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Abstract
We prove the Manin—Peyre conjecture for the number of rational points of bounded
height outside of a thin subset on a family of Fano threefolds of bidegree (1, 2).
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1 Introduction

The primary purpose of this paper is to resolve the Manin—Peyre conjecture for a
family of smooth Fano threefolds in P! x P3. LetLy,..., L4 € Z[x1, x2] be binary
linear forms which are pairwise non-proportional. Let V C P! x P? be given by

Li(x1, x2)y? 4 La(x1, x2)y3 + L3(x1, x2)y5 + La(x1, x2)y7 =0, (1.1)

defining a smooth Fano threefold of bidegree (1, 2). The Picard group is Pic(V) = 72
and V is equipped with two morphisms, corresponding to the projections 7y : P! x
P> — P'and s : P! x P3 — P3. Let | - | denote the sup-norm on R?, for any d € N.
We can associate an anticanonical height function on V (Q) via H (x, y) = |x||y|?, if
(x,y) € V(Q) is represented by a vector (x,y) € Zgrim X Zgﬂm. The Manin—Peyre
conjecture [10, 20, 21] predicts that there should exist a thin subset 2 C V (Q), in the
sense of Serre [24, §3.1], such that

#(x,y) e VIQ\Q2: H(x,y) < B} ~ cyBlog B, (1.2)

where cy is a constant whose value has been conjectured by Peyre [20]. Addressing
a question of Peyre, raised in his lecture at the 2009 conference Arithmetic and alge-
braic geometry of higher-dimensional varieties at the University of Bristol, numerical
evidence towards this conjecture has been supplied by Elsenhans [9]. We can write
(1.1) as

x101(y1, - y4) = 202001, -+, y4), (1.3)

for suitable diagonal quadratic forms Q1, Q2 € Z[yy, - . ., ya]. Consider the subvari-
ety Z C P? givenby Q1 = Q = 0. Our assumptions on L1, ..., L4 ensure that Z is
asmooth genus one curve and so the closed subvariety 7, Y(Z) Z P! x Z C V defines
an elliptic cylinder. If Z(Q) # @ then there are >> B rational points of anticanonical
height < Bonm, ! (Z). Thus, in general, we should certainly demand that 2 contains
I PA(O)

The restriction of 77 to V gives a fibration into quadrics 7y : V — PL.Ifx € PH(Q)

is represented by x = (x1, x2) € mem, then |~ Yy is split if and only if

4
[[Lix=0. (1.4)
i=1
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Density of rational points... 4125

For such a point x with 7|~ ! (x)(Q) # @, the fibre will contribute ~ ¢, B log B points,
for an appropriate constantc, > 0 thatdepends on x. Based on numerical investigation,
Elsenhans suggests that the conjectured asymptotic (1.2) holds when €2 is taken to be
union of 77, ! (Z2)(Q) and the set of (x, y) € V(Q) for which (1.4) holds. In particular,
Q2 C V(Q) is a thin set of rational points, since 7, Y2) (Q) lies on a proper subvariety
of V and the set of rational points satisfying (1.4) correspond to rational points on a
double covering. Note that (1.4) defines an elliptic curve E C P(2, 1, 1) and so Q2
is Zariski dense in V if E has positive rank. In fact, as discussed by Skorobogatov
[25, § 3.3], E is the Jacobian of the genus 1 curve Z. An explicit example is given by
taking V to be

X1y} 4 x2y3 + (x1 4+ 2x2)y3 + (x1 + 6x2)yF =0, (1.5)

for which Z(R) = ¢ and E(Q) = (Z/27)* x Z (with Cremona label 192a2). Our
main result settles the thin set version of the Manin—Peyre conjecture under mild
assumptions on V.

Theorem 1.1 Assume that Ly, ..., L4 € Z[x1, x2] are pairwise non-proportional lin-
ear forms, each with coprime coefficients, such that Z(R) = (. Then, if Q is the set
of (x,y) € V(Q) for which (1.4) holds, we have

#(x,y) e VQ\Q2: H(x,y) < B} ~ cyBlog B,

where cy is the constant predicted by Peyre [20].

The example (1.5) satisfies the assumptions of the theorem. With further work,
it is possible to remove the hypotheses that each L; has coprime coordinates and
Z(R) = (. The latter is a particularly convenient assumption that allows us to assume
that the regions we work in are not too lopsided. Since these hypotheses simplify an
already lengthy argument, we have chosen not to attempt their removal here.

As discussed in [16], a geometric framework for identifying problematic thin sets in
the Manin—Peyre conjecture has been developed by Lehmann, Sengupta and Tanimoto.
In private communication with the authors, Professor Tanimoto has indicated that
similar arguments to those in [16, § 12] show that the thin set €2 in Theorem 1.1 agrees
with their prediction.

Manin [17] used height machinery to establish a lower bound supporting linear
growth for all smooth Fano threefolds, possibly after an extension of the ground
field. More recently, Tanimoto [26] has produced a range of upper bounds for various
classes of Fano threefolds, but his work does not cover (1.1). The classification of Fano
threefolds with Picard number 2 goes back to Mori and Mukai [18], but it is convenient
to appeal to the summary of Iskovskikh and Prokhorov [15, Table 12.3]. Over Q, there
are 36 isomorphism types of Fano threefold of Picard number 2. The expectation is that
the arithmetic of these varieties becomes harder the higher up the table they appear. As
explained in Remark (i) before [15, Table 12.3], varieties numbered 33-36 are toric.
Thus, for each of these, the Manin—Peyre conjecture follows from work of Batyrev and
Tschinkel [1]. Equivariant compactifications of the additive group G?J are also known
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4126 D. Bonolis et al.

to satisfy the Manin—Peyre conjecture, thanks to work of Chambert-Loir and Tschinkel
[8], and the smooth Fano threefolds that arise as equivariant compactifications of Gg
have been identified by Huang and Montero [14]. These cover varieties numbered 28,
30, 31 and 33-36. Variety number 32 is a bilinear hypersurface in P? x P2, which is
a flag variety and so covered by [10]. Finally, in a recent tour de force [2], Blomer,
Briidern, Derenthal and Gagliardi have shown that the Manin—Peyre conjecture holds
for many spherical Fano threefolds of semisimple rank one. Among those of Picard
number 2, this covers a quadric in P* blown-up along a conic, which corresponds to
variety number 29 in [15, Table 12.3]. Our variety V C P! x P3 has Picard number 2
and can be viewed as the blow-up of P? along the genus one curve Z, corresponding
to variety number 25. In particular it is neither spherical, nor toric, nor an equivariant
compactification of G.

The proof of Theorem 1.1 is inspired by recent work by Browning and Heath-Brown
[5], which resolves the Manin—Peyre conjecture for the Fano fivefold

X174 X2y3 + %33 + xay; =0, (1.6)

of bidegree (1,2) in P> x P3. In this setting, an anticanonical height is |x|3|y|?, if
(x, y) isrepresented by (x,y) € Zgﬁm X Zgﬁm. The basic line of attack in [5] involves
counting points as a union of planes when |y| < B %, and as a union of quadrics when
x| < B%_”, for any fixed n > 0. In the first case, geometry of numbers arguments are
used to count the relevant vectors x, whereas the circle method underpins the second
case. In terms of the inequality Ix|3|y|? < B, this leaves a small range uncovered, for
which it is necessary to have an upper bound of the correct order of magnitude.

Our work follows a similar strategy, but with substantial extra difficulties. This is
reflected in the geometry of the effective cone of divisors Effy. Let Hy = 7] Op1(1)
and H, = 75 Ops3 (1) be hyperplane classes. As discussed by Ottem [19, Thm. 1.1], the
effective cone is Eff y = R>oH +R>oC, where C = —H| + 2H is the class of the
exceptional divisor 712_1 (Z). Thisis larger than the nef cone Nefy = R>0H+R>H>,
meaning that Eff}, is smaller than Nefy,, which strongly influences the asymptotic
behaviour in Theorem 1.1. This is in stark contrast to the situation in (1.6), where the
effective cone is equal to the nef cone. When |x| < B%, we view V as a family of
quadrics via (1.1). We will then reapply the circle method arguments worked out in [5],
but we shall face extra challenges in dealing with a family over P! rather than over 3.
When |x| > B%J”’, we view V as being given by (1.3), which we can use to eliminate
x1 and x7, on extracting common divisors. This ultimately leads to a counting problem
of the form

Yo #{y e Zhim i v <Y, Q1) = 02(v) =0 mod d},
d<D

for D, Y > 1.Oninterpreting the inner sum as a disjoint union of lattice conditions, the
main work is to show that the successive minima have the expected order of magnitude,
as one averages over d and over the different lattices. This counting problem is rather
different to the one appearing [5], and it seems likely the methods developed could
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Density of rational points... 4127

be useful in the study of other quadric bundles, including del Pezzo surfaces with a
conic bundle structure. It is in this part of the argument that the difference between
Effy and Nefy manifests itself. If x| > B%+’7 and |x||y|*> < B, then we are only
interested in the range |y| < B i3, However, it turns out that the contribution from
lyl < B7 is negligible, which thereby reduces the size of the leading constant. In
(1.6), by comparison, the contribution from |y| < B® makes a positive proportional
contribution for any § > 0.

Finally, we are left with a small range to cover via an auxiliary upper bound of the
correct order. The completely diagonal structure of (1.6) renders it easier to obtain the
necessary upper bound via a modification of Hua’s inequality. Lacking this diagonal
structure, our approach involves an array of inputs, from character sum estimates and
point counting on Z modulo prime powers, to various circle method applications [3,
5] and a general upper bound for the number of rational points of bounded height on
diagonal quadric surfaces [4].

2 Roadmap of the proof

We proceed to summarise some of the steps in the proof of Theorem 1.1. We shall fre-
quently switch between the representation of V given by (1.1), involving the pairwise
non-proportional linear forms L1, ..., L4 € Z[x1, x2] with coprime coefficients, and
the representation (1.3), involving diagonal quadratic forms Q1, Q> € Z[y1, ..., y4]
such that Z(R) = (. All of the estimates in our work are allowed to depend implic-
itly on the coefficients of the polynomials L1, ..., L4. Any other dependence will be
indicated by an appropriate subscript.

For each 1 < i < 4, we may assume that L;(x1, x2) = a;x1 + b;jx2, for a;, b; €
Z such that ged(a;, bj) = 1. Define the set of primes &2 = {p : p | (a;b; —
ajb;) for some i # j} U {2}. Then & is a finite set, since L; and L ; are assumed to
be non-proportional, for distinct 1 < 7, j < 4. It will be convenient to set

a=T] » 2.1

peP
Our diagonal quadratic forms take the shape
4 4
Q1(y) =Y aiyi. 0a(y)=-Y biy}. 22)
i=1 i=1
Moreover, Q1 = Q = 0defines a smooth genus 1 curve Z C P3 such that Z(R) = .

Let Ny (2, B) denote the counting function whose asymptotics we are trying to
determine. We shall avoid the set €2 by stipulating that

4
[TLim#0. 2.3)

i=1
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for any rational point (x, y) € V(Q) that is to be counted. On taking into account the
action of the units in P'(Q) x P3(Q), we have

1 5 4 _ (1.1) and (2.3) hold

Following the line of attack in [5], we will use different techniques to estimate the
size of Ny (€2, B), according to the relative sizes of |x| and |y|. When [x| is small, we
will fix x and use the circle method to estimate the number of y. In fact the relevant
application of the circle method carried out in [5, § 4] is directly in a form that can be
applied to our own setting. On the other hand, when |x| is large, we will use (1.3) to
eliminate x and reduce to a problem about counting integer vectors which reduce to
Z modulo d, for varying moduli d. There remains an annoying middle range which
requires a sufficiently sharp upper bound.
Let

_ 5 4 (1.1)and (2.3) hold
M(X,Y) = {(X,y) € Zgim X Zin* x < ;xl <ox. yi<v | @

for X, Y > 1. Since Z(R) = ¢ itis easy to deduce from the alternative representation
(1.3) of (1.1) that .#Z (X, Y) is empty unless X < Y 2 for a suitable implied constant
depending only on V. In Sect. 5 we shall prove the following general upper bound for
the cardinality of .Z (X, Y).

Theorem 2.1 Let X,Y > 1. Then

logY
(X, Y) < XY2 +min | x2y*3 xiy3 267 [
loglog Y

On breaking the ranges for |x| and |y| into dyadic intervals, Theorem 2.1 easily
implies the optimal upper bound Ny (2, B) = O (B log B). In fact, not only does it
help cover an awkward range for the relative sizes of |x| and |y|, but certain steps in
the proof of Theorem 2.1 also play a vital role in the proof of the asymptotic formula,
where it used to show that certain lattices are rarely lopsided.

Let us now summarise the proof of Theorem 1.1 in a little more detail. Let

_ 2 4 _ (1.1) and (2.3) hold
Z(B) = {(x, Y) € Zpim X Lipyiy xIlyl? < B ,

(2.6)
so that Ny (2, B) = 1#.2(B) in (2.4). We will decompose .Z(B) into three sets

Z(B) = £1(B) U £ (B) U £3(B), 2.7
where

Z1(B) = {(X, y) € Z(B): Bit < |x| < B%—ﬂ},
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Density of rational points... 4129

2B) =y e Z(B) 1 x| < B},

L (B) = {(x, y) € Z(B): Bi < x| < Bt or x| > B%_”},

for any n > 0. The parameter 1 will ultimately be taken to be arbitrarily small, but it
is fixed at each appearance. We now reveal our estimates for the cardinality of these
sets.

The treatment of #.27 (B) rests on rewriting (1.1) as (1.3) and then appealing to
the geometry of numbers. In order to record our result, we first need to define some
auxiliary quantities. For any prime p and a € N, we can define an equivalence relation
on (Z/ p“Z)4, by saying u is equivalent to v if and only if there exists A € (Z/p*Z)™
such that Au = v mod p“. An important role will be played in our work by the set of
equivalence classes

Vi ={ue (Z/pZ)": ptu, Qi(w) = Q2(w) = 0mod p}/ (Z/p°Z)*

We may now define

6’1=]_[<1_l>(1—%+<1_l>2i#‘;’f>. (2.8)

» p p p) = p

The absolute convergence of G is ensured by Corollary 3.6, which implies that
1 1\ 2 X #V 1 i
1——+<1——> — =1+-+40 .
p* P ; p* p p?

if p ¥ A. We can now state our first asymptotic formula, which will be the object of
Sect. 6.

Proposition 2.2 Ler n > 0. There exist absolute constants c; > ¢ > 0 such that

dy
#%(B) =261B + 0, (By/logB).
1(B) = 251 / R P max(101 )L 102D 1 (1o B)

41 3.1
clB 2<|y\<0238 2

Next, we show that #.%5 (B) can be estimated asymptotically, as B — oo. This will
be achieved using the Hardy—Littlewood circle method. Let

Too = f f Ll(x)yl ¥ L4(x)y§)) dxdydo (2.9
[—1,176

and

Ag= Y. DY Y ey (:;ZL (c)b2> (2.10)

amod g be(Z/qZ)* ce(Z/q7)?
ged(a,q)=1 gcd(g,0)=1
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4130 D. Bonolis et al.

for any g € N, where e, = e(;). We may then define

62—2 ]‘[( )1. (2.11)

rlq

The convergence of 7o, and &, are established in (7.24) and (7.26), respectively. We
may now record the following result, which will be proved in Sect.7.

Proposition 2.3 Letn > 0. Then

62
BlogB + O 2 log B 0,1
20 (2)2 og B+ O(n?log B) + O,(1).

#2(B) =
Finally, for #.23(B) we shall produce the following upper bound.

Proposition2.4 Letn > 0. Then

Blog B
#2(B)= 0 (nBlog B+ ——22_).
loglog B

Proof Recalling (2.5), We have already remarked that#.# (X, Y) = Ounless X < Y 2
which implies that X < B%. Let 27 denote the set of (X, Y) € N2, where X, Y run

over non-negative powers of two such that XY? « B and B? L X K Bt
Similarly, let 2> denote the corresponding set in which the final inequalities are

replaced by Bz LXK BZ. Then it follows that

#LB)< Y HAMX. )+ Y #AM(X.Y).
(X,Y)eZq (X,Y)eZs

But Theorem 2.1 implies that

log ¥
Yo ohrx < Y (XY2 4 Xiyi%)
(X.V)e2i (X.D)eli oglog

Bi log B
B 1+ —
< Xx: loglog B Z
<« nBlogB + Blog B
(o) T 1 5
nelog loglog B
on summing over X and Y. Similarly, we obtain

Z #.4(X,Y) < nBlog B+ B.
(X, Y)eZs

The statement of the lemma follows. O
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We shall combine these estimates in Sect. 8, which is where the proof of Theorem 1.1
will be drawn to a close.

Notation

For any D > 0, we shall write d ~ D to mean D < d < 2D, and we shall write
d =< D to mean that there exist constants ¢ > c¢; > 0 (depending only on the linear
forms Ly, ..., Lysin(1.1)) suchthatc; D < d < cp D. Moreover, we shall often adopt
the notation

X1/ 8 /7 X2
within a sum, in order to denote that a dyadic parameter S runs over an interval
X1 < § « X3, with implied constants depending only on the setting. We shall write
S /' X to mean that the dyadic parameter S runs over an interval § < X.
3 Preliminary technical results
3.1 Character sum estimates
The following result is a straightforward consequence of the Burgess bound [7].

Lemma 3.1 (Burgess) Let x be a non-principal Dirichlet character modulo q, let
0 > % and let o0 > 1. Then

Z x (n) <9 N%_gqg).
n

o
n>N

Proof The Burgess bound, proved in [7], asserts that

1
Y xm) < N2¢°,
n<N

for any 6 > %. Using Abel’s summation formula, we obtain

(n) 1 1 1
Z Xn: = e Z x@) | + Z (n_“_m) Z x (D),

N<n<M N<n<M N<n<M N<I<n

for every M > N. Applying the Burgess bound to the inner sum of the second term,
we see that it is

1 1 19 1
— ————|n2 N277¢",
N<n<M
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4132 D. Bonolis et al.

uniformly for all M > N. On the other hand, the Burgess bound shows that the first
term is <y M _‘H'%qe <N _""‘%qg, which completes the proof of the lemma. O

We will also require a generalisation of the P6lya—Vinogradov bound that involves
products of linear polynomials.

Lemma3.2 Let Ji, ..., Jix € Z[x1, x2] be pairwise non-proportional linear forms.
Given n € Z we write

Jin(x) = Ji(n, x) € Zlx],

forl1 <i <k Letd = (dy,...,dy) € NF and put D = dy - - - dy.. Suppose that there
exists A € N such that gcd(d;, dj) | A, forall i # j. Let r € N be square-free, let
q € N, leta € Z/qZ and let I C R be an interval. Assume that gcd(r,qD) = 1.
Then for any n € Z we have

Z (JI’H(X) — Jk,,,(x)) <L <—Y01(1) 2 log(qD)> r® ged(rD, n),
r

xelNZ r2 [q ) D]
x=a mod g
dilJin(x)
for any ¢ > 0, where the implied constant is only allowed to depend on A, Jy, ..., Ji

and the choice of ¢.

Proof Let ¥,(I) denote the sum that we are trying to estimate. Suppose that
Ji(x1,x2) = ajx1 + bjxy for 1 <i <k, fora;, b; € Z. Put

Ag = 1—[ laib; — a;b;|.
1<i<j<k

Then Ag # 0 since the linear forms are assumed to be non-proportional. Put
Gx) = Jin(x) - Jin(x)

and let D = d - - - di. Recalling that gcd(r, ¢ D) = 1, we may complete the sum by
breaking into residue classes modulo r[g, D]. This yields

>, (D) = Z <w) Z r[q% DI Z erfg,p1(@(y — x))

y mod r[q,D] r xelNZ o mod r[q,D]
y=a mod g
di1Jin () G.1)
1
= > S@) Y erig.pi(—ax),
rlq, D]
o mod r[q,D] xelNZ
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Density of rational points... 4133

where

G
S(a) = Z (%) erlg,D1(@Y).

y mod r[q,D]
y=a mod g
d; |-]i.n(z)

Any o € Z/rlq, D]Z has a representative satisfying || < %r[q, D]. Thus we clearly
have

Z er[q,D](_OUC)

xelNZ

3.2
gDl if g £ 0. 32)

||

vol(/) ifa =0,
<<: 0))

We now proceed with a detailed study of S(«). Since gecd(r, [¢, D]) = 1, any
y mod r[q, D] can be decomposed as y = yi[gq, Dllg, D] + y2rr, for y; mod r and
y» mod [¢q, D]. (Here, [¢q, D] € Z is the multiplicative inverse of [¢, D] modulo r,
and 7 € Z is the inverse of r modulo [¢, D].) Under this change of variables we obtain

S)=T(r) Y.  eplayp),

y2 mod [g,D]
y2=a mod ¢q
dilJi n(y2)

where

G [
T(x;r) = Z ( (ryl)>er(‘x}’l[‘]vD])'

yi mod r
But then it follows that
[S()] < [T (s r)IN(g; d), (3.3)
where
N(g;d) =#{y2 mod [q, D] : y =amod q, d; | Ji n(y2) for 1 <i <k}.
It remains to estimate T («; r) and N (g, d).
We begin by estimating 7 («; r) for a square-free integer r € N. We shall prove
that

T(a;r) <o 27 ged(r, n)2, (3.4)

forany ¢ > 0, uniformly in« € Z/rZ. By multiplicativity, it will suffice to prove that

= (E2) i <[ 1
p p

ifp | n,

y mod p
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4134 D. Bonolis et al.

for any prime p | r, where the implied constant only depends on Ag. The result is
trivial if p | Ao and so we can assume that p 1 Ag. But then it follows that the two
linear polynomials a;n + b; T and ajn + b;T are non-proportional modulo p if and
only if p 1 n. Thus G is separable modulo p if and only if p { n. If p | n we take
the trivial bound for the exponential sum. If p { n, on the other hand, the desired
bound follows from Weil’s resolution of the Riemann hypothesis for curves [28]. This
completes the proof of (3.4).
Turning to N(g; d) we shall prove that

N(g:d) = O(ged(D, n)), (3.5
for an implied constant that is only allowed to depend on A and Ji, ..., Ji. Before

doing so, let us see how it suffices to complete the proof of the lemma. Combining it
with (3.4) in (3.3), we deduce that

S() <e rate ged(r, n)% ged(D, n) < F1te gcd(rD, n),

since r and D are coprime. Once coupled with (3.2) in (3.1), we are finally led to the
bound

1 , D lye
Sa(l) €6 —— [volD+ ) 9. DU 45 wed(rD, )
r

, D o
lg. D] 0<la|< 3rlg.D] ]

11
<o (2D toe(qD) ) ged(rD, ),
r2[g, D]

as claimed in the lemma.
Returning to (3.5). It suffices to examine the case N, = N (p*; pPr. ..., pPr), for
any prime p, by the Chinese remainder theorem. We may suppose without loss of

generality thate > 0 and 0 < By < -+ - < Bg. It then follows from the hypotheses of
the lemma that p#~1 | A. We now have

N, <# [y mod pmX@AittB .y = 4 mod p¥, bry = —agn mod pﬁk} .
Ifa > By + -+ B, then we trivially have N, < 1. If o < 1 + - - + B, then
N, < phrt by {y mod p : byy = —agn mod pﬁk} .
Our remark above shows that p#1+ A1 < p*=Dvr(A) Moreover,
#{y mod p# : bry = —axn mod pPr} < ged(pPt, axn, by).
If by # O this is at most p”f’(bk). On the other hand, if by = 0, then this is at most

pUra) ocd(pfh n) < pUr @) ged(pPrt+Pr n). Taking a product over all primes,
the bound in (3.5) easily follows. This completes the proof of the lemma. O
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3.2 Pairs of quadrics modulo prime powers

Our first result concerns the roots of the pair of diagonal quadratic forms Q1, Q> in
(2.2). Recalling the definition (2.1) of A, we have the following result.

Lemma 3.3 Let p be a prime and let a € N. Let

oo b =2
P70 if p> 2.

Letu € (Z/p"Z)4 such that p twand Q1(u) = Qz(u) = 0 mod p®. Then, for any
integer b > a, we have

4 = = b 2(b—a) j A
#lve (zrprz)ts Q10 = Q0 =0med ) 0 o ta,
vV=u mod p p21)p+3(b a) lf‘p | A

Proof Let us write S, (p”) for the set whose cardinality is to be estimated. We begin
by treating the case p > 2, in which case v, = 0. We claim that

2 ifptA,
#S4(p") < #Su(p") x {; ifi T N
for any b > a. In particular, this implies that b > 2, since a > 1. Noting that
#S,(p?) = 1, an inductive argument completes the proof when p > 2. To check the
claim we note that any v/ € S, (p?) can be written v = v+ p®~lw forv € S,(p®*~1)
and w € (Z/pZ)*. In particular v/ = u mod p“. Moreover, the condition p” | Q; (V')
fori = 1, 2 implies that

p"0i(v) + VQi(v) - w=0mod p,

fori = 1, 2. Note that VQ(v) = 2(ajvy, ..., aqvq) and VQr(v) = =2(byvy, ...,
bavs). Moreover, we have v = u mod p, since v € S,( p” _1). It follows that we are
interested in counting w € (Z/pZ)4 for which p~**1Q;(v) + ¢; - w = 0 mod p,
where ¢; = VQ;(u). If p { A then ¢; and ¢, are non-proportional modulo p and
there are p? choices for w. If p | A but p { ¢ then we get at most p? choices for w.
Similarly, if p | A but p { ¢,. Finally, we note that p | (cj, ¢2) is impossible, since it
would then follow that a;u; = bju; = 0 mod p for 1 < i < 4, which contradicts the
assumption p { u, since ged(a;, b;) = 1 for 1 < i < 4.

It remains to deal with the case p = 2. This time we note that any v € S, (2°) can
be written v = u + 2%w, where w € (Z/2°=7Z)* . 1f 22 | Q1 (v) then it easily follows
2441 | 0} (u), whence

4
A+ Zaiuiwi +2¢71'0,(w) = 0 mod 2771,
i=1
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where A = Q1 (u)/2¢"! € Z. Similarly,

4
B+ biuiw; +2°7' Q2(w) = 0 mod 27771,

i=1

where B = Q»(u)/2%*! € Z. Since 2 { u, we may assume without loss of generality
that 2 1 u;. Moreover, since ged(ap, by) = 1, we may further assume that 2 1 a;.
Hence, for 23¢~% choices of wo, w3, wa, we are left with counting the number of
wy € Z/2°7¢7 such that f(w;) = 0 mod 22741 where f(x) = 24 la;x? +
ajuix + C, for an appropriate integer C. Since f'(x) = 2%ajx + aju; is always
odd, so it follows from Hensel’s lemma that the congruence f(x) = 0 mod 2°~¢~!
has at most 2 roots modulo 2b_“_1, for fixed wy, w3, wa. This therefore implies that
#S, (2h ) < 2243(b=a) \which completes the proof of the lemma. O

Of special interest in our work will be the functions

o(q) =#ly € (Z/qZ)* : Qi(y) = Qa(y) = 0 mod g} (3.6)

and

0*(q) = #ly € (Z/qZ)* : ged(y, q) = 1, Q1(y) = Q2(y) =0mod g}, (3.7)

for any ¢ € N. These counting functions have already featured in work of Browning
and Munshi [6], leading to the following result.

Lemma 3.4 Let p be a prime and let r € N. Then we have
. _1.

@) 0*(p) = p*(1+0(p 1) if ptA.

(i) o(p") = 0(rp™).

Proof If p t A, then the curve Q1 = Q> = 0 defines a smooth curve over F,, and (i)
follows from combining Lemma 3.3 with the Weil bound. Alternatively, for any p,
(ii) follows from the proof of [6, Lemma 2]. O

3.3 Geometry of numbers and a special lattice

We shall also care deeply about the shape of a certain lattice that features in our work.
For any d € N, we can define an equivalence relation on (Z/dZ)4, by saying u is
equivalent to v if and only if there exists A € (Z/dZ)* such that Au = v mod d. We
shall be interested in the set of equivalence classes

de ={ue (Z/dZ)4 cged(u,d) =1, Q1(u) = Qz(u) =0mod d}/ (Z/dZ)* .
(3.8)
For any u € (Z/dZ)4 such that ged(u,d) = 1 and Q1(u) = Qz(u) = 0 mod d, we

will denote by [u] its class in de. For any [u] € de, and any k | d, the main goal of
this section is to discuss various properties of the lattice
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Ak = {y € Z* : 3 € Z such that y = Au mod k} . (3.9)

This definition is clearly independent of the particular choice of representative u € [u].
The lattice Ay) x has rank 4 and determinant k3. We denote by 1 < spujx < -+ <
54.[u].k the associated successive minima. It follows from Minkowski’s second theorem
that

K < st ulk - Sa e < K (3.10)

We will need good estimates for the size of V,* and also for the number of classes
in V which reduce modulo k to a given class in V,*, for any k | d. First we introduce
some notation. For any n € N, we write

na=[]p"™. (3.11)
PlIA

With this in mind, we shall prove the following result.

Lemma3.5 Letd, k € N suchthatk | d. Let [u] € ka. Then

#{Ivl € V) < [v mod k] = [ul} < (5) 4
k)i k

Moreover, we have

_1
#V) e d-di - [[a+ 0.

rld
A

Proof By the Chinese remainder theorem it will suffice to treat the case that k = p?
and d = p® for a prime p and integers 0 < a < b. For any [u] € fo,, we observe
that

# {V € (Z/pr>4 . Q1(v) = 02(v) =0 mod pb}

" vmod p? € [u]

(3.12)
= p(p"# v € V5 [vmod p*] = [ul}.
Taking a = 0, we deduce that
o*(p?) 1\
#V = 1 —— , (3.13)
P b
p p

for any b € N, where Q*(pb) is defined in (3.7). The second part of the lemma is now
a consequence of Lemma 3.4.

@ Springer



4138 D. Bonolis et al.

To handle the first part of the lemma, we may clearly assume thata > 1. We observe
that the left hand side of (3.12) is

4 = =0 d b
> #{v € (Z/p”z) : VQIE(‘:I)/ mo%zl(;) mod p }
u'elu]

The number of u’ in the outer sum is ¢(p®). Moreover, we can use Lemma 3.3 to
estimate the remaining cardinality, which easily completes the proof of the lemma,

since p(p?) = p(p)pP~¢ifa > 1. O

We take this opportunity to record the following facts about #VPX,, for generic primes.

Corollary 3.6 For any prime pt A and b € N, we have #Vpr =pP+ O(p_%)).

Proof This follows on combining (3.13) with Lemma 3.4 in the case p 1 A. O

4 Counting points on quadric surfaces

For given non-zero Ay,...,As € Z, let Q(y) = A1y12 + Azy% + Agyg + A4yf
be a fixed diagonal quadratic form. In this section we record some estimates for the
counting function

N(Q; B) = #{y € Zpi - Q(¥) =0, |yl < B), 4.1

which have the key feature that they depend uniformly on Ay, ..., A4. Our first esti-
mate is based on the geometry of numbers arguments used in [4], and our second is
based on a circle method analysis [3].

Let Ag = A1 A2 A3A4 be the discriminant of Q and let || Q] = max; ;<4 |A;| be

its height. We define a Dirichlet character x ¢ induced by the Kronecker symbol (AfQ).
Let o be the multiplicative arithmetic function defined by

wm =[] <1 + l) 4.2)

plm p

and set

Apad = l_[ 2 (4.3)

PéllAg
e>2

Combining the argument in [4, p.3] with the main result of [4], we obtain the following
bound
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Lemma4.1 Lete > 0. If Apag < B%, then

5
Lie (QI*N\E [ L4 B?
N(Q; B) < w(Ag) ALy ( B3 + - | L(oB, x0),
[Agl |Ap|7

where ogp = 1 + @.

1
te . . .
The appearance of the factor Aﬁadg will be problematic when Ap,q is large. We now
revisit the arguments in [4] to show that the dependence on Ap,g can be mitigated at
the expense of an additional B?-factor. This is summarised in the following result.

Lemma4.2 Let e > 0. Then

3 RV
N(Q:B) < B+B* Y. <1+B 191 2ed( A, O7(C) ”),

1
5 C
ceZ‘gnm |AQ|2 lc]

1
le|]«<B3
Q*()#0

where Q* is the dual quadratic form.

Proof We sketch the proof of Lemma 4.1. The main idea is to use Siegel’s lemma to
cover with plane sections the integer solutions to the equation Q(y) = 0 which lie
in the box |y| < B. Thus any such point lies on at least one plane ¢ - y = 0, where

ce Zgrim satisfies |¢| < B3, for an absolute implied constant. This produces a union
of conics Q¢, as in [4, Lemma 2.1]. We cover points on each conic Q. using a family
of ellipsoids, the number of which is effectively bounded in terms of the dual form
Q* and c. This is the object of [4, Lemma 2.2]. In this way, the problem reduces to
counting lattice points in a conic within a fixed ellipsoid, which can be transformed
to counting points on conics in unequal boxes.

For the purposes of the lemma the main idea is to not use the inequality displayed
above [4, Eq. (2.16)], but to take the trivial bounds log(2 + [¢|?||Q3/10*(¢)]) =
0.(Bf) and R(Q*(c)) = O.(B?) at the close of [4, § 2.2]. The statement of the
lemma easily follows. O

Our next estimate for N(Q; B) in (4.1) is based on the circle method. Let us begin
with a few remarks about the singular series G(Q). This is defined to be

&(Q) =[]op (4.4)
p

where

#{x € (Z/p*7)* : Q(x) =0 mod p*}
3k :

op = lim
k—o00 p

The following result is concerned with an upper bound for S(Q).
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Lemma4.3 Let e > 0. Assume that there exists A € N such that gcd(A;, Aj) | A, for
all distincti, j € {1,...,4}. Then

S(Q) Ke,a ApuaL(1, X0,

where Apag is given by (4.3) and the implied constant depends on & and A.

Proof On revisiting the proof of [5, Lemma 4.10], it is shown that ] a0y K
L(1, xp). Moreover, by [5, Lemma 4.8], we have 6, = 1if p | Ag but p 12 Apad.
Thus

S(Q) <L, x0) [] op

P12Abad

To estimate the remaining product, we examine o, for a given prime p. Let f; =
vp(A;),for1 <i < 4,and assume without loss of generality that f; < f5 < -+ < fa.
Then the last part of the proof of [5, Lemma 4.10] gives o, < p/17/2+/3)/3 Ttfollows
that 0, = O4(1) for an implied constant that is allowed to depend on A. We obtain
the statement of the lemma on taking the product over all p | 2 Apag. O

The next result has the advantage that there is no restriction on the size of Apyq, or
on the size of coefficients, but it comes at the expense of a worse error term.

Lemma4.4 Lete > Oandletm(Q) = minig; <4 |A;|. Assume that there exists A € N
such that ged(A;, Aj) | A, for all distinct i, j € {1, ...,4}. Then

Aﬁadl‘(l’ XQ)BZ-}- ||Q||11+g B%Jrs.

N(Q; B) <¢,a 7 1
(m(DQIH2 m(Q)%|Agl2

Proof In fact we shall prove the same upper bound for the quantity N'(Q; B), in
which the stipulation that y is primitive is dropped. To do so, we shall actually apply
an asymptotic formula for a smoothly weighted version of this counting function.
Consider the non-negative smooth weight function

_ AT | :
w(x) = exp (—(1—x)71) ?f|x|<l
0 if |x| > 1,

and define

1

%) -1 X—z
w(x)z(/ w(x)dx) 3/ 23w(3y)dy.

3

This is a smooth function that takes values in [0, 1] and is supported on (0, 1). Now
for x € R4, we put

4
wi(X) = wx] —Z)Ha)(l _ i-i)

i=2
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Then w; is supported on the set {x € R*: 1< x1 <3, 0 < xp,x3,x4 < x1}. We
define the weighted counting function

N, (Q:B)= Y w (%)

yez*
0(y)=0

Under the assumption that Ag # [, it follows from [3, Prop. 2] that

’ e By 2 lontt+e 5.,
Ny, (@5 B) = 00,u, (Q)S(Q)B™ + O | ———— B2 )
|A1]6]Ap|2

forany ¢ > 0. Here, G(Q) is given by (4.4) and 60,, (Q) = 0Ois the singular integral,

which is shown to satisfy oog v, (Q) <K (|A1]]l Q||)_% in [3, Eq. (2.6)].

Finally, to obtain a uniform bound for the counting function N'(Q; B), we follow
the argument in [3, p. 18]. Let Q¢ denote the quadratic forms obtained by permuting
the coefficients of Q, for any o € S4. On decomposing the interval [—B, B] into
dyadic intervals, we have

> . 2 11+e
N'(Q; B) € 1 + ZZN{UI(QU;Z—JB) <. 6(Q)B " 101 1 pi+e
€Sy j=0 mQ)I0Hz m(Q)6|AQ|§

An application of Lemma 4.3 now completes the proof. O

5 Upper bounds for #.7# (X, Y) and related quantities

Let X, Y > 1. The main goal of this section is to prove Theorem 2.1, which is
concerned with estimating #.# (X, Y), where .Z (X, Y) is defined in (2.5). Along
the way we shall establish several auxiliary estimates that will have their own role
to play. This section should be seen as an analogy to [5, § 2], the principal results
of which are [5, Lemmas 2.1 and 2.7]. However, unlike the variety studied in [5],
we have less symmetry and fewer variables. This prohibits the ability to apply the
arguments based on Hua’s inequality that were used to great effect in [5]. Rather, our
proof of Theorem 2.1 relies on a number of different upper bounds that will be played
off against each other and which we proceed to record here.

We begin by dealing with the counting problem in which the condition (2.3) fails.
Thus let

O N 2 4 . (1.1) and (1.4) hold
M (X,Y)—{(X,y)eZprime CIX <X, ¥ <Y ,

for X, Y > 1. We have the following estimate.

Lemma5.1 Lete > 0. Then #.#45 (X, Y) <, X Y2He,
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Proof For a fixed choice of x, the quadric in (1.1) admits O, (Y>*¢) solutions y
7+ with lyl] < Y, thanks to work of Heath-Brown [13, Thm. 2]. It is important to
emphasise here that the implied constant is only allowed to depend on ¢ > 0, and
not on x. It remains to estimate the number of zeros (z,X) € Z> of the equation
22 = Li(x)--- L4(x), with ged(xp, x2) = 1 and |x| < X. This equation defines a
genus 1 curve in weighted projective space P(2, 1, 1) and so it has O, (X?) solutions

by the theory of Néron heights. The statement of the lemma follows. O
We now return to the task of estimating #.# (X, Y). For any x € Zgrim such that
Li(x)---L4(x) # 0, we define
Aa) = [ r° (5.1)
PEIIL1(X)+L4(x)
ez
For given D > 1, we let
AN(X,Y; D) ={(x,y) € #(X,Y): Apad(x) < D} (5.2)
and
Mr(X,Y; D) ={(x,y) € #(X,Y): Apad(x) > D}. (5.3)

We shall prove the following upper bound for the size of the first set.

Proposition 5.2 Let ¢ > 0 and assume that D < Y%. Then
2 2.4 P 3 15 4 7.2
B (X, Y: D) <o XY? + X2Y3 + (DX) <D4(X SY3 + X5Y )).

The main tool in the proof of this result is [4, Thm. 1.1], which is recorded in
Lemma 4.1 and which requires Ap,g(X) to be sufficiently small. It is worth taking a
moment to compare with the analogous situation in [5]. There, a version of Proposi-
tion 5.2 is proved using [4, Thm. 1.1], in which there is no appearance of any power of
D. In our situation, the factor Ap,g(X) 1/4+¢ in [4, Thm. 1.1] becomes a major technical
issue. At the expense of allowing an additional (X Y)®-factor, we will show that the
argument behind Proposition 5.2 can be adjusted to prove the following result.

Proposition 5.3 Let ¢ > 0. Then

2 5
XY~ 4+ X2Y
1

#.4,(X,Y;: D) <, (XY)® (
D16

+X3Y+X%Yg).

Unfortunately, Propositions 5.2 and 5.3 are not quite enough to provide a satisfac-
tory estimate for #.#/ (X, Y) when X is a very small power of Y. However, in this
particular case, we can invoke the following upper bound.
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Proposition5.4 Let ¢ > 0. Then
B (X,Y) <o XY? 4 X!y3+e,

This result can be viewed as a weak version of Theorem 2.1 and is based on
Lemma 4.4. While the principal terms XY? agree, Proposition 5.4 is much worse
when X is large. Later in our argument it will be useful to have a good upper bound
for the quantity

X, Y) = [(x, ¥) € Zlyn x Z*: (1.1) holds, |x| < X, |y| < Y], (5.4)
for any X,Y > 1. Note that #.#(X,Y) < #.4*(2X,Y), since we have merely
dropped from .# (X, Y) the constraint that y be primitive, as well as the condition
(2.3). We can combine Propositions 5.2-5.4 to deduce the following result.

Corollary 5.5 Let ¢ > QO and let X, Y > 1 such that X < y?2/3 logY. Then
BM*(X,Y) L Y2+ XY2 4 X273,

Proof We would like to insert the condition (2.3) into .Z*(X, Y). But the overall
contribution from those (x, y) for which (2.3) fails is O (Y21¢), thanks to Lemma 5.1
and the fact that X < Y*/3log¥ « Y. Sorting the remaining contribution according
to the greatest common divisor of the coordinates of y, and breaking the x-sum into
dyadic intervals, it easily follows that

HAM(X,Y) L Y3 N il (Xo, Y /d), (5.5)
d<Y Xo /X

for any ¢ > 0. We claim that there exists & > 0 such that

XY? + X°y43

(X, Y)d) <s YT ,

(5.6)

if X < Y?3logY. Once inserted into (5.5), this will clearly suffice to complete the
proof of the corollary.

Now if X < Y1190 it is clear that (5.6) follows from Proposition 5.4. Thus we
may proceed under the assumption that ¥1/1%0 < X. Under the further assumption
X < Y?3logY, we proceed by inspecting some of the terms in Proposition 5.3. Note
that

I Y Xy4/3+28 XY2
(XY/d) X7 (3> e~ < i

4
3

on assuming that & < 1/3. Moreover, (XY /d)*X2 (Y /d)? < d~3XY? and

Xy2+25
dlte

(XY/d)* X3 (g) &
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Turning to the terms in Proposition 5.2, we have

3
Dz+€
DX (DFXE (v/a)F + XF (/) « = (X2 Freyd 4 xitey?)
d3
Xy2pite [ 1 1
< - —  —
d3 Yyn—¢ X57¢
XYZ D%+8

1 1,5
d3 X§—28

if X <Y*3logy.
Hence, on combining Propositions 5.2 and 5.3, we deduce that

XY2 XZY% D%+8 Y2€
(X, Y Jd) <o 2 (1 gemin | ——, — ) ).
dl+e Xg_zg D15

for any D < Y1/20 and y1/100 - x < y?2/3 log Y. But then

) D%-i—s YZS ) D% 1 2
min : s, — | Smin | ——, — .
X872 DTs Ysw DTs

We can ensure that this is O(1) by taking D = ¥!/8% and choosing a sufficiently
small value of ¢. This completes the proof of (5.6). O

The results so far are efficient when X is small compared to Y. The following result
is proved using completely different methods and allows us to handle the opposite
case.

Proposition 5.6 We have

1 5

Y4 log Y
(X, Y) < XY2+ <F + X4Y> %

[N

loglogY "

Once in possession of Propositions 5.2-5.6, we are now positioned to prove our
main upper bound for #.7 (X, Y).

Proof of Theorem 2.1 Let us put J = (logY)/(loglog Y). If X > Y?/3J%/7  then the
statement of the theorem follows from Proposition 5.6. If X < Y2/3 747 on the other
hand, then it follows from taking d = 1 in (5.6). O

The rest of this section is concerned with proving Propositions 5.2, 5.3, 5.4 and

5.6. Propositions 5.2 and 5.3 will be proved using Lemmas 4.1 and 4.2 in Sect.5.1.
Proposition 5.4 will be proved in Sect.5.2 and uses the circle method bound proved
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in Lemma 4.4. Finally, in Sect. 5.3 we shall prove Proposition 5.6. During the course
of this work, given X1, X, > 1, we shall often use the elementary inequality

Xi 4 X2 > max(X, X2) > X{X,7%, (5.7)
forany 0 < o < 1.

5.1 Proof of Propositions 5.2 and 5.3

Let us begin by fixing some notation. Let Ly, ..., La € Z[x1, x2] be the pairwise
non-proportional linear forms featuring in (1.1). We define

9 = ]_[ Res(L;, L;), (5.8)

1<i<j<4

where Res(L;, L) is the resultant of L; and L ;, which is defined to be the absolute
value of the determinant of the 2 x 2 matrix formed from the coefficient vectors. Then,
in what follows, we shall make frequent use of the fact that

ged(L;(x), Lj(x)) | Res(L;, L;), foranyx e 72 5.9

prim>

for each choice i # j € {1,...,4}. We shall also exploit the following elementary
observation.

Lemma5.7 Let Ly, ..., La € Z[x1, x2] be pairwise non-proportional linear forms,
as above. Let x € R? such that |x| ~ X. Then there exist ¢y € (0, 1) and dy > 0, both
depending on the coefficients of L1, . .., La, such that

ILiy(®)| < coX = |Li(®)| = doX for every i # io.

Proof Assume without loss of generality that [x| = |x;]|. Suppose that |L{(x)| < ¢1 X,
say, for a certain 0 < c¢; < 1, to be specified in due course. Then necessarily L1 (x) #
+nxi forany n € Zxo. Then, fori € {2, 3, 4}, there exist (A;, u;) € Q x Q™ such that
x1 = ML (X) + u; L; (x). But then it follows that X < |x1| < |Aj|le1 X + |ui]|L; (X)],
which implies that |L; (x)| > |u; |~1(1 = |Aile1) X. The lemma follows on demanding
that c; < 1/|A;| for2 <i < 4. O

Proof of Proposition 5.3 We now estimate the cardinality of .Z>(X, Y; D), as defined
in (5.3). We can assume that D > 1 for an implied constant that depends on
Ly, ..., Ls. According to the estimate following Lemma 2.7 in [5], the condition

Apad(X) > D implies that either ged(L; (x), L (x)) > D2]7 for certain indices i # j,
or else L;(x)5 > D%. In view of (5.9), only the second possibility can happen if

D > 1. Hence there exists e > D6 and ig € {1, ..., 4} such that ¢* | L;,(x). With-
out loss of generality we study the contribution corresponding to i = 1. It therefore
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suffices to estimate the size of the set
Mr(X,Y5e) ={(x,y) € (X, Y): e | Li(x)}, (5.10)

for each e > D%. On recalling (2.3) and (2.5), we see that any (x,y) € .Z(X,Y)

satisfies L1(x) # 0. Hence e < X%, since €2 | L{(x).
It will be convenient to define the set

F(X) = {x = (x1,x2) € Z2. x| < 2X, (2.3)holds}. (5.11)

prim
Then for any x € .¥’(X), we may define the quaternary quadratic form
Ox(¥) = Li(®)y] + -~ + La(x)y5- (5.12)

Adopting the notation (4.1) and applying Lemma 4.2, we therefore obtain

HAOX.Yie) LY Y T4+ YE Y Y

xeZ(X) xS (X) cez?.
5 P prim
e?|Ly(x) e”|Ly(x) 1
le|<Y3

1

xyl+e ged (A (x)*, Q5()*)®
+ > X ; 7
xeZ(X)  cezt. lel [Ty 1L:(®)]2
e?|L1(x) 1 prm

le|]<Y3, 0%(e)#0

=Wo(X,Y;e)+ Wi(X,Y;e) + Wa(X, Y5 e),
say. On appealing to [12, Lemma 2], it easily follows that
2 2

X X 4,
Wo(X.Yie) < =5 +1)Y and Wi(X.Y;e) < (= +1])Y3T. (5.13)
e e

From now on we focus on estimating W» (X, Y; e). Let us introduce various dyadic
parameters S, T corresponding respectively to the ranges of x and ¢. Then, in the light
of Lemma 5.7, we obtain

4
Wa(X, Yie) K XYM 3" —— "W, (5. Tse),
s x ST ;o5
T v}
where
1
ged(Apad(x)?, Q% ()6
W2,i1(S,T;e) = Z Z A Lx .
xe.Z(X), ¢2|L1(x) ceZérim |Li (x)]2
Ix|~§ lel~T, Q%(e)#0

iFi1=|Li(X)[>|Li; (X)]
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By further decomposing the size of L;, (x) into dyadic intervals using a dyadic param-
eter R, we obtain

1
Waiy (S, Tse) < ) —Wai (R, S, Ts o),

r s R2
where
1
Woi (R, S, Tre)= > > ged(Apa(®)’, Q)5
xe/(X), EIL1x) ey,

IXI~S, Liy ®)I~R (e~ QF(e) 0
(5.14)

Recall the definition (5.8) of & and let d | gcd(Abad(x)3, Q;‘;(c)z). We claim
that there exists dgy = O(1) and dy,...,ds € N such that dgyd = d;---dy and
di | ged(Li(x)3,¢9). If d | Apaa(x) then d | (Li(x)--- L4(x))>. Let us put d; =
gcd(Li(x)3, d)forl <i < 4.Thenged(d;,d;) | Zfori # j.Henced, ---dy = ddgy,
for a suitable positive integer dp = O(1). It remains to prove that d; | cl.6. Suppose

that p*||d; with A € N. Let p”||L(x). Then A < 3v. On the other hand, we have
p* | Qi(c)?, whence

P31 Qf(e) = > Li(x)L j(x) Ly (X)c}

{i,j.k,1}={1,2,3,4}

=Lix) Y, Li®LiXe + La()L3(X) La(x)cy.
{j.k,1}={2,3,4}

Under the condition (2.3), it follows that ]_[?: 1 Li(x) # 0, whence pmin(v, 3D | C%. If
v < [4] then p* | ¢%, whence p* | 0. If v > [%], then pr%1 | ¢}, whence p* | cf.
This completes the proof of the claim.

We now continue estimating W5 ;, (R, S, T’; e) in (5.14). Using the claim in the
previous paragraph, we therefore obtain

Woi(R S, Tie)= ) Yooas Y 1

xeS(X), AIL1(X) d|Apg(0°  eeZby . fel~T
Ix|~S. [Li ®)|~R d| Q3 (e)#0

1
< X YTaé xr Yo
xe.Z(X), 2|L1(X) d| Apaa(x)®  dgd=di--ds ceZ*. | |e|~T

z ) o 7 3 prim >
[x|~S. |Li; ®)|~R diLi (%) 018
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The condition |x| ~ S implies each d; < §3, since ]_[?21 L;(x) # 0. Hence

W2 (R, S, T e) K > > ds > l_[ 7+1 ’

X (X), €?|L1(X) d| Apaa (x)° dgd=dy-dsy i=1
Ix|~S, [Li; (®)|~R min| ;<4 dj <T°

2
max1<,<4d,-<<S

where the condition min| ;<4 di < T is deduced from the fact that at least one of the
components of ¢ must be non-zero. Therefore, for each factorisationd »d = dj - - - da,
we have

4 4
1 T 1 1 1
do[[| =+ <T+TYdF+T> Y (dd)s+T Y (dedidy)s
i=1 df’ j=1 k#le{1,2,3,4} k,l,me{1,2,3,4}
distinct

4 3¢k 2 3
LT +T°8S2+T°S+TS2.

Thisis O(T*+TS 5 ). (Here, the absence of the constant term in the product is thanks
to the fact that minj ;<4 di < 7))

Returning to W» ;, (R, S, T'; e) and using [12, Lemma 2] once more, we arrive at
the bound

Wai (R, S.T;e) < (T* + TS?) 3 Y w@

xe.(X), €*|L1(x) d| Apaa (x)°
Ix|~S, |Li, (X)|~R

< (T* + TS%) Z Apad (%) (5.15)

xe(X), €?|L1(x)
x|~S, |Li; X)|~R

3 (SR
& SE(TH 4 T587) (—2 + 1) ,
e
for any ¢ > 0. Summing over the dyadic parameter R, we therefore obtain

3
1
Wai(S.Tie) =Y — Wai (R.S. T e) < S*(T* +T53) (—+1)
R
R/S

Recall that our dyadic parameter S goes to X, and 7" goes to ¥ 3. Moreover, we
have seen that e < S %, if €2 | L1(x). Thus, on summing over S, T, we obtain

1 S2 342
Lr e

3
Y +X2
(T* + TS?) < (XV)* <+—2>
S e
S, T
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and

1 3 T3 Y
Y SF@T TS < XY (73 + 1) L (XY)* (e—3 + 1) )

st 82T T

On redefining the choice of ¢, we finally obtain

[ XY24 X3y
Wa(X,Y:e) L (XY) — XY

Taking o = % in (5.7), it follows that X2Y% <« XY? 4+ X% Y. Hence, on combining
our bound for W5 (X, Y; e) with the contributions (5.13), we are led to the bound

S
XY2 4 X2Y

#AM(X. Y e) Ko (XY (+ + XY+ Yé‘> :

e

for the cardinality of (5.10). Finally, it follows that

5
XY2+ X2y
$MLX. YD) < Y #Mb(X.Yie) Ko (XY <+l L XY+ Xiyf%) .
D16
D% <e<<x/y
This completes the proof of Proposition 5.3. O

Later in our argument we will also need to deal with summations over x in which
one of the linear forms Ly, ..., L4 takes a particularly small value. We take this
opportunity to prove the following analogue of [5, Lemma 2.1], whose proof is a
minor modification of the one that we use to prove Proposition 5.3.

Lemma5.8 Let e > 0. Define M5, 5(X,Y) ={(x,y) € #(X,Y) : |L;j;(x)] < Ix|%},
forany§ € (0, 1) and iy € {1,...,4}, where .# (X, Y) is given by (2.5). Then
B0, 5(X.Y) Ko (XY) (X224 x 30y

Proof Assume without loss of generality that i; = 1. Then Lemma 5.7 implies that
|Li(x)] >s X for any i € {2,3,4}. We maintain the notation from the proof of
Proposition 5.3. Onrecalling (5.14) and (5.15), we introduce an extra dyadic parameter
R for the range of L(x) and similarly obtain

#Ms(X. Y)Y NQxY)

xe.(X)
IL1(x)|<X?
4 Y1+€ 1
e XPYSTE L N Wy (R.X.T: D)
X2 T R2T
T Y3
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X1+6yl+8 R(T4+TX%)

4
<<s,6 X1+5Y§+8 + 1 1
X2 R2T

R/ X5
1
T Y3

<<8,5 (XY)E(X]+6Y§ + X%(l+8)Y2 + X%(4+8)Y)
Using (5.7) with & = 1, we have X 10+ y2 4 X360y > x1+3y3, o
It is now time to analyse the size of the set .# (X, Y; D) that was defined in (5.2).

Proof of Proposition 5.2 We note that

#.40(X,Y; D) = > N(Qx: Y),

xe(X), Apad X)<D

where .(X) is given by (5.11), Qx by (5.12) and N(Qx; Y) is the counting function
defined in (4.1). Let us put

4
| Oxll = max, ILix)], AX) = ELI'(X)- (5.16)

Under the assumption that Apyq(X) < Y%, it follows from Lemma 4.1 that

1te 3 2
N(Qx: V) <& @ (A090) Apaa®) i (YN, ) + Y2Na(x, 1) )

for any ¢ > 0, where the arithmetic function @ is defined by (4.2), and

M) =12 G o and Moy = T o 0.
1A 1A)|F

#2(@)

. 1.
- Under the assumption D < Y 20, it

We can alternatively write @ (m) = Ztlm
therefore follows that

KX YD) < Y it ) (Z “2;’)) (Y%Nl(x, Y)+Y2N2(X,Y)>.

reN xe.”(X) \1|A®x)
r O-full Apad (X)=r
r<bD

Hence

Lmx.v:n< Yy =

> Na(x.v), (5.17)
r,teN deN*

t O-free, r<X* dy--ds=[r,t]

r O-full, r<D
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where

NaX.¥)= Y (Y%NI(X,Y)JrYzNQ(x,Y)).

xe.7(X)
d;i|Li(x)
We recall that
o X0y (1)
Lioy. xo) = )~
n=1

where oy = 1 + @ > 1. We have L(oy, xg,) = 0. By Lemma 5.7 we can assume
without loss of generality that |L; (x)| > |L1(x)| for i > 2. On introducing dyadic
decomposition parameters S for |x| and R for |L;(x)|, and on dropping the primitivity
condition on X, it follows that

s3ys Y2
NaX, V) < ) D | ===+ —— | Na(S, R, 1), (5.18)
SAxR/ s \ RS S8Rs
where
> Xox (1)
Na(S, R, Y) = > Z,,T
x€Z2 n=1 (5.19)
[x]~S, |L1(x)|~R
ML Lix#0
di|L;i(x)

In particular, we may assume that dj - - - ds < S*. We have L;(X) = ajx] + bixa
for 1 < i < 4, where gcd(a;, b;) = 1. But then there exists a matrix M € SL»(Z)
with first row equal to (ap, b1). Making the change of variables y = Mx, we let
Jily) = L,-(M_ly), for 1 < i < 4. We can thus rewrite (5.19) as

[o/0]
i Xy(n)
NaS, R V)= ) )
yeZ? n=1
[ytI~R, M~ ly|~S
[T 7 n#0
di|Ji (y)

J1(y)--J.
where xy(-) = (LW a@)y

Let6 > %. We introduce the truncation parameter

N1 = (SR, (5.20)

Then since I—[?:l Ji(y) # 0, the character xy is a non-principal Dirichlet character
of modulus at most ]_[?:1 i (y)] < ]_[?:1 |L;(x)| < S3R. The Burgess bound in
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Lemma 3.1 implies that

> Xy(n) <o N SR < 1.
n°

n>Nj

Thus it follows that

(n) SR
3 > AT« ——+5. (5.21)
yeZ2 n>Nj n l 4
IyiI~R, M~ ly|~S
[T 7 n#0
di|Ji (y)

It remains to study the contribution

PR DR
nov
yeZ? n<N|
IyiI~R, M~ 1y|~S

[T, Jin#0
di|Ji (y)

We observe that ged(d;, dj) | & foreach 1 < i < j < 4. We need to separate
out the contribution from those y for which ]_[?:1 Ji(y) = 0. For such y, the n-sum
contributes O, (N7 ). Moreover, there are O (Y®) primitive vectors |y| < ¥ for which
1_[?:1 Ji(y) = 0O, by the proof of Lemma 5.1, leading to an overall contribution
0. (S I+e ), on extracting possible common divisors from y; and y>. Hence

1
) > X,Z(Ef) = 0.(S"* N+ > —; Ta(n: S R). (5.22)

yez? n<N| n<N
IyiI~R, M~ ly|~S
T, i #0
di|Ji(y)
where
J R §
Ta(n: S, R) = Z < 1(y) 4(Y)>.
n
yeZ?
IytI~R, M~ ly|~s
di|Ji (y)

Note that once y; is fixed, there exists an interval K, of length O(S), such that
IM~'y| ~ S if and only if y, € Ky,. For fixed yj, we are now in a position to
apply Lemma 3.2 to estimate the character sum involving y,. Note that there exists
a factorisation n = non%, with ng square-free. Applying Lemma 3.2 with A = 2,
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g = 1 and k = 4, we therefore obtain

S 1

yil~R \ngdy ---da

RS 1
Lo (dy - dang)® | ——— +niR |,

n§d1~~d4

for any & > 0, since 3, <y ged(y,a) < 3 4, d#{y <Y :d | y} < (@)Y, for any
a € N. Since d; - - -d4 <« S*, it now follows that

1 1 SR 1y
D = Tas S R) e (dyooda)” Y — | —————+Rng
n<N| no<N; 1o I’lé d] d4
SR
Ly ———m— + RN2+€S48.

(d1 - dg)=*

We may now record our final estimate for (5.19). Combining the previous line with
(5.21) and (5.22), and recalling the choice of N1 made in (5.20), we therefore deduce
that

Na(S, R, Y) < SR gy stene L Ry gt
a(S, R, €0 W da)l 1 I

< SR
Yy dy)

On rescaling ¢, we finally obtain

SR 30 p1+6
Na(S. R.Y) Koo g + 8" (S + ¥R ) , (5.23)

for any 6 > 13—6.
We are now ready to sum over all dyadic intervals in (5.18). Inserting (5.23), it
follows that

ol

4
sivi
Na(X.Y) e D Y ( < ) s (S+S39R1+9))
sAxR s \ RS )
2 13
Y3 o~ XE( X% X1+49)
Koo <<d1 e +

2 1 40
+Y <W+x8(xa+x ))
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Making the choice 6 = 37—2, we obtain

X2Y3 4+ XY?

Na(X,Y —_—
d( )<<8 (d1~~'d4)1_8

+X° (X%ﬁ + X%ﬂ)
in (5.17). It remains to sum over all r, ¢. Using the trivial bound for the divisor function

T4, We obtain

%Jre 3
u(lr, 1)) e X*D3*e.

2

r,teN
t O-free, 1< X*
r O-full, r<D

7
8

.. .. 1
Similarly, in view of the lower bound [r, ] > max(r, ) > r8¢8, we have

1
rate gy ([r, t]) 1
Z t [r’ t]178 <<S Z §—28 2_25 <<S 1

r,teN r,teN rs 8
t O-free, < X* t O-free, 1< X*
r O-full, r<D r O-full, r<D
The statement of Proposition 5.2 is now clear. O

5.2 Proof of Proposition 5.4

Recall the definition (5.11) of .(X). Then we have

#M(X,Y)= > N(QxY),
xe.(X)

where Qy is given by (5.12) and N (Qyx; Y) is the counting function defined in (4.1).
We continue to adopt the notation || Q|| and A(x) that was introduced in (5.16). In
this section we see what can be deduced from an application of Lemma 4.4. Letting
m(Qx) = minjg;<4 |L;(X)|, we obtain

1
Abad(X)SL(LXQX)Yz_’_ I OxlI' e yi+e

N(Qx: Y) K¢ 0 i
(m(Qx)Oxl)2 m(Qx)%| A(x)|?

forany ¢ > 0.Lemma 5.7 implies that |A(x)|2 > || Oxll2m(Qx)?. Since || Ox |l < X,
it follows that

Abad (X)° L1, x0,) + xStepite 1

xe7(0 MO0k St @0 T
(5.24)

(X, Y) < Y2
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But a standard dyadic decomposition procedure yields

Y —=< Z Z #{x €. Z(X): |Li,(®| ~ S} < X.
xe.7(x) m(Qx) 2 i=1S/x S

Thus the overall contribution from the second term is <, X Freyste < x1 yite.

In what follows we focus on the first summand. Much as in the proof of Proposi-
tion 5.2, we carry out two dyadic decompositions. Then, for fixed i € {1, ..., 4}, we
are reduced to estimating

> Z W,] (S, R), (5.25)

SAXR/SS

where

Wi (S, R) = Z Apad () L(L, x0y)- (5.26)

xe.7(X)
[x|~S, |Lij (X)|~R

One of the ingredients we will need in our treatment of W;, (S, R) is a proof that there
are relatively few x for which Ap,q(x) is large. This is achieved in the following result.

Lemma5.9 Let§ > 0andletiy € {1,...,4}. Then

8
#{x € 220 X1~ S, 1Ly 0] ~ R, Aa(®) > (SR} < (SR)'S
Proof Let Ns(S, R) denote the quantity that is to be estimated. First, we observe that
the condition Apgg(x) > (SR)® implies that at least one of L{(Xx), ..., Ls(X) has
a square-full part that exceeds (SR)%. Let us assume that L;, has square-full part
> (SR) i , with ig # i1. Upon a non-singular change of variables, we may therefore

assume that L;,(x) = x1 and L;, (X) = x2. But then, on summing trivially over x;, we
obtain

Ns(S,R) <R ) Y. 1K BR'TE,
x1€Z¢0

)
(SR) L€a<S |111<S, alx

a O-full

which is satisfactory. Alternatively, if L; (x) is the term with large square-full part,
then a similar manipulation yields

N5(S, R) < S Z Y 1< GBI,

€Z
s X1€ZL%0
SR LCa<R v 1<R alx)
which completes the proof of the lemma. O
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We are now ready to estimate the quantity in (5.26).

Lemma5.10 Leté > 0. Then
e ) 21 39 1-$
Wi, (S, R) <& SR+ S ((SR)z (S + S32R32> + (SR) s) .
Proof For given § > 0, we write
Wi (8, R) = W;, 1(S, R; 8) + Wi, 2(S, R; §),

where the sum W;, (S, R; §) is subject to the condition Apag(X) < (SR)® and
Wi, 2(S, R; 8) has Apaa(x) > (SR)°.
Observe that

A () L(1, x0,) < [x|* log 2+ Oxl) <& X**. (5.27)

Rescaling ¢ and applying Lemma 5.9, we get a satisfactory bound for the term
Wi, 2(S, R; §). Turning to W;, 1(S, R; §), we begin in the same way as in the proof of
Proposition 5.2. Thus

Wi 1(S,R;8) < Y d® Y N 4(S,R),

d<(SR)® deN*
d O-full  d=di--ds

where

N/ (S, R) = > L(1, x0,)-

xe.Z(X)
[x[~S, |Liy X)|~R
di|L;(x)

This is essentially the same sum that we already met in (5.19) and we can directly
apply the bound (5.23). Taking 6 = 312, we get

N g R) <o —8 e (s+sBRY
i, d\W 3 (dy - -ds)l—¢ )
whence W;, 1(S, R: 8) <e SR+ S(SR)3(S + S2R%). o

Inserting Lemma 5.10 into (5.25) and summing over dyadic intervals, we are now
led to the conclusion that

XY R < X4 X° (X3 4 x174).
SAXRASS

Taking § = 15 0’ the right hand side is O (X), on taking ¢ sufficiently small. Therefore
the overall contribution of the first term in (5.24) is O(XY?), thereby completing the
proof of Proposition 5.2.
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5.3 Proof of Proposition 5.6

Our proof of Proposition 5.6 relies on viewing the equation (1.1) in the form (1.3),
where Q1, Q» are the diagonal quadratic forms defined in (2.2), where gcd(a;, b;) = 1
for 1 < i < 4. Asusual, we proceed under the assumption that the pencil Q1 = Q> =
0 defines a smooth curve Z C P? of genus 1, such that Z(R) = #.

We will be led to make crucial use of properties of the lattice Ay« that was defined
in (3.9). In particular, we will need to show that its successive minima are not typically
lop-sided. We begin, however, with the following basic estimate.

Lemma5.11 Lete > O andlet D, E > O such that 1 < E < D3*. Then

E*  logE
Y L BT eT
d=D veZ4 0glog
IVISE
d|Q;(v), i=1,2

Proof If the left hand side is non-zero, then there exists a vector v € Z* such that
[v| < Eandd | Q;(v) fori = 1,2. But then D <« EZ, since Q1(v), Q2(v) cannot
both vanish. Thus we may proceed under the assumption that D < EZ.

We sort the sum on the left according to the value of gcd(Q1(v), Q2(v)). This gives

log(ME?/D)
> X =X Ywme )L
d=D VIKE c=0 g~2¢D vI<E
d|Q;(v) fori=1,2 g=gcd(Q1(v),02(v))

wheretp(g) =#{d < D :d | gland M = max (|aj| + - - - + |a4l, |b1| + - + |b4]) .
We claim that

2log E
7p(g) < min <20, eloglogE> .

Indeed, if g € [2°D, 2¢t1 D) and g = fd for some d < D, then 2 « f < 2°¢. This
implies that tp(g) < 2¢. On the other hand,

logg logg
-L-D(g) < -L-(g) g e(10g2+0(1))10g10gg << eloglogg ,

by Tenenbaum [27, Thm. 5.4], for example. The claim follows, since g < M E 2,
Next, we observe that if g = ged(Q1(v), Q2(v)) then

A 020 = 01 - 2,
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where gcd(g’1 Q1(v), g7 02(v)) = 1. Moreover, we also have
Q1M [Q2(W) _ ME?
max , < .
g g 2D
It follows that
. (ME?
> > | <#4" | —.E), (5.28)
2¢D
g~2¢D IVI<E
g=gcd(Q1(v),02(V))
in the notation of (5.4). Hence Corollary 5.5 yields
2 4 16/3
E E
#M* | ——, E E>Te 4 —— _—, 5.29
(M )<<5 TREAREE (5.29)

for any ¢ > 0, provided that M E%/(2¢D) < E?/3log E. The latter is equivalent to

ME?*3 < 2¢Dlog E, which is implied by the hypothesis of the lemma.

We shall argue differently according to the size of c¢. Let L > 0 be a parameter to
be selected in due course. For small ¢, it follows from (5.28) and (5.29) that

L L o E16/3
> Y we Xt X (B i)
¢=0 g~2¢D VIKE c=0
g=ged(Q1(v),02(V))
LE4 E16/3

<Le pLE2te + T +

On the other hand, for the remaining c, the (5.28) and (5.29) yield

2log E

Y Wi > | < eleler Y <E2+8 + 2’5;

c>L g~2°D V|I<E c>L
g=gcd(Q1(v). Q2(V))

2log E

Toglog E E2+81 E
Le < ogLt + 5LD

We shall take L = g;f—fg%. It now follows that

E4 log E E16/3
DD DR RO ke R s
d=<D

IVISE
d|Q;(v) fori=1,2

D loglogE D2

E16/3
4cD2>

E16/3
.

since ¢ log E = O, (E?) for any ¢ > 1. Now E'®3/D?> < E*/D if E < D%,

Hence the lemma follows on redefining the choice of ¢.
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We can use this result to assess the average size of the smallest successive minimum
51,u),k of the lattice lattice Ay« that was defined in (3.9), fork € Nand [u] € ka, in
the notation of (3.8). At this point it is convenient to recall the notation (3.11), where
A is the product of bad primes defined in (2.1). The following result is rather general,
since it will be used in more than one context in what follows.

Lemma5.12 Let f,e,m, D € N and assume that m | e. Then

5 _1 logDe
Z Z L mpfa - mf)* - (De) 4m~
fld [uleV; 1 [ll], glog

Proof Let v € Z* be a non-zero vector in the lattice A[ . de , with Euclidean length

equal to s, . d‘ . This implies that | Qi(v) fori =1, 2 Since we cannot have

Qi1(v) = Qz(v) = 0, so it follows that << |v|2. Once combined with (3.10), this
therefore implies that the smallest successwe minimum of A, g satisfies

de %< g de i
mf <S1’[]1Ze[< mf

Splitting the sum in the lemma into dyadic intervals, we obtain

XY > 3 (530

i=Dier; L 5 (%;)%/E/(,%?)

EN[N)

where

=X T <Ly T

d=D  [uleV} ve uleVy
fia e N véA] .
1lul, 4 (], 4¢
<22 X > !
D 4 ~
d'=Z e [VI~E [u]eV,ej

!
ged(v,$9=t ver .
/ uj, 5
Lei0i(v), i=1.2 "

Yy ¥ x o

D de ~
=7 0% v’ |, dEF/e (WIeV,,s
ged(v, Z=1  ¢ven .,
de w-Tme
G10i V), i=1,2

We observe that if £ - v/ € A |des with £ | d—e and gcd(v’ d' e) = 1, then there

exists A € Z such that £ - v/ = A -u mod dm—e, which implies that A = £ for some
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" € Z which is coprime with &£ d ¢ But then it follows that v = 1" - u mod - and so
Q (v') = 0 mod de fori = 1 2 Hence

m>

SEY<S Y > > >
d'=2ede  WI~E/L ulev)
ged(v, £6)=1 VEA e
;f”f|Q,(v ), i=1,2 Ez

The first part of Lemma 3.5 implies that the inner sum is O ((£ama fa) - (€mf)).
If write M, f = ma famf, then it follows that

SEY <My D 3 Y el Muy Y kY YL

=L gde  VI~E/E keN E<E - g<b o VINEN
7% I~ plk=plA Ea=k I !
/gcd(v ey (l% ,gcd(v S )=1
e10,(v). i=1.2 i), i=12

It now follows from Lemma 5.11 that the inner sum is

EN*Y*  mfE* logE
1< 1 = myL- ’
Z 2. ) DD DR R (5) i e
T ‘V""E/e ‘V"\'E/Z
Z|L ged (v, £)=1 10i (V). i=1.2

m !
4e10;(v), i=1.2

d ’\A‘fmef d’

for any ¢ > 0, since clearly

E De \/*
7 <\ons

in (5.30). Thus

E*  logE
m/EL _logE U(2)> ,
De

S(E M EXeul
( )<<s m,f( ( +8)+ IOgIOgE

where

uvey= Yy > Z%

keN (KE
plk=p|A o=k

Finally, for any 6 > 1, we note that

kl —0
ver< y 2. K0 <o 1.
k<E (<«E k<E
plk=plA plk=plA
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Hence

E*  logE
S(E) <¢ My, 5 <E2+8+£~ o8 >

De loglogE

Returning to (5.30) and summing over dyadic intervals for E, the statement of the
lemma easily follows. O

Armed with the previous facts about our lattices A ], k, We are now ready to establish
the following result, which is a critical step towards Proposition 5.6.

Lemmab5.13 Lete > 0, let D > 1 and let e € N. Then

Y4 Y3  logD
) DD D RN S L, AL
yezt De (De)? loglog De
prim

lyI<Y
de|Q;(y), i=1,2

Proof Dropping the primitivity condition, we first note that

2 sl ) )

yeZémm d=D [uleV} \);\\QY
lyI<Y YEAu],de
de|Q;(y), i=1,2

where the inner sum is now over all y € Z*. Recalling that A[u),de 18 an integer lattice
of rank 4 and determinant (de)?, it follows from a lattice point counting result due to
Schmidt [23, Lemma 2] that

v4 3 j v4 Y3

+ -+ 1« + -
|y|Z<:Y ey’ i1 Stlulde " Sj [ul.d (de)?
YEA[u].de

+1’
[]de

where 1 < 51, [ul,de < -+ < 54,[u],de are the successive minima of Apyj,ge-
Taking f = m = 1 in Lemma 5.12, we obtain

Y3  logD
XY €T

dAD[u]eVX [u] de (De)? loglog De

Moreover,

#V
>y ((d 5 )<< (Y4+D3e3);)(d53.

d=D [uleV)
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To estimate #V; we may appeal to the second part of Lemma 3.5, which gives

#V) L dse'™ .d- 1_[ (1 + 0(1)_%)) ,
pld
piA

for any ¢ > 0. Hence
#V 1 d5 1 1
de A -5
> o <o = > 11 (1 +0(p 2)) e P

d=D d=<D pld
pta

The statement of the lemma follows on collecting together the various estimates. O
Combing the latter with our earlier work, we can now record the following bound.

Corollary5.14 Let D,Y > 1. Then

Y4
DD D R G - log ¥ D,
d<D  yez4

‘prim
lyl<Y
dl1Qi(y), i=1,2

forany ¢ > 0.

Proof If D « Y%, then we apply Lemma 5.13 with e = 1. Otherwise, if D > Y%,
the desired bound is a consequence of Lemma 5.11. This completes the proof. O

We now have all the tools in place to complete the proof of Proposition 5.6. On
appealing to Lemma 5.1 and breaking the range of |y| into dyadic intervals, we find
that

HAM(X,Y) K XYL 37 3" M(X,y),
Yo Y yeZ) i

lyl~Yo

for any ¢ > 0, where M(X,y) = #{x € Zﬁrim : (1.3)holds, |x| ~ X} Since
gcd(xy, x2) = 1, (1.3) implies that x; = +£0»(y)/d and x» = £Q1(y)/d, where

d = gcd(Q1(y), Q2(y)). In particular, we must have max(|Q1(y)|, |Q2(y)|) ~ Xd.
Let

C= inf max(|Q1(t)] [Q2(D)]).

teR4,[t|~1

Our assumption that Z(R) = § implies that C > 0, for a constant C that
depends only on the coefficients of Qp, Q>. It follows from homogeneity that

@ Springer



Density of rational points... 4163

max(|Q1(Y)], |Q2(y)]) =< YOZ, for any |y| ~ Yp. In this way we deduce that

HAX D) XYL > >

Yo Yd=<D  yez4

prim
lylI~Yo
d|Qi(y), i=1.2

for any ¢ > 0, where D = YOZ/X. We now apply Lemma 5.13, which gives

Yy} v logD
HM(X,Y) <o XEYPHE + Z _0+_01g_+D2
Yo ¥ D  pzloglog D

13 logYp Y
— Xey2te XY2+ Xiy; —20 4 "0
yX/:y( ot 0loglogYodl—X2
0

on taking ¢ = }T and D = YO2 /X . Proposition 5.6 readily follows on summing over
Yo.

6 Asymptotics via the geometry of numbers

The purpose of this section is to prove Proposition 2.2, which provides an asymptotic
formula for

#21(B) =#{(X, y) €. Z(B): Bith < |x| < B%—'l},

where Z (B) is given by (2.6). In particular, we note that any (X, y) counted by #.%; (B)
must satisfy |y| < Bs~3. Breaking into dyadic intervals, we therefore find that

(1.1)and(2.3)hold, |y| ~ Y
#24(B) = #1(x, eZ2 x74 . .
"B 23 \ {( Y) € Zprim X Byrim * gt < x| < min(B/ly P, B
Y/ B8 2
We claim that there is a satisfactory overall contribution from Y in the range ¥ <
B3 But it follows from Theorem 2.1 that this contribution is

on breaking the sum over x into dyadic intervals. We can use Lemma 5.1 to handle
the overall contribution from those x, y for which (2.3) fails. Hence

#4(B) = Z #.4(Y) + O(B), 6.1)

1. 3_n
B4 2/)’/’38 2
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where

AY) = {(x, yez2 xgt  (Dholds. lyj~ Y } (6.2)

: st 1
prim prim Bz+n < |X| < B/|y|2

The main goal of this section is to produce the following asymptotic formula for the
cardinality of .Z (Y).

Proposition 6.1 Let Y > 1 such that Bi*% « Y « Bi~3. Then

$M(Y) =26 B( Y)+ 0 <Y—2>> +0 (L>
( I S Bi—n JiogB)’

where S is given by (2.8) and

00 (Y) —/ dy
oM yeR; y12 max(| Q1 (¥, [Q2()])

lyl~

(6.3)

We may insert this result into (6.1), noting that ZY]B%_% y2/B%—'7 <« 1. Hence

we obtain

#7(B) = 26B - 3 aoo(Y)—i—O(B logB).

1,1 31
Bit2 sy /BE 2

This therefore completes the proof of Proposition 2.2, subject to Proposition 6.1.

6.1 Preliminary steps

We now turn to the task of estimating the cardinality of (6.2). Rewriting (1.1) as (1.3)
and extracting the greatest common divisor d of Q1 (y) and Q»(y), we begin our proof
of Proposition 6.1 by writing

o0
#AM(Y) = > 2,
d=1 yez* NABY.d)

prim

d=ged(Q1(y), Q2(y))

where the factor 2 corresponds to the possible parameterisations (xi,x3) =
d~1(Q2(y). Q1(y)) and (x1, x2) = —d~'(Q2(y). Q1(¥)). and we have put

max(|Q1(y), [Q2()]) <i
d e

BY,d) = {y eR*: |yl ~Y, BT < } (64)
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The assumption Z(R) = @ implies that max(]Q1(y)|, |02(y)]) < Y? for anyy € R*
such that |y| ~ Y. Hence D1 < d < D, where

Y4 Y2
Di=— and D, =
B

. 6.5
P (65)

It follows that

#AY)= Y > 2.

Di<d<Dy yez}. NBY.d)
d=gcd(Q1(y), Q2(¥))

Let M, z > 0 be parameters to be chosen in due course. Let

T, = Z Z 1. (6.6)

D1 <Kd<D; YEZY B d)

d10i(y), i=1,2
ged(@ ' Q1(¥).d 1 0a(y), P(2)=1

Then we clearly have

2T —To — T3 < #.M(X,Y) < 2Ty, (6.7)
where
he Y Y .-y X
D1 <d <D yezgﬁmﬂgg(y’d) D <d<D> yezgrimﬁ.@(Y,d)
d|Qi(y), i=1,2 d|Qi(y), i=1,2
Ipez. M1 st pl LY =12 Ip>M st p| 2 =12

We shall produce upper bounds for 75 and T3, and an asymptotic formula for 77.
Lemma6.2 Let e > 0. Then

B(log B)?

B
T <y Zl_—s+Bl_%M3 and T; <, y2te 4 7

Proof We start by noting that 7, < ) pezm) Up, where

Up= 3. > n

4
D1 <d< Dy yEZprim

lyl~Y
dp|Qi(y), i=1,2
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for any prime p. We may use Lemma 5.13 to estimate U),, on breaking the d-sum into
dyadic intervals. In this way, on recalling (6.5), we see that

Y4 Y3 log D
< Y (D —+ - ;g 2Dp +D§p1+€>
peM] 1p (D p)= loglog L2 p

y* . Y3M1log B

Dyzl=¢ 1
Dy

< + DIM**e

B | Y4Mm2te

1 3
L=+ BiY>Milog B +

b

for any ¢ > 0. Since ¥ <« B%_%, it follows that
B3Y2M3log B < B'""M3log B <, B'~3 M°.
Similarly,

4ar2+e
Y 11\/1 * « BI7Mpe Bl—gM3’
B§+2n
which completes the proof of the first part of the lemma.
We now turn to 73 < ZP>M Up. If pd | Q;(y) fori = 1,2 then there exists
g > DM such that g | Q;(y) fori = 1, 2. Under our assumption Z(R) = @, it
follows that

T3 K< logY Z Z 1,

DIM<q<Y? yez4

prim
lyl~Y
q10i(y), i=1,2

since there O (logY) primes divisors of g. Splitting the range of summation over ¢
into dyadic intervals, Corollary 5.14 yields

. Y4 Y4
24-% 2+4¢ 2
T; K logY Z (Y 2+ElogB> <L Y +D1—M(logB) .
D\M /G /Y2

Recalling (6.5), this is also satisfactory for the lemma. O

6.2 Asymptotic formula for T,

It remains to deal with the sum (6.6). The first step is to reduce the primitivity condition
on 'y to the requirement that ged(y, d P(z)) = 1, where P(z) =[] p. This is the
purpose of the following result.

P2
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Lemma 6.3 Let e > 0. Then

BlogB
Ti = 3 + 0; <Y2+8+—3g>,
Z

where

B- Y >
D1 <d <Dy yeZANA(Y d)
gcd(y,dP(z))=1
d|Qi(y), i=1,2

ged(d ™1 Q1(y).d7' Qa(y). P(2)=1

Proof The proof hinges on the observation that

Ti— ). ) <) R
Di<d<D> YEZANA(Y .d) k=1
scd(y,d P(2))=1 ged(k, P(z))=1
d10i(y), i=1,2
ged(d1Q1(y).d7 1 Q2(y). P(2)=1

where now
R= Y >
D1 <Kd <D YEZ*NAB(Y .d)
ged(d.k)=1 k=ged(y1.....y4)
d|Qi(y), i=1,2
ged(@ 1 Q1(y).d71 02(y). P(z)=1
But clearly
Re< Y > <o) XL
D «d< Dy 'e74 . Nkl By D1 <d<Dy =Vhe
gcd(d,k):l ye prim , <ﬂ( vd) y/E prim
d|1Q;(y"), i=1,2 ly'I~Y/k
ged(@ 1 01(y).d7 1 02(y). P(2))=1 d10;(y), i=1,2

Breaking the d-sum into dyadic intervals, it follows from Corollary 5.14 and (6.5)
that

Y)HS N (Y /k)*log Y < Y2*¢  Blog B

R —

for any ¢ > 0. Hence

1
Y R Y4 BlogBZk—4.

k>1 k>z
ged(k, P(z))=1

The remaining sum is O (z~>), which thereby completes the proof of the lemma. 0O
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We now turn our attention to an asymptotic evaluation of the main term X in the
previous lemma. We use the geometry of numbers to prove the following result, in
which we recall the notation (3.8) for Vdi.

Lemma 6.4 We have

= Y MRS S g et 0, (24 P@?) B,

6P 1T pe
£|P(2) Eﬁle
t3<D >
352 ecd(e,03)=1

where

BVX vol B(Y. d)
Stitz.e = Z a 43 :
D1 <d< D>y
ged(d, ly)=1
£3ld

Proof Using Mabius inversion to handle ged(d~'Q1(y), d~' Qa(y), P(z)) = 1, we
see that

Ti= ) ue ) Yoo t=D e YooYy > L

e|P(2) D\ <d<D2 ye7*NB (Y .d) elP(z) Di<d<Dz [uleV, yeZ*NB(Y.d)
ged(y,d P(2))=1 ged(y,d P(2))=1
de|Q;(y), i=1,2 YEA[u].de

where V and Ay 4. are given by (3.8) and (3.9), respectively. Appealing to Mdbius
inversion once more, we obtain

Ti= Yo Y, > >, D o

elP(2) D1 <d<Dz [uleV, yeZ*NA(Y.d) LIy
YEA ) de L|dP(z)

It will be convenient to observe that

doouw@=Y Y uplop@= Y Y Y pE)uE)uEs).

Ly cly L]y L]y Loy U3y
LldP(z) clde  £1|P(z) |P(z) fale  L3ld
ged(ly.de)=1 ged(ly.de)=1 ged(€3,e)=1
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Note that ;£ (£1)u(€2) i (£3) = w(€1€,£3) in the summand. But then it follows that

Ti= ) outiaty Y opwe Y, oy )y 1

0|P(2) €|$ D|<<d<<D2 [u]eVy; yeZ“ﬁﬂ(Y d)
f;z'P(DZ) lele ng(Z dl) L1883y
1< D> ced(ebn=1 3l YE€A(u].de

= 2 ntitaty Y w3 N
6P |P<L D1<<d<<Dz [uleV}:
§2|P(DZ) Kzle ng(g d)
3K ged(e,b3)=1 3|

where
N =# (Z4 N (016283) " B, d) NV Ay e ) .
YUty

Recalling the definition (6.4) of (Y, d), we now appeal to the lattice point counting
result worked out by Schmidt [23, Lemma 2]. This yields

vol ((€14203) B (Y, d)) - (£243)3 Y3
N — ((e1e263) (3 ))(23)+0 - : ’
(de) (€1€2€3)3s Ll

4253

where s, [u]. 4 is the smallest successive minimum of the lattice A[u] de .
R YE) L)

Since vol ((616263)_1% (Y, d)) = (£1£243) "4 vol B(Y, d), it follows that

vol B(Y, d) Y3
N=—"""+40]|1+ . (6.8)
(de)3ﬁlﬂzf3 (31Z2€3)3S de

1. 1ul, 603

We begin by handling the overall contribution to X from the error terms. Let E
denote the overall contribution from the term O (1) and let E denote the contribution
from the term involving the first successive minimum. Beginning with the latter, it
follows from Lemma 5.12 that

Y3 _1 logB
> Z < 7 - (€2,al3.7) - (D1€)” 4 ————r

2 -
D1 <d<D> [u]e (El 223)3 ul gt 03 (L203)7 loglog B
t31d ;

making the overall contribution

EzA €3A

-N

Ey < BT

loglog B |P(2) 62 (<D, eg e|€P|(z>
2le
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since D satisfies (6.5) and ¥ < B%’%. The inner sum is at most 2% and the sums
over {5, £3 are O(1), since

V4 1 1
=< Y =Y o<l
ten £# keN k3 pen U3
plk=plA

n . . .
Hence E; = 0, (EZB]T), which is satisfactory.
The remaining error term in the lattice point counting result makes the contribution

E\ < Y bt Yy D #V 6.9)

L1|P(2) e|P(z) D1 <Kd< Dy
£ P(2) Lole L31d
03K Dy

to X1. We claim that

3 Y #v « P)PD3 A AL ““63 A [T(+ow™). 610

e|P(z) dKD; pléats
lrle  €3]d pJ(A

To prove this, we appeal to the second part of Lemma 3.5, which implies that

S #vr < Y dedieh [ (1 n 0(p*%))

d<D d<D plde
£3ld £3ld ptA
1
<eeh Y bdwady ] (1+0070),
d'<D/l3 pllad’e

ptA

for any D > 1, on writing d = ¢3d’. Now

> oddi[T(1+oer™) < Y K 3 @[] (1+007h)

d'<D/l3 pld’ keN d"<D/(kt3) pld”
ptA plk=plA
<< - Z k— 1+8
keN
plkémA

This is O (D? /E%). Hence we have proved that

2

eeS b5 D
Yo#v < 22— T (1+0(p‘%)), 6.11)
e 63
d<D pltze
Z3|d ptA
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for any D > 1. Making the change of variable ¢ = £»¢’, and noting that

_1 P(2)?
> el (1+0(p 2)) < 22) :
o122 ple’ 2

2 ptA

the claimed bound (6.10) readily follow.

It follows from (6.5) and ¥ < B%’% that D% <« B'=*". On inserting (6.10) into
(6.9) and summing trivially over £1, a similar analysis leads to the conclusion that

E1 < P(2’D; Y > % I <1+0(p_%))

¢
0P(2) (3<Ds 2 pltats
pia

<, PR)*B'3,

which is satisfactory for the lemma.
Finally, we note that the main term in our asymptotic formula (6.8) for N gives

1%A(Y,d)
PRIGTYS N DO N S Zc(l)e)3€4€2€3

L1|P(2) ‘P( ) D|<<d<<D2 [u]e\/
ﬁzlP(z) t Ie ng(? ldl)

D
3 scd(e l3)=1 3l

once inserted into our expression for ¥ 1. Finally, on rearranging the terms, we are led
to the main term in the lemma. O

We now have everything in place to complete the first step in the proof of Proposi-
tion 6.1. We shall take

log B

Ul
= — d M=Bio,
(loglog B)? an

log B
Mertens’ theorem implies that P(z) < e (oglog B <y B16. Hence we obtain

Z n(1€223) Z M(e) B g et O, (Bl )

4, ,
) ti6ats 2R
lez\P(lZ)) ‘

< scd(e £3)=1

in Lemma 6.4. Next, it follows from Lemma 6.2 that

B(log B)? B
M JVIogB’

B
AT < g + B'=IM3 4y 4
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. 3.1 . . . .
since ¥ < B3 2. Inserting these estimates into (6.7), we obtain

. 0102 B
#///(Y):ZZM 3 Me(e)S41[3g+< )

1
nipe kb o2 viog B
62| P(2) ¢ L
03K Dy 2le

ged(e,£3)=1

We next show that the sum over £3 can be truncated with acceptable error, as in the
following result.

Lemma 6.5 We have

~ B
#%(Y)ZZTO"'(W)s

where

Z w(l1€243) Z /L(e) Z #dee-vol,%(Y,d)'

4 d3
£1|P(2) titats | 22 D <d< D>
0|P(2) [ |l€ gcd(zz,edl):l
03|P 2
3I1PG) wed 3l

Proof Recall the definition of S, ¢, . from the statement of Lemma 6.4. Then, in order
to prove the lemma, it will suffice to bound

Yy bt ool

npe b 0128 p)
0| P (z) €31P(2) Lole
4 #Vie
<rt ) X & 25 Z > 5
L1|P(z) Z3<<Dz el P(Z) D <<d<<Dz
0| P(2) €34P(2) l]e 431d

A modest reworking of the proof of (6.10), using partial summation and (6.11) to
incorporate the weight (de) 3, easily yields

y4 1 B
E <<s . Z Z 5463 e£2 € <L D_l Z 02— < z1-e’
leP(z) 03« D> 2 03>z 73
£2|P(2) L3P (2)

by (6.5). Our choice of z ensures this is satisfactory. O

6.3 Asymptotic formula for Ty

The final step in the proof of Proposition 6.1 is to analyse the main term in Lemma 6.5,
in which we recall that (Y, d) is given by (6.4) and the piece of notation (3.8). Making
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the change of variables ¢ = £r¢’ and d = £3d’, we find that

p(L1lal3)pu(l2) u(e’)
T0= Z 645454 Z 6/3 Q[l’gz’@&e/, (612)
£1|P(2) 17273 PC)

0Q|P(z) )
£3|P(2) ged(e’,€3)=1

e\

where

x
#szl3d’e’
Quy.t5,03.6 = Z

Dy /3kd' <D2 /3
ged(d’,£1)=1

-vol B(Y, £3d")
a3

6.13
wyx (6.13)

_ Url3d e’
B ﬁeR“ Z dn dy
lyl~Y Dl.ygd/gDZ.y

ged(d',€1)=1

and

_ lyI* max(|Q1 ()], [Q2(9)) Doy — max (|01 (). [Q2(D

Dy, =
y 3B y ESB%JH?

(6.14)

Here, we have observed that the condition D /¢; <« d' <« D;/{3 is implied by the

condition D1y < d < D5y, since Z(R) = (. We are therefore led to prove the
following result.

Lemma6.6 Let Z, > Z1 > Oand let c, £ € N be square-free coprime integers. Then

X

#V 1 1 _3
Z dgd = C#V. h1(c)h2(£) (Z— - z_> + 0.(c' 7, 278y
21<d<7s ! 2

d,t)=1

for any ¢ > 0, where

a
x4y \ 7! |V
mo=TI(1+258) (=27
ple a=1 p P a=1 p
o gy X\~
h2(€)=n<1+z 2’;) .
ple a=1 p

Moreover, hi(c) = Og(c?) and hy(£) = O, (£°), for any ¢ > O.
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Proof If 0 < Z; < 1, the result is trivial, so we may assume Z; > 1. We begin by
defining the multiplicative function

p*”#VpX,, if ptet,
£ = L PV VS i e
0 ifp e

It follows form the Hasse bound that #V = p — T), + 1, where T, = O(/p).
Moreover, the Chinese remainder theorem implies that

X

#V
d — cd
AC) TRV

for any d € N such that gcd(d, £) = 1. Hence we can write

#V fd)
Z dg = #VCX Z d2 '
Z\<d< 2y Z\<d<Zy
d,0)=1
We claim that
1
3" F(d) = Chi(©ha(0)x + O (ﬂ“) , (6.15)
d<x

for any ¢ > 0, where C, hy, hy are defined in the statement of the lemma. Once
achieved, on recalling the bound #V.* = O, (') from Lemma 3.5, an application
of partial summation easily leads to the statement of the lemma. Finally, the bounds
on /1 and A3 in the last part of the lemma follow easily from Lemma 3.5.

To prove (6.15), we write f = 1 g as a Dirichlet convolution, noting that g(p“) =
F(p®) — f(p®1) for any prime p and a € N. Suppose first that p 1 A. Then it follows
from Corollary 3.6 that

O(p~?) ifa=1landpte,
g(p)=1-1 ifa=1and p|¢,
0 otherwise.

On the other hand, if p | A then (3.13) and Lemma 3.4 together yield g(p?) = O(a).
Given any k € N, it therefore follows that g(k) <. k¢/+/ki, where kj is the part of k
that is coprime to £A. Given this, we easily conclude that

Zf(d) = Zg(k) (% + 0(1)) =yx+ O(x%+8)’

d<x k<x
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for any ¢ > 0, where

g Ee2) -6 54)

P a=1

Inserting the definition of f(p?), it is straightforward to see that y = Ch(c)h2(£),
as required to complete the proof of the lemma. O

We now seek to apply this in (6.13). Note from (6.14) that Dy y > Y*/(€3B), since
we are assuming that Z(R) = (). Hence we obtain

S
(Lr¢))!Te¢2 B3+

QZ],ZQ,Z3 e = C#ngg ¢ hl(£2£39/)h2(£1)v(Y) + O¢ y2 >

where

| 1
veR* \ Dy v Doy
i~y SOy Y

and Dy y, Dy y are given by (6.14). Clearly v(Y) = €3Boo(Y) + 0(£3B%+”Y2), in
the notation of (6.3). Thus Qy, ¢, ¢5, 1S equal to

Y2 (Eze/)lJrsz%B%-&-s
C#V o1 (Ll ha (€) 63 B <Goo(Y)+0< 3 n))-ﬁ-Og — 3.

B Y2

It is now time to insert this estimate into (6.12). First, the overall contribution from
the error term is

B%-i—é‘ 1 1 B%+8
< 53 e 57

ege 7
L1|P(2) P@
6IPG) 3 dag

£3|P(2)

Adjoining the contribution from the main term, we therefore obtain

Y2 B'7+£
T():C-J(z)-B(ooo(Y)—l—O( >>+05< ), (6.16)
Bi"

for any ¢ > 0, where

w(l1€203)n(€2)hy (L2€3€ )ho (€1) ne) ,ox
J(2) = Z 040403 Z e’3 V£2533
£11P() 17273 e
£| P(2) ho
0]P(2) ged(e’ €3)=1
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=2 )

m|P(z) £y,...,£4€N
Ly--Lyg=m

w(€Dha(0r) (€2 h1(E)HV)s w(l3)h (E3)#V)S
o I IE
1 2 3

(la)hy (E)# V)
o '

In view of the second part of Lemma 3.5 and the bounds on % and /7 from Lemma 6.6,
we can extend the sum over m to all square-free integers, finding that

J@)=J+0@h,

J=T] (1 hap) | RV 2h1<p>#V;>
- 4 4 3
» p p p

© #vr5\ ! CHVE 1 (1 2\ SV
— P p P
n(z) (l+zp2a—?+(—2——)z r).
P a=1

P> bl

Recalling the definition of C from the statement of Lemma 6.6, it follows that CJ =
&1, in the notation of (2.8). Returning to (6.16) and observing that z > ,/log B, it
therefore follows that

y2 B Bite
To=61B (o) +0(—5—))+0(— )+ 0. =),
o= (e +o (L)) vo () +or (5

where 0 (Y) is given by (6.3). Substituting this into Lemma 6.5, and using the lower
bound Y > B%Jr%, we are finally led to the statement of Proposition 6.1.

7 Asymptotics via the circle method

The goal of this section is to prove Proposition 2.3. Recall the notation A(x) =
]_[?:1 L;(x) from (5.16). For any x and any compactly supported weight function
w: R — R, the singular integral is defined to be

+00
Goo,u/(X) =/ fw wy)e (—OLiy] +- -+ La)) dyde.

In the special case that wy is the characteristic function of [—1, 11*, we set oo x) =
Ooo,wp (X). We have 000 (AX) = 2 oo (x), for any A > 0. Moreover, it follows from
[5, Lemma 4.12] that

000 (X) K and 000, p (X) K (7.1)

1
A4 |AG[1/4
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for any compactly supported smooth weight function w : R* — R>o.
Finally, we put

(X)) =6(Qy) =[] op®),
p

where

#{y € @/p"D)* : Li®y? + - + Ly(x)y3 = 0 mod p¥)
3k )
P

w0 = Jim

With this notation to hand we may now record the first main result of this section,
which closely follows the strategy in [5, § 5].

Proposition 7.1 Let n > 0. Then

[

32).

Z 000 (X) S (x)

T O(n?Blog B) + 0,(B'~

B
#25(B) = ——
4¢3 X,

1
B |x|< B4
[T Lio#0

The asymptotic behaviour of the leading term in Proposition 7.1 is our next mile-
stone and is summarised in the following result.

Proposition7.2 Letn > 0. Then

Z 00 (X)S&(x) I Too 62

< = %0 log B + O(nlog B) + 0,(1),

2
XGZprim

BIX|<BE
[T Lio#D
where To is given by (2.9) and & is given by (2.11).

Combining Propositions 7.1 and 7.2 concludes the proof of Proposition 2.3.

7.1 Proof of Proposition 7.1

Letw : R* — R>( be a compactly supported weight function. Then for any X > 1,
we define the weighted counting function

LyB.X)= Y Y w(&y>. (7.2)

1
B2

XEZ;%rim yeZﬁrim
Ix|~X (1.1) holds
Ax)#£D
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When w = wy, as above, then

#25(B) = Y Luy(B.X).

1
X B%

Our strategy for proving Proposition 7.1 is to first produce an asymptotic formula
for L, (B, X) when w is a suitable smooth weight, before finally showing how to
approximate the counting function L,,,(B, X) by smoothly weighted ones. It turns out
that the circle method tools required to produce an asymptotic formula for L., (B, X)
are already in exactly the right form in [5]. This allows us to prove the following
analogue of [5, Lemma 5.3].

Lemma7.3 Let w : R* — R0 be a compactly supported weight function which
vanishes on [—n, n)*. Suppose that X > 1 satisfies

BY « X « BT ™4, (1.3)

Then, for n > 0 sufficiently small, we have

B G}
LuB.X)= — 3 T MO | pi-or).
(0 L X
XEZprim
x|~X
Ax)£0

2
Proof For x € Zprim

and Y > 1, we define

Nu@i V)= Y w(F).
yeZ4

prim

Ox(y)=0

where Qy is given by (5.12). Then

B
Ly(B,X)= Y Ny (Qx; m>.
xeZ2 .
prim
|x|~X
Ax)£D

Asin (5.16), we write || Qx| = max;g;<4 |L; (x)| and we recall the definition (5.1) of
Apad (X).
It now follows from [5, Lemma 5.2]

5
) S Y§+5ﬂ
Nu(0y; ¥) = 22w @O o ( ) ’

£(2) 105112
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for any Y > 1, provided that Y" < || Qx| < Y%, IL;(x)| = ||Ox|I'™" for every
1 <i <4, and Apaa(x) < || Ox||". Observing that |x| < ||Qx|l < |x|, we deduce
that

345
Nu(0x; ¥) = 22O o onw<Y31">,

¢(2) x|2
provided that
Y1 < x| < Y3, (7.4)
ILi(x)] > |x|'7", forevery 1 <i <4, (7.5)
and
Apad (%) < [x]". (7.6)

Under the assumption that X satisfies (7.3), the condition (7.4) is always satisfied with
= /B/|x|. Hence it follows that

X\ B G000 (XS (X)
I N R

xeZ2 | |x|~X yeZ?. xeZ? . |x|~X

prlm pnm pnm (77)
Ax#0  (1.1D)holds Ax)£0
(7.5)(7.6)hold (7.5)(7.6)hold

+ 0y (BIT3TXT),

Note that the error term is O(Bl_%”), since X < BT~ in (7.3).

It remains to treat the cases where either (7.5) or (7.6) fails. We start with (7.5)
and assume without loss of generality that |L(x)| < |x|1=". Then it follows from
Lemma 5.8, with § = 1 — pand Y = /B/X, that the overall contribution is

<<7]’5 BSX_%U (B +B%X2> & X_%nBlJ'_g < Bl_n2+8’

under the assumption (7.3). On taking & = n?/2, the contribution from this case is
therefore O, (B 1=n*/ 2y To handle the situation when (7.6) fails, we use Proposition 5.3.
Taking D >> X, we therefore obtain the contribution

B+ B2X? \
<L BF <+— + XB? + B3 ) « X~ Teplte 4 pite o pl-Tp+e
X16

Taking & = 1?/16, we obtain the overall contribution (o (Bl_”z/ 16y,
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in (7.7) to the whole range. For this

4180
It remains to extend the sum of x € mem
purpose, we consider the sums
6(x)
$1X) = > (7.8)
xeZ2. a0 Xl [Ty Liol
Ix|~X, |Li(x)|<X'"
and
G(x)
IO = 3 : ; (7.9)
Ax)£0 X[ TTi= Li(x)]*

2
XEZprim’
[X|~X, Apad(x)>X"

Apad(X)°L(1, x0,)

1
2 L1 ()3

X3 xe pnm A(x)£0
Ix|~X, |L1(x)|<X"

X3¢ 1
Leyy —7 Z L Z L
X5 g oxion RY ez “amz0
[x|~X, |[L1(x)|~R

In both of these sums we can apply Lemma 4.3 to estimate &(x)
We start by estimating (7.8). Combining Lemmas 4.3 and 5.7 with (5.27), we obtain

on introducing a dyadic parameter for the range of |L;(x)|. It follows easily that
S¢
) XR « X% « x4

X
S1(X) Len —7
Xi R/X\-1

by fixing ¢ to be sufficiently small
Now we handle S>(X) similarly. It follows from Lemma 4.3 and (5.27) that

> 1.

$12(X) <<g Z > f
=1k x R3 X€Zp s A0
[x|~X, [Li (X)[~R

Abad (X)> X"

The condition Apag(x) > X" implies in particular Apag(x) > (X R)%. Applying

Lemma 5.9 with § = % and S = X, we obtain
6+58_

Se XR]—%
$H(X) Kp — — <X
X4 R X R4
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Thus $>(X) < X~ %, on taking ¢ sufficiently small.

Invoking the bound (7.1) for 0 4 (X), we may now apply our bounds for S1(X)
and S>(X) to deduce that there is a satisfactory overall contribution to the main term
in (7.7), corresponding to the failure of (7.5) or (7.6). The proof of the lemma is now
completed. O

It remains to remove the smooth weights, using the previous result to deduce a
similar asymptotic formula for the counting function L, (B, X), where wy is the
characteristic function of [—1, 1]*.

Lemma 7.4 Assume that X lies in the range (7.3). Then, for n > 0 sufficiently small,
we have

B
L (B, X) = Z 000 (X) G (x) " O(n%B) n 0,7(31_%"2)_
() > x|
XEZprim
[x|~X
Ax) £

Proof We mimic the procedure of [5, §5.3], which relates the counting function
Ly, (B, X) to one in which smooth weights appear. For each n > 0 sufficiently
small, we fix two smooth weight functions wy, w, satisfying the requirements of [5,
Lemma 4.13]. Thus

.

I (7.10)
Hl'zl |L;(x)|4

Goo,w,' (X) — 0o (X) <

Moreover,
Ly, (B, X) < Lyy(B, X) < Lyy(4n*B, X) + Ly, (B, X).

We can apply Lemma 7.3 to estimate L., (B, X) and L, (B, X). Moreover, on recall-
ing (7.2), we deduce from Theorem 2.1 that

Ly, (4n*B, X) < n*B + n**X**B*3 « B,

since X < B% in (7.3).
In view of (7.10), for i = 1, 2, it remains to show that

S(x)
So) = D, —— 7 =0(), (7.11)
X, IxI[TTioy Lix)]4
[x]~X
Ax)£0

in order to complete the proof of the lemma. We can adopt a similar argument to the
treatment of §1(X) and S2(X) in (7.8) and (7.9), respectively. Appealing to Lemma 4.3
and breaking into dyadic intervals, we obtain
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SO(X)<<Z Z ; Yo A ®FL(L xoy)-

4 R4 2
i1=1 R/X xezprim

XI~X, |Li, 0)|~R
Ax)£0

Recalling (5.26), an application of Lemma 5.10 with § = 11—6 and § = X, therefore
yields

1 1 33
S0 <o — 0 — (XR+XFHRY 4 XTTeRE)
X3 R X R3

1 1 eov 2 kX
< — (X4 + X°(X1o +X32))'

X7

Thus So(X) = O(1) on fixing ¢ to be small enough. This establishes (7.11), thereby
completing the proof of the lemma. O

We are now ready to deduce Proposition 7.1. Lemma 7.4 implies that

Y Luy(B.X) = B ¥ 02 (S (x)

x|
1 2

B« XKB* —4n XEanm

A(x)#0

1
B L|x|<BE M

+ 0?2 Blog B) + 0,(B'~ 16" log B).

We may clearly take log B = O(B 5”2) in the second error term. Moreover, on
recalling (7.11), we obtain

B 000 (X)S6(x

(2) 2 %«B > So(X) < nBlogB.
XL B~ xpt
Ax)#AD

1 1
B« |x|<B7

Moreover, with further recourse to (7.11), it also follows that

B 000 (X) G (X 1
Z Ly, (B, X) = @ Z —OO(;l ® + O(n2Blog B)
an<<X<<B%_4'7 XGZgnm
Ax)£O

1
B2 |x|<B4

+ 0, (B!~ %),
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Finally, it follows from Theorem 2.1 that

E Ly, (B, X) < nBlogB.
X< B or
14 1
B4 < X<KB4

This therefore finishes the proof of Proposition 7.1.

7.2 Proof of Proposition 7.2: preliminaries

In this section we are concerned with the asymptotic behaviour of the term

000 (X) S (x)
MB)= > °°|X—| (7.12)
xezgdm
1
B |x|<B4
T Lix#0

The line of attack follows [5, §6.2], but we face extra difficulties that are similar to
the ones we encountered in §5.1. The basic idea is to restrict each series S(x) to a
sum over small moduli, before interchanging the order of summation. To achieve this,
it will be crucial to achieve sufficient cancellation when averaging over the x-sum,
which is harder in this setting, since we have half the number of x-variables compared
to the variety (1.6) considered in [5].

Forx e Zgﬁm and g € N, we let

4
S = > > ey (a > L,»(x)b%) :
i=1

amod g be(Z/q7)*
ged(a,q)=1

This is multiplicative in ¢ and we have &(x) = Zgozl q_4Sq (x). It will be useful to
collect together some estimates for S, (x) that can be extracted from [5, §4.2].
2

prim

Lemma?7.5 Lete > 0,letx € Z
true.

(i) We have S,(x) < g3 ged(q, A(X))?.
(i) If pt2A(x) andr € N, then

A
Spr () = (%) P (P,

and let g € N. Then the following statements are

where ¢*(n) = ¢(n)/n. Moreover, S, (X) = 0 if p | A(X) but p { 2Apaa(X).
(iii) We have

Sq () 3 31
320 AR A (07 X3
q<X

if A(x) # .
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(iv) We have

Z Sq (X)I < X°.
q*

q<X

Proof 1t follows from [5, Lemma 4.5] that S, (x) <« q3 ]_[?:1 gcd(q, Li(x))%. But
then part (i) is a consequence of the observation (5.9) and the fact that x is primitive.
The formulae in (ii) follow from [5, Lemmas 4.6 and 4.8]. Part (iii) is the same as [5,
Lemma 4.9]. It remains to prove part (iv). Appealing to part (ii), we obtain

Z |Sl;(4x)| <« Z |SqZE;X)| Z @ (6]1)

q<X H<X @ g<x/g
G212 Apad (X))

<#{peN:gp <X, 2| QApaa(x))*}log X,

7
since part (i) implies that S;, (X) < ¢, . The remaining cardinality is easily seen to be
0, (X Apag(x)?), which thereby completes the proof. O

We now carry out the proof of Proposition 7.2 in a series of steps

Lemma 7.6 (Reduction to small Ap,q(x)) We have

000 (X)S(x 000 (X)6(x
Z oo()(): Z oo()()+0n(1).
x| x|
erpnm erpnm
B <|x|<BY B |x|<BY
Ax)£0 Ax)£0

Apaq (x)< B7/1000

Proof We apply the bound (7.1) for oo (X), together with the bound &(x) <, |x|*¢,
which follows from Lemma 4.3 and (5.27). On executing the dyadic decomposition
in the same way as in the proof of Proposition 5.2, it follows from Lemma 5.9 that

Ooo (X)S(X) 555(513)1 n/400 2
Z 00 S & Z Z e n /100+5£’
XEZIZ)nm B /S /B4
B IX|<BE
Ax)£0
Apag (x)>B1/1000

LR/S SiR3

since Apag(x) > B1/1000 > (§R)1/50  The result follows on choosing & small
enough. O
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Lemma 7.7 (First truncation of &(x)) We have

000 (X) S (x Ooo(X)S (x; B10O
Z 00 (X) (): Z 00 (X)6( )+0(B‘1),
- x| - x|
XEZprim erpﬁm
BY<IxI<B BUIxI<BE
Ax)z0 Ax) £

where G(x; N) = quN q’4Sq(x).

Proof Applying partial summation, it follows from part (iii) of Lemma 7.5 that

Sq(%) 3 5o
Y L <A Apa ()5 B,

g>B100

uniformly for any x € mem such that A(x) # O and |x| < B%. The bound (7.1) now
yields

o0 S - 16 B
Z 000 (X) Z q(4X) « B~ Z |A(X)|156 < B!,

x|
erlzmm q>B100 q XEZQI
1 1
BYL|X|<BT IXISB®
s
since Apaa(x) < |AX)| < [x]*. o

Having truncated the g-sum, we proceed to show that there is a negligible contri-
bution from x such that A(x) = [J.

Lemma 7.8 We have

3 000 (®)&(x; B'Y)

— -n
|X| = 0,(B7).

2
erprim

1
B2 |x|<B4
Ax)=0

Proof To begin with, it follows from part (iv) of Lemma 7.5 that &(x; B'?) =

O, (B?), uniformly for x € Zgrim with |x| < BT, Moreover, (7.1) implies that
000(x) = O(1). Thus

000 (X)S(x; B'Y)

Z - a prim

x| &L B4 {x eZ2. x| < BI, A(x) = D},
X

2
erprim

1
B |x|<B4
Ax)=0
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In the spirit of the proof of Proposition 5.2, the condition A(x) = [Jimplies that (y, x)
lies on the genus one curve y> = H?:l L;(x). Thus the number of x € Zgrim with
x| < B i which verify this condition is O, (B?). The lemma now follows on taking
e=n/2. O

We have now come to the most difficult step in the proof of Proposition 7.2.

Proposition 7.9 (Second truncation of &(x)) We have

000(X) Sq(x) —1/500
Z IX| Z q_4 = O,(B ).
B1/10 <g < B10O

1
B |x|<B4
Apad (X) an/IOOO

This result is a direct analogue of [5, Lemma 6.6]. However, in that setting a higher
power |x|? appears in the denominator, which has the effect of making the proof
a relatively simple application of the large sieve for real characters. The proof of
Proposition 7.9 is more delicate and we have divided it into several steps.

Following the template laid out to prove Proposition 5.2, we will execute a dyadic
decomposition of the range of x, according to the smallest value of |L;(x)|. Since
|L;(x)| = |L;(x)| for any indices i # j only if x takes values in a finite set, we see
that there is an overall contribution O(1) to the sum in the proposition from such x.
This therefore allows us to partition the x-sum into four sums where min; ;, |L; (X)| >
|L;,(x)|, fori; € {1, ..., 4}. We shall assume, without loss of generality, thati; = 1.
We introduce a dyadic parameter S for |x|, and R for |L;(x)|, for R < S and B*" «

S « Bi. Let
F(S, R) = {x €72 |x| ~S, |Lix)| > |Li(x)| ~ R fori > 2} . (1.13)

prim

Then we shall be interested in bounding

(5. R) = Z 00 (X) Z Sq(4x) ’

X
xe.Z(S,R) x| B1/10<q< B100 4q

Apaa (x) < B1/1000

for given R, S such that R <« S and B?" « § « B#. We shall prove the following
result.

Lemma7.10 Letn > O and let R, S > 1 be such that B « § « B% and R < S.
Then

%(S, R) = 0,(B~"40),
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The statement of Proposition 7.9 is an easy consequence of this, on summing over
dyadic intervals for R and S. Before proving it, we take the opportunity to record a
basic estimate for the partial derivative of the real valued analytic function that weights
our sum X (S, R).

Lemma7.11 Let j € {1,2} and let K € R[x1, x2] be a non-zero linear form. Then
the following hold:

®
9000 (X)

& A7 (min [L;(x)]) 3.
3Xj

(1)
0 0c0(X)

.| _1 . ) ,% ) 1
;K Lk K& A3 min [L; (x)])73 + [K&X)| 7 |A®)[ 4,

Proof We shall assume without loss of generality that j = 2. We have

i 00 (X)
dxy; K(x)

0050 (x) 1
0xy; K(x)

Oco(X)
K (x)?

In view of (7.1), the second term gives rise to the second error term in part (ii) of the
lemma. Thus part (ii) follows from part (i).
For any v € R, we write I(¢) = f_ll e(Yy?)dy. We have I(y) <

min(1, |1p|’1/ 2), as recorded in [5, Lemma 4.4], for example. We have

4 4
aoo(x)Z/R(E/_lle(_eLi(x)yiz)dyi>d0=/R(El(—@L,{X)))dG.

On the other hand,

I(—0Li(x))  9Li(x) 1 g L
o2 = oy, 2L /_1y5 e(—0L;(x)y")dy.

The integral on the right hand side is uniformly bounded, whence

d1(=0Li(x))

< L x|
0x2

In now follows that

4

0050 (X . _3 _1

2 o Lior [min e T iz,001 | ao
2 . R .
i=l1 J#i
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I _2
L [AX)|3 (min |L; (x)]) 3,
which establishes part (i). O
Proof of Lemma 7.10 Throughout the proof we may assume that the parameter n > 0

is fixed but arbitrarily small. Let 6 > 13—6 be a parameter to be decided upon in due
course. It follows from part (iv) of Lemma 7.5 that

S, (x
> |‘;(4)| < B

g<B10O

Combining (7.1) with Lemma 5.9, we deduce that the overall contribution to X (S, R)
from x such that Apaq(x) > (SR)? is

2]
B*(SR)!~% o :
« BORE pesi « g,
S4R%
since R <« S and S > B2". This is a satisfactory contribution since 6 > %.
Using the multiplicativity of S, (x) in g, it follows from part (ii) of Lemma 7.5 that
we may proceed under the assumption that

TSR = Y Too(X) 3 S () ) <@>¢*(q1)’

x| 4 1 1
XeS(S,R) @<B'" T2 gy 10/g:<q1 <B' /g5 1 i

Apad (X) <O 212 Apag () 24q1
where

® = min (B’?/WOO, (SR)‘)) .

We will need to show that the sums over g and g, can be truncated satisfactorily. The
inner sum over g is O (log B). Hence part (i) of Lemma 7.5 and (7.1) implies that the
contribution from ¢ > B"/1%0 jg

log B
< B1/200 Z T
xe.7(S,R) [X||A(X)]4
Apad (X) <O

#7(S, R)
—_—

#{gr < B": g1 | 2Apaa ()™}

&, B0+ &, B0+

SiRE
since R < §. Taking ¢ = /400, this is satisfactory for Lemma 7.10. Next, we put
Ny = (§*R)* B/, (7.14)
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Then it follows from the Burgess bound, in the form of Lemma 3.1, that

Z (A(X)) ©*(q1) < Nl_%|A(X)|€ « B0,

q1 q1
Ni<q1<B'%/q,
2{q1

since 6 > %. Since the contribution from the ¢, sum is O, (B¢), we obtain the overall
contribution

#.5(S, R)
SiRi

< Bfn/IOOJre < B*U/100+8.

This is satisfactory for Lemma 7.10 on taking ¢ = 1/200.
In summary, it suffices to proceed under the assumption that

2SR = Y ”TX('X) )3 S (X) 3 (@)w*(m)’

4
xe.”(S,R) ngBn/IOO q2 qlelqzﬂZ q1 q1
Abad () <O 0212 Apaa (%)) 2%,
where
B1/10 B100
Iy, = |: , min <N1, —)} . (7.15)
92 q2

Next, we sort this sum according to the value of Apaq(x). The idea is now to bring the
x-sum to the inside, in order to exploit cancellation from the Jacobi symbol. Thus

SR = ) E(S.R), (7.16)
r<o
r squarefull
where
Oo0(X) Sg>(X) A(x)\ ¢*(q1)
nep= Y SRy ER Oy (SR
xe.”(S,R) G < B0 92 q1€ly,NZ
Abaa (¥)=r q21(2r)%° ged(g1,2r)=1

Next, we exchange the g>-sum and the x-sum, by sorting the x-sum into residue
classes modulo g. This leads to the expression

1 *
LR =Y 5 Y Sp© ) %U(m,qzw),

4
@< B0 % ce(Z/q27)? q1€1g,NZ
q21(2r)*° ged(qa,0)=1 ged(qy.2r)=1

(7.17)
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where

o) (A
Ugr.gio= Y. ° (X)( (X)).

X
xe.”(S,R) IX] a
Apad (X)=r

x=c mod g3

To handle the condition Ap,q(X) = r, we note that it is equivalent to the pair of
conditions ged (r, A(x)/r) = 1 and /Lz (A(x)/r) = 1. These can both be detected
using the Mobius function, leading to

Oo(X) [ A(X)
Ulqr,qsie) =Y pld) Y ud) Y. °|°X| ( )
di|r dy xe.(S,R) 7
rld1,d311Ax)
x=c mod ¢;

Note ged(q, d1) = 1, since gcd(q, r) = 1. Hence we have gcd(qy, rdidz) = 1.
Clearly Apyg(x) > d22 and so we must have d» < ®1/2 < (SR)?/2. We therefore
have

00 A
U(q1,q2;¢) = Z,u(ch) Z 1(da) Z o |X(|X) < (X)> ’

dlr dr<(SR)"/20 xe.7(S,R) q1
ged(dz,q1)=1 rldy,d311 Ax)
x=c mod g2

where we recall that .(S, R) is defined in (7.13). Since x is primitive in the inner
sum, it follows from (5.9) that ged(L; (x), L;(x)) | Z fori # j, where & is defined
in (5.8) and satisfies 2 = O(1). We write r[d], d22] = DE, where D only contains
primes p t &, while p | E = p | 2. We further break the x-sum into congruences
modulo E, finding that

P - 2 r )

xe.(S,R) a1 smod £ xe.”(S,R) 7
rld1,d3]| A(x) gc%f’ﬁs)f : DIAoé)
— X=C mo
x=emod g x=s mod %g
We claim that
# [s € (ZJEZ)? : gcd(s, E) = 1, E | A(s)} — 0.(E™®), (7.18)

for any ¢ > 0. By the Chinese remainder theorem it suffices to study the case where
E = p°is a prime power. If p)‘ | gcd(L;i(s), L;j(s)) fori # j, then p’\ | 2. Thus the
number of solutions modulo p” is clearly O (p”). The claimed bound (7.18) easily
follows.

Since ged(D, ) = 1, there is a bijection between D | A(x) and vectors
(D1, ..., Ds) € N* with pairwise coprime coordinates, such that D; | L;(x), for

@ Springer



Density of rational points... 4191

1 <i < 4. Thus

S )=, 2, 2 e ()

xe.”(S,R) a1 D=D;---Dy xe.(S,R) 7
D|A(x) ged(D;,Dj)=1 Dj|L;(x)

x=c mod g2 x=c mod g3

x=s mod E x=s mod E

We use the Mobius function to remove the coprimality condition on x, and we observe
that oo (kX) = k™o (x) for any k > 0. Thus

Ulqr.grie) =Y puld) Y. pnld) Y, >

dilr dr<(SR)M rld,d1=DE _smod E
= ged(s, E)=1
ged(dz,q1)=1 A
(k) (7.19)
Z Z k_zUD’,k»
DeN* k<R
Dy--Dy=D gcd(k,q2)=1
ged(D;,Dj)=1
where
O (X) ((A(X)
UD/,k = < ,
[x|~S", |L1(X)|~R’
|L;(x)|>|L1(x)| fori >2
Dj|L;(x)
kx=c mod ¢
kx=s mod E
with
D; S R
Dl/z—lforlglgé'_’ S/Z—, R/:—,
ng(Di, k) k k

In particular, we clearly have ged(D], D}) = 1fori # j and, moreover, k is coprime

to g2 E, since ¢ is coprime to g and s is coprime to E.

We now focus our attention on the sum Uyy . Suppose that L(x1, x2) = ajx; +
b1x3, for coprime integers ap, b1. Then there exists M € SL(Z) with first row equal
to (a1, b1). Making the change of variables y = Mx, we let J;(y) = L;(M™y),
for 1 <i < 4,and A'(y) = Ji(y) - - - J4(y). Under this transformation, there exists
¢’ € Z? such that

ol (y) (A(y)

wa= X g ()
YEZANR
DI1J;(y)

y=¢' mod [¢2,E]
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where o (¥) = 000 (M~ y) and
R = {y eR%: |y~ R, Myl ~ 8 and |Ji(y)| > |yi| fori > 2} )

Note that once y; is fixed, there exists an interval K, of length O (S "), suchthaty € %
if and only if y» € K,. Hence

Upi= ., VO, (7.20)
[yiI~R’
y1=c} mod [¢2,E]

where
ol y) (A(y)
von= Y ot ( .
yrcKy N M~y \ @1
DI (v)

ya=c5 mod [¢2, E]

We now seek to apply Lemma 3.2 to estimate V(y;). For this we recall that
ged(gr, @2D'E) = 1, where D' = Dj--- D). There exists a unique factorisation
g1 = ut?, where u is the largest square-free divisor of ¢;. We then deduce from
Lemma 3.2 that

A vol(/ |
> ( (Y)) < (# o log(qu’E>) u® ged(yr, uD'),
yeINZ q1 Mf[[qz, E], D']

D;|Ji (y)
ya=ch mod [¢2,E]

for any ¢ > 0 and any interval I C R. Note that [[¢2, E], D'] > [E, D'] = D'E,
since D" and E are coprime.

Armed with this bound, it now follows from Lemma 7.11 and partial summation
that

A/
von< swp | Y ( (”) Csup W),

Icky, VelnZ 7 €Ky,
D;|Ji (y)
y2=c, mod [¢2,E]

where

3 as(y) ol (y) 1

W(y2) = vol(Ky,) - |=— < .
Y Wi gyl | T Ty S RS
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Hence

/

S |
V) <e < : +uz log(qu’E))
>D'E

u?

u? ged(yr, uD’)
RS’

On returning to (7.20) and summing over y;, we obtain

Up & < u? ( S i tog( D’E)) (D’)( R +1)
D'k —_— u og(g2 T(U
RS\ pE (¢2, E]

DE)* S’ R’
st (S (e
R'S uwiD'E [92, E]

But

, DE DE _ d;
E= > — = =,
ged(Dy, k) - - - ged(Dy, k) k k

since DE = r[dy,d3] > d3. Moreover, R'/[q2, E1 < R' = R/k and ' = S/k. It
therefore follows that

1
1 uz
Up <o kB> (1— + —) ,

<

(S]]
St
95}

onnoting that g;go DE < B?. We now insert this into (7.19) and apply (7.18). Observe
that there are O.(B?) choices for Dy, ..., Dy, for fixed D, and that the sum over k
contributes O (log B). Hence we find that

1
1 uz
U(qi. q2: ¢) < B*log B) ) ) E'*e (1_512 + ?> ,

2
dIr dy (SR r[d),d3}=DE u=dy

where we recall that gcd(D, ) = 1 and E is only divisible by primes dividing Z. In
particular, the factorisation of r[d, d22] as DE is uniquely determined. We factorise
dy = djd}, where ged(dy, ) = 1 and p | dj = p | 2. There are clearly O,(B®)
choices for d;. Moreover, we now have E < rd;(d) )2 < (rdé’)2 and so we may sum
over d} and dff to get

U(q1, q2; €) < B* log Br*te (

1
1 2(SR)"/?0
e r2+8B58 1 + u ( ) .
uz S

1
1 u2(SR)V
1y R
uz
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It remains to substitute this bound into (7.17). Recalling that ¢; = ut?, where u is
the largest square-free divisor of g1, we observe that

Z Y <0 * log 0s.

01<q1< Q2 611M t<F u>Q1/t? ”

for any Q1 < Q3. Similarly

2

u
01<q1< Q2 2

Recalling the definitions (7.14) and (7.15) of Ny and I,,, respectively, it follows that

| 1 1
¥ ¢'q) (1w (SR gjlogB N (SR
q1€ly,NZ 7 "‘% § B/20 §
ng(ql,%r):l

1
q; logB  B71/100
B1/20 §1—40 °

since R < §. Appealing to part (i) of Lemma 7.5 to estimate Sy, (¢) we deduce from
(7.17) that

2+e p2 1 B71/100 2
%(S,R) L r""°B €<B’7/20 +W) 5
Q< B/100
1 Bn/10
2+e ple
L rTB <B'7/50 + 51—49)
This bound is valid for any choice of 6 > %. Taking 6 = % and recalling that
S > B2 it therefore follows that
1 Bon/100
Er(S, R) <<E r2+8BZS <Br’/50 + Sl/s > << V2+8B_n/50+28.

Summing over r < © < B"/10% in (7.16) and taking ¢ sufficiently small, we finally
conclude the proof of Lemma 7.10. O

7.3 Proof of Proposition 7.2: final step

We now have everything in place to analyse the asymptotic behaviour of M (B), as
defined in (7.12). Combining Lemmas 7.6 and 7.7 with Proposition 7.9, we deduce
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that
0o (X)S(x; B/10)
M(B) = > X + 0,(1).
erérim

1
B |x|<B4
Apa (x)< B/1000

The proof of Lemma 7.6 applies in the same way to show that there is an overall
contribution O, (1) from x such that Apyq(x) > B1/1000 1 et

cqgla) = Z eq(ax)

x mod g
ged(x,g)=1

be the Ramanujan sum, fora, g € N. Then, on opening up &(x; B"/10) and rearranging
the sums, we obtain

4
M= Y ¢+ Y Y g (ZLi(x)b?> "°|°X(|X)+0,7(1).
i=1

10 4 2
g<B" be(Z/q7Z) X€Zgim

1
BY<|x|<B
We break the x-sum into residue classes modulo ¢, leading to

4
MB)= Y q* > > ¢ (ZLi(c)bi2>Uq(c)+0n(l),

g< B0 be(Z/qZ)* ce(Z/qT)* i=1
ged(q,0)=1

(7.21)

where

U, (¢) = Z Oco(X) )

xeZ2. |X|
prim

x=c mod ¢
B IxI<BY
The following result is concerned with the asymptotic evaluation of this sum.

Lemma 7.12 We have

1 1\! oo (t) o
Uq(c)_mn(l——z) /{t N dt+ O(B~7 log B),

la p eR2: B2 |t|< B4}

forany ¢ € (Z/qZ)? and g < B"1,
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Proof It will be convenient to define m(x) = minj;<4 |L;(X)| in the proof of this
result. Then, in view of Lemma 5.7 and (7.1), we have the estimate

_3 _1
Ooo(X) < |X|74m(x)" 4. (7.22)
Since there are no primitive vectors x € Z? with |x{| = |x| and |x| > B>, we may
write
000 (X) 000 (X)
ACE DY =+ > °°—| = U0+ UP (),
X1
XELE s [¥1l<lxal X€Z2 i Ixal<lxil
x=c mod ¢ x=c mod ¢
1 1
B <|x| <B4 B1<|x1|<B*

say. We focus our efforts on U,;l) (¢), the treatment of the remaining sum being identical.

We begin by handling the overall contribution to U,;D (¢) from x such that m(x) <
8|x3|, for a parameter § that will be selected in due course, but which will tend to 0 as
B — oo. In particular m(x) cannot be proportional to x; in this case. Given x; € Z,
there are at most O (L) values of x| € Z such that m(x) < L, for any L < §|x2|. Thus
(7.22) implies that

Z Too(x) < 8%logB.
lx2]

2
erpﬁm,

m(x)<8|xz |
B |x|< B4

[x1]<lx2]

Since 0o (kx) = kLo (x), for any k > 0, we apply Mobius inversion to deal with
the coprimality of x, giving

uNe= Y % 3 0‘|’°(X)+0<5%1og3).

X3
k<B? xeZ?, |x1]<lx2|
ged(k,g)=1 x=kc mod ¢ l
BY<k|xo|<BA
m(x)>8|x2|

where k is the multiplicative inverse of k modulo g. It follows from (7.22) that the
x-sum is O (log B). Hence, the overall contribution to the main term from k > B2 is
easily seen to be O(B~%"log B). Hence

1 w(k) 1 _ 3
uPo= > 7 > ol Y oe® + O((B72+6%)log B),
k<B x€l 2l xieznk,,
ged(k,g)=1 x2=kcy mod g xlzlzcl mod g

1
B [k<|x2| <BA /k
where K, is the interval of ¢ € R such that |f| < |xz| and m (¢, x2) > §|x2].
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Appealing to partial summation, together with (7.22) and part (i) of Lemma 7.11,
it easily follows that

1
> o= [ ontnin + 0BG,
xlelﬂl(xz q KXZ

xi=kei mod ¢

where

1 1 2 1
Ei(x2) = sup |A(f, x2)| ™4 +/ (|A(f,x2)|_§m(t,xz)_§>dt L —.
1€k, Ky |x28

For given 11, let I;; be the interval of t € R cut out by the conditions m (1, t) > §lt|,
B2k < |t| < B%/k and |7| > |t1]. We therefore obtain

1
1 pk) (B o 3
Ure=— 3 S5 /| 1 S+ OB 451 log B, (723)

k<32n
ged(k,g)=1

where

000 (11, X2)
S([]) = Z T
XQEZﬂItl 2
xzzl;cz mod g

We now once more use partial summation, equipped with (7.22) and part (ii) of
Lemma 7.11. This leads to the conclusion that

S = ~ / 0eo(1.12) 4 L 0 (Ex(tr)),
L, ol

where

Es (1)) = sup
tely, 7]

1
< max(BE/k, 0%

1 1 2 1
At,t 4 Al‘,l‘77 f,t) 3 At,t77
|(1>|4+/<|(1)|3m<1>3 '“”“)m
Iy

It |1]?

Moreover, it is easily confirmed that

3
f,t f,t 8%
f Oso(t1, 2)dt2=/ 0oo(t1 z)dt2~|—0 ° ’
I |22] Ty |22 max(B=1/k, |t1])
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where J;, is defined as for I;,, but with the constraint m (¢, ;) > §|t| removed. Hence
it follows that

1 Ooo(ty, 1 1 5%
S(1) = _/ Mdtz +0 > — + > )
qJy |72 max(B-"/k, [t1)=8 = max(B1/k, |t])

1

The contribution from this error term to (7.23) is

<X 3 L5 i sttog) < (- 457 )10gB
— — (0] (0] .
g = K\ B & B215 g

An obvious change of variables shows that

B4/k Ooo(tl, t Ooo(t
/ / oo (t1, Z)dtzdtl =/ 1 0o )dt.
sinlts, 1ol {teR2: B < || < BH - Il>1nl) |72l

Hence, on returning to (7.23) and extending the k-sum to infinity, we readily obtain

1 > k Oso(t
ue= 5y MY 2
q k=1 {teR2: B 1o |<B %> >y 22|
ged(k,g)=1

+0 ((3*2'75*‘ +8%)log B) .

Clearly

il u(k)=%l—|[( )_1.

ged(k.q)=1

The statement of the lemma is now a consequence of combing this with the analogous

estimate for U,f) (¢), which follows by symmetry, and taking § = B 7. O

Before returning to our expression (7.21) for M (B), we proceed by analysing the
term

/ Goo(t)dt_/ Ooo(t)
(ter2:Bm< g <Bdy It {ter21<|t<B)  It]

dt + O(nlog B).

Arguing as in the proof of [5, Lemma 6.4], it easily follows that

t 1
/ . 900 )dt = —T log B,
{teR2:1<|t|<Ba) It 4
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where T, is defined in (2.9). Note that, as readily follows from (7.1), we have
Too = O(1), (7.24)

for an implied constant that depends on Ly, ..., La4.
In summary, it follows from combining the previous calculation with (7.21) and
Lemma 7.12 that

1 A I W
MB) = 5| X —g]"[(1—?> (%2 +00n) 102 B+ 0,(1),

g<BN/10 9 plg
(7.25)

where A, is given by (2.10). The final remaining task is to show that the sum over ¢
can be extended to infinity, with acceptable error. Since A, is multiplicative in g, it
will suffice to study it when ¢ is prime power, as in the following result.

Lemma 7.13 For any r € N and any prime p, we have

Ap =o(pp” (Q(Pr) - pz@(pr‘l)) :
where g is defined in (3.6).
Proof We begin by observing that

4
Z Cp (Z L,-(c)b,-z) = Z Z epr (a(c1Q1(b) — c202(b)))
i=1

ce(Z/p"7)? amod p" ce(Z/p"Z)?
ged(a, p)=1

_ {w(p’)p” if 7 | (Q1(b), Q2(b)),

0 otherwise.
On noting that A~ can be written as the difference of sums
4 4
> T oe(Tuen)r ¥ (Do)
be(Z/p D)* \ee(Z/p"2)? i=l ce@/p" ' 2) i=1
the lemma readily follows. O

Corollary 7.14 Let e > 0 and let g = qoq1, where gcd(qo, A) = 1 and gy | A>. Then

Ite 5
Aq <Le q()z q1+6.
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Proof We have A; = A, A, . Now it follows from part (i) of Lemma 7.5 and (7.18)
that

_ 3 1 3 LorqiN? g,
Ap= Y Sa@<q) Y eed@n A <o gi Y odt- (L) at
ce(Z/q1Z)? c€(Z/q12)? dlqi
ged(gr,e)=1 gcd(g,¢0)=1

Thus Ay = O, (q]5 ) on taking the trivial estimate for the divisor function.
Turning to A, we study A, for p t A. It follows from Lemma 7.13 that

|Ayr] < PP lo(p) — pPo(p™™)|,

Extracting common divisors between y and p” it is easily checked that

o)=Y pHor(p )+ pPlab,
0<k<}

in the notation of (3.7). (This follows from [6, Eq. (2.4)], for example.) Since p t A,
it follows from part (i) of Lemma 3.4 that

1 — Tz
Q(pr)=p2’<1+0(p 2)) Y p D
0<k<}

Similarly,

— 1 — P Y
p2g(pr l)=p2r (1+0(p 2)) Z p 2k+p2(r 1 |—2 “)

Combining these, it easily follows that o(p”) — p20(p’~") <« p™+' < p¥ . if p 1A
The statement of the lemma follows. O

Taking ¢ = % in Corollary 7.14, it follows that

-1
Y A(-) « X oot X al«r ¥ oo

g=5110 T pig Pla=pls  go=B110/g, pli=pla
< B—n/40.

In particular, this implies that
Gy = 0(1), (7.26)
in the notation of (2.11). Hence, returning to (7.25), it now follows that

_ Sy /1o
M@®B) = (T + 0(r;)> log B + 0,(1),
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which easily leads to the statement of Proposition 7.2.

8 Comparison of the leading constants

In this section we complete the proof of Theorem 1.1. On recalling (2.6) and (2.7), we
see that

1
Ny(Q, B) = I #21(B) +#25(B) + #.23(B))

in (2.4). We begin by analysing the main term in Proposition 2.2.

Lemma8.1 Let Y, > Y; > 1. Then

> o (7)

= T gyt 1)

YEGR“ ly2max(|Q1 (W], [0~ 7 |
1<lyl<Y2

where T is given by (2.9).

This result will be established at the end of this section. Taking it on faith for the
moment, and arguing as [5, § 6.3], it now follows from the union of Propositions 2.2—
2.4 that

Ny (2, B) ~ cBlogB,

as B — oo, with

T S Ss
—y <T " 4;(2)2> | ®D

The following result confirms that this agrees with Peyre’s constant [20], as required
to complete the proof of Theorem 1.1.

Proposition 8.2 We have ¢ = cy, where cy is the constant predicted by Peyre.

The constant cy has been calculated by Elsenhans [9], but we shall give more details
here. Let V C P! x IP? be the smooth threefold (1.3), which we view as the blow-up of
IP? along the genus 1 curve Z. The Picard group Pic(V) is generated by the hyperplane
classes Hy = m{Op1(1) and Hy = 5 Ops3(1). On the other hand, we saw in §1 that
the effective cone Effy is generated by H; and the class of the exceptional divisor
E = —H + 2 H,;. Finally, the class of the anticanonical divisoris —Ky = 4H> — H;.
The constant cy predicted by Peyre [20] then takes the shape

1 2
ey =a(Va(VR) ] (1 - ;) o, (V(Qp)),
p
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where

a (V) = rank (Pic(V)) - vol (x € Eff‘v, 1 (x, —Ky) < 1) (8.2)
and, for each place v, the measure w, is the local Tamagawa measure defined by Peyre
[20]. The dual of the effective cone is EffY, = {(r1, 1) € R? : t; > 0,210 — t; > 0},
and so the volume in (8.2) is

vol{(t1, ) € R? 111 >0, 2tn — 11 > 0, 41 — 1; < 1}.

This is the volume of the triangle with vertices (0, 0), (0, 1), and (1, 1), so a(V) =
2. % = ‘—IL . The quantities woo (V (R)) and w, (V (Q,)) have been calculated by Schindler

[22, § 3]. It follows from [22, Lemma 3.2] that ws (V (R)) = %roo, where 7 is given
by (2.9), and from [22, Lemma 3.1] that

1\ 2 1 1
U)p(V(Qp)) = (1 - ;) <1 - ;) (1 - ?) Tps

where
7 = lim p~3# {(x, V) € (Z/p'Z)® : Ly(X)y? + - - + Ly(x)y2 = 0 mod pf}.

In this way, we deduce that
1 _ _
ev = gt [[a-pHa-pHr,. (8.3)
p

At first glance, it is not perhaps clear that the Euler product converges in (8.3).
However, Elsenhans gives an explicit formula for 7, when p { A where A is given
by (2.1). Let E be the elliptic curve cut out by the equation y? = ]_[;L:1 Li(x1,x2) in
P2, 1,1). Let T,(E) = p+ 1 —#E(F ) be the Frobenian trace of £. Then it follows
from [9, § 3.1] that

1\! 2 THE)—-2 1
= (1+= 1+ -2 ——+=).
p p p p

The Hasse—Weil bound gives |T,,(E)| < 2,/p. Thus

2
[o-e e n=T10-3) (13 40())
2

pta piA p

which is clearly convergent.
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—5t

For any prime p, we may write t, = lim,_, o p~>'n(p’), where

n(p') = #](x,3) € @/p' D) : L1y + -+ La(0y3 = 0 mod p'}

The following result provides a convenient formula for this quantity.

Lemma 8.3 For any prime power p', we have

J

p

where g is defined in (3.6). In particular,
J
rp_l-l-( ——) Q(p)'

Proof On recalling the definition (3.6) of o, we may write

n(p') = #{(x,y) € (Z/p%6 2 x101(y) = x202(y) mod p')

=o(p")p* +Z Y. #xmod p':x1Qi(y) = x2Q:(y) mod p').
y mod p’
pf I ged(Q1(y), Q2(y)

For each 0 < j <t — 1 and for each y in the sum, any x mod p to be counted must

satisfy x; p /Ql(y) = x2p~/ Qa(y) mod p'~/. Since p { p~/ ged(Q1(y), 02(¥)).
the number of suchx mod p'~/ is p'~/, giving p’ J.p%¥ = p'tJ values of x mod p'.
Moreover,

> 1= > 1— > 1

- ymod p! - ymod p! , y mod p’
P’ Il ged(Q1(y), 02(y) p’1ged(Q1(y), 02(y)) P/t ged(Q1(y). Qa(y))

=p* " Do(p”) = p*" T Vo(p’th.
It therefore follows that

t—1
n(p') = o(php* + 3 p* (p4(t—./)Q(pJ) _ p4(r—4/—1>Q(p./+1))
i=0
t71 . . .
=o(p)p* + Y P (e(p)) - p~He(pT).
=0
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whence
) op) N [op)) 1oty 1 ()
n(p") _op 'y o(p!) lo(p :1+<1__>ng
pSt p3t = p3] p p3(]+1) p = p3j

as claimed. 0O

We now turn to the Euler product &, defined in (2.8), writing &1 = [] p Aps say.
The following result confirms that the local factor A , matches the corresponding local
factor in Peyre’s constant (8.3).

Lemma 8.4 For any prime p, we have A, = (1 — p~Ha - p_z)‘L'p.

Proof Let p be a prime. We have

1 1 1\ #V
ry=(1-— 1——+<1——> L
. < P)( p* P ;pz“

where Vpxa is given by (3.8). We observe that

w b Jop)—1 ifb=1
e’ (p”) = by 4 a2 i
o(p”) — p*o(p”~°) otherwise.

Hence it follows from (3.13) that

S (1) S
2a 3a

p

a=1 a

Thus A, = (1 — %)(1 - #)N , where

1 0o
! N gop 15 ! V)
A’=1+—+<1——> - L :1+<1——) .
r p? p az=:1 p*  pp—1 p QZ::I p
Lemma 8.3 confirms that the right hand side is . a

It remains to examine the second term in (8.1). We recall that

A 1\!
SN0

rlg
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where A, is defined in (2.10). Since A, is a multiplicative function of ¢, we can
represent the g-sum as an Euler product, finding that

S, 1\? I\ ' A,
c(2>zzn<l_?) 1+<1——2) 2
)4

) =

We may now record the following result.

Lemma 8.5 For any prime p, we have

1)\? 1\ ' Ay
(1—p) 1+<1——2> YLl =a-pHa-p e,

) =

Proof We need to prove that

1 1\ '« Ay
(O s

) =

But Lemma 7.13 implies that the left hand side is

1 Ay 1 NV o(ph) 1 1
1—?+Z r=1——2+<1——>2 —-(1——)

6 3
=P p p) i p" P p
! 1) 5~ e
~(1-2)(1+(1-5) .
( p) ( p ; P
The desired equality now follows from Lemma 8.3. O

Combining Lemmas 8.4 and 8.5 in (8.1), we therefore conclude that ¢ = cy, as
claimed in Proposition 8.2, subject to the verification of Lemma 8.1.

Proof of Lemma 8.1 Lety € R* and define
o0
0oo(y) = f / e (0(x101(y) — x202(y))) dxdo.
—oo J-1.12
Suppose first that |Q1(y)||Q2(y)| > 0. Then
| e0m01m - 00 ix
[—1,1]

1 sin(2wé|Q; (y)I)
= OxQi(y))dx = Trel0.y|
ing_le( v = T1 =500
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Hence it follows from [11, § 3.741] that

1 /OO in2701Q1 (1)) sin701 03D
7210102 -0 62
_ 272 min;—1 2 Qi (y)|

721011 Q2(y)]
2

C omaxi—12|0:(y)|

00(y) =

Suppose next that |Q1(y)|| Q2(y)| = 0. But we clearly have max(|Q1(y)[, |Q2(y)|) >
0, since Z(R) = . It is easy to see that the argument goes through and leads to the
exact same result.

LetY> > Y7 > 1. We may now conclude that

dy _1 / Qoo (¥) dy
yeR? 2 max , T 2] yert 2 Y
p 2 P max( Q1] 102D~ 2 e ]
Let us first consider the contribution from y for which |y| = |y4|. Writing t; = y; /| 4|
for 1 < i < 3, we obtain the contribution

2 dy, Y
vi Y4 Ji-nap i) Ji—iap

where t = (71, 12, t3). On adding in the remaining three contributions, and observing
that

f Qoo(y)dY=/ 0c0(t1, 12, 13, l)dt+~~~+/ 0c0(1, 12, 13, t4)dt,
[—1,1¢ [-1,11 [—1,13

the statement of the lemma easily follows. O
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