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Abstract: We extend three related results from the analysis of influences of Boolean
functions to the quantum setting, namely the KKL theorem, Friedgut’s Junta theorem
and Talagrand’s variance inequality for geometric influences. Our results are derived by
a joint use of recently studied hypercontractivity and gradient estimates. These generic
tools also allow us to derive generalizations of these results in a general von Neumann
algebraic setting beyond the case of the quantum hypercube, including examples in in-
finite dimensions relevant to quantum information theory such as continuous variables
quantum systems. Finally, we comment on the implications of our results as regards
to noncommutative extensions of isoperimetric type inequalities, quantum circuit com-
plexity lower bounds and the learnability of quantum observables.

1. Introduction

Let �n = {−1, 1}n be the Boolean hypercube equipped with the uniform probability
measure μn . For any f : �n → R, we denote by Var( f ) = Varμn ( f ) its variance, i.e.
Var( f ) = E| f − E f |2. For each 1 ≤ j ≤ n, the influence of the j-th variable on f is
given by

Inf j f := E

[(
f − f ⊕ j

2

)2
]

,

where f ⊕ j (x) = f (x⊕ j ) and x⊕ j denotes the vector in �n obtained by flipping the
j-th variable, that is, for x = (x1, . . . , xn),

x⊕ j := (x1, . . . , x j−1,−x j , x j+1, . . . , xn) .

The notion of influences appears naturally in many contexts ranging from isoperi-
metric inequalities [KMS12,CEL12], threshold phenomena in random graphs [FK96],
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cryptography [LMN93], etc. For these reasons, the last three decades witnessed an ex-
tensive study of their properties, which led to many applications in theoretical computer
science (hardness of approximation [DS05,Hs01] and learning theory [OS07]), perco-
lation theory [BKS99], social choice theory [Mos12,BOL85] to cite a few.

Karpovsky [Kar76] proposed the sum of the influences (also called total influence),

Inf f :=
n∑
j=1

Inf j f,

as a measure of complexity of a function f . This first intuition was then made rigorous
in [LMN93] and [Bop97] where tight circuit complexity lower bounds in terms of the
total influence were derived for the complexity class AC0 of constant depth circuits.
A simple lower bound on Inf f in terms of the variance can be derived from Poincaré
inequality: For all f : �n → R one has [O’D14, Chapter 2]

Var( f ) ≤ Inf f . (1.1)

Functions on the hypercubes �n that take only values in {−1, 1} are of particular
interest. These are the so-called Boolean functions and play important roles in social
science, combinatorics, computer sciences and many other areas. See [dW08,O’D14]
for more information. Note that the L p-norms, 1 ≤ p < ∞, of Boolean functions are
always equal to 1, where the weighted L p-norm of a function f : �n → R is defined as

‖ f ‖p := (E[| f |p]) 1
p . (1.2)

A Boolean function f : �n → {−1, 1} is said to be balanced if E f = 0. If f is a
Boolean function, the influence of the j-th variable can further be expressed as

Inf j f = P({x ∈ �n | f (x) �= f (x⊕ j )}).
The Poincaré inequality (1.1) implies that there exists j ∈ {1, . . . , n} such that Inf j f ≥
1/n. Note that Poincaré inequality (1.1) can be tight, e.g. for balanced Boolean function
f (x) = x1. So it may happen that the total influence ≈ variance. Is it possible that all
the influences are small simultaneously, that is, Inf j ( f ) ≈ Var( f )/n for all 1 ≤ j ≤ n?
Quite surprisingly, the answer is negative; a celebrated result of Kahn, Kalai and Linial
[KKL88] predicts that every balanced Boolean function has an influential variable.
More precisely, Kahn, Kalai and Linial [KKL88] proved that for any balanced Boolean
function f on �n , there exists 1 ≤ j ≤ n such that

Inf j f ≥ C log(n)

n
, (1.3)

where C > 0 is some universal constant. So some variable has an influence at least
�(log(n)/n), which is larger than the order 1/n deduced from Poincaré inequality.

This theorem of Kahn, Kalai and Linial (KKL in short) plays a fundamental role in
Boolean analysis. It was further strengthened by Talagrand [Tal94] and Friedgut [Fri98]
in different directions.

In his celebrated paper [Tal94], Talagrand proved that for all n ≥ 1 and f : �n → R,
we have for some universal C > 0 that

Var( f ) ≤ C
n∑
j=1

‖Dj f ‖2
2

1 + log(‖Dj f ‖2/‖Dj f ‖1)
, (1.4)
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where Dj f (x) := 1
2 ( f (x)− f (x⊕ j )). Note that if f is Boolean, then Dj f takes values

only in {−1, 0, 1}, so that ‖Dj f ‖1 = ‖Dj f ‖2
2 = Inf j f . Therefore, this inequality

of Talagrand (1.4), as an improvement of Poincaré inequality (1.1), immediately im-
plies the result of KKL. There are plenty of extensions of Talagrand’s inequality (1.4)
[OW13a,OW13b,CEL12], which has become a central tool in theoretical computer sci-
ence [O’D14]. Moreover, it provides a powerful tool to study sub-diffusive and super-
concentration phenomena [BKS03,BKS99,Cha14,GS15,ADH17,Sos18,Tan20] ubiq-
uitous to many models studied in modern probability theory (percolation, random ma-
trices, spin glasses, etc.); see the review articles [CEL12,Led19] and references therein
for more details.

Also related to the KKL theorem, Friedgut’s Junta theorem [Fri98] states that a
Boolean function with a bounded total influence essentially depends on few coordinates.
More precisely, a Boolean function f : �n → {−1, 1} is called a k-junta, for k ∈
{1, . . . , n} independent of n, if it depends on at most k coordinates. When k = 1, the
function is called a dictatorship. If f is a junta, it is an immediate consequence that
the total influence does not depend on n, i.e. Inf f = O(1). Friedgut’s Junta theorem
provides the following converse statement: for any Boolean function f : �n → {−1, 1}
and ε > 0, there exists a k-junta g : �n → {−1, 1} such that

‖ f − g‖2 ≤ ε , with k = 2O(Inf f/ε) . (1.5)

Since its discovery, Friedgut’s Junta theorem has found many applications in random
graph theory and the learnability of monotone Boolean functions [OS07].

Judging from the range of applicability of these results, it is natural to consider their
extensions to noncommutative or quantum settings. Partial results in this direction were
obtained by Montanaro and Osborne [MO10a]. There, Boolean functions on the hyper-
cube �n were replaced by quantum Boolean functions on n qubits, that is, operators
A ∈ M2(C)⊗n acting on the n-fold tensor product of C

2 with the additional condi-
tions that A = A∗ and A2 = 1. Here and in what follows, Mk(C) denotes the k-by-k
complex matrix algebra. Then, the L2-influence of A in j-th coordinate is defined as
Inf2

j A := ‖d j A‖2
2, where we used d j to denote the quantum analogue of the bit-flip

map

d j := I
⊗( j−1) ⊗

(
I − 1

2
tr

)
⊗ I

⊗(n− j)

with I being the identity map over M2(C), and replaced the normalized L p-norm on
�n by the normalized Schatten-p norm on M2(C)⊗n . The quantum influence has al-
ready found interesting applications to quantum complexity theory [BGJ+22]. In this
framework, Montanaro and Osborne [MO10a, Proposition 11.1] proved a quantum ana-
logue of Talagrand’s inequality (1.4). However, this does not yield a quantum KKL as
in the classical setting since we do not have the identity ‖d j A‖1 = ‖d j A‖2

2 for general
quantum Boolean functions. In the worst case, we may even have ‖d j A‖1 = ‖d j A‖2
( j is a bad influence according to [MO10a, Definition 11.2]) and thus (1.4) will not
help anymore. For this reason, the problem of whether every balanced quantum Boolean
function has an influential variable still remains open; see [MO10a] for some partial
results and more discussions.

In fact, the observation that ‖d j A‖1 �= ‖d j A‖2
2 is not exclusive to the quantum set-

ting, and also arises for instance when considering extensions of the setup of Boolean
functions on the hypercubes to functions on smooth manifolds, after replacing the uni-
form distribution on �n by an appropriate finite measure, and the discrete derivatives Dj
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by the partial derivatives associated to the differential structure of the manifold. In this
setting, analogues of the previous results were recently obtained for the L1-influences
Inf1

j A := ‖d j A‖1, which is sometimes called geometric influence for its relation to
isoperimetric inequalities [KMS12,CEL12,Aus16,Bou17].

In this paper, we propose to take the above considerations as a starting point for
establishing quantum analogues of (1.1), (1.3), (1.4) and (1.5) based on the L1-influences.
Our first main result (Theorems 3.2 and 3.6) states that for any self-adjoint operator A
on n qubits with ‖A‖ ≤ 1 we have

‖A − 2−n tr(A)‖2
2 =: Var(A) ≤ C

n∑
j=1

‖d j A‖1(1 + ‖d j A‖1)

1 + log+(1/‖d j A‖1)
(1.6)

for some universal C > 0, where log+ refers to the positive part of the logarithm. In
particular, this suggests that every balanced quantum Boolean function has a variable
that has geometric influence at least of the order log(n)/n. We also prove a quantum
L1-Poincaré inequality (Theorem 3.1): for any operator A on n qubits we have

‖A − 2−n tr(A)‖1 ≤
n∑
j=1

Inf1
j A . (1.7)

Therefore our result provides an alternative answer to the quantum KKL conjecture
[MO10a, Conjecture 3 of Section 12] in terms of geometric influences (Theorem 3.9).
The inequality (1.6) is inspired by some results in the classical setting; see for example
[KMS12,CEL12]. Since (1.6) will be our main focus, rather than (1.4), to distinguish
them in the sequel, we shall refer to (1.6) as (L1-)Talagrand’s inequality, and (1.4)
as Talagrand’s L1-L2 variance inequality as did in [Led19]. We also have a qubit
isoperimetric type inequality and a stronger form of L1-Poincaré (1.7); see Sect. 6.4
below.

Our second main result is a quantum analogue of Friedgut’s Junta theorem (Theorem
3.11 and Corollary 3.12): for any quantum Boolean function A ∈ M2(C)⊗n and ε > 0
there exists another quantum Boolean function B ∈ M2(C)⊗n that is supported on k
subsystems such that

‖A − B‖2 ≤ ε with k ≤ 2
270 Inf2(A)

ε2
Inf1(A)6

Inf2(A)5
, (1.8)

where Inf p(A) :=∑n
j=1 Inf pj (A) with Inf pj (A) = ‖d j A‖p

p.
The proofs of Equations (1.6) and (1.8) make use of recent noncommutative general-

izations of hypercontractive inequalities and gradient estimates [OZ99,MO10a,KT13,
TPK14,CM17a,DR20,BDR20,WZ21,GR21,Bei21]. Moreover, the generality of these
tools also allows us to further extend most of our results to the abstract von Neumann
algebraic setting which contains both our previously stated results and their classical
analogues previously established in [CEL12,Bou17], but also other extensions arising
in noncommutative analysis and quantum information with discrete and continuous
variables. As for their classical analogues, we expect our results to find many new ap-
plications to quantum information and quantum computation.

The rest of the paper is organized as follows: in Sect. 2, we recall useful definitions
and results from the Fourier analysis on the quantum Boolean hypercubes including
Poincaré inequality, hypercontractivity, intertwining and gradient estimates. Section 3 is



Quantum Talagrand, KKL and Friedgut’s Theorems Page 5 of 47 95

devoted to the statement and proof of our main results, namely a quantum L1-Poincaré
inequality (Theorem 3.1), quantum Talagrand inequality (Theorem 3.2), and quantum
KKL theorem (Theorem 3.9) and a quantum Friedgut’s Junta theorem (Theorem 3.11 and
Corollary 3.12). These results are then extended to the general von Neumann algebraic
setting in Sect. 4. Finally, examples and applications to quantum circuit complexity and
quantum learning theory are provided in Sects. 5 and 6.

2. Quantum Boolean Analysis

Let us start by recapitulating the framework of quantum Boolean functions from [MO10a].
As a quantum analogue of functions on the Boolean hypercubes, i.e., functions of n bits,
we will take observables on n qubits. In other words, our algebra of observables is
M2(C)⊗n ∼= M2n (C) endowed with the operator norm ‖ · ‖. In what follows, we denote
by tr the trace in M2(C)⊗n , and by trT the partial trace with respect to any subset T of
qubits. Following [MO10a, Definition 3.1], we say A ∈ M2(C)⊗n is a quantum Boolean
function if A = A∗ and A2 = 1. Here and in what follows, 1 always denotes the identity
operator. A quantum Boolean function A is balanced if tr(A) = 0.

One pillar of analysis on the Boolean hypercube is that every function f : �n →
R has the Fourier–Walsh expansion, i.e. can be expressed as a linear combination of
characters. Our quantum analogues of the characters for 1 qubit are the Pauli matrices

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Clearly, these are quantum Boolean functions, and they form a basis of M2(C). For
s = (s1, . . . , sn) ∈ {0, 1, 2, 3}n , we put

σs := σs1 ⊗ · · · ⊗ σsn .

These are again quantum Boolean functions, and form a basis of M2(C)⊗n . Accordingly,
every A ∈ M2(C)⊗n can uniquely be expressed as

A =
∑

s∈{0,1,2,3}n
Âs σs (2.1)

where Âs ∈ C is the Fourier coefficient. Given s ∈ {0, 1, 2, 3}n , we call the set of indices
j such that s j �= 0 the support of s, and denote it by supp(s). Its cardinality is denoted
by | supp(s)|. Similarly, the support of A is defined by

supp(A) :=
⋃

s| Âs �=0

supp(s) , (2.2)

and its cardinality is denoted by | supp(A)|. In analogy with the classical setting, an
arbitrary operator A ∈ M2(C)⊗n is called a k-junta if | supp(A)| ≤ k. As the Pauli
matrices are orthonormal with respect to the normalized Hilbert–Schmidt inner product,
the coefficients Âs can be recovered by

Âs = 1

2n
tr(σs A) .
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Note that whenever A is self-adjoint, the coefficients Âs must be real. The quantum
analogue of the bit-flip map is given by

d j (A) := I
⊗( j−1) ⊗

(
I − 1

2
tr

)
⊗ I

⊗(n− j)(A) =
∑

s∈{0,1,2,3}n
s j �=0

Âsσs .

Here I denotes the identity map on M2(C). Note that L0 := I − 1
2 tr satisfies L2

0 = L0,
so that d2

j = d j .

For p ≥ 1, we denote by Inf pj (A) := ‖d j A‖p
p the L p-influence of j on the operator

A ∈ M2(C)⊗n , and by Inf p(A) := ∑n
j=1 Inf pj (A) the associated total L p-influence,

where the normalized Schatten-p norm of an operator A ∈ M2(C)⊗n is defined as
(|A| := (A∗A)1/2)

‖A‖p :=
( 1

2n
tr
∣∣A∣∣p) 1

p
.

The L1-influence is also called the geometric influence. For the L2-influence we have

Inf2(A) =
n∑
j=1

1

2n
tr((d j A)∗d j (A)) = 1

2n
tr(A∗L(A)) (2.3)

withL :=∑n
j=1 d j . The operatorL is the generator of the tensor product of the quantum

depolarizing semigroups (Pt )t≥0 for the individual qubits:

Pt = e−tL =
(
e−t

I + (1 − e−t )
tr

2
(·)1
)⊗n

−→
t→∞

1

2n
tr(·) . (2.4)

It is a tracially symmetric quantum Markov semigroup, whose general properties are
discussed in Sect. 4.

In the Fourier decomposition, we have the following convenient expressions for the
L2-influence:

Inf2(A) =
∑

s∈{0,1,2,3}n
|supp(s)|| Âs |2, (2.5)

and the semigroup Pt :

Pt (A) =
∑

s∈{0,1,2,3}n
e−t |supp(s)| Âsσs . (2.6)

In addition we need the following further facts:

Lemma 2.1 (Poincaré inequality, see Proposition 10.9 of [MO10a]).Forall A ∈ M2(C)⊗n

such that tr(A) = 0 and t ≥ 0, one has

‖Pt (A)‖2 ≤ e−t‖A‖2.
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This inequality is equivalent to

Var(A) ≤ 1

1 − e−2t (‖A‖2
2 − ‖Pt (A)‖2

2).

and is also equivalent to

Var(A) ≤ Inf2(A).

Lemma 2.2 (Hypercontractivity, see Theorem 8.4 of [MO10a]). For all A ∈ M2(C)⊗n,
t ≥ 0 and p = p(t) = 1 + e−2t one has

‖Pt (A)‖2 ≤ ‖A‖p .

Lemma 2.3 (Intertwining). For all j ∈ {1, . . . , n} and t ≥ 0 one has

d j Pt = Ptd j .

Proof. Follows easily from the definitions of Pt and d j .

We denote by � : M2(C)⊗n → M2(C)⊗n the carré du champ operator associated to
Pt = e−tL which is defined via:

2�(A) := L(A∗)A + A∗L(A) − L(A∗A) =
n∑
j=1

d j (A
∗)A + A∗d j A − d j (A

∗A) .

Lemma 2.4 (Gradient estimate [JZ15,WZ21]). For any A ∈ M2(C)⊗n and all t ≥ 0,

�(Pt A) ≤ e−t Pt�(A) .

We close this section by remarking that classical Boolean functions are special quan-
tum Boolean functions. In fact, the Fourier–Walsh expansions of classical Boolean func-
tions correspond to (2.1) when restricting s ∈ {0, 3}n .

3. Main Results for Quantum Boolean Functions

In this section we state and prove our main results in the restricted setting of the quantum
Boolean cube.

3.1. A quantum L1-Poincaré inequality. We start with the following L1-Poincaré type
inequality; see also [DPMRF23] for variations of this inequality and Sect. 6.4 for a
stronger form.

Theorem 3.1. For all A ∈ M2(C)⊗n, one has

‖A − 2−n tr(A)‖1 ≤ Inf1(A) . (3.1)

Proof. This follows from a simple use of the triangle inequality for the L1-norm as well
as monotonicity under the normalized partial trace.
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3.2. A quantum L1-Talagrand inequality. We first prove a quantum L1-Talagrand in-
equality on quantum Boolean cubes that can be extended to more general von Neumann
algebras; see Sect. 4. We will see later that on quantum Boolean cubes the estimates can
be improved, so that we may deduce a sharp quantum KKL theorem for L1-influences.

Theorem 3.2. For all A ∈ M2(C)⊗n with ‖A‖ ≤ 1 one has

Var(A) ≤ C
n∑
j=1

‖d j A‖1(1 + ‖d j A‖1)

[1 + log+(1/‖d j A‖1)]1/2 , (3.2)

for some universal C > 0.

Proof. Differentiating the function t �→ ‖Pt (A)‖2
2 one gets

‖A‖2
2 − ‖PT (A)‖2

2 = 2
∫ T

0

n∑
j=1

‖d j Pt A‖2
2 dt = 4

∫ T/2

0

n∑
j=1

‖d j P2t A‖2
2 dt.

By intertwining (Lemma 2.3) and hypercontractivity (Lemma 2.2),

‖d j P2t A‖2 = ‖Ptd j Pt A‖2 ≤ ‖d j Pt A‖p(t)

with p(t) = 1 + e−2t . By Hölder’s inequality,

‖d j Pt A‖p(t) ≤ ‖d j Pt A‖1/p(t)
1 ‖d j Pt A‖1−1/p(t).

For the term with the L1-norm we use intertwining again and L1-contractivity of (Pt )t≥0
to get ‖d j Pt A‖1 ≤ ‖d j A‖1. For the term with ‖ ·‖-norm we use the bound derived from
Lemma 3.4 below, which gives ‖d j Pt A‖ ≤ (et − 1)−1/2. Altogether,

‖d j P2t A‖2 ≤ ‖d j Pt A‖p(t) ≤ (et − 1)
1−p(t)
2p(t) ‖d j A‖

1
p(t)
1 .

As a consequence,

‖A‖2
2 − ‖PT (A)‖2

2 ≤ 4
n∑
j=1

‖d j A‖1

∫ T/2

0
(et − 1)

1−p(t)
p(t) ‖d j A‖

2−p(t)
p(t)

1 dt. (3.3)

Since et − 1 ≥ t and p(t) ≥ 1, we have

(et − 1)
1−p(t)
p(t) ≤ t

1−p(t)
p(t) .

Choosing T = 1, we further show in Lemma 3.3 below that, given a = ‖d j A‖1,∫ 1/2

0
t

1−p(t)
p(t) a

2−p(t)
p(t) dt ≤ C

1 + a

(1 + log+(1/a))1/2 ,

for some universal constant C > 0. We finish by combining (3.3) and the bound (with
T = 1)

Var(A) ≤ 1

1 − e−2T (‖A‖2
2 − ‖PT (A)‖2

2)

derived from the Poincaré inequality (Lemma 2.1).
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Lemma 3.3. There exists a universal C > 0 such that forα > 0, a ≥ 0, p(t) = 1+e−2αt

and 0 ≤ r ≤ min{1, 1/2α}, we have∫ r

0
t−(1−1/p(t))a2/p(t)−1 dt ≤ 1√

α
· C(1 + a)

(1 + log+(1/a))1/2 .

Proof. Note that r ≤ 1 and 1 ≤ p(t) ≤ 2, we have∫ r

0
t−(1−1/p(t))a2/p(t)−1 dt ≤

∫ r

0
t−1/2a2/p(t)−1 dt .

Now we estimate the right hand side in two cases. If a ≥ 1, then a2/p(t)−1 ≤ a and thus∫ r

0
t−1/2a2/p(t)−1 dt ≤ a

∫ r

0
t−1/2 dt = 2a

√
r ≤ 2(1 + a) .

If a < 1, then a2/p(t)−1 ≤ aαt/2 for 0 ≤ t ≤ r . In fact, for t ∈ [0, r ] ⊂ [0, 1/2α], we
have

2

p(t)
− 1 = e2αt − 1

e2αt + 1
≥ αt

2
,

which is equivalent to

ϕ(β) := 4(eβ − 1) − β(eβ + 1) ≥ 0 ,

for β ∈ [0, 2αr ] ⊂ [0, 1]. This is clear as ϕ(0) = 0 and ϕ′(β) = (3 − β)eβ − 1 ≥ 0 for
β ∈ [0, 1]. Hence∫ r

0
t−1/2a2/p(t)−1 dt ≤

∫ 1/2α

0
t−1/2aαt/2 dt =

√
2

αx

∫ x/4

0
y−1/2e−ydy ,

where x = log(1/a) > 0. It remains to show that there exists a universal constant C > 0
such that for all x > 0, √

2

x

∫ x/4

0
y−1/2e−ydy ≤ C

(1 + x)1/2 . (3.4)

In fact, the function

f (x) :=
√

2(1 + x)

x

∫ x/4

0
y−1/2e−ydy ,

is continuous on (0,∞), and we have

lim
x→+∞ f (x) = √

2
∫ ∞

0
y−1/2e−ydy = √

2π ,

and by L’Hôpital’s rule

lim
x→0+

f (x) = lim
x→0+

√
8x1/2(1 + x)3/2 ·

( x
4

)−1/2
e−x/4 = 4

√
2 .

Then (3.4) follows and the proof is complete.
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It remains to prove the following technical lemma:

Lemma 3.4. Let n ≥ 1 and (Pt )t≥0 be the quantum depolarizing semigroup on n-qubits
defined in (2.4). Then for all t > 0 and all A ∈ M2(C)⊗n we have

n∑
j=1

(d j Pt A)∗d j Pt A ≤ ‖A‖2

et − 1
1 . (3.5)

In particular, for each 1 ≤ j ≤ n,

(d j Pt A)∗d j Pt A ≤ ‖A‖2

et − 1
1 and ‖d j Pt A‖ ≤ ‖A‖√

et − 1
.

Proof. By definition of (Pt )t≥0:

‖A‖21 ≥ Pt (A
∗A)

≥ Pt (A
∗A) − Pt (A)∗Pt (A)

(1)= 2
∫ t

0
Ps�(Pt−s A) ds

(2)≥ 2
∫ t

0
esds · �(Pt A)

= 2(et − 1)�(Pt A) ,

where (1) follows from the differentiation of s �→ Ps(Pt−s(A∗)Pt−s(A)), whereas (2)

follows from gradient estimates Lemma 2.4. Now we claim that for all A and for each
1 ≤ j ≤ n we have

d j (A)∗A + A∗d j (A) − d j (A
∗A) ≥ d j (A)∗d j (A) , (3.6)

and thus

2�(A) ≥
n∑
j=1

d j (A)∗d j (A) . (3.7)

Let us first finish the proof of the lemma given (3.7). Applying (3.7) to Pt A, we may
proceed with the previous estimate as

‖A‖21 ≥ 2(et − 1)�(Pt A) ≥ (et − 1)

n∑
j=1

(d j Pt A)∗d j Pt A ,

which proves (3.5).
Now it remains to show (3.6). For this we decompose A = ∑k A

k
1 ⊗ · · · ⊗ Ak

n into

a sum of tensor products, where k in Ak
j = A(k)

j is just an index, then

d j (A)∗A + A∗d j (A) − d j (A
∗A)

=
∑
k,l

(Ak
1)

∗Al
1 ⊗ · · · ⊗

[
L0(A

k
j )

∗Al
j + (Ak

j )
∗L0(A

l
j ) − L0((A

k
j )

∗Al
j )
]

⊗ · · · ⊗ (Ak
n)

∗Al
n
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and

d j (A)∗d j (A) =
∑
k,l

(Ak
1)

∗Al
1 ⊗ · · · ⊗ [L0(A

k
j )

∗L0(A
l
j )] ⊗ · · · ⊗ (Ak

n)
∗Al

n .

For any X,Y ∈ M2(C), a direct computation shows

L0(X)∗Y + X∗L0(Y ) − L0(X
∗Y ) = X∗Y +

1

2
tr(X∗Y ) − 1

2
tr(X∗)Y − 1

2
tr(Y )X∗,

and

L0(X)∗L0(Y ) = X∗Y +
1

4
tr(X∗) tr(Y ) − 1

2
tr(X∗)Y − 1

2
tr(Y )X∗.

Thus

L0(X)∗Y + X∗L0(Y ) − L0(X
∗Y ) − L0(X)∗L0(Y ) = 1

2
tr(X∗Y ) − 1

4
tr(X∗) tr(Y ) .

So (3.6) is equivalent to

∑
k,l

(Ak
1)

∗Al
1 ⊗ · · · ⊗

[
1

2
tr((Ak

j )
∗Al

j ) − 1

4
tr((Ak

j )
∗) tr(Al

j )

]
⊗ · · · ⊗ (Ak

n)
∗Al

n ≥ 0 ,

which can be reformulated as

Tj (A
∗A) ≥ Tj (A)∗Tj (A) , (3.8)

with Tj := I
⊗( j−1) ⊗ 1

2 tr ⊗I
⊗(n− j). Now (3.8) follows from the Kadison–Schwarz

inequality [Wol12, Chapter 5.2] and that 1
2 tr is unital completely positive (over M2(C)).

This finishes the proof of the claim (3.6) and thus the proof of the lemma.

Remark 3.5. Following the argument in [CEL12, Proof of Theorem 1], one can prove a
quantum analogue of (1.4) using similar properties of quantum depolarizing semigroups.
In fact, the proof of (1.4) does not even require strictly positive Ricci curvature lower
bounds, i.e. Lemma 2.4 can be weakened. We will not discuss it here as (1.4) is not our
main focus and a quantum analogue was already obtained in [MO10a].

The quantum Talagrand inequality Theorem 3.2 implies a quantum KKL for L1

influences (following a similar argument in Lemma 3.8 below): for balanced quantum
Boolean A on n-qubits,

max
1≤ j≤n

Inf1
j (A) ≥ C

√
log(n)

n
.

Recall that for classical Boolean functions the sharp order is log(n)/n, which can be
captured by tribes functions [O’D14, Chapter 4]. In fact, the order log(n)/n is also sharp
for quantum Boolean functions, which can be seen from the following improved version
of quantum Talagrand Theorem 3.2:
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Theorem 3.6. For every p ∈ [1, 2) there exists a constant Cp > 0 such that for every
n ∈ N and A ∈ M2(C)⊗n with ‖A‖ ≤ 1 one has

Var(A) ≤ Cp

n∑
j=1

‖d j (A)‖p
p(1 + ‖d j (A)‖p

p)

1 + log+(1/‖d j (A)‖p
p)

,

where the constant can be chosen of order Cp ∼ C/(2 − p) as p ↗ 2. In particular,
for p = 1:

Var(A) ≤ C
n∑
j=1

‖d j (A)‖1(1 + ‖d j (A)‖1)

1 + log+(1/‖d j (A)‖1)
.

Proof. Let T > 0 be such that p ≤ 1 + e−2T . By the Poincaré inequality we have

Var(A) ≤ 1

1 − e−2T

[
‖A‖2

2 − ‖PT (A)‖2
2

]
= 2

1 − e−2T

∫ T

0

n∑
j=1

‖d j (Pt (A))‖2
2 dt

By intertwining and hypercontractivity,

2

1 − e−2T

∫ T

0

n∑
j=1

‖d j (Pt (A))‖2
2 dt ≤ 2

1 − e−2T

∫ T

0

n∑
j=1

‖d j (A)‖2
p(t) dt

with p(t) = 1 + e−2t .
By interpolation and ‖d j A‖ ≤ 2‖A‖ ≤ 2,

2

1 − e−2T

∫ T

0

n∑
j=1

‖d j (A)‖2
p(t) dt

≤ 2

1 − e−2T

∫ T

0

n∑
j=1

‖d j (A)‖2p/p(t)
p ‖d j (A)‖2(1−p/p(t)) dt

≤ 8

1 − e−2T

n∑
j=1

‖d j (A)‖p
p

∫ T

0
‖d j (A)‖p(2/p(t)−1)

p dt.

If ‖d j (A)‖p
p ≥ 1, then ‖d j (A)‖p(2/p(t)−1)

p ≤ ‖d j (A)‖p
p, so that

8

1 − e−2T ‖d j (A)‖p
p

∫ T

0
‖d j (A)‖p(2/p(t)−1)

p dt ≤ 8T

1 − e−2T ‖d j (A)‖2p
p

≤ 8T

1 − e−2T ‖d j (A)‖p
p(1 + ‖d j (A)‖p

p).
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If ‖d j (A)‖p
p < 1, then ‖d j (A)‖p(2/p(t)−1)

p ≤ ‖d j (A)‖pt/2
p (recall that p(2/p(t) − 1) ≥

pt/2 by the proof of Lemma 3.3) and thus

8

1 − e−2T ‖d j (A)‖p
p

∫ T

0
‖d j (A)‖p(2/p(t)−1)

p dt

≤ 8

1 − e−2T ‖d j (A)‖p
p

∫ T

0
‖d j (A)‖pt/2

p dt

= 16

1 − e−2T ‖d j (A)‖p
p

1 − ‖d j (A)‖pT/2
p

log 1/‖d j (A)‖p
p

.

We claim that

1 − a−T/2

log a
≤ max

{
3T

2
, 2

}
1 + a−1

1 + log a
, a ≥ 1. (3.9)

Applying (3.9) to a = ‖d j (A)‖−p
p , we obtain

16

1 − e−2T ‖d j (A)‖p
p

1 − ‖d j (A)‖pT/2
p

log 1/‖d j (A)‖p
p

≤ 16 max
{ 3T

2 , 2
}

1 − e−2T

‖d j (A)‖p
p(1 + ‖d j (A)‖p

p)

1 + log+(1/‖d j (A)‖p
p)

.

Now let us prove the claim (3.9) which we divide into two cases. When a ∈ [1, e], we
have

1 − a−T/2

log a
≤ T

2
,

1 + a−1

1 + log a
≥ 1

3
, (3.10)

which are nothing but

f1(a) := T

2
log a − 1 + a−T/2 ≥ 0, f2(a) := 3a + 3 − (a + a log a) ≥ 0.

A direct computation shows that when a ∈ [1, e]

f ′
1(a) = T

2
a−1− T

2 (a
T
2 − 1) ≥ 0, thus f1(a) ≥ f1(1) = 0,

and

f ′
2(a) = 1 − log a ≥ 0, thus f2(a) ≥ f2(1) = 5.

This proves (3.10) and thus the claim when a ∈ [1, e]. When a ≥ e, we have 2 log a ≥
1 + log a, and

1 − a−T/2

log a
≤ 2

1 + log a
≤ 2(1 + a−1)

1 + log a
, (3.11)

which proves the claim for a ∈ [1, e].
Noting that 8T ≤ 16 max

{ 3T
2 , 2

}
, we thus just proved for all e−2T ≥ p − 1, one

has

Var(A) ≤ 16 max
{ 3T

2 , 2
}

1 − e−2T

n∑
j=1

‖d j (A)‖p
p(1 + ‖d j (A)‖p

p)

1 + log+(1/‖d j (A)‖p
p)

.
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choosing T = − 1
2 log(p − 1), the above inequality becomes

Var(A) ≤ Cp

n∑
j=1

‖d j (A)‖p
p(1 + ‖d j (A)‖p

p)

1 + log+(1/‖d j (A)‖p
p)

,

with Cp = 16 max{− 3
4 log(p−1),2}
2−p which is of the order 32/(2 − p) as p ↗ 2.

Remark 3.7. The above Theorem 3.6 (when p = 1) improves Theorem 3.2, since it gives
the right order of quantum KKL as we shall see in the next. However, Theorem 3.2 can
be easily extended to more general von Neumann algebras, which will be discussed in
Theorem 4.3. The generalization of Theorem 3.6 is also possible but requires additional
assumption which we will not discuss in the general von Neumann algebra setting.

3.3. A KKL theorem for quantum Boolean functions. Our quantum KKL theorem for
geometric (L1-)influences follows as a simple corollary of Theorem 3.6. First we need
an elementary lemma.

Lemma 3.8. If n ∈ N, a1, . . . , an ≥ 0 and c > 0 such that

n∑
j=1

a j (1 + a j )

1 + log+(1/a j )
≥ c ,

then

max
1≤ j≤n

a j ≥ min
{ c

4
, 1
} log n

n
.

Proof. If max1≤ j≤n a j ≥ 1/
√
n, we are done, so we can assume a j < 1/

√
n ≤ 1 for

all j ∈ {1, . . . , n}. Then we have

c ≤
n∑
j=1

2a j

1 + log(1/a j )

≤ 2

1 + 1
2 log n

n∑
j=1

a j

≤ 4n

log n
max

1≤ j≤n
a j .

Theorem 3.9. For every 1 ≤ p < 2, there exists a constant Cp > 0 such that for any
n ≥ 1 and any balanced quantum Boolean function A ∈ M2(C)⊗n

max
1≤ j≤n

Inf pj (A) ≥ Cp
log(n)

n
.

Proof. Since Var(A) = 1 for any balanced quantum Boolean function, the result follows
from Theorem 3.6 with the help of Lemma 3.8.
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All combined, we have shown that every balanced quantum Boolean function has
a geometrically influential variable. In fact, suppose that A ∈ M2(C)⊗n is a balanced
quantum Boolean function, then

‖A − 2−n tr(A)‖1 = ‖A‖1 = ‖A‖2
2 = Var(A) = 1.

According to L1-Poincaré inequality (3.1),

n∑
j=1

‖d j A‖1 ≥ 1 .

One may wonder if Inf1
j (A) = ‖d j A‖1 ≈ 1/n for all 1 ≤ j ≤ n is possible. However,

our Theorem 3.9 for p = 1 indicates that this is not the case. There exists j such that
Inf1

j (A) ≥ C log(n)/n for some C > 0.

Remark 3.10. In [MO10a, Conjecture 3 of Section 12], the authors have conjectured a
similar KKL-type result for the quantum L2-influences Inf2

j (A). While this influence

coincides with the L1-influence Inf1
j (A) when A is a classical Boolean function, this is

not the case in the quantum setting. Hence, this conjecture in [MO10a] remains open to
the best of our knowledge.

3.4. AFriedgut’s Junta theorem for quantumBoolean functions. We recall that a Boolean
function g : �n → {−1, 1} is called a k-junta if it only depends on a set of at most k < n
bits. In [Fri98], Friedgut showed that for any Boolean function f : {−1, 1}n → {−1, 1}
and ε ∈ (0, 1), f is ε-close in 2-norm to a 2O(Inf2 f/ε)-junta, where

Inf2 f =
n∑
j=1

Inf2
j f (3.12)

denotes the total L2-influence of f , with Inf2
j ( f ) := ‖Dj f ‖2

2. More recently, Bouyrie

[Bou17] proved an L1 version of Friedgut’s junta theorem, more adapted to continuous
models, based on the proof techniques developed in [CEL12] (see also [Aus16] for a pre-
vious account of the result upon which the proof of [Bou17] relies). The next theorem
constitutes a quantum generalization of the L1 Friedgut’s Junta theorem; see Corol-
lary 3.12 followed. Recall that we define k-juntas for operators that are not necessarily
Boolean.

Theorem 3.11. For any A ∈ M2(C)⊗n and any ε > 0 small enough, there exists a
k-junta B ∈ M2(C)⊗n with ‖A − B‖2 ≤ ε and

k ≤ 2
30 Inf2(A)

ε2
‖A‖4

2 Inf1(A)6

Inf2(A)5
.

Moreover, B can be taken to be 2−|T | trT (A) for some set T ⊂ {1, . . . , n} of n−k qubits.
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Proof. Let d = 2 Inf2(A)

ε2 . If d ≤ 1, then

‖A − 2−|T | trT (A)‖2
2 ≤

∑
j∈T

‖d j (A)‖2
2 ≤ Inf2(A) ≤ ε2

2
(3.13)

for any subset T of {1, . . . , n} by the (non-primitive) Poincaré inequality for the tensor
product of depolarizing semigroups restricted to the subset T (see [Bar17, Example
3.1]).

Let us now consider the case d > 1. Let

T =
{
j ∈ {1, . . . , n}

∣∣∣∣ Inf1
j (A) ≤ Inf2(A)5

Inf1(A)5

2−15d

‖A‖4
2

}

and B = 2−|T | trT (A). The matrix A − B has the Fourier decomposition

A − B =
∑

s∈{0,1,2,3}n
s|T �=0

Âsσs .

By Plancherel’s identity,

‖A − B‖2
2 =

∑
s|T �=0

| Âs |2 =
∑
s|T �=0

|supp(s)|>d

| Âs |2 +
∑
s|T �=0

|supp(s)|≤d

| Âs |2.

Let us treat both summands on the right side separately. For the first summand,

∑
s|T �=0

|supp(s)|>d

| Âs |2 ≤ 1

d

∑
s|T �=0

|supp(s)|>d

|supp(s)|| Âs |2 ≤ 1

d
Inf2(A) = ε2

2
,

where we used formula (2.5) for Inf2.
For the second summand,∑

s|T �=0
|supp(s)|≤d

| Âs |2 ≤ e2dt
∑
s|T �=0

e−2t |supp(s)|| Âs |2

≤ e2dt
∑
j∈T

∑
s∈{0,1,2,3}n

s j �=0

e−2t |supp(s)|| Âs |2

= e2dt
∑
j∈T

Inf2
j (Pt (A))

for any t ≥ 0. Here we used (2.6) for the depolarizing semigroup.
Now take t = log 2. By intertwining (Lemma 2.3), hypercontractivity (Lemma 2.2)

and interpolation,

Inf2
j (Plog 2(A)) = ‖d j (Plog 2(A))|22 (3.14)

= ‖Plog 2(d j (A))‖2
2

≤ ‖d j (A)‖2
5/4

≤ ‖d j (A)‖6/5
1 ‖d j (A)‖4/5

2 .
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Since d j is a projection, ‖d j (A)‖2 ≤ ‖A‖2. Moreover, by definition, for j ∈ T

‖d j (A)‖6/5
1 = Inf1

j (A)6/5 ≤ Inf2(A)

Inf1(A)

2−3d

‖A‖4/5
2

Inf1
j (A).

Therefore, ∑
s|T �=0

|supp(s)|≤d

| Âs |2 ≤ 4d
∑
j∈T

‖d j (A)‖6/5
1 ‖d j (A)‖4/5

2

≤ 2−d Inf2(A)

Inf1(A)

∑
j∈T

Inf1
j (A)

≤ 4− Inf2(A)

ε2 Inf2(A)

≤ e
− Inf2(A)

ε2 Inf2(A)

≤ ε2

2
,

where we used the elementary inequality x ≤ ex/2 for x ≥ 0 in the last step.
Altogether we have shown that ‖A − B‖2

2 ≤ ε2. Moreover, B is a k-junta with
k = |T c|. Since

Inf1
j (A) ≥ Inf2(A)5

Inf1(A)5

2−15d

‖A‖4
2

for every j ∈ T c, we have

Inf1(A) ≥
∑
j∈T c

Inf1
j (A) ≥ |T c| Inf2(A)5

Inf1(A)5

2−15d

‖A‖4
2

.

Hence

k = |T c| ≤ 215d ‖A‖4
2 Inf1(A)6

Inf2(A)5
= 2

30 Inf2(A)

ε2
‖A‖4

2 Inf1(A)6

Inf2(A)5
.

In the next corollary we restrict ourselves to quantum Boolean functions.

Corollary 3.12. For any quantum Boolean A ∈ M2(C)⊗n and any ε > 0 small enough
there exists a quantum Boolean k-junta C ∈ M2(C)⊗n with ‖A − C‖2 ≤ ε and

k ≤ 2
270 Inf2(A)

ε2
Inf1(A)6

Inf2(A)5
.

Proof. By Theorem 3.11 there exists a self-adjoint k-junta B ∈ M2(C)⊗n such that ‖A−
B‖2 ≤ ε and k ≤ 2

30 Inf2(A)

ε2 Inf1(A)6/ Inf2(A)5. Let us now define C := sgn(B) as fol-
lows: Given the spectral decomposition B =∑i λi |ψi 〉〈ψi |, sgn(B) =∑i sgn(λi )|ψi 〉
〈ψi |, where the sign function sgn is defined as

sgn(x) :=
{

1, x > 0,

− 1, x ≤ 0 .
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Note that |λ + sgn(λ)| ≥ 1. Then

|λ − sgn(λ)|2 ≤ |(λ − sgn(λ))(λ + sgn(λ))|2 = |λ2 − 1|2

and

2n‖B − C‖2
2 =

∑
i

|λi − sgn(λi )|2 ≤
∑
i

|λ2
i − 1|2 = 2n‖B2 − 1‖2

2 .

Therefore,

‖A − C‖2 ≤ ‖A − B‖2 + ‖B − C‖2 ≤ ‖A − B‖2 + ‖B2 − 1‖2

(1)≤ ε + ‖B2 − A2‖2

≤ ε + ‖(B − A)B‖2 + ‖A(B − A)‖2

≤ ε
(
1 + ‖B‖ + ‖A‖)

(2)≤ ε
(
1 + 2‖A‖)

≤ 3ε .

where in (1) we have used that A2 = 1, whereas in (2) we used the fact that B =
2−|T | trT (A) for some set T of qubits, so that ‖B‖ ≤ ‖A‖ ≤ 1. Moreover, we know the
size of T c from Theorem 3.11. The result then follows after rescaling of ε to ε/3.

Remark 3.13. In the case of a classical Boolean function f , we know that Inf f ≡
Inf1 f = Inf2 f and the bound in Corollary 3.12,

simplifies as

k ≤ e
270 Inf( f )

ε2 Inf( f ). (3.15)

We therefore recover the classical Friedgut’s Junta theorem.

Remark 3.14. In the classical setting, other junta-type theorems related to Fourier
analysis of Boolean functions may be found in [FKN02,ADFS04,Bou02,KN06,KS02,
DFKO06]. While extending these results to the present quantum setting is an interesting
problem, their statements do not directly involve the notion of influence that is central to
our study. This interesting direction of research will therefore be considered elsewhere.

4. Von Neumann Algebraic Generalizations

In this section, we generalize the main results from the previous section to the general
von Neumann algebraic setting. Apart from technical challenges that arise from the fact
that the underlying Hilbert space can be infinite-dimensional and the operators involved
can be unbounded, most proofs run parallel to the ones for qubits once the appropriate
assumptions are identified. As demonstrated in the next section, these hypotheses are
satisfied for a number of interesting examples besides the qubit systems treated in Sect. 3.

We start recapitulating some basic von Neumann algebra theory. As a general refer-
ence, we refer to [Tak02,Tak03]. Let H be a Hilbert space and B(H) the space of all
bounded linear operators on H. The σ -weak topology on B(H) is the topology induced
by the seminorms |tr( · x)|, where x runs over the set of all trace-class operators. A von
Neumann algebraM on H is a unital ∗-subalgebra of B(H) that is closed in the σ -weak
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topology. A linear functional on M is called normal if it is continuous with respect to
the σ -weak topology. The set of all normal linear functionals on M is denoted by M∗,
and the obvious dual pairing between M and M∗ establishes an isometric isomorphism
between M and (M∗)∗.

A state on M is a positive linear functional ϕ : M → C such that ϕ(1) = 1. A state
is called faithful if ϕ(x∗x) = 0 implies x = 0. For a faithful normal state ϕ on M let
Hϕ denote the completion of M with respect to the inner product

〈 · , · 〉ϕ : M × M → C, (x, y) �→ ϕ(x∗y),

and let �ϕ(x) denote the image of x inside Hϕ . The GNS representation is defined by
πϕ(x)�ϕ(y) = �ϕ(xy). The vector �ϕ(1) is a cyclic and separating vector for πϕ(M),
which is denoted by �ϕ . We routinely identify M with πϕ(M).

For the definition of the noncommutative L p spaces, we need some basic modular
theory. The operator

S0 : �ϕ(M) → �ϕ(M), �ϕ(x) �→ �ϕ(x∗)

is a closable anti-linear operator on Hϕ . Let S denote its closure and S = J1/2 the
polar decomposition of S. The operator J is an anti-unitary involution, called themodular
conjugation, and  = S∗S is called the modular operator.

The symmetric embedding i2 of M into Hϕ is given by i2(x) = 1/4�ϕ(x) and the
symmetric embedding i1 of M into M∗ is uniquely determined by the relation

〈i2(x∗), i2(y)〉 = i1(x)(y),

or in other words, i1 = i∗2 J i2 if we view J as an isomorphism betweenHϕ andHϕ
∼= H∗

ϕ .
Kosaki’s interpolation L p spaces [Kos84] are defined as the complex interpolation

space

L p(M, ϕ) = (M∗, i1(M))1/p

for p ∈ (1,∞). Thus we get embeddings i p : M → L p(M, ϕ) for p ∈ (1,∞) with

‖i p(x)‖ ≤ ‖i1(x)‖1/p‖x‖1−1/p

for all x ∈ M. In particular, L2(M, ϕ) ∼= Hϕ isometrically, and the definition of i2 is
consistent with the definition given before under this identification.

In the case M = Mn(C), every state ϕ on M is of the form ϕ = tr( · σ) for
some density matrix σ . The state ϕ is faithful if and only if σ is invertible. In this case
L p(Mn(C), ϕ) can be identified with Mn(C) with the norm tr(|·|p)1/p, and the embed-
ding i p is given by i p(x) = σ 1/2pxσ 1/2p. In particular,‖i p(x)‖ = tr(|σ 1/2pxσ 1/2p|p)1/p,
which is the expression for the L p norm commonly used in quantum information theory.

A quantum Markov semigroup (QMS) on M is a family (Pt )t≥0 of normal bounded
linear operators on M such that

• P0 = idM, Ps Pt = Ps+t for s, t ≥ 0,
• Pt (x) → x as t ↘ 0 in the σ -weak topology for every x ∈ M,
• ∑n

j,k=1 y
∗
j Pt (x

∗
j xk)yk ≥ 0 for all x1, . . . , xn, y1, . . . , yn ∈ M and t ≥ 0,

• Pt (1) = 1 for all t ≥ 0.
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If (Pt )t≥0 is a quantum Markov semigroup onM, then Pt has a pre-adjoint (Pt )∗ : M∗ →
M∗ for every t ≥ 0, and ((Pt )∗)t≥0 is a strongly continuous semigroup on M∗. The
QMS (Pt )t≥0 is called KMS-symmetric with respect to ϕ if

〈i2(Pt (x)), i2(y)〉 = 〈i2(x), i2(Pt (y))〉

for all x, y ∈ M and t ≥ 0. In this case, for all p ∈ [1,∞) and t ≥ 0 the operator

i p(M) → i p(M), i p(x) �→ i p(Pt (x))

extends to a contraction P(p)
t on L p(M, ϕ), and (P(p)

t )t≥0 is a strongly continuous
semigroup. In particular, (Pt )∗ = P(1)

t . Occasionally we also write P(∞)
t for Pt .

The generator of (P(p)
t )t≥0 is defined by

D(Lp) = {x ∈ L p(M, ϕ) | lim
t↘0

1

t
(x − P(p)

t (x)) exists},

Lp(x) = lim
t↘0

1

t
(x − P(p)

t (x)),

where the limit is taken in the norm topology if p ∈ [1,∞) and in the σ -weak topology
if p = ∞. We also write L for L∞. Note that there are differing sign conventions for
the generator; with our convention, L2 is a positive self-adjoint operator on L2(M, ϕ).

We make the following assumption:

(H0) There exists a ∗-subalgebraA of D(L) which is σ -weakly dense inM and invariant
under (Pt )t≥0.

We can then define the carré du champ operator as follows:

� : A × A → A, �(x, y) = 1

2
(L(x)∗y + x∗L(y) − L(x∗y)).

We write �(x) for �(x, x).
We will further use the following assumption:

(H1) Bakry–Émery gradient estimate: There exists K ∈ R such that

�(Pt (x)) ≤ e−2Kt Pt (�(x))

for all x ∈ A and t ≥ 0.

To avoid case distinctions, the following notation will come in handy:

eK (t) = 2
∫ t

0
e2Ks ds =

{
e2Kt−1

K if K �= 0,

2t if K = 0.

Further, we write K− for the negative part of a real number K . The following result is
an analog of Lemma 3.4.
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Lemma 4.1. If (Pt )t≥0 is a QMS satisfying (H0)–(H1), then

�(Pt (x)) ≤ 1

eK (t)
(Pt (x

∗x) − Pt (x)
∗Pt (x)) ≤ ‖x‖2

eK (t)

for all x ∈ A and t ≥ 0.
In particular,

�(Pt (x)) ≤
{ ‖x‖2

2t if K ≥ 0,
‖x‖2

t if K < 0

for all x ∈ A and t ∈
[
0, 1

2K−

)
.

(H2) There exists a finite family of linear self-adjoint maps d j : A → M, j ∈ J , such
that

〈i2(x), i2(L(x))〉 =
∑
j∈J

‖i2(d j (x))‖2 (H2-1)

and a constant M > 0 such that

max
j∈J

‖d j (x)‖ ≤ M‖�(x)‖1/2 (H2-2)

for all x ∈ A.

Note that (H2-1) implies in particular that the series on the right side converges for
all x ∈ A, and by polarization,

〈i2(x), i2(L(y))〉 =
∑
j∈J

〈i2(d j (x)), i2(d j (y))〉 (4.1)

for all x, y ∈ A.
In this situation we define the p-influence of the j-th variable on x by Inf pj (x) =

‖i p(d j (x))‖p and the total influence of x by Inf p(x) =∑ j∈J Inf pj (x).
We say (Pt )t≥0 is primitive if Pt (x) → ϕ(x)1 σ -weakly as t → ∞ for every x ∈ M.

Theorem 4.2. (L1-Poincaré inequality) If (Pt )t≥0 is a primitive KMS-symmetric QMS
on M satisfying (H0)–(H2) with K > 0, then

√
K

M
‖i1(x − ϕ(x)1)‖ ≤ π

2
Inf1(x)

for all x ∈ A.

Proof. By duality and σ -weak density of A in M, we have

‖i1(x − ϕ(x)1)‖ = sup
y∈A

‖y‖≤1

|i1(x − ϕ(x)1)(y)| = sup
y∈A

‖y‖≤1

|i1(x)(y − ϕ(y)1)|.
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Since (Pt )t≥0 is primitive,

|i1(x)(y − ϕ(y)1)| = lim
T→∞|i1(x)(y − PT (y))|

=
∣∣∣∣
∫ ∞

0
i1(x)(LPt (y)) dt

∣∣∣∣
=
∣∣∣∣
∫ ∞

0
〈i2(x∗), i2(L(Pt (y)))〉 dt

∣∣∣∣ .
Now by the consequence (4.1) of (H2-1),

∣∣∣∣
∫ ∞

0
〈i2(x∗), i2(L(Pt (y)))〉 dt

∣∣∣∣ =
∣∣∣∣∣∣
∫ ∞

0

∑
j∈J

〈i2(d j (x
∗)), i2(d j (Pt (y)))〉 dt

∣∣∣∣∣∣
≤
∑
j∈J

∫ ∞

0
|i1(d j (x))(d j (Pt (y)))| dt

≤
∑
j∈J

Inf1
j (x)

∫ ∞

0
‖d j (Pt (y))‖ dt

By Lemma 4.1 and (H2-2),∫ ∞

0
‖d j (Pt (y))‖ dt ≤ M

∫ ∞

0
‖�(Pt (y))‖1/2 dt

≤ M
√
K‖y‖

∫ ∞

0

dt√
e2Kt − 1

= πM

2
√
K

‖y‖.

All combined, we obtain the desired inequality.

To prove our general noncommutative version of the L1-Talagrand inequality, we
need some more assumptions on (Pt )t≥0, which we collect in the following:

(H3) Poincaré inequality: There exists a constant λ > 0 such that

λ‖i2(x − ϕ(x)1)‖2 ≤ 〈i2(x), i2(L(x))〉
for all x ∈ A.

(H4) Hypercontractivity: There exists a constant α > 0 such that

‖i2(Pt (x))‖ ≤ ‖i p(x)‖
for all x ∈ A, t ≥ 0 and p = 1 + e−2αt .

(H5) Intertwining: There exists a constant μ ∈ R such that

‖i p(d j (Pt (x)))‖ ≤ e−μt‖i p(Pt (d j (x)))‖
for all x ∈ A, j ∈ J , p ∈ [1,∞] and t ≥ 0.

In fact, it is well-known [OZ99] that hypercontractivity (H4) implies Poincaré in-
equality (H3).

The proof of the following theorem follows the argument given by Cordero–Erausquin
and Ledoux [CEL12, Theorem 6] in the commutative case. We refer to the appendix for
the details.
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Theorem 4.3 (L1-Talagrand inequality). If (Pt )t≥0 is a KMS-symmetric QMS on M
satisfying (H0)–(H5), then there exists a constant C > 0 depending only on the constants
K , M, α, λ, μ such that

‖i2(x − ϕ(x)1)‖2 ≤ C
∑
j∈J

Inf1
j (x)(1 + Inf1

j (x))

(1 + log+(1/ Inf1
j (x)))

1/2

for all x ∈ A with ‖x‖ ≤ 1.

Again following [CEL12], we can also give a generalization of Talagrand’s inequality
(1.4) in this setting.

Theorem 4.4. If (Pt ) is a KMS-symmetric QMS onM satisfying (H0), (H2)–(H5), then

‖i2(x − ϕ(x)1)‖2 ≤ 2e(2α−μ)+/2λ

α(1 − e−1)

∑
j∈J

Inf2
j (x)

1 + log(
√

Inf2
j (x)/ Inf1

j (x))

for all x ∈ A.

Proof. By the Poincaré inequality (H3), we have

‖i2(x − ϕ(x)1)‖2 ≤ 1

1 − e−1

(
‖i2(x)‖2 − ‖i2(PT (x))‖2

)
for T = 1/2λ.

Arguing as in the proof of Theorem 3.2, we get

‖i2(x)‖2 − ‖i2(PT (x))‖ = 2
∑
j∈J

∫ T

0
‖i2(d j (Pt (x)))‖2 dt.

By (H4) and (H5),

‖i2(d j (Pt (x)))‖ ≤ e−μt‖i2(Pt (d j (x)))‖ ≤ e−μt‖i p(t)(d j (x))‖
with p(t) = 1 + e−2αt .

After the change of variables s = p(t) and application of Hölder’s inequality we get

‖i2(x − ϕ(x)1)‖2 ≤ 2

1 − e−1

∑
j∈J

∫ T

0
e−2μt‖i p(t)(d j (x))‖2 dt

= 1

α(1 − e−1)

∑
j∈J

∫ 2

1+e−α/λ

(s − 1)μ/2α−1‖is(d j (x))‖2 ds

≤ e(2α−μ)+/2λ

α(1 − e−1)

∑
j∈J

∫ 2

1
‖is(d j (x))‖2 ds

≤ e(2α−μ)+/2λ

α(1 − e−1)

∑
j∈J

∫ 2

1
Inf1

j (x)
4/s−2 Inf2

j (x)
2−2/s ds

= e(2α−μ)+/2λ

α(1 − e−1)

∑
j∈J

Inf2
j (x)

∫ 2

1
(Inf1

j (x)/ Inf2
j (x))

2/s−2 ds.

From here, the claimed inequality follows from an elementary bound on the last integral
(compare [CEL12, Theorem 1]).
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Since the p-influences for different p do not coincide in the quantum setting, this
version of Talagrand’s inequality does not imply a KKL bound. However, we still have
the following weaker bound as consequence of Theorem 4.3. Again, the proof can be
found in the appendix.

Theorem 4.5. If (Pt ) is a KMS-symmetric QMS on M satisfying (H0)–(H5) and the
cardinality n of J is finite, then there exists C ′ > 0 depending only on the constants
K , L , M, α, λ, μ such that

max
j∈J

Inf1
j (x) ≥ C ′

√
log n

n

for all self-adjoint x ∈ A with ‖i2(x)‖ = 1, ‖x‖ ≤ 1 and ϕ(x) = 0.

Remark 4.6. The sharpness of the bound derived in Theorem 4.5 in the present general
context was shown in [KMS12].

To prove our generalized version of Friedgut’s junta theorem, we need one last as-
sumption on (Pt ). For that purpose, if I ⊂ J , let EI denote the orthogonal projection
onto

⋂
i∈I i2(ker di ) in L2(M, ϕ).

(H6) There exists a constant ν > 0 such that

ν‖i2(x) − EI(i2(x))‖2 ≤
∑
i∈I

‖i2(di (x))‖2

for every x ∈ A and I ⊂ J .

If (Pt ) is primitive, then EJ (i2(x)) = i2(ϕ(x)1). Thus (H6) is a strengthening of
the Poincaré inequality from (H3) in the case of primitive QMS.

Lemma 4.7. If (Pt ) is a KMS-symmetric QMS onM satisfying (H0), (H2), (H4)–(H6),
then for any x ∈ A, t, η > 0 and I ⊂ J such that Inf1

i (x) ≤ η for all i ∈ I one has

‖(id − EI)(i2(Pt (x)))‖2 ≤ e−μt

ν
(η Inf1(x))q(t)(Inf2(x))1−q(t),

where q(t) = 1−e−2αt

1+e−2αt .

Proof. By (H6) we have

‖i2(Pt (x)) − EI(i2(Pt (x)))‖2 ≤ 1

ν

∑
i∈I

‖i2(di (Pt (x)))‖2.

By (H4), (H5) and interpolation,

‖i2(di (Pt (x)))‖ ≤ e−μt‖i2(Pt (di (x)))‖
≤ e−μt‖i p(t)(di (x))‖
≤ e−μt‖i1(di (x))‖q(t)‖i2(di (x))‖1−q(t).
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Therefore,

‖(id − EI)(i2(Pt (x)))‖2 ≤ e−μt

ν

∑
i∈I

‖i1(di (x))‖2q(t)‖i2(di (x))‖2(1−q(t))

≤ e−μt

ν

(∑
i∈I

‖i1(di (x))‖2

)q(t) (∑
i∈I

‖i2(di (x))‖2

)1−q(t)

≤ e−μt

ν

(∑
i∈I

η Inf1
i (x)

)q(t)
⎛
⎝∑

j∈J
Inf2

j (x)

⎞
⎠

1−q(t)

= e−μt

ν
(η Inf1(x))q(t)(Inf2(x))1−q(t).

Lemma 4.8. If A is a positive self-adjoint operator on a Hilbert spaceH, then

‖ξ − e−t Aξ‖2
H ≤ t‖A1/2ξ‖2

H

for every ξ ∈ D(A1/2) and t ≥ 0.

Proof. This follows by the spectral theorem from the scalar inequality (1− e−t x )2 ≤ t x
for t, x ≥ 0.

A version of Friedgut’s junta theorem in this setting now reads as follows. Again, the
proof can be found in the appendix.

Theorem 4.9. Let (Pt ) be a KMS-symmetric QMS on M satisfying (H0), (H2), (H4)–
(H6). There exists a constant C > 0 depending only on α and ν such that for every
x ∈ A and 0 < ε ≤ 2/ν there exists a set I ⊂ J such that ‖i2(x) − EI(i2(x))‖ ≤ ε

and

|J \ I| ≤

⎧⎪⎨
⎪⎩

Inf1(x)2 exp
(
Cμ− + C Inf2(x)

ε2 log 2 Inf2(x)
νε

)
if Inf2(x) ≥ 1,

Inf1(x)2

Inf2(x)
exp

(
Cμ− + C Inf2(x)

ε2 log 2
√

Inf2(x)
νε

)
otherwise,

where μ− = −μ if μ < 0, and 0 otherwise.

5. Examples

5.1. Classical case. The results in [CEL12,Bou17] fit into our framework by choosing
the commutative von Neumann algebras, i.e. (M, ϕ) = L∞(X, μ) with X a probability
measure space.

5.2. Generalized depolarizing semigroups. We start with a simple weighted general-
ization of the depolarizing semigroup, also known as generalized depolarizing: given a
full-rank state ω over Cd ,

etLω = (e−t id +(1 − e−t ) tr(ω ·)1)⊗n
.
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We verify assumptions (H0)-(H5) for the semigroup (etLω)t≥0 . First of all, since we
are in a finite dimensional case, (H0) is directly satisfied. (H1) was proved in [JZ15]
with K = 1

2 . With d j (x) = id⊗( j−1) ⊗ (id − tr(ω·)1) ⊗ id⊗(n− j) a direct computation
shows

〈x,Lω(x)〉ω =
n∑
j=1

〈d j (x), d j (x)〉ω,

which settles (H2-1). Condition (H2-2) with M = √
2 follows as in Equation (3.7).

Condition (H3) with λ = 1 is easy to check for n = 1, one for arbitrary n follows by
tensorization. The best constant α satisfying (H4) for any n has been shown in [BDR20,
Theorems 24 & 25], whereas a lower bound on α was found e.g. in [TPK14, Theorem
9]. A direct computation shows (H5) with μ = 1.

5.3. Quantum Ornstein–Uhlenbeck semigroup. Next, we consider the generator of the
so-called quantum Ornstein–Uhlenbeck semigroup [FRS94,CFL00,CS08]. The latter
acts on the algebra B(�2(N)) of all bounded operators on the Hilbert space �2(N) of
square-summable sequences. Denoting by a and a∗ the annihilation and creation oper-
ators of the quantum harmonic oscillator, which are defined by their action on a given
orthonormal basis {|k〉}k∈N of H ≡ �2(N) � L2(R) as follows:

a∗|k〉 = √
k + 1|k〉 , and a|k〉 =

{√
k|k − 1〉 k ≥ 1

0 else ,

the generator of the quantum Ornstein–Uhlenbeck semigroup takes the following form
at least on finite rank operators:

L(x) = μ2

2
(a∗ax − 2a∗xa + xa∗a) +

λ2

2
(aa∗x − 2axa∗ + xaa∗) ,

where μ > λ > 0. Denoting ν = λ2/μ2, it has a unique invariant state

σμ,ν := (1 − ν)
∑
n≥0

νn |n〉〈n| .

Here we will use the notion of a Schwartz operator [KKW16]: an operator x ∈ B(L2(R))

is called a Schwartz operator if for any indices α, β, α′, β ′ ∈ N,

sup
{|〈PβQαψ, x Pβ ′

Qα′
ϕ〉| : ψ, ϕ ∈ S(R), ‖ψ‖, ‖ϕ‖ ≤ 1

}
< ∞ ,

where S(R) denotes the set of Schwartz functions over R, Q : (x �→ ψ(x)) �→ (x �→
xψ(x)) is the so-called position operator and P : (x �→ ψ(x)) �→ (x �→ −iψ ′(x)) is
the momentum operator. We denote by S(H) the algebra of Schwartz operators.

Proposition 5.1. The semigroup generated by L and derivations da := [a, ·] and da∗ =
[a∗, ·] satisfy the conditions (H0)–(H5) with respect to the algebra A ≡ S(H).
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Proof. The set S(H) of Schwartz operators is a ∗-subalgebra of B(L2(R)) [KKW16,
Lemma 3.5]. Moreover for any p ≥ 1, the set S0(H) of finite-rank Schwartz operators
is dense in the space Tp(H) of Schatten-p operators [KKW16, Lemma 2.5]. Therefore,
since finite-rank operators are σ -weakly dense in B(H), this also holds for S(H). In
order to show that S(H) is invariant with respect to the semigroup generated by L,
we use tools from noncommutative Fourier analysis: given a trace-class operator x , its
characteristic function is given by

χx (z) := tr(xD(z)) ,

where D(z) := eza
∗−z̄a , for z ∈ C, is the so-called one-mode displacement operator.

By the quantum Plancherel identity, we have that for any two trace-class operators x, y
[Hol11],

tr(x∗y) =
∫

d2z

π
χx (z) χy(z) .

Moreover, the quantum Ornstein–Uhlenbeck semigroup can be represented by a family
of quantum channels etL modelling a quantum beam-splitter of transmissivity η =
e−(μ2−λ2)t and with environment state σμ,ν can be shown to induce the following action
on characteristic functions:

χx (z) −→ χetL∗
(x)(z) = χx (

√
η z) χσμ,ν (

√
1 − η z) = χx (

√
η z) e−(2N+1)(1−η)|z|2/2 ,

with N = λ2

μ2−λ2 . Therefore, for any α, β, α′, β ′ ∈ N and normalized ψ, ϕ ∈ S(R),

denoting y := |Pβ ′
Qα′

ϕ〉〈PβQαψ |, we have

〈PβQαψ, etL(T ) Pβ ′
Qα′

ϕ〉 = tr(y etL(T ))

= tr(etL∗
(y)T )

=
∫

d2z

π
χy(

√
ηz) e−(2N+1)(1−η)|z|2/2 χT (z)

=
∫

d2u

ηπ
χy(u) e−(2N+1)(1−η)|u|2/2η χT (u/

√
η)

< ∞ ,

where we used that u �→ e−(2N+1)(1−η)|u2|/2ηχT (u/
√

η) is a Schwartz function, see
[KKW16, Proposition 3.18]. Finally, by [KKW16, Proposition 3.14], for any x ∈ S(H),
L(x) is closable with closure in S(H). Hence, (H0) is satisfied for the algebra A ≡
S(H) . Property (H1) can be easily derived from the canonical commutation relation
[a, a∗] = I and gives K = (μ2 − λ2)/2 (see e.g. [CM17a]). Property (H2) is satisfied
for the maps da := [a, ·] and da∗ := [a∗, ·]. The Poincaré inequality (H3) follows from
the characterization of the spectrum of the generator L established in [CFL00]. The
hypercontractivity constant in (H4) was estimated in [CS08]. The intertwining relation
of (H5) was found in [CM17a].



95 Page 28 of 47 C. Rouzé, M. Wirth, H. Zhang

5.4. Group von Neumann algebras. Let G be a countable discrete group with unit e,
L(G) the group von Neumann algebra on �2(G) generated by {λg, g ∈ G} where λ is
the left regular representation of G. We denote by τ(x) = 〈xδe, δe〉 the canonical tracial
faithful state. Here and in what follows, δg always denotes the function on G that takes
value 1 at g and vanishes elsewhere.

A function ψ : G → [0,∞) is a conditionally negative definite (cnd) length function
if ψ(e) = 0, ψ(g−1) = ψ(g) and∑

g,h∈G
f (g) f (h)ψ(g−1h) ≤ 0

for every f : G → C with finite support such that
∑

g∈G f (g) = 0.
By Schoenberg’s Theorem (see for example [BO08, Theorem D.11]), to every cnd

function one can associate a τ -symmetric quantum Markov semigroup on L(G) given
by

Ptλg = e−tψ(g)λg.

For a countable discrete group G, a 1-cocycle is a triple (H, π, b), where H is a
real Hilbert space, π : G → O(H) is an orthogonal representation, and b : G → H
satisfies the cocycle law: b(gh) = b(g) + π(g)b(h), g, h ∈ G. To any cnd function ψ

on a countable discrete group G, one can associate with a 1-cocycle (H, π, b) such that
ψ(g−1h) = ‖b(g)− b(h)‖2, g, h ∈ G. See [BO08, Appendix D] for more information.

Fix an orthonormal basis (e j ) j∈J of H . In case G is finite, the index setJ can always
be taken to be finite. Let A be the linear span of the operator λg , g ∈ G, and let

d j : A → L(G), d j (λg) = 〈b(g), e j 〉λg.

The space A is contained in the domain of the generator L of (Pt ) and L(λg) = ψ(g)λg
for g ∈ G. Moreover, �(λg, λh) = 〈b(g), b(h)〉λg−1h for g, h ∈ G.

Clearly, condition (H0) is satisfied. Condition (H1) is satisfied with K = 0 [WZ21,
Example 3.14]. For condition (H2) note that if x =∑g f (g)λg ∈ A, then

∑
j∈J

d j (x)
∗d j (x) =

∑
j∈J

∑
g,h∈G

f (g) f (h)d j (λg)
∗d j (λh)

=
∑
j∈J

f (g) f (h)
∑
g,h∈G

〈b(g), e j 〉〈b(h), e j 〉λg−1h

=
∑
g,h∈G

f (g) f (h)〈b(g), b(h)〉λg−1h

=
∑
g,h∈G

f (g) f (h)�(λg, λh)

= �(x).

In particular, d j (x)∗d j (x) ≤ �(x) for every j ∈ J . Moreover,

∑
j∈J

‖i2(d j (x))‖2 =
∑
j∈J

τ(d j (x)
∗d j (x)) = τ(�(x)) = 〈i2(x), i2(L(x))〉.
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Thus condition (H2) holds with M = 1. Condition (H3) holds with the spectral gap
λ = infg:ψ(g)>0 ψ(g) of L. Since d j Pt = Ptd j , condition (H5) is always satisfied with
μ = 0.

Condition (H4) is known to hold for certain discrete groups. For free groups, it is
known that (H4) holds with α = 2 [JPP+15, Theorem A]. We refer to [JPPP17] for more
examples including triangular groups, finite cyclic groups ZN , N ≥ 6, infinite Coxeter
groups etc. with 0 < α < ∞.

6. Applications

6.1. Influence and circuit complexity lower bounds. As mentioned in the introduction,
Karpovsky [Kar76] was the first to propose the total influence, as a measure of complexity
of a function f . This intuition was then made rigorous in [LMN93] and [Bop97] where
tight circuit complexity lower bounds in terms of the total influence were derived for the
complexity class AC0 of constant depth circuits.

Similar results were recently derived in the quantum setting. For instance, [BGJ+22]
show a direct link between the notion of L2-influence and the complexity of quantum
circuits. More precisely, they showed that for a quantum circuit U , that is a unitary
matrix in M2(C)⊗n [BGJ+22, Theorem 12]

1

8
CiS2(U ) ≤ Cost(U ) ,

where the L2-circuit sensitivity CiS2(U ) is defined as

CiS2(U ) := max‖O‖2=1

∣∣∣ Inf2(UOU∗) − Inf2(O)

∣∣∣ ,
and where Cost(U ) refers to the cost of the circuit and was introduced in a series
of seminal papers by Nielsen and coauthors [Nie06,NDGD06a,NDGD06b,DN08] as
a lower bound on the minimal number of one and two-qubit gates required from a
given universal gate-set in order to synthesize the unitary U . More precisely, given
traceless self-adjoint operators h1, . . . , hm that are supported on 2 qubits and normalized
as ‖hi‖ = 1, the circuit cost of U with respect to h1, . . . , hm is defined as

Cost(U ) := inf
∫ 1

0

m∑
j=1

|r j (s)| ds ,

where the infimum above is taken over all continuous functions r j : [0, 1] → R satis-
fying

U = P exp
(

− i
∫ 1

0
H(s) ds

)
,

and

H(s) =
m∑
j=1

r j (s) h j ,

whereP denotes the path-ordering operator. We start by providing a simple bound on the

p-influences for p ∈ [1, 2] (for convenience we may write
trN j

2|N j | (O) for
trN j

2|N j | (O) ⊗ 1):
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Proposition 6.1. For any j ∈ {1, . . . , n}, let N j ⊂ {1, . . . ,m} be the minimal set of

qubits such that
tr j
2 (U (

trN j

2|N j | (O)⊗1)U∗) = U (
trN j

2|N j | (O)⊗1)U∗ for any O ∈ M2(C)⊗n.

Then, for any self-adjoint matrix O ∈ M2(C)⊗n with ‖O‖2 ≤ 1 and all p ∈ [1, 2] we
have

Inf p(UOU∗) ≤
n∑

i=1

‖di O‖p
2 |{ j : i ∈ N j }| .

In the case p = 2 and denoting L := maxi |{ j : i ∈ N j }|, we get
Inf2(UOU∗) ≤ L Inf2(O) .

Proof. For p ∈ [1, 2] and any O ∈ M2(C)⊗n with ‖O‖2 ≤ 1, we have

Inf p(UOU∗) =
n∑
j=1

‖UOU∗ − tr j
2

(UOU∗)‖p
p

≤
n∑
j=1

‖UOU∗ − tr j
2

(UOU∗)‖p
2

≤
n∑
j=1

‖UOU∗ −U
trN j

2|N j | (O)U∗‖p
2

=
n∑
j=1

‖O − trN j

2|N j | (O)‖p
2

≤
n∑
j=1

( ∑
i∈N j

‖O − tri
2

(O)‖2
2

) p
2

≤
n∑
j=1

∑
i∈N j

‖O − tri
2

(O)‖p
2

≤
n∑

i=1

‖O − tri
2

(O)‖p
2 |{ j : i ∈ N j }|

where in the second inequality above we use that the partial trace tr j is a projection
onto the algebra of operators supported on { j}c, and therefore minimized the distance to
that subalgebra. The third inequality follows from the non-primitive Poincaré inequality
from Equation (3.13).

Remark 6.2. The assumption
tr j
2 (U (

trN j

2|N j | (O) ⊗ 1)U∗) = U (
trN j

2|N j | (O) ⊗ 1)U∗ can be
interpreted as a lightcone condition: let’s consider for simplicity n a unitary circuit in
brickwork architecture of the form U = U �U �−1 . . .U 1, where for each j , U 2 j+1 =
U 2 j+1

1,2 ⊗ · · · ⊗ U 2 j+1
n−1,n and U 2 j = U 2 j

2,3 ⊗ · · · ⊗ U 2 j
n−2,n−1, where by U j

r,r+1 we mean a
unitary with non-trivial support on qubits r and r+1. Hence, for any set N1 = {1, . . . , n1}
and any observable ONc

1
supported on Nc

1 ,

UONc
1
U∗ = U � . . .U 1ONc

1
(U 1)∗ . . . (U �)∗
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is supported in the set {n1 − � + 1, . . . , n}. Hence, for n1 = � + 1, the condition holds.
In other words, n1 scales linearly with the depth � of the circuit U . The above simple
argument generalizes easily to higher dimensions and general local unitary circuits.

In the case when p = 1 we can bound the total L1 output influence in terms of the
total L1 input influence.

Proposition 6.3. For any j ∈ {1, . . . , n}, let N j ⊂ {1, . . . ,m} be the minimal set of

qubits such that
tr j
2 (U

trN j

2|N j | (O)U∗) = U
trN j

2|N j | (O)U∗ for any O ∈ M2(C)⊗n and denote

L := maxi |{ j : i ∈ N j }|. Then, for any such matrix O ∈ M2(C)⊗n

Inf1(UOU∗) ≤ 2L Inf1(O) .

Proof. For any O ∈ M2(C)⊗n ,

Inf1(UOU∗) =
n∑
j=1

‖UOU∗ − tr j
2

(UOU∗)‖1

≤
n∑
j=1

‖UOU∗ −U
trN j

2|N j | (O)U∗‖1 + ‖U trN j

2|N j | (O)U∗ − tr j
2

(UOU∗)‖1

≤ 2
n∑
j=1

‖O − trN j

2|N j | (O)‖1

≤ 2
n∑
j=1

∑
i∈N j

‖di O‖1

≤ 2L Inf1(O)

where in the second inequality above we used the definition of N j and that the partial
trace tr j is contractive in ‖ · ‖1 norm. The third inequality follows from simple triangle
inequality and monotonicity of the L1-norm under partial traces.

Finally, we find a bound on the variation of the L1-influence through a circuit U
in terms of the cost of a unitary U . We define the L1-circuit sensitivity of a unitary
U ∈ M2(C)⊗n as

CiS1(U ) := max‖O‖1=1

∣∣∣ Inf1(UOU∗) − Inf1(O)

∣∣∣ .

Theorem 6.4. The L1-circuit sensitivity of a unitary U ∈ M2(C)⊗n is a lower bound
on the circuit cost:

CiS1(U ) ≤ 8 Cost(U ) .
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Proof. Our proof follows similar steps to those leading to [BGJ+22, Theorem 12] (see
also [Eis21,MAVAV16]): we first show that, for a unitary Ut = e−i t H , where H acts
non-trivially on a set S of k qubits, and O with ‖O‖1 = 1,

| Inf1(Ut OU∗
t ) − Inf1(O)| = |

n∑
j=1

‖d j (O(t))‖1 − ‖d j (O)‖1|

= |
∑
j∈S

‖d j (O(t))‖1 − ‖d j (O)‖1|

≤
∑
j∈S

‖d j (O(t)) − d j (O)‖1

≤
∫ t

0

∑
j∈S

‖d j e
−isH [H, O]eisH‖1 ds

≤ 2kt ‖[H, O]‖1

≤ 4kt‖H‖‖O‖1

= 4kt ‖H‖ , (6.1)

where we denoted O(t) := Ut OU∗
t . Back to our original problem, we take a Trotter

decomposition of U such that for arbitrary small ε > 0,

‖U − VN‖ ≤ ε

where VN is defined as follows:

VN :=
N∏
j=1

Wj ,

Wη := exp
(

− i

N

m∑
j=1

r j
( η

N

)
h j

)
,

so that

Wη = lim
l→∞ W (l)

η ,

W (l)
η :=

(
W

1
l

η,1 . . .W
1
l

η,l

)l
,

Wη, j := exp
(

− i

N
r j
( η

N

)
h j

)
.

Next, we define Oη = WηOη−1W ∗
η with O0 = O . We have,

| Inf1(Oη) − Inf1(Oη−1)| = | Inf1(WηOη−1W
∗
η ) − Inf1(Oη−1)|

= lim sup
l→∞

| Inf1 (W (l)
η Oη−1W

(l)∗
η

)− Inf1(Oη−1)|

≤ lim sup
l→∞

l

N

m∑
j=1

8

l

∣∣∣r j( η

N

)∣∣∣
= 8

N

m∑
j=1

∣∣∣r j( η

N

)∣∣∣ ,
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where the inequality follows from (6.1) for k = 2 and t = 1
N . Summing over η, we get

| Inf1(UOU∗) − Inf1(O)| ≤ 8

N

N∑
η=1

m∑
j=1

∣∣∣r j( η

N

)∣∣∣ + | Inf1(UOU∗) − Inf1(VN OV ∗
N )|.

Since the circuit cost is expressed as Cost(U ) = inf(r j ) j limN→∞ 1
N

∑N
η=1
∑m

j=1∣∣∣r j( η
N

)∣∣∣, and since the influence of UOU∗ can be arbirarily well approximated by

that of VN OV ∗
N as N → ∞, the result follows.

Remark 6.5. Combined with our quantum Friedgut’s Junta theorem 3.11 the above re-
sults show that for any observable O with Inf1(O), Inf2(O) = O(1) and ‖O‖2 = O(1),
and for any unitary U with L = O(1), the output observable UOU∗ can be well ap-
proximated by a k-junta with k = O(1). Taking again the simple example constructed
in Remark 6.2, we recover the simple fact that, for a 1-qubit Pauli matrix evolving ac-
cording to a circuit of constant depth, the output observable will still be supported on
a constant size region. While it would be interesting to find some non-trivial situations
where our bounds still hold, we leave this question to future work.

6.2. LearningquantumBoolean functions. In this section, we use our quantum Friedgut’s
Junta theorem 3.11 to provide an efficient algorithm for learning quantum Boolean func-
tions. Our argument relies on the following quantum generalization of Goldreich–Levin
theorem (see [MO10a, Theorem 7.6]):

Theorem 6.6 (quantum Goldreich–Levin).Given an oracle access to a unitary operator
U on n qubits and its adjoint U∗, and given δ, γ > 0, there is a poly

(
n, 1

γ

)
log
( 1

δ

)
-time

algorithm which outputs a list L = {s1, . . . , sm} such that with probability 1 − δ: (1) if
|Ûs | ≥ γ then s ∈ L; and (2) for all s ∈ L, |Ûs | ≥ γ /2.

Once the quantum Goldreich–Levin algorithm has been used to output a list of Fourier
coefficients, the following lemma, which is also taken from [MO10a], can be used to
compute them:

Lemma 6.7. [MO10a, Lemma 7.4] For any quantum Boolean function A, and any s ∈
{0, 1, 2, 3}n it is possible to estimate Âs to within ±η with probability 1 − δ using
O
( 1

η2 log
( 1

δ

))
queries.

Combining Theorem 6.6, Lemma 6.7 with our Theorem 3.11, we directly arrive at
the following result:

Proposition 6.8 (Learning quantum Boolean functions). Let A ∈ M2(C)⊗n be a quan-
tum Boolean function. Given oracle access to A, with probability 1 − δ, we can learn A
to precision ε in L2 using poly(n, 4k, log

( 1
δ

)
) queries to A, where

k ≤ k(ε) ≡

⎧⎪⎪⎨
⎪⎪⎩

Inf1(A)2e
48 Inf2(A)

ε2 log 2 Inf2(A)
ε if Inf2(A) ≥ 1 ;

Inf1(A)2

Inf2(A)
e

48 Inf2(A)

ε2 log 2
√

Inf2(A)
ε else
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Proof. By Theorem 3.11, we have a quantum Boolean function B = 2−|T | trT (A) ∈
M2(C)⊗n supported on a region T c of k qubits such that ‖A− B‖2 ≤ ε, with k ≤ k(ε).
Next, we use the quantum Goldreich–Levin algorithm of Theorem 6.6 in order to output a
list L = {s(1), . . . , s(m)} ⊆ {0, 1, 2, 3}n of corresponding significant Fourier coefficients
Âs( j) , 1 ≤ j ≤ m. Denoting the operator AL :=∑s∈L Âsσs as well as the set of strings
s ∈ {0, 1, 2, 3}n with sT = 0 as L ′, we get

‖A − AL‖2 = ‖
∑
s∈Lc

Âsσs‖2

=
( ∑
s∈Lc

Â2
s

)1/2

=
( ∑
s∈(L∪L ′)c

Â2
s +

∑
s∈L ′\L

Â2
s

) 1
2

≤
( ∑
s∈L ′c

Â2
s +

∑
s∈L ′\L

Â2
s

) 1
2

≤
(
ε2 +

∑
s∈L ′\L

Â2
s

) 1
2

Moreover, by Theorem 6.6, we have that with probability 1− δ, if s /∈ L , then | Âs | ≤ γ .
Therefore we have that with that same high probability

‖A − AL‖2 ≤ (ε2 + 4k γ 2) 1
2 . (6.2)

It remains to evaluate the coefficients Âs for s ∈ L . This can be done within precision
±η with probability (1 − δ) using O

( 1
η2 log

( 1
δ

))
queries of A according to Lemma 6.7.

Moreover, since A is a quantum Boolean function, there are at most 4
γ 2 coefficients Âs

such that | Âs | ≥ γ
2 . Therefore, with high probability |L| ≤ 4

γ 2 . Choosing γ = ε2−k

so that ‖A − AL‖2 = O(ε), we need to evaluate 4/γ 2 = O(4k) such coefficients. The
result follows.

6.3. Learning quantum dynamics. Proposition 6.8 extends the domain of applicability
of Proposition 41 in [MO10b] where the authors provided an efficient algorithm to learn
the evolution of initially local observables under the dynamics generated by a local
Hamiltonian. While the proof of [MO10b, Proposition 41] requires the Lieb–Robinson
bounds in order to control the sets of sites of large influence in terms of the support of
the initial observable and the light-cone of H , our argument has the advantage of not
putting any geometric locality assumption of the quantum Boolean function A.

To further illustrate our result, we consider the following generalization of the setup
of [MO10a, Proposition 41]: let � be a finite set of size |�| = n endowed with a
metric d(·, ·). We suppose that there is a monotone increasing function g on [0,∞) and
constants C, D > 0 such that∣∣{y ∈ �

∣∣ d(x, y) ≤ r
}∣∣ ≤ g(r) ≤ C(1 + r)D, r ≥ 0, x ∈ � .
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The constant D typically denotes the spatial dimension in the case of a regular lattice.
We consider a quantum spin system on the point set � by assigning the Hilbert space
Hx ≡ C

2 to each site x ∈ �. For any subset T ⊆ �, the configuration space of spin
states on T is given by the tensor product HT = ⊗

x∈T Hx , and the algebra AT :=
B(HT ) of observables on T acts on the Hilbert space HT . We consider a Hamiltonian
H� =∑X⊆� hX , where hX ∈ B(HX ) is a local Hamiltonian, i.e. a self-adjoint operator
on HX , for each X ⊂ �. In what follows, we denote the diameter of a set Z ⊆ � by
diam(Z) := max{d(x, y)| x, y ∈ Z}. We further assume the following requirements
[MKN17, Assumption A]:

(i) There is a decreasing function f (R) on [0,∞), such that

max
x∈�

∑
Z�x

diam(Z)≥R

‖hZ‖ ≤ f (R) , R ≥ 0;

(ii) The following constant is independent of the system size n:

C0 := max
x∈�

∑
y∈�

∑
Z�x,y

‖hZ‖ < ∞ .

Strictly speaking, condition (ii) only makes sense when considering a family of Hamil-
tonians H� defined on an increasing family of sets � all included in a countable set �.
We will however favour simplicity over rigour here.

By [MKN17, Theorem 2.1], for any two one-local Pauli operators σsi , σs j with j �= i ,
and all R ≥ 1 we have that, given di j ≡ d(i, j)∥∥[eit H�σsi e

−i t H�, σs j
]∥∥

≤ 2evt−di j /R + 4t g(di j ) f (R) + 2C2 t R max{di j , R}D f (R) evt−di j /R

for any t ≥ 0, where v and C2 are positive constants independent of �, t, R, i and j .

Proposition 6.9. With the above assumptions, we further assume that there is R ≥ 1
such that for all i ∈ �, the constants

Ci :=
∑
j∈�

evt−di j /R + t g(di j ) f (R) + t R max{di j , R}D f (R) evt−di j /R

can be bounded by constants independent of the size n of the system. Then, with proba-
bility 1 − δ, we can learn the quantum Boolean functions eit H�σsi e

−i t H� to precision ε

in L2 using poly(n, exp(exp(ε−2| log(ε)|)), log
( 1

δ

)
) queries to e−i t H� and eit H� .

Proof. In view of the dependence of k on the influences in Proposition 6.8 on the
influences, it is enough to control Inf1(eit H�σsi e

−i t H�) and Inf2(eit H�σsi e
−i t H�) in-

dependently of the size of the system. We clearly have for any A ∈ M2(C)⊗n that
Inf1(A) ≤ ∑

j∈� ‖d j A‖ and Inf2(A) ≤ ∑
j∈� ‖d j A‖2. Moreover, by the following

well-known expression for the partial trace

1

2
tr j (A) ⊗ 1 j = 1

4

∑
s j

σs j Aσs j ,
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where σs j are Pauli matrices on site j , we have that

‖d j A‖ =
∥∥∥A − 1

4

∑
s j

σs j Aσs j

∥∥∥ = 1

4

∥∥∥3A −
∑

s j :σs j �=1

σs j Aσs j

∥∥∥ ≤ 1

4

∑
s j :σs j �=1

‖[A, σs j ]‖ .

Therefore,√
Inf2

(
eit H�σs(i)e

−i t H�
)
, Inf1 (eit H�σs(i)e

−i t H�
)

≤ 3

2

∑
j∈�

evt−di j /R + 2t g(di j ) f (R) + C2 t R max{di j , R}D f (R) evt−di j /R .

Remark 6.10. Our result in Proposition 6.8 has the advantage that it does not assume
in advance that A is (close to) a k-junta. This comes at the price that the dependence
of the query complexity on the approximating parameter ε scales doubly exponentially
with the latter. For the same reason, our dynamics learning method in Proposition 6.9
allows us to extend the class of Hamiltonians considered in [MO10a] to Hamiltonians
satisfying a weaker power-law decay, at the cost of a much worse dependence on ε. This
dependency on ε is also not new in classical setting [BT96,OS07].

Remark 6.11. In a recent article [CNY23], the authors provide an algorithm for learning

any unitary k-juntaU with precision ε and high probability which usesO
( k

ε
+ 4k

ε2

)
queries

to U (see Theorem 29), extending a previous quantum algorithm for learning classical
k-juntas reported in [AcS07]. While the dependence on ε is much tighter than ours, the
two results are incomparable, since we replaced the requirement that U is a k-junta by
the weaker condition that it has influences Inf1 U, Inf2 U = O(1).

6.4. Quantum isoperimetric type inequalities. Closely related to the concentration of
measure phenomenon and functional inequalities, isoperimetric inequalities provide
powerful tools in the analysis of extremal sets and surface measures. Given a metric
space (X, d) equipped with a Borel measure μ, the boundary measure of a Borel set A
in X with respect to μ is defined as [Led00,Led01,BGL14]

μ+(A) = lim
r→0

1

r
μ(Ar\A)

where we recall that Ar := {x ∈ X | d(x, A) < r} is the (open) r -neighbourhood of A.
The isoperimetric profile of μ corresponds to the largest function Iμ on [0, μ(X)] such
that, for any Borel set A ⊂ X with μ(A) < ∞,

μ+(A) ≥ Iμ(μ(A)) . (6.3)

In the case of the canonical Gaussian measure γ on the Borel sets of Rk with density
(2π)−k/2e−|x |2/2 with respect to the Lebesgue measure, with the usual Euclidean metric
induced by the norm |x | [Led01, Theorem 2.5]:

Iγ = �′ ◦ �−1
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where �(t) = (2π)−1/2
∫ t
−∞ e−x2/2dx is the distribution function of the canonical

Gaussian measure in dimension one. Moreover, equality holds in (6.3) if and only if A
is a half-space in R

k . Moreover, as a → 0, we have

�′ ◦ �−1(a) ∼ a
(

2 log
1

a

) 1
2
. (6.4)

Similar isoperimetric inequalities were also derived for hypercontractive, log-concave
measures [BL96] (see also [Mil09,Mil10]). When k = 1, the boundary measure of a
Borel set A can be expressed in terms of the geometric influence ‖ f ′

A‖1 of a smooth
approximation fA of the characteristic function of A. In other words, μ+(A) ≈ Inf1( f A).

This observation allows us to generalize the notion of isoperimetric inequality in
the context of smooth Riemannian manifolds to discrete settings. In the context of the
classical Boolean hypercube �n , the edge isoperimetric inequality states that for any m,
among them-element subsets of the discrete cube, the minimal edge boundary is attained
by the set of m largest elements in the lexicographic order [Ber67,Har64,Har76,Lin64].
In particular, for any set A ⊂ �n of vertices

μn(∂A) ≡ Inf( f A) ≥ 2μn(A) log2

(
1

μn(A)

)
, (6.5)

where we recall that μn is the uniform probability measure on �n , and f A corresponds
to the characteristic function of set A. Here, ∂A simply corresponds to the set of vertices
in the complement of A that are adjacent to A. This inequality is moreover tight when
|A| = 2d for some d ∈ N (take for instance A to be the vertices of a d-dimensional
subcube). We notice the similarity with (6.4) up to the change of power in the logarithmic
factor.

Similarly, consider a finite graph G = (V, E) with set of vertices V and set of edges
E with bounded degree d (i.e. each vertex has at most a fixed number d adjacent edges).
The graph G is said to satisfy the linear isoperimetric inequality if

Card(∂A) ≥ h Card(A) ,

for some h > 0 and all subsets A of V such that Card(A) ≤ 1
2 Card(V ). The so-called

Cheeger constant h of the graph can be related to the spectral gap λ of the graph Laplacian
via Cheeger’s and Buser’s inequalities. Here, Card(∂A) plays the role of μ+(A) and can
be once again related to a notion of influence. The linear isoperimetric inequality can
be understood as a weaker form of isoperimetry than the one derived for log-concave,
hypercontractive measures, and hence only implies exponential concentration for the
normalized counting measure on G. Moreover, one should not expect to recover the
stronger Gaussian type isoperimetry in this setting, since the hypercontractivity constant
for graph Laplacians is known to scale with the size of the graph [BT06].

Linear isoperimetric inequalities were also considered in the more general context of
Markov chains over finite sample spaces. For instance, in the case of a continuous time
Markov chain with transition rates Q(x, y) and unique reversible probability measure
π with non-negative entropic Ricci curvature, [EF18] established that for any set A,

π+(∂A) ≥ 1

3

√
Q∗λ π(A)(1 − π(A))
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where λ is the spectral gap of Q, Q∗ = min{Q(x, y) : Q(x, y) > 0} and π+(∂A) =∑
x∈A,y∈Ac Q(x, y)π(x) denotes the perimeter measure of A. We also note that exten-

sions of such inequalities in the quantum setting were obtained in [TKR+10].
Interestingly, such inequalities are well-known to be equivalent to an L1-Poincaré

inequality. It is then natural to ask whether one could recover the type of isoperimetry
found for the Gaussian measure and uniform measure on the hypercube in other discrete
and quantum settings by further assuming hypercontractivity of the (quantum) Markov
chain. This is indeed the case, as we prove by a direct appeal to Talagrand’s inequality:

Theorem 6.12 (Qubit isoperimetric type inequality). For any projection PA onto a sub-
space A ⊂ (C2)⊗n,

max
1≤ j≤n

Inf1
j (PA) ≥ C

n
τ(A)(1 − τ(A)) log

(
n

τ(A)(1 − τ(A))

) 1
2

. (6.6)

for some universal constant C, where τ(A):=2−n tr(PA).

Proof. As mentioned in [CEL12], this is a simple corollary of Talagrand’s inequality
Theorem 3.2 after assuming that

Inf1
j (PA) ≤

(τ(A)(1 − τ(A))

n

) 1
2

for every j ∈ {1, . . . , n}, since otherwise the result directly holds.

Remark 6.13. Similar to the quantum KKL conjecture of Montanaro and Osborne, it is
reasonable to conjecture the following L2 variant of (6.6)

max
1≤ j≤n

Inf2
j (PA) ≥ C

n
τ(A)(1 − τ(A)) log

(
n

τ(A)(1 − τ(A))

)
. (6.7)

We end this section by remarking the following L1-Poincaré inequality that is stronger
than Theorem 3.1. See [ILvHV18] for the discussions on the classical Boolean cubes.

Theorem 6.14. For all A ∈ M2(C)⊗n, one has

‖A − 2−n tr(A)‖1 ≤ π

∥∥∥∥∥∥∥
⎛
⎝ n∑

j=1

d j (A)∗d j (A)

⎞
⎠

1/2
∥∥∥∥∥∥∥

1

≤ √
2π‖�(A)1/2‖1 . (6.8)

Remark 6.15. Using the inequality

‖X + Y‖p
p ≤ ‖X‖p

p + ‖Y‖p
p, 0 < p < 1

for p = 1/2, we get∥∥∥∥∥∥∥
⎛
⎝ n∑

j=1

d j (A)∗d j (A)

⎞
⎠

1/2
∥∥∥∥∥∥∥

1

≤
n∑
j=1

∥∥∥(d j (A)∗d j (A)
)1/2
∥∥∥

1
=

n∑
j=1

∥∥d j (A)
∥∥

1 .

So (6.8) is stronger than (3.1) up to the multiplicative constant π .
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Proof of Theorem 6.14. Recall that we have proved (3.7)

n∑
j=1

d j (A)∗d j (A) ≤ 2�(A) .

So we have the second inequality of (6.8) by operator monotonicity of x �→ x1/2. Now let
us prove the first inequality of (6.8). We denote by (A, B) �→ 〈A, B〉 := 2−n tr(A∗B)

the normalized Hilbert–Schmidt inner product. By semigroup interpolation (2.4) and
duality,

‖A − 2−n tr(A)‖1 = sup
‖B‖≤1

|〈A − 2−n tr(A), B〉|

(2.4)= sup
‖B‖≤1

∣∣∣∣
∫ ∞

0
〈LPt (A), B〉dt

∣∣∣∣
≤ sup

‖B‖≤1

∫ ∞

0

n∑
j=1

∣∣〈d j A, d j Pt B〉∣∣ dt .
Now recall that we have the following inequality:∣∣∣∣∣∣

n∑
j=1

〈X j ,Y j 〉
∣∣∣∣∣∣ ≤
∥∥∥∥∥∥∥
⎛
⎝ n∑

j=1

X∗
j X j

⎞
⎠

1/2
∥∥∥∥∥∥∥

1

·
∥∥∥∥∥∥

n∑
j=1

Y ∗
j Y j

∥∥∥∥∥∥
1/2

. (6.9)

To prove it, form the operators X := ∑n
j=1 X j ⊗ | j〉〈1| and Y := ∑n

j=1 Y j ⊗ | j〉〈1|.
Then Hölder’s inequality gives

‖X∗Y‖1 ≤ ‖X‖1 · ‖Y‖ = ‖ (X∗X
)1/2 ‖1 · ‖Y ∗Y‖1/2 ,

which, together with ∣∣∣∣∣∣
n∑
j=1

〈X j ,Y j 〉
∣∣∣∣∣∣ ≤
∥∥∥∥∥∥

n∑
j=1

X∗
j Y j

∥∥∥∥∥∥
1

= ‖X∗Y‖1 ,

yields (6.9). Now apply (6.9) to (X j ,Y j ) = (d j A, d j Pt B) to get∣∣∣∣∣∣
n∑
j=1

〈d j A, d j Pt B〉
∣∣∣∣∣∣ ≤
∥∥∥∥∥∥∥
⎛
⎝ n∑

j=1

d j (A)∗d j (A)

⎞
⎠

1/2
∥∥∥∥∥∥∥

1

·
∥∥∥∥∥∥

n∑
j=1

d j (Pt B)∗d j (Pt B)

∥∥∥∥∥∥
1/2

.

To conclude, we use Lemma 3.4 together with∫ ∞

0

dt√
et − 1

= π .

7. Discussions

We end this paper with the following discussions.
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7.1. Equivalence between log-Sobolev and Talagrand’s inequalities . In Theorem 4.3,
we derived a general noncommutative extension of Talagrand’s inequality. Our proof
requires the joint use of the hypercontractivity inequality (H4) with the intertwining
relation (H5). It is hence legitimate to ask whether, in return, such Talagrand-type in-
equalities imply hypercontractivity. This question was answered in the positive in the
classical, continuous setting in [BH99, Proposition 1], and later on for discrete spaces in
[Vö16]. It would be interesting to consider the similar problem in the quantum setting,
which we leave to future work.

7.2. Learning low-degree quantum Boolean functions. An alternative notion of com-
plexity than the support condition for k-juntas is that of the degree: a bounded function
f : �n → [−1, 1] is said to have degree at most d ∈ {1, . . . , n} if for any string
s ∈ {−1, 1}n with Hamming weight |s| > d, the Fourier coefficient f̂ (s) = 0. In
particular, Boolean functions of degree at most d are d2d−1 juntas [NS94]. As a main
tool for the result, the authors derived a simple lower bound on the degree of the func-
tion in terms of its total influence. This observation can be used in conjunction with
the Goldreich–Levin algorithm in order to devise a learning algorithm which makes
poly(n) random queries to f . More efficient algorithms were proposed in the past
decades [LMN93,IRR+21,Man94]. However all these algorithm have a query com-
plexity scaling polynomially with n. In the recent article [EI22], the authors show that
any low degree Boolean function can be approximated to ε precision in L2 with prob-
ability 1 − δ from O

(
poly

( 1
ε
, d
)

log
( n

δ

))
random queries to the function. While this

result is incomparable to the ones we report in Sect. 6.2, it would be interesting to find
a quantum extension of it. The result of [EI22] uses the so-called Bohnenblust–Hille
inequalities. The study of Bohnenblust–Hille inequalities has a long history and these
inequalities have found many applications in various problems. A Boolean analogue
was known [DMoP19] and has led to interesting applications to learning theory [EI22].
Here we formulate and conjecture a quantum analogue of Bohnenblust–Hille inequality
and explain why it is useful to learning problems in the quantum setting.

Conjecture 7.1. Fix d ≥ 1. Then there exists Cd > 0 depending only on d such that for
all n ≥ 1 and all A ∈ M2(C)⊗n of degree at most d i.e.

A =
∑

s∈{0,1,2,3}n :|s|≤d

Âsσs,

we have ⎛
⎝ ∑

s∈{0,1,2,3}n :|s|≤d

| Âs | 2d
d+1

⎞
⎠

d+1
2d

≤ Cd‖A‖ . (7.1)

where the degree |s| of a string s is defined as the number of components that are different
from 0.

If Conjecture 7.1 holds, we expect that it can be used in a similar fashion as in [EI22]
in order to devise a highly efficient algorithm for learning quantum Boolean functions
of small degree in terms of query complexity.

In fact, this conjecture has been resolved after an earlier version of this paper was
post out. It was first resolved by Huang, Chen and Preskill [HCP23]. Later on, another
proof was found by Volberg and Zhang [VZ23].
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Appendix A. Proofs from Section 4

Proof of Lemma 4.1. Let F(s) = Ps(Pt−s(x)∗Pt−s(x)). Since x ∈ A, the map F is
σ -weakly differentiable on [0, t] and

F ′(s) = −PsL(Pt−s(x)
∗Pt−s(x)) + Ps((LPt−s(x))

∗Pt−s(x)) + Ps(Pt−s(x)
∗LPt−s(x))

= 2Ps�(Pt−s(x)).

Hence if ω ∈ M∗ is positive, then

ω(Pt (x
∗x) − Pt (x)

∗Pt (x)) = ω(F(t) − F(0))

=
∫ t

0
ω(F ′(s)) ds

= 2
∫ t

0
ω(Ps�(Pt−s(x))) ds

≥ 2ω(�(Pt (x)))
∫ t

0
e2Ks ds

= eK (t)ω(�(Pt (x))).

This implies the first inequality. The second inequality follows from the fact that Pt is
unital and positive.
The last part is easy to see for K ≥ 0. If K < 0 and 0 ≤ t ≤ − 1

2K , then

eK (t) = −1 − e2Kt

K
≥ 2(1 − e−1)t ≥ t.

http://creativecommons.org/licenses/by/4.0/
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Proof of Theorem 4.3. As a consequence of (H3),

‖i2(x − ϕ(x)1)‖2 ≤ 1

1 − e−2λT
(‖i2(x)‖2 − ‖i2(PT (x))‖2).

Since (P(2)
t )t≥0 is a symmetric contraction semigroup on L2(M, ϕ), the map t �→

‖i2(Pt (x))‖2 is differentiable and

‖i2(x)‖2 − ‖i2(PT (x))‖2 = 2
∫ T

0
〈i2(Pt (x)), i2(LPt (x))〉 dt

= 2
∫ T

0

∑
j∈J

‖i2(d j (Pt (x)))‖2 dt

= 4
∫ T/2

0

∑
j∈J

‖i2(d j (P2t (x)))‖2 dt,

where the second to last step used (H2-1).
By (H5) and (H4),

‖i2(d j (P2t (x)))‖ ≤ e−μt‖i2(Pt (d j (Pt (x))))‖ ≤ e−μt‖i p(t)(d j (Pt (x)))‖
with p(t) = 1 + e−2αt .
By interpolation,

‖i p(t)(d j (Pt (x)))‖ ≤ ‖i1(d j (Pt (x)))‖1/p(t)‖d j (Pt (x))‖1−1/p(t). (A.1)

To the first factor we apply (H5) again and the contractivity of P(1)
t to get

‖i1(d j (Pt (x)))‖ ≤ e−μt‖i1(Pt (d j (x)))‖ ≤ e−μt‖i1(d j (x))‖. (A.2)

To bound the second factor in (A.1) in the range
[
0, 1

2K−

]
, we use Lemma 4.1 and (H2-2)

to obtain

‖d j (Pt (x))‖ ≤ M‖�(Pt (x))‖1/2 ≤ M√
t
. (A.3)

If we plug (A.2) and (A.3) into (A.1), we obtain

‖i p(t)(d j (Pt (x)))‖ ≤ Me−μt/p(t)t−(1−1/p(t))/2‖i1(d j (x))‖1/p(t)

for 0 ≤ t ≤ 1/2K−. Therefore,

‖i2(x)‖2−‖i2(PT (x))‖2

≤ 4M
∫ T/2

0
e−2μ(1+1/p(t))t t−(1−1/p(t))

∑
j∈J

‖i1(d j (x))‖2/p(t) dt

= 4M
∑
j∈J

‖i1(d j (x))‖
∫ T/2

0
e−2μ(1+1/p(t))t t−(1−1/p(t))‖i1(d j (x))‖2/p(t)−1 dt

provided T ≤ 1/K−. With T = min{2, 1/K−, 1/α}, the result follows from Lemma
3.3.
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Proof of Theorem 4.5. By Theorem 4.3 there exists a constant C > 0 with dependence
as indicated in the statement of this theorem such that

1/C ≤
∑
j∈J

Inf1
j (x)(1 + Inf j (x))

(1 + log+(1/ Inf1
j (x)))

1/2

for all x ∈ A with ‖i2(x)‖ = 1, ‖x‖ ≤ 1 and ϕ(x) = 0.
Now the conclusion follows from Lemma 3.8.

Proof of Theorem 4.9. The proof follows the same lines as the one of Theorem 3.11.
Let us first consider the case Inf2(x) ≥ 1. Let I = { j ∈ J | Inf1

j (x) ≤ η} for some
number η > 0. By the triangle inequality and the contractivity of EI , we have

‖i2(x) − EI(i2(x))‖ ≤ ‖i2(x − Pt (x))‖ + ‖(id − EI)(i2(Pt (x)))‖
+ ‖EI(i2(x − Pt (x)))‖

≤ 2‖i2(x − Pt (x))‖ + ‖(id − EI)(i2(Pt (x)))‖.
It follows from Lemmas 4.7 and 4.8 that

‖i2(x) − EI(i2(x))‖ ≤ 2
√
t Inf2(x) +

e−μt

ν
(η Inf1(x))q(t)/2 Inf2(x)(1−q(t))/2

with q(t) = 1−e−2αt

1+e−2αt . For

t = ε2

16 Inf2(x)
, η =

(
νε

2eμ−t

)2/q(t)

Inf1(x) Inf2(x)(1−q(t))/q(t)

we obtain ‖i2(x) − EI(i2(x))‖ ≤ ε.
Moreover, by definition of I, we have Inf1

j (x) > η for every j ∈ J \ I. Thus

|J \ I| ≤ Inf1(x)

η
=
(

2eμ−t

νε

)2/q(t)

Inf1(x)2 Inf2(x)(1−q(t))/q(t).

The elementary inequality r ≤ er − 1 for r ≥ 0 together with Inf2(x) ≥ 1 and ε ≤ 2/ν

implies

2

q(t)
≤ e2αt + 1

αt
= 16 Inf2(x)

αε2

(
exp

(
2αε2

16 Inf2(x)

)
+ 1

)

≤ 16 Inf2(x)

αε2

(
exp
( α

2ν2

)
+ 1
)

.

Let C = 16
α

(
exp
(

α
2ν2

)
+ 1
)

. Hence

|J \ I| ≤
(

2eμ−t

νε

)C Inf2(x)/ε2

Inf1(x)2 Inf2(x)(1−q(t))/q(t)

= eCμ−
(

2

νε

)C Inf2(x)/ε2

Inf1(x)2 Inf2(x)(1−q(t))/q(t).
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Furthermore,

1 − q(t)

q(t)
≤ 1

αt
= 16 Inf2(x)

αε2 ≤ C Inf2(x)

ε2 .

Altogether,

|J \ I| ≤ Inf1(x)2 exp

(
Cμ− +

C Inf2(x)

ε2 log
2 Inf2(x)

νε

)
.

The bound in the case Inf2(x) < 1 follows by rescaling.
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