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A B S T R A C T

We consider how a population of 𝑁 haploid individuals responds to directional selection on standing variation,
with no new variation from recombination or mutation. Individuals have trait values 𝑧1,… , 𝑧𝑁 , which are
drawn from a distribution 𝜓 ; the fitness of individual 𝑖 is proportional to 𝑒𝑧𝑖 . For illustration, we consider
the Laplace and Gaussian distributions, which are parametrised only by the variance 𝑉0, and show that for
large 𝑁 , there is a scaling limit which depends on a single parameter 𝑁

√

𝑉0. When selection is weak relative
to drift (𝑁

√

𝑉0 ≪ 1), the variance decreases exponentially at rate 1∕𝑁 , and the expected ultimate gain in
log fitness (scaled by

√

𝑉0), is just 𝑁
√

𝑉0, which is the same as Robertson’s (1960) prediction for a sexual
population. In contrast, when selection is strong relative to drift (𝑁

√

𝑉0 ≫ 1), the ultimate gain can be found by
approximating the establishment of alleles by a branching process in which each allele competes independently
with the population mean and the fittest allele to establish is certain to fix. Then, if the probability of
survival to time 𝑡 ∼ 1∕

√

𝑉0 of an allele with value 𝑧 is 𝑃 (𝑧), with mean 𝑃 , the winning allele is the fittest of
𝑁𝑃 survivors drawn from a distribution 𝜓𝑃∕𝑃 . The expected ultimate change is ∼

√

2 log(1.15𝑁
√

𝑉0) for a
Gaussian distribution, and ∼ − 1

√

2

[

log
(

0.36
𝑁
√

𝑉0

)

− log
(

− log
(

0.36
𝑁
√

𝑉0

))]

for a Laplace distribution. This approach
also predicts the variability of the process, and its dynamics; we show that in the strong selection regime, the
expected genetic variance decreases as ∼ 𝑡−3 at large times. We discuss how these results may be related to
selection on standing variation that is spread along a linear chromosome.
We consider a simple and fundamental problem: how does a large
asexual population respond to selection? We assume that selection acts
steadily on standing variation, with no input from either mutation
or recombination. Thus, the only parameters are the number, 𝑁 , of
individuals, and their fitnesses.

It is surprising that, despite its simplicity, this problem has not (to
our knowledge) been addressed before. This may be because popula-
tion genetics deals mainly with competition between two alleles per
locus, whilst quantitative genetics has focused on genetic variance in
sexual populations. Two bodies of work lie closest to the problem
studied here. Robertson (1960) showed that directional selection on
standing variation under the infinitesimal model causes an ultimate
response, i.e., a total change in mean, equal to the genetic population
size (i.e. 2𝑁 for 𝑁 diploid individuals) times the change in the first
generation. Moreover, he showed that the result implicitly assumes that
allele frequencies evolve almost neutrally. Paixão and Barton (2016)
extended this result to arbitrary epistasis, and also considered the
opposite regime of strong selection. However, these results all apply
to a multitude of freely recombining loci in a sexual population.
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E-mail address: nick.barton@ist.ac.at (N. Barton).
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More recently, there has been a mass of work on fitness waves: the
steady increase in the fitness of a population as it accumulates bene-
ficial mutations. This work, which initially sought to explain the rate
of fitness gain in serial transfer experiments with RNA viruses (Novella
et al., 1995), showed that the long-term dynamics of the fitness dis-
tribution in an asexual population can be described as a travelling
wave with a constant fitness variance (Tsimring et al., 1996; Rouzine
et al., 2003). Similar models also apply to the converse problem,
of the steady accumulation of deleterious mutations through Muller’s
Ratchet (Haigh, 1978; Rouzine et al., 2008). A key challenge is to ac-
count for the stochastic loss or establishment of very fit lineages at the
leading edge of the wave, which is what ultimately maintains constant
variance despite continual mutational input. Most of this work thus
relies on some kind of ‘semi-deterministic’ approximation of the fitness
wave, patching together a deterministic description of evolution in the
bulk with a stochastic treatment of the dynamics of new mutants at the
leading edge; this allows for approximate predictions for the speed of
the wave, its variance and the genealogies of populations described by
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such waves (Desai and Fisher, 2007; Good et al., 2012; Fisher, 2013;
Melissa et al., 2022). In addition, some rigorous results have also been
obtained under more specialised models of selection (Brunet et al.,
2007; Bérard and Gouéré, 2010; Schweinsberg, 2017a,b; Cortines and
Mallein, 2017).

However, neither of these bodies of work apply to the transient
response to selection on standing variation, in the absence of mutation
or recombination. More concretely, suppose that initially, there are 𝑁
lleles, with fitness values drawn from some distribution. If selection
ere perfectly efficient, the fittest of these would fix, and the ultimate
ain in fitness would follow an extreme value distribution. However,
ven with rather strong selection, rare beneficial alleles are likely to
e lost in the first few generations just by chance, and so, the winning
llele will be the survivor from this early stochastic phase. Here we
how that if the initial fitness distribution is Gaussian, the winning
llele is typically only a few standard deviations above the mean, even
f the population is very large; fat-tailed distributions would allow for
arger but more erratic responses to selection.

Taken literally, such a model would apply to the short-term evolu-
ion of an asexual population, but it may also be used to approximate
election on tightly linked alleles in a sexual population. When aver-
ged over the genome of an outcrossing eukaryote, selection is likely
o be weaker than recombination. However, selection may be concen-
rated on variation (both regulatory and coding) at a single gene. For
xample, in Drosophila, a 10kb region would experience recombination
t a rate 10−4; such a region might contain hundreds of segregating
ites, and hence an extremely large number of haplotypes. If the selec-
ive differences between these are greater than 10−4, then favourable
ombinations will increase intact and may even fix in small popula-
ions (Sachdeva and Barton, 2018) (though fine-scale recombination
ill generate fitter combinations in large populations). Thus, even

hough it neglects recombination, an asexual model may still be a useful
tarting point for understanding how selection acts when concentrated
n small regions of a sexual genome.

In the following, we will focus on simple distributions of log fit-
ess values, parametrised by just the variance 𝑉0 (the mean can be

arbitrarily set to zero, since only relative fitness matters). We first use
simulations to confirm that we can rescale time and selective value
relative to the standard deviation

√

𝑉0 of fitness; the outcome then
depends on a single parameter, 𝑁

√

𝑉0 (which corresponds to 𝑁𝑠 in
classical models). When 𝑁

√

𝑉0 is small, variance is lost mainly by
andom drift, over ∼ 𝑁 generations. Because the increase in mean due
o selection equals the genetic variance in fitness (Fisher, 1930), in this
uasi-neutral parameter regime, the ultimate response is 𝑁 times the
hange in the first generation, analogous to Robertson’s (1960) result.
owever, when 𝑁

√

𝑉0 is large, variance is lost much faster, through
he increase of exceptionally fit alleles in the nose of the initial fitness
istribution. We show that in this regime, the outcome can be predicted
y finding the value of the fittest survivor at some intermediate time
= 𝑡

√

𝑉0 ∼ 1, using a branching process approximation. This approach
ives us both the distribution of the ultimate response, and the rate of
oss of fitness variance.

. Model

The population consists of 𝑁 haploid individuals associated with
og fitness values {𝑧𝑖}, 𝑖 = 1,…𝑁 , drawn from some initial distribution
(𝑧) with mean zero. Individuals reproduce asexually under a Wright-
isher model; an individual’s chance of being chosen as a parent is
roportional to 𝑒𝑧. For the most part, we assume that log fitness values
re drawn from a Gaussian distribution with variance 𝑉0; however, we
lso consider heavier tailed distributions that are much more likely to
enerate highly fit individuals.

We neglect mutation throughout, since the aim is to understand
esponse from standing genetic variation. Thus, in the long run, i.e., as
130

→ ∞, one of the alleles present at 𝑡 = 0 must fix, resulting in a net (
hange 𝛥∞𝑧 in mean log fitness, which is equal to the value of this
allele. Here, we aim to understand how fixation probabilities and the
dynamics of fixation depend on the initial distribution of fitness values
and 𝑁 .

Scaling limit. This model has only two parameters, 𝑁 and
√

𝑉0, which
have dimensions of time and inverse time respectively. Thus, in the
scaling limit – 𝑁 → ∞,

√

𝑉0 → 0, with 𝑁
√

𝑉0 constant – evolutionary
dynamics (expressed in terms of scaled time 𝑇 = 𝑡

√

𝑉0 and scaled log
fitness 𝑍 = 𝑧∕

√

𝑉0) should depend only on a single non-dimensional
parameter 𝑁

√

𝑉0. A scaling limit should exist for any initial distribu-
tion as long as it has finite variance. Moreover, in the scaling limit,
the diffusion approximation should apply, and details of reproduction
matter only via an effective population size; therefore, we expect
that our results would extend more generally beyond Wright-Fisher
reproduction.

Fig. 1(a) shows the expected ultimate change E[𝛥∞𝑍] in mean
log fitness as a function of 𝑁

√

𝑉0 for various 𝑁 (different symbols),
where 𝑍 = 𝑧∕

√

𝑉0 is scaled relative to the initial standard deviation
of fitness. Results are shown for two different initial distributions —
Gaussian (𝜓(𝑍) = 𝑒−𝑍2∕2∕

√

2𝜋; shown in shades of blue) and Laplace
r bi-exponential (𝜓(𝑍) = 𝑒−

√

2|𝑍|∕
√

2; shades of red) both of which
are symmetric about 𝑍 = 0; however, our results also apply more
generally, e.g. for asymmetric distributions. The expectation is obtained
by averaging over 103-104 simulation replicates for each parameter
combination. Fig. 1(b) quantifies the variability of net advance across
replicates by plotting the coefficient of variation (CV)— the ratio of
the standard deviation to the expectation of the ultimate change —
for the same parameters as in Fig. 1(a). Solid vs. dashed black lines
show refined vs. crude analytical predictions for ultimate response in
the strong selection (𝑁

√

𝑉0 ≫ 1) regime in the scaling (𝑁 → ∞) limit;
dashed coloured lines show crude predictions for finite 𝑁 . Finely dotted
black lines show the weak selection (𝑁

√

𝑉0 ≪ 1) expectations. The
various predictions will be developed and described below.

Both the expected ultimate change and its CV follow the scaling
closely, and depend only on 𝑁

√

𝑉0 when 𝑁 is large. However, the
convergence to the scaling limit (with increasing 𝑁) is slower for larger
values of 𝑁

√

𝑉0 and if the initial distribution has heavier tails.
Fig. 1 points towards distinct behaviours of the selection response in

parameter regimes with 𝑁
√

𝑉0 ≪ 1 (corresponding to low initial fitness
variance and weak selection) vs. 𝑁

√

𝑉0 ≫ 1 (high initial variance and
strong selection) . We first describe these behaviours qualitatively and
then outline a branching process approximation which yields accurate
predictions (solid black and dashed coloured lines in Fig. 1) for the
distribution of the ultimate change when 𝑁

√

𝑉0 ≫ 1.

esponse under weak selection. For 𝑁
√

𝑉0 ≪ 1, the expected ultimate
(scaled) change is close to 𝑁

√

𝑉0 (shown by the finely dotted black
curve in Fig. 1(a)), regardless of the shape of the initial distribution.
This is precisely the net advance under directional selection in a sexual
population under the infinitesimal model (Robertson, 1960). It can be
understood in the same way, by noting that under weak selection, fit-
ness variance decays neutrally, i.e., by 1∕𝑁 per generation on average
(see also Fig. 4(a)), and that the expected change in 𝑧 per generation
is equal to the variance of 𝑧. Therefore, the total change in mean is
E[𝛥∞�̄�] =

∑∞
𝑡=0 E[𝑉𝑡] = 𝑉0

∑∞
𝑡=0

(

1 − 1
𝑁

)𝑡
= 𝑁𝑉0; scaling relative to the

initial standard deviation gives 𝑁
√

𝑉0.
However, unlike in sexual populations with very many loci, here

(i.e., in the asexual case), the ultimate change is determined by the
fitness of the single allele that fixes; it is thus highly variable across
replicates, being 𝑁

√

𝑉0 only on average. In fact, the variance of the ul-
imate (unscaled) change is approximately equal to the initial variance
0 of log fitness values (Good and Desai, 2013), such that the variance
ithin populations is converted entirely to variance across replicates
ver time. Consequently, the CV of the ultimate change is 1∕E[𝛥∞�̄�]
Fig. 1(b)), where 𝛥 𝑍 = 𝛥 𝑧∕

√

𝑉 is the scaled response.
∞ ∞ 0
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Fig. 1. (a) Expected ultimate (scaled) change E[𝛥∞𝑍] in mean log fitness vs. 𝑁
√

𝑉0 and (b) the coefficient of variation (CV) of the ultimate change vs. its expected value, for
arious 𝑁 (different symbols). The plots show results for Gaussian (shades of blue) and Laplace (shades of red) initial distributions. Symbols show simulation results; finely dotted
lack lines depict E[𝛥∞𝑍] = 𝑁

√

𝑉0 in (a) and 𝐶𝑉 = 1∕E[𝛥∞𝑍] in (b), which describe response under weak selection (𝑁
√

𝑉0 ≪ 1). Solid vs. dashed black lines depict scaling
limit (𝑁 → ∞) predictions in the strong selection (𝑁

√

𝑉0 ≫ 1) regime that respectively account for or neglect adaptation in the bulk. These are obtained by integrating over the
distribution of ultimate response in Eq. (5), and approximating the survival probability of fit alleles using either Eq. (3) (with 𝑇∗ set to 1 for the Gaussian and to 0.625 for the
aplace distribution) which accounts for adaptation of the bulk or using 𝑃 ≈ 2𝑍 which neglects bulk adaptation. Dashed coloured lines in (a) show finite 𝑁 predictions for the
ltimate response, that are obtained by integrating over Eq. (12) in Appendix. Note that we do not show finite 𝑁 predictions for the CV, as these are essentially indistinguishable
rom the scaling limit predictions (solid black lines in (b)).
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esponse under strong selection. By contrast, for 𝑁
√

𝑉0 ≫ 1, the ul-
imate change is much lower than 𝑁

√

𝑉0 and depends strongly on
the initial distribution 𝜓(𝑧), being larger for longer-tailed distributions.
As we show below, in this regime, selection response is governed by
exceptionally fit alleles in the nose of the distribution; the fittest of
these to escape initial stochastic loss is the one to fix. For instance,
with a Gaussian initial distribution and for 𝑁

√

𝑉0 in the range 10 to
000, the allele that eventually fixes has (on average) a fitness value
etween 2 and 3 standard deviations above the mean, while for a
aplace initial distribution, somewhat fitter alleles (between 3 and 7
tandard deviations above the mean) fix (Fig. 1(a)).

With increasing 𝑁
√

𝑉0, response also becomes more consistent
cross replicates — the CV of the ultimate change is smaller than 1
n this regime, though still non-zero in the scaling limit (Fig. 1(b)).
he extent of variability now depends on the shape of the initial
istribution, with longer-tailed distributions resulting in (on average)
igher but more variable response.

There is also a marked dependence on population size in this
egime, with deviations from the scaling limit noticeable even for 𝑁 in
he tens of thousands, e.g., in the case of the Laplace initial distribution.
his can be understood by noting that the ultimate change must be

imited by the fitness of the fittest allele present in the population.
his in turn follows a Gumbel distribution with a mean that scales
s
√

log(𝑁) and log(𝑁) for Gaussian and Laplace initial distributions
espectively. Thus, for the scaling prediction to hold, log(𝑁) must be

sufficiently large that the fitness of the fittest allele present at 𝑡 = 0 is
not limiting. A related observation (which we discuss in detail later) is
that the ultimate change does nevertheless reach an asymptotic limit
which depends only on 𝑁

√

𝑉0, even though the fitness of the fittest
llele present at 𝑡 = 0 diverges (albeit weakly) with increasing 𝑁 .

We can understand the switch between the weak selection and
strong selection regimes by noting that alleles in the nose of the
distribution – with fitness values a few standard deviations above the
mean – survive initial stochastic loss with a probability that is (

√

𝑉0)
and establish, i.e., attain appreciable numbers (conditional on survival),
over a timescale that is (1∕

√

𝑉0). On the other hand, drift erodes
diversity in the bulk of the distribution over ∼ 𝑁 generations. Thus, the
fittest surviving allele will dominate before drift has eroded diversity
only if 1∕

√

𝑉0 ≪ 𝑁 , i.e., 𝑁
√

𝑉0 ≫ 1; its subsequent trajectory as it
utcompetes all other alleles is close to deterministic. Conversely, if the
wo timescales are comparable, i.e., 𝑁

√

𝑉0 ≲ 1, all alleles, regardless
of their fitness, are affected appreciably by drift over the entire time
131

S

taken for one allele to fix and the dynamics do not separate neatly into
a stochastic and deterministic phase.

This is illustrated in Fig. 2, which shows the distribution of fitness
values at various time instants for 𝑁

√

𝑉0 = 0.25 (top) and 𝑁
√

𝑉0 =
100 (bottom). As a reference point, the figures also show a Gaussian
distribution whose variance declines over time solely due to drift
(solid blue curves). In the small 𝑁

√

𝑉0 regime (top row), the fitness
distribution always lies roughly within this Gaussian envelope, though
there is considerable stochastic variation across replicates, especially
at long times when only a few alleles survive. By contrast, in the large
𝑁
√

𝑉0 regime (bottom row), the (bulk of the) distribution is Gaussian
only till 𝑡∕𝑁 ∼ 0.01 (which corresponds here to

√

𝑉0𝑡 = 1), by which
ime a winning allele starts to emerge. In this example, the winning
llele is approximately 3.3 standard deviations above the mean, which
orresponds to deterministic growth by a factor of ∼ 𝑒3.3 ≈ 27 during

this period; however, growth conditional on survival is much faster and
there are already 569 copies of this allele by 𝑡∕𝑁 = 0.01, so that it
rows more or less deterministically at subsequent times and has fixed
y 𝑡∕𝑁 = 0.17.

. A branching process approximation

For 𝑁
√

𝑉0 ≫ 1, we can approximate the outcome by following the
ncrease of each allele as an independent branching process in which
n allele of value 𝑧𝑖 competes with the mean 𝑧(𝑡) of the rest of the

population. If establishment occurs over short time scales, i.e., over 𝑡 ≪
𝑁 (as expected for 𝑁

√

𝑉0 ≫ 1; see above), then the decline in variance
due to drift can be neglected; we also neglect the effects of selection,
though this may (in principle) be stronger. Here, we assume that the
variance of the bulk is roughly constant during this initial phase, so
that the population mean can be approximated by 𝑧(𝑡) ≈ 𝑉0𝑡. Then, the
llele experiences a time-dependent selective advantage 𝑠(𝑡) ≈ 𝑧𝑖 − 𝑉0𝑡
uring initial establishment.

Let 𝑄(𝑡0) denote the probability that an allele with advantage 𝑠(𝑡)
s lost by some time 𝑡1, conditional on it being present in 𝑛0 copies at
ime 𝑡0. Then, 𝑄(𝑡0) = exp[−𝑛0𝑃 (𝑡0)], where 𝑃 (𝑡0) is the probability of
urvival (until time 𝑡1) of the allele present as a single copy at 𝑡0. This
orm follows from the branching process approximation, which assumes
hat each of the 𝑛0 copies is lost independently, and also assuming
(𝑡0) ≪ 1. In the scaling limit, the change in survival probability
ver time can be approximated by a continuous-time diffusion process.

√

𝑉 , such that 𝑃 (𝑇 ) = 𝑃 (𝑇 )∕
√

𝑉 , 𝑍 = 𝑧∕
√

𝑉 , 𝑇 =
caling by 0 0 0 0 0
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Fig. 2. The evolution of a population of 𝑁 = 105 individuals, starting from an initial Gaussian with 𝑁
√

𝑉0 = 0.25, 100, and hence variance 𝑉0 = 6.25 × 10−12 or 10−6 (top, bottom).
The columns show the distributions of 𝑧∕

√

𝑉0 at 𝑡 = 200, 1000, 5000, 25 000 generations. The dashed curve shows the initial distribution at 𝑡 = 0; the solid smooth curve shows a
Gaussian with variance that decreases due to drift, as 𝑉0𝑒−𝑡∕𝑁 , and mean 𝑧 = 𝑉0𝑁(1 − 𝑒−𝑡∕𝑁 ).
√

𝑉0𝑡 and 𝑆(𝑇 ) = 𝑍 − 𝑇 , the (scaled) survival probability follows the
Kolmogorov backward equation:

𝜕𝑃 (𝑇0)
𝜕𝑇0

= −𝑆
(

𝑇0
)

𝑃 (𝑇0) +
1
2
𝑃 2(𝑇0)

with lim
𝑇0→𝑇1

𝑃
(

𝑇0
)

= 1
√

𝑉0
→ ∞ as 𝑉0 → 0 (1)

which has the solution:

𝑃
(

𝑇0
)

=
2𝑔

(

𝑇0
)

∫ 𝑇1𝑇0 𝑔(𝑇 ) 𝑑𝑇
where 𝑔(𝑇 ) = exp

(

∫

𝑇1

𝑇
𝑆(𝜏) 𝑑𝜏

)

(2)

It follows from this that an allele with selective advantage 𝑆(𝑇 ) =
𝑍 − 𝑇 , present as a single copy at 𝑇 = 0, will survive until a time 𝑇∗
with probability:

𝑃 (𝑇∗) = 2
√

2
𝜋

exp
(

−(𝑇∗−𝑍)2

2

)

erf
(

𝑇∗−𝑍
√

2

)

+ erf
(

𝑍
√

2

) (3)

We can obtain an even simpler approximation for the survival
probability by neglecting the increase in the population mean, such
that the allele has a fixed selective advantage 𝑍. Then, the probability
of survival to scaled time 𝑇∗ is:

𝑃 (𝑇∗) =
2𝑍

1 − exp(−𝑍𝑇∗)
(4)

The survival probability in both Eq. (3) and the simpler Eq. (4)
depends on the threshold 𝑇∗, which is arbitrary (though (1), as argued
above). In the following, we will explore the sensitivity of our predic-
tions for ultimate response to the choice of 𝑇∗. In fact, for 𝑁

√

𝑉0 ≫ 1,
the expected ultimate change can be predicted quite accurately by using
an even more drastic approximation– 𝑃 ≈ 2𝑍, which is the asymptotic
survival probability of an allele in the absence of adaptation of the bulk.

More generally, we expect adaptation of the bulk to be unimportant
when 𝑍 ≫ 𝑇∗ (i.e., 𝑧 ≫ 𝑉0𝑡∗). Since 𝑇∗ should scale as 1∕𝑍 for an
allele with fitness advantage 𝑍, this amounts to having 𝑍 ≫ 1. In
other words, adaptation of the bulk should have negligible effects on
fixation probabilities for alleles in the nose of the fitness distribution
— an argument first developed in the context of fitness waves (Desai
and Fisher, 2007; Neher and Shraiman, 2011). As Fig. 1(a) shows, ne-
glecting adaptation in the bulk appears to be a reasonable assumption
if 𝑍 ≥ 2, i.e., if the allele that fixes has fitness value 2 or more standard
deviations above the mean — this is the case for 𝑁

√

𝑉0 ≳ 10 for the
distributions shown in Fig. 1(a).

The distribution of ultimate selection response. To predict the ultimate
response, we assume that the fittest allele to survive until a threshold
time 𝑇 is the one to fix; the ultimate change is then the value of this
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∗

fittest survivor. First, consider a given draw {𝑧} of (unscaled) allelic
values; we rank these such that 𝑧1 > 𝑧2 > … . If we approximate
the initial dynamics of very fit alleles in the nose of the distribution
by independent branching processes (as described above), then each
of these alleles can be associated with a survival probability 𝑃 (𝑧1) >
𝑃 (𝑧2) > … , which is given by Eq. (3) (or more approximately by (4)).
Given {𝑧}, the probability that the fittest survivor has allelic value 𝑧𝑖
or smaller, is then: ∏𝑖−1

𝑘=1[1 − 𝑃 (𝑧𝑘)], which is just the probability that
all those with values larger than 𝑧𝑖 are lost.

This formula gives the probability distribution of the winner from a
given set of values. The fittest allele over a series of replicates will vary
both because of the random initial values, and their subsequent random
survival. Typically, the survival probability will be ∼ 2𝑧 ∼ 2

√

𝑉0, and so
we expect that the winner will be ranked ∼ 1∕

(

2
√

𝑉0
)

. For any given
draw, the best that can be achieved is bounded by the fittest allele —
but the actual outcome will almost always be fixation of a much lower
ranked (less fit) allele.

We can find the cumulative probability density function (CDF) 𝐹 (𝑧)
of the response by taking the expectation of ∏𝑖−1

𝑘=1[1 − 𝑃 (𝑧𝑘)] over all
possible random draws of initial allelic values from a distribution 𝜓 .
For finite 𝑁 , this involves first integrating over the joint distribution
of {𝑧1, 𝑧2,… 𝑧𝑖−1}– the values of the top 𝑖 − 1 ranked alleles from a set
of 𝑁 iid values — over the (𝑖 − 1) dimensional region 𝑧 < 𝑧𝑖−1 < ⋯ <
𝑧2 < 𝑧1 < ∞, and then summing over all possible 𝑖 (see Appendix). This
gives the finite 𝑁 predictions (coloured dashed lines) in Fig. 1(a).

However, in the scaling limit 𝑁 → ∞,
√

𝑉0 → 0 with 𝑁
√

𝑉0
constant, there is a further simplification: surviving alleles (that survive
up to time 𝑇∗) have a distribution of fitness values given by (𝑃𝜓)∕𝑃 ,
where 𝑃 = ∫ 𝑃 (𝑧)𝜓(𝑧) 𝑑𝑧 is the mean survival probability. The expected
number of distinct alleles to survive the stochastic phase is thus 𝑁∗ ≈
𝑁𝑃 , and the probability that the fittest of these has value 𝑧 or less is:

𝐹 (𝑧) ≈ exp
(

−𝑁∗ ∫

∞

𝑧

𝑃𝜓

𝑃
𝑑𝑤

)

≈ exp
(

−𝑁 ∫

∞

𝑧
𝑃𝜓 𝑑𝑤

)

𝐹 (𝑍) ≈ exp
(

−𝑁
√

𝑉0 ∫

∞

𝑍
𝑃𝜓 𝑑𝑤

)

where 𝑍 = 𝑧∕
√

𝑉0 and 𝑃 = 𝑃∕
√

𝑉0

(5)

Being the largest of 𝑁∗ iid random variables (each from a distribution
(𝑃𝜓)∕𝑃 ), the ultimate response 𝑍 must follow an extreme value distri-
bution, which depends on a single parameter 𝑁

√

𝑉0 in the scaling limit.
In fact, for the Gaussian and Laplace fitness distributions considered
above, the response 𝑍 (appropriately centred and scaled) must follow
a Gumbel distribution. Eq. (5) can also be used to obtain the probability
that the top 1, 2,… , 𝑘 alleles to survive up till time 𝑇∗ have allelic values
𝑍1, 𝑍2,…𝑍𝑘. This is given by [𝑓 (𝑍1)…𝑓 (𝑍𝑘)]𝐹 (𝑍𝑘) where 𝑓 (𝑍) =
−𝜕 ln[𝐹 (𝑍)]∕𝜕𝑍. Note that now 𝑍 , 𝑍 , … refer to the allelic values
1 2
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Fig. 3. The cumulative distribution (CDF) of the ultimate response, 𝛥∞𝑍, compared with various predictions. In each panel, the three sets of curves correspond to 𝑁
√

𝑉0 =
0, 100, 1000; the initial distribution is either Gaussian (top) or Laplace (bottom). The CDF of 1000 replicate simulations (each initialised with a random draw of allelic values),
ith 𝑁 = 40 000 (red) is compared with the CDF predicted by calculating the probability of survival to 𝑇∗ = 0.5, 1, 1, 5 (black, blue, brown, solid lines right to left), from Eq. (3) (in

onjunction with Eq. (5)). The dashed lines show the same, but using Eq. (4), which neglects the increasing mean of the bulk, and therefore predicts a somewhat higher response.
f the top survivors at time 𝑇∗ rather than the top alleles present at
= 0.
The theoretical predictions above depend on the unknown threshold

∗— Fig. 3 illustrates this dependence by comparing the CDF of the
ltimate change obtained from 1000 simulation replicates of a popu-
ation of size 𝑁 = 40 000 (red), with the predicted distribution of the
ittest survivor at 𝑇∗ = 0.5, 1, 1.5 (black, blue, brown) in the scaling
𝑁 → ∞) limit. Solid and dashed curves show predictions that account
or or neglect competition between very fit survivors and the evolving
ulk; these are obtained respectively by using Eqs. (3) and (4), together
ith Eq. (5). The three sets of curves in each panel correspond to
√

𝑉0 = 10, 100, 1000 (left to right); the two panels show response for
aussian and Laplace initial distributions.

Choosing too low a value of 𝑇∗ yields too high a prediction for
he ultimate response since some of the alleles that have survived
ntil a low 𝑇∗ may not have established sufficient numbers and can
e subsequently lost. Conversely, too high a value of 𝑇∗ underesti-

mates the aggregate selective boost enjoyed by very fit alleles during
establishment (by allowing the bulk more time to catch up) and thus
under-predicts ultimate response. In principle, an appropriate 𝑇∗ can
e estimated in a self-consistent way by assuming that it is the time
t which the number of copies of the fittest surviving allele times
ts selective advantage crosses some threshold (such that the allele
s almost certain to fix). The expected number of copies of an allele
ith fitness value 𝑧, conditional on its survival until (unscaled) time

∗, is ≈ exp
[

∫ 𝑡∗𝜏=0(𝑧 − 𝑧(𝜏) ) 𝑑𝜏
]

∕𝑃 [𝑧, 𝑡∗] and its selective advantage at
time 𝑡∗ is 𝑧 − 𝑧(𝑡∗), where 𝑧(𝑡∗) ≈ 𝑉0𝑡∗ for 𝑡∗ ≪ 𝑁 . Thus estimating
∗ =

√

𝑉0𝑡∗ (given 𝑍 = 𝑧∕
√

𝑉0) amounts to finding the 𝑇∗ at which
𝑍−𝑇∗
𝑃 [𝑍,𝑇∗]

exp[𝑍𝑇∗ − 𝑇 2
∗ ∕2] crosses some threshold. If 𝑍 ≫ 𝑇∗, we have

𝑃 [𝑍, 𝑇∗] ≈ 2𝑍, so that this criterion is approximately 𝑒𝑍𝑇∗ ≫ 1.
Thus, we expect 𝑇∗ to scale inversely with the value 𝑍 of the fittest
surviving allele. Approximating this value by its expectation gives 𝑇∗ ∝

𝑍], where E[𝛥 𝑍] depends on 𝑁
√

𝑉 and 𝑇 .
133

∕E[𝛥∞ ∞ 0 ∗
This kind of argument can, in principle, allow us to estimate 𝑇∗
self-consistently given 𝑁

√

𝑉0. However, since E[𝛥∞𝑍] increases only
weakly with 𝑁

√

𝑉0 (Fig. 1), in practice, predictions obtained using a
fixed 𝑇∗ are quite accurate across a range of 𝑁

√

𝑉0 values. For example,
𝑇∗ ∼ 1 appears to fit well for the Gaussian initial distribution in Fig. 3,
while somewhat lower 𝑇∗ values (closer to 0.5) provide a better match
with the Laplace distribution; this is consistent with the observation
that expected response is higher by a factor of about 1.5−1.7 in the latter
case. Note that the choice of 𝑇∗, and more generally, accounting for
adaptation in the bulk (solid vs. dashed curves) makes less difference
as 𝑁

√

𝑉0 increases.

A simple approximation for the expected ultimate response. We now find
simple approximations for the expected ultimate response for both
Gaussian and Laplace initial distributions. This equals E(𝛥∞𝑍) =
∫ ∞
0 𝑍

(

𝜕𝐹
𝜕𝑍

)

𝑑𝑍 (neglecting the possibility that the top survivor has
𝑍 < 0); integrating by parts gives E(𝛥∞𝑍) = ∫ ∞

0 [1 − 𝐹 (𝑍)] 𝑑𝑍. When
𝑁
√

𝑉0 is large, the probability that the fittest surviving allele has value
less than 𝑍 is close to zero for small 𝑍, and increases sharply to 1
at some 𝑍 (Fig. 3); thus, 1 − 𝐹 also changes sharply from 1 to 0 at
this 𝑍, and E(𝛥∞𝑍) can be approximated as the value of 𝑍 for which
𝐹 (𝑍) = exp

(

−𝑁
√

𝑉0 ∫
∞
𝑍 𝑃𝜓 𝑑𝑤

)

= 1
2 , or ∫ ∞

𝑍 𝑃𝜓 𝑑𝑤 = log(2)
𝑁
√

𝑉0
. This

assumes that the distribution of ultimate response is not too skewed,
which appears to be a reasonable assumption, at least for Gaussian or
Laplace initial distributions (Fig. 3).

If we now approximate the survival probability as 𝑃 (𝑍) ≈ 2𝑍,
then for a Gaussian initial distribution, we have: ∫ ∞

𝑍 𝑃 (𝑤)𝜓(𝑤) 𝑑𝑤 =

∫ ∞
𝑍 2𝑤 𝑒−

𝑤2
2

√

2𝜋
𝑑𝑤 = 2𝑒−

𝑍2
2

√

2𝜋
. Setting this equal to log(2)

𝑁
√

𝑉0
gives:

E(𝛥∞𝑍) ≈

√

√

√

√2 log

(

2𝑁
√

𝑉0
√

)

≈
√

2 log
(

1.15𝑁
√

𝑉0
)

2𝜋 log(2)
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Table 1
Mean and standard deviation of the ultimate (scaled) change as obtained from the simulations in Fig. 3, compared with predictions obtained
using Eqs. (5) and (3) assuming 𝑇∗ = 1 for Gaussian and 𝑇∗ = 0.625 for Laplace initial distributions. The simple predictions, based on setting
𝑁
√

𝑉0 ∫
∞
𝑍 𝑃𝜓 𝑑𝑤 = log[2], are also shown in column 4.

Gaussian

𝑁
√

𝑉0 Mean 𝛥∞𝑍 (sim) Mean 𝛥∞𝑍 (pred)
√

2 log
(

1.15𝑁
√

𝑉0
)

sd (sim) sd (pred)

10 2.140 2.1729 2.2106 0.5791 0.5448
100 3.078 3.0671 3.0809 0.4222 0.3982
1000 3.731 3.7501 3.7546 0.3221 0.3303

Laplace

𝑁
√

𝑉0 Mean 𝛥∞𝑍 (sim) Mean 𝛥∞𝑍 (pred) − 1
√

2

(

1 +−1

(

− 0.36
𝑁
√

𝑉0

))

sd (sim) sd (pred)
10 2.84 2.95604 2.7682 1.1530 1.0547
100 4.84 4.83621 4.7102 1.0755 1.0212
1000 6.55 6.6603 6.5446 0.9328 0.9977
s

𝑛
𝑡
a

r
g
o

a

d

o
t
t
o

For a Laplace distribution, the same argument leads to log(2)
𝑁
√

𝑉0
=

(

𝑍 + 1
√

2

)

𝑒−
√

2𝑍 ; this gives:

(𝛥∞𝑍) = − 1
√

2

[

1 +−1

(√

2 log(2)
𝑒𝑁

√

𝑉0

)]

= − 1
√

2

[

1 +−1

(

− 0.36
𝑁
√

𝑉0

)]

≈ − 1
√

2

[

log

(

0.36
𝑁
√

𝑉0

)

− log

(

− log

(

0.36
𝑁
√

𝑉0

))

+ 1 + …

]

as 𝑁
√

𝑉0 → ∞

here −1[𝛼] is the secondary real branch of the product log function;
it is one of the two real solutions of 𝑒 = 𝛼, which is multi-valued
or − 1

𝑒 < 𝛼 < 0. The approximate expression in the 𝑁
√

𝑉0 → ∞ limit
(second line) follows from the asymptotic expansion of the product log
function (Corless et al., 1996). Table 1 shows that these approximations
are accurate for both Gaussian and Laplace initial distributions.

Thus, essentially, the expected ultimate response to selection is
given by the expected value of the fittest of 𝑁𝑃 surviving alleles, where
𝑃 is average survival probability of all alleles present at 𝑡 = 0. For
√

𝑉0 ≳ 10, this probability can be approximated by 𝑃 ≈ 2𝑍, where 𝑍
is the mean selective advantage of fitter than average alleles (i.e., alleles
with 𝑍 > 0 in case of a symmetric initial distribution) present at 𝑡 = 0.
Note that this neglects competition from the increasingly well-adapted
bulk of the population — this can be justified when the fittest surviving
allele is a few (in practice, more than 2) standard deviations above the
mean. It thus establishes over a time scale that is substantially less than
1∕

√

𝑉0, which means that the bulk advances by an amount that is also
ess than

√

𝑉0, substantially less than the advantage of the fittest allele,
which is thus unaffected.

3. Dynamics of the fitness distribution

So far, we have focused on the initial stochastic phase which deter-
mines which allele will ultimately fix. However, the long-term dynam-
ics are more complex and differ qualitatively in the weak vs. strong
selection regimes. Fig. 4 shows the variance of log fitness values as a
function of scaled time, averaged over 1000 simulation replicates, for
various values of 𝑁

√

𝑉0 with 𝑁 = 104. Time is scaled either as 𝜏 = 𝑡∕𝑁
(Fig. 4(a)) or 𝑇 = 𝑡

√

𝑉0(Fig. 4(b)); the two plots are drawn on semi-
og vs. log–log scales respectively to illustrate the different dynamics
f variance decay in the two parameter regimes.

In the weak selection (𝑁
√

𝑉0 ≪ 1) regime, the expected variance
ecays as 𝑉 (𝑡) ≈ 𝑉0𝑒−𝑡∕𝑁 (depicted via a dashed black line in Fig. 4(a)),
ore or less independently of the value of 𝑁

√

𝑉0 (as evident in the
overlapping blue and violet curves in Fig. 4(a)). This is consistent with
the intuition that in this regime, the increase in frequencies of fitter
134

𝑡

than average alleles due to selection approximately balances out the
decrease in frequencies of less fit alleles, so that selection has no effect
on the shape of the fitness distribution (on average), and the decay in
fitness variance is governed essentially by drift.

By contrast, in the strong selection (𝑁
√

𝑉0 ≫ 1) regime, the
expected variance remains constant or even slightly increases (in case
of the Laplace initial distribution) over a timescale 𝑇 = 𝑡

√

𝑉0 ≈ 1, but
ubsequently decays as a power law ≈ 𝑇 −3 (depicted by a dashed line

in Fig. 4(b)). The observation of power law decay appears surprising
at first glance, since in this regime, we expect long-term dynamics to
be governed by the competition between the fittest few alleles to have
survived the initial stochastic phase. For example, if two alleles with
similar fitnesses survive, then it will take a long time for the fitter
of the two to fix; assuming deterministic dynamics, variance should
then decay exponentially at a rate proportional to the fitness difference
between the two alleles.

More precisely, let 𝑧1 > 𝑧2 > … denote the log fitness values and
1,0, 𝑛2,0,… the number of copies of surviving alleles at some initial time
∗. If dynamics are essentially deterministic for 𝑡 > 𝑡∗, then we expect
lleles to grow exponentially in relative abundance, so that the number

of copies of allele 𝑖 at time 𝑡 is 𝑛𝑖,𝑡 = 𝑛𝑖,0 𝑒(𝑡−𝑡∗)𝑧𝑖
∑

𝑗 𝑛0,𝑗 𝑒
(𝑡−𝑡∗)𝑧𝑗

. We can use this
elation to predict how the fitness distribution evolves in time, ne-
lecting stochastic fluctuations. In particular, at very long times, when
nly the fittest two alleles survive, we have: 𝑧(𝑡) ≈ 𝑧1+𝛼 𝑧2𝑒−(𝑧1−𝑧2)(𝑡−𝑡∗)

1+𝛼 𝑒−(𝑧1−𝑧2)𝑡

nd 𝑉 (𝑡) ≈ 𝛼(𝑧1−𝑧2)2 𝑒−(𝑧1−𝑧2)(𝑡−𝑡∗)
[

1+𝛼𝑒−(𝑧1−𝑧2)(𝑡−𝑡∗)
]2 , where 𝛼 = 𝑛2,0

𝑛1,0
is the ratio of the

numbers (at time 𝑡∗) of the two fittest surviving alleles, and is itself a
random variate with expectation 𝑃 (𝑧1)

𝑃 (𝑧2)
𝑒−(𝑧1−𝑧2)𝑡∗ , which can be further

approximated by 𝑧1
𝑧2
𝑒−(𝑧1−𝑧2)𝑡∗ (assuming 𝑃 (𝑧) ≈ 2𝑧).

As one would expect based on this simple argument, fitness vari-
ance does decay nearly exponentially in individual simulation repli-
cates at long times (and while the less fit allele is not too rare),
with a rate of decay that depends on 𝑧1 − 𝑧2. The dynamics of the
expected variance (averaged over replicates) can thus be predicted
from the joint distribution 𝐺(𝑧, 𝑧1) of the ‘gap’ 𝑧 = 𝑧1 − 𝑧2 be-
tween the top two surviving alleles and the value 𝑧1 of the fittest sur-
vivor as: E[𝑉 (𝑡)] ≈ ∬ 𝑧2

𝑧1
𝑧1 − 𝑧

𝑒−𝑧𝑡

(1 + 𝑧1
𝑧1−𝑧

𝑒−𝑧𝑡)2
𝐺(𝑧, 𝑧1) 𝑑𝑧 𝑑𝑧1. At long

enough times, regardless of the exact form of 𝐺(𝑧, 𝑧1) (which will
epend on 𝑁

√

𝑉0 and the initial distribution 𝜓 ; see above), the main
contribution to the expected variance comes from the 𝑧 → 0 portion
f the gap distribution. In other words, as we go to larger and larger
imes, only replicates with smaller and smaller fitness gaps between
he top two surviving alleles would still have segregating variants and
nly these would thus contribute to the expectation over replicates as
→ ∞. Thus, we can approximate the above expectation using Laplace’s
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Fig. 4. Expected variance (scaled by 𝑉0) as a function of (a) 𝜏 = 𝑡∕𝑁 or (b) 𝑇 = 𝑡
√

𝑉0 for various values of 𝑁
√

𝑉0 (various colours) obtained by averaging over 1000 simulation
eplicates with 𝑁 = 104. The dashed line in (a) depicts 𝑉 (𝜏)∕𝑉 (0) = 𝑒−𝜏 while the dashed line in (b) depicts 𝑉 (𝑇 )∕𝑉 (0) = 100∕𝑇 3. For 𝑁

√

𝑉0 ≫ 1, the variance decays as 𝑇 −3

ndependent of 𝑁
√

𝑉0, while for 𝑁
√

𝑉0 ≪ 1, it follows the neutral expectation 𝑒−𝜏 . Main plots and insets show variance dynamics for Gaussian and Laplace initial distributions
respectively.
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method as:

E[𝑉 (𝑡)] ≈ ∬ 𝑧2 𝑒−𝑧𝑡

(1 + 𝑒−𝑧𝑡)2

×
[

𝐺(0, 𝑧1) + 𝑧
(

𝜕𝑧𝐺(0, 𝑧1) + tanh(𝑧𝑡∕2)
𝐺(0, 𝑧1)
𝑧1

)

+…
]

𝑑𝑧 𝑑𝑧1

=
(

∫

∞

0
𝐺(0, 𝑧1)𝑑𝑧1

)

𝜋2

6 𝑡3
+ 

(

1
𝑡4

)

(6)

4. Discussion

We consider here the limits to adaptation from standing variation in
a finite asexual population, allowing for an arbitrary initial distribution
of fitness values across individuals. In the absence of new mutations,
the maximum possible advance under selection is limited by the fittest
of 𝑁 alleles present at 𝑡 = 0, whose fitness is (on average) ∼ log(𝑁)
and ∼

√

log(𝑁) standard deviations respectively for the Laplace and
Gaussian distributions considered above. However, the typical proba-
bility of survival is ∼ 2

√

𝑉0, so that the actual response is governed by
the fittest of 2𝑁

√

𝑉0 surviving alleles, and is thus typically much lower
than the theoretical maximum. Our derivations are an elaboration on
this simple argument.

The qualitatively different – nearly neutral (𝑁
√

𝑉0 ≪ 1) vs. strong
election (𝑁

√

𝑉0 ≫ 1) – regimes of response from standing variation in
sexual populations that we identify in this study are analogous to those
bserved for small and large𝑁 in models of long-term adaptation under
teady mutation, see e.g., figure 1 in Melissa et al. (2022). In particular,
he fact that starting with a Gaussian initial distribution, the ultimate
ain in log fitness is ≈

√

2 log(1.15𝑁
√

𝑉0) for 𝑁
√

𝑉0 ≫ 1 under
our model, is closely related to the observation that in a population
described by a fitness wave with variance 𝜎, the common ancestors
of future individuals are located in the leading edge of the wave,
approximately

√

2 log(𝑁𝜎) standard deviations ahead of the mean, for
𝜎 ≫ 1 (Desai and Fisher, 2007).
In this 𝑁𝜎 ≫ 1 regime, genealogies of populations adapting under

teady mutational pressured are no longer described by the Kingman
oalescent or its variations (e.g., with time-varying population size), but
nstead are strongly skewed, resulting in an excess of high-frequency
erived alleles and a ‘U-shaped’ site frequency spectrum (Neher and
allatschek, 2013), as in multiple merger coalescents (Bolthausen and
znitman, 1998; Sargsyan and Wakeley, 2008). One might ask how
his compares with genealogies of populations adapting from standing
enetic variation (as in this study) in the 𝑁

√

𝑉0 ≫ 1 regime. In the
bsence of mutational input (of new alleles), genealogical structure at
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any timepoint during adaptation will be determined by the numbers of
alleles surviving up until that point, traced back through time; these
numbers, in turn, depend on the fitness gaps between surviving alleles.
Thus, genealogical structure itself can change considerably during the
course of adaptation; characterising these changes and the associated
changes in neutral diversity along the genome remains an interesting
direction for future work.

What bearing do our results have on understanding selection re-
sponse from standing genetic variation in sexual populations? Consider
an extreme scenario where variation is uniformly distributed across a
linear genome, with fitness variance per unit map length 𝑣𝑔 . Under this
infinitesimal model (with linkage), the fitness variance associated with
a genomic region of map length 𝑅 is just 𝑣𝑔𝑅 on average. One can now
ask: what is the typical map length 𝑅∗ of ‘effectively asexual’ fragments
that fix (under selection) without being split up by recombination in
a population of effective size 𝑁𝑒? If fragments evolve nearly neutrally,
i.e., if 𝑁𝑒

√

𝑣𝑔𝑅∗ ≪ 1, then the average time to fixation of any fragment
is ≈ 𝑁𝑒, implying that the typical map length 𝑅∗ of fragments that fix
without recombining is 𝑅∗ ∼ 1∕𝑁𝑒. Thus, a self-consistent criterion for
ffectively asexual blocks to evolve nearly neutrally is that 𝑁𝑒

√

𝑣𝑔𝑅∗ ∼
√

𝑁𝑒𝑣𝑔 ≪ 1, or 𝑁𝑒𝑣𝑔 ≪ 1.
One can also consider the opposite ‘strong selection’ regime —

here fitness variance per unit map length 𝑣𝑔 is sufficiently high
hat effectively asexual fragments can, in principle, generate sweep-
ike signatures as they increase under selection (Sachdeva and Barton,
018). As before, the fitness variance associated with a genomic re-
ion of map length 𝑅∗ is 𝑣𝑔𝑅∗; thus, under strong selection, i.e., if
𝑒
√

𝑣𝑔𝑅∗ ≫ 1, the time scale for the establishment of a highly fit
haplotype spanning a map length 𝑅∗ is approximately 𝜏 ∼ 1∕

√

𝑣𝑔𝑅∗
(in analogy with the asexual model, where the fittest surviving allele
establishes over a timescale 𝜏 ∼ 1∕

√

𝑉0). This argument assumes that
fragments of map length 𝑅∗ are effectively asexual over a timescale 𝜏,
which requires 𝑅∗𝜏 ∼ 1 or 𝑅∗ ∼ 𝑣𝑔 . Thus, this gives a complementary
criterion— 𝑁𝑒

√

𝑣𝑔𝑅∗ ∼ 𝑁𝑒𝑣𝑔 ≫ 1 for the emergence of strongly
selected effectively asexual blocks at short timescales, i.e., during initial
response.

It seems unlikely, however, that long-term response in sexual pop-
ulations (for 𝑁𝑒𝑣𝑔 ≫ 1) can be understood by extrapolating from
he asexual model. In particular, even if a few fit haplotypes of map
ength ∼ 𝑣𝑔 increase intact early on, there may still be fine-scale
ecombination between these at longer timescales, generating new
ombinations of alleles, allowing for sustained response to selection in
arge populations. Such fine-scale recombination is expected to be espe-
ially efficient if the haplotypes that establish early on have very similar
itness, so that one of these does not rapidly fix. An interesting question
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is whether a long phase of competition between a few fit haplotypes
(which can potentially generate new and even fitter combinations via
recombination) might produce patterns in neutral diversity that mimic
soft sweeps (Hermisson and Pennings, 2005).

The above arguments all implicitly assume that a linear genome
can be approximated as a collection of independently evolving asexual
blocks, whereas in reality, blocks may interfere with one another as
they fix. Such selective interference would be rather weak if the fitness
variance per unit map length 𝑣𝑔 is low, so that its effects on the dynam-
ics of individual blocks may be captured by an appropriately defined
effective population size (Robertson, 1961; Santiago and Caballero,
1998). However, it is less obvious whether this should hold for large
𝑣𝑔 , i.e., if strongly selected blocks are segregating at multiple genomic
locations.

Such a caricature of the recombining genome as a mosaic of quasi-
independent asexual blocks is nevertheless a useful starting point,
providing at least a rough criterion for when we might distinguish
selection response in sexual populations – either under a steady supply
of new mutations (Neher et al., 2013; Weissman and Hallatschek,
2014; Good et al., 2012) or from standing genetic variation (as dis-
cussed above) – from neutral evolution. These arguments all furnish
self-consistently derived predictions for the characteristic map length
of effectively asexual blocks (or alternatively, the typical scale over
which there is linkage disequilibrium or LD) in the adapting pop-
ulation. This, however, obscures the fact that in reality, haplotypes
that increase under selection may vary widely in length, giving rise
to very heterogeneous signatures of selection along the genome. Such
heterogeneity can be due to various reasons — first, variation is not
uniformly spread across the genome and may at least be partly due
to loci of major effect. Second, idiosyncratic patterns of LD, either in
large populations or created by sampling a small number of individuals
(e.g., in Evolve and Resequence experiments), may also result in a het-
erogeneous distribution of additive genetic variance across the genome.
Importantly, this can generate considerable heterogeneity in short-term
selection response along a linear genome even under the infinitesimal
model (Castro et al., 2019). Finally, even if the initial distribution of
variance is perfectly uniform, the inherent stochasticity of evolutionary
processes would still cause blocks of rather different lengths to increase
during adaptation: with low initial variance (𝑁𝑣𝑔 ≪ 1), the resultant
haplotype structure may be close to that under neutral evolution. A
natural question then is whether heuristics based on asexual linkage
blocks may be useful in characterising the heterogeneity of response
along the genome for 𝑁𝑣𝑔 ≫ 1, i.e., under conditions where adaptation
from standing variation produces detectable signatures in sequence
data.
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Appendix. Ultimate change under selection for finite 𝑵

Here, we calculate the distribution of the ultimate change under
selection for 𝑁

√

𝑉0 ≫ 1 for finite 𝑁 . As in the main paper, we assume
that the fittest allele to escape initial stochastic loss and survive is
the one to fix. Then, given a set of ordered and scaled allelic values
𝑍1 > 𝑍2 >… at 𝑡 = 0, and under the branching process approximation,
the probability that the fittest allele to survive has rank 𝑖 is just:

𝑔𝑖 = 𝑔(𝑍1, 𝑍2, … 𝑍𝑖) = 𝑃 (𝑍𝑖)
𝑖−1
∏

𝑘=1

[

1 − 𝑃 (𝑍𝑘)
]

≈
√

𝑉0𝑃 (𝑍𝑖) exp

[

−
√

𝑉0
𝑖−1
∑

𝑘=1
𝑃 (𝑍𝑘)

]

(7)

here 𝑃 (𝑍𝑘) is the scaled survival probability of an allele with scaled
alue 𝑍𝑘; further,

√

𝑉0 is assumed to be sufficiently small that 1 −
√

𝑉0𝑃 ≈ 𝑒−
√

𝑉0𝑃 . In the following, we will use the crude approximation
̃(𝑍) ≈ 2𝑍 in explicit computations, but our general expression for the
istribution of ultimate response (Eq. (10)) does not depend on this.

The distribution of the ultimate change can now be obtained by
ntegrating 𝑔𝑖 over the joint distribution Q𝑁 (𝑍1, 𝑍2,… 𝑍𝑖) of the top
alleles present at 𝑡 = 0, and then summing over all possible values of

he rank 𝑖 of the fittest surviving allele. More precisely, the probability
ensity (𝑍) of the (scaled) value 𝑍 of the fittest allele to survive the
nitial stochastic phase can be expressed as:

(𝑍) =
∑

𝑖 ∫ 𝑑�⃗�{1,𝑖−1} 𝑔𝑖(𝑍1, 𝑍2,… 𝑍𝑖 = 𝑍)Q𝑁 (𝑍1, 𝑍2,… 𝑍𝑖 = 𝑍)

(8)

here ∫ 𝑑�⃗�{1,𝑖−1} represents the (𝑖 − 1) dimensional integral over the
egion 𝑍 < 𝑍𝑖−1 < 𝑍𝑖−2 < ⋯ < 𝑍2 < 𝑍1 < ∞. Note that here we work
ith the probability density (𝑍), rather than the cumulative density
(𝑍) used in the main paper.

For an initial distribution with density 𝜓(𝑍) and cumulative density
unction 𝛹 (𝑍) = ∫ 𝑍−∞ 𝜓(𝑦) 𝑑𝑦, the joint distribution of the top 𝑖 values
mong a sample of 𝑁 iid values can be written as:

𝑁 (𝑍1, 𝑍2,… , 𝑍𝑖) = 𝑁!
(𝑁 − 𝑖)!

( 𝑖
∏

𝑘=1
𝜓(𝑍𝑘)

)

[𝛹 (𝑍𝑖)]𝑁−𝑖 (9)

Combining Eqs. (7),(8), and (9) yields:

(𝑍) =
√

𝑉0𝜓(𝑍)𝑃 (𝑍)
∑

𝑖

𝑁!
(𝑁 − 𝑖)!

[𝛹 (𝑍)]𝑁−𝑖ℎ𝑖−1(𝑍)

here ℎ𝑖(𝑍) = ∫

∞

𝑍
𝑑𝑍𝑖 𝜓(𝑍𝑖)𝑒−

√

𝑉0𝑃 (𝑍𝑖) …∫

∞

𝑍3

𝑑𝑍2 𝜓(𝑍2)𝑒−
√

𝑉0𝑃 (𝑍2)

× ∫

∞

𝑍2

𝑑𝑍1 𝜓(𝑍1)𝑒−
√

𝑉0𝑃 (𝑍1)

(10)

hich is our main result for the distribution of ultimate change for
inite 𝑁 . The function ℎ𝑖(𝑍) is an 𝑖-dimensional integral; we can obtain
xplicit expressions for specific initial distributions by approximating
he survival probability as 𝑃 (𝑍) ≈ 2𝑍 for 𝑍 > 0 and 0 otherwise.
hen for Gaussian and Laplace initial distributions, we have:

𝑖(𝑍) = 1
𝑖!

[

𝑒2𝑉0
2

erfc
(

2
√

𝑉0 +𝑍
√

2

)]𝑖

(Gaussian)

ℎ𝑖(𝑍) = 1
[

𝑒−(
√

2+2
√

𝑉0)𝑍
√

]𝑖

(Laplace)

(11)
𝑖! 2(1 + 2𝑉0)
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c
(

R

B

B

B

C

C

C

D

F

F

Now summing over 𝑖, we obtain the following approximation for
(unnormalised) (𝑍):

(𝑍) ≈ 𝑍 𝑒−𝑍
2∕2

(

erf
(

𝑍
√

2

)

+ 𝑒2𝑉0erfc
(

2
√

𝑉0 +𝑍
√

2

)

+ 1

)𝑁−1

(Gaussian)

(𝑍) ≈

𝑍𝑒−
√

2𝑍

(

2 − 𝑒−
√

2𝑍 + 𝑒
−
(

2
√

𝑉0+
√

2
)

𝑍
√

2𝑉0+1

)𝑁

(

√

2𝑉0 + 1
)(

2 − 𝑒−
√

2𝑍
)

+ 𝑒−
(

2
√

𝑉0+
√

2
)

𝑍

(Laplace)

(12)

if 𝑍 > 0, and 0 otherwise. In the limit 𝑉0 → 0, 𝑁 → ∞, with 𝑁
√

𝑉0
onstant, the above equations simplify to the scaling limit predictions
Eq. (5) in the main text).
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