (x, t) − v−

0 (x, t)
)
if (x, t) ∈ �.

(3.54)

Therefore

∂t d� + v̂0 · ∇d� = ∂t d� + v−
0 · ∇d� + (v+

0 − v−
0

) · ∇d�η(ρ) (3.55)

which vanishes on � due to (1.9) and (1.10).
Solving p̂− 1

2
and the O(ε

1
2 )-order terms: It follows from (3.34) multiplied with ∇d� ,

(3.35), and (3.52) that

∂ρ p̂− 1
2
(ρ, x, t) = 0 for all ρ ∈ R, (x, t) ∈ �(3δ).
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Hence we can choose p̂− 1
2

≡ 0. Using Lemma 3.4 we obtain

v̂ 1
2
(ρ, x, t) = v 1

2
(x, t) + (u 1

2
(x, t)d�(x, t) + u0(x, t)d 1

2
(x, t)

)(
η(ρ) − 1

2

)

for all ρ ∈ R, (x, t) ∈ �(3δ) and some function v 1
2
: �(3δ) → R

2. Because of the matching
conditions we get

v+
1
2

= v 1
2

+ 1

2

(
u 1

2
d� + u0d 1

2

)
, v−

1
2

= v 1
2

− 1

2

(
u 1

2
d� + u0d 1

2

)
in �(3δ)

as well as

v 1
2

= 1

2

(
v+

1
2

+ v−
1
2

)
, u 1

2
d� + u0d 1

2
= v+

1
2

− v−
1
2

(3.56)

which immediately imply

v̂ 1
2
(ρ, x, t) = v+

1
2
(x, t)η(ρ) + v−

1
2
(x, t)(1 − η(ρ)) (3.57)

and

u 1
2
(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

v+
1
2
(x,t)−v−

1
2
(x,t)−u0(x,t)d 1

2
(x,t)

d�(x,t) if (x, t) ∈ �(3δ)\�,

n · ∇(v+
1
2
(x, t) − v−

1
2
(x, t) − u0(x, t)d 1

2
(x, t)

)
if (x, t) ∈ �

(3.58)

for all (x, t) ∈ �(3δ), ρ ∈ R.
Solving the O(ε)-order terms: To proceed we give the following proposition, which can be
found in [3, Proposition A.5].

Proposition 3.6 There hold∫ ∞

−∞
v̂0 · ∇d�∂ρ v̂0dρ = 1

2

(
v+
0 + v−

0

) · ∇d�

(
v+
0 − v−

0

) = 0 on �, (3.59)

∫ ∞

−∞
div
(
2ν(θ0)Dd v̂0

))
dρ = νd̃ivv̂0 = νu0 on �, (3.60)

∫ ∞

−∞
A0dρ = σ�d�∇d� = −σ Hn on �, (3.61)

u0 · n = 0 on �, (3.62)

where d̃ivv̂0 = (
(v+

0 − v−
0 ) · ∇)∇d� + (v+

0 − v−
0 )�d� + (∇d� · ∇)(v+

0 − v−
0 ) and ν is

defined as in (3.14).

We need to point out that the first equalities in (3.59)–(3.61) hold not only on � but also
in �(3δ). Moreover, because of (1.9)

(�v±
0 � · ∇)∇d� = (�v±

0 � · n)�d�n = 0, on �. (3.63)

Corollary 3.7 v̂0, v̂ 1
2

· ∇d� and φ̂0 are independent of ρ on �. Moreover, we can rewrite the

evolution law (3.30) for d1/2 as

∂t d 1
2

+ v±
0 · ∇d 1

2
+ v±

1
2

· ∇d� − ((∇d� · ∇)v±
0 · ∇d�

)
d 1

2
− �d� = 0 on �. (3.64)
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Proof It follows from (3.53) that

v̂0(ρ, x, t) = v+
0 (x, t) = v−

0 (x, t) on �. (3.65)

By (3.56) and (3.57) one has

v̂ 1
2
(ρ, x, t) = u0d 1

2
η(ρ) + v−

1
2
(x, t) on �.

Together with (3.62) this leads to

v̂ 1
2
(ρ, x, t) · ∇d� = v−

1
2
(x, t) · ∇d� on �. (3.66)

According to (3.23), (3.54) and (3.65) one has

φ̂0 = u0 · ∇d�η(ρ) + (∇d� · ∇)v−
0 (x, t) · ∇d� = (∇d� · ∇)v−

0 (x, t) · ∇d� on �.

(3.67)

This implies the statement. ��
Remark 3.8 We note that solvability of (3.64) together with a system for v 1

2
is given by

Theorem A.14 in the appendix and will be discussed later.

In order to apply Lemma 3.4 to (3.37) the equation

(
p+
0 − p−

0 + σ�d�

)∇d� + (v+
0 − v−

0

)
∂t d� + 1

2

(
v+
0 + v−

0

) · ∇d�

(
v+
0 − v−

0

)
− 2
(
ν+ Dv+

0 − ν− Dv−
0

) · ∇d� − νd̃ivv̂0 + l0d� + νu0 = 0 (3.68)

has to be satisfied on �(3δ) because of Proposition 3.6. Using (3.59)–(3.61) we obtain that
(3.68) on � is equivalent to

2�ν± Dv±
0 �n − �p±

0 �n = σ�d�n, on �, (3.69)

i.e., the balance of normal stresses (1.8) has to hold, which is true by our assumptions. In
order to obtain (3.68) on �(3δ) we define

l0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
p−
0 −p+

0 −σ�d�

)
∇d�+

(
v−
0 −v+

0

)
∂t d�− 1

2

(
v+
0 +v−

0

)
·∇d�

(
v+
0 −v−

0

)
d�

+ 2
(
ν+ Dv+

0 −ν− Dv−
0

)
·∇d�+ν

(
d̃ivv̂0−u0

)
d�

in �(3δ)\�,

n · ∇
((

p−
0 − p+

0 − σ�d�

)∇d� + (v−
0 − v+

0

)
∂t d�

− 1
2

(
v+
0 + v−

0

) · ∇d�

(
v+
0 − v−

0

)+ 2
(
ν+ Dv+

0 − ν− Dv−
0

) · ∇d�

+ν
(
d̃ivv̂0 − u0

))
on �.

(3.70)

Then the solution of (3.37) is given by

v̂1 − (u0d1 + u1d�)η(ρ) = v−
1 + u 1

2
d 1

2
η(ρ) +

∫ ρ

−∞
1

ν(θ0(r))

∫ r

−∞
V0(s, x, t) ds dr

=: v−
1 + W0 in R × �(3δ) (3.71)

because of the matching conditions, where V0 consists of the terms up to zero order. Passing
to the limit ρ → ∞ yields

u0d1 + u1d� + u 1
2
d 1

2
+ W0|ρ=+∞ = v+

1 − v−
1 , (3.72)
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which immediately implies that

v̂1(ρ, x, t) = v+
1 (x, t)η(ρ) + v−

1 (x, t)(1 − η(ρ)) + W0(ρ, x, t) − W0(x, t,+∞)η(ρ)

(3.73)

for all ρ ∈ R, (x, t) ∈ �(3δ) and

u1 =

⎧⎪⎪⎨
⎪⎪⎩

v+
1 −v−

1 −u0d1−u 1
2

d 1
2
−W0|ρ=+∞

d�
in �(3δ)\�,

n · ∇(v+
1 − v−

1 − u0d1 − u 1
2
d 1

2
− W0|ρ=+∞

)
on �.

(3.74)

In order to determine p̂0 we multiply (3.37) with ∇d� , use (3.38), and obtain

∂ρ

(
p̂0 + v̂0 · ∇d�∂t d� + v̂0 · ∇d� v̂0 · ∇d� − (2ν(θ0)Dv̂0 : ∇d� ⊗ ∇d�

)

−
∫ ρ

−∞
div
(
2ν(θ0(r))Dd v̂0(r , ·)) · ∇d� dr + ν(θ0) div v̂0

+ l0d�η · ∇d� − ν(θ0)A0 +
∫ ρ

−∞
Ṽ0(r , ·) · ∇d�dr

)
= 0, (3.75)

where Ak−1 and Ṽk−1 consist of some terms up to 0 order. Integrating this equation on
(−∞, ρ) and using the matching condition for p̂0 determines p̂0.

In summary the equations for (v̂1,u1, p̂0) are solvable if (v±
0 , p±

0 , (�t )t∈[0,T0]) solves the
sharp interface limit system (1.6)–(1.10) and we have:

Lemma 3.9 (The zeroth order terms)
Let p̂−1 = (θ ′

0)
2, let (v±

0 , p±
0 , (�t )t∈[0,T0]) be the solution of (1.6)–(1.10), and let

(v±
0 , p±

0 ) be extended to �± ∪ �(3δ) as in Remark 3.1. Moreover, we define c±
0 (x, t) = ±1

for all (x, t) ∈ �± ∪ �(3δ) and ĉ0, v̂0,u0, l0 by (3.31), (3.53), (3.54), and (3.70), respec-
tively. Then the outer equations (3.4), (3.5), (3.6) (for k = 0), the inner equations (3.39),
(3.40), (3.41) (for k = 0), the inner–outer matching conditions (3.26) (for k = 0) are satis-
fied on �(3δ). Finally, the compatibility condition for (3.37), which is equivalent to (3.68),
is satisfied on �(3δ).

3.3.2 Solving the higher order terms

Determining ĉ 3
2
, the evolution law of d1 on �, and g0: Taking k = 3

2 in (3.41) one has

∂2ρ ĉ 3
2

− f ′′(θ0)ĉ 3
2

= θ ′
0(ρ)∂t d1 + θ ′

0(ρ)
(
v̂0 · ∇d1 + v̂ 1

2
· ∇d 1

2
+ v̂1 · ∇d�

)− θ ′
0(ρ)�d 1

2

− θ ′
0(ρ)

(
φ̂0d1 + φ̂ 1

2
d 1

2

)+ η′(ρ)g0d� + θ ′
0(ρ)ρφ̂0. (3.76)

The compatibility condition (3.43) for (3.76) is equivalent to

D1 + σ−1σ1g0d� = 0 in �(3δ), (3.77)

where σ1 := ∫∞
−∞ θ ′

0(ρ)η′(ρ)dρ

D1 := ∂t d1 + v+
0 + v−

0

2
· ∇d1 + v+

1 + v−
1

2
· ∇d� − σ−1

∫ +∞

−∞
(
θ ′
0(ρ)

)2
φ̂0(ρ, ·) dρ d1 + D 1

2
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and D 1
2
depends on the terms up to order 1

2 , which were determined before. Here we have

used the definition of v̂0 and
∫
R

θ ′(ρ)(η(ρ) − 1
2 ) dρ = 0 since η − 1

2 is odd. On � the latter
equation is satisfied if and only if d1 solves the evolution equation

∂t d1 + v±
0 · ∇d1 + v+

1 + v−
1

2
· ∇d� − φ̂0d1 + D 1

2
= 0 on �. (3.78)

In order to satisfy the compatibility condition on �(3δ) \ � we define

g0 =

⎧⎪⎨
⎪⎩

− σσ−1
1 D1
d�

in �(3δ)\�,

−σσ−1
1 n · ∇D1 on �.

(3.79)

Determining ĉk for k ≥ 2, the evolution law of dk− 1
2

on �, and gk− 3
2
: First of all, we rewrite

(3.41) as

∂2ρ ĉk − f ′′(θ0)ĉk = S1,k− 3
2
(θ0, ĉ 3

2
, · · · , ĉk− 1

2
, d0, · · · , dk−1, v̂0, · · · , v̂k− 3

2
, g0, · · · , gk−2, φ̂0, φ̂ 1

2
)

+ θ ′
0∂t dk− 1

2
+ θ ′

0

k− 1
2∑

j=0, j∈ 1
2N0

v̂ j · ∇dk− 1
2 − j − θ ′

0�dk−1 − θ ′
0φ̂0dk− 1

2
+ η′gk− 3

2
d0, (3.80)

where S1,k− 3
2
depends on lower order terms which are known by the induction hypothesis.

Then the compatibility condition (3.43) for (3.80) is equivalent to

Dk− 1
2

+ σ−1σ1gk− 3
2
d� = 0 on �(3δ), (3.81)

where

Dk− 1
2

= σ−1
∫ +∞

−∞
θ ′
0(ρ)S1,k− 3

2
dρ + ∂t dk− 1

2
− �dk−1

+ σ−1
∫ +∞

−∞
(
θ ′
0(ρ)

)2( k− 1
2∑

j=0, j∈ 1
2N0

v̂ j · ∇dk− 1
2− j − φ̂0dk− 1

2

)
dρ.

It is satisfied if dk− 1
2
solves

∂t dk− 1
2

+ σ−1
∫ +∞

−∞
(
θ ′
0(ρ)

)2( k− 1
2∑

j=0, j∈ 1
2N0

v̂ j · ∇dk− 1
2− j − φ̂0dk− 1

2

)
dρ

− �dk−1 + σ−1
∫ +∞

−∞
θ ′
0(ρ)S1,k− 3

2
dρ = 0 on � (3.82)

and

gk− 3
2

=

⎧⎪⎪⎨
⎪⎪⎩

−
σσ−1

1 D
k− 1

2
d�

in �(3δ)\�,

−σσ−1
1 n · ∇Dk− 1

2
on �.

(3.83)
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Determining v̂k , k ≥ 3
2 , the jump conditions on � and lk−1: Firstly, the compatibility condition

(3.47) for (3.39) is equivalent to

(
v+
0 − v−

0

)
∂t dk−1 + σ�dk−1∇d� + (v+

0 − v−
0

)v+
0 + v−

0

2
· ∇dk−1

+ (σ�d� + p+
0 − p−

0 − 2
(
ν+ Dv+

0 − 2ν− Dv−
0

))∇dk−1 + (v+
0 − v−

0

) ∫ ∞

−∞
η′v̂k−1 · ∇d�dρ

+
∫ ∞

−∞
∂ρ v̂k−1

(
∂t d� + v̂0 · ∇d�

)
dρ −

∫ ∞

−∞
div
(
2ν(θ0)

(
Dd v̂

)
k−1

))
dρ

− (2ν+ Dv+
k−1 − 2ν− Dv−

k−1

)∇d� + (p+
k−1 − p−

k−1)∇d� + l0dk−1 + lk−1d�

= S2,k− 3
2
(θ0, ĉ 3

2
, · · · , ĉk−1, d0, · · · , dk−2, v̂0, · · · , v̂k− 3

2
, l0, · · · , lk− 3

2
). (3.84)

Here S2,k− 3
2
depends on low order terms, which were determined before.

If it is satisfied, the solution to (3.39) is given by

v̂k − (u0dk + ukd�)η = v−
k + (u 1

2
dk− 1

2
+ uk− 1

2
d 1

2
)η +

∫ ρ

−∞
1

ν(θ0(r))

∫ r

−∞
Vk−1(s, x, t) ds dr

=: v−
k + (u 1

2
dk− 1

2
+ uk− 1

2
d 1

2
)η + Wk−1, (3.85)

where Vk−1 consists of terms up to k − 1 order. By taking ρ → +∞ in (3.85) and the
matching conditions for v̂k we obtain

v+
k − v−

k = u0dk + ukd� + u 1
2
dk− 1

2
+ uk− 1

2
d 1

2
+ Wk−1|ρ=+∞,

which yields

�v±
k � · n = (u 1

2
dk− 1

2
+ uk− 1

2
d 1

2
+ Wk−1|ρ=+∞

) · n + u0 · ndk =: âk− 1
2

on �, (3.86)

where we have used u0 · n|� = 0 due to Proposition 3.6, and

�v±
k � · τ = (u 1

2
dk− 1

2
+ uk− 1

2
d 1

2
+ Wk−1|ρ=+∞

) · τ + u0 · τdk =: ǎk− 1
2

+ u0 · τdk

(3.87)

on �. Since by the induction hypothesis one assumes that the compatibility condition (3.84)
for k − 1 instead of k is already satisfied, one obtains

v̂k−1 = v+
k−1η(ρ) + v−

k−1(1 − η(ρ)) + (1 − η(ρ))

∫ ρ

−∞
1

ν(θ0(r))

∫ r

−∞
Vk−2(s, ·) ds dr

− η(ρ)

∫ +∞

ρ

1

ν(θ0(r))

∫ r

−∞
Vk−2(s, ·) ds dr , (3.88)

where V−1 ≡ 0. Inserting this we can rewrite (3.84) as

Jk−1 + lk−1d� = S̃k− 3
2
, (3.89)

where

Jk−1 = (v+
0 − v−

0

)
∂t dk−1 + σ�dk−1∇d� + (v+

0 − v−
0

)v+
0 + v−

0

2
· ∇dk−1

+ (σ�d� + p+
0 − p−

0 − 2
(
ν+ Dv+

0 − 2ν− Dv−
0

))∇dk−1 + l0dk−1

+ (v+
0 − v−

0

)v+
k−1 + v−

k−1

2
· ∇d� + (v+

k−1 − v−
k−1

)
∂t d� + (v+

k−1 − v−
k−1

)v+
0 + v−

0

2
· ∇d�

− ν
(
(v+

k−1 − v−
k−1) · ∇)∇d� − ν

(
v+

k−1 − v−
k−1

)
�d� − ν(∇d� · ∇)

(
v+

k−1 − v−
k−1

)
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−ν
(
(v+

0 − v−
0 ) · ∇)∇dk−1 − ν

(
v+
0 − v−

0

)
�dk−1 − ν∇(v+

0 − v−
0

)∇dk−1

− (2ν+ Dv+
k−1 − 2ν− Dv−

k−1

)∇d� + (p+
k−1 − p−

k−1)∇d�. (3.90)

Here we have used∫ ∞

−∞
div
(
2ν(θ0)

(
Dd v̂

)
k−1

))
dρ = ν

(
(v+

k−1 − v−
k−1) · ∇)∇d� + ν

(
v+

k−1 − v−
k−1

)
�d�

+ ν(∇d� · ∇)
(
v+

k−1 − v−
k−1

)+ ν
(
(v+

0 − v−
0 ) · ∇)∇dk−1

+ ν
(
v+
0 − v−

0

)
�dk−1 + ν∇(v+

0 − v−
0

)∇dk−1,

which is shown in the same way as (3.60).
Therefore (3.84) is satisfied if

S̃k− 3
2

= σ�dk−1∇d� + (σ�d� + �p±
0 � − 2�ν± Dv±

0 �−ν�∇v±
0 �
)∇dk−1 + l0dk−1

+ �v±
k−1�

(
∂t d� + v±

0 · ∇d� − ν�d� − ν∇2d�

)
− ν�∇v±

k−1� · ∇d� − 2�ν± Dv±
k−1�∇d� + �p±

k−1�∇d� on � (3.91)

and

lk−1 =

⎧⎪⎪⎨
⎪⎪⎩

S̃
k− 3

2
−Jk−1

d�
in �(3δ)\�,

n · ∇(S̃k− 3
2

− Jk−1
)
on �.

(3.92)

In order to satisfy the matching conditions for v̂k we define uk by

uk =
⎧⎨
⎩

v+
k −v−

k −u0dk−u 1
2

d
k− 1

2
−u

k− 1
2

d 1
2
−Wk−1|ρ=+∞

d�
on �(3δ) \ �,

n·∇(v+
k −v−

k −u0dk −u 1
2

dk− 1
2
−uk− 1

2
d 1
2
−Wk−1|ρ=+∞

)
on �.

(3.93)

Then

v̂k(ρ, x, t) = v+
k (x, t)η(ρ) + v−

k (x, t)(1 − η(ρ)) + (1 − η(ρ))

∫ ρ

−∞
1

ν(θ0(r))

∫ r

−∞
Vk−1(s, x, t) ds dr

− η

∫ +∞

ρ

1

ν(θ0(r))

∫ r

−∞
Vk−1(s, x, t) ds dr , (3.94)

satisfies the inner–outer matching conditions (3.26).
In order to determine p̂k−1 we multiply (3.39) by ∇d� and use (3.40). This yields

∂ρ

(
p̂k−1 + v̂k−1 · ∇d�∂t d� + v̂k−1 · ∇d� v̂0 · ∇d� − (2ν(θ0)Dv̂k−1 : ∇d� ⊗ ∇d�

)

−
∫ ρ

−∞
div
(
2ν(θ0(r))

(
Dd v̂

)
k−1

)
(r , ·)) · ∇d� dr + ν(θ0) div v̂k−1

+ lk−1d�η · ∇d� − ν(θ0)Ak−1 +
∫ ρ

−∞
Ṽk−1(r , ·) · ∇d�dr

)
= 0, (3.95)

where Ak−1 and Ṽk−1 consist of some terms up to k − 1 order. Thus

p̂k−1 = ν(θ0(ρ))Ak−1 − ν(θ0(ρ)) div v̂k−1 + (v+
k−1η + v−

k−1(1 − η)
) · ∇d�∂t d�

− v̂k−1 · ∇d�∂t d� + 2ν(θ0(ρ))Dv̂k−1 : ∇d� ⊗ ∇d� + p+
k−1η + p−

k−1(1 − η)

− (2ν+ Dv+
k−1η + 2ν− Dv−

k−1(1 − η)
) : ∇d� ⊗ ∇d�
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+ η

∫ ρ

+∞
div
(
2ν(θ0(r))

(
Dd v̂

)
k−1

)) · ∇d� dr + (1 − η)

∫ ρ

−∞
div
(
2ν(θ0(r)

(
Dd v̂

)
k−1

)) · ∇d� dr

+ η

∫ +∞

ρ

Ṽk−1(r , ·) · ∇d� dr − (1 − η)

∫ ρ

−∞
Ṽk−1(r , ·) · ∇d� dr in �(3δ), (3.96)

which satisfies the inner–outer matching conditions (3.26). In summary we have:

Lemma 3.10 (The k-th order terms)
Let k ≥ 1

2 and all functions with negative index be supposed to be zero. Then there are
smooth functions

v̂k, v
±
k ,uk, lk−1, ĉk, c±

k , gk− 3
2
, dk, p̂k−1, p±

k ,

which are bounded on their respective domains, such that for the k-th order the outer equa-
tions (3.4), (3.5), (3.6), the inner equations (3.39), (3.40), (3.41), the inner–outer matching
conditions (3.26) are satisfied. Moreover, (v±

k , p±
k , dk) satisfies

∂tv
±
k − ν±�v±

k + ∇ p±
k = 0 in �±, (3.97)

div v±
k = 0 in �±, (3.98)

�v±
k � · n = âk− 1

2
on �, (3.99)

�v±
k � · τ = ǎk− 1

2
− u0 · τdk on �, (3.100)

�2ν± Dv±
k − p±

k I�n�t + ν�∇v±
k �n�t + ν�v±

k ��d�

+ν�v±
k � · n�t �d�n�t = σ�dkn�t − ν�∇v±

0 �∇dk + l0dk on �, (3.101)

∂t dk + v±
0 · ∇dk + v+

k +v−
k

2 · n�t − φ0dk = bk− 1
2

on �, (3.102)

v−
k = akn∂�, on ∂�, (3.103)

where ak = 1
|∂�|

∫
�t

(ǎk− 1
2

− u0 · τdk) dσ , as well as (3.29). Here (3.101) and (3.102) come

from (3.91) and (3.82)(with k instead of k − 1, k − 1
2 , respectively) and âk− 1

2
, ǎk− 1

2
, bk− 1

2

depend only on the terms up to k − 1
2 order. Furthermore, the compatibility condition (3.91)

is satisfied for k instead of k − 1 and v±
k , c±

k and p±
k are extended onto �± ∪ �(3δ) as in

Remark 3.1.

Proof The lemma is proved by mathematical induction with respect to k ∈ 1
2N, where the

beginning of the induction is given by Lemma 3.9. In Theorem A.14 in the appendix we will
show solvability of the system (3.97)–(3.103), which will be smooth due to Remark A.2. In
the induction hypothesis we assume that

{(v̂i , v
±
i ,ui , li−1, ĉi , gi− 3

2
, di , p̂i−1, p±

i ) : 0 ≤ i ≤ k − 1
2 }

are known and satisfy the statements of the lemma with i instead of k for all 0 ≤ i ≤ k − 1
2 .

Then we obtain the terms for i = k by the following four steps:
Step 1 By the induction hypothesis S1,k− 3

2
is known. Since dk− 1

2
solves (3.102) with k − 1

2
instead of k, the compatibility condition for (3.41) on � is satisfied. Moreover, defining
gk− 3

2
by (3.83) the compatibility condition for (3.41) are satisfied on �(3δ). Hence we can

determine ĉk as the solution of (3.41) for all ρ ∈ R, (x, t) ∈ �(3δ).
Step 2 We have seen that the compatibility condition (3.84) for solving (3.39) is equivalent to
(3.91) and (3.92). Here (3.91) is satisfied since (v±

k−1, p±
k−1, dk−1) solve (3.97)–(3.103) by

assumption in which we have used (3.63) to rewrite (3.91) as (3.101). Moreover, if we define
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lk−1 by (3.92), the compatibility conditions for (3.39) are satisfied. Now we can determine
v̂k by (3.39) on � uniquely. (Note that (3.39) determines v̂k on �(3δ) \ � up to uk , which is
not determined yet.) Moreover, this determines p̂k−1 by (3.96) on �(3δ) since (3.92) holds
and Ak−1, Ṽk−1 are known.
Step 3 Since p̂k−1 is determined, S1,k−1 is known on � and we can determine (v±

k , p±
k , dk)

as solution of (3.97)–(3.103), cf. Theorem A.14 in the appendix.
Step 4 Using that (v±

k , p±
k ) are known, uk is now determined uniquely by (3.93) and we can

determine v̂k by (3.39) on �(3δ) uniquely.
Step 5 Using that dk is determined on �, one can integrate (3.29) in normal direction to
determine dk uniquely on �(3δ).

Finally, we note that (v̂k, p̂k−1, ĉk) satisfy the matching conditions on �(3δ) by construc-
tion, in particular because of the choice of uk . ��

3.4 Summary of the construction

The result of this section can be summarized as follows:

Theorem 3.11 Let N ∈ 1
2N. Then there are smooth (c̃in

A , ṽin
A , p̃in

A ) defined in �(3δ) and
smooth (c̃±

A , ṽ±
A , p̃±

A ) defined on � × [0, T0] such that:

1. Inner expansion: In �(3δ) we have

∂t ṽin
A + ṽin

A · ∇ṽin
A − div(2ν(c̃in

A )Dṽin
A ) + ∇ p̃in

A = −ε div(∇ c̃in
A ⊗ ∇ c̃in

A ) + Rε,

div ṽin
A = Gε,

∂t c̃
in
A + ṽin

A · ∇ c̃in
A = ε

1
2 �c̃in

A − ε− 3
2 f ′(c̃in

A ) + sε,

(3.104)

where

‖(Rε, ∂t Gε, sε)‖L∞(�(3δ))) ≤ CεN+1, (3.105)

‖Gε‖L∞(�(3δ)) ≤ CεN+2. (3.106)

2. Outer expansion: In �± we have c̃A± ≡ ±1 and

∂t ṽ
±
A + ṽ±

A · ∇ṽ±
A − ν±�ṽ±

A + ∇ p̃±
A = R±

ε , (3.107)

div ṽ±
A = 0,

ṽ±
A |∂� = aεn∂� on ∂� × [0, T0], (3.108)

where aε : [0, T ] → R is smooth and

‖R±
ε ‖L∞(�×[0,T0]) ≤ CεN+2 for all ε ∈ (0, 1).

3. Matching condition: For every β ∈ N
n
0 we have for some α > 0, C(M) > 0

‖∂β
x (ṽin

A − ṽ+
Aχ+ − ṽ−

Aχ−)‖L∞(�(3δ)\�(δ)) ≤ C(M)e− αδ
2ε ,

‖∂β
x ( p̃in

A − p̃+
A χ+ − p̃−

A χ−)‖L∞(�(3δ)\�(δ)) ≤ C(M)e− αδ
2ε ,

‖∂β
x (c̃in

A − c̃+
Aχ+ − c̃−

Aχ−)‖L∞(�(3δ)\�(δ)) ≤ C(M)e− αδ
2ε

for all ε ∈ (0, 1).

123



Sharp interface limit for a Navier–Stokes/Allen–Cahn… Page 37 of 58    94 

Proof We define

c̃±
A (x, t) =

∑
k∈ 1

2N0,k≤N+2

εkc±
k (x, t), ṽ±

A (x, t) =
∑

k∈ 1
2N0,k≤N+2

εkv±
k (x, t),

p̃±
A (x, t) =

∑
k∈ 1

2N−1,k≤N+2

εk p±
k (x, t),

and

c̃in
A (x, t) =

∑
k∈ 1

2N0,k≤N+2

εk ĉk(
dε

ε
, x, t), ṽin

A (x, t) =
∑

k∈ 1
2N0,k≤N+2

εk v̂k(
dε

ε
, x, t),

p̃in
A (x, t) =

∑
k∈ 1

2N−1,k≤N+2

εk p̂k(
dε

ε
, x, t),

where

dA(x, t) =
∑

k∈ 1
2N0,k≤N+2

εkdk(x, t). (3.109)

as well as aε(t) = ∑
k∈ 1

2N0,k≤N+2 εkak(t). From the construction one can verify the state-
ments of Theorem 3.11 in the same way as e.g. in [7, Section 4]. ��
Remark 3.12 We note that dA defined in (3.109) satisfies

|∇dA|2 = 1 + O(εN+3) as ε → 0 (3.110)

with respect to Ck(�(3δ)) for every k ∈ N by the construction (3.29).

4 Refined approximate solutions

In this section we refine the approximate solutions constructed in the previous section by
adding a few terms to obtain:

Theorem 4.1 Let M > 0, u = u(ε) ∈ L2(0, Tε; H1(�)2 ∩ L2
σ (�)) be given for some

Tε ∈ (0, T0], ε ∈ (0, 1). Moreover, let

PM (u) =
⎧⎨
⎩
u if ‖u‖L2(0,Tε;H1(�)) + ‖u‖

H
1
2 (0,Tε;L2(�))

≤ M,

Mu
‖u‖L2(0,Tε ;H1)

+‖u‖
H

1
2 (0,Tε ;L2)

else.

Then there are cA ∈ H1(0, Tε; L2(�)) ∩ L2(0, Tε; H2(�)), pA ∈ L2(0, Tε; H1(�)), and
vA ∈ H1(0, Tε; V (�)′) ∩ L2(0, Tε; H1(�)2), wε ∈ H1(0, Tε; L2(�)) ∩ L2(0, Tε; H1(�))

such that

∂tvA + vA · ∇vA − div(2ν(cA)DvA) + ∇ pA = −ε div(∇cA ⊗ ∇cA) + Rε,

(4.1)

div vA = Gε, (4.2)

∂t cA + (vA + εN+ 1
4 ((PM (u) + wε)|Xε(0,Sε,t) − wε)

) · ∇cA = ε
1
2 �cA − ε− 3

2 f ′(cA) + sε,

(4.3)

(vA, cA)|∂� = (0,−1), (4.4)
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where sε = s1ε + s2ε with supp s2ε ⊆ �(2δ), divwε = 0 and

‖Rε‖L2(0,T ;(H1(�))′)) ≤ C(M)εN+ 1
4 (T

1
2 + ε

1
4 ), (4.5)

‖Gε‖H1(0,Tε;L2(�)) ≤ C(M)εN+1, (4.6)

‖wε‖L2(0,Tε;H1(�)) + ‖wε‖L∞(0,Tε;L2(�)) ≤ C(M) (4.7)

‖s1ε ‖L2(�×(0,Tε))
≤ C(M)εN+ 1

2 , ‖s2ε ‖L2(0,Tε;(Vε)′) ≤ C(M)εN+ 3
4 , (4.8)

‖s2ε ‖L2(�×(0,Tε))
≤ C(M)εN− 1

4 , (4.9)

uniformly in T ∈ (0, Tε] for some C(M) > 0 independent of ε ∈ (0, 1). Moreover, cA ≡ ±1
in �±\�(3δ), ∂t cA, ∇cA are supported in �(3δ) and supp sε ⊆ �(5δ/2).

Remark 4.2 Later we will choose u = w1

ε
N+ 1

4
, cf. also (5.7).

Let (c̃in
A , ṽin

A , p̃in
A ), (c̃±

A , ṽ±
A , p̃±

A ), and aε(t) be as in Theorem 3.11, i.e., the inner and outer
pieces of the approximate solution of the Navier–Stokes/Allen–Cahn system constructed in
the previous section. Moreover, let dA be as in (3.109) and define

dε(x, t) = d�(x, t) + θ(d�(x, t))(dA(x, t) − d�(x, t)) for all (x, t) ∈ �(3δ), (4.10)

where θ ∈ C∞
0 (R) with θ(r) = 1 if r ∈ [− 5δ

2 , 5δ
2 ] and supp θ ⊆ (−3δ, 3δ). Moreover, let

Sε(x, t) = S0(x, t) + ε
1
2 S1/2(x, t) + εS1(x, t) + ε

3
2 S3/2(x, t) for all (x, t) ∈ �(3δ),

(4.11)

where S1/2, S1, S3/2 are determined such that

∇Sε(x, t) · ∇dε(x, t) = O(ε2) in �( 5δ2 )

with respect to any Ck-norm, k ∈ N. Since ∇S0 · ∇d� = 0, this leads to the system of first
order partial differential equations

∇S j · n� = −
∑

k=0,..., j− 1
2

∇Sk · ∇dk− j in �( 5δ2 )

for j = 1
2 , 1,

3
2 , which can be solved together with S j |� = 0 by integration in normal

direction/the method of characteristics. Moreover, we extend S j to S j : �(3δ) → T
1 such

that supp S j ⊆ �(δ′) for some δ′ ∈ ( 5δ2 , 3δ). Then the assumptions (2.1)–(2.3) are satisfied
with η = 1

2 . Moreover, let ρ be defined as in (2.12) in the following. Since dε = dA in �( 5δ2 ),
the definition of ρ coincides with the definition of ρ in Sect. 3, proof of Theorem 3.11,
respectively, in �( 5δ2 ). In the following we will only use the identities from Sect. 3 in the
latter domain.

We will now define the refined approximate solution as

cA(x, t) = ζ ◦ d�cin
A (x, t) + (1 − ζ ◦ d�)

(
c+

Aχ+ + c−
Aχ−

)
,

vA(x, t) = ζ ◦ d�vin
A (x, t) + (1 − ζ ◦ d�)

(
v+

A (x, t)χ+ + v−
A (x, t)χ−

)−Nāε(t),

pA(x, t) = ζ ◦ d� pin
A (x, t) + (1 − ζ ◦ d�)

(
p+

A (x, t)χ+ + p−
A (x, t)χ−

)
,

where ζ : R → [0, 1] is smooth such that supp ζ ⊆ [− 5δ
2 , 5δ

2 ] and ζ ≡ 1 on [−2δ, 2δ],
N : � → R

2 is a smooth vector field such that N|∂� = n∂� and suppN ∩ �(3δ) = ∅,
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c±
A = c̃±

A = ±1 and χ± = χ�±
t
(x), and we use the following refined ansatz for the inner and

outer expansion

cin
A (x, t) = c̃in

A (x, t) + εN− 3
4 θ ′

0(ρ(x, t))h̄N ,ε(Sε(x, t), t),

h̄N ,ε(s, t) = hN− 3
4 ,ε(s, t) + √

εhN− 1
4 ,ε(s, t),

vin
A (x, t) = ṽin

A (x, t) + εN+ 1
4
(
w+

ε (x, t)χ�ε,+ + w−
ε (x, t)χ�ε,−

)
pin

A (x, t) = p̃in
A (x, t) + εN+ 1

4
(
q+
ε (x, t)χ�ε,+ + q−

ε (x, t)χ�ε,−
)
,

v±
A (x, t) = ṽ±

A (x, t) + εN+ 1
4w±

ε (x, t), p±
A (x, t) = p̃±

A (x, t) + εN+ 1
4 q±

ε (x, t).

(4.12)

We note that we do not use ρ-dependent terms in the extra-terms in vin
A and pin

A of order εN+ 1
4 .

This ansatz differs significantly from the construction of the other terms. It turned out that it
not only simplifies the treatment of several remainder terms. It also provides sufficiently good
remainder estimates for our analysis, which we could not obtain before. Here it is essential
that (wε, qε, hN− 3

4 ,ε) solve the following linearized two-phase flow system

∂tw±
ε + w±

ε · ∇v±
0 + v±

0 · ∇w±
ε − ν±�w±

ε + ∇q±
ε = 0 in �

ε,±
t , t ∈ (0, Tε), (4.13)

divw±
ε = 0 in �

ε,±
t , t ∈ (0, Tε), (4.14)

�wε� = 0, �νDwε − qεI� · n�ε
t

= σ��ε hN− 3
4 ,εn�ε

t
on �ε

t , t ∈ (0, Tε), (4.15)

w−
ε |∂� = 0 on ∂� × (0, Tε), (4.16)

w±
ε |t=0 = 0 in �±

0 (4.17)

together with

∂t hN− 3
4 ,ε + n�ε

t
· wε|Xε(0,Sε,t) − (∂t Sε + v0 · ∇Sε)|Xε(0,Sε,t)∂shN− 3

4 ,ε (4.18)

− √
ε|∇S0|2|Xε(0,Sε,t)∂

2
s hN− 3

4 ,ε + aε(Sε, t)hN− 3
4 ,ε = −(PM (u) · ∇dε)|Xε(0,Sε,t)

on T
1 × (0, Tε) and hN− 3

4 ,ε|t=0 = 0, where w±
ε = wε|�ε,± , q±

ε = q|�ε,± . Here aε is deter-
mined in the proof of Theorem 4.3 below. This system can be considered as a linearization of
(1.6)–(1.11) if

√
εH�t was added to the right-hand side of (1.10) and �±

t , �t was replaced
by �

ε,±
t , �ε

t . The function hN− 1
4 ,ε will be determined in the proof of Theorem 4.3 below.

As in Sect. 3 we extend w±
ε and q±

ε to � × (0, Tε) such that divw±
ε = 0 in � × (0, Tε)

and w±
ε ∈ H1(0, Tε; L2(�)) ∩ L2(0, Tε; H2(�)), q±

ε ∈ L2(0, Tε; H1(�)) in a bounded
manner. Because of Theorem 2.10, we have the uniform bounds

‖hN− 3
4 ,ε‖L∞(0,Tε;H1(T1)) + ε

1
2 ‖hN− 3

4 ,ε‖H1(0,Tε;H
1
2 )∩L2(0,Tε;H

5
2 )

+ ε
1
4 ‖∂2s hN− 3

4 ,ε‖L2((0,Tε)×T1) + ‖wε‖H1(0,Tε;V (�)′) + ‖wε‖L2(0,Tε;H1(�))

+ ε
1
2 ‖wε‖H1(0,Tε;L2(�)) + ε

1
2 ‖wε‖L2(0,Tε;H2(�

ε,±
t ))

≤ C(M), (4.19)

where C(M) does not depend on Tε. The estimate (4.7) follows from the well-known embed-
ding L2(0, Tε; V (�)) ∩ H1(0, Tε; V (�)′) ↪→ C0([0, Tε], L2(�)), where the embedding
constant is uniform due to (4.17).

For the following we denote uin
A := cin

A − c̃in
A and use vin

A = ṽin
A + εN+ 1

4wε , where
wε = w+

ε χ�ε,+ + w−
ε χ�ε,− . Then we obtain in a straight forward manner

∂t c
in
A + vin

A · ∇cin
A − √

ε�cin
A + ε− 3

2 f ′(cin
A )
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= ∂t u
in
A + vin

A · ∇uin
A − √

ε�uin
A + ε− 3

2 f ′′(c̃in
A )uin

A + s̃ε
A + εN+ 1

4wε · ∇ c̃in
A + O(εN+ 1

2 )

= ∂t u
in
A + vin

A · ∇uin
A − √

ε�uin
A + ε− 3

2 f ′′(c̃in
A )uin

A + εN+ 1
4wε · ∇ c̃in

A + O(εN+ 1
2 )

(4.20)

in L2(0, Tε; L2(�t (2δ))) := L2(�(2δ) ∩ ((0, Tε) ×R
2)). Here s̃ε

A is a term that is quadratic

in uin
A times ε− 3

2 . Hence s̃ε
A is O(ε2N− 3

2− 3
2+ 1

2 ) = O(εN+ 1
2 ) in L2(0, Tε; L2(�t (2δ))) if

N ≥ 3 due to (4.19).
For the first terms we have:

Theorem 4.3 Let uin
A = εN− 3

4 θ ′
0(ρ)h̄N ,ε(Sε(x, t), t) and hN− 3

4 ,ε be as before and define

Rε := ∂t u
in
A + vin

A · ∇uin
A − √

ε�uin
A + ε− 3

2 f ′′(c̃in
A )uin

A + εN+ 1
4 (PM (u) + wε)|Xε(0,Sε,t) · ∇ c̃in

A ,

where u = u(ε) is uniformly bounded in L2(0, Tε, H1(Ø)2) ∩ H
1
2 (0, Tε; L2(Ø)2) for small

ε, cf. Remark 4.2. Then there is a choice of hN− 1
4 ,ε ∈ XTε,0 with bounds as in Theorem 2.8

for κ = √
ε, r = 0 such that

Rε = εN− 3
4 gε(ρ, Sε, t) + O(εN+ 1

2 ) in L2(0, Tε; L2(�t (2δ))),

where gε satisfies the conditions of Lemma 2.15.

Proof First of all, let us recall where all the appearing terms come from. By (4.12), it holds

cin
A = c̃in

A + uin
A and vin

A = ṽin
A + εN+ 1

4wε, where the terms

c̃in
A = θ0(ρ) + ε3/2c3/2(ρ, x, t) + ε2c2 + · · ·

and ṽin
A = v̂0(ρ, x, t) + ε1/2v̂1/2 + · · · stem from the inner expansion in Sect. 3.2 and

are smooth. Here uin
A = εN− 3

4 θ ′
0(ρ)h̄N ,ε(Sε(x, t), t) is as in (4.12) with the expansion

h̄N ,ε = hN− 3
4 ,ε + ε

1
2 hN− 1

4 ,ε. Note that hN− 3
4 ,ε will be determined by a coupled equation

as in Theorem 2.10 and hN− 1
4 ,ε will be determined by Theorem 2.8 for κε = √

ε. Thus

these functions will satisfy the uniform estimates in there for κ = √
ε. Hence we can already

assume the latter estimates to hold and disregard some unimportant higher order terms in the
following. Finally, recall the properties and expansion form of dε, Sε from above.

We compute all terms with the chain rule and use Taylor for the f ′′-term. This yields

Rε = ε
N− 3

4

(
θ ′′
0 (ρ)

∂t dε

ε
h̄N ,ε + θ ′

0(ρ)(∂t h̄N ,ε + ∂t Sε∂s h̄N ,ε)

)

+ ε
N− 3

4 ṽin
A ·
(

θ ′′
0 (ρ)

∇dε

ε
h̄N ,ε + θ ′

0(ρ)∇Sε∂s h̄N ,ε

)

− ε
N− 1

4

(
θ ′′′
0 (ρ)

|∇dε |2
ε2

h̄N ,ε + 2θ ′′
0 (ρ)

∇dε · ∇Sε

ε
∂s h̄N ,ε + θ ′′

0 (ρ)
�dε

ε
h̄N ,ε + θ ′

0(ρ)��ε h̄N ,ε

)

+ ε
− 3

2 ε
N− 3

4 θ ′
0(ρ)h̄N ,ε

(
f ′′(θ0) + f ′′′(θ0)

[
ε
3
2 c 3

2
+ ε2c2

])

+ ε
N+ 1

4 (PM (u) + wε)|Xε(0,Sε,t) · ∇dε

ε
θ ′
0(ρ) + O(ε

N+ 1
2 ) in L2(�(2δ) ∩ ((0, Tε) × R

2)),

where we used that terms of the form εN a(ρ)bε(Sε, t) with a ∈ R0,α and bε ∈
L2(T1× (0, Tε)) uniformly bounded with respect to small ε are O(εN+ 1

2 ) in L2(�(2δ))with
Lemma 2.6. Moreover, we used that (PM (u) + wε)|Xε(0,.) is bounded in L2((0, Tε) × T

1),
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the estimates for hN− 3
4 ,ε and hN− 1

4 ,ε as well as N ≥ 2 to replace vin
A by ṽin

A up to the error

in L2(�(2δ)) above.
Note that the remaining u-term is critical and sits at order O(εN− 3

4 ). Actually, the point
of the theorem is to generate this term. Therefore the prefactor of h̄N ,ε was chosen to be

εN− 3
4 such that the contribution is also in that order. There are several problems one has

to overcome. First, there are contributions of dε-terms into orders below the critical one.
Since |∇dε|2 = 1+ O(ε2), we can cancel the lowest order contribution of this term with the
f ′′(θ0)-term. Moreover, ∇dε · ∇Sε is of order O(ε2). By taking a close look at Sect. 3.2, one
can infer that ∂t dε + ṽin

A ·∇dε −√
ε�dε only gives a contribution of order O(ε) because there

is some cancellation. These terms are of sum structure with
√

ε-spacing. Furthermore, one
has to expand some remaining terms in Rε depending on (x, t) or (ρ, x, t) into (ρ, Sε, t).
This can be done by transforming the (x, t)-part with Xε, using Taylor expansion in the first
variable and dε = ερ. Therefore we use v̂0(ρ, x, t) = v−

0 (x, t) + (v−
0 − v+

0 )(x, t)η(ρ).
Because of v−

0 = v+
0 on �, the second part is improved by the order

√
ε due to a Taylor

expansion. Finally, the functions in the expansion of h̄N ,ε should be obtained by solving
equations of the form mentioned above, of course with the goal to just leave remainders as
stated in the theorem. The goal to have a remainder rε suitable for Lemma 2.15 as stated

in the theorem leads to the desired equation for hN− 3
4 ,ε in order to resolve the order εN− 3

4 .

The remaining terms contribute formally to the order εN− 1
4 . For this order we intend to use

hN− 1
4 ,ε. However, one has to take care since not all terms in (2.18) for hN− 1

4 ,ε scale as the

right hand side with respect to κ = √
ε in the L2-norm. More precisely, the first two terms

with ∂t and ∂s are scaling worse on their own (but only at the amount of ε
1
4 ), the others are

fine. Hence in the application here we need the same prefactor (depending on ρ) for those
two terms in the equations we require. By having a look at Rε , we see that θ ′

0 is the desired
prefactor. Hence all terms with derivatives of hN− 1

4 ,ε either have the same ρ-prefactor θ ′
0

or contribute to the order O(εN ) or higher. Thus we obtain an equation of the form as in
Theorem 2.8 for hN− 1

4 ,ε. More precisely we have

∂t hN− 1
4 ,ε

− (∂t Sε + v0 · ∇Sε)|Xε(0,Sε,t)∂shN− 1
4 ,ε

− √
ε��ε

hN− 1
4 ,ε

+ ãε(Sε, t)hN− 1
4 ,ε

= g̃ε,

where ãε is smooth (uniformly bounded with respect to small ε, derivatives as well) and
g̃ε is uniformly bounded in L2(�(2δ) ∩ ((0, Tε) × R

2)). By rewriting the ∂t hN− 1
4 ,ε and

∂shN− 1
4 ,ε-terms with the above equation, and estimating the O(εN ) remainders with the aid

of Lemma 2.6, we finally get remainders as stated in the theorem. Altogether, this yields the
claim. ��
Proof of Theorem 4.1 First, we estimate aε : (0, T0) → R. To this end we define

ṽA(x, t) = ζ ◦ d� ṽin
A (x, t) + (1 − ζ ◦ d�)

(
ṽ+

A (x, t)χ+ + ṽ−
A (x, t)χ−

)
.

Then

div ṽA = ζ ◦ d�Gε + O(e− αδ
2ε ), ∂t div ṽA = ζ ◦ d�(∂t Gε) + O(e− αδ

2ε )

because of the matching conditions and div ṽ±
A = 0. Since aε = n∂� · ṽA|∂� only depends

on t ,

aε = 1

Hd−1(∂�)

∫
�

div ṽA dx = O(εN+2) and
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∂t aε = 1

Hd−1(∂�)

∫
�

∂t div ṽA dx = O(εN+1)

in L∞(0, T0) due to (3.105)–(3.106). The rest of the proof is split into three parts.
Part 1: Error in the divergence equation Because of �wε� = 0 and divw±

ε = 0 in �ε,±, we
have

div(vA(x, t) + Nāε(t))

= ζ(d�(x, t))Gε + ζ ′(d�(x, t))∇d�(x, t) ·
(
vin

A (x, t) − v+
A (x, t)χ�+(t)(x) − v−

A (x, t)χ�−(t)(x)
)

= O(εN+1) (4.21)

in H1(0, Tε; L2(�))because of (3.105)–(3.106) and thematching condition inTheorem3.11.
Together with the previous estimates for aε this shows (4.2) for some (different) Gε : � ×
(0, Tε) → R, which is given by the sum of the right-hand side of (4.21) and − div(Nāε(t)).
Part 2: Error in the linear momentum equation First of all,

∂tvA + vA · ∇vA − div(2ν(cA)DvA) + ∇ pA

= ζ(d�)
(
∂tvin

A + vin
A · ∇vin

A − div(2ν(cin
A )Dvin

A ) + ∇ pin
A

)

+ (1 − ζ(d�))
∑
±

(
∂tv

±
A + v±

A · ∇v±
A − div(2ν(c±

A )Dv±
A ) + ∇ p±

A

)
χ± + O(εN+1)

in L2(� × (0, Tε))
2 because of the matching conditions and ∂t aε(t)N = O(εN+1) in

L∞(0, T0). Since by the construction

∂tv
±
A + v±

A · ∇v±
A − div(2ν(c±

A )Dv±
A ) + ∇ p±

A = O(εN+ 5
4 ) in L2(�± \ �(2δ)),

we only have to consider the terms from the inner expansion.
Next by the construction of wε and (4.15) we have

− div(2ν(θ0(ρ))Dwε) + ∇qε = − div(2ν(θ0(ρ))(w+
ε χ�ε,+ + w−

ε χ�ε,− )) + ∇qε

= 2 div(ν+w+
ε χ�ε,+ + ν−w−

ε χ�ε,− ) + ∇qε

+ 2 div((ν(θ0) − ν+)χ�ε,+ Dw+
ε ) + 2 div((ν(θ0) − ν−)χ�ε,− Dw−

ε )

= (−ν+�w+
ε + ∇q+

ε )χ�ε,+ + (−ν−�w−
ε + ∇q−

ε )χ�ε,− − σδ�ε
t
⊗ ��ε

t
hε ◦ Sεnε + O(ε

1
4 )

in L2(0, Tε; (H1(�t (3δ))2)′), where

〈δ�ε
t
⊗ ��ε

t
hε ◦ Sεnε,ϕ〉 :=

∫
�ε

t

��ε
t
hε(Sε(x, t))nε · ϕ(x) dσ(x) for all ϕ ∈ H1(�)2.

Here we have used for the second equality that

‖(ν(θ0) − ν±)Dw±
ε ‖L2(�ε,±) ≤ ‖ν(θ0) − ν±‖L2(R±)‖ sup

r∈[0,2δ]
Dw±

ε (Xε(r , .)‖L2((0,T )×T1)

≤ C
√

ε‖wε‖
1
2

L2(0,T ;H1(�
ε,±
t ))

‖wε‖
1
2

L2(0,T ;H2(�
ε,±
t ))

= O(ε
1
4 )

due to (2.31)–(2.32) as well as nε = n�ε
t
+ O(εN+3) due to (3.110). Hence we conclude

∂twε + wε · ∇v0 + v0 · ∇wε − div(2ν(θ0(ρ))Dwε) + ∇qε

= −σδ�ε
t
⊗ ��ε

t
hε ◦ Sεnε
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+
∑
±

χ�ε,±
(
∂tw±

ε + w±
ε · ∇v±

0 + v±
0 · ∇w±

ε − ν±�w±
ε + ∇q±

ε

)+ O(ε
1
4 )

= −σδ�ε
t
⊗ ��ε

t
hε ◦ Sεnε + O(ε

1
4 )

in L2(0, Tε; (H1(3δ))′). Moreover, we have because of Lemma 2.4 for ϕ ∈ H1(�t (3δ))2∣∣∣∣∣σ 〈δ�ε
t
⊗ (��ε

t
hN− 3

4 ,ε) ◦ Sεnε, ϕ〉 −
∫

�ε
t ( 114 δ)

θ ′
0(ρ)2

ε
(��ε

t
hN− 3

4 ,ε) ◦ Sεnε · ϕ dx

∣∣∣∣∣
≤ 1

ε

∫ 11
4 δ

− 11
4 δ

∫
T1

|θ ′
0(

r
ε
)2nε · (ϕ(Xε(r , s, t)) − ϕ(Xε(0, s, t)))��ε

t
hN− 3

4 ,ε(s, t)|Jε(r , s, t) ds dr

+ Cε‖hN− 3
4 ,ε‖H2(T1)‖ϕ‖H1(�t (3δ))

≤ C

(∫ 11
4 δ

− 11
4 δ

| r
ε
θ ′
0(

r
ε
)2|2 dr

) 1
2

‖ϕ‖H1(�t (3δ))‖��ε
t
hN− 3

4 ,ε‖L2(T1)

+ C(M)ε‖hN− 3
4 ,ε‖H2(T1)‖ϕ‖H1(�t (3δ))

≤ C
√

ε‖ϕ‖H1(�t (3δ))‖hN− 3
4 ,ε‖H2(T1) + C(M)ε‖ϕ‖H1(�t (3δ))‖hN− 3

4 ,ε‖H2(T1)

since

1

ε

∫ 11
4 δ

− 11
4 δ

θ ′
0(

r
ε
)2 Jε(r , s, t) dr = σ

|∇Sε(Xε(0, s, t))| + O(ε)

due to (2.5), |∇dε|2 = 1 + O(ε2), ∇dε · ∇Sε = O(ε2), |∇Sε(Xε(0, s, t)| =
|∂s Xε(0, s, t)|−1+O(ε2), and aTaylor expansion around r = 0.Here‖∂2s hN− 3

4
‖L2(T1×(0,Tε))

= O(ε− 1
4 ) due to (2.31). Hence we obtain

∂tvA + vA · ∇vA − div(2ν(cA)DvA) + ∇ pA

= −ζ(d�)
(
ε div(∇ c̃in

A ⊗ ∇ c̃in
A ) + εN− 3

4 (θ ′
0(ρ))2(��ε hN− 3

4
) ◦ Sε

)
+ O(εN+ 1

2 )

in L2(0, Tε; (H1(�)2)′) by using (3.105) and the matching condition in Theorem 3.11.
Now we use that

ε∇cin
A ⊗ ∇cin

A − ε∇ c̃in
A ⊗ ∇ c̃in

A

= εN− 7
4 2θ ′′

0 (ρ)θ ′
0(ρ)nε ⊗ nεhN ,ε(Sε(x, t), t)

+ εN− 3
4 θ ′

0(ρ)2
(
∇�ε

hN ,ε(Sε(x, t), t) ⊗ nε + nε ⊗ ∇�ε

hN ,ε(Sε(x, t), t)
)

+ εN− 1
4 rε(ρ, x, t) · aε(s, t) in �( 52 δ)

for some rε ∈ (R0,α)N , aε ∈ L∞(0, Tε; L2(T1))N and N ∈ N with uniformly bounded
norms in ε ∈ (0, ε0). Here one uses that

√
εhN− 1

4 ,ε,
√

εhN− 3
4 ,ε ∈ L∞(0, Tε; W 1

4 (T1)) are
bounded (because of (2.32) and (2.21)) and that ∂shN− 1

4 ,ε, hN− 3
4 ,ε enter at most quadrati-

cally. Hence we obtain

− ε div(∇cin
A ⊗ ∇cin

A ) + ε div(∇ c̃in
A ⊗ ∇ c̃in

A )

= −εN− 11
4 ∂ρ(2θ ′′

0 (ρ)θ ′
0(ρ))(nε · nε)nεhN ,ε − εN− 7

4 2θ ′′
0 (ρ)θ ′

0(ρ)nε · ∇�ε hN ,ε

− εN− 7
4 2θ ′′

0 (ρ)θ ′
0(ρ) div(nε ⊗ nε)hN ,ε − εN− 7

4 2θ ′′
0 (ρ)θ ′

0(ρ)
(
nε · nε∇�ε hN ,ε + nε · ∇�hN ,εnε

)
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− εN− 3
4 θ ′

0(ρ)2 div
(∇�ε hN ,ε(Sε(x, t), t) ⊗ nε + nε ⊗ ∇�ε hN ,ε(Sε(x, t), t)

)
+ O(εN+ 1

4 (
√

T + ε
1
4 ))

= ∇πε − εN− 7
4 2θ ′′

0 (ρ)θ ′
0(ρ) div(nε)nεhN ,ε

− εN− 3
4 θ ′

0(ρ)2 div
(∇�ε hN ,ε(Sε(x, t), t) ⊗ nε + nε ⊗ ∇�ε hN ,ε(Sε(x, t), t)

)
+ O(εN+ 1

4 (
√

T + ε
1
4 ))

= ∇πε − εN− 3
4 θ ′

0(ρ)2��ε hN− 3
4 ,ε(Sε(x, t), t)nε + O(εN+ 1

4 (
√

T + ε
1
4 ))

in L2(0, T ; (H1(�t (
5
2 δ))

′)) for all T ∈ (0, Tε] since nε ·nε = 1+ O(ε2), nε ·∇nε = O(ε2),

nε · ∇Sε = O(ε2), and hN− 3
4 ,ε ∈ L∞(0, Tε, H1(T1)) and ε

3
8 hN− 3

4 ,ε ∈ L4(0, Tε, H2(T1))

are uniformly bounded, where πε = εN− 7
4 2θ ′′

0 (ρ)θ0(ρ)hN ,ε. Now replacing pA by pA + πε

we obtain (4.1).
Part 3: Error in the Allen–Cahn equation Since c±

A ≡ ±1, the equation (4.3) together with
(4.7) and (4.8), follows in a straight forward manner from (4.20), Theorem 4.3 and the
matching conditions. ��

5 Sharp interface limit

The proof of our main result Theorem 1.1 follows the same steps as in [3, Section 4]. But
there are several careful adaptions needed since for our choice of mobility certain estimates
“degenerate”/give worse estimates compared to [3] and the construction of the approximate
solution is different.

5.1 The leading error in the velocity

For the following let (cA, vA, pA) and (c̃A, ṽA, p̃A) are given as in Sect. 4,where (cA, vA, pA)

still depends on the choice of u, which will be chosen in the following, but (c̃A, ṽA, p̃A) are
independent of u. Moreover, we define vε := vε − vA. Hence we obtain∂tvε+vε · ∇vε − div(2ν(cε)Dvε) + ∇q = −vε · ∇vA + div(2(ν(cε) − ν(cA))DvA)

− ε div(∇cε ⊗s ∇cA) − ε div(∇cε ⊗ ∇cε) − Rε,

div vε = −Gε,

vε|t=0 = v0,ε − vA|t=0,

vε|∂� = 0,

(5.1)

for some q : � × [0, T0] → R. Here cε = cε − cA, a ⊗s b = a ⊗ b + b ⊗ a and Rε , Gε are
as in Theorem 4.1.

In the following we consider the estimates

sup
0≤t≤τ

‖cε(t)‖L2(�) + ε
1
4 ‖∇cε‖L2(�×(0,τ )\�ε( 3δ2 )) ≤ RεN+ 1

2 , (5.2a)

ε
1
4 ‖∇τ ε cε‖L2(�×(0,Tε)∩�ε( 3δ2 )) + ε‖∂nε cε‖L2(�×(0,τ )∩�ε( 3δ2 )) ≤ RεN+ 1

2 , (5.2b)

‖∇cε‖L∞(0,τ ;L2(�)) + ε
1
4 ‖�cε‖L2(�×(0,τ )) ≤ RεN− 3

2 , (5.2c)∫ τ

0

∫
�ε

t ( 3δ2 )

|∇cε|2 + ε−2 f ′′(cA)cε
2 dx dt ≤ R2ε2N+ 1

2 (5.2d)
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for some τ = τ(ε) ∈ (0, T0], ε0 ∈ (0, 1], and all ε ∈ (0, ε0], where R > 0 is chosen such
that

‖c0,ε − cA|t=0‖2L2(�)
+ ε4‖∇(c0,ε − cA|t=0)‖2L2(�)

+ ‖v0,ε − vA|t=0‖2L2(�)
≤ R2

4
ε2N+1e−CL T0

(5.3)

for all ε ∈ (0, 1], where CL > 0 is the constant from the spectral estimate in Theorem 2.11.

We note that compared to [3, Estimates (4.5)] there is an additional factor ε
1
4 in front of the

norms for ∇(cε − cA) in (5.2a), for ∇τ ε (cε − cA) in (5.2b), and for �(cε − cA) in (5.2c) as
well as a loss by

√
ε in (5.2d).

As in [3, Section 4], we define

Tε := sup{τ ∈ [0, T0] : (5.2) holds true}. (5.4)

and have Tε > 0 because of (5.3).
The main goal of this subsection is to obtain the following bound for the error vε in the

velocity, which again is by a factor ε
1
4 worse than the corresponding result in [3]:

Theorem 5.1 Let M > 0, cA, vε be as in (5.1) and cε satisfy (5.2) for some R > 0 and
τ = Tε ∈ (0, T0] and N ≥ 3. Then there are some C(R, M) > 0, C0(R) independent
of ε ∈ (0, ε1), where ε1 is as in Theorem 2.1, and T ∈ (0, Tε] and vε = w1 − w0, where

w1 ∈ C([0, T ]; L2
σ (�))∩L2(0, T ; H1

0 (�)2)∩H
1
2 (0, T ; L2

σ (�)),w0 ∈ L2(0, T ; H2(�)2)∩
H1(0, T ; L2(�)2) satisfy

‖∂tw1‖L2(0,T ;V (�)′) + ‖w1‖
H

1
2 (0,T ;L2(�))

+ ‖w1‖L∞(0,T ;L2(�)) + ‖w1‖L2(0,T ;H1(�))

≤ C0(R)εN+ 1
4 + C(R, M)εN+ 1

4 (T
1
2 + ε

1
4 ), (5.5)

‖w0‖L2(0,T ;H2(�)) + ‖∂tw0‖L2(�×(0,T ))) ≤ C(R, M)εN+1 (5.6)

provided that ‖v0,ε − vA|t=0‖H1(�) ≤ CεN+ 1
2 for some C > 0.

Remark 5.2 Now we choose

u = w1

εN+ 1
4

∈ L2(0, T0; H1
0 (�)2) ∩ C([0, T0]; L2

σ (�)). (5.7)

As in [3] this yields a non-linear evolution equation with a globally Lipschitz nonlinearity
for u, which can be solved in the same manner as in [5, Proof of Lemma 4.2].

The result shows that, if we choose M = 2C0(R), then there are T ′ ∈ (0, T0] and
ε0 ∈ (0, 1) (depending on R > 0) such that

‖u‖
H

1
2 (0,T ;L2(�))

+ ‖u‖L∞(0,T ;L2(�)) + ‖u‖L2(0,T ;H1(�)) ≤ M = 2C0(R)

provided that T ∈ (0,min(T ′, Tε)] and ε ∈ (0, ε0]. In particular PM (u) = u in (4.3). After
the proof of Theorem 5.1 M will be choosen as M = 2C0(R).

Proof of Theorem 5.1 The proof is a variant of the proof of [3, Theorem 4.1]. But there are
several careful modifications necessary because of the different powers in the estimates (5.2)
in the present case and the new ε-dependent coordinates (dε, Sε), which are only approxi-
matively orthogonal.

As in [3] let (w0, q0) solve the system

∂tw0 − �w0 + ∇q0 = 0 in � × (0, T ), (5.8a)
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divw0 = Gε in � × (0, T ), (5.8b)

w0|∂� = 0 on ∂� × (0, T ), (5.8c)

w0|t=0 = (vA − vε)|t=0 in �, (5.8d)

where we note that Gε|t=0 = div(vA −vε)|t=0. By standard results on strong solutions of the
Stokes system one obtains a unique solution w0 ∈ L2(0, T ; H2(�)2) ∩ H1(0, T ; L2(�)2),
which satisfies (5.6). Then w1 := vε + w0 is a solution of the modified system

∂tw1+vε · ∇w1−div(2ν(cε)Dw1)+∇q =−ε div(∇cε ⊗s ∇cA)−ε div(∇cε⊗∇cε)

+div(2(ν(cε)−ν(cA))DvA)−vε · ∇vA

+∂tw0+vε · ∇w0−div(2ν(cε)Dw0)−Rε, (5.9)

divw1=0,

w1|∂� =0,

w1|t=0 = 0

in a weak sense. Now testing (5.9) with w1 and using Gronwall’s inequality yields

sup
0≤t≤T

1

2

∫
�

|w1|2(x, t)dx + 2
∫ T

0

∫
�

ν(cε)|Dw1|2dx dt

≤ eCT
(
1

2

∫
�

|w1|2(x, 0)dx + ε

∫ T

0

∣∣∣∣
∫

�

(∇cε ⊗s ∇cA : ∇w1
)
dx

∣∣∣∣dt

+ 2
∫ T

0

∣∣∣∣
∫

�

((
ν(cε) − ν(cA)

)
DvA : ∇w1

)
dx

∣∣∣∣dt

+ ε

∫ T

0

∣∣∣∣
∫

�

(∇cε ⊗ ∇cε : ∇w1
)
dx

∣∣∣∣dt +
∫ T

0

∣∣∣∣
∫

�

Rε · w1dx

∣∣∣∣dt

+
∫ T

0

∣∣∣∣
∫

�

(w1 · ∇vA) · w1dx

∣∣∣∣dt +
∫ T

0

∣∣∣∣〈∂tw0,w1〉V ′,V

∣∣∣∣dt

+
∫ T

0

∣∣∣∣
∫

�

(
(vε · ∇w0 + w0 · ∇vA) · w1 + (2ν(cε)Dw0 : ∇w1

))
dx

∣∣∣∣dt

)
. (5.10)

Now we estimate the different terms on the right-hand side separately.
The most important step is to show

ε

∫ T

0

∣∣∣∣
∫

�

∇cε ⊗ ∇cA : ∇w1dx

∣∣∣∣dt

≤ C(R)εN+ 1
4 ‖∇w1‖L2(�×(0,T )) + C(R, M)εN+ 1

4 (T
1
2 + ε

1
4 )‖∇w1‖L2(�×(0,T )).

(5.11)

To this end we decompose � into �\�ε
t (

3δ
2 ) and �ε

t (
3δ
2 ) and split the integrals accordingly.

Then the proof of (5.11) will consist of three parts.
First of all, we have

ε

∫ T

0

∣∣∣∣
∫

�\�ε
t ( 3δ2 )

∇cε ⊗ ∇cA : ∇w1dx

∣∣∣∣dt

≤ C(M)ε‖∇cε‖L2(�×(0,T )\�( 3δ2 ))
)‖∇w1‖L2(�×(0,T ))

≤ C(R, M)εN+ 5
4 ‖∇w1‖L2(�×(0,T )). (5.12)
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Furthermore, since

∣∣dε

∣∣ ≥ 3δ

2
for all x ∈ �t (3δ)\�t (

5
2 δ), t ∈ [0, T ], ε ∈ (0, ε0] (5.13)

due to (2.4), it holds

∇cA(x, t) = ∇(ζ ◦ d�)
(

ĉin
A (ρ, s, t) − c+

Aχ+ − c−
Aχ−

)
+ ε−1ζ ◦ d�θ ′

0(ρ)nε

+ ζ ◦ d�

N+2∑
k= 3

2

εk∇τ ε ĉk(ρ, s, t) + ζ ◦ d�

N+2∑
k= 3

2

εk−1∂ρ ĉk(ρ, s, t)nε

+ εN− 7
4 θ ′′

0 (ρ)nεhN ,ε ◦ Sε + εN− 3
4 θ ′

0(ρ)∇(hN ,ε ◦ Sε)

= ε−1ζ ◦ d�θ ′
0(ρ)nε + εN− 3

4 θ ′
0(ρ)∇(hN ,ε ◦ Sε) + O(ε

1
2 )

in L∞(�(3δ)) because of the matching conditions. Therefore we can estimate

ε

∫ T

0

∣∣∣∣
∫

�ε
t ( 3δ2 )

∇cε ⊗ ∇cA : ∇w1dx

∣∣∣∣dt

≤
∫ T

0

∫
�ε

t ( 3δ2 )

ζ ◦ d�θ ′
0(ρ)∂nε cε nε ⊗ nε : ∇w1dx dt

︸ ︷︷ ︸
=:I

+ C(M)εN− 5
4 ‖∇cε‖L2

(
0,T ;L4(�ε

t ( 3δ2 ))
)‖∇w1‖L2(�×(0,T ))

+ C(M)ε
3
2 ‖∇cε‖L2

(
0,T ;L2(�ε

t ( 3δ2 ))
)‖∇w1‖L2(�×(0,T ))

≤ I + C(R, M)εN+ 1
2 ‖∇w1‖L2(�×(0,T )) (5.14)

since
√

ε∂shN ,ε ∈ L∞(0, T ; L4(T1)) is bounded due to (2.21) and (2.32). Because of
∂nε (θ

′
0(ρ))2 = 1

ε
∂ρ(θ ′

0(ρ))2 and Lemma 2.7 and using (2.40), we obtain

|I | =
∣∣∣∣∣
∫ T

0

∫
�ε

t ( 3δ2 )
ζ ◦ d�θ ′

0(ρ)∂nε

(
ε
− 1

2 Z(Sε, t)
(
βεθ

′
0(ρ) + �ε(ρ, Sε, t)

)+ ψR
)

nε ⊗ nε : ∇w1 dx dt |

≤
∣∣∣∣∣
∫ T

0

∫
�ε

t ( 3δ2 )

1

2
∂nε

(
θ ′
0(ρ)2

)
ε
− 1

2 Z(Sε, t)βεnε ⊗ nε : ∇w1dx dt

∣∣∣∣∣
+
∣∣∣∣∣
∫ T

0

∫
T1

∫ 3δ
2ε

− 3δ
2ε

θ ′
0(ρ)ε

− 3
2 Z(s, t)∂ρ�ε(ρ, s, t)nε ⊗ nε : ∇w1 ◦ Xε Jε (ερ, s, t) dρ ds dt

∣∣∣∣∣
+ C

∥∥∥ψR
∥∥∥

L2
(
0,T ;H1

(
�ε

t ( 3δ2 )
)) ‖w1‖L2

(
0,T ;H1

(
�ε

t ( 3δ2 )
))

+ C(M)e− δ
2ε ‖∇cε‖L2

(
�ε( 3δ2 )

)‖w1‖L2(�×(0,T ))

≤ C‖Z‖L2(0,T ;H1(T1))‖w1‖L2(0,T ;H1(�))

+ C

ε

(
sup

t∈[0,T ]
sup

s∈T1

∫
Iε

|∂ρ�ε(ρ̃, s, t)|2 J (ερ̃, s, t)dρ̃

) 1
2 ‖Z‖L2(0,T ;H1(T1))‖w1‖L2(0,T ;H1(�))

+ C
∥∥∥ψR

∥∥∥
L2
(
0,T ;H1

(
�ε

t ( 3δ2 )
)) ‖w1‖L2

(
0,T ;H1

(
�ε

t ( 3δ2 )
))
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+ C(M)e− δ
2ε ‖∇cε‖L2

(
0,T ;L2(�ε

t ( 3δ2 ))
)‖w1‖L2

(
0,T ;L2(�)

). (5.15)

Now using (2.43) and (2.44) we derive

|I | ≤ C

(∥∥∥∥�ε

ε

∥∥∥∥
1
2

L1(0,T )

+ ‖cε‖L2
(
0,T ;L2(�ε

t ( 3δ2 ))
))‖∇w1‖L2(�×(0,T )), (5.16)

where

�ε =
∫

�ε
t ( 3δ2 )

(
ε|∇cε|2 + 1

ε
f ′′(cε

A)cε
2
)
dx .

Altogether (5.2), (5.16), and (5.14) yield

ε

∫ T

0

∣∣∣∣
∫

�ε
t ( 3δ2 )

∇cε ⊗ ∇ c̃A : ∇w1dx

∣∣∣∣dt

≤ C(R)εN+ 1
4 ‖∇w1‖L2(�×(0,T )) + C(R, M)εN+ 1

2 ‖∇w1‖L2(�×(0,T )). (5.17)

This shows (5.11) because of (5.12) and (5.17).
For the following we will use that by construction

vin
A (x, t) = ṽin

A (x, t) + εN+ 1
4wε(x, t).

Using that ‖wε‖L2(0,T ;H1(�)) is uniformly bounded and v̂0(ρ, x, t) = v+
0 (x, t)η(ρ) +

v−
0 (x, t)(1 − η(ρ)) together with v+

0 |� = v−
0 |� , one can show similarly as in [3, Estimate

(4.28)]

∇vA = ∇ṽA + εN+ 1
4 ∇wε,

where‖∇ṽA‖L∞(�×(0,T )),‖∇wε‖L2(�×(0,T )),
√

ε‖∇wε‖L2(0,T ;Lr (�)) are uniformlybounded
for every 1 ≤ r < ∞. Therefore we obtain

∫ T

0

∣∣∣∣
∫
�

((
ν(cε) − ν(cA)

)
DvA : ∇w1

)
dx

∣∣∣∣dt

≤ C(M)

(
T

1
2 ‖cε‖L∞(0,T ;L2) + ε

N+ 1
4 ‖cε‖L∞(0,T ;L4)‖∇wε‖L2(0,T ;L4)

)
‖∇w1‖L2(�×(0,T ))

≤ C(R, M)(T
1
2 + ε)ε

N+ 1
2 (5.18)

since |ν(cε) − ν(cA)| ≤ ‖ν′‖L∞(R)|cε|.
Next we use that

‖∇cε‖L4(�×(0,T )) ≤ C

(
‖∇cε‖

1
2
L∞(0,T ;L2(�))

‖�cε‖
1
2
L2(�×(0,T ))

+ T
1
4
0 ‖∇cε‖L∞(0,T ;L2(�))

)

≤ C(R)
(
εN− 13

8 + εN− 3
2
) ≤ C(R)εN− 13

8 , (5.19)

which yields

ε

∫ T

0

∣∣∣∣
∫

�

(
∇cε ⊗ ∇cε : ∇w1

)
dx

∣∣∣∣dt ≤ Cε‖∇cε‖2L4(0,T ;L4(�))
‖∇w1‖L2(�×(0,T ))

≤ C(R)ε2N− 9
4 ‖∇w1‖L2(�×(0,T )) ≤ C(R)εN+ 1

4 ‖∇w1‖L2(�×(0,T )) (5.20)
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due to N ≥ 5
2 . Because of (4.5),∫ T

0

∣∣∣∣
∫

�

Rε · w1dx

∣∣∣∣dt ≤ C(M)εN+ 1
4 ‖w1‖L∞(0,T ;L2(�))

+ C(R, M)εN+ 1
4 (T

1
2 + ε

1
4 )‖w1‖L∞(0,T ;L2(�)). (5.21)

Using (5.6) one obtains as in [3, Proof of Theorem 4.1]
∫ T

0

∣∣〈∂tw0,w1〉V ′,V
∣∣ dt +

∫ T

0

∣∣∣∣
∫

�

(
(vε · ∇w0 − w0 · ∇vA) · w1 + (2ν(cε)Dw0 : ∇w1

))
dx

∣∣∣∣dt

≤ C(M)εN+ 1
2 ‖∇w1‖L2(�×(0,T )) + C(M)εN+ 1

2 ‖w1‖
1
2
L∞(0,T ;L2)

‖w1‖
1
2
L2(0,T ;H1)

, (5.22)

Combining (5.17), (5.18), (5.20)–(5.22) and utilizing (1.14), Korn’s and Young’s inequality
we conclude

‖w1‖L∞(0,T ;L2(�)) + ‖w1‖L2(0,T ;H1(�)) ≤ C(R)εN+ 1
4 + C(R, M)εN+ 1

4 (T
1
2 + ε

1
4 ).

(5.23)

Furthermore, by testing (5.9) with ϕ ∈ L2(0, T ; V (�)) and using the similar arguments as
above we arrive at

‖∂tw1‖L2(0,T ;V (�)′) ≤ C(R)εN+ 1
4 + C(R, M)εN+ 1

4 (T
1
2 + ε

1
4 ),

which by interpolation leads to

‖w1‖
H

1
2 (0,T ;L2(�))

≤ C(R)εN+ 1
4 + C(R, M)εN+ 1

4 (T
1
2 + ε

1
4 ). (5.24)

Finally, (5.6) and (5.23)–(5.24) yield the desired result. ��
Since by definition u = w1

ε
N+ 1

4
, we get for T ∈ (0, Tε)

‖∂tu|V (�)‖L2(0,T ;V (�)′) + ‖u‖L∞(0,T ;L2(�)) + ‖u‖L2(0,T ;H1(�)) ≤ C(R). (5.25)

Proposition 5.3 For T ∈ (0, Tε) there holds
∫ T

0

∣∣∣∣
∫

�

(
u − u|Xε(0,Sε,t)

) · ∇cAcε dx

∣∣∣∣dt ≤ C(R, T )εN+ 3
4 , (5.26)

where C(R, T ) → 0 as T → 0.

Proof Let

c(0)(x, t) = ζ ◦ d�(x, t)θ0(ρ) + (1 − ζ ◦ d�(x, t))
(
c+

A (x, t)χ+(x, t) + c−
A (x, t)χ−(x, t)

)
(5.27)

be the leading part of cA. Using that(
θ0(ρ) − (± 1

∣∣
�±(t)

))∇(ζ ◦ d�) = O(e− αδ
2ε ), (5.28)

due to (5.13), we obtain∫
�ε

t ( 3δ2 )

(
u − u|Xε(0,Sε,t)

) · ∇c(0)cεdx = J + O(e− αδ
2ε )‖u‖H1(�)‖cε‖L2(�ε

t ( 3δ2 )), (5.29)
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where

J := ε−1
∫

�ε
t ( 3δ2 )

ζ ◦ d�

(
u − u|Xε(0,Sε,t)

) · nεθ
′
0(ρ)cε dx .

Now we use that

∂r Xε(r , s, t) = nε(Xε(0, s, t), t) + O(ε2) = ∂r Xε(r
′, s, t) + O(ε2)

for all r , r ′ ∈ (− 3δ
2 , 3δ

2 ), s ∈ T
1, t ∈ [0, T0] because of (2.9). Therefore we obtain

J =
∫ 3δ

2

− 3δ
2

∫
T1

1

ε

∫ r

0
(nε(Xε(r , .)) · (∂r Xε(r

′, .) · (∇u)(Xε(r
′, .))

)
dr ′ θ ′

0(
r
ε )cε(Xε(r , .))Jε(r , .)ds dr

=
∫ 3δ

2

− 3δ
2

∫
T1

1

ε

∫ r

0
(nε(Xε(r

′, .)) · (∂r Xε(r
′, .) · (∇u)(Xε(r

′, .))
)
dr ′ θ ′

0(
r
ε )cε(Xε(r , .))Jε(r , .)ds dr

+
∫ 3δ

2

− 3δ
2

∫
T1

1

ε

∫ r

0
Aε(r , r ′, s, t) : (∇u)(Xε(r

′, .))dr ′ θ ′
0(

r
ε )cε(Xε(r , .))Jε(r , .)ds dr , (5.30)

where Aε(r , r ′, s, t) = O(ε2). Now using (2.7) we derive

J = −
∫ 3δ

2

− 3δ
2

∫
T1

1

ε

∫ r

0
(div u)(Xε(r

′, .))dr ′ θ ′
0(

r
ε
)cε(Xε(r , .))Jε(r , .)ds dr

−
∫ 3δ

2

− 3δ
2

∫
T1

1

ε

∫ r

0
∇Sε(Xε(r

′, .)) · (∂s Xε(r
′, .) · ∇u)(Xε(r

′, .))dr ′ θ ′
0(

r
ε
)cε(Xε(r , .))Jε(r , .)ds dr

+
∫ 3δ

2

− 3δ
2

∫
T1

1

ε

∫ r

0
Aε(r , r ′, s, t) : (∇u)(Xε(r

′, .))dr ′ θ ′
0(

r
ε
)cε(Xε(r , .))Jε(r , .)ds dr , (5.31)

where∣∣∣∣∣
∫ 3δ

2

− 3δ
2

∫
T1

1

ε

∫ r

0
∇Sε(Xε(r , .)) · (∂s Xε(r

′, .) · ∇u)(Xε(r
′, .))dr ′ θ ′

0(
r
ε
)cε(Xε(r , .))Jε(r , .)ds dr

∣∣∣∣∣
=
∣∣∣∣∣
∫ 3δ

2

− 3δ
2

∫
T1

1

ε

∫ r

0
u(Xε(r

′, .))θ ′
0(

r
ε
) · ∂s

(∇Sε(Xε(r
′, .)cε(Xε(r , .))Jε(r , .)

)
dr ′ ds dr

∣∣∣∣∣
≤ Cε

1
2 ‖u(·, t)‖

1
2
L2(�)

‖u(·, t)‖
1
2
H1(�)

(‖∇τ ε cε‖L2(�ε
t ( 3δ2 )) + ‖cε‖L2(�ε

t ( 3δ2 ))

)
because of∣∣∣∣ 1ε

∫ r

0
u(Xε(r , s, t))dr ′

∣∣∣∣ ≤ |r |
ε

‖u(Xε(·, s, t))‖L∞(− 3δ
2 , 3δ2 )

≤ |r |
ε

‖u(Xε(·, s, t))‖
1
2

L2(− 3δ
2 , 3δ2 )

‖u(Xε(·, s, t))‖
1
2

H1(− 3δ
2 , 3δ2 )

.

Similarly we have∣∣∣∣∣
∫ 3δ

2

− 3δ
2

∫
T1

1

ε

∫ r

0
(div u)(Xε(r

′, s, t))dr ′ θ ′
0(

r
ε
)cε(Xε(r , s, t))Jε(r , s, t)ds dr

∣∣∣∣∣
≤ C‖ div u‖L2(�)‖cε‖L2(�ε

t ( 3δ2 ))

due to ∣∣∣∣ 1ε
∫ r

0
(div u)(Xε(r , s, t)dr ′

∣∣∣∣ ≤ |r | 12
ε

‖(div u)(Xε(·, s, t))‖L2(− 3δ
2 , 3δ2 ).
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Now using ‖ div u‖L2(�×(0,Tε))
= O(ε

1
4 ), we obtain

∫ T

0
|J |dt ≤ C(R)T

1
4
(
ε

1
2 ‖∇τ ε cε‖L2(�×(0,T )) + T

1
2 ε

1
4 ‖cε‖L∞(0,T ;L2(�))

)+ CT
1
2 εN+1

≤ C(R)T
1
4 (1 + T

1
2 )εN+ 3

4 . (5.32)

Combining (5.32) and (5.29) we obtain
∫ T

0

∣∣∣∣
∫

�ε
t ( 3δ2 )

(
u − u|Xε(0,Sε,t)

) · ∇c(0)cε dx

∣∣∣∣dt ≤ C(R, T )εN+ 3
4 , (5.33)

where C(R, T ) → 0 as T → 0.
Finally, the corresponding estimate∇(cA −c(0)) can be done in a straight forward manner

since all terms are of higher order in ε (by at least a factor ε
3
2 ) compared to ∇c(0). This

finishes the proof. ��
Remark 5.4 Analogous to Proposition 5.3 one can show that

∫ T

0

∣∣∣∣
∫

�

(
wε − wε|Xε(0,Sε,t)

) · ∇cAcε dx

∣∣∣∣dt ≤ C(R, T )εN+ 3
4 , (5.34)

where C(R, T ) → 0 as T → 0. To this end one uses the same computations and estimates
as in the proof of Proposition 5.3 for wε instead of u and the estimate (4.7).

5.2 Proof of themain result Theorem 1.1

In order to estimate the error due to linearization of ε− 3
2 f ′(c) we need:

Proposition 5.5 Under the assumptions of Sect.5.1 we have for every T ∈ (0, Tε)∫ T

0

∫
�

|cε|3dx dt ≤ C(R)T
1
2 ε3N+ 7

8 . (5.35)

Proof The proof is almost identical to [3, Proposition 4.3] with �t (δ) and ∇τ u replaced by

�ε
t (

3δ
2 ), ∇τ ε cε , respectively. In the present case the power of ε in the estimate for ‖∇τ ε cε‖

1
2
L2

is decreased by 1
8 , which cause the loss of 1

8 in the power of ε in the present case compared
to [3, Proposition 4.3]. ��

In the following the proof is similar to [3, Section 4.2]. But because of the different
powers of ε in the estimates, some terms are critical compared to [3] and we have to choose
additionally T > 0 sufficiently small to finally control all terms.

First of all, by definition vε = vA + εN+ 1
4 u − w0. Therefore (1.3) and (4.3) imply

∂t cε + vε · ∇cε + εN+ 1
4
(
u − u|Xε(0,Sε,t) − (wε − wε|Xε(0,Sε,t))

) · ∇cA − w0 · ∇cA

= ε
1
2 �cε − ε− 3

2 f ′′(cA)cε − ε− 3
2N(cA, cε) − s1ε − s2ε , (5.36)

whereN(cA, cε) = f ′(cε) − f ′(cA) − f ′′(cA)cε. Taking the L2(�)-inner product of (5.36)
and cε , using integration by parts we obtain

1

2

d

dt

∫
�

cε
2dx + ε

1
2

∫
�

(|∇cε|2 + f ′′(cA)

ε2
cε

2)dx
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≤ εN+ 1
4

∣∣∣∣
∫

�

(
u − u|Xε(0,Sε,t) − (wε − wε|Xε(0,Sε,t))

) · ∇cAcε dx

∣∣∣∣+
∣∣∣∣
∫

�

w0 · ∇cAcε dx

∣∣∣∣
+ ε− 3

2 C
∫

�

|cε|3dx +
∣∣∣∣
∫

�

sεcε dx

∣∣∣∣ (5.37)

because of ∫
�

N(cA, cε)cεdx ≥ −C
∫

�

|cε|3dx .

Application of Lemma 2.11 now yields

2
1

2

d

dt

∫
�

cε
2dx − CLε

1
2

∫
�

cε
2dx + ε

1
2

∫
�\�ε

t ( 3δ2 )

|∇cε|2dx + ε
1
2

∫
�ε

t ( 3δ2 )

|∇τ ε cε|2dx

≤ εN+ 1
4

∣∣∣∣
∫

�

(
u − u|Xε(0,Sε,t) − (wε − wε|Xε(0,Sε,t))

) · ∇cAcεdx

∣∣∣∣+
∣∣∣∣
∫

�

w0 · ∇cAcεdx

∣∣∣∣
+ Cε− 3

2

∫
�

|cε|3dx +
∣∣∣∣
∫

�

sεcε dx

∣∣∣∣. (5.38)

Therefore we obtain

sup
0≤t≤T

1

2

∫
�

cε(x, t)2dx + ε
1
2

∫ T

0

∫
�\�ε

t ( 3δ2 )

|∇cε|2dx dt + ε
1
2

∫ T

0

∫
�ε

t ( 3δ2 )

|∇τ ε cε|2 dx dt

≤ eCL T0

(
1

2

∫
�

cε(x, 0)2dx + εN+ 1
4

∫ T

0

∣∣∣∣
∫

�

(
u − u|Xε(0,Sε,t) − (wε − wε|Xε(0,Sε,t))

)

· ∇cAcε dx

∣∣∣∣dt

+
∫ T

0

∣∣∣∣
∫

�

w0 · ∇cAcε dx

∣∣∣∣dt + Cε− 3
2

∫ T

0

∫
�

|cε|3dx dt +
∫ T

0

∣∣∣∣
∫

�

sεcε dx

∣∣∣∣dt

)

≤ R2

8
ε2N+1 + C ′(R, T )

(
ε2N+1 + ε3N− 5

8
) ≤ R2

8
ε2N+1 + C(R, T )ε2N+1 (5.39)

for all 0 ≤ T ≤ Tε due to (4.8), (5.2), (5.3), Theorem 5.1, Proposition 5.3, Remark 5.4,
Proposition 5.5, ‖∇cA‖L∞(0,T0;L2(�)) = O( 1√

ε
), Gronwall’s inequality, and N ≥ 3, where

C(R, T ), C ′(R, T ) →T →0 0.Hence, if ε ∈ min(0, ε0) and ε0 > 0 and T > 0 are sufficiently
small, we have

R2

8
ε2N+1 + C(R, T )ε2N+1 ≤ R2

4
ε2N+1

and therefore

sup
0≤t≤T

1

2

∫
�

cε(x, t)2dx + ε
1
2

∫
�×(0,T )\�ε( 3δ2 )

|∇cε|2d(x, t)

+ ε
1
2

∫
�×(0,T )∩�ε( 3δ2 )

|∇τ ε cε|2d(x, t) ≤ R2

4
ε2N+1. (5.40)

Combining this estimate with (5.37) we obtain

ε
1
2

∫ T

0

∫
�

(
|∇cε|2 + f ′′(cA)

ε2
cε

2
)
dx dt ≤ 1

2

∫
�

cε(x, 0)2dx
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+ εN+ 1
4

∫ T

0

∣∣∣∣
∫

�

(
u − u|Xε(0,Sε,t) − (wε − wε|Xε(0,Sε,t))

) · ∇cAcεdx

∣∣∣∣dt

+
∫ T

0

∣∣∣∣
∫

�

w0 · ∇cAcε dx

∣∣∣∣dt + Cε− 3
2

∫ T

0

∫
�

|cε|3dx dt +
∫ T

0

∣∣∣∣
∫

�

sεcεdx

∣∣∣∣dt

≤ R2

8
ε2N+1 + C(R, T )ε2N+1 ≤ R2

4
ε2N+1. (5.41)

for T ∈ (0, Tε] sufficiently small and, if ε0 > 0 is sufficiently small,

ε2
∫ T

0

∫
�

|∂nε cε|2dx dt ≤ ε2
∫ T

0

∫
�

|∇cε|2dx dt

≤
∫ T

0

∫
�

(
ε2|∇cε|2 + f ′′(cA)cε

2)dx dt + C
∫ T

0

∫
�

cε
2dx dt

≤ R2

4
ε2N+ 5

2 + CT
R2

2
ε2N+1 ≤ 3R2

4
ε2N+1. (5.42)

Next we derive the estimates for �cε in L2(� × (0, T )) and ∇cε in L∞(0, T ; L2(�)).
To this end we take the L2(�)-inner product of (5.36) and −ε4�cε, integrate by parts, and
obtain

sup
0≤t≤T

ε4

2

∫
�

|∇cε |2(x, t)dx + ε
9
2

∫ T

0

∫
�

|�cε |2dx dt

≤ ε4

2

∫
�

|∇cε |2(x, 0)dx + ε
5
2

∫ T

0

∫
�

∣∣ f ′′(cA)cε�cε

∣∣dx dt + ε4
∫ T

0

∫
�

∣∣vε · ∇cε�cε

∣∣dx dt

+ ε
N+ 17

4

∫ T

0

∫
�

∣∣(u − u|Xε(0,Sε,t) − (wε − wε |Xε(0,Sε,t))
) · ∇cA�cε

∣∣dx dt

+ ε4
∫ T

0

∣∣∣∣
∫
�
w0 · ∇cA�cε dx

∣∣∣∣dt + ε
5
2

∫ T

0

∫
�

∣∣N(cA, cε)�cε

∣∣dx dt + ε4
∫ T

0

∣∣∣∣
∫
�

sε�cε dx

∣∣∣∣dt,

(5.43)

where

ε
9
2

∫ T

0

∫
�

∣∣ f ′′(cA)cε�cε

∣∣dx dt ≤ Cε
9
2 T

1
2 ‖cε‖L∞(0,T ;L2(�))‖�cε‖L2(0,T ;L2(�))

≤ C RεN+3T
1
2 ‖�cε‖L2(�×(0,T )). (5.44)

As in [3, Section 4.2] one estimates

ε2
∫ T

0

∫
�

∣∣N(cA, cε)�cε

∣∣dx dt ≤ C R2ε2N+2‖�cε‖L2(0,T ;L2(�)) (5.45)

and, using vε = vA + εN+ 1
4 u − w0,

ε4
∫ T

0

∫
�

∣∣vε · ∇cε�cε

∣∣dx dt ≤ C RεN+ 7
2 ‖�cε‖L2(0,T ;L2(�))

+ C(R)εN+ 17
4 ‖∇cε‖

1
2
L∞(0,T ;L2(�))

‖�cε‖
3
2
L2(0,T ;L2(�))

.

(5.46)

Furthermore

εN+ 9
2

∫ T

0

∫
�

∣∣(u − u|Xε(0,Sε,t) − (wε − wε|Xε(0,Sε,t))
) · ∇cA�cε

∣∣dx dt

123



   94 Page 54 of 58 H. Abels et al.

≤ C(R)εN+ 13
4 ‖�cε‖L2(0,T ;L2(�)), (5.47)

ε4
∫ T

0

∣∣∣∣
∫

�

w0 · ∇cA�cε dx

∣∣∣∣dt ≤ C(R)εN+ 9
2 ‖�cε‖L2(0,T ;L2(�)) (5.48)

and

ε4
∫ T

0

∣∣∣∣
∫

�

sε�cε dx

∣∣∣∣dt ≤ ε4‖s1ε + s2ε ‖L2(0,T ;L2(�))‖�cε‖L2(0,T ;L2(�))

≤ CεN+ 15
4 ‖�cε‖L2(0,T ;L2(�)). (5.49)

due to (4.9).
Now using (5.3), (5.44) and (5.46)–(5.49) in (5.43) leads to

sup
0≤t≤T

ε4

2

∫
�

|∇cε|2(x, t)dx + ε
9
2

∫ T

0

∫
�

|�cε|2dx dt

≤ R2

8
ε2N+1 + C(R)εN+ 17

4 ‖∇cε‖
1
2
L∞(0,T ;L2(�))

‖�cε‖
3
2
L2(0,T ;L2(�))

+ C(R)εN+3‖�cε‖L2(0,T ;L2(�)).

An application of Young’s inequality yields

sup
0≤t≤T

3ε4

8

∫
�

|∇cε|2(x, t)dx + 3

8
ε

9
2

∫ T

0

∫
�

|�cε|2dx dt

≤ R2

8
ε2N+1 + C(R)ε2N+ 3

2 ≤ R2

4
ε2N+1, (5.50)

and

sup
0≤t≤T

∫
�

|∇cε|2(x, t)dx + ε
1
2

∫ T

0

∫
�

|�cε|2dx dt ≤ 2R2

3
ε2N−3. (5.51)

if ε0 > 0 is small enough.
Altogether we see from (5.40), (5.41), (5.42) and (5.51) and the definition of Tε that there

are ε0 > 0 and T1 > 0 such that Tε > T1 for all ε ∈ (0, ε0) and therefore (5.2) hold true for
τ = T1.

Finally, (1.18) follows from vε = vε − vA and Theorem 5.1, in particular (5.5), and the
remaining two conclusions in Theorem 1.1 are a consequence of the constructions of cA and
vA. This finishes the proof of Theorem 1.1.
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A Wellposedness of linearized two-phase flow system

Theorem A.14 Let �±, � be smooth and as in Sect. 1 with V�t = n�t · v±
0 for all t ∈ [0, T0]

and some smooth v±
0 : �± → R

2 with div v±
0 = 0 in �±. Moreover, let T ∈ (0, T0],

q ∈ (4,∞), and b j : � → R
2, j = 0, 1, 2, ak : T1 ×[0, T0] → R, k = 0, 1 be smooth. Then

for all

f ∈ Lq(� × (0, T ))2, g ∈ Lq(0, T ; W 1
q (� \ �t )), w ∈ Lq(0, T ; W

2− 1
q

q (T1)),

a1 ∈ Lq(0, T ; W
2− 1

q
q (�t ))

2 ∩ W
1
2− 1

2q
q (0, T ; Lq(�t ))

2, v0 ∈ W
2− 2

q
q (� \ �0)

2,

a2 ∈ Lq(0, T ; W
1− 1

q
q (�t ))

2 ∩ W
1
2− 1

2q
q (0, T ; Lq(�t ))

2, h0 ∈ W
3− 2

q
q (T1),

a ∈ Lq(0, T ; W
2− 1

q
q (∂�))2 ∩ W

1− 1
2q

q (0, T ; Lq(∂�))2

satisfying ∫
�\�t

g dx = −
∫

�t

a1 · n�t dH1 +
∫

∂�

a · n∂�dH1 (A.1)

for almost all t ∈ (0, T ) such that g = divG for some G ∈ W 1
q (0, T ; Lq(�))2, div v0|t=0 =

g|t=0 and �v0� = a1|t=0 + b0h0 ◦ S0|t=0, v−
0 |∂� = a|t=0, there are unique

v ∈ Lq(0, T ; W 2
q (� \ �t ))

2 ∩ W 1
q (0, T ; Lq(�))2, p ∈ Lq(0, T ; W 1

q,(0)(� \ �t )),

h ∈ Lq(0, T ; W
3− 1

q
q (T1)) ∩ W 1

q (0, T ; W
2− 1

q
q (T1))

solving

∂tv± − ν±�v± + ∇ p± = f in �±
t , t ∈ (0, T ), (A.2)

div v± = g in �±
t , t ∈ (0, T ), (A.3)

�v� − b0h ◦ S0 = a1 on �t , t ∈ (0, T ), (A.4)

�2νDv − pI�n + ν�∂nv� − σ��t h ◦ S0n = b1∂sh ◦ S0

+ b2h ◦ S0 + a2 on �t , t ∈ (0, T ), (A.5)

∂t h + a1∂sh + 1
2 (v

+
n + v−

n ) ◦ X0 + a0h = w on T
1 × (0, T ), (A.6)

v− = a on ∂� × (0, T ), (A.7)

v±|t=0 = v±
0 in �, (A.8)

h|t=0 = h0 in T
1, (A.9)

where v± = v|�± , p± = p|�± , n = n�t .

Proof First of all by subtracting suitable extensions of a, v0, and h0 we can easily reduce to
the case a = 0, v0 = 0, and h0 = 0.

Step 1: Time-independent interface, zero lower order terms Let us first consider the case that
�t = �,�±

t = �± are independent of t ∈ [0, T0], b j = 0 for j = 0, 1, 2, b0 = 0. First of all
by subtracting suitable extensions, we can easily reduce to the case that g = 0 and a1 = 0.
Then

ν�∇vn� = 0 if �v� = 0 on �, div v± = 0 in �±.
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Hence in this case (A.5) is equivalent to

�2(ν + ν)Dv − pI�n = σ��hn + a2. (A.10)

Thus the result follows e.g. from [30, Corollary 8.1.3].
Step 2: Existence for T = T1 > 0 sufficiently small Let � : � × [0, T0] → � be defined by

d

dt
�t (ξ) = v±

0 (�t (ξ), t) for all ξ ∈ �±
0 , t ∈ [0, T0],

�0(ξ) = ξ for all ξ ∈ �±
0 .

Then � is smooth in �± and �(�0, t) = �t , �(�±
0 , t) = �±

t for all t ∈ [0, T0]. Moreover,
(v±, p±, h) solves (A.2)–(A.9) if and only if (ṽ±, p̃±, h), where ṽ±(x, t) = v±(�t (x), t),

p̃±(x, t) = p±(�t (x), t) for all x ∈ �±
0 , t ∈ [0, T ], solves the perturbed system

∂t ṽ± − ν±�ṽ± + ∇ p̃± = f̃ + R1 in �±
0 × (0, T ), (A.11)

div ṽ± = g̃ + R2 in �±
0 × (0, T ), (A.12)

�ṽ� = ã1 + b̃0τh on �0 × (0, T ), (A.13)

�2νDṽ − p̃I�n + ν�∂nṽ� − σ��0h ◦ S0
0 = n + b̃1∂sh ◦ S0

0

+ b̃2h ◦ S0
0 + ã2 + R3 on �0 × (0, T ), (A.14)

∂t h + a1∂sh + 1
2 (v+

n + v−
n ) ◦ X0

0 = w − a0h + R4 on T1 × (0, T ), (A.15)

together with ṽ|∂� = 0, ṽ|t=0 = 0, h|t=0 = 0, where S0
0 (x, t) = S0(x, 0) for all (x, t) ∈

� × (0, T ), X0
0(s) = X0(s, 0) for all s ∈ T

1, and

f̃(x, t) = f(�t (x), t), g̃(x, t) = g(�t (x), t) for all (x, t) ∈ �±
0 × (0, T ),

ã j (x, t) = a1(�t (x), t), b̃ j (x, t) = b j (�t (x), t) for all (x, t) ∈ �0 × (0, T ), j = 1, 2,

b̃0(x, t) = b0(�t (x), t), for all (x, t) ∈ �0 × (0, T ).

Here (R1, R2, 0,R3, R4) ∈ F(T ) := F1(T ) × . . . × F5(T ) depends linearly on (ṽ, p̃, h) ∈
E(T ) := E1(T ) × E2(T ) × E3(T ), where

E1(T ) := Lq (0, T ; W 2
q (� \ �0) ∩ W 1

q,0(�))2 ∩ 0W 1
q (0, T ; Lq (�))2,

E2(T ) := Lq (0, T ; W 1
q,(0)(� \ �0)) ∩ 0W 1

q (0, T ; Ẇ−1
q,(0)(�))

E3(T ) := Lq (0, T ; W
3− 1

q
q (T1)) ∩ 0W 1

q (0, T ; W
2− 1

q
q (T1)),

F1(T ) := Lq (� × (0, T ))2, F2(T ) := Lq (0, T ; W 1
q (� \ �0)),

F3(T ) := Lq (0, T ; W
2− 1

q
q (�0))

2 ∩ 0W
1
2− 1

2q
q (0, T ; Lq (�0))

2,

F4(T ) := Lq (0, T ; W
1− 1

q
q (�0))

2 ∩ W
1
2− 1

2q
q (0, T ; Lq (�0))

2, F5(T ) := Lq (0, T ; W
2− 1

q
q (T1)),

normed in the standard way, and, for a Banach space X and s > 1 − 1
q ,

0W s
q (0, T ; X) := {u ∈ W s

q (0, T ; X) : u(0) = 0}.
Moreover, since �t →t→0 id� in Ck(�) for every k ∈ N, we have that

‖(R1, R2, 0,R3, R4)‖F(T ) ≤ C(T )‖(ṽ, p̃, h)‖E(T ),
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for some C(T ) →T →0 0. Furthermore using e.g. E3(T ) ↪→ C([0, T ]; W
3− 3

q
q (T1)) one can

show that

‖(0, 0, b̃0τh, b̃1∂sh ◦ S0
0 + b̃2h ◦ S0

0 , a0h)‖F(T ) ≤ CT α‖(ṽ, p̃, h)‖E(T )

for some α > 0 and C independent of T ∈ (0, T0]. Hence, since the set of all invertible linear
operators is open, there is some T1 > 0 such that (A.11)–(A.15) possesses a unique solution
in (ṽ, p̃, h) ∈ E(T ) provided T ∈ (0, T1]. Transforming (ṽ, p̃) to �± with the aid of �−1

t
yields the statement in this case.
Step 3: Existence for general T > 0: Since the system is linear, the existence time T1 > 0 in
the second step is independent of the norms of the data. Moreover, as in the second step we
obtain that for any t0 ∈ [0, T ) there is some T1(t0) > t0 such that the system has a unique
solution for t ∈ (t0, T1(t0)) for a given initial value v|t=t0 = ṽ0 at t = t0. Because of the
compactness of [0, T ] and uniqueness of the solutions, we can concatenate these solutions
and obtain a solution on [0, T ]. ��
Remark A.2 With the aid ofTheoremA.14 one can obtain that for all smooth f, g, a1,2,b,w, a
(without precribed initial values v0, h0) a smooth solution of (A.2)–(A.7). To this end one
extends the smooth data f , g, w, ak , k = 1, 2, a, and �±

t , �t on a time interval [−1, T0] in a
smoothmanner such that these functions vanish in [−1, 1

2 ]. Then one can apply Theorem3.11
to obtain a solution (v±, p±, h) of (A.2)–(A.7) on a time intervall (−1, T0) instead of (0, T0)
and with initial values v0 = 0, h0 = 0. Then one can apply the parameter-trick in space and
time (cf. e.g. [30, Section 9.4] to obtain that v±, p are smooth in

⋃
t∈(−1,T0] �

±
t ×{t} and h is

smooth in
⋃

t∈(−1,T0] T
1 ×{t}. Restriction to [0, T0] in time yields the existence of a smooth

solution to (A.2)–(A.7), which satisfy (A.8)–(A.9) for some v±
0 := v±|t=0, h0 := h|t=0.
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