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Abstract
We consider𝑁 ×𝑁 non-Hermitian randommatrices of the
form 𝑋 + 𝐴, where𝐴 is a general deterministic matrix and√
𝑁𝑋 consists of independent entries with zeromean, unit

variance, and bounded densities. For this ensemble, we
prove (i) aWegner estimate, that is, that the local density of
eigenvalues is bounded by𝑁1+𝑜(1) and (ii) that the expected
condition number of any bulk eigenvalue is bounded by
𝑁1+𝑜(1); both results are optimal up to the factor 𝑁𝑜(1).
The latter result complements the very recent matching
lower bound obtained by Cipolloni et al. and improves the
𝑁-dependence of the upper bounds by Banks et al. and
Jain et al. Our main ingredient, a near-optimal lower tail
estimate for the small singular values of 𝑋 + 𝐴 − 𝑧, is of
independent interest.

Mathematics Subject Classification (MSC) 2020
60B20, 15A12, 15B52

1 INTRODUCTION

1.1 Setup

We consider large 𝑁 ×𝑁 random matrices with independent entries and without any symmetry
constraint, so that they are typically not normal and have complex eigenvalues. More precisely,
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our randommatrix is of the form𝑋 + 𝐴, where𝐴 is a general deterministic “data”matrix and𝑋 is
a random“noisematrix” consisting of independent complex or real entrieswith continuous distri-
butions; the ensemble is often called “Information-plus-Noise”model, see for example [12, 21, 22,
26]. The main objects of this paper are the three fundamental spectral quantities of 𝑋 + 𝐴 deter-
mining its stability properties, namely, eigenvalues, diagonal eigenvector overlaps (also known as
eigenvalue condition number), and small singular values. We will typically use the scaling where
both ‖𝐴‖ and ‖𝑋‖ are bounded, independently of 𝑁, however our results on the singular values
will be uniform in 𝐴, hence they also cover the especially interesting small noise regime after a
trivial rescaling.
We next explain our main motivations to study these quantities, along with their definitions.

The fundamental difficulty in studying a non-normal matrix 𝐴, as opposed to a Hermitian one,
is the instability of its spectrum; even a tiny perturbation to 𝐴 may result in a very large change
in its eigenvalues. To make this precise, we assume that 𝐴 has a simple spectrum, and write its
spectral decomposition

𝐴 =

𝑁∑
𝑖=1

𝜎𝑖𝒓𝑖𝒍
⊺
𝑖
, 𝐴𝒓𝑖 = 𝜎𝑖𝒓𝑖, 𝒍

⊺
𝑖
𝐴 = 𝜎𝑖𝒍

⊺
𝑖
, (1.1)

where 𝜎𝑖 = 𝜎𝑖(𝐴)’s are the eigenvalues of 𝐴 and {𝒍𝑖 = 𝒍𝑖(𝐴), 𝒓𝑖 = 𝒓𝑖(𝐴) ∶ 1 ≤ 𝑖 ≤ 𝑁} is a bi-
orthogonal family (so that 𝒍⊺

𝑖
𝒓𝑗 = 𝛿𝑖𝑗) in ℂ𝑁 consisting of left and right eigenvectors of 𝐴.

Under this normalization, the diagonal eigenvector overlaps are defined as the scale-invariant
quantity

𝑖𝑖(𝐴) ∶= ‖𝒍𝑖(𝐴)‖2‖𝒓𝑖(𝐴)‖2. (1.2)

With this definition, we have the well-known variational identity (see e.g. [8])

√𝑖𝑖(𝐴) = lim
𝑡→0

sup

{|||𝜎𝑖(𝐴 + 𝑡𝐸) − 𝜎𝑖(𝐴)

𝑡
||| ∶ 𝐸 ∈ ℂ𝑁×𝑁, ‖𝐸‖ = 1

}
. (1.3)

This formula shows that the diagonal overlap quantifies the instability of 𝜎𝑖 against the worst
perturbation, therefore

√𝑖𝑖 is also called the eigenvalue condition number. However, it is prac-
tically impossible to control 𝑖𝑖(𝐴) for a general deterministic 𝐴: One can easily construct
a bi-orthogonal family with arbitrarily large ‖𝒍1‖2‖𝒓1‖2, and thus construct a matrix 𝐴 with
arbitrarily large overlap 11(𝐴) but bounded 𝜎1(𝐴).
Besides quantifying the instability 𝜎𝑖 , another interesting feature of the overlap 𝑖𝑖(𝐴) is that

it connects 𝜎𝑖 to the shifted singular values of 𝐴. This follows from another standard variational
identity; √𝑖𝑖(𝐴) = lim

𝑧→𝜎𝑖

|𝜎𝑖(𝐴) − 𝑧|
𝜆1(𝐴 − 𝑧)

, (1.4)

where 𝜆1(𝐴 − 𝑧) ≤ ⋯ ≤ 𝜆𝑁(𝐴 − 𝑧) stand for the singular values of 𝐴 − 𝑧 for 𝑧 ∈ ℂ. Note that
singular values, as (square roots of) the eigenvalues of the Hermitianmatrix (𝐴 − 𝑧)(𝐴 − 𝑧)∗, are
much more stable under perturbations. Thus (1.4) shows that the overlap exactly quantifies the
magnification of the instability of 𝜎𝑖 in terms of 𝜆1(𝐴 − 𝑧) for 𝑧 near 𝜎𝑖 .
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CONDITION NUMBER OF RANDOMMATRICES 3787

While the overlap is an uncontrolled object in the worst case, numerical algorithms, whose
computational cost or accuracy should deteriorate with 𝑖𝑖 , still perform well in practice; see,
for example [43] and references therein concerning Gaussian elimination. This is often explained
by a mechanism called smoothed analysis capitalizing on the fact that even for the worst 𝐴, the
instability of its spectrum is typically regularized by a noise, that is, a random perturbation, for
example in [6–8, 35, 43]. Thismotivates the investigation of three quantities𝜎𝑖(𝐴 + 𝑋),𝑖𝑖(𝐴 + 𝑋),
and 𝜆𝑘(𝑋 + 𝐴) for small 𝑘, where 𝐴 is a general deterministic matrix and 𝑋 is a random matrix
with independent entries.
Interestingly, overlaps also appear in a completely unrelated context, namely, in theDyson-type

stochastic eigenvalue dynamics. Consider the matrix Brownian motion 𝐴𝑡 = 𝐴 + 𝐵𝑡 where the
entries of 𝐵𝑡 ∈ ℂ𝑁×𝑁 are independent standard complex Brownian motions and 𝐴 has a simple
spectrum. The eigenvalues 𝜎𝑖(𝐴𝑡) of 𝐴𝑡 are martingales with brackets given by

d⟨𝜎𝑖(𝐴𝑡), 𝜎𝑗(𝐴𝑡)⟩𝑡 = 𝒍𝑗(𝐴𝑡)
∗𝒍𝑖(𝐴𝑡)𝒓𝑗(𝐴𝑡)

∗𝒓𝑖(𝐴𝑡)d𝑡, ⟨𝜎𝑖(𝐴𝑡), 𝜎𝑗(𝐴𝑡)⟩𝑡 = 0; (1.5)

see [15, Appendix A]. Taking 𝑖 = 𝑗, the diagonal overlap 𝑖𝑖(𝐴𝑡) is exactly the time derivative of
the quadratic variation of 𝜎𝑖(𝐴𝑡). In particular, (1.5) shows that the dynamics of 𝜎𝑖(𝐴𝑡) involves
eigenvectors, hence is not autonomous in contrast to the standard Hermitian Dyson Brownian
motion [23].
Finally, we point out yet another context of our results. The noise matrix is rescaled by a factor

1∕
√
𝑁 to keep its norm of order one as 𝑁 grows, that is, the entries of

√
𝑁𝑋 remain on constant

scale. With this scaling, the celebrated circular law [5, 31, 46] states that if the entries of
√
𝑁𝑋

are centered i.i.d. random variables with unit variance, then 𝜎𝑖(𝑋)’s are asymptotically uniformly
distributed on the unit diskwith density of order𝑁 (we consider unnormalized densities through-
out the paper unless stated otherwise). Extension of the circular law for 𝑋 + 𝐴 was proved in [46,
Corollary 1.17] as well if 𝐴 has a limiting ∗-distribution 𝑎, in which case the limit is the Brown
measure of free sum 𝑥 + 𝑎 where 𝑥 is a free circular element. Recently this Brown measure was
studied in detail in [53], where it was proved that there is an open set  ⊂ ℂ so that this measure
is supported on  and has a strictly positive real analytic density in . Consequently, the number
of eigenvalues 𝜎𝑖(𝑋 + 𝐴) in a complex domain ⊂  is typically comparable to 𝑁|| where ||
is the area of ; see Remark 2.2 for details. We refer to [53, Section 1.1] for a historical exposition
on the eigenvalue density of 𝑋 + 𝐴.
In the special case of the Ginibre ensemble, that is, when the entries of 𝑋 are i.i.d. Gaussian

and 𝐴 = 0, the density, or one-point function, of the eigenvalues can be computed explicitly [30]
and it is essentially given by 𝜌𝑁(𝑧) =

𝑁

𝜋
for |𝑧| < 1. For general entry distribution of 𝑋, the local

circular law [16] (see also [3, 4]), asserts that
∑

𝑖
𝑓(𝜎𝑖) is well approximated by

𝑁

𝜋
∫ 𝑓 as long

as 𝑓 lives on a scale much larger than 𝑁−1∕2, the typical eigenvalue spacing. Thus the density
of eigenvalues is well understood on mesoscopic scales, but it is a highly non-trivial statement
that the density remains absolutely continuous and even constant on arbitrary small scales (in
particular this obviously requires that the distribution of the matrix elements has a continuous
component). Motivated by the theory of random Schrödinger operators, in the Hermitian setup
an upper bound on the eigenvalue density is calledWegner estimate [51]. Its optimal form has been
established in [27, 36] for a large class of Hermitian random matrices (Wigner matrices). Prior to
the current work, no Wegner-type result below the mesoscopic scale 𝑁−1∕2+𝜖 has been known
for non-Hermitian i.i.d. random matrices besides the Ginibre case and its elliptic generalizations
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where explicit formulas using planar orthogonal polynomials and contour integral methods are
available, see the recent comprehensive paper [2] and references therein. We finally remark that
optimal upper bounds on the local 𝑘-point correlation functions (in particular Wegner estimates
for 𝑘 = 1) for two-dimensional Coulomb gases with general potential were established in [48]
using non-explicit conditioning methods.
Eigenvalues and eigenvector overlaps of 𝑋 + 𝐴 are genuinely non-Hermitian objects which are

hard to access directly. Instead, one typicallyworkswith the singular values and singular vectors of
𝑋 + 𝐴, which are accessible viaHermitianmethods, however, the relation between them is subtle.
On the level of the spectrum, Girko’s formula (see 1.23 below) provides an explicit connection,
but it requires to control the lower tail of the small singular values of 𝑋 + 𝐴 − 𝑧 for all 𝑧 ∈ ℂ

simultaneously. For eigenvectors the situation is much more delicate; there is no direct formula
relating eigenvectors of𝑋 + 𝐴 and singular vectors of𝑋 + 𝐴 − 𝑧 apart from the special case when
𝑧 is exactly an eigenvalue, a conditioning that is technically very hard to handle. Our main results
on eigenvector overlaps and Wegner estimate for eigenvalues both heavily rely on very accurate
lower tail estimates on the lowest singular values of 𝑋 + 𝐴 − 𝑧 and we develop a new method to
estimate them.We remark that singular values and singular vectors of the Information-plus-Noise
model 𝑋 + 𝐴 have also been extensively studied in statistics, but with a strong focus on the large
singular values. Our current main interest is the opposite regime, so we refrain from reviewing
the extensive statistics literature on the subject.

1.2 Our results

The standing assumption on 𝑋 for all our results is that the entries of
√
𝑁𝑋 have continuous dis-

tributions with bounded densities. This guarantees the main mechanism behind the key Wegner
estimates. For certain results, we may additionally assume that the entries of

√
𝑁𝑋 are centered,

have variance one and have all moments finite. The matrix𝐴 can be completely general, for some
results we only assume that𝐴 has bounded norm. Before formally stating ourmain theoremswith
precise conditions in Section 2 we informally summarize their content and compare them with
previous results.
The first main result, given precisely in Theorem 2.3 later, concerns an upper bound for the

averaged density of the eigenvalues 𝜎𝑖 ’s. Specifically, we prove that

𝔼#{𝑖 ∶ 𝜎𝑖(𝑋 + 𝐴) ∈ } ≲
⎧⎪⎨⎪⎩
𝑁𝑜(1)(𝑁||)1−𝑜(1) for complex 𝑋,

𝑁𝑜(1) (𝑁||)1−𝑜(1)
min𝑧∈ 𝜆1(ℑ[𝐴 − 𝑧])

for real 𝑋,
(1.6)

for any ball  of arbitrarily small size in the bulk spectrum (see 2.2 for its definition), where
ℑ[𝐴 − 𝑧] is the matrix with entrywise imaginary part of 𝐴 − 𝑧. This result is a weak Wegner
estimate: Up to the 𝑜(1)-powers it almost shows the absolute continuity and boundedness of the
normalized eigenvalue density. Note that in the real case the estimate necessarily deteriorates near
the real axis; this is because real random matrices tend to have many real eigenvalues (e.g., the
real Ginibrematrices have approximately

√
𝑁 real eigenvalues [25]) and once eigenvalues concen-

trate on a one-dimensional submanifold, their two-dimensional density naturally has a singular
component.
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The secondmain results (Theorem 2.7–2.9 later) concern an upper bound on the diagonal over-
lap 𝑖𝑖 in expectation sense. Since in the Ginibre case it is known 𝑖𝑖 has a fat tail [15], hence
controlling second or higher moments is impossible. In Theorem 2.7 we prove that

𝔼

[
𝟙Ξ

∑
𝑖∶𝜎𝑖(𝑋+𝐴)∈

𝑖𝑖(𝑋 + 𝐴)

]
≲

⎧⎪⎨⎪⎩
| log𝑁|2 ⋅ 𝑁(𝑁||) for complex 𝑋,| log𝑁|2 ⋅ 𝑁 𝑁||

min𝑧∈ 𝜆1(ℑ[𝐴 − 𝑧])
for real 𝑋,

(1.7)

where  ⊂ ℂ can be any polynomially small (in 𝑁) ball and Ξ is a very high-probability event.
In Theorem 2.9, under somewhat stronger assumptions, we remove the exceptional set, that is,
the factor of Ξ from (1.7). Theorem 2.9 also covers overlaps for real eigenvalueswhen both𝑋 and
𝐴 are real, and shows that

𝔼

[ ∑
𝑖∶𝜎𝑖(𝑋+𝐴)∈

√𝑖𝑖(𝑋 + 𝐴)

]
≲ 𝑁𝛿 ⋅

√
𝑁
(√

𝑁||), (1.8)

where  ⊂ ℝ can be any interval in the bulk spectrum. Up to expectation and the log𝑁 (or 𝑁𝛿)
factors, both of (1.7) and (1.8) roughly imply 𝑖𝑖 = 𝑂(𝑁): The first factors 𝑁 and

√
𝑁 indicate the

sizes of 𝑖𝑖 and
√𝑖𝑖 , while (𝑁||) and (√

𝑁||) stand for the expected number of eigenvalues
in the given domains. Our estimates also naturally provide an upper bound on the off-diagonal
overlaps 𝑖𝑗 ∶= (𝒍𝑖, 𝒍𝑗)(𝒓𝑖, 𝒓𝑗) as well by a trivial Schwarz inequality, |𝑖𝑗| ≤ (𝑖𝑖𝑗𝑗)

1∕2.
Finally, in Theorems 2.10–2.13, we prove almost optimal lower tail bounds on the singular

values of 𝑋 + 𝐴. To be precise, in Theorem 2.10 we prove that, uniformly over all 𝑠 > 0,

ℙ[𝑁𝜆𝑘(𝑋 + 𝐴) ≤ 𝑠] ≲

{
𝑠2𝑘

2
(| log 𝑠| + log𝑁)𝑘 for complex 𝑋, fixed 𝑘 ≥ 1,

𝑠𝑘
2
(| log 𝑠| + log𝑁)𝑘 for real 𝑋, fixed 𝑘 ≥ 2,

(1.9)

where 𝜆𝑘(𝑋 + 𝐴) denotes the 𝑘-th smallest singular value of 𝑋 + 𝐴. In Theorem 2.11 we remove
the log 𝑠 factor to exhibit the optimal 𝑠-dependence in (1.9) assuming more restrictive conditions
on𝑋, and extend the result for real𝑋 to𝑘 = 1when𝐴 is also real. The exponents 2𝑘2 and𝑘2 exactly
express the correct strength of level repulsion among singular values. Finally, in Theorem 2.13, we
prove that for real 𝑋, a genuinely complex shift 𝐴 can improve (1.9) for 𝑘 = 1 in the sense that

ℙ[𝑁𝜆1(𝑋 + 𝐴) ≤ 𝑠] ≲ 𝑠2
(
1 +

| log 𝑠| + log𝑁

𝜆1(ℑ[𝐴])

)
(1.10)

uniformly over all 𝑠 > 0. The second power of 𝑠 shows that the tail of the lowest singular value
of 𝑋 + 𝐴 follows the behavior of the complex ensemble even though 𝑋 is real. As a consequence,
for a genuinely complex data matrix 𝐴, the same regularization effect can be achieved with a real
noise matrix as with a complex one.
In the next sections we collect previously known results on 𝜎𝑖 , 𝑖𝑖 , and 𝜆𝑘, and explain how

our results (1.6)–(1.10) improve upon them. The situation is somewhat different for general 𝐴
matrix and for the important special case when 𝐴 = −𝑧 scalar matrix for some 𝑧 ∈ ℂ. Most pre-
vious results have only been established for the real or complex Ginibre ensemble, that is, when
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the entries of
√
𝑁𝑋 are i.i.d. real or complex standard Gaussians. Results valid for general i.i.d.

matrices will be collected separately.

1.3 Previous results I: 𝑿 = Ginibre, 𝑨 = scalar

Since adding a scalar matrix 𝐴 affects 𝜎𝑖(𝑋 + 𝐴) and 𝑖𝑖(𝑋 + 𝐴) merely as a shift, for these
quantities we may assume 𝐴 = 0.
The density of eigenvalues 𝜎𝑖 was explicitly computed for complex and real Ginibre ensembles

respectively in [30] and [24]. In particular, results therein imply that uniformly over 𝑧 ∈ ℂ

𝜌ℂ(𝑧) ∼ 𝟙(|𝑧| ≤ 1) + 𝑜(1), 𝜌ℂ⧵ℝ(𝑧) ∼ 𝟙(|𝑧| ≤ 1)min
(√

𝑁| Im 𝑧|, 1) + 𝑜(1), (1.11)

where 𝜌ℂ and 𝜌ℂ⧵ℝ denote the normalized densities of all and non-real eigenvalues of com-
plex and real Ginibre ensembles, respectively. Taking a domain  away from the real axis, our
result (1.6) generalizes the upper bound (1.11) to an almost boundedness of 𝜌ℂ and 𝜌ℂ⧵ℝ even for
general (bounded) matrix𝐴 and general i.i.d. distribution for𝑋. See Remark 2.6 for more detailed
comparison in the real case. For the real eigenvalues of the real Ginibre ensemble 𝑋 we mention
that [25, Corollaries 4.5 and 5.2] proved

𝐸𝑁 ∶= |{𝑖 ∶ 𝜎𝑖(𝑋) ∈ ℝ}| ∼ √
𝑁, 𝜌ℝ(𝑥) ∶=

1

𝐸𝑁

d

d𝑥
𝔼|{𝑖 ∶ 𝜎𝑖(𝑋) ≤ 𝑥}| ∼ 𝟙(𝑥 ∈ [−1, 1]) + 𝑜(1).

(1.12)

While (1.12) is not directly related to (1.6), it shows that the factor of
(√

𝑁||) in (1.8) indeed
accurately describes the number of real eigenvalues 𝜎𝑖(𝑋 + 𝐴) in a real interval .
Likewise, the overlap𝑖𝑖 has also been studied thoroughly for Ginibre ensembles. In [50] it was

proved for the complex Ginibre ensemble that, uniformly over |𝑧| < 1,

𝔼[𝑖𝑖(𝑋)|𝜎𝑖 = 𝑧] = 𝑁(1 − |𝑧|2) + 𝑜(1), (1.13)

with a sub-exponential error in𝑁, where the expectation is conditioned on the event that 𝜎𝑖 = 𝑧.
Furthermore, it was recently proved in [15, 29] that𝑖𝑖 has a heavy tail even after proper rescaling:
Uniformly over |𝑧| < 1 and conditionally on the event 𝜎𝑖 = 𝑧,

𝑖𝑖(𝑋)

𝑁(1 − |𝑧|2) ⟹
{
𝛾−12 if 𝑋 is complex Ginibre ensemble [15, Theorem 1.1],
𝛾−11 if 𝑋 is real Ginibre ensemble and 𝑧 ∈ ℝ [29, Theorem 2.1],

(1.14)

where 𝛾1 and 𝛾2 are gamma distributed random variables with parameters 1 and 2. This implies
that 𝑖𝑖 has a heavy tail without first and second moment in the real and complex case, respec-
tively. In particular, the probabilistic 𝐿1-control in (1.7) is practically the strongest possible form of
an upper bound for𝑖𝑖 , and the same applies to (1.8).We alsomention that for real Ginibre ensem-
ble 𝑋 and || ≳ 1∕𝑁, the following nearly optimal upper bound corresponding to the second
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CONDITION NUMBER OF RANDOMMATRICES 3791

estimate of (1.7) was proved in [18, Theorem 2.5]:

𝔼𝟙Ξ
∑

𝜎𝑖(𝑋)∈
𝑖𝑖(𝑋) ≲ (log𝑁) ⋅ 𝑁(𝑁||) (1.15)

for a high-probability event Ξ. Comparing (1.13)–(1.15) with (1.7)–(1.8), we find that our results
are optimal modulo the factors of log𝑁 (or 𝑁𝛿) and the denominator in the second estimate of
(1.7). The main novelty is that we are not restricted to Ginibre ensembles and we allow a general
matrix 𝐴.
Next, we recall previous results on the singular valueswhen𝑋 is real or complexGinibre ensem-

ble. For singular values a scalar shift𝐴 = −𝑧 doesmatter. For the special𝐴 = 0 case, the following
optimal result was proved in [44]:

ℙ[𝑁𝜆𝑘(𝑋) ≤ 𝑠] ∼

{
𝑠2𝑘

2 if 𝑋 is complex Ginibre,
𝑠𝑘

2 if 𝑋 is real Ginibre.
(1.16)

The exponents reflect the strong level repulsion among the first 𝑘 singular values indicating an
underlying Vandermonde determinant structure for the joint density function.
For the more general 𝐴 = −𝑧 ≠ 0 case; when 𝑋 is complex Ginibre one can explicitly compute

ℙ[𝜆𝑘(𝑋 − 𝑧) ≤ 𝑠] for any fixed 𝑘, in fact the singular values form a determinantal point process
[10] and thus the analogue of (1.16) for the complex case holds. No explicit formula is available
when𝑋 is a real Ginibre ensemble but via supersymmetricmethods [18] proved an almost optimal
counterpart of (1.10) for the lowest singular value. See Remarks 2.12 and 2.14 for more details on
𝜆𝑘(𝑋 + 𝐴) when 𝑋 is Ginibre and 𝐴 = −𝑧.

1.4 Previous results II: 𝑿 = Ginibre, 𝑨 general

As we already mentioned, Wegner-type estimates for 𝜎𝑖 ’s such as (1.6) have not been considered
for general 𝐴 before.
As far as 𝑖𝑖 and 𝜆𝑘 for general 𝐴 are concerned, all upper bounds on 𝑖𝑖 listed below are

obtained using (variants of) the inequalities

𝜋𝔼
∑

𝑖∶𝜎𝑖∈
𝑖𝑖(𝑋 + 𝐴) ≤ 𝑁2 lim inf

𝑠→0 ∫
ℙ[𝑁𝜆1(𝑋 + 𝐴 − 𝑧) ≤ 𝑠]

𝑠2
d2𝑧,

2𝔼
∑

𝑖∶𝜎𝑖∈
√𝑖𝑖(𝑋 + 𝐴) ≤ 𝑁 lim inf

𝑠→0 ∫
ℙ[𝑁𝜆1(𝑋 + 𝐴 − 𝑥) ≤ 𝑠]

𝑠
d𝑥,

(1.17)

proved respectively in [15, Section 3.6] and [8, Lemma 6.2] for the condition numbers of the com-
plex and real eigenvalues. Notice that it is essential to have a tail bound on 𝜆1 uniformly for all
small 𝑠; in particular the prominent tail bounds on 𝑁𝜆1 that are valid only down to some scale
𝑠 ≳ 𝑁−𝑎 with some exponent 𝑎 > 0, for example [14, Section 4.4], [45, Theorem 2.1], [20, Theorem
1.18], or bounds with a tiny additive factor (to account for the possible discrete distribution of 𝑋
which we exclude in our setup), for example [41, Theorem 1.2] would not be useful in (1.17).
The inequalities (1.17) translate estimates such as (1.9) and (1.10) into upper bounds for𝑖𝑖 , and

in particular one can simply replace 𝐴 by 𝐴 − 𝑧 and plug these estimates into (1.17) if not for the
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3792 ERDŐS

logarithmic corrections. In light of (1.17), in what follows, we list previous results on 𝜆1(𝐴 + 𝑋)

together with their direct consequences for 𝑖𝑖 , even if the resulting upper bounds for 𝑖𝑖 were
not formulated explicitly.
The first result concerning𝑖𝑖(𝑋 + 𝐴) for general 𝐴 appeared in [7], where the authors proved

for real and complex Ginibre ensemble that

ℙ[𝑁𝜆1(𝑋 + 𝐴) ≤ 𝑠] ≤ 𝑠2, 𝔼
∑

𝑖∶𝜎𝑖(𝑋+𝐴)∈
𝑖𝑖(𝑋 + 𝐴) ≤𝑁

𝜋
(𝑁||), for complex 𝑋, (1.18)

ℙ[𝑁𝜆1(𝑋 + 𝐴) ≤ 𝑠] ≤ 𝑠, 𝔼
∑

𝑖∶𝜎𝑖(𝑋+𝐴)∈
√𝑖𝑖(𝑋 + 𝐴) ≤

√
𝑁

2

(√
𝑁||), for real 𝑋 and 𝐴.

(1.19)

A weaker version of (1.19) was proved earlier in [43] with an additional factor of 2.35. Comparing
these estimates with (1.13)–(1.15) shows that (1.18)–(1.19) are optimal.

1.5 Previous results III: 𝑿,𝑨 general

Beyond Gaussian ensembles, (1.18) and (1.19) have been generalized to any𝑋 such that the entries
of

√
𝑁𝑋 have bounded densities, as in the current paper. Namely, for such general 𝑋 and 𝐴, it is

known that

ℙ[𝑁𝜆1(𝑋 + 𝐴) ≤ 𝑠] ≲ 𝑁𝑠2, 𝔼
∑

𝑖∶𝜎𝑖(𝑋+𝐴)∈
𝑖𝑖(𝑋 + 𝐴) ≲ 𝑁2(𝑁||), for complex 𝑋, (1.20)

ℙ[𝑁𝜆1(𝑋 + 𝐴) ≤ 𝑠] ≲
√
𝑁𝑠, 𝔼

∑
𝑖∶𝜎𝑖(𝑋+𝐴)∈

√𝑖𝑖(𝑋 + 𝐴) ≲ 𝑁
(√

𝑁||), for real 𝑋 and 𝐴,

(1.21)

where the first result (1.20) was essentially1 proved in [35, Lemma 3.4] and the second result (1.21)
is due to [49, Corollary 1.4]. Prior to [49], a similar result in the real case appeared in [37, Corollary
1.8], which had weaker bound but covered 𝜆𝑘 beyond 𝑘 = 1. In the same setting with general real
𝑋, the overlap 𝑖𝑖 at a genuinely complex eigenvalue 𝜎𝑖 was considered simultaneously in [35]
and [8] improving (1.21) away from the real axis. Specifically, [35, Proposition 4.2] proved for real
𝑋 and 𝐴 and 𝑧 ∈ ℂ that

ℙ[𝑁𝜆1(𝑋 + 𝐴 − 𝑧) ≤ 𝑠] ≲
𝑁3∕2𝑠2| Im 𝑧| , 𝔼

∑
𝑖∶𝜎𝑖(𝑋+𝐴)∈

𝑖𝑖(𝑋 + 𝐴) ≲
𝑁5∕2(𝑁||)
min𝑧∈ | Im 𝑧| . (1.22)

A similar result was obtained in [8, Theorem 1.5] with larger powers of𝑁 on the right-hand sides,
but this result also covers 𝜆𝑘 for 𝑘 > 1. Notice the additional powers of𝑁 in (1.20)–(1.22) compared
to the optimal results (1.18)–(1.19) in theGinibre case. These are largely due to the geometricmeth-
ods used in [35], namely, “invertibility via distance” introduced in [49]. In contrast, in (1.7)–(1.8)
we obtain upper bounds on the overlaps and in (1.9)–(1.10) for the singular values with a nearly
optimal 𝑁-dependence using purely analytic methods.

1 Estimates therein carry an additional factor of𝑁 compared to (1.20), due to an apparent typo in the proof of [35, Lemma
3.4]; the factor 𝑛2 in the rightmost side of the last inequality in [35, p.3018] should be 𝑛.
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CONDITION NUMBER OF RANDOMMATRICES 3793

Finally, we remark that a matching lower bound for 𝑖𝑖(𝑋 + 𝐴) with general 𝐴 and i.i.d. 𝑋
was recently obtained in [19, Theorem 2.4], which is optimal up to a factor of 𝑁𝑜(1). Lower
bounds require very different methods than upper bounds and they are much more robust, in
particular 𝑖𝑖(𝑋 + 𝐴) ≥ 𝑁1−𝑜(1) can be proven with very high probability, while the overlap has
a heavy upper tail. The main method of [19] is a very precise multi-resolvent local law on the
Hermitization of 𝑋 + 𝐴 closely related to the Eigenstate Thermalization Hypothesis and Quantum
UniqueErgodicity forHermitian randommatrices. No regularity on the density of𝑋was necessary
in [19].
Summarizing, the current paper substantially generalizes many previous results on upper

bounds on overlaps and lower tail bounds on singular values for matrices of the form 𝑋 + 𝐴. We
can deal with very general distributions of 𝑋 and general matrices 𝐴 without sacrificing much of
the optimality.
The key new approach is a Wegner type estimate for the singular values; an idea that has been

exploited earlier in the Hermitian (Wigner) setup [27] but has never been used for non-Hermitian
problems. In the main body of this paper we develop the necessary tools to establish a Wegner
estimate for the Hermitization of 𝑋 + 𝐴, then we derive all our estimates from this input. Before
entering the precise details, in the next subsectionwe sketch themain ideas, especiallywe indicate
how Hermitian Wegner type estimates for singular values are used to estimate non-Hermitian
eigenvalue density and overlaps.

1.6 Outline of the proofs

The common ingredient for ourmain non-Hermitian results (1.6)–(1.8) is the lower tail bound (1.9)
on the first few singular values 𝜆𝑘(𝑋 + 𝐴) or 𝜆𝑘(𝑋 + 𝐴 − 𝑧). First we explain how we use this
bound for our main results and then we comment on its proof.
For the proof of (1.6) (Theorem 2.3), we use Girko’s Hermitization formula [31, 46]

𝑁∑
𝑖=1

𝑓(𝜎𝑖(𝑋 + 𝐴)) = −
1

4𝜋 ∫
ℂ

Δ𝑓(𝑧)∫
∞

0

Tr
𝜂

(𝑋 + 𝐴 − 𝑧)(𝑋 + 𝐴 − 𝑧)∗ + 𝜂2
d𝜂d2𝑧. (1.23)

Girko’s formula translates the eigenvalue statistics of 𝑋 + 𝐴 into singular value statistics of 𝑋 +

𝐴 − 𝑧, and has been proved to be an effective tool for studying the spectrum of non-Hermitian
random matrices; see for example [3, 5, 17, 31–33, 47]. To control the left-hand side of (1.6) we
take 𝑓 in (1.23) to be a smoothed indicator 𝟙. To estimate the right hand side of (1.23) from
above, we first perform two integrations by parts with respect to 𝑧. Then, for an upper bound,
besides the lower bounds on the singular values of 𝑋 + 𝐴 − 𝑧, we also need upper bounds on
certain scalar products of their singular vectors uniformly in 𝑧 – this information is provided by
the thermalization result [19, Theorem 2.2]. We remark that exactly the same information was
used in [19, Theorem 2.4] to prove the high probability lower bounds for 𝑖𝑖 , so morally an upper
bound on the r.h.s. of (1.23) requires lower bound on the singular values and lower bound on the
overlaps 𝑖𝑖 .
As for the upper bounds on the overlap (1.7)–(1.8) (Theorem 2.7) we relate the smallest singular

value 𝜆1(𝑋 + 𝐴 − 𝑧) to the overlap 𝑖𝑖(𝑋 + 𝐴) via the contour integral

−
1

2𝜋i ∮|𝑧−𝑤|=𝑟
1

𝑋 + 𝐴 − 𝑤
d𝑤 =

∑
𝑖∶|𝜎𝑖(𝑋+𝐴)−𝑧|<𝑟 𝒓𝑖(𝑋 + 𝐴)𝒍𝑖(𝑋 + 𝐴)∗. (1.24)
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3794 ERDŐS

Using Weyl’s inequality between products of eigenvalues and singular values and the estimates
for the second smallest singular value 𝜆2(𝑋 + 𝐴 − 𝑧)we can take 𝑟 ∼ 𝑁−𝐶 so small that there is at
most one 𝜎𝑖 within distance 𝑟 from 𝑧. For such an 𝑟, the overlap 𝑖𝑖 is exactly the squared norm
of the right-hand side of (1.24), thus an upper bound on it can be obtained by the square of the
left-hand side, which in turn can be bounded from above via a lower tail bound on 𝜆1(𝑋 + 𝐴 − 𝑧).
We need to tile the spectrum into disjoint tiny boxes of linear size 𝑟 and carefully control the error
terms to obtain a linear bound in the area || after summing them up.
Now we explain the proof of the optimal lower tail estimates (1.9)–(1.10) for the lowest singular

values 𝜆𝑘(𝑋 + 𝐴). These are proven in Theorems 2.10–2.13 using Wegner type arguments. The
key point is that the regularity of the randomness in 𝑋 forces the singular values to spread; they
cannot stick to a particular value (like zero) as 𝑋 is sampled from a continuous probability space.
While this mechanism is quite transparent, the essential difficulty is to get the optimal𝑁-powers
in the estimate. Playing with the randomness of a single matrix element 𝑥𝑖𝑗 would not have a
sufficiently strong effect on 𝜆1 since𝑥𝑖𝑗 has size only𝑁−1∕2, while playingwith allmatrix elements
simultaneously would not be manageable due to the correlations of their effects. We operate with
the randomness of a few rows of 𝑋 at the same time; this already has the desired effect on 𝜆1 and
is still technically feasible.
Part of these arguments is inspired by [27] that proved Wegner estimates for eigenvalues of

Hermitian randommatrices. The lower tail of 𝜆1(𝑋 + 𝐴) is estimated by the trace of the resolvent
of (𝑋 + 𝐴)(𝑋 + 𝐴)∗ outside its spectrum at a negative spectral parameter−𝜂2 with 𝜂 ≲ 1∕𝑁. Then
we express the 𝑖-th diagonal entry of the resolvent as a quadratic form of the 𝑖-th row vector of
(𝑋 + 𝐴)with a randomweight involving the minor of (𝑋 + 𝐴)with the 𝑖-th row deleted. We work
in the probability space of this row vector which is independent of the weight and prove effective
anti-concentration bounds. Higher singular values 𝜆𝑘(𝑋 + 𝐴) require an inductive procedure to
remove 𝑘 rows. Since the actual proofs are rather technical, we present a more detailed outline in
Section 5. See also [1, 28] for other instances of smoothed analysis in the Hermitian context.
While our proofs of Theorems 2.10–2.13 start with a similar idea as [27], the proofs in [27] actu-

ally assumed much stronger conditions as they were studying the entire bulk spectrum. This
resulted in a non-vanishing Hermitian part of the resolvent whose control required an additional
integration by parts in the probability space forcing much stronger regularity assumptions. In
our case, the resolvent is always skew-Hermitian (see 3.22) since we work at the hard edge of
(𝑋 + 𝐴)(𝑋 + 𝐴)∗. We also point out that [27] assumed certain decay for the Fourier transforms
of entry-distribution, which was later weakened in [36, Appendix A] by using Brascamp–Lieb
inequality. Instead, here we use a more refined input from [42] whose proof contains the same
arguments as in [36], eventually requiring only a minimal regularity condition (bounded density)
for the entry-distribution.
As a final remark, we point out that the improved bound (1.10) for the least singular value

𝜆1(𝑋 + 𝐴) for real 𝑋 and complex 𝐴 is more difficult to handle than that for complex 𝑋, while
their lower tails have the same 𝑠2-decay by (1.9) and (1.10). Along the proof of Theorem 2.13, we
find that the singular vectors of (𝑋 + 𝐴) affect the lower tail of the singular values; we need to
show that singular vectors are genuinely complex if 𝐴 is complex. Hence the difference between
real and complex non-Hermitian 𝑋 is fundamentally harder to capture than that between real
symmetric and complex Hermitian random matrices which do not involve eigenvectors.
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1.7 Organization

In Section 2, we rigorously define our model and state the main results. Sections 3 and 4 are
devoted to the proofs of Theorems 2.3 and 2.7 concerning eigenvalues and overlaps of 𝐴 + 𝑋,
respectively.We prove the singular value estimates in the remaining sections; Sections 5–7 contain
proofs of Theorems 2.11, 2.10, and 2.13, in that order.

1.8 Notations

For 𝑥, 𝑦 ∈ ℝ, we denote ⟦𝑥, 𝑦⟧ = [𝑥, 𝑦] ∩ ℤ and ⟦𝑥⟧ = [1, 𝑥] ∩ ℤ. For a square matrix 𝐴 ∈ ℂ𝑑×𝑑,
we write ⟨𝐴⟩ = 1

𝑑
Tr𝐴 for its normalized trace and denote its Hermitian, skew-Hermitian, real,

and imaginary parts by

Re[𝐴] =
𝐴 + 𝐴∗

2
, Im[𝐴] =

𝐴 − 𝐴∗

2i
, ℜ[𝐴] =

𝐴 + 𝐴

2
, ℑ[𝐴] =

𝐴 − 𝐴

2i
. (1.25)

For a matrix 𝐵 of any size we denote by ‖𝐵‖ its operator norm. For each 𝑖 ∈ ℕ, we denote 𝒆𝑖 by
the 𝑖-th coordinate vector, whose dimension can vary by lines.
For 𝑝 ∈ ℕ and integrable functions 𝑓 and 𝑔 respectively on ℝ𝑝 and ℂ𝑝, we denote their

Lebesgue integrals by

∫
ℝ𝑝

𝑓(𝒙)d𝑝𝒙, ∫
ℂ𝑝

𝑔(𝒛)d2𝑝𝒛.

For a random variable 𝑥 and 𝑞 ≥ 1, we write ‖𝑥‖𝑞 to denote (𝔼|𝑥|𝑞)1∕𝑞.
We denoteℂ+ ∶= {𝑧 ∈ ℂ ∶ Im𝑧 > 0} and𝔻 ∶= {|𝑧| < 1} ⊂ ℂ. For a Borel set ⊂ ℂ, we define|| to be its Lebesgue measure. The letter 𝑁 always denotes the dimension of our matrix, we

consider the large𝑁 regime and we use the standard asymptotic relation ≲ and ∼with respect to
𝑁. For example, for non-negative functions 𝑓 and 𝑔 of𝑁 we write 𝑓 ≲ 𝑔 when there is a constant
𝐶 > 0 such that 𝑓(𝑁) ≤ 𝐶𝑔(𝑁) for all𝑁, and write 𝑓 ∼ 𝑔when 𝑓 ≲ 𝑔 and 𝑔 ≲ 𝑓 are both true. We
use the letters 𝑐 and 𝐶 to denote positive constants whose exact value may vary from line to line.

2 MAIN RESULTS

We consider matrices over the real or complex field, denoted commonly by 𝕂 = ℝ or ℂ.

Definition 2.1. An (𝑁 × 𝑁) real (𝕂 = ℝ) or complex (𝕂 = ℂ) randommatrix 𝑋 is called regular
if the following hold true for a constant 𝔟 > 0:

(i) The collection {Re𝑋𝑖𝑗, Im𝑋𝑖𝑗 ∶ 𝑖, 𝑗 ∈ ⟦𝑁⟧} is independent:
(ii.ℝ) When 𝕂 = ℝ, the random variables

√
𝑁𝑋𝑖𝑗 have densities bounded by 𝔟:

(ii.ℂ) When 𝕂 = ℂ, the random variables
√
𝑁Re𝑋𝑖𝑗 and

√
𝑁 Im𝑋𝑖𝑗 have densities bounded

by 𝔟.

A regular matrix 𝑋 is called a regular i.i.d. matrix if the following hold in addition to (i)–(ii).
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(iii) The entries are identically distributed, that is, 𝑋11
𝑑
= 𝑋𝑖𝑗 for all 𝑖, 𝑗 ∈ ⟦𝑁⟧:

(iv) 𝔼𝑋 = 0 and 𝔼𝑋𝑋∗ = 𝐼: If 𝕂 = ℂ we also assume 𝔼𝑋𝑋⊺ = 0:
(v) For all 𝑝 ∈ ℕ,𝔪𝑝 ∶= 𝔼|√𝑁𝑋11|𝑝 is finite. In this case we define𝖒 ∶= (𝔪𝑝)𝑝∈ℕ ∈ ℝℕ.

Note that we do not impose any assumption on the decay of the entry distribution of a regular
matrix, but only on that of a regular i.i.d.matrix. For example, if𝑋𝑖𝑗 ’s are i.i.d. Cauchy-distributed
random variables, that is,

d

d𝑥
ℙ
[√

𝑁𝑋11 ≤ 𝑥
]
=

1

𝜋

1

𝑥2 + 1
,

then 𝑋 is a regular matrix but not a regular i.i.d. matrix. Also note that the shifted matrix 𝑋 + 𝐴

remains regular with the same 𝔟 > 0 for any 𝐴 ∈ 𝕂𝑁×𝑁 when 𝑋 is regular.
For a given deterministic matrix 𝐴 ∈ ℂ𝑁×𝑁 , we denote the (complex) eigenvalues of 𝑋 + 𝐴 by

{𝜎𝑖 ≡ 𝜎𝑖(𝑋 + 𝐴) ∶ 𝑖 ∈ ⟦𝑁⟧} and their normalized empirical distribution by
𝜌 ≡ 𝜌

(𝑁)
𝑋+𝐴

∶=
1

𝑁

𝑁∑
𝑖=1

𝛿𝜎𝑖(𝑋+𝐴). (2.1)

The eigenvalues of𝑋 + 𝐴 do not have a canonical ordering, but we still consider them indexed by⟦𝑁⟧ to simplify notations. Nonetheless all our arguments are insensitive to this ad hoc ordering.
Finally, for each 𝑧 ∈ ℂ and 𝑟 > 0, we define the number of eigenvalues in a ball of radius 𝑟 about
𝑧;

𝑧,𝑟 ∶= |{𝑖 ∈ ⟦𝑁⟧ ∶ |𝜎𝑖 − 𝑧| ≤ 𝑟}|.
Our results on eigenvalues and overlaps are often restricted to the indices 𝑖 for which 𝜎𝑖 is well

inside the limiting spectrum of 𝑋 + 𝐴. We quantify the “bulk” of the non-Hermitian spectrum of
(𝑋 + 𝐴) in terms of the singular value spectrum of (𝑋 + 𝐴 − 𝑧). Namely, for 𝜏 > 0 we define

𝜏 ∶=
{
𝑧 ∈ ℂ ∶

d

d𝑥
(𝜇sc ⊞ 𝜇

symm|𝐴−𝑧|)(0) > 𝜏
}
⊂ ℂ, (2.2)

where 𝜇sc is the usual semi-circle distribution, 𝜇
symm|𝐴−𝑧| is the symmetrization of the singular value

distribution of 𝐴 − 𝑧, and⊞ denotes the free additive convolution. Using the standard defining
equation for the Stieltjes transform of 𝜇sc ⊞ 𝜇

symm|𝐴−𝑧| (see, e.g., [38] or [19, Eq. (2.4)]), 𝜏 may be
written in terms of the singular value distribution of 𝐴 − 𝑧 as (recall from Section 1.8 that ⟨⋅⟩ is
the normalized trace)

𝜏 =

{
𝑧 ∈ ℂ ∶

⟨
1

(𝐴 − 𝑧)(𝐴 − 𝑧)∗ + 𝜏2

⟩
> 1

}
. (2.3)

Note that 𝜇sc ⊞ 𝜇
symm|𝐴−𝑧| is exactly the symmetrization of the limiting singular value distribution

of (𝑋 + 𝐴 − 𝑧), see [11, 34]. Thus 𝑧 ∈ 𝜏 for some fixed 𝜏 > 0 guarantees that 𝑧 is well inside the
limiting spectrum of (𝑋 + 𝐴). Wewill make this relationmore precise in the following Remark 2.2
that may be skipped at the first reading as it is not used in the rest of the paper.

Remark 2.2 (Characterization of the bulk). For technical convenience we defined the “bulk” spec-
trum of𝑋 + 𝐴 in terms of𝜏. Here we show that the domains𝜏 for small 𝜏 indeed coincide with
the traditional concept of “bulk spectrum” of 𝜌 in the following sense:
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(i) The sets 𝜏 roughly cover the support of 𝜌 in the limit 𝜏 → 0;
(ii) for any disk ⊂ 𝜏 on macroscopic scale (|| ∼ 1) we have

|{𝑖 ∈ ⟦𝑁⟧ ∶ 𝜎𝑖 ∈ }| ∼ 𝑁||. (2.4)

To make these two statements a bit more precise, consider the Brown measure 𝜌𝑎+𝑥 of the sum
𝑎 + 𝑥 in a non-commutative probability space where 𝑎 ≡ 𝑎𝑁 has the same ∗-distribution as 𝐴
and 𝑥 is a circular element ∗-free from 𝑎. By a standard corollary of the proof of [19, Theorem
2.6]2, we can prove that if𝐴 is norm-bounded, then the empirical eigenvalue distribution 𝜌 = 𝜌(𝑁)

from (2.1) is close to 𝜌𝑎+𝑥 in a weak sense, namely, for any fixed, smooth, compactly supported
test function 𝑓 on ℂ,

∫
ℂ

𝑓(𝑧)d
(
𝜌(𝑁) − 𝜌𝑎+𝑥

)
(𝑧) → 0 as 𝑁 → ∞ (2.5)

with high probability. On the other hand, define the open set 0 ⊂ ℂ by

0 ∶=

{
𝑧 ∈ ℂ ∶

⟨
1

(𝐴 − 𝑧)(𝐴 − 𝑧)∗

⟩
> 1

}
=

⋃
𝜏>0

𝜏, (2.6)

where the last equality is due to (2.3). For this open set [53, Theorem B] implies that the measure
𝜌𝑎+𝑥 has no atom, is supported on 0, and is absolutely continuous on 0 with a strictly positive
real analytic density therein. Together with (2.5) this implies (i), that is, that supp(𝜌𝑎+𝑥) = 0

covers the bulk of 𝜌, that is, the regime where 𝜌 is typically positive.
Furthermore, [53, Eq. (4.2)] (first proved for normal 𝐴 in [13, Theorem 1.4]) gives an implicit

formula for the density of 𝜌𝑎+𝑥, which implies the following quantitative estimate on 𝜏:

𝜏2

(‖𝐴 − 𝑧‖2 + 𝜏2)2
≤ 𝜋

d𝜌𝑎+𝑥
d𝑚

(𝑧) ≤ ‖𝐴 − 𝑧‖(‖𝐴 − 𝑧‖2 + 𝜏2

𝜏2

)2

+
1

𝜏2
, ∀𝑧 ∈ 𝜏, (2.7)

where𝑚 denotes the Lebesguemeasure onℂ. Taking𝑓 in (2.5) to be a smoothed indicator function
𝟙 and combining with (2.7) yields the second statement (ii) and (2.4).

2.1 Eigenvalues and eigenvector overlaps of 𝑿 + 𝑨

In this section, we consider𝑋 + 𝐴where𝐴 is a general deterministic matrix with ‖𝐴‖ = 𝑂(1) and
𝑋 is a regular i.i.d. matrix.
The first result is our Wegner-type estimate for the eigenvalues in the bulk: it asserts that the

expected density of 𝜎𝑖 ’s, or equivalently, the one point correlation function, is almost bounded in
the bulk.

2 This result gives the optimal bulk local law for the Hermitization of 𝑋 + 𝐴, see also (3.4). If we restrict 𝑤 ∈ i(𝜂,∞) in
[19, Theorem 2.6] with a small enough but fixed 𝜂, their result easily extends to all norm-bounded𝐴, beyond those with 0
in the bulk spectrum of |𝑋 + 𝐴 − 𝑧|. From this local law, a standard argument using Girko’s formula (1.23) implies (2.5),
the corresponding analogue of the macroscopic “circular law”. The standard additional ingredient on the tail of the lowest
singular value is given as usual by the regularity condition on 𝑋.

 10970312, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22201 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [09/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3798 ERDŐS

Theorem 2.3. Fix 𝛾 ∈ (0, 1), 𝔎 > 0, and (small) 𝛿, 𝜏 > 0. Let 𝑋 be a real or complex regular
i.i.d. matrix, and 𝐴 ∈ ℂ𝑁×𝑁 be deterministic with ‖𝐴‖ ≤ 𝔎. Then there exists a constant 𝐶 ≡
𝐶(𝛾, 𝛿, 𝜏, 𝔟,𝖒,𝔎) > 0 such that the following hold for all𝑁 ∈ ℕ:

(i) If 𝑋 is complex, then for all 𝑟 ∈ [0,𝑁−1∕2] and 𝑧 ∈ 𝜏 we have

𝐏
[𝑧,𝑟 ≥ 1

] ≤ 𝔼𝑧,𝑟 ≤ 𝐶𝑁𝛿(𝑁𝑟2)1−𝛾. (2.8)

(ii) If 𝑋 is real, then for all 𝑟 ∈ [0,𝑁−1∕2], 𝑧 ∈ 𝜏, and 𝜆1(ℑ[𝐴 − 𝑧]) > 2𝑟 we have

𝐏
[𝑧,𝑟 ≥ 1

] ≤ 𝔼𝑧,𝑟 ≤ 𝐶𝑁𝛿 (𝑁𝑟2)1−𝛾

𝜆1(ℑ[𝐴 − 𝑧])
, (2.9)

where we recall that 𝜆1(ℑ[𝐵]) denotes the smallest singular value of ℑ𝐵 = (𝐵 − 𝐵)∕2i for 𝐵 ∈

ℂ𝑁×𝑁 .

Note that the quotient 𝔼𝑧,𝑟∕(𝑁𝜋𝑟
2) tends to the averaged density of states in the limit 𝑟 → 0,

hence Theorem 2.3 proves the Wegner estimate up to an exponent 𝛾 > 0. As a corollary, we show
that ⟨(𝑋 + 𝐴 − 𝑧)−1⟩, the normalized trace of the resolvent, is essentially bounded in (probabilis-
tic) 𝐿2−𝑜(1). This is a truly random effect since 𝑧 lies in the support of the limiting density of states,
hence ⟨(𝑋 + 𝐴 − 𝑧)−1⟩may be unbounded, but its (2 − 𝑜(1))-th moment is finite.

Corollary 2.4. Fix𝔎, 𝜏 > 0, 𝛿1 ∈ (0, 1] and let 𝛿 > 0 be sufficiently small. Let𝑋 be a real or complex
regular i.i.d. matrix and 𝐴 ∈ ℂ𝑁×𝑁 with ‖𝐴‖ ≤ 𝔎.

(i) If 𝑋 is complex, then there exists a constant 𝐶 ≡ 𝐶(𝛿1, 𝜏, 𝔟,𝖒,𝔎) > 0 such that the following
hold for all 𝑧 ∈ 𝜏 and𝑁 ∈ ℕ:

𝔼|⟨(𝑋 + 𝐴 − 𝑧)−1⟩|2−𝛿1 ≤ 𝐶. (2.10)

(ii) If𝑋 is real, then there exists a constant 𝐶 ≡ 𝐶(𝛿1, 𝛿, 𝜏, 𝔟,𝖒,𝔎) > 0 such that the following hold
for all 𝑧 ∈ 𝜏 and𝑁 ∈ ℕ:

𝔼|⟨(𝑋 + 𝐴 − 𝑧)−1⟩|2−𝛿1 ≤ 𝐶

(
1 +

𝑁−𝛿1∕2+𝛿

𝑦

(
1 ∧ (𝑁𝑦)𝛿1∕2−𝛿

))
(2.11)

where we abbreviated 𝑦 ∶= 𝜆1(ℑ[𝐴 − 𝑧]).

A similar result as (2.10) appeared in [40, Lemma 2.2], with an extra factor of 𝑁2 on the right-
hand side.
Notice that we take 𝛿1 ∈ (0, 1] in Corollary 2.4, instead of (0,2]. While we use this choice in the

proof (see 3.35), Corollary 2.4 trivially implies an upper bound for 𝔼|⟨𝑋 + 𝐴 − 𝑧⟩|2−𝛿1 even when
𝛿1 ∈ (1, 2] by Hölder’s inequality. In particular, (2.10) is true for all 𝛿1 ∈ (0, 2], and the same holds
true in the real case if 𝜆1(ℑ[𝐴 − 𝑧]) is of order one.

Remark 2.5. In light of (1.11) for the Ginibre ensemble, we believe that Theorem 2.3 remains true
for 𝛿 = 0 = 𝛾 even in the general case. In our current Theorem 2.3 the factor 𝑁𝛿 is due to the
error in the local laws for the singular values of 𝑋 + 𝐴 − 𝑧, and the exponent 𝛾 > 0 is the cost for
neglecting the correlation between singular values and vectors. We defer the details to Remark 3.5
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after the proof of Theorem 2.3. Also note that 𝛿1 > 0 in Corollary 2.4 is necessary since the contri-
bution from a single eigenvalue to the secondmoment of ⟨(𝑋 + 𝐴 − 𝑧)−1⟩, that is,𝑁−2𝔼|𝜎𝑖 − 𝑧|−2,
is already logarithmically divergent.

Remark 2.6. When𝐴 = 0 and𝑋 is realGinibre ensemble, (1.11) and (1.12) imply that𝔼𝑧,𝑟 remains
bounded as long as | Im 𝑧| ≳ 𝑁−1∕2. Taking 𝐴 = 0 in our results, (2.9) and (2.11), they do not fea-
ture this sharp | Im 𝑧|-dependence due to the factor | Im 𝑧|−1 in (2.9). This factor originates from
Theorem 2.13, where we prove a lower tail estimate for the smallest singular value of (𝑋 + 𝐴 − 𝑧)

that also carries the same | Im 𝑧|−1 factor. In Remark 2.14 following Theorem 2.13, we explain
more details on its source and a possibly optimal | Im 𝑧|-dependence.
Recall that when the spectrum of (𝑋 + 𝐴) is simple we have the spectral decomposition

𝑋 + 𝐴 =
∑
𝑖

𝜎𝑖𝒓𝑖𝒍
∗
𝑖
, 𝒍∗

𝑖
𝒓𝑗 = 𝛿𝑖𝑗 (2.12)

and that the overlaps between eigenvectors 𝒍𝑖 and 𝒓𝑗 are defined as

𝑖𝑗 ∶= 𝒍∗
𝑖
𝒍𝑗𝒓

∗
𝑗
𝒓𝑖. (2.13)

Before presenting our results on the diagonal overlaps 𝑖𝑖 , we briefly pause to show that 𝑋 + 𝐴

has simple spectrum with probability 1 when 𝑋 is regular. To see this, notice that 𝑋 + 𝐴 has a
repeated eigenvalue if and only if the characteristic polynomial and its derivative has a common
root. This is in turn equivalent to the resultant of these two polynomials being identically zero.
Thus𝑋 + 𝐴 is not simplewhen its entries satisfy a polynomial equation, so that𝑋 is in an algebraic
submanifold of𝕂𝑁×𝑁 with positive codimension. Since this manifold has Lebesgue measure zero
and 𝑋 has a density, 𝑋 falls into this set with probability zero.
In the next two theorems, we prove upper bounds for the expectation of 𝑖𝑖 . The first result

holds anywhere in the spectrum but only on a set with very high probability. In the second result
we remove this exceptional set in the bulk.

Theorem 2.7. Fix𝔎0 > 0 and (large)𝐷,𝐾 > 0. Let𝑋 be a real or complex regular i.i.d. matrix and
𝐴 ∈ ℂ𝑁×𝑁 with ‖𝐴‖ ≤ 𝑁𝔎0 . Then there exists a constant 𝐶 ≡ 𝐶(𝔟,𝖒,𝔎0, 𝐷, 𝐾) > 0 such that the
following hold true:

(i) If 𝑋 is complex, for any square ⊂ ℂ with || ≥ 𝑁−2𝐾 we have

𝔼𝟙Ξ
∑

𝑖∶𝜎𝑖∈
𝑖𝑖 ≤ 𝐶𝑁(log𝑁)2(𝑁||), (2.14)

for some event Ξ with ℙ[Ξ𝑐] ≤ 𝑁−𝐷 .
(ii) If 𝑋 is real, for any square ⊂ ℂ with || ≥ 𝑁−2𝐾 andmin𝑧∈ 𝜆1(ℑ[𝐴 − 𝑧]) ≥ 𝑁−𝐾 we have

𝔼𝟙Ξ
∑

𝑖∶𝜎𝑖∈
𝑖𝑖 ≤ 𝐶𝑁(log𝑁)2

(1 + ‖𝐴‖2)(𝑁||)
min𝑧∈ 𝜆1(ℑ[𝐴 − 𝑧])

, (2.15)

for some event Ξ with ℙ[Ξ𝑐] ≤ 𝑁−𝐷 .
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In particular, if 𝑋 is complex, for each fixed 0 < 𝜖′ < 𝜖 and 𝐾 > 0 we have

ℙ

[ ∑
𝑖∶𝜎𝑖∈

𝑖𝑖 ≥ 𝑁1+𝜖𝑁||] ≤ 𝑁−𝜖′ (2.16)

uniformly over squares ⊂ ℂ with || > 𝑁−2𝐾 . The same holds true for real 𝑋 for all ⊂ ℂ with|| > 𝑁−2𝐾 as long asmin𝑧∈ 𝜆1(ℑ[𝐴 − 𝑧]) ∼ 1.

Remark 2.8. Notice that in Theorem 2.7 we only assume ‖𝐴‖ is at most polynomially large in
𝑁, allowing 𝐴 to be much larger than 𝑋. A closely related canonical model is 𝛾𝐴 + 𝑋, with‖𝐴‖ = 𝑂(1), where 𝛾 > 0 is a large control parameter. In fact, controlling the effect of large 𝛾
on the condition number 𝑖𝑖 has been a central task in quantitative linear algebra, for example,
in [7, 8, 35] after the trivial rescaling 𝛾𝐴 + 𝑋 = 𝛾(𝐴 + 𝛾−1𝑋) and viewing 𝛾−1𝑋 as a small ran-
dom perturbation of the deterministic 𝐴. Since the constant 𝐶 > 0 in Theorem 2.7 depends only
on log ‖𝐴‖ via𝔎0, our result can be used for such a purpose. In fact, if we replace 𝐴 with 𝛾𝐴 in
Theorem 2.7 (i) and (ii), we recover the same 𝛾-dependence for 𝑖𝑖 as in respectively [7, Theorem
1.5] and [8, Proposition 6.4] modulo log 𝛾 factors.
We also remark that our proof of Theorem 2.7 easily extends the result to regular matrices

beyond regular i.i.d. matrices (i.e., without conditions (iii)–(iv) in Definition 2.1). In this case
we need the additional assumptions that  is contained in a bounded set and, if 𝑋 is real, that
𝔼‖𝑋‖4 = 𝑂(1).

Since (2.14) and (2.15) are true for all fixed 𝐾 > 0 and additive in , we may easily deduce the
same result for many other domains that can be approximately tiled by small squares. Indeed,
in Appendix A we prove that Theorem 2.7 holds true not only for square domains but also for
any Borel measurable domain  satisfying a natural geometric regularity condition of the form| + [−𝑁−𝐾,𝑁−𝐾]2| ≤ 𝐶|| for some constants𝐶,𝐾 > 0. Here+ refers to theMinkowski sum of
 and a small square. In particular, wemay take to be a disk or a “polynomially thin” rectangle.
In the next theorem, we remove the probabilistic factor 𝟙Ξ from (2.14) assuming that  is in

the bulk 𝜏, and extend the result to 𝑖𝑖 ’s at real eigenvalues when 𝐴 and 𝑋 are both real.

Theorem 2.9. Fix𝔎 > 0 and (small) 𝛿, 𝜏 > 0. Let 𝑋 be a real or complex regular i.i.d. matrix and
𝐴 ∈ ℂ𝑁×𝑁 with ‖𝐴‖ ≤ 𝔎. Then there exists a constant 𝐶 ≡ 𝐶(𝛿, 𝜏, 𝔟,𝔪,𝔎) such that the following
hold:

(i) If 𝑋 is complex, for any Borel set ⊂ 𝜏 we have

𝔼
∑

𝑖∶𝜎𝑖∈
𝑖𝑖 ≤ 𝐶𝑁1+𝛿(𝑁||). (2.17)

(ii) If 𝑋 and 𝐴 are real, for any Borel set  ⊂ 𝜏 ∩ ℝ we have

𝔼
∑

𝑖∶𝜎𝑖∈
√𝑖𝑖 ≤ 𝐶𝑁1∕2+𝛿

(√
𝑁||), (2.18)

where || is the Lebesgue measure of  inℝ.
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The most relevant choice for  in both of Theorems 2.7 and 2.9 is a square of area 𝑁−1+𝜖 in
the bulk, so that typically there is at least one eigenvalue in  with high probability. More pre-
cisely, since the local law in [19, Theorem 2.6] covers all mesoscopic scales, we can extend the
convergence in (2.5) to test functions 𝑓 on mesoscopic scales supported in 𝜏; see for exam-
ple [3, Section 5.2] for a completely analogous proof in a slightly different setup. In particular
(2.4) extends to squares  ⊂ 𝜏 with || = 𝑁−1+𝜖, so that there is at least one eigenvalue in 
with high probability. For such sets, Theorem 2.9 and (1.13) are on the same footing; our result
shows that the expectation of 𝑖𝑖 is bounded by 𝑁1+𝜖.
In an unrelated context, we remark that Theorem 2.9(i) can also be used to give an upper bound

on the diffusivity of the complex Dyson-type eigenvalue dynamics defined via (1.5). This matches
the analogous lower bound given in [19, Eq. (2.14)].

2.2 Small singular values of shifted regular matrices

Asmentioned in the introduction, our proofs of Theorems 2.3–2.9 translate the problems to under-
standing the singular values of𝑋 + 𝐴 − 𝑧 for any shift parameter 𝑧 ∈ ℂ. In this sectionwe present
results on the singular values of 𝑋 + 𝐴, where 𝑋 is a general regular matrix in Definition 2.1 and
𝐴 ∈ ℂ𝑁×𝑁 is a deterministic matrix. By replacing 𝐴 with 𝐴 − 𝑧, we use the results in this sec-
tion as inputs for those in Section 2.1. These results are of independent interest, so we list them in
this section separately.
We stress that all results in this section except Theorem 2.11 will be uniform in 𝐴, in particular

no norm bound on 𝐴 is assumed unlike in the previous Section 2.1. This means that by a simple
rescaling 𝛾𝑋 + 𝐴 = 𝛾(𝑋 + 𝐴∕𝛾), 𝛾 > 0, these results also hold for the singular values of thematrix
𝛾𝑋 + 𝐴 with a rescaled noise, as often presented in numerical applications, for example [7, 8, 35].
We denote the ordered singular values of 𝑋 + 𝐴 by

0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝑁. (2.19)

As eigenvalues of a Hermitian randommatrix, 𝜆𝑘’s are subject to level repulsion that in turn forces
an especially small lower tail probability for them. The next theorems contain such results. Their
optimality will be discussed afterwards.

Theorem 2.10 (Regular matrices). Let 𝑘 ∈ ℕ be fixed,𝐴 ∈ ℂ𝑁×𝑁 , and𝑋 be a regularmatrix. Then
for the singular values (2.19) of (𝑋 + 𝐴) we have the following:

(i) [Complex case] If 𝑋 is complex, there exists a constant 𝐶 ≡ 𝐶(𝑘, 𝔟) > 0 such that for all 𝑁 ≥
𝑘 ∨ 2 and 𝑠 ∈ [0, 1]

ℙ[𝑁𝜆𝑘 ≤ 𝑠] ≤ 𝐶(| log 𝑠| + log𝑁)
𝑘
𝑠2𝑘

2
. (2.20)

(ii) [Real case] If 𝑋 is real, there exists a constant 𝐶 ≡ 𝐶(𝑘, 𝔟) > 0 such that for all 2 ≤ 𝑘 ≤ 𝑁 and
𝑠 ∈ [0, 1]

ℙ[𝑁𝜆𝑘 ≤ 𝑠] ≤ 𝐶(| log 𝑠| + log𝑁)𝑘𝑠𝑘
2
. (2.21)
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3802 ERDŐS

Notice that the result for real 𝑋, as formulated in (2.21), requires 𝑘 ≥ 2. The origin of this
restriction will be explained in Section 6, along the proof of Proposition 6.1. Nevertheless, we still
have results that are optimal in 𝑠 for 𝑘 = 1 and real 𝑋, see the following Theorems 2.11 and 2.13,
respectively for real 𝐴 and genuinely complex 𝐴.
Note that the constant𝐶 in Theorem2.10 does not depend on𝐴. Also note that the only assump-

tion on 𝑋 is the regularity, and in particular some moments3 of the entries of 𝑋 may be infinite.
Although Theorem 2.10 has such robustness, it is really relevant when the (non-Hermitian) spec-
trum of 𝑋 + 𝐴 indeed reaches zero, otherwise typically even the lowest singular value 𝜆1 is far
away fromzero and its 1∕𝑁 scaling indicated by (2.20)–(2.21) is completely off. In particular, recall-
ing the definition of 𝜏 in (2.2), this is the case for 𝑋 + 𝐴 − 𝑧 if 𝑋 is a regular i.i.d. matrix and
𝑧 ∈ 𝜏. To be precise, denoting the singular values of 𝑋 + 𝐴 − 𝑧 by

0 ≤ 𝜆𝑧1 ≤ ⋯ ≤ 𝜆𝑧𝑁, (2.22)

we remove the | log 𝑠| factors from Theorem 2.10 under this setting.

Theorem 2.11 (Regular i.i.d. matrices). Fix 𝑘 ∈ ℕ and 𝛿, 𝜏,𝔎 > 0. Let 𝑋 be a regular i.i.d.matrix
and𝐴 ∈ ℂ𝑁×𝑁 with ‖𝐴‖ ≤ 𝔎. Then we have the following for the singular values (2.22) of𝑋 + 𝐴 −

𝑧.

(i) [Complex case] If 𝑋 is complex, there exist constants 𝐶1 ≡ 𝐶1(𝑘, 𝔟) and 𝐶2 ≡ 𝐶2(𝑘, 𝜏, 𝛿,𝖒,𝔎)

such that for all𝑁 ≥ 3𝑘, 𝑠 ∈ [0, 1], and 𝑧 ∈ 𝜏 we have

ℙ[𝑁𝜆𝑧
𝑘
≤ 𝑠] ≤ 𝐶1𝑠

2𝑘2𝔼
[
(1 + 𝑁𝜆𝑧

3𝑘
)2𝑘

2
] ≤ 𝐶1𝐶2𝑁

𝛿𝑠2𝑘
2
. (2.23)

(ii) [Real case] If 𝑋 and 𝐴 are both real, there exist constants 𝐶1 ≡ 𝐶1(𝑘, 𝔟) and 𝐶2 ≡
𝐶2(𝑘, 𝜏, 𝛿,𝖒,𝔎) such that for all𝑁 ≥ 3𝑘, 𝑠 ∈ [0, 1], and 𝑧 ∈ 𝜏 ∩ ℝ we have

ℙ[𝑁𝜆𝑧
𝑘
≤ 𝑠] ≤ 𝐶1𝑠

𝑘2𝔼
[
(1 + 𝑁𝜆𝑧

3𝑘
)𝑘

2
] ≤ 𝐶1𝐶2𝑁

𝛿𝑠𝑘
2
. (2.24)

As easily seen from (2.23) and (2.24), the only suboptimal factor 𝑁𝛿 comes from the estimate
for 𝜆𝑧

3𝑘
. This is due to local law (see Lemma 3.1 for its statement), which carries a small power of

𝑁. Note that for real 𝑋, Theorem 2.11 (ii) applies also to 𝑘 = 1, but requires 𝐴 to be real.

Remark 2.12. For complex Gaussian𝑋 and general𝐴, 𝜆𝑘’s are exactly the square roots of eigenval-
ues of deformed Laguerre unitary ensemble, whose joint densitywas computed in [10, Proposition
3.1]. In particular one can easily deduce that the joint density of unordered eigenvalues (𝑥1, … , 𝑥𝑁)

of (𝑋 − 𝑧)(𝑋 − 𝑧)∗ is proportional (ignoring 𝑁-factors) to

𝑉(𝒙) exp

(
−𝑁2|𝑧|2 − 𝑁

∑
𝑖∈⟦𝑁⟧𝑥𝑖

)
det

(
𝑥𝑖−1
𝑗

𝐹(𝑖−1)(𝑁2|𝑧|2𝑥𝑗))
𝑖,𝑗∈⟦𝑁⟧, (2.25)

3 Still one should think of the second moment of
√
𝑁𝑋𝑖𝑗 to be finite, for otherwise 𝜆𝑘 ∼ 𝑁−1 might not be true; see [9]

for the case when ℎ𝑖𝑗(𝑥) ∼ 1∕|𝑥|1+𝛼 with 𝛼 ∈ (0, 2). Our result still holds for such matrices, but our 𝑁𝜆𝑘 scaling may not
be adequate.
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CONDITION NUMBER OF RANDOMMATRICES 3803

where 𝑉(𝒙) ∶=
∏

𝑖<𝑗
(𝑥𝑖 − 𝑥𝑗) is the Vandermonde determinant, and 𝐹 is a real analytic function

directly related to the zeroth modified Bessel function 𝐼0. After some algebra, one can easily see
that the second determinant in (2.25) is𝑂(𝑉(𝒙)) up to an𝑁-dependent factor. Thus we obtain that
(ignoring 𝑁-factors)

ℙ[𝜆𝑘(𝑋 − 𝑧) ≤ 𝑠] = ℙ[|{𝑥𝑗 ∶ 𝑥𝑗 ≤ 𝑠2}| ≥ 𝑘] ≲ (𝑠2)𝑘 ⋅ (𝑠2)𝑘(𝑘−1) = 𝑠2𝑘
2
, (2.26)

where the first factor comes from the volume of [0, 𝑠2]𝑘 and the second from 𝑉(𝒙)2. In particular
(2.25) as well as (1.16) show that Theorem 2.11 is optimal for general 𝑘 as far as the 𝑠-power is
concerned in the small 𝑠 regime.

In the next result, we show that if the entrywise imaginary partℑ𝐴 of the shift matrix𝐴 is non-
singular, Theorem 2.10 (ii) extends to 𝑘 = 1with quadratic decay 𝑠2; in terms of Theorem 2.11, the
linear 𝑠-dependence in (2.24) for 𝑘 = 1 can be improved to 𝑠2.

Theorem2.13 (Real case, complex shift, improved). Let𝑋 be a real regularmatrix,𝐴 ∈ ℂ𝑁×𝑁 , and
𝜆1 be the smallest singular value of (𝑋 + 𝐴). Then there exists a constant 𝐶 ≡ 𝐶(𝔟) > 0 such that the
following holds for all𝑁 ≥ 4 and 𝑠 ∈ [0, 1];

ℙ[𝑁𝜆1 ≤ 𝑠] ≤ 𝐶𝑠2
(
1 +

(𝔼‖𝑋‖4)1∕2 + ‖𝐴‖2
𝜆1(ℑ𝐴)

(| log 𝑠| + log𝑁)

)
. (2.27)

Consequently, if 𝑋 is a real regular i.i.d. matrix, 𝐴 is real, and 𝔎 > 0, then there exists a constant
𝐶 ≡ 𝐶(𝔟,𝖒,𝔎) such that the following holds whenever ‖𝐴‖ ≤ 𝔎, 𝑧 ∈ ℂ,𝑁 ≥ 4, and 𝑠 ∈ [0, 1];

ℙ[𝑁𝜆𝑧1 ≤ 𝑠] ≤ 𝐶𝑠2
(
1 + |𝑧|2| Im 𝑧| (| log 𝑠| + log𝑁)

)
. (2.28)

Remark 2.14. In particular when | Im 𝑧| ∼ 1, (2.28) shows that ℙ[𝜆𝑧1 ≤ 𝑠] = 𝑂(𝑠2) up to a logarith-
mic factor, similarly to the complex case. The same improvement due to (genuinely) complex shift
was previously proved for real Ginibre ensemble 𝑋 and 𝐴 = 0 in [18, Theorem 2.1]; for 𝑧 in the
bulk, the result therein reads

ℙ[𝑁𝜆𝑧1 ≤ 𝑠] ≲ (1 + | log 𝑠|)𝑠2 + e−(
√
𝑁| Im 𝑧|)2(𝑠 ∧ 𝑠2√

𝑁| Im 𝑧|
)
. (2.29)

From (2.29) it is clear that the critical scale of | Im 𝑧| is 𝑁−1∕2, and that the right-hand side is
roughly of the same size as 𝑠2 or 𝑠 depending on whether | Im 𝑧| exceeds that scale or not. Our
result fails to capture this scale of transition due to the suboptimality of Lemma 7.1, where we
estimate to what extent are the singular vectors of (𝑋 − 𝑧) genuinely complex when 𝑧 is. We refer
to Remark 7.3 for more details.

3 WEGNER-TYPE ESTIMATE FOR 𝑿: PROOF OF THEOREM 2.3

Throughout the rest of the paper, we fix parameters 𝜏, 𝔟,𝖒, and𝔎; since they affect Theorems 2.3–
2.13 only implicitly via the constant 𝐶, considering them to be fixed does no harm to the proof.
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For each 𝐴 ∈ ℂ𝑁×𝑁 and 𝑧 ∈ ℂ, we define𝐻𝑧 ≡ 𝐻𝑧,𝐴 ∈ ℂ2𝑁×2𝑁 ≅ ℂ𝑁×𝑁 ⊗ ℂ2×2 as

𝐻𝑧 ∶=

(
0 𝑋 + 𝐴 − 𝑧

(𝑋 + 𝐴 − 𝑧)∗ 0

)
, (3.1)

which is also known as the Hermitization of 𝑋 + 𝐴. As in (3.1), we often omit the dependence on
𝐴 for simplicity. We may write the spectral decomposition of𝐻𝑧 as

𝐻𝑧 =
∑

|𝑖|∈⟦𝑁⟧ 𝜆
𝑧
𝑖
𝐰𝑧
𝑖
(𝐰𝑧

𝑖
)∗ =

∑
|𝑖|∈⟦𝑁⟧ 𝜆

𝑧
𝑖

(
𝒖𝑧
𝑖

𝒗𝑧
𝑖

)(
𝒖𝑧
𝑖

𝒗𝑧
𝑖

)∗

, ‖𝐰𝑧
𝑖
‖2 = ‖𝒖𝑧

𝑖
‖2 + ‖𝒗𝑧

𝑖
‖2 = 1, (3.2)

where the eigenvalues {𝜆𝑧
𝑖
∶ |𝑖| ∈ ⟦𝑁⟧} are increasingly ordered and we decomposed the eigen-

vectors 𝐰𝑧
𝑖
∈ ℂ2𝑁 into two parts with 𝒖𝑧

𝑖
, 𝒗𝑧

𝑖
∈ ℂ𝑁 . Note that 𝜆𝑧

𝑖
and 𝒖𝑧

𝑖
, 𝒗𝑧

𝑖
for 𝑖 ≥ 1 are exactly

the singular values and left and right singular vectors of (𝑋 + 𝐴 − 𝑧), respectively. We denote the
resolvent of𝐻𝑧 by

𝐺𝑧(𝑤) ∶= (𝐻𝑧 − 𝑤)−1

for each 𝑤 ∈ ℂ+. To simplify the notation, we further omit the dependence on 𝑧 to write, for
example, 𝐺 ≡ 𝐺𝑧 and 𝜆𝑖 ≡ 𝜆𝑧

𝑖
when there is no confusion.

Since 𝐻𝑧 has only block off-diagonal component, it is clear that 𝜆−𝑖 = −𝜆𝑖 and ⟨𝐺(i𝜂)⟩ =
i⟨Im𝐺(i𝜂)⟩ hold true. Again due to the block structure of 𝐻𝑧, we may take (𝒖𝑖, 𝒗𝑖) that satisfies
𝒖−𝑖 = 𝒖𝑖 and 𝒗−𝑖 = −𝒗𝑖 , which in turn implies ‖𝒖𝑖‖2 = ‖𝒗𝑖‖2 = 1∕2 whenever 𝜆𝑖 ≠ 0. Since the
event [𝜆1 > 0] has probability 1, we will work on this event in what follows.
For𝑤 ∈ ℂ+, it is known that 𝐺𝑧(𝑤) concentrates around a deterministic block constant matrix

𝑀𝑧(𝑤) ∈ (ℂ𝑁×𝑁)2×2; such results are commonly called local laws. The matrix𝑀𝑧(𝑤) ≡ 𝑀 is the
unique solution of the matrix Dyson equation

−𝑀−1 = −

(
−𝑤 𝐴 − 𝑧

(𝐴 − 𝑧)∗ −𝑤

)
+ ⟨𝑀⟩, (3.3)

with the side condition Im𝑀 = (𝑀 −𝑀∗)∕(2i) ≥ 0. Note that the self consistent density of states
(scDos) corresponding to 𝐻𝑧, given by 𝜌𝑧(𝑥) = 𝜋−1⟨Im𝑀(𝑥 + i0)⟩, is exactly the density of the
measure 𝜇sc ⊞ 𝜇

symm|𝐴−𝑧| that we used to define the bulk in (2.2).
More concretely, we have the following local law for𝐻𝑧 from [19, Theorem 2.6]:

Lemma 3.1 [19, Theorem 2.6]. Let 𝜏,𝔎 > 0 be fixed. Then for each (small) 𝜖, 𝜉 > 0 and (large)
𝐷 > 0, there exists 𝑁0 ∈ ℕ such that the following holds uniformly over 𝑁 ≥ 𝑁0, ‖𝐴‖ ≤ 𝔎, 𝑧 ∈ 𝜏,
and 𝜂 ∈ [𝑁−1+𝜖, 1];

𝐏

[|⟨𝐺𝑧(i𝜂) − 𝑀𝑧(i𝜂)⟩| ≥ 𝑁𝜉

𝑁𝜂

]
≤ 𝑁−𝐷. (3.4)

Consequently, for any fixed (small) 𝜖, 𝜉 > 0 and (large) 𝐷 > 0, the following holds uniformly over|𝑧| ≤ 𝜏;

ℙ[Ξ𝑧(𝜖, 𝜉)] ≥ 1 − 𝑁−𝐷, Ξ𝑧(𝜖, 𝜉) ∶=
⋂

𝜂∈[𝑁−1+𝜖,1]

[|{𝑖 ∈ ⟦𝑁⟧ ∶ 𝜆𝑧
𝑖
≤ 𝜂}| ≤ 𝑁1+𝜉𝜂

]
. (3.5)
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The second result (3.5) is a direct consequence of the local law (3.4) via the inequality

|{𝑖 ∈ ⟦𝑁⟧ ∶ 𝜆𝑧
𝑖
≤ 𝜂}| ≤ 2𝑁𝜂⟨Im𝐺𝑧(i𝜂)⟩

together with the fact that ‖𝑀‖ ≲ 1 from [19, Appendix A].
Next, we present the twomain technical inputs for our proof of Theorem 2.3, (i) an upper bound

for Im⟨𝐺𝑧(i𝜂)⟩ with small 𝜂 > 0 and (ii) a high-moment bound for overlaps between the left and
right eigenvectors 𝒖𝑖 and 𝒗𝑖 .

Lemma 3.2. Let 𝑋 be a real or complex regular i.i.d. matrix and 𝐴 ∈ ℂ𝑁×𝑁 with ‖𝐴‖ ≤ 𝔎. Then
for each fixed 𝛿, 𝜏, 𝜉 > 0 and 𝜖 ∈ [0, 1], there exists a constant 𝐶 > 0 such that the following holds
uniformly over all 𝑧 ∈ 𝜏 and 𝜂 ∈ (0, 1);

𝔼|⟨𝐺𝑧(i𝜂)⟩|2+𝜖 ≤ ⎧⎪⎨⎪⎩
1 + 𝐶𝑁𝛿(𝑁𝜂)−𝜖−𝜉(| log 𝜂| + log𝑁) if 𝑋 is complex,

1 + 𝐶𝑁𝛿(𝑁𝜂)−𝜖−𝜉
| log 𝜂| + log𝑁| Im 𝑧| if 𝑋 is real.

(3.6)

Proposition 3.3 [19, Theorem 2.2]. Let 𝑋 and 𝐴 be as in Lemma 3.2, and fix 𝛿, 𝜏 > 0 and 𝑝 ∈ ℕ.
Then there exists a constant 𝑐 ∈ (0, 1) such that the following holds uniformly over 𝑧 ∈ 𝜏;

𝑁𝑝𝔼 sup
𝑖,𝑗∈⟦𝑐𝑁⟧ |⟨𝒖𝑧𝑗 , 𝒗𝑧𝑖 ⟩ − 𝛿𝑖,𝑗𝑞𝑖(𝑧)|2𝑝 ≲ 𝑁𝛿, (3.7)

where {𝑞𝑖(𝑧) ∶ 𝑖 ∈ ⟦𝑐𝑁⟧} is the collection of deterministic functions of 𝑧 defined by
𝑞𝑖(𝑧) ∶=

⟨Im[𝑀(𝛾𝑖)]𝐹⟩⟨Im𝑀(𝛾𝑖)⟩ , 𝐹 ∶=

(
0 0

1 0

)
∈ (ℂ𝑁×𝑁)2×2 (3.8)

and 𝛾𝑖 is the 𝑖-th𝑁-quantile of the scDOS of𝐻𝑧, that is,

𝛾𝑖 = inf

{
𝑥 ∈ ℝ ∶ ∫

𝑥

0

𝜌𝑧(𝑡)d𝑡 ≥ 𝑖

2𝑁

}
. (3.9)

Furthermore, there exists a constant 𝐶 > 0 such that

|𝑞𝑖(𝑧)| ≤ 𝐶
𝑖

𝑁
, ∀𝑖 ∈ ⟦𝑐𝑁⟧, ∀𝑧 ∈ 𝜏. (3.10)

The proof of Lemma 3.2 is postponed to the end of this section. It heavily relies on the tail
estimate of the lowest singular value 𝜆𝑧1 from Theorem 2.10(i) for the complex case and Theo-
rem 2.13 for the real case. These theorems are proven separately in Sections 5 and 6. Proposition 3.3
is a direct consequence of the thermalization result in [19, Theorem 2.2] which computes any
quadratic form (𝒖𝑧

𝑖
, 𝐵𝒗𝑧

𝑗
) of the bulk singular vectors of 𝑋 + 𝐴 − 𝑧 in terms of a leading deter-

ministic quantity up to an error or order 𝑁−1∕2. The upper bound for 𝑞𝑖(𝑧) in (3.10) follows by
combining Lemma A.1 (b) and (c) therein, which shows Lipschitz continuity of 𝑀 (in operator
norm) and Im[𝑀(i𝜂)]𝐹 ≡ 0 for 𝜂 ∈ ℝ, respectively.

Proof of Theorem 2.3. We only prove the complex case, and the real case follows from the exact
same proof. Fix 𝑧0 ∈ 𝔻with |𝑧0| ≤ 1 − 𝜏, and let 𝑓0 ∈ 𝐶∞𝑐 (ℂ) be a fixed cut-off functionwith 𝟙𝔻 ≤
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3806 ERDŐS

𝑓0 ≤ 𝟙2𝔻 and 𝑓 ∶= 𝑓0(
⋅−𝑧0

𝑟
). Since 𝟙(| ⋅ −𝑧0| ≤ 𝑟) ≤ 𝑓, Girko’s formula (1.23) and Im⟨𝐺𝑧(i𝜂)⟩ =

−i⟨𝐺𝑧(i𝜂)⟩ gives
𝔼𝑧0,𝑟 ≤𝑁𝔼∫

ℂ

𝑓(𝑧)d𝜌(𝑧) = −
𝑁

2𝜋 ∫
ℂ

Δ𝑓(𝑧)∫
𝑇

0

𝔼 Im⟨𝐺𝑧(i𝜂)⟩d𝜂d2𝑧 (3.11)

+
1

4𝜋 ∫
ℂ

Δ𝑓(𝑧)𝔼 log | det(𝐻𝑧 − i𝑇)|d2𝑧
=
𝑁

2𝜋 ∫
ℂ

Δ𝑓(𝑧)

(
∫

𝜂0

0

+∫
𝜂1

𝜂0

+∫
𝑇

𝜂1

)
i𝔼⟨𝐺𝑧(i𝜂)⟩d𝜂d2𝑧 (3.11)

+
1

4𝜋 ∫
ℂ

Δ𝑓(𝑧)𝔼 log | det(𝐻𝑧 − i𝑇)|d2𝑧
= ∶ 𝐼0 + 𝐼1 + 𝐼𝑇 + 𝐼∞, (3.11)

where we defined

𝜂0 ∶= 𝑁−1 ⋅ (𝑁𝑟2)𝐷, 𝜂1 ∶= 1, 𝑇 ∶= 𝑁𝐷(𝑁𝑟2)−𝐷 (3.12)

for a fixed (large) constant 𝐷 > 0. Since the spectral parameters in 𝐺𝑧(i𝜂) are always 𝑧 and i𝜂, we
abbreviate 𝐺 ≡ 𝐺𝑧(i𝜂) throughout the rest of the proof.
The bound for the first term 𝐼0 follows by taking 𝜖 = 0 and small enough 𝜉 > 0 in Lemma 3.2;

|𝐼0| ≤ 𝑁

2𝜋 ∫
ℂ

|Δ𝑓(𝑧)|∫ 𝜂0

0

‖⟨𝐺⟩‖2d𝜂d2𝑧
≲𝑁𝛿∕2 ∫

𝑁𝜂0

0

𝑡−𝜉∕2
√| log 𝑡|d𝑡 ≲ 𝑁𝛿∕2(𝑁𝜂0)

1−𝜉 ≲ 𝑁𝛿∕2(𝑁𝑟2)𝐷∕2,

(3.13)

where we used ‖Δ𝑓‖𝐿1 ≲ 1.
To handle 𝐼1 and 𝐼𝑇 in (3.11), we use integration by parts, that is, for any 𝑓 ∈ 𝐶∞𝑐 (ℂ) and 0 <

𝐴 < 𝐵 < ∞

𝔼∫
ℂ
∫

𝐵

𝐴

Δ𝑓(𝑧)⟨𝐺⟩d𝜂d2𝑧 = ∫
𝐵

𝐴
∫
ℂ

𝑓(𝑧)𝔼⟨Δ𝑧𝐺𝑧(i𝜂)⟩d2𝑧d𝜂. (3.14)

The derivative Δ𝑧𝐺 can be calculated directly; for 𝐹 ∈ ℂ2𝑁×2𝑁 defined in (3.8),

1

4
Δ𝑧𝐺 = 𝜕𝑧𝜕𝑧𝐺 = −𝜕𝑧𝐺𝐹𝐺 = 𝐺𝐹∗𝐺𝐹𝐺 + 𝐺𝐹𝐺𝐹∗𝐺. (3.15)

Now we can estimate 𝐼𝑇 in (3.11). Applying the trivial deterministic bound ‖𝐺‖ ≤ 𝜂−1 gives

𝔼|⟨𝐺𝐹𝐺𝐹∗𝐺 + 𝐺𝐹∗𝐺𝐹𝐺⟩| ≤ 2‖𝐹‖2𝔼‖𝐺‖3 ≤ 2𝜂−3,

which yields

|𝐼𝑇| ≲ 𝑁𝑟2 ∫
𝑇

1

𝜂−3d𝜂 ≤ 𝑁𝑟2. (3.16)
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CONDITION NUMBER OF RANDOMMATRICES 3807

The estimate for 𝔼|⟨Δ𝐺⟩| when 𝜂 < 1 is much trickier than 𝜂 > 1. We first state the result here
as a lemma, use it to conclude Theorem 2.3, and then prove the lemma.

Lemma 3.4. Let 𝑋 be a complex regular i.i.d. matrix and 𝜖, 𝛿, 𝜏 > 0 be fixed. Then the following
holds uniformly over |𝑧| ≤ 1 − 𝜏 and 𝜂 ∈ (0, 1);

𝔼|⟨Δ𝑧𝐺𝑧(i𝜂)⟩| ≲ 𝑁1+𝛿

𝑁𝜂
(𝑁𝜂 ∧ 1)−𝜖. (3.17)

Given Lemma 3.4, we substitute (3.17) into (3.14) with 𝐴 = 𝜂0 and 𝐵 = 𝜂1 so that

|𝐼1| ≤ 𝑁 ∫
𝜂1

𝜂0
∫
ℂ

|𝑓(𝑧)||𝔼⟨Δ𝐺⟩|d2𝑧d𝜂 ≲ 𝑁𝛿∕2𝑁𝑟2 ∫
𝜂1

𝜂0

(𝑁𝜂 ∧ 1)−𝜖

𝑁𝜂
(𝑁d𝜂)

≲ 𝑁𝛿∕2(𝑁𝑟2)((𝑁𝜂0)
−𝜖 + log𝑁) = 𝑁𝛿(𝑁𝑟2)1−𝐷𝜖 ≤ 𝑁2𝛿(𝑁𝑟2)(1−𝛾),

(3.18)

where in the last step we took 𝜖 < 𝛾∕𝐷.
Finally, the last term 𝐼∞ is estimated using log(1 + 𝑥2) ≤ 𝑥2 and 𝔼⟨𝐻2

𝑧⟩ ≲ 1 as

|𝐼∞| = 1

2

|||||∫ℂ Δ𝑓(𝑧)𝔼Tr log(1 + 𝑇−2𝐻2
𝑧)d

2𝑧
||||| ≤ 𝑁

𝑇2 ∫ℂ |Δ𝑓(𝑧)|𝔼⟨𝐻2
𝑧⟩d2𝑧 ≲ 𝑇−2𝑁 ≲ 𝑁𝑟2. (3.19)

Combining (3.13), (3.16), (3.18), and (3.19), we have proved

𝔼𝑧0,𝑟 ≲ 𝑁1+2𝛿(𝑁𝑟2)1−𝛾. (3.20)

This completes the proof of Theorem 2.3 modulo Lemma 3.4. □

Proof of Lemma 3.4. We start with expressing the trace of the right-hand side of (3.15) in terms of
the eigenvalues and eigenvectors of𝐻𝑧. First we write

⟨𝐺𝐹∗𝐺𝐹𝐺⟩ = −i
𝜂

2

⟨
1

𝜂2 + (𝑋 + 𝐴 − 𝑧)∗(𝑋 + 𝐴 − 𝑧)

𝜂2 − (𝑋 + 𝐴 − 𝑧)(𝑋 + 𝐴 − 𝑧)∗

(𝜂2 + (𝑋 + 𝐴 − 𝑧)(𝑋 + 𝐴 − 𝑧)∗)2

⟩
, (3.21)

and the second term of (3.15), ⟨𝐺𝐹∗𝐺𝐹𝐺⟩, is given by the same quantity as (3.21) with roles of 𝑋
and 𝑋∗ interchanged. Here we used the Schur complement form of 𝐺, that is,

𝐺 = 𝐺(i𝜂) =

⎛⎜⎜⎜⎝
i𝜂

𝜂2 + (𝑋 + 𝐴 − 𝑧)(𝑋 + 𝐴 − 𝑧)∗
1

𝜂2 + (𝑋 + 𝐴 − 𝑧)(𝑋 + 𝐴 − 𝑧)∗
(𝑋 + 𝐴 − 𝑧)

(𝑋 + 𝐴 − 𝑧)∗
1

𝜂2 + (𝑋 + 𝐴 − 𝑧)(𝑋 + 𝐴 − 𝑧)∗
i𝜂

𝜂2 + (𝑋 + 𝐴 − 𝑧)∗(𝑋 + 𝐴 − 𝑧)

⎞⎟⎟⎟⎠ .
(3.22)
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3808 ERDŐS

Recalling the definition of 𝒖𝑖 and 𝒗𝑖 and (3.21), we may further write

|⟨𝐺𝐹∗𝐺𝐹𝐺⟩| ≤ 1

2𝑁

∑
𝑖,𝑗∈⟦𝑁⟧

𝜂

𝜂2 + 𝜆2
𝑖

|𝜂2 − 𝜆2
𝑗
|

(𝜂2 + 𝜆2
𝑗
)2
|⟨𝒖𝑗, 𝒗𝑖⟩|2

≤ 1

2𝑁𝜂

( ∑
𝑖,𝑗∈⟦𝑐𝑁⟧+

∑
𝑖∈⟦𝑐𝑁,𝑁⟧,𝑗∈⟦𝑁⟧+

∑
𝑖∈⟦𝑁⟧,𝑗∈⟦𝑐𝑁,𝑁⟧

)
𝜂

𝜂2 + 𝜆2
𝑖

𝜂

𝜂2 + 𝜆2
𝑗

|⟨𝒖𝑗, 𝒗𝑖⟩|2
≤ 1

2𝑁𝜂

∑
𝑖,𝑗∈⟦𝑐𝑁⟧

𝜂2

(𝜂2 + 𝜆2
𝑖
)(𝜂2 + 𝜆2

𝑗
)
|⟨𝒖𝑗, 𝒗𝑖⟩|2 + 1

𝜂2 + 𝜆2⌈𝑐𝑁⌉
1

𝑁

∑
𝑖

𝜂

𝜂2 + 𝜆2
𝑖

,

(3.23)
where the constant 𝑐 > 0 is from Proposition 3.3 and in the last inequality we used

∑
𝑖∈⟦𝑁⟧,𝑗∈⟦𝑐𝑁⟧

𝜂

𝜂2 + 𝜆2
𝑖

𝜂

𝜂2 + 𝜆2
𝑗

|⟨𝒖𝑗, 𝒗𝑖⟩|2 ≤ 𝜂

𝜂2 + 𝜆2⌈𝑐𝑁⌉
∑
𝑖∈⟦𝑁⟧

𝜂

𝜂2 + 𝜆2
𝑖

( ∑
𝑗∈⟦𝑁⟧ |⟨𝒖𝑗, 𝒗𝑖⟩|2

)
,

and that 𝒖𝑗 ’s are orthogonal to perform the 𝑗-summation. For the first term on the rightmost side
of (3.23), we recall the deterministic function 𝑞𝑖(𝑧) from Proposition 3.3 and write

1

2𝑁𝜂

∑
𝑖,𝑗∈⟦𝑐𝑁⟧

𝜂2

(𝜂2 + 𝜆2
𝑖
)(𝜂2 + 𝜆2

𝑗
)
|⟨𝒖𝑗, 𝒗𝑖⟩|2

≲
1

𝜂
⟨Im𝐺⟩2(𝑁 sup

𝑖,𝑗∈⟦𝑐𝑁⟧ |⟨𝒖𝑗, 𝒗𝑖⟩ − 𝛿𝑖𝑗𝑞𝑖(𝑧)|2) +
1

𝑁𝜂

∑
𝑖∈⟦𝑐𝑁⟧

𝜂2

(𝜂2 + 𝜆2
𝑖
)2

𝑖2

𝑁2
.

(3.24)

Plugging in (3.24) to (3.23) and using the same set of inequalities to the second term of (3.15), we
find that

|⟨Δ𝑧𝐺⟩| ≲1𝜂 ⟨Im𝐺⟩2(𝑁 sup
𝑖,𝑗∈⟦𝑐𝑁⟧ |⟨𝒖𝑗, 𝒗𝑖⟩ − 𝛿𝑖𝑗𝑞𝑖(𝑧)|2)

+
1

𝑁𝜂

∑
𝑖∈⟦𝑐𝑁⟧

𝜂2

(𝜂2 + 𝜆2
𝑖
)2

𝑖2

𝑁2
+

1

𝜂2 + 𝜆2⌈𝑐𝑁⌉ ⟨Im𝐺⟩. (3.25)

Next, we estimate the expectation of the right-hand side of (3.25) for 𝜂 ∈ (0, 1). For the first term
in (3.25), we apply Hölder’s inequality and ⟨𝐺⟩ = i Im⟨𝐺⟩ to get for all 𝜂 ∈ (0, 1) that

1

𝜂
𝔼⟨Im𝐺⟩2(𝑁 sup

𝑖,𝑗∈⟦𝑐𝑁⟧ |⟨𝒖𝑗, 𝒗𝑖⟩ − 𝛿𝑖𝑗𝑞𝑖(𝑧)|2)

≤ 1

𝜂
‖⟨𝐺⟩2‖1+𝑐′𝜖‖‖‖‖‖ sup

𝑖,𝑗∈⟦𝑐𝑁⟧𝑁|⟨𝒖𝑗, 𝒗𝑖⟩ − 𝛿𝑖𝑗𝑞𝑖(𝑧)|2‖‖‖‖‖1+1∕(𝑐′𝜖), (3.26)
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CONDITION NUMBER OF RANDOMMATRICES 3809

where 𝑐′ > 0 is a small constant, say 𝑐′ = 1∕100. Then we use Lemma 3.2 and Proposition 3.3 with
a union bound, respectively, to the first and second factors on the right-hand side of (3.26) to get

‖|⟨𝐺⟩|2‖1+𝑐′𝜖 = ‖⟨𝐺⟩‖2
2(1+𝑐′𝜖)

≲
(
1 + 𝑁𝛿∕3(𝑁𝜂)−2𝑐

′𝜖(| log 𝜂| + log𝑁)
)1∕(1+𝑐′𝜖)

≲ 𝑁𝛿∕2(𝑁𝜂 ∧ 1)−2𝑐
′𝜖,

‖𝑁 sup
𝑖,𝑗

|⟨𝒖𝑗, 𝒗𝑖⟩ − 𝛿𝑖𝑗𝑞𝑖(𝑧)|2‖1+1∕(𝑐′𝜖) ≤ (
𝔼 sup
𝑖,𝑗∈⟦𝑐𝑁⟧(𝑁|⟨𝒖𝑗, 𝒗𝑖⟩ − 𝛿𝑖𝑗𝑞𝑖(𝑧)|2)(1+1∕(𝑐′𝜖)))𝑐′𝜖

≲ 𝑁𝛿∕2.

Thus we conclude

1

𝜂
𝔼⟨Im𝐺⟩2(𝑁 sup

𝑖,𝑗∈⟦𝑐𝑁⟧ |⟨𝒖𝑗, 𝒗𝑖⟩|2
)
≲
1

𝜂
𝑁𝛿(1 + (𝑁𝜂)−2𝑐

′𝜖) =
𝑁1+𝛿

𝑁𝜂
(𝑁𝜂 ∧ 1)−2𝑐

′𝜖. (3.27)

To handle the expectation of the second term in (3.25), recall the definition of the event Ξ𝑧(𝜖, 𝜉)
from (3.5). On the event Ξ ∶= Ξ𝑧(𝑐

′𝛿∕2, 𝑐′𝛿∕2) we have

𝜆𝑖 ≥ 𝑁−𝑐′𝛿∕2 𝑖

𝑁
∀𝑖 ∈ ⟦𝑁𝑐′𝛿, 𝑁⟧, (3.28)

which follows from (3.5) by putting in 𝜂 = 𝑁−𝑐′𝛿∕2(𝑖∕𝑁). We divide the second term of (3.25) as

∑
𝑖∈⟦𝑐𝑁⟧

𝜂2

(𝜂2 + 𝜆2
𝑖
)2

𝑖2

𝑁2
≤

⎛⎜⎜⎝
∑

𝑖∈⟦𝑁𝑐′𝛿⟧+𝟙Ξ𝑐
∑

𝑖∈⟦𝑐𝑁⟧+𝟙Ξ
∑

𝑖∈⟦𝑁𝑐′𝛿,𝑐𝑁⟧
⎞⎟⎟⎠

𝜂2

(𝜂2 + 𝜆2
𝑖
)2

𝑖2

𝑁2

≤(𝑁2𝑐′𝛿 + 𝑁2𝟙Ξ𝑐 )⟨Im𝐺⟩2 + 𝑁2𝑐′𝛿
∑
𝑖∈⟦𝑁⟧

𝜂2 ⋅ (𝑁−1𝑖)2

(𝜂2 + (𝑁−1𝑖)2)2
≲ (𝑁2𝑐′𝛿 + 𝑁2𝟙Ξ𝑐 )⟨Im𝐺⟩2 + 𝑁1+2𝑐′𝛿𝜂.

Then we follow the same argument as in (3.26) to conclude for any fixed 𝐷 > 0 that

1

𝑁𝜂
𝔼

∑
𝑖∈⟦𝑐𝑁⟧

𝜂2

(𝜂2 + 𝜆2
𝑖
)2

𝑖2

𝑁2
≤ 1

𝑁𝜂
‖‖‖𝑁2𝑐′𝛿 + 𝑁2𝟙Ξ𝑐

‖‖‖1+1∕(𝑐′𝜖)‖‖⟨𝐺⟩2‖‖1+𝑐′𝜖 + 𝑁2𝑐′𝛿

𝜂

≲
𝑁2𝑐′𝛿

𝜂
+
𝑁−𝐷+𝛿∕2

𝜂
(𝑁𝜂 ∧ 1)−2𝑐

′𝜖 ≤ 𝑁1+𝛿

𝑁𝜂
(𝑁𝜂 ∧ 1)−𝜖.

(3.29)

For the expectation of the last term of (3.25), we again use the same event Ξ = Ξ𝑧(𝑐
′𝛿∕2, 𝑐′𝛿∕2)

but we only require that 𝜆⌈𝑐𝑁⌉ ≥ 𝑐𝑁−𝑐′𝛿∕2 on the event. Then we write

𝔼𝟙Ξ
1

𝜂2 + 𝜆2⌈𝑐𝑁⌉ ⟨Im𝐺⟩ ≲ 𝑁𝑐′𝛿𝔼⟨Im𝐺⟩ ≤ 𝑁𝑐′𝛿‖⟨𝐺⟩‖2 ≲ 𝑁𝛿(1 + (𝑁𝜂)−𝜖) ≤ 𝑁1+𝛿

𝑁𝜂
(𝑁𝜂 ∧ 1)−𝜖.

(3.30)
The complementary eventΞ𝑐 can be dealt with the same reasoning as in (3.29).We thus conclude

𝔼|⟨Δ𝑧𝐺⟩| ≲ 𝑁1+𝛿(𝑁𝜂 ∧ 1)−1−𝜖 (3.31)

as desired. □

Remark 3.5. As easily seen from the proof, the factor of 𝑁𝛿 in Theorem 2.3 is due to the same
factors in Lemma 3.2 and Proposition 3.3. In the proof of Lemma 3.2, we use the local laws for
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3810 ERDŐS

𝐻𝑧, Lemma 3.1, to show that 𝜆𝑧1 determines the size of ⟨𝐺𝑧⟩ up to a factor of 𝑁𝛿. If we can show
that the random variable |{𝑖 ∶ 𝜆𝑧

𝑖
≤ 𝐾∕𝑁}| has finite high-moment for any fixed 𝐾, then we may

use this as an alternative input and remove 𝑁𝛿 from Lemma 3.2. Likewise, Proposition 3.3 uses
the two-resolvent local laws in [19, Theorem 4.4] that is designed for mesoscopic scales. If ℎ has a
better decay rate, we expect Proposition 3.3 to be true without the factor of 𝑁𝛿 on the right-hand
side of (3.7), which would reduce 𝑁𝛿 in Theorem 2.3 to a logarithmic correction.
On the other hand, changing the power (1 − 𝛾) to the optimal first power of𝑁𝑟2 seems harder.

It is due to a Hölder inequality in (3.26), whose purpose is to separate the singular values and the
overlaps since we do not know how to estimate their joint distribution effectively.

Proof of Corollary 2.4. We first prove the complex case and later show how to modify the proof
for the real case. Fix 𝑧 ∈ 𝜏. We decompose the special test function𝑤 ↦ 1∕𝑤 into three parts by
inserting cutoff functions as follows.

1

𝑤
=

1

𝑤
(1 − 𝑓0(𝑤∕𝜅)) +

1

𝑤
𝑓0(𝑁

1∕2𝑤) +
1

𝑤
𝑓0(𝑤∕𝜅)(1 − 𝑓0(𝑁

1∕2𝑤)) =∶ 𝑓1(𝑤) + 𝑓2(𝑤) + 𝑓3(𝑤),

(3.32)
where 𝜅 ≥ 𝑁−1∕2 is such that4 𝐷(𝑧, 2𝜅) ⊂ 𝐵𝜏∕2 and the cutoff function 𝑓0 was defined in the proof
of Theorem 2.3. Thus we may write

𝔼|⟨(𝑋 − 𝑧)−1⟩|2−𝛿1 = 𝔼
|||||∫ℂ(𝑓1(𝑤 − 𝑧) + 𝑓2(𝑤 − 𝑧) + 𝑓3(𝑤 − 𝑧))d𝜌(𝑤)

|||||
2−𝛿1

(3.33)

where 𝜌 is the spectral distribution of 𝑋 defined in (2.1).
The first integral is the easiest as |𝑓1(𝑤)| ≤ 𝜅−1 for all 𝑤 ∈ ℂ, so that

𝔼
|||||∫ℂ 𝑓1(𝑤 − 𝑧)d𝜌(𝑤)

|||||
2−𝛿1

≤ 𝜅−2+𝛿1 . (3.34)

For the second integral, we use Jensen’s inequality (recall 𝛿1 ∈ (0, 1]) and supp𝑓0 ⊂ 𝐷(0, 2) to
write

|||||∫ℂ 𝑓2(𝑤 − 𝑧)d𝜌(𝑤)
|||||
2−𝛿1

≤ 𝜌(𝐷(𝑧, 2𝑁−1∕2))1−𝛿1 ∫
ℂ

1|𝑤 − 𝑧|2−𝛿1 𝟙𝐷(𝑧,2𝑁−1∕2)(𝑤)d𝜌(𝑤). (3.35)

We then consider the following dyadic decomposition of 𝐷(𝑧, 2𝑁−1∕2) according to |𝑤 − 𝑧|;
𝐷(𝑧, 2𝑁−1∕2) =

∞⋃
𝑘=0

(𝐷(𝑧, 2−𝑘+1𝑁−1∕2) ⧵ 𝐷(𝑧, 2−𝑘𝑁−1∕2)) =∶

∞⋃
𝑘=0

𝐷𝑘. (3.36)

Applying Theorem 2.3 (i) to each domain 𝐷𝑘 with some 𝛿 < 𝛿1∕2 and 𝛾 < 𝛿1∕2, we have

𝔼∫
𝐷𝑘

1|𝑤 − 𝑧|2−𝛿1 d𝜌(𝑤) ≤(2𝑘𝑁1∕2)2−𝛿1𝔼∫
𝐷𝑘

d𝜌(𝑤) ≤ 𝑁−1(2𝑘𝑁1∕2)2−𝛿1𝔼𝑧,𝑁−1∕22−𝑘+1

≤𝐶𝑁𝛿−𝛿1∕22𝑘(2−𝛿1)−2(𝑘−1)(1−𝛾) ≤ 𝐶𝑁𝛿−𝛿1∕22𝑘(2𝛾−𝛿1).

(3.37)

4 If 𝑁 is so small that such a 𝜅 does not exists, we pick 𝜅 with 𝐷(𝑧, 2𝜅) ⊂ 𝐵𝜏∕2 and write 𝑓2 ≡ 0, 𝑓3(𝑤) = 𝑓0(𝑤∕𝜅)∕𝜅.
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CONDITION NUMBER OF RANDOMMATRICES 3811

Therefore, summing over 𝑘 and using 𝜌(𝐷(𝑧, 2𝑁−1∕2)) ≤ 𝜌(ℂ) = 1, we obtain

𝔼
|||||∫ℂ 𝑓2(𝑤 − 𝑧)d𝜌(𝑤)

|||||
2−𝛿1

≤
∞∑
𝑘=0

𝔼∫
𝐷𝑘

1|𝑤 − 𝑧|2−𝛿1 d𝜌(𝑤) ≤ 𝐶𝑁𝛿−𝛿1∕2 ≤ 𝐶. (3.38)

The last integral in (3.33) can be dealt with the local law for𝑋 + 𝐴. This is the natural extension
of the local circular law to𝑋 + 𝐴 and it asserts that for all (possibly𝑁-dependent)𝐶2𝑐 test functions
𝑔 supported in 𝜏∕2 and fixed positive 𝜖 and 𝐷 we have

ℙ

[|||||∫ℂ 𝑔(𝑤)d𝜌(𝑤) − ∫
ℂ

𝑔(𝑤)d𝜌𝑎+𝑥(𝑤)
||||| ≥ 𝑁𝜖

𝑁
‖Δ𝑔‖𝐿1] ≲ 𝑁−𝐷. (3.39)

We omit its proof as it is standard, given the optimal local law [19, Theorem 2.6] as an input,
following the analogous argument in the proof of [3, Theorem 2.5]. We apply (3.39) to 𝑔(𝑤) =
𝑓3(𝑤 − 𝑧), which is supported on𝜏∕2 by definition. We denote the “good” event in (3.39) for this
choice of 𝑔 by Ξ𝜖, that is,

Ξ𝜖 ∶=

[|||||∫ℂ 𝑓3(𝑤 − 𝑧)d𝜌(𝑤) − ∫
ℂ

𝑓3(𝑤 − 𝑧)d𝜌𝑎+𝑥(𝑤)
||||| ≤ 𝑁𝜖

𝑁
‖Δ𝑓3‖𝐿1], (3.40)

so that ℙ[Ξ𝑐𝜖] ≲ 𝑁−𝐷 for all fixed 𝐷 > 0. Now notice that

‖Δ𝑓3‖𝐿1 ≲ 𝑁1∕2. (3.41)

On the other hand, since 𝜌𝑎+𝑥 has a bounded density in 𝜏 by (2.7), we have|||||∫ℂ 𝑓3(𝑤 − 𝑧)d𝜌𝑎+𝑥

||||| ≲ ∫
𝐷(0,𝜅)

1|𝑧|d2𝑧 ≲ 1. (3.42)

Hence on the event Ξ𝜖 we have

𝔼𝟙Ξ𝜖

|||||∫ℂ 𝑓3(𝑤 − 𝑧)d𝜌𝑎+𝑥(𝑤)
|||||
2−𝛿1

≤ 1 +

(
𝑁𝜖

𝑁1∕2

)2−𝛿1

≲ 1. (3.43)

On the complementary event Ξ𝑐𝜖, we recall |𝑓3(𝑤)| ≤ 𝑁1∕2 from the definition of 𝑓3, which gives

𝔼𝟙Ξ𝑐𝜖

|||||∫ℂ 𝑓3(𝑤 − 𝑧)d𝜌(𝑤)
|||||
2−𝛿1

≤ ℙ[Ξ𝑐𝜖]𝑁
1−𝛿1∕2 ≲ 𝑁1−𝐷. (3.44)

Combining (3.43) and (3.44) we arrive at

𝔼
|||||∫ℂ 𝑓3(𝑤 − 𝑧)d𝜌(𝑤)

|||||
2−𝛿1

≲ 1. (3.45)

Plugging in (3.34), (3.38), and (3.45) to (3.33) concludes the proof of Corollary 2.4 in the
complex case.
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3812 ERDŐS

Finally, we show how tomodify the proof for real𝑋. The estimates for 𝑓1 and 𝑓3 are completely
analogous to the complex case, and their contributions are both bounded by a constant. Hence-
forth we focus on estimating the contribution of 𝑓2. We consider the cases 𝑦 = 𝜆1(ℑ[𝐴 − 𝑧]) ≥
𝑁−1 and 𝑦 ≤ 𝑁−1 separately.
When 𝑦 ≥ 𝑁−1, we define 𝑦 ∶= min(𝑁−1∕2, 𝑦∕4) and further divide 𝑓2 into two parts,

𝑓2(𝑤) =
1

𝑤
𝑓0(𝑦

−1𝑤) +
1

𝑤
𝑓0(𝑁

1∕2𝑤)(1 − 𝑓0(𝑦
−1𝑤)) =∶ 𝑓21(𝑤) + 𝑓22(𝑤). (3.46)

The contribution of 𝑓21 can be estimated in the exact same fashion as 𝑓2 for the complex
case, using a dyadic decomposition. The only difference is that we use radii 2−𝑘+1𝑦 instead of
2−𝑘+1𝑁−1∕2, and apply Theorem 2.3 (ii) in place of (i). As a result we obtain

𝔼
|||||∫ℂ 𝑓21(𝑤 − 𝑧)d𝜌(𝑤)

|||||
2−𝛿1

≤ 𝐶
𝑁𝛿−𝛿1∕2

𝑦
(𝑁𝑦2)𝛿1∕2−𝛾 ≤ 𝐶

𝑁𝛿−𝛿1∕2

𝑦
. (3.47)

For 𝑓22, we use the crude bound |𝑓22(𝑤)| ≤ 2𝑦−1𝑓0(𝑁
1∕2(𝑤)) to get

𝔼
|||||∫ℂ 𝑓22(𝑤 − 𝑧)d𝜌(𝑤)

|||||
2−𝛿1

≤ 𝐶𝑦𝛿1−2𝔼∫
ℂ

𝑓0(𝑁
1∕2(𝑤 − 𝑧))d𝜌(𝑤) ≤ 𝐶𝑁−1+𝛿𝑦𝛿1−2

≤ 𝐶𝑁𝛿−𝛿1∕2 + 𝐶𝑁−1+𝛿𝑦𝛿1−2. (3.48)

where in the first line we replaced d𝜌(𝑤)with the bounded density d𝜌𝑎+𝑥(𝑤) by applying (3.39) to
𝑔(𝑤) = 𝑓0(𝑁

1∕2(𝑤 − 𝑧)), using that ‖Δ𝑔‖𝐿1 = ‖Δ𝑓0‖𝐿1 = 𝑂(1) for this choice of 𝑔. Adding (3.47)
and (3.48) proves

𝔼
|||||∫ℂ 𝑓2(𝑤 − 𝑧)d𝜌(𝑤)

|||||
2−𝛿1

≤ 𝐶 + 𝐶
𝑁𝛿

𝑦

(
𝑁−𝛿1∕2 +

1

𝑁𝑦1−𝛿1

)
≤ 𝐶 +

𝑁−𝛿1∕2+𝛿

𝑦
, (3.49)

where we used 𝑦 ≥ 𝑁−1 in the last inequality.
Now it only remains to consider the case 𝑦 ≤ 1∕𝑁 and prove

𝔼
|||||∫ℂ 𝑓2(𝑤 − 𝑧)d𝜌(𝑤)

|||||
2−𝛿1

≤ 𝐶
𝑁𝛿

𝑦1−𝛿1∕2+𝛿
. (3.50)

Here we use that |𝑓2(𝑤 − 𝑧)| ≤ 𝑓0(𝑁
1∕2(𝑤 − 𝑧))∕𝜆𝑧1 , which gives

𝔼
|||||∫ℂ 𝑓2(𝑤 − 𝑧)d𝜌(𝑤)

|||||
2−𝛿1

≤ 𝔼(𝑁𝜆𝑧1)
𝛿1−2

|||||𝑁 ∫
ℂ

𝑓0(𝑁
1∕2(𝑤 − 𝑧))d𝜌(𝑤)

|||||
2−𝛿1

. (3.51)

Then we apply Hölder inequality in (3.51) to obtain for all fixed 𝜖′′ ∈ (0, 𝛿1) that

𝔼
|||||∫ℂ 𝑓2(𝑤 − 𝑧)d𝜌(𝑤)

|||||
2−𝛿1

≲ 𝑁𝛿∕2(𝔼(𝑁𝜆𝑧1)
−2+𝜖′′ )(2−𝛿1)∕(2−𝜖

′′), (3.52)

where we used local laws to the second factor in (3.51) to bound its high moment by 𝑁𝛿∕2, as in
(3.48). Now by (2.27) in Theorem 2.13 and an integration by parts we can compute the right-hand
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CONDITION NUMBER OF RANDOMMATRICES 3813

side of (3.52) as

𝔼(𝑁𝜆𝑧1)
−2+𝜖′′ = (2 − 𝜖′′)∫

∞

0

𝑡−3+𝜖
′′
ℙ[𝑁𝜆𝑧1 ≤ 𝑡]d𝑡 ≲ 1 +

𝑁𝛿∕2

𝑦 ∫
1

0

𝑡−1+𝜖
′′
log 𝑡d𝑡 ≲

𝑁𝛿∕2

𝑦
.

Thus we have

𝔼
|||||∫ℂ 𝑓2(𝑤 − 𝑧)d𝜌(𝑤)

|||||
2−𝛿1

≲ 𝑁𝛿𝑦−(2−𝛿1)∕(2−𝜖
′′),

and choosing suitable 𝜖′′ ∈ (0, 𝛿1) concludes (3.50). This completes the proof of Corollary 2.4. □

Proof of Lemma 3.2. The only input for the proof, other than Lemma 3.1, is Theorem 2.10.(i) for
the complex case and Theorem 2.13 for the real case. We restrict ourselves to the complex case,
since the real case follows directly by replacing the input accordingly.
First, we assume 𝜂 ≤ 𝑁−1+𝛿∕2 without loss of generality, since for 𝜂 ≥ 𝑁−1+𝛿∕2 the result is

a direct consequence of Lemma 3.1 and ‖𝑀‖ ≲ 1 from [19, Appendix A]. Then we separate the
contribution of the singular values 𝜆𝑧

𝑖
below 𝑁−1+𝛿∕2 from the rest;

𝔼|⟨𝐺⟩|2+𝜖 ≲ 𝔼𝑛2+𝜖0

(
𝑁𝜂

(𝑁𝜆𝑧1)
2 + (𝑁𝜂)2

)2+𝜖

+ 𝔼
⎛⎜⎜⎝
1

𝑁

∑
𝑖∶𝜆𝑧

𝑖
>𝑁−1+𝛿∕2

𝜂

(𝜆𝑧
𝑖
)2 + 𝜂2

⎞⎟⎟⎠
2+𝜖

, (3.53)

where we denoted by 𝑛0 the number of singular values below 𝑁−1+𝛿∕2;

𝑛0 ∶= |{𝑖 ∈ ⟦𝑁⟧ ∶ 𝜆𝑧
𝑖
≤ 𝑁−1+𝛿∕2}|. (3.54)

By (3.5), the random variable 𝑛0 satisfies ‖𝑛0‖𝑝 ≲ 𝑁𝛿 for any fixed 𝑝 ∈ ℕ. Thus applying Hölder’s
inequality to the first term of (3.53) gives that for each 𝜉 > 0

𝔼|⟨𝐺⟩|2+𝜖 ≲ 𝑁𝛿
‖‖‖‖‖ 𝑁𝜂

(𝑁𝜆𝑧1)
2 + (𝑁𝜂)2

‖‖‖‖‖
2+𝜖

2+𝜖+𝜉

+ 𝔼⟨Im𝐺𝑧(i𝑁
−1+𝛿∕2)⟩2+𝜖, (3.55)

where we estimated the second term of (3.53) using that 𝜂 ↦ 𝜂∕(𝑥2 + 𝜂2) is increasing in 𝜂 ∈

[0, |𝑥|]. Denoting 𝐹1(⋅) = ℙ[𝑁𝜆𝑧1 ≤ ⋅], the first term of (3.55) is estimated using (2.28) as

𝔼

(
𝑁𝜂

(𝑁𝜆𝑧1)
2 + (𝑁𝜂)2

)2+𝜖+𝜉

≲ ∫
∞

0
∫

∞

𝑥

(𝑁𝜂)2+𝜖+𝜉 ⋅ 𝑡

(𝑡2 + (𝑁𝜂)2)3+𝜖+𝜉
d𝑡d𝐹1(𝑥)

=∫
∞

0

(𝑁𝜂)2+𝜖+𝜉 ⋅ 𝑡

(𝑡2 + (𝑁𝜂)2)3+𝜖+𝜉
𝐹1(𝑡)d𝑡 ≲ ∫

∞

0

(𝑁𝜂)2+𝜖+𝜉 ⋅ 𝑡3

(𝑡2 + (𝑁𝜂)2)3+𝜖+𝜉
(| log 𝑡| + log𝑁)d𝑡

=(𝑁𝜂)−𝜖−𝜉 ∫
∞

0

𝑠3

(𝑠2 + 1)3+𝜖+𝜉
(| log(𝑁𝜂𝑠)| + log𝑁)d𝑠 ≲ (𝑁𝜂)−𝜖−𝜉(| log 𝜂| + log𝑁),

(3.56)

where in the first inequality we used the identity

1

(𝑥2 + 𝑦2)𝑝
= 2𝑝 ∫

∞

𝑥

𝑡

(𝑡2 + 𝑦2)𝑝+1
d𝑡, 𝑝, 𝑥, 𝑦 > 0. (3.57)
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3814 ERDŐS

For the second expectation in (3.55), we directly use (3.4) and ‖𝑀‖ ≲ 1 from [19, Appendix A] to
get

𝔼⟨Im𝐺𝑧(i𝑁
−1+𝛿∕2)⟩2+𝜖 ≲ 1 +

1

𝑁𝛿∕2
≲ 1. (3.58)

Substituting (3.56) and (3.58) into (3.55) completes the proof of Lemma 3.2 for the complex
case. □

4 UPPER BOUND FOR THE OVERLAP: PROOF OF THEOREMS 2.7
AND 2.9

We start with the proof of Theorem 2.9 for it motivates that of Theorem 2.7 while being
much shorter.

Proof of Theorem 2.9. Recall the inequalities in (1.17). In fact, they follow from more general,
elementary deterministic inequalities (see e.g., [7, Lemma 3.2] for a proof)

𝜋
∑

𝑖∶𝜎𝑖∈
𝑖𝑖 ≤ lim inf

𝜖→0

|||{𝑧 ∈  ∶ 𝜆𝑧1 ≤ 𝜖
|||

𝜖2
,

2
∑

𝑖∶𝜎𝑖∈
√𝑖𝑖 ≤ lim inf

𝜖→0

|||{𝑥 ∈  ∶ 𝜆𝑥1 ≤ 𝜖}
|||

𝜖
,

(4.1)

that hold true for any matrix with simple spectrum and any Borel sets ⊂ ℂ and  ⊂ ℝ. Simply
taking the expectation of these two inequalities and using Fatou’s lemma gives

𝔼
∑

𝑖∶𝜎𝑖∈
𝑖𝑖 ≤ lim inf

𝜖→0

1

𝜋𝜖2
𝔼|{𝑧 ∈  ∶ 𝜆𝑧1 ≤ 𝜖| = 𝑁2

𝜋
lim inf
𝜖→0 ∫

ℙ[𝑁𝜆𝑧1 ≤ 𝑁𝜖]

(𝑁𝜖)2
d2𝑧,

𝔼
∑

𝑖∶𝜎𝑖∈
√𝑖𝑖 ≤ lim inf

𝜖→0

1

2𝜖
𝔼|{𝑥 ∈  ∶ 𝜆𝑥1 ≤ 𝜖}| = 𝑁

2
lim inf
𝜖→0 ∫

ℙ[𝑁𝜆𝑥1 ≤ 𝑁𝜖]

𝑁𝜖
d𝑥.

(4.2)

Then plugging in the results of Theorem 2.11 into (4.2) proves Theorem 2.9. □

One can immediately see that it is vital to have the exact rate ℙ[𝑁𝜆1 ≤ 𝑠] ≲ 𝑠2 or 𝑠 for the proof
above. Any suboptimal factor in 𝑠, even | log 𝑠| as in Theorems 2.10 and 2.13, completely ruins the
proof, due to the fact that the limit 𝜖 → 0 in (4.1) is not quantitative. Inspecting the original proof of
(4.1) in [7], one finds that in order for an inequality like (4.1) to be true, 𝜖 has to be smaller than, say,
(i) minimal gap between eigenvalues in and (ii) 1∕𝜆𝑧1 . Roughly, our proof of Theorem 2.7 shows
that a suitable deterministic choice of 𝜖 is smaller than both of (i) and (ii) with high probability,
and quantifies the limit in (4.1) via contour integrals.

Proof of Theorem 2.7. First of all, notice that (2.16) follows immediately from (2.14) after an
application of Markov’s inequality, so we will focus on (2.14) and (2.15).
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CONDITION NUMBER OF RANDOMMATRICES 3815

Next we prove that it suffices to assume  ⊂ [−4 − ‖𝐴‖, 4 + ‖𝐴‖]2. Suppose that we have the
result for squares in [−4 − ‖𝐴‖, 4 + ‖𝐴‖]2, and take a general squarewith || ≥ 𝑁−2𝐾 . Define

0 ∶=

{
∅ if ∩ (−3 − ‖𝐴‖, 3 + ‖𝐴‖)2 = ∅,

 ∩ [−4 − ‖𝐴‖, 4 + ‖𝐴‖]2 otherwise.

Then0 is either empty or a rectangle whose side lengths are at least𝑁−𝐾 . Since (2.14) and (2.15)
are additivewith respect to the domain, the conclusion is true for0with an exceptional eventΞ0

such thatℙ[Ξ𝑐0
] ≤ 𝑁−𝐷 .We then consider the eventΞ0 ∶= [‖𝑋 + 𝐴‖ ≤ 3 + ‖𝐴‖], which satisfies

ℙ[Ξ𝑐0] ≲ 𝑁−𝐷 for all fixed 𝐷 > 0 by, for example [39, Theorem 3.1]. Defining Ξ = Ξ0
∩ Ξ0 we

have ℙ[Ξ𝑐] ≲ 𝑁−𝐷 . Since there is no eigenvalue in [−3 − ‖𝐴‖, 3 + ‖𝐴‖]𝑐 ⊃  ⧵0 on the event
Ξ0, (2.14) and (2.15) hold true for the general square.
Thus from now onwe assume ⊂ [−4 − ‖𝐴‖, 4 + ‖𝐴‖]2. For a parameter 𝑟 < √|| to be cho-

sen later, we define 𝑟 to be a partition of  consisting of solid, open squares with side length 𝑟
so that |𝑟| ∼ ||𝑟−2 where |𝑟| denotes the number of elements in the partition. Now for this
partition, we define the events

Ξ1 ∶=
⋂
𝐶∈𝑟

[|𝜆𝑧1| > 𝔞, ∀𝑧 ∈ 𝜕𝐶
]
, Ξ2 ∶=

⋂
𝐶∈𝑟

[|{𝑖 ∶ 𝜎𝑖 ∈ 𝐶}| ≤ 1], and Ξ ∶= Ξ1 ∩ Ξ2

(4.3)

where 𝔞 > 0 is an 𝑁-dependent parameter that will also be chosen later. Under these notations,
we estimate ℙ[Ξ𝑐] and the expectation in (2.14) and (2.15) with the following lemma.

Lemma 4.1. Let ⊂ ℂ be a square and define Ξ1, Ξ2, and Ξ as in (4.3).

∙ If 𝑋 is complex, we have

𝔼𝟙Ξ
∑

𝑖∶𝜎𝑖∈
𝑖𝑖 ≲ 𝑁(𝑁||)| log 𝔞|2, (4.4)

ℙ[Ξ𝑐1] ≲ 𝑁2𝑟−1𝔞| log 𝔞|||, (4.5)

ℙ[Ξ𝑐2] ≲ 𝑁16∕5𝑟6∕5| log 𝑟|2||. (4.6)

uniformly over 0 < 𝔞 ≤ 𝑟 ≤ min((4𝑁)−1,
√||).

∙ If 𝑋 is real, we have

𝔼𝟙Ξ
∑

𝑖∶𝜎𝑖∈
𝑖𝑖 ≲ 𝑁

(1 + ‖𝐴‖2)𝑁||
𝑦

| log 𝔞|2, (4.7)

ℙ[Ξ𝑐1] ≲ 𝑁2𝑟−1𝔞
| log 𝔞|
𝑦

||, (4.8)

ℙ[Ξ𝑐2] ≲ 𝑁8∕3𝑟2∕3𝑦−2∕3(| log 𝑟| + | log 𝑦|)2||. (4.9)

uniformly over 0 < 𝔞 ≤ 𝑟 ≤ min
{
(4𝑁)−1,

√||, 𝑦∕2}, where we denoted 𝑦 ∶=

min𝑧∈ 𝜆1(ℑ[𝐴 − 𝑧]).
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3816 ERDŐS

We postpone the proof of Lemma 4.1 and first deduce the complex case, (2.14), from the
lemma.Writing 𝔞 = 𝑁−𝑘1 and 𝑟 = 𝑁−𝑘2 with 𝑘1, 𝑘2 > 1, wewill show that we can choose constant
parameters 𝑘1 and 𝑘2 so that (2.14) is true and the right-hand sides of (4.5), (4.6) are 𝑂(𝑁−𝐷).
First of all, taking 𝔞 = 𝑁−𝑘1 in (4.4) with constant 𝑘1 immediately proves (2.14). Then we plug

in 𝔞 = 𝑁−𝑘1 and 𝑟 = 𝑁−𝑘2 into (4.5) and (4.6), so that

ℙ[Ξ𝑐1] ≲ 𝑁𝑘2−𝑘1+2+2𝔎0 log𝑁 and ℙ[Ξ𝑐2] ≲ 𝑁
16−6𝑘2

5
+2𝔎0(log𝑁)2, (4.10)

where we used || ≤ (𝑁𝔎0 + 4)2. Therefore choosing 𝑘2 = 𝐾 + 𝐷+2𝔎0 + 100 and 𝑘1 = 𝑘2 +

𝐷+2𝔎0 + 100 proves 𝑃[Ξ𝑐] ≲ 𝑁−𝐷 . We omit the proof for the real case since it is completely anal-
ogous except that we use 𝑁−𝐾 ≤ 𝑦 ≤ 2𝑁𝔎0 + 4. This finishes the proof of Theorem 2.7 modulo
Lemma 4.1. □

Proof of Lemma 4.1. We first prove the complex case, and start with the proof of (4.4). The major
problem is that we cannot pull the sum over {𝑖 ∶ 𝜎𝑖 ∈ } out of the expectation, since the set of
indices itself is random. To circumvent this, we use the partition 𝑟 and the fact that each 𝐶 ∈ 𝑟
contains at most one eigenvalue on the event Ξ ⊂ Ξ2, hence

𝔼𝟙Ξ
∑

𝑖∶𝜎𝑖∈
𝑖𝑖 = 𝔼𝟙Ξ

∑
𝐶∈𝑟

∑
𝑖∶𝜎𝑖∈𝐶

𝑖𝑖 = 𝔼𝟙Ξ
∑
𝐶∈𝑟

𝟙(∃𝜎𝑖 ∈ 𝐶)𝑖𝑖 =
∑
𝐶∈𝑟

𝔼𝟙Ξ𝟙(∃𝜎𝑖 ∈ 𝐶)𝑖𝑖 . (4.11)

Note that the deterministic sum over 𝐶 ∈ 𝑟 in effect replaces the sum over 𝑖, and in the last
equality of (4.11) we interchanged it with the expectation. Furthermore, for each 𝐶 ∈ 𝑟 we have

1

2𝜋i ∮𝜕𝐶
1

𝑋 + 𝐴 − 𝑧
d𝑧 =

1

2𝜋i ∮𝜕𝐶
∑
𝑖

d𝑧

𝜎𝑖 − 𝑧
𝒓𝑖𝒍

∗
𝑖
= −

∑
𝑖∶𝜎𝑖∈𝐶

𝒓𝑖𝒍
∗
𝑖
, (4.12)

which is valid as ℙ[∃𝜎𝑖 ∈ 𝜕𝐶] = 0 and 𝑋 + 𝐴 is simple almost surely. Recalling the definition of
𝑖𝑗 from (2.13), this in turn implies

1

4𝜋2
𝟙Ξ

‖‖‖‖‖∮𝜕𝐶 1

𝑋 + 𝐴 − 𝑧
d𝑧

‖‖‖‖‖
2

= 𝟙Ξ

‖‖‖‖‖‖
∑

𝑖∶𝜎𝑖∈𝐶

𝒓𝑖𝒍
∗
𝑖

‖‖‖‖‖‖
2

= 𝟙Ξ𝟙(∃𝜎𝑖 ∈ 𝐶)𝑖𝑖 , (4.13)

where we used that there is at most one eigenvalue in each 𝐶 on the event Ξ. Since the equality
in (4.13) is true for every 𝐶 ∈ 𝑟, we take the expectation and plug it into (4.11) to obtain

𝔼𝟙Ξ
∑

𝑖∶𝜎𝑖∈
𝑖𝑖 ≤ 1

4𝜋2

∑
𝐶∈𝑟

𝔼𝟙Ξ

‖‖‖‖‖∮𝜕𝐶 1

(𝑋 + 𝐴 − 𝑧)
d𝑧

‖‖‖‖‖
2

. (4.14)
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CONDITION NUMBER OF RANDOMMATRICES 3817

We next estimate the contour integral for each 𝐶. First, we use ‖𝑌‖2 = ‖𝑌𝑌∗‖ to write
𝔼𝟙Ξ

‖‖‖‖‖∮𝜕𝐶 1

(𝑋 + 𝐴 − 𝑧)
d𝑧

‖‖‖‖‖
2

= 𝔼𝟙Ξ

‖‖‖‖‖∮𝜕𝐶 ∮𝜕𝐶 1

(𝑋 + 𝐴 − 𝑧)

1

(𝑋 + 𝐴 − 𝑤)∗
d𝑧d𝑤

‖‖‖‖‖
≤𝔼𝟙Ξ ∫

𝜕𝐶
∫
𝜕𝐶

‖‖‖‖ 1

(𝑋 + 𝐴 − 𝑧)

1

(𝑋 + 𝐴 − 𝑤)∗

‖‖‖‖|d𝑧||d𝑤|
= ∫

𝜕𝐶
∫
𝜕𝐶

𝔼𝟙Ξ
‖‖‖‖ 1

(𝑋 + 𝐴 − 𝑧)

1

(𝑋 + 𝐴 − 𝑤)∗

‖‖‖‖|d𝑧||d𝑤|
≤16𝑟2 sup

𝑧,𝑤∈𝜕𝐶
𝔼𝟙Ξ1∩Ξ2

‖‖‖‖ 1

𝑋 + 𝐴 − 𝑧

1

(𝑋 + 𝐴 − 𝑤)∗

‖‖‖‖ ≤ 16𝑟2 sup
𝑧∈𝜕𝐶

𝔼𝟙Ξ1
‖‖‖‖ 1

𝑋 + 𝐴 − 𝑧

‖‖‖‖
2

,

(4.15)

where in last line we used Cauchy-Schwarz inequality and also dropped 𝟙Ξ2 . Since 𝜆
𝑧
1 ≥ 𝔞 on the

event Ξ1, for all 𝑖 ∈ ⟦𝑁⟧ and 𝑧 ∈ 𝜕𝐶 we have from Theorem 2.10 that

𝔼𝟙Ξ1
‖‖‖‖ 1

𝑋 + 𝐴 − 𝑧

‖‖‖‖
2

= 𝑁2𝔼𝟙Ξ1
1

(𝑁𝜆𝑧1)
2
= 2𝑁2 ∫

∞

𝑁𝔞

1

𝑠3
ℙ[𝑁𝜆𝑧1 ≤ 𝑠]d𝑠

≤𝑁2 + 𝐶𝑁2 ∫
1

𝑁𝔞

1

𝑠
(| log 𝑠| + log𝑁)d𝑠 ≤ 𝑁2 + 𝐶𝑁2| log(𝑁𝔞)|(log𝑁 + | log(𝑁𝔞)|) ≤ 𝐶𝑁2| log 𝔞|2,

(4.16)
where we used 𝔞 ≤ (4𝑁)−1 in the second line. Combining (4.14)–(4.16), we conclude that

𝔼𝟙Ξ
∑

𝑖∶𝜎𝑖∈
𝑖𝑖 ≲ |𝑟|𝑟2𝑁2| log 𝔞|2 ∼ 𝑁2||| log 𝔞|2. (4.17)

This completes the proof of (4.4).
Next, we prove the second estimate (4.5). We take a regular 𝔞-grid  of points in

⋃
𝐶∈𝑟 𝜕𝐶 so

that

max
𝐶∈𝐶𝑟

max
𝑧∈𝜕𝐶

min
𝑤∈ |𝑧 − 𝑤| ≤ 𝔞 and || ∼ |𝑟|𝑟𝔞−1 ∼ ||𝑟−1𝔞−1. (4.18)

We here remark that it is crucial to have the first negative power 𝔞−1 on the right-hand side, not
the second; this comes from the fact that  is a grid on 𝜕𝐶, not 𝐶. Then, on the event⋂

𝑤∈
[𝜆𝑤1 ≥ 2𝔞], (4.19)

for any 𝑧 ∈
⋃

𝐶∈𝑟 𝜕𝐶 we can find a point 𝑤 ∈  with |𝑧 − 𝑤| ≤ 𝔞 so that

𝜆𝑧1 ≥ 𝜆𝑤1 − ‖𝐻𝑧 − 𝐻𝑤‖ = 𝜆𝑤1 − |𝑧 − 𝑤| ≥ 𝔞. (4.20)

Thus, by Theorem 2.10(i) with 𝑘 = 1 and 𝔞 ≤ 𝑟 ≤ (4𝑁)−1, we obtain

ℙ[Ξ𝑐1] =ℙ

[ ⋃
𝐶∈𝑟

[∃𝑧 ∈ 𝜕𝐶 such that 𝜆𝑧
𝑖
≤ 𝔞]

]
≤ ℙ

[⋃
𝑤∈

[𝜆𝑤1 ≤ 2𝔞]

]
≲||(𝑁𝔞)2(log𝑁 + | log 𝔞|) ≲ 𝑁2||𝑟−1𝔞| log 𝔞|.

(4.21)
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3818 ERDŐS

This proves (4.5).
We finally prove (4.6). By a union bound we trivially have

ℙ[Ξ𝑐2] = ℙ

[ ⋃
𝐶∈𝑟

[|{𝑖 ∶ 𝜎𝑖 ∈ 𝐶}| ≥ 2]

]
≤ |𝑟|max

𝐶∈𝑟 ℙ[|{𝑖 ∶ 𝜎𝑖 ∈ 𝐶}| ≥ 2]. (4.22)

To bound the probability on the right-hand side, we fix a square 𝐶 ∈ 𝑟, take 𝑧𝐶 to be the center
of 𝐶, and label the eigenvalues so that |𝜎𝑖 − 𝑧𝐶| increases in 𝑖. Then we have
ℙ[|{𝑖 ∶ 𝜎𝑖 ∈ 𝐶}| ≥ 2] ≤ ℙ[|𝜎2 − 𝑧𝐶| ≤ 2𝑟] ≤ ℙ[|𝜎1 − 𝑧𝐶| ⋅ |𝜎2 − 𝑧𝐶| ≤ 4𝑟2] ≤ ℙ[𝜆

𝑧𝐶
1 𝜆

𝑧𝐶
2 ≤ 4𝑟2],

(4.23)
where the last inequality is due to Weyl;

𝑘∏
𝑖=1

|𝜎𝑖 − 𝑧𝐶| ≥ 𝑘∏
𝑖=1

𝜆
𝑧𝐶
𝑖
, ∀𝑘 ∈ ⟦𝑁⟧. (4.24)

Now for a threshold 𝜅 > 0 to be optimized later, by Theorem 2.10.(i) with 𝑘 = 1, 2 we have

ℙ[𝜆
𝑧𝐶
1 𝜆

𝑧𝐶
2 ≤ 4𝑟2] =ℙ[𝜆

𝑧𝐶
1 𝜆

𝑧𝐶
2 ≤ 4𝑟2, 𝜆

𝑧𝐶
2 ≤ 𝜅] + ℙ[𝜆

𝑧𝐶
1 𝜆

𝑧𝐶
2 ≤ 4𝑟2, 𝜆

𝑧𝐶
2 ≥ 𝜅]

≤ℙ[𝜆𝑧𝐶2 ≤ 𝜅] + ℙ[𝜆
𝑧𝐶
1 ≤ 4𝑟2∕𝜅]

≲
(
(𝑁𝜅)8 + 𝑁2𝜅−2𝑟4

)
⋅ (log𝑁 + | log 𝜅| + | log 𝑟|)2.

(4.25)

Note that here we used that 𝑠 ∈ [0, 1] in Theorem 2.10 can be extended to 𝑠 ∈ [0,∞) by increasing
𝐶 slightly. Taking the optimal choice 𝜅 = 𝑁−3∕5𝑟2∕5, we have ℙ[𝜆𝑧𝐶1 𝜆

𝑧𝐶
2 ≤ 4𝑟2] ≲ (𝑁𝑟)16∕5| log 𝑟|2.

Therefore we conclude from (4.22) that

ℙ[Ξ𝑐2] ≲ |𝑟|(𝑁𝑟)16∕5| log 𝑟|2 ∼ 𝑁16∕5||𝑟6∕5| log 𝑟|2, (4.26)

completing the proof of Lemma 4.1 in the complex case.
We next show how to modify the proof for the real case. Firstly in (4.16), we use Theorem 2.13

instead of Theorem 2.10 to get

𝔼𝟙Ξ1
‖‖‖‖ 1

𝑋 + 𝐴 − 𝑧

‖‖‖‖
2

≲ 𝑁2| log 𝔞|2 ‖𝐴‖2 + 1

𝜆1(Im[𝐴 − 𝑧])
,

which leads to (4.7) via the same argument as in the complex case.
Secondly in (4.21), we again use the same replacement to prove (4.8);

ℙ[Ξ𝑐1] ≤ ℙ

[⋃
𝑤∈

[𝜆𝑤1 ≤ 2𝔞]

]
≲ ||(𝑁𝔞)2 (| log 𝔞| + log𝑁)

𝑦
≲ 𝑁2𝑟−1𝔞

| log 𝔞|
𝑦

||. (4.27)

Lastly in (4.25), we use Theorems 2.10 (ii) and 2.13 to get

ℙ[𝜆
𝑧𝐶
1 𝜆

𝑧𝐶
2 ≤ 4𝑟2] ≲

(
(𝑁𝜅)4 +

1

𝑦
𝑁2𝜅−2𝑟4

)
(log𝑁 + | log 𝜅| + | log 𝑟|)2. (4.28)
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After optimizing 𝜅 we obtain

ℙ[𝜆
𝑧𝐶
1 𝜆

𝑧𝐶
2 ≤ 4𝑟2] ≲

(𝑁𝑟)8∕3

𝑦2∕3
(log𝑁 + | log 𝑟| + | log 𝑦|)2, (4.29)

which gives

ℙ[Ξ𝑐2] ≲ 𝑦−2∕3𝑁8∕3||𝑟2∕3(| log 𝑟| + | log 𝑦|)2. (4.30)

This concludes the proof of Lemma 4.1. □

5 PROOF OF THEOREM 2.11

In the rest of the paper we prove results in Section 2.2. We start with the proof of Theorem 2.11,
since it best represents the common core ideas.
Recall that all of Theorems 2.10–2.13 concern singular values of 𝑋 + 𝐴, where 𝑋 is a regular

matrix and 𝐴 is a deterministic shift sometimes with additional restrictions. We denote the Her-
mitization of 𝑋 + 𝐴 by𝐻 and the resolvent (𝐻 − 𝑤)−1 by 𝐺(𝑤) as in (3.1). The spectral parameter
of 𝐺 is always taken to be 𝑤 = i𝜂, where

𝜂 ≡ 𝜂(𝑠) ∶=
𝑠

𝑁
(5.1)

with the same parameter 𝑠 > 0 in Theorems 2.10–2.13. Henceforth we often abbreviate 𝐺 ≡ 𝐺(i𝜂).
As seen below, all arguments and inequalities for the complex case is also used for the real case
with some changes to exponents. In order to unify the presentation, we introduce the exponent 𝛽
defined by

𝛽 ∶=

{
1 if 𝑋 is real,
2 if 𝑋 is complex.

(5.2)

Before commencing the proofs, we introduce a few notations and observations regarding
minors ofmatrices, that are used throughout the rest of the paper. Firstly, for each subset5  ⊂ ⟦𝑁⟧
we define the matrix 𝐽() ∈ ℂ(⟦𝑁⟧⧵)×⟦𝑁⟧ by

(𝐽())𝑖𝑗 ∶= 𝛿𝑖𝑗𝟙(𝑗 ∉ ) (5.3)

Note that 𝐽() acts as a -shift operator; for each 𝐴 ∈ ℂ⟦𝑁⟧×⟦𝑁⟧, taking product 𝐽()𝐴 ∈

ℂ(⟦𝑁⟧⧵)×⟦𝑁⟧ removes the 𝑗-th rows of 𝐴 for 𝑗 ∈ . Secondly, we write 𝐻() and 𝐺() for the
Hermitization of 𝐽()(𝑋 + 𝐴) ∈ ℂ(⟦𝑁⟧⧵)×⟦𝑁⟧ and its resolvent, that is,

𝐻() ∶=
(

0 𝐽()(𝑋 + 𝐴)

(𝑋 + 𝐴)∗(𝐽())∗ 0

)
∈ ℂ((⟦𝑁⟧⧵)∪⟦𝑁+1,2𝑁⟧)2 ,

𝐺() ≡ 𝐺()(i𝜂) ∶= (𝐻() − i𝜂)−1.

(5.4)

5 The index set  is unrelated to the domain  ⊂ ℝ in Theorem 2.9;  always denote an index set in what follows.
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3820 ERDŐS

Note that 𝐻() is obtained from 𝐻(∅) = 𝐻 by removing the 𝑗-th rows and columns for 𝑗 ∈ .
Thirdly, we write the spectral decomposition of𝐻() as follows;

𝐻() =
∑

𝑖∈⟦−(𝑁−||),−1⟧∪⟦1,𝑁⟧ 𝜆
()
𝑖

(
𝒖
()
𝑖

𝒗
()
𝑖

)(
𝒖
()
𝑖

𝒗
()
𝑖

)∗

, 𝒖
()
𝑖

∈ ℂ𝑁−||, 𝒗()
𝑖

∈ ℂ𝑁 (5.5)

where the eigenvalues are ordered increasingly. Note that the superscript (∅) is superfluous, for
example 𝜆(∅)

𝑖
= 𝜆𝑖 .

Nowwe list the key observations under these notations. Almost surely, thematrix𝐻() has rank
2(𝑁 − ||), and by the block structure of𝐻() we have

0 = 𝜆
()
1 = ⋯ = 𝜆

()|| < 𝜆
()||+1 < ⋯ < 𝜆

()
𝑁 and 𝜆

()
−𝑖

= −𝜆
()
𝑖+|| ∀𝑖 ∈ ⟦𝑁 − ||⟧, (5.6)

where the strict inequalities are due to the fact that 𝐻() has simple spectrum. Furthermore,
for any  ⊂ ⟦𝑁⟧ and 𝑖 ∈ ⟦𝑁⟧ ⧵ , since 𝐻(∪{𝑖}) is a principal minor of 𝐻(), Cauchy interlacing
theorem implies that

𝜆
(∪{𝑖})
𝑖

≤ 𝜆
()
𝑖

≤ 𝜆
(∪{𝑖})
𝑖+1

∀𝑖 ∈ ⟦𝑁⟧ ⧵ . (5.7)

For the eigenvectors, we have

𝒗
()
−𝑖

= 𝒗
()
𝑖+||, 𝒖

()
−𝑖

= −𝒖
()
𝑖+||, and ‖𝒗()

𝑖
‖2 = 1

2
= ‖𝒖()

𝑖
‖2 for 𝑖 ∈ ⟦𝑁 − ||⟧,

𝒖
()
𝑖

= 0 and ‖𝒗()
𝑖

‖2 = 1 for 𝑖 ∈ ⟦||⟧. (5.8)

In particular, we can write the spectral decompositions

(𝑋 + 𝐴)∗
(
𝐽())∗𝐽()(𝑋 + 𝐴) =

∑
𝑖∈⟦||⟧ 0 ⋅ 𝒗

()
𝑖

(
𝒗
()
𝑖

)∗
+

∑
𝑖∈⟦||+1,𝑁⟧

(
𝜆
()
𝑖

)2(√
2𝒗

()
𝑖

)(√
2𝒗

()
𝑖

)∗
,

𝐽()(𝑋 + 𝐴)(𝑋 + 𝐴)∗(𝐽())∗ =
∑

𝑖∈⟦||+1,𝑁⟧
(
𝜆
()
𝑖

)2(√
2𝒖

()
𝑖

)(√
2𝒖

()
𝑖

)∗
.

(5.9)
Finally, since the entries of 𝑋 are independent, the minor 𝐻() and the 𝑗-th rows of 𝑋 for 𝑗 ∈
 are independent. To be precise, we define the 𝜎-algebras and the corresponding conditional
expectations

 () ∶= 𝜎({𝑋𝑎𝑏 ∶ 𝑎 ∈ ⟦𝑁⟧ ⧵ , 𝑏 ∈ ⟦𝑁⟧}), 𝔼()[⋅] ∶= 𝔼[⋅| ()]. (5.10)

Then all of 𝐻(), 𝐺(), and (𝜆()
𝑖
, 𝒖

()
𝑖
, 𝒗

()
𝑖
)𝑖∈⟦𝑁⟧ are measurable with respect to  () and thus

independent of the -rows {𝑋𝑎𝑏 ∶ 𝑎 ∈ , 𝑏 ∈ ⟦𝑁⟧} of 𝑋.
Proofs of Theorems 2.10 an 2.11 both involve an induction over minors𝐻() as || runs through⟦𝑘⟧, with the same 𝑘 as in their statements. To make this rigorous, we define for each  ⊂ ⟦𝑁⟧

with || ≤ 𝑘 the events6

Ξ𝑘 ∶= [𝜆𝑘 ≤ 𝜂], Ξ
()
𝑘

∶=
[
𝜆
()
𝑘

≤ 𝜂
]
, (5.11)

6 The events Ξ𝑘 ’s here are completely unrelated to those in (4.3).
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CONDITION NUMBER OF RANDOMMATRICES 3821

where we recall that 𝜂 = 𝑠∕𝑁. Thus the goal of these two theorems is to bound ℙ[Ξ𝑘] by (𝑁𝜂)𝛽𝑘
2

with the exponent 𝛽 from (5.2). Note that Ξ()
𝑘

∈  () and that, due to 𝜆(∪{𝑖})
𝑘

≤ 𝜆
()
𝑘

from (5.7),

Ξ𝑘 ≡ Ξ
(∅)
𝑘

⊂ Ξ
(1)
𝑘

⊂ ⋯ ⊂ Ξ
(𝑘)
𝑘

(5.12)

holds true for any increasing sequence of index sets (𝑗)𝑗∈⟦𝑘⟧. Also note that if |𝑘| = 𝑘, then the
last event Ξ(𝑘)

𝑘
has probability one since 𝜆(𝑘)

𝑘
≡ 0.

As we will see shortly, Theorems 2.10 and 2.11 both follow from an induction over the chain
(5.12) for sequences (𝑗)𝑗∈⟦𝑘⟧ with |𝑗| = 𝑗, gaining a factor of (𝑁𝜂)𝛽𝑘 at each step. To be precise,
we prove

𝔼[𝔛𝟙Ξ()
𝑘

] ≤ (𝑁𝜂)𝛽𝑘
1

𝑁 − || ∑
𝑖∈⟦𝑁⟧⧵ 𝔼[𝔛∪{𝑖}𝟙Ξ(∪{𝑖})

𝑘

], ∀𝜂 ∈ [0,𝑁−1], ∀ ⊂ ⟦𝑁⟧, || ≤ 𝑘 − 1,

(5.13)
for a collection of positive random variables (𝔛)⊂⟦𝑁⟧ such that𝔛 ∈  () and𝔛∅ ≡ 1. Once we
have (5.13), then it immediately follows that

ℙ[Ξ𝑘] = 𝔼[𝔛∅𝟙Ξ(0)
𝑘

] ≤(𝑁𝜂)𝛽𝑘 1
𝑁

∑
𝑖∈⟦𝑁⟧𝔼[𝔛{𝑖}𝟙Ξ({𝑖})

𝑘

] ≤ (𝑁𝜂)2𝛽𝑘
2

𝑁(𝑁 − 1)

∑
𝑖1≠𝑖2∈⟦𝑁⟧𝔼𝔛{𝑖1,𝑖2}

𝟙
Ξ
({𝑖1,𝑖2})

𝑘

≤ ⋯

≤(𝑁𝜂)𝛽𝑘2 (𝑁 − 𝑘)!𝑘!

𝑁!

∑
⊂⟦𝑁⟧,||=𝑘 𝔼[𝔛𝟙Ξ()

𝑘

] ≤ (𝑁𝜂)𝛽𝑘
2

max⊂⟦𝑁⟧,||=𝑘 𝔼[𝔛], (5.14)

so that the only remaining thing is to estimate 𝔼[𝔛] for || = 𝑘, which becomes the correc-
tion. The exact form of 𝔛 in (5.13) varies depending on the goal, and in particular 𝔛 ’s are
deterministic in the proof of Theorem 2.10.
Although all discussions above are written in terms of a general index set  for the sake of rigor,

in the actual proof we often choose  = ⟦𝑗⟧ ⊂ ⟦𝑘⟧ for clarity. To further simplify the notation, we
write the superscript (𝑗) instead of (⟦𝑗⟧) for an integer 𝑗, for example 𝜆(𝑗) ≡ 𝜆(⟦𝑗⟧), Ξ(0)

𝑘
≡ Ξ

(⟦0⟧)
𝑘

=

Ξ
(∅)
𝑘
, et cetera.
We now present the two inputs for the proof of Theorem 2.11, whose proofs are postponed to

the end of this section. Note that the first input, Proposition 5.1, applies to a general regularmatrix
𝑋 but assumes that 𝐴 is real when 𝑋 is.

Proposition 5.1. Let 𝑘,𝑁 ∈ ℕ with𝑁 ≥ 3𝑘,𝕂 = ℝ orℂ, 𝑋 ∈ 𝕂𝑁×𝑁 be a regular matrix, and𝐴 ∈

𝕂𝑁×𝑁 be deterministic. Then there exists a constant 𝐶 ≡ 𝐶(𝑘, 𝔟) such that

𝔼
(
1 + 𝑁𝜆

()
𝑚

)𝑛
𝟙
Ξ
()
𝑘

≤ 𝐶(𝑁𝜂)𝛽𝑘
1

𝑁 − || ∑
𝑖∈⟦𝑁⟧⧵ 𝔼

(
1 + 𝑁𝜆

(∪{𝑖})
𝑚+1

)𝑛+𝛽𝑘
𝟙
Ξ
(∪{𝑖})
𝑘

∀𝜂 ∈ [0,𝑁−1]

(5.15)
holds for any  ⊂ ⟦𝑁⟧ with || ≤ 𝑘 − 1,𝑚 ∈ ⟦2𝑘,𝑁 − 1⟧, and 𝑛 ≥ 0.

Lemma 5.2. Let 𝑋 be a regular i.i.d. matrix, 𝐴 ∈ ℂ𝑁×𝑁 with ‖𝐴‖ ≤ 𝔎, and for each 𝑧 ∈ ℂ let
𝜆𝑧1 ≤ ⋯ ≤ 𝜆𝑧𝑁 be singular values of 𝑋 + 𝐴 − 𝑧. For each fixed 𝛿, 𝜏 > 0, there exists a constant 𝐶2 ≡
𝐶2(𝑘, 𝛿, 𝜏,𝖒,𝔎) such that

𝔼[(1 + 𝑁𝜆𝑧
3𝑘
)2𝑘

2
] ≤ 𝐶2𝑁

𝛿 (5.16)
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3822 ERDŐS

holds for all𝑁 ≥ 3𝑘 and |𝑧| ≤ 1 − 𝜏.

We finally prove Theorem 2.11 using these inputs.

Proof of Theorem 2.11. Recall the definitions of 𝜂 and 𝛽 respectively from (5.1) and (5.2). Define

𝔛 ∶= 𝐶||(1 + 𝑁𝜆
()
2𝑘+||

)𝛽||𝑘
(5.17)

where 𝐶 is the constant from Proposition 5.1. Then, since we assumed 𝑧 ∈ ℝ in the real case, we
may apply (5.15) with𝐴 replaced by𝐴 − 𝑧. This immediately proves (5.13) and hence, by (5.14) we
have

ℙ[𝑁𝜆𝑧
𝑘
≤ 𝑠] ≤ 𝑠𝛽𝑘

2
max⊂⟦𝑁⟧,||=𝑘 𝔼[𝔛] ≤ 𝐶𝑘𝑠𝑘

2
𝔼
[
(1 + 𝑁𝜆𝑧

3𝑘
)𝛽𝑘

2
]
, (5.18)

where we used 𝜆()
3𝑘

≤ 𝜆3𝑘 from (5.7) in the last inequality. In particular, by taking 𝐶1 = 𝐶𝑘, this
proves the first inequalities in (2.23) and (2.24).
Finally, since

𝔼(1 + 𝑁𝜆3𝑘)
𝑘2 ≤ (

𝔼(1 + 𝑁𝜆3𝑘)
2𝑘2

)1∕2
,

substituting (5.16) into (5.18) concludes the proof of Theorem 2.11. □

Proof of Proposition 5.1. First of all, we prove that one may take  = ⟦𝑗 − 1⟧ for some 𝑗 ∈ ⟦𝑘⟧
without loss of generality. To this end, we take a general  ⊂ ⟦𝑁⟧ with || ≤ 𝑘 − 1 and assume
that Proposition 5.1 is valid for ⟦||⟧. Consider a permutation matrix 𝑃 that maps  into ⟦||⟧,
so that 𝐽(||)𝑃 = 𝐽(). Then it is easy to see that 𝑃𝑋 is regular with the same density bound 𝔟 if
and only if 𝑋 is, so that we may apply Proposition 5.1 to 𝑃(𝑋 + 𝐴). Noticing that the constant 𝐶1
in (5.15) depends only on (𝑘, 𝔟) and that

𝜆
(||)
𝑚 (𝑃(𝑋 + 𝐴)) = 𝜆

()
𝑚 , (5.19)

where the left-hand side stands for the𝑚-th smallest singular value of 𝐽(||)𝑃(𝑋 + 𝐴), the result
for general  immediately follows.
Therefore in what follows we take  = ⟦𝑗 − 1⟧ for some 𝑗 ∈ ⟦𝑘⟧, and all superscripts () are

replaced by (𝑗 − 1). Next, we write

Im
∑

𝑖∈⟦𝑗,𝑁⟧𝐺
(𝑗−1)
𝑖𝑖

(i𝜂) = ImTr
i𝜂

𝐽(𝑗−1)(𝑋 + 𝐴)(𝑋 + 𝐴)∗𝐽(𝑗−1)∗ + 𝜂2
=

∑
𝑖∈⟦𝑗,𝑁⟧

𝜂|𝜆(𝑗−1)
𝑖

|2 + 𝜂2
, (5.20)

where we recall that 𝐻(𝑗−1) and 𝐺(𝑗−1) are indexed by ⟦𝑗, 2𝑁⟧2. Recalling the definition of Ξ(𝑗−1)
𝑘

from (5.11), we have

𝟙
Ξ
(𝑗−1)

𝑘

Im
∑

𝑖∈⟦𝑗,𝑁⟧𝐺
(𝑗−1)
𝑖𝑖

≥ 𝟙
Ξ
(𝑗−1)

𝑘

𝑘∑
𝑖=𝑗

𝜂|𝜆(𝑗−1)
𝑖

|2 + 𝜂2
≥ 1

2𝜂
(𝑘 − 𝑗 + 1)𝟙

Ξ
(𝑗−1)

𝑘

≥ 1

2𝜂
𝟙
Ξ
(𝑗−1)

𝑘

, (5.21)
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CONDITION NUMBER OF RANDOMMATRICES 3823

and hence, raising it to the (𝛽𝑘)-th power (recall that 𝛽 = 1 or 2 depending on real or complex
𝑋),

𝟙
Ξ
(𝑗−1)

𝑘

≤ (2𝑁𝜂)𝛽𝑘

(
1

𝑁 − 𝑗 + 1

∑
𝑖∈⟦𝑗,𝑁⟧ Im𝐺

(𝑗−1)
𝑖𝑖

)𝛽𝑘

𝟙
Ξ
(𝑗−1)

𝑘

. (5.22)

Multiplying both sides of (5.22) by the factor (1 + 𝑁𝜆
(𝑗−1)
𝑚 )𝑛 and using Jensen’s inequality, we

have

𝔼𝟙
Ξ
(𝑗−1)

𝑘

(
1 + 𝑁𝜆

(𝑗−1)
𝑚

)𝑛 ≤ 1

𝑁 − 𝑗 + 1
(2𝑁𝜂)𝛽𝑘𝔼𝟙

Ξ
(𝑗−1)

𝑘

(
1 + 𝑁𝜆

(𝑗−1)
𝑚

)𝑛 ∑
𝑖∈⟦𝑗,𝑁⟧ |𝐺(𝑗−1)

𝑖𝑖
|𝛽𝑘. (5.23)

Then, for each 𝑖 ∈ ⟦𝑗,𝑁⟧ we use that 𝜆(𝑗−1)𝑚 ≤ 𝜆
(⟦𝑗−1⟧∪{𝑖})
𝑚+1 from (5.7) and Ξ(𝑗−1)

𝑘
⊂ Ξ

(⟦𝑗−1⟧∪{𝑖})
𝑘

to
estimate the 𝑖-th summand in the right-hand side of (5.23) as

𝔼𝟙
Ξ
(𝑗−1)

𝑘

(
1 + 𝑁𝜆

(𝑗−1)
𝑚

)𝑛|𝐺(𝑗−1)
𝑖𝑖

|𝛽𝑘 ≤ 𝔼𝟙
Ξ
(⟦𝑗−1⟧∪{𝑖})
𝑘

(
1 + 𝑁𝜆

(⟦𝑗−1⟧∪{𝑖})
𝑚+1

)𝑛
𝔼(⟦𝑗−1⟧∪{𝑖})|𝐺(𝑗−1)

𝑖𝑖
|𝛽𝑘,
(5.24)

where we recall the definition of 𝔼() from (5.10) and that 𝜆()𝑚+1, Ξ
()
𝑘

are measurable with respect
to  (). Substituting (5.24) into (5.23) and then comparing with the final goal (5.15), we find that
it suffices to prove for all 𝑖 ∈ ⟦𝑗,𝑁⟧ that

𝟙
Ξ
(⟦𝑗−1⟧∪{𝑖})
𝑘

𝔼(⟦𝑗−1⟧∪{𝑖})|𝐺(𝑗−1)
𝑖𝑖

|𝛽𝑘 ≤ 𝐶𝟙
Ξ
(⟦𝑗−1⟧∪{𝑖})
𝑘

(
1 + 𝑁𝜆

(⟦𝑗−1⟧∪{𝑖})
2𝑘+1

)𝛽𝑘
, (5.25)

for a constant 𝐶 depending only on 𝑘, 𝔟. At this point wemay further assume 𝑖 = 𝑗 without loss of
generality, using the same argument as in (5.19) involving permutationmatrices. Finally, recalling
the assumption𝑚 ≥ 2𝑘, it only remains to prove

𝟙
Ξ
(𝑗)

𝑘

𝔼(𝑗)|𝐺(𝑗−1)
𝑗𝑗

|𝛽𝑘 ≤ 𝐶𝟙
Ξ
(𝑗)

𝑘

(
1 + 𝑁𝜆

(𝑗)

2𝑘+1

)𝛽𝑘
. (5.26)

Next, we decouple the 𝑗-th row of 𝑋 from 𝐺
(𝑗−1)
𝑗𝑗

. Applying Schur complement formula with
respect to the (𝑗, 𝑗)-th entry of𝐻(𝑗−1) gives

1

𝐺
(𝑗−1)
𝑗𝑗

= −i𝜂 −
∑

𝑘,𝓁∈⟦𝑗,2𝑁⟧𝐻
(𝑗−1)

𝑗𝑘
𝐺
(𝑗)

𝑘𝓁
𝐻
(𝑗−1)

𝓁𝑗
= −i𝜂 −

∑
𝑘,𝓁∈⟦𝑁⟧(𝑋 + 𝐴)𝑗𝑘𝐺

(𝑗)

𝑘+𝑁,𝓁+𝑁
(𝑋 + 𝐴)𝑗𝓁.

(5.27)
On the other hand, another application of Schur’s complement with respect to the bottom right
(𝑁 × 𝑁) block of (𝐻(𝑗) − i𝜂) gives

𝐺
(𝑗)

𝑘+𝑁,𝓁+𝑁
= i𝜂

(
(𝑋 + 𝐴)∗𝐽(𝑗)∗𝐽(𝑗)(𝑋 + 𝐴) + 𝜂2

)−1
𝑘𝓁
, 𝑘, 𝓁 ∈ ⟦𝑁⟧, (5.28)

so that (5.9) gives

1

𝐺
(𝑗−1)
𝑗𝑗

= −i𝜂 − i𝜂

𝑁∑
𝑖=1

(2 − 𝟙(𝑖 ≤ 𝑗))

(𝜆
(𝑗)
𝑖
)2 + 𝜂2

|𝒆∗
𝑗
(𝑋 + 𝐴)𝒗

(𝑗)
𝑖
|2 = −i𝜂 − i

𝑁∑
𝑖=1

𝑐
(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2, (5.29)
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3824 ERDŐS

where we defined (recall that ‖𝒗(𝑗)
𝑖
‖2 is equal to 1 for 𝑖 ≤ 𝑗 and 1∕2 for 𝑖 > 𝑗)

𝑐
(𝑗)

𝑖 ∶=
𝑁𝜂

(𝑁𝜆
(𝑗)

𝑖 )2 + (𝑁𝜂)2
, 𝒘(𝑗) ∶=

(
𝑤
(𝑗)

1 , … , 𝑤
(𝑗)

𝑁

)
∶= 𝑈(𝑗)

(
𝒃(𝑗) + 𝒂(𝑗)

)
, 𝒃(𝑗) ∶=

√
𝑁𝑋∗𝒆𝑗,

𝒂(𝑗) ∶=
√
𝑁𝐴∗𝒆𝑗, 𝑈(𝑗) ∶=

(
𝒗
(𝑗)

1 ⋯ 𝒗
(𝑗)

𝑗

√
2𝒗

(𝑗)

𝑗+1 ⋯
√
2𝒗

(𝑗)

𝑁

)∗

.

(5.30)

While (5.29) is an identity, we do not need all summands on the right-hand side but only that

|𝐺(𝑗−1)
𝑖𝑖

| = (
𝜂 +

𝑁∑
𝑖=1

𝑐
(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2)−1

≤
( ∑
𝑖∈⟦2𝑘+1⟧ 𝑐

(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2)−1

. (5.31)

Note that 𝑐(𝑗)
𝑖
and𝑈(𝑗) are measurable with respect to  (𝑗) defined in (5.10) and that 𝒃(𝑗) is exactly

the 𝑗-th row of 𝑋 with a deterministic shift, hence 𝑐(𝑗)
𝑖

and 𝑈(𝑗) are independent of 𝒃(𝑗). Also
the matrix (𝑈(𝑗))∗, and hence 𝑈(𝑗), is unitary due to (5.9). Here we emphasize that, on the event
Ξ
(𝑗)

𝑘
= [𝜆

(𝑗)

𝑘
≤ 𝜂], sizes of 𝑐(𝑗)

𝑖
’s are roughly

1

2𝑁𝜂
≤ 𝑐

(𝑗)
𝑖

≤ 1

𝑁𝜂
for 𝑖 ≤ 𝑘, and 𝑐

(𝑗)
𝑖

∼ (𝑁𝜂) for 𝑖 > 𝑘 (5.32)

since 𝑁𝜆
(𝑗)
𝑖

∼ 1 for 𝑖 > 𝑘. Notice that the first inequality in (5.32) is not a heuristic, but
deterministically true on Ξ(𝑗)

𝑘
.

Substituting (5.31) into the left-hand side of (5.26), we find that it suffices to prove

𝟙
Ξ
(𝑗)

𝑘

𝔼(𝑗)

( ∑
𝑖∈⟦2𝑘+1⟧ 𝑐

(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2)−𝛽𝑘

≤ 𝐶𝟙
Ξ
(𝑗)

𝑘

(
1 + 𝑁𝜆

(𝑗)

2𝑘+1

)𝛽𝑘
(5.33)

for a constant 𝐶 depending only on 𝑘 and 𝔟. The inequality (5.33) follows from the following
technical lemma, whose proof is presented after completing that of Theorem 2.11.

Lemma 5.3. Let 𝑘,𝑁 ∈ ℕ with 2𝑘 + 1 ≤ 𝑁, 𝕂 = ℝ or ℂ, 𝔟 > 0, and 𝒃 ∈ 𝕂𝑁 be a random vector
with independent components. Assume that each component of𝒃 (Re𝒃 and Im𝒃, resp.) has a density
bounded by 𝔟 if𝕂 = ℝ (if𝕂 = ℂ, resp.). Then there exists a constantℭ1 ≡ ℭ1(𝑘, 𝔟) > 0 such that the
following holds for any positive sequence (𝑐𝑖)𝑖∈⟦𝑁⟧ and a unitary matrix𝑈 ∈ 𝕂𝑁×𝑁 ;

𝔼

( ∑
𝑖∈⟦2𝑘+1⟧ 𝑐𝑖|𝒆∗𝑖 𝑈𝒃|2

)−𝛽𝑘

≤ 1 + ℭ1

𝑘∏
𝑖=1

𝑐
−𝛽∕2

𝑖
⋅

2𝑘+1∏
𝑖=𝑘+1

𝑐
−𝛽𝑘∕(2(𝑘+1))

𝑖
. (5.34)

Notice that Lemma 5.3 assumes that 𝑈 is real orthogonal when 𝕂 = ℝ. Assuming Lemma 5.3
is valid, we complete the proof of Theorem 2.11. We aim at applying Lemma 5.3 with the choices
(𝒃, 𝑐𝑖, 𝑈) = (𝒃(𝑗) + 𝒂(𝑗), 𝑐

(𝑗)
𝑖
, 𝑈(𝑗)). First of all, recalling that 𝐴 is real when 𝑋 is, the matrix

(𝑋 + 𝐴)∗ ∈ 𝕂𝑁×𝑁 is regular so that each component of the vector (𝒃(𝑗) + 𝒂(𝑗)) ∈ 𝕂𝑁 has a density
bounded by 𝔟. Secondly, again due to𝐴 ∈ 𝕂𝑁×𝑁 , the singular vectors (𝒗(𝑗)

𝑖
)𝑖∈⟦𝑁⟧ are in𝕂𝑁 so that

𝑈(𝑗) ∈ 𝕂𝑁×𝑁 . Lastly, since the constantℭ1 in (5.34) is uniform over all (𝑐𝑖) and𝑈, we may as well
take them to be random as long as they are independent of 𝒃. More precisely, for any 𝜎-algebra 

 10970312, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22201 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [09/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CONDITION NUMBER OF RANDOMMATRICES 3825

independent of 𝒃 such that 𝜎((𝑐𝑖), 𝑈) ⊂  , we may also replace 𝔼 on the left-hand side of (5.34)
with the conditional expectation 𝔼[⋅|]. In particular for 𝒃 = 𝒃(𝑗) we may replace 𝔼 with 𝔼(𝑗).
Thus we may apply Lemma 5.3 to the left-hand side of (5.33), so that

𝔼(𝑗)

( ∑
𝑖∈⟦2𝑘+1⟧ 𝑐

(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2)−𝛽𝑘

≤1 + ℭ1

𝑘∏
𝑖=1

(
𝑐
(𝑗)
𝑖

)−𝛽∕2 2𝑘+1∏
𝑖=𝑘+1

(
𝑐
(𝑗)
𝑖

)−𝛽𝑘∕(2(𝑘+1))
≤1 + ℭ1

(
𝑐
(𝑗)

𝑘
𝑐
(𝑗)

2𝑘+1

)−𝛽𝑘∕2
,

(5.35)

in the second line we used that 𝑐(𝑗)
𝑖

is decreasing in 𝑖 ∈ ⟦𝑁⟧. Then recalling Ξ(𝑗)
𝑘

= [𝜆
(𝑗)

𝑘
≤ 𝜂] we

have

𝟙
Ξ
(𝑗)

𝑘

1

𝑐
(𝑗)

𝑘
𝑐
(𝑗)

2𝑘+1

= 𝟙
Ξ
(𝑗)

𝑘

(
(𝑁𝜂)2 +

(
𝑁𝜆

(𝑗)

2𝑘+1

)2)
⋅

(
𝑁𝜆

(𝑗)

𝑘

)2
+ (𝑁𝜂)2

(𝑁𝜂)2
≤ 2𝟙

Ξ
(𝑗)

𝑘

(
1 + (𝑁𝜆

(𝑗)

2𝑘+1
)2
)
(5.36)

where we used 𝑁𝜂 = 𝑠 ≤ 1. Therefore we conclude

𝟙
Ξ
(𝑗)

𝑘

𝔼(𝑗)

( ∑
𝑖∈⟦𝑁⟧ 𝑐

(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2)−𝛽𝑘

≤ 𝟙
Ξ
(𝑗)

𝑘

(
1 + ℭ1

(
2 + 2(𝑁𝜆

(𝑗)

2𝑘+1
)2
)𝛽𝑘∕2) ≤ 𝐶′𝟙

Ξ
(𝑗)

𝑘

(
1 + 𝑁𝜆

(𝑗)

2𝑘+1

)𝛽𝑘
,

by taking a suitable constant 𝐶′ that still depends only on (𝑘, 𝔟). This finishes the proof of (5.33),
concluding that of Proposition 5.1. □

Proof of Lemma 5.3. We define probability measures 𝜇 and 𝜇𝑝 on 𝕂𝑁 and 𝕂𝑝 to be the laws of
𝑈𝒃 and its first 𝑝 coordinates. More specifically, for any suitable test functions 𝑓 ∶ 𝕂𝑁 → ℂ and
𝑓𝑝 ∶ 𝕂

𝑝 → ℂ we define

∫
𝕂𝑁

𝑓d𝜇 ∶= ∫
𝕂𝑁

𝑓(𝑈𝒃)ℎ(𝒃)d𝛽𝑁𝒃, ∫
𝕂𝑝

𝑓𝑝d𝜇𝑝 ∶= ∫
𝕂𝑁

𝑓𝑝(𝑤1, … ,𝑤𝑝)d𝜇(𝒘) (5.37)

wherewe abbreviated ℎ(𝒃) ∶=
∏𝑁

𝑖=1
ℎ𝑖(𝑏𝑖). With 𝜇2𝑘+1, wemay rewrite the left-hand side of (5.34)

as

𝔼

( ∑
𝑖∈⟦2𝑘+1⟧ 𝑐𝑖|𝒆∗𝑖 𝑈𝒃|2

)−𝛽𝑘

= ∫
𝕂2𝑘+1

(
2𝑘+1∑
𝑖=1

𝑐𝑖|𝑤𝑖|2)−𝛽𝑘

d𝜇2𝑘+1(𝒘). (5.38)

For a threshold 𝜅 > 0 that will be optimized afterwards, we divide the integration in (5.38) by
inserting the following factor;

1 = 𝟙𝑆𝑐
1
+ 𝟙𝑆1∩𝑆𝑐2

+ 𝟙𝑆1∩𝑆2 , (5.39)

𝑆1 ∶=

{
𝒘 ∈ 𝕂2𝑘+1 ∶

𝑘∑
𝑖=1

𝑐𝑖|𝑤𝑖|2 ≤ 1

}
, 𝑆2 ∶=

{
𝒘 ∈ 𝕂2𝑘+1 ∶

2𝑘+1∑
𝑖=𝑘+1

𝑐𝑖|𝑤𝑖|2 ≤ 𝜅2

}
.

The integral in (5.38) corresponding to the first regime 𝑆𝑐1 is simply bounded by 1 as 𝜇2𝑘+1 is a prob-
ability measure and the integrand is bounded by one. For the second domain 𝑆1 ∩ 𝑆𝑐2, denoting
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3826 ERDŐS

the 𝐿∞ norm of the Lebesgue density of a measure 𝜈 by ‖𝜈‖∞, we have
∫
𝕂2𝑘+1

𝟙𝑆1∩𝑆𝑐2
(𝒘)(∑2𝑘+1

𝑖=1
𝑐𝑖|𝑤𝑖|2)𝛽𝑘 d𝜇2𝑘+1(𝒘) ≤ ∫

𝕂𝑘

𝟙(
∑𝑘

𝑖=1
𝑐𝑖|𝑤𝑖|2 ≤ 1)(∑𝑘

𝑖=1
𝑐𝑖|𝑤𝑖|2 + 𝜅2

)𝛽𝑘 d𝜇𝑘(𝒘)

≤‖𝜇𝑘‖∞ 𝑘∏
𝑖=1

𝑐
−𝛽∕2

𝑖 ∫
𝕂𝑘

𝟙(‖𝒙‖ ≤ 1)

(‖𝒙‖2 + 𝜅2)𝛽𝑘
d𝛽𝑘𝒙 ≤ 𝐶‖𝜇𝑘‖∞ 𝑘∏

𝑖=1

𝑐
−𝛽∕2

𝑖 ∫
1

0

𝑠𝛽𝑘−1

(𝑠2 + 𝜅2)𝛽𝑘
d𝑠

≤𝐶‖𝜇𝑘‖∞𝜅−𝛽𝑘 𝑘∏
𝑖=1

𝑐
−𝛽∕2

𝑖
,

(5.40)

where we used the change of variables 𝑥𝑖 =
√
𝑐𝑖𝑤𝑖 in the second inequality. Here the constant

𝐶 > 0 is a number that depends solely on 𝛽 and 𝑘. Likewise, for the integral over the third domain
𝑆1 ∩ 𝑆2 we get

∫
𝕂2𝑘+1

𝟙𝑆1∩𝑆2(𝒘)(∑2𝑘+1

𝑖=1
𝑐𝑖|𝑤𝑖|2)𝛽𝑘 d𝜇2𝑘+1(𝒘)

≤𝐶‖𝜇2𝑘+1‖∞ 2𝑘+1∏
𝑖=1

𝑐
−𝛽∕2

𝑖 ∫
𝕂𝑘+1 ∫𝕂𝑘

𝟙(‖𝒙‖ ≤ 1)𝟙(‖𝒚‖ ≤ 𝜅)

(‖𝒙‖2 + ‖𝒚‖2)𝛽𝑘 d𝛽𝑘𝒙d𝛽(𝑘+1)𝒚

≤𝐶‖𝜇2𝑘+1‖∞ 2𝑘+1∏
𝑖=1

𝑐
−𝛽∕2

𝑖 ∫
𝜅

0
∫

1

0

𝑠𝛽𝑘−1𝑡𝛽(𝑘+1)−1

(𝑠2 + 𝑡2)𝛽𝑘
d𝑠d𝑡 ≤ 𝐶‖𝜇2𝑘+1‖∞𝜅𝛽 2𝑘+1∏

𝑖=1

𝑐
−𝛽∕2

𝑖
.

(5.41)

The fact that ‖𝜇𝑝‖∞ ≤ 𝐶(𝑝, 𝔟) for any 𝑝 ≤ 𝑁 is a direct consequence of the following lemma.

Lemma 5.4 [42, Theorem 1.1]. Let 𝑝 ≤ �̃� be positive integers, 𝔟 > 0, and 𝒃 = (𝑏𝑖)𝑖∈⟦𝑁⟧ ∈ ℝ�̃� be a
random vector with independent components. If the densities of 𝑏𝑖 are bounded by 𝔟, then the density
of 𝑃𝒃 on 𝑃ℝ𝑁 is bounded by (ℭ0𝔟)

𝑝 for any orthogonal projection 𝑃 on ℝ𝑁 with rank𝑃 = 𝑝 where
ℭ0 > 0 is an absolute constant.

In the real case, we apply Lemma 5.4 with 𝑝 = 𝑝, �̃� = 𝑁, 𝒃 = 𝒃, and

𝑃 = 𝑈∗

(
𝐼𝑝 𝑂

𝑂 𝑂

)
𝑈, (5.42)

to find that the density of 𝑃𝒃 is bounded on 𝑃ℝ𝑁 . Since 𝜇𝑝 is the law of𝑈𝑃𝒃 on𝑈𝑃ℝ𝑁 = (ℝ𝑝, 𝟎),
we immediately have ‖𝜇𝑝‖∞ ≤ (ℭ0𝔟)

𝑝. To apply Lemma 5.4 in the complex case, we employ the
following notations: For a matrix 𝐴 ∈ ℂ𝑑1×𝑑2 , we define

 [𝐴] ∶=
(
ℜ[𝐴] −ℑ[𝐴]

ℑ[𝐴] ℜ[𝐴]

)
∈ ℝ2𝑑1×2𝑑2 . (5.43)

where ℜ[𝐴] and ℑ[𝐴] are the entrywise real and imaginary parts of 𝐴 defined in (1.25). With a
slight abuse of notation, when 𝒗 ∈ ℂ𝑑 is a vector, we define  [𝒗] ∶= (Re[𝒗]⊺, Im[𝒗]⊺)⊺ ∈ ℝ2𝑑.
Note that  is an ℝ-linear algebra homomorphism in the sense that, for all 𝐴 ∈ ℂ𝑑1×𝑑2 , 𝐵 ∈
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CONDITION NUMBER OF RANDOMMATRICES 3827

ℂ𝑑2×𝑑3 , and 𝒗 ∈ ℂ𝑑2 ,

 [𝐴𝐵] =  [𝐴] [𝐵],  [𝐴𝒗] =  [𝐴] [𝒗],  [𝐴∗] =  [𝐴]⊺. (5.44)

Now we apply Lemma 5.4 with the choices 𝑝 = 2𝑝, �̃� = 2𝑁, 𝒃 =  [𝒃], and
𝑃 =  [𝑈∗]

[(
𝐼𝑝 𝑂

𝑂 𝑂

)]
 [𝑈]. (5.45)

Noticing that [𝑈] ∈ ℝ2𝑁×2𝑁 is a real orthogonalmatrix, we immediately find ‖𝜇𝑝‖∞ ≤ (ℭ0𝔟)
2𝑝.

Combining (5.40), (5.41), ‖𝜇𝑝‖∞ ≤ (ℭ0𝔟)
𝛽𝑝, and optimizing for 𝜅 gives

𝔼

(
2𝑘+1∑
𝑖=1

𝑐𝑖|𝒆∗𝑖 𝑈𝒃|2
)−𝛽𝑘

≤ 1 + ℭ1

(
𝑘∏
𝑖=1

𝑐
−𝛽∕2

𝑖

)(
𝜅−𝛽𝑘 + 𝜅𝛽

2𝑘+1∏
𝑖=𝑘+1

𝑐
−𝛽∕2

𝑖

)

≤ 1 + ℭ1

𝑘∏
𝑖=1

𝑐
−𝛽∕2

𝑖

2𝑘+1∏
𝑖=𝑘+1

𝑐
−𝑘𝛽∕(2(𝑘+1))

𝑖
,

for some constant ℭ1 ≡ ℭ1(𝑘, 𝔟). This completes the proof of Lemma 5.3. □

Proof of Lemma 5.2. Recall that the goal is to prove

𝔼[(1 + 𝑁𝜆3𝑘)
2𝑘2] ≤ 𝐶(𝑘, 𝛿, 𝜏,𝖒)𝑁𝛿. (5.46)

Observe that we may assume that 𝑁 is sufficiently large, as long as the threshold depends on the
same parameters as𝐶. Recall the definition ofΞ𝑧 from (3.5). We apply Lemma 3.1 with the choices
𝜖 = 𝜉 = 𝛿∕(100𝑘2) and𝐷 = 100𝑘2, so that [Ξ𝑧(𝜖, 𝜉)𝑐] ≤ 𝑁−𝐷 holds for all |𝑧| ≤ 1 − 𝜏. Then, on the
event Ξ𝑧(𝜖, 𝜉) we have

𝑁𝜆𝑧
3𝑘

≤ 𝑁𝜆𝑧⌊𝑁𝜖+𝜉⌋ ≤ 𝑁1+𝜖𝜂 ≤ 𝑁1+2𝜖,

hence

𝔼𝟙Ξ𝑧(𝜖,𝜉)(1 + 𝑁𝜆𝑧
3𝑘
)2𝑘

2 ≤ 𝑁5𝑘2𝜖. (5.47)

On the complementary event Ξ𝑧(𝜖, 𝜉)𝑐 we use Cauchy-Schwarz and 𝜆𝑧𝑁 = ‖𝐴 + 𝑋 − 𝑧‖ ≤ ‖𝑋‖ +|𝑧| + ‖𝔎‖ to get
𝔼𝟙Ξ𝑧(𝜖,𝜉)𝑐 (1 + 𝑁𝜆𝑧

3𝑘
)2𝑘

2 ≤ ℙ[Ξ𝑧(𝜖, 𝜉)
𝑐]1∕2𝔼[(1 + 𝑁𝜆𝑧𝑁)

4𝑘2]1∕2 ≤ 𝑁2𝑘2−𝐷∕2(1 + ‖‖𝑋‖‖4𝑘2)2𝑘2 .
(5.48)

Then we finally use

𝔼
[‖𝑋‖4𝑘2] ≤ 𝔼(Tr𝑋𝑋∗)2𝑘

2 ≤ 𝑁2𝑘2𝔪4𝑘2 (5.49)

so that

𝔼𝟙Ξ𝑧(𝜖,𝜉)𝑐 (1 + 𝑁𝜆𝑧
3𝑘
)2𝑘

2 ≤ 𝑁3𝑘2−𝐷∕2𝔪
1∕2

4𝑘2
. (5.50)

Substituting the definitions of 𝜖, 𝜉, 𝐷 into (5.47) and (5.50) proves (5.16), concluding the proof of
Lemma 5.2. □
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3828 ERDŐS

6 PROOF OF THEOREM 2.10

The proof of Theorem 2.10 follows a similar strategy as in Section 5 for the proof of Theorem 2.11
but with some non-trivial modifications that will be summarized in Remark 6.4. The key step
again is to prove (5.13) but this time with the deterministic choice 𝔛 = 𝐶||| log 𝜂|||; we state
this in the next proposition. Recall the definition of 𝛽 from (5.2).

Proposition 6.1. Let 𝑘,𝑁 ∈ ℕ with 2 ≤ 𝑘 ≤ 𝑁, 𝑋 be an (𝑁 × 𝑁) regular complex or real matrix,
and 𝐴 ∈ ℂ𝑁×𝑁 . Then there exists a constant 𝐶 ≡ 𝐶(𝑘, 𝔟) > 0 such that

ℙ
[
Ξ
()
𝑘

] ≤ 𝐶| log 𝜂|(𝑁𝜂)𝛽𝑘 1

𝑁 − || ∑
𝑖∈⟦𝑁⟧⧵ ℙ

[
Ξ
(∪{𝑖})
𝑘

]
∀𝜂 ∈ [0,𝑁−1], (6.1)

holds for all  ⊂ ⟦𝑁⟧ with || ≤ 𝑘 − 1. If 𝑋 is complex, the same result also holds for 𝑘 = 1.

Note that Proposition 6.1, in contrast to Proposition 5.1, does not assume that𝐴 is real even if𝑋
is. Aswewill see below, complex𝐴 poses additional technicalities in its proofwhen𝑋 is real. Given
Proposition 6.1, Theorem 2.10 follows directly by substituting 𝜂 = 𝑠∕𝑁 and 𝔛 = 𝐶||| log 𝜂|||
into (5.14) where 𝐶 is the constant from (6.1). Thus we move on to the proof of Proposition 6.1.

Proof of Proposition 6.1. We make two modifications to the proof Proposition 5.1 in order to prove
(6.1). Firstly in (5.22), we raise (5.21) to the (𝛽𝑘∕2)-th power instead of (𝛽𝑘), andwe do not smuggle
in the factor (1 + 𝑁𝜆

(𝑗−1)
𝑚 )𝑛 in the following steps. Notice here that we need to take 𝑘 ≥ 2 in the

real case, so that wemay apply Jensen’s inequality in (5.23) with the power 𝑘∕2. Secondly in (5.31),
we keep the first term 𝜂 and only use the first 𝑘 coordinates of 𝒘(𝑗) instead of the first (2𝑘 + 1).
After these modifications, it suffices to prove

𝟙
Ξ
(𝑗)

𝑘

𝔼(𝑗)

(
𝜂 +

∑
𝑖∈⟦𝑘⟧ 𝑐

(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2)−𝛽𝑘∕2

≤ 𝐶(𝑁𝜂)𝛽𝑘∕2| log 𝜂| (6.2)

for a constant 𝐶 ≡ 𝐶(𝑘, 𝔟) > 0.
Recall from (5.32) that 𝑐(𝑗)

𝑖
≥ 1∕(2𝑁𝜂) for all 𝑖 ∈ ⟦𝑘⟧ on the event Ξ(𝑗)

𝑘
. Thus we have

𝟙
Ξ
(𝑗)

𝑘

𝔼(𝑗)

(
𝜂 +

∑
𝑖∈⟦𝑁⟧ 𝑐

(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2)−𝛽𝑘∕2

≤ 𝐶(𝑁𝜂)𝛽𝑘∕2𝟙
Ξ
(𝑗)

𝑘

𝔼(𝑗)

(
𝑁𝜂2 +

∑
𝑖∈⟦𝑘⟧ |𝑤(𝑗)

𝑖
|2)−𝛽𝑘∕2

, (6.3)

where 𝐶 > 0 depends only on 𝑘. Therefore (6.2) follows once we prove

𝔼(𝑗)

(
𝑁𝜂2 +

∑
𝑖∈⟦𝑘⟧ |𝑤(𝑗)

𝑖
|2)−𝛽𝑘∕2

≤ 𝐶| log 𝜂| (6.4)

for a constant 𝐶 depending only on 𝑘 and 𝔟. We state this estimate as the next lemma. To simplify
the presentation we define 𝑃𝑘 ∶ ℂ𝑁 → ℂ𝑘 to be the projection onto the first 𝑘 components, that
is,

𝑃𝑘 ∶=
(
𝐼𝑘 | 𝑂

)
∈ ℂ(𝑘×𝑁). (6.5)
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CONDITION NUMBER OF RANDOMMATRICES 3829

Lemma 6.2. Let 𝑘,𝑁 ∈ ℕ with 𝑘 ≤ 𝑁, 𝕂 = ℝ or ℂ, and 𝒃 ∈ 𝕂𝑁 be a random vector with inde-
pendent components satisfying the same assumptions as in Lemma 5.3. Then there exists a constant
ℭ2 ≡ ℭ2(𝑘, 𝔟) > 0 such that the following holds for any 𝑐0 ∈ (0, 1∕2), 𝒂 ∈ ℂ𝑁 , and a unitary matrix
𝑈 ∈ ℂ𝑁×𝑁 ;

𝔼
(
𝑐0 + ‖𝑃𝑘𝑈(𝒃 + 𝒂)‖2)−𝛽𝑘∕2 ≤ ℭ2(1 + | log 𝑐0|). (6.6)

Note that when 𝕂 = ℝ, the vector 𝑃𝑈(𝒃 + 𝒂) in (6.6) involves both real and complex matrices
(or vectors) in contrast to (5.34). Hereafter, any binary operation concerning both real and complex
matrices treats ℝ as canonically embedded in ℂ.
As in Section 5, we postpone the proof of Lemma 6.2 and first use this lemma to conclude Propo-

sition 6.1.We choose 𝑐0 = 𝑁𝜂2,𝑈 = 𝑈(𝑗), 𝒃 =
√
𝑁𝑋∗𝒆𝑗 , and𝒂 =

√
𝑁𝐴∗𝒆𝑗 . With these choices we

have

𝑃𝑘𝑈(𝒃 + 𝒂) =
√
𝑁𝑃𝑘𝑈

(𝑗)(𝑋 + 𝐴)∗𝒆𝑗 = 𝑃𝑈(𝑗)𝒃(𝑗) = 𝑃𝒘(𝑗), (6.7)

so that the left-hand side of (6.6) is exactly that of (6.4). Following similar arguments as in the
proof of Proposition 6.1, these choices satisfy all assumptions of Lemma 6.2 so that

𝔼(𝑗)

(
𝑁𝜂2 +

∑
𝑖∈⟦𝑘⟧ |𝑤(𝑗)

𝑖
|2)−𝛽𝑘∕2

≤ ℭ2(1 + | log(𝑁𝜂2)|) ≤ 10ℭ2| log 𝜂|, (6.8)

where we used 𝜂 ∈ [0,𝑁−1]. This proves (6.4), concluding the proof of Proposition 6.1. □

Next we will present the proof of Lemma 6.2. Recall that in Lemma 6.2 the unitary matrix 𝑈
is not real orthogonal even if 𝑋 is real, in contrast to Lemma 5.3. Hence the proof of (6.4) for
the real case does not simply follow from the complex case just after some changes in the expo-
nents. Nonetheless, we still expect that the vector 𝑃𝑘𝑈𝒃 carries at least half the degrees of freedom
compared to the complex case, regardless of 𝑈. As before, these will be used to regularize the
potentially singular expectation in (6.6) even if 𝑐0 is very small. In other words, we will construct
a “projection” 𝑅 ∶ ℂ𝑘 → ℝ𝑘 so that 𝑅𝑃𝑘𝑈𝒃 ∈ ℝ𝑘 has a continuous distribution. The next lemma
is used to construct such an 𝑅.

Lemma 6.3. Let𝑈 be an𝑁 ×𝑁 complex unitary matrix, 𝑘 ∈ ⟦𝑁⟧, 𝑃𝑘 be given by (6.5), and define
𝑄 ∶=  [𝑃𝑘] [𝑈]

(
𝐼𝑁
𝑂

)
∈ ℝ2𝑘×𝑁. (6.9)

Then the singular values𝑚1 ≤ ⋯ ≤ 𝑚2𝑘 = ‖𝑄‖ of 𝑄 satisfy

𝑚2𝑘 ≤ 1, 𝑚𝑘+1 ≥ 1√
𝑘 + 1

. (6.10)

The proof of Lemma 6.3 is postponed to the end of this section, and we proceed to prove
Lemma 6.2.
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3830 ERDŐS

Proof of Lemma 6.2. We first prove the complex case, 𝛽 = 2. One can easily see that the vector
𝒃 ∶= 𝒃 + 𝒂 has independent components whose densities are bounded by 𝔟, exactly when 𝒃 does.
Since ‖𝑃𝑈(𝒃 + 𝒂)‖ = ‖𝑃𝑈𝒃‖, we may replace 𝑃𝑈(𝒃 + 𝒂) by 𝑃𝑈𝒃 in the left-hand side of (6.6),
that is, it suffices to prove

𝔼(𝑐0 + ‖𝑃𝑈𝒃‖2)−𝑘 ≤ ℭ2(1 + | log 𝑐0|). (6.11)

Note that this argument using a complex shift 𝒂 only applies to the case 𝕂 = ℂ, and later for the
real case we will need to use Lemma 6.3 instead.
Nowwe apply similar arguments as in Lemma 5.3; first, define 𝜇𝑘 to be the distribution of 𝑃𝑈𝒃;

for a test function 𝑓 ∶ ℂ𝑘 → ℂ we write

∫
ℂ𝑁

𝑓d𝜇 ∶= ∫
ℂ𝑁

𝑓(𝑃𝑈𝒃)ℎ(𝒃)d2𝑁𝒃

where ℎ(𝒃) was defined in (5.37). Then we have, for a constant 𝐶 ≡ 𝐶(𝑘) > 0,

𝔼
(
𝑐0 + ‖𝑃𝑈𝒃‖2)−𝑘 =∫

ℂ𝑘

(
𝑐0 + ‖𝒘‖2)−𝑘d𝜇𝑘(𝒘) ≤ 1 + ∫

ℂ𝑘

𝟙(‖𝒘‖ ≤ 1)

(𝑐0 + ‖𝒘‖2)𝑘 d𝜇𝑘(𝒘)
≤1 + ‖𝜇𝑘‖∞ ∫

ℂ𝑘

𝟙(‖𝒘‖ ≤ 1)

(𝑐0 + ‖𝒘‖2)𝑘 d2𝑘𝒘 ≤ 1 + 𝐶‖𝜇𝑘‖∞ ∫
1

0

𝑠2𝑘−1

(𝑐0 + 𝑠2)𝑘
d𝑠,

(6.12)

where we used in the first inequality that the integral over ‖𝒘‖ > 1 is less than 1. Recall that this
𝜇𝑘 is exactly the same as that in the proof of Lemma 5.3, so that ‖𝜇𝑘‖∞ ≤ 𝐶(𝑘, 𝔟). Since the last
integral in (6.12) is bounded by | log 𝑐0|, therefore we have

𝔼
(
𝑐0 + ‖𝑃𝑈𝒃‖2)−𝑘 ≤ ℭ2(1 + | log 𝑐0|), (6.13)

for some constant ℭ2 ≡ ℭ2(𝑘, 𝔟) > 0. This proves (6.11), thus concludes Lemma 6.2 for the
complex case.
Now we move on to the real case. We first notice that

 [𝑃𝑘𝑈𝒃] =  [𝑃𝑘𝑈] [𝒃] =  [𝑃𝑘] [𝑈]
(
𝐼𝑁
𝑂

)
𝒃 = 𝑄𝒃 ∈ ℝ2𝑘, (6.14)

where 𝑄 was defined in (6.9). Consider the singular value decomposition

𝑄 =

2𝑘∑
𝑖=1

𝑚𝑖𝒙𝑖𝒚
⊺
𝑖
, 𝒙𝑖 ∈ ℝ2𝑘, 𝒚𝑖 ∈ ℝ𝑁, (6.15)

and define

𝑅 ∶=

2𝑘∑
𝑖=𝑘+1

𝒚𝑖𝒙
⊺
𝑖
, 𝑃 ∶=

2𝑘∑
𝑖=𝑘+1

𝒚𝑖𝒚
⊺
𝑖
, 𝑉 ∶=

𝑘∑
𝑖=1

𝒆𝑖𝒚
⊺

𝑖+𝑘
∈ ℝ𝑘×𝑁, 𝐷 ∶= diag(𝑚𝑘+1, … ,𝑚2𝑘).

(6.16)
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Note that 𝑃 is an orthogonal projection on ℝ𝑁 , 𝑉 is a unitary map between ℝ𝑘 and
span(𝒚𝑘+1, …𝒚2𝑘), and that

𝑉𝑅𝑄 =

2𝑘∑
𝑖=𝑘+1

𝑚𝑖𝒆𝑖𝒚
⊺
𝑖
= 𝐷𝑉𝑃. (6.17)

Hence, using ‖𝑉𝑅‖ ≤ 1 and ‖ [𝒗]‖ = ‖𝒗‖ for any complex vector 𝒗, we obtain
‖𝑃𝑘𝑈(𝒃 + 𝒂)‖ = ‖ [𝑃𝑘𝑈(𝒃 + 𝒂)]‖ ≥ ‖𝑉𝑅 [𝑃𝑘𝑈(𝒃 + 𝒂)]‖

= ‖𝐷𝑉(𝑃𝒃 + 𝑉⊺𝐷−1𝑉𝑅 [𝑃𝑘𝑈𝒂])‖ =∶ ‖𝐷𝑉(𝑃𝒃 + 𝒂)‖, (6.18)

where we abbreviated

𝒂 = 𝑉⊺𝐷−1𝑉𝑅 [𝑃𝑘𝑈𝒂] ∈ span(𝒚𝑘+1, … , 𝒚2𝑘). (6.19)

Thus we have that

(𝑐0 + ‖𝑃𝑈(𝒃 + 𝒂)‖2)−𝑘∕2 ≤ (𝑐0 + ‖𝐷𝑉(𝑃𝒃 + 𝒂)‖2)−𝑘∕2. (6.20)

Next, we define 𝜈𝑘 to be the distribution (on ℝ𝑘) of 𝑉(𝑃𝒃 + 𝒂), that is,

∫
ℝ𝑘

𝑓(𝒙)d𝜈𝑘(𝒙) = ∫
ℝ𝑁

𝑓(𝑉(𝑃𝒃 + 𝒂))ℎ(𝒃)d𝑁𝒃 (6.21)

where ℎ(𝒃) was defined in (5.37). Then we may follow the same lines as in (6.12) to write

𝔼(𝑐0 + ‖𝑃𝑈(𝒃 + 𝒂)‖2)−𝑘∕2 ≤𝔼(𝑐0 + ‖𝐷𝑉(𝑃𝒃 + 𝒂)‖2)−𝑘∕2
=∫

ℝ𝑘

(𝑐0 + ‖𝐷𝒙‖2)−𝑘∕2d𝜈𝑘(𝒙) ≤ 1 +
‖𝜈𝑘‖∞

(𝑘 + 1)𝑘∕2 ∫
∞

0

𝑠𝑘−1

(𝑐0 + 𝑠2)𝑘∕2
d𝑠

(6.22)
where we used in the last inequality that det𝐷 ≥ 𝑚𝑘

𝑘+1
≥ (𝑘 + 1)𝑘∕2.

Since the last integral on the right-hand side of (6.22) is comparable to | log 𝑐0|, it suffices
to prove ‖𝜈𝑘‖∞ ≤ 𝐶(𝑘, 𝔟) in order to conclude (6.6) for the real case. To prove this, we apply
Lemma 5.4 with the choices 𝒃 = 𝒃 and 𝑃 in (6.16). As a result, the densities of 𝑃𝒃 and hence
(𝑃𝒃 + 𝒂) on span(𝒚𝑘+1, … , 𝒚2𝑘) are both bounded by 𝐶(𝑘, 𝔟). Since 𝑉 is an isometry between
span(𝒚𝑘+1, … , 𝒚2𝑘) and ℝ𝑘, we immediately find ‖𝜈𝑘‖∞ ≤ 𝐶(𝑘, 𝔟). This completes the proof of
Lemma 6.2 modulo Lemma 6.3. □

Proof of Lemma 6.3. First of all,𝑚2𝑘 = ‖𝑄‖ ≤ 1 follows directly from

‖𝑄𝒗‖ = ‖ [𝑃𝑘𝑈𝒗]‖ = ‖𝑃𝑘𝑈𝒗‖ ≤ ‖𝒗‖, ∀𝒗 ∈ ℝ𝑁. (6.23)

To prove𝑚𝑘+1 ≥ (𝑘 + 1)−1∕2, we use the definition of  to write the matrix 𝑄 in (6.9) as

𝑄 =

(
𝑃𝑘ℜ[𝑈]

−𝑃𝑘ℑ[𝑈]

)
∈ ℝ2𝑘×𝑁, (6.24)
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3832 ERDŐS

so that, using the same singular decomposition as in (6.15),

𝑄𝑄⊺ =

(
𝑃𝑘ℜ[𝑈]

−𝑃𝑘ℑ[𝑈]

)(
ℜ[𝑈]⊺𝑃⊺ −ℑ[𝑈]⊺𝑃⊺

)
=

2𝑘∑
𝑖=1

𝑚2
𝑖
𝒙𝑖𝒙

⊺
𝑖
. (6.25)

Then fromℜ[𝑈𝑈∗] = ℜ[𝐼] = 𝐼 we have

2𝑘∑
𝑖=1

𝑚2
𝑖
= Tr

(
𝑃ℜ[𝑈]

−𝑃ℑ[𝑈]

)(
ℜ[𝑈]⊺𝑃⊺ −ℑ[𝑈]⊺𝑃⊺

)
= Tr 𝑃(ℜ[𝑈]ℜ[𝑈]⊺ + ℑ[𝑈]ℑ[𝑈]⊺)𝑃⊺ = Tr 𝑃ℜ[𝑈𝑈∗]𝑃⊺ = Tr 𝑃𝑃⊺ = 𝑘.

(6.26)

Hence for each 𝓁 ∈ ⟦2𝑘⟧ we have
𝑘 =

2𝑘∑
𝑖=1

𝑚2
𝑖
≤ 𝓁𝑚2

𝓁
+ (2𝑘 − 𝓁)𝑚2

2𝑘
≤ 𝓁𝑚2

𝓁
+ (2𝑘 − 𝓁), (6.27)

where we used in the last inequality that𝑚2𝑘 ≤ 1. Thus for all 𝓁 ≥ 𝑘 we have

𝑚𝓁 ≥
√

𝓁 − 𝑘

𝓁
, in particular 𝑚𝑘+1 ≥ 1√

𝑘 + 1
. (6.28)

This completes the proof of Lemma 6.3. □

Remark 6.4. As one can see from the proofs, the difference betweenTheorem2.10 and 2.11 is rooted
in that between (5.33) and (6.2). Comparing (6.2) to (5.33), we find that the left-hand sides concern
different inverse powers of the same random variable

∑
𝑖
𝑐
(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2modulo irrelevant summands.
On the other hand, the right-hand side of (6.2) has a factor of (𝑁𝜂)𝛽𝑘∕2, which is small, whereas
that of (5.33) is (roughly) 𝑂(1).
Here we briefly explain how these two different estimates for the inverse powers of the same

randomvariable arise. In fact, when𝑁𝜂 ≪ 1, (6.2) better represents the natural size of this random
variable. To see this, we recall (5.32) and write for general𝒘 ∈ ℂ𝑁 that, on the event Ξ(𝑗)

𝑘
,

1

2𝑁𝜂

𝑘∑
𝑖=1

|𝑤𝑖|2 ≤ 𝑘∑
𝑖=1

𝑐
(𝑗)
𝑖

|𝑤𝑖|2 ≤ ∑
𝑖∈⟦𝑁⟧ 𝑐𝑖|𝑤𝑖|2 ≤ 1

𝑁𝜂

𝑘∑
𝑖=1

|𝑤𝑖|2 + 1

𝑁

∑
𝑖>𝑘

𝜂

(𝜆
(𝑗)
𝑖
)2 + 𝜂2

|𝑤𝑖|2. (6.29)

Typically we take 𝑤𝑖 to be 𝑂(1) random variables with continuous joint distribution, and hence
the second term on the right-hand side of (6.29) is roughly of the same size as ⟨𝐺(i𝜂)⟩ which is
𝑂(1) (see Lemma 3.2). Thus essentially the first 𝑘 summands determine the size of

∑
𝑖
𝑐
(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2,
which is in turn comparable to (𝑁𝜂)−1‖𝑃𝒘‖2 recalling that the relevant regime is 𝑁𝜂 ≪ 1.
Therefore, in effect, one can only use these 𝛽𝑘 degrees of freedom (from 𝑘 variables in𝕂) upon

estimating the𝑚-th negativemoment to regularize the potential singularity. This essentially leads
to integrals of the form

∫
𝕂𝑘

𝟙(‖𝒘‖ ≤ 1)‖𝒘‖2𝑚 d𝛽𝑘𝒘, (6.30)
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CONDITION NUMBER OF RANDOMMATRICES 3833

which is finite only if𝑚 < 𝛽𝑘∕2. When𝑚 is exactly 𝛽𝑘∕2 this integral has logarithmic singularity,
which is responsible for the logarithmic corrections in Theorem 2.10. On the other hand, for any
𝑚 > 𝛽𝑘∕2, the a prioriuncontrolled singular values {𝜆(𝑗)

𝑖
∶ 𝑖 > 𝑘} affect the𝑚-th negativemoment

of
∑

𝑖
𝑐
(𝑗)
𝑖

|𝑤(𝑗)
𝑖

|2 via 𝑐(𝑗)
𝑖
. The main point of Theorem 2.11 is that 𝜆(𝑗)

𝑖
’s, and hence 𝑐(𝑗)

𝑖
’s, for 𝑖 > 𝑘

are controlled if replace 𝐴 with 𝐴 − 𝑧 for 𝑧 in the bulk spectrum and thus effectively contribute
to regularizing the integral.

7 PROOF OF THEOREM 2.13

Now we consider the singular values of real regular matrices, but shifted by genuinely complex
matrix 𝐴 ∈ ℂ𝑁×𝑁 . More precisely, we show that (2.21) extends to 𝑘 = 1with the improved rate 𝑠2
if ℑ[𝐴] is strictly positive definite.
Recall, from the proofs of Theorems 2.10 and 2.11 for the complex case with 𝑘 = 1, that the

scale 𝑠2 is due to the fact that the random variable 𝑤(1)
1 = (𝒗

(1)
1 )∗𝒃 is genuinely complex; more

specifically, that the distribution 𝜇1 of 𝑤(1) on ℂ has a bounded density. Here we prove the same
statement for the real case when the shift 𝐴 is genuinely complex.
Before presenting the proof, we briefly explain which parts of the proof of ‖𝜇1‖∞ = 𝑂(1) have

to be modified compared to those in Sections 5 and 6. If 𝐴 is real, then 𝒗
(1)
1 , the null vector of

𝐽1(𝑋 + 𝐴), is also real and thus 𝑤(1)
1 is real, so that its density 𝜇1 is singular if viewed as a density

onℂ. If the shift𝐴 is complex, then 𝒃 =
√
𝑁(𝑋 + 𝐴)∗𝒆1 becomes complex but only due to an irrel-

evant shift. Hence the regularity of 𝜇1 should come from the fact that 𝒗(1)1 is genuinely complex.
Furthermore, whatever estimate we obtain for ‖𝜇1‖∞, it should deteriorate as 𝐴 tends to a real
matrix; we have already seen in the proof of Theorem 2.11 that 𝑤(1)

1 is real when 𝐴 is.
The next lemma summarizes the technical input we need for the proof of Theorem 2.13. It

proves that𝒗(1)1 is a genuinely complex vector, quantitativelywith an explicit dependence onℑ𝐴 =

(𝐴 − 𝐴)∕(2i).

Lemma 7.1. Let 𝑌, 𝐵 ∈ ℝ𝑁×𝑁 and 𝒗 ∈ ℂ𝑁 be a unit null vector of 𝐽(1)(𝑌 + i𝐵). Then we have

inf
𝜃∈[0,2𝜋]

‖Re[ei𝜃𝒗]‖2 ≥ 1

5
𝜆1(𝐵)

2 ‖𝐽(1)𝑌𝒘‖2
(‖𝐽(1)𝑌‖ + ‖𝐵‖)4 , (7.1)

where 𝜆1(𝐵) is the smallest singular value of 𝐵 and𝒘 ∈ ℝ𝑁 is the unit null vector of 𝐽(1)𝐵.

Note that zero is an eigenvalue of 𝐵∗(𝐽(1))∗𝐽(1)𝐵 and that, by Cauchy interlacing theorem, its
multiplicity is exactly one provided 𝜆1(𝐵) > 0. Hence 𝒘 is uniquely determined if 𝜆1(𝐵) > 0. We
postpone the proof of Lemma 7.1 to the end of this section and move on to that of Theorem 2.13.

Proof of Theorem 2.13. In order to prove (2.27), we follow the proof of Theorem 2.10 in the complex
case (hence 𝛽 = 2) for 𝑗 = 𝑘 = 1. One can easily find that all the arguments until Lemma 6.2
remain intact, which is replaced by the following lemma;

Lemma 7.2. Let 𝒃 = (𝑏𝑖)𝑖∈⟦𝑁⟧ ∈ ℝ𝑁 be a random vector with independent components whose den-
sities are bounded by 𝔟 > 0. Then there exists a constantℭ3 ≡ ℭ3(𝔟) > 0 such that the following holds
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3834 ERDŐS

for all 𝑐0 ∈ (0, 1∕2) and deterministic vectors 𝒗, 𝒂 ∈ ℂ𝑁 with ‖𝒗‖ = 1;

𝔼(𝑐0 + |𝒗∗(𝒃 + 𝒂)|2)−1 ≤ ℭ3

(
1 +

(
min

𝜃∈[0,2𝜋]
‖Re[ei𝜃𝒗]‖)−1| log 𝑐0|). (7.2)

The proof of Lemma 7.2 is presented after completing that of Theorem 2.13, and we proceed
assuming its validity. If we replace Lemma 6.2 by 7.2, we obtain

ℙ[Ξ1] ≤ (𝑁𝜂)2 max
𝑖∈⟦𝑁⟧𝔼

(
𝑁𝜂2 + |𝑤({𝑖})

1 |2)−1
≤ 10ℭ3(𝑁𝜂)

2 max
𝑖∈⟦𝑁⟧

(| log 𝜂|𝔼( min
𝜃∈[0,2𝜋]

‖Re [ei𝜃𝒗({𝑖})1

]‖)−1
)
, (7.3)

so that it only remains to estimate the expectation on the right-hand side. Also, as before, we take
𝑖 = 1 without loss of generality since the final result is uniform in 𝑖 ∈ ⟦𝑁⟧. To this end, we apply
Lemma 7.1 with the choices 𝑌 = 𝑋 +ℜ𝐴 and 𝐵 = ℑ𝐴. As a result, we obtain

𝔼

(
min

𝜃∈[0,2𝜋]
‖Re [ei𝜃𝒗(1)]‖)−1

≤ 𝐶

𝜆1(ℑ𝐴)
𝔼
(‖𝐽(1)(𝑋 +ℜ𝐴)‖ + ‖ℑ𝐴‖)2‖𝐽(1)(𝑋 +ℜ𝐴)𝒘‖

≤ 𝐶

𝜆1(ℑ𝐴)
‖‖‖‖𝐽(1)(𝑋 +ℜ𝐴)𝒘‖−1‖‖‖2(‖‖‖𝑋‖2‖‖2 + ‖𝐴‖2) (7.4)

for a numeric constant 𝐶 > 0, where𝒘 is the unit null vector of 𝐽(1)ℑ𝐴.
We next handle the first factor on the right-hand side of (7.4). We claim that 𝔼‖𝐽(1)(𝑋 +

ℜ𝐴)𝒘‖−𝑟 ≤ 𝐶 as long as𝑁 − 1 > 𝑟. To this end, we estimate the lower tail of ‖𝐽(1)(𝑋 + Re𝐴)𝒘‖
by its Laplace transform;

ℙ
[‖𝐽(1)(𝑋 +ℜ𝐴)𝒘‖2 ≤ 𝑡2

]
=ℙ

[
−
1

𝑡2

𝑁∑
𝑗=2

(
𝒆
⊺
𝑗
(
√
𝑁(𝑋 +ℜ𝐴))𝒘

)2 ≥ −𝑁

]

≤e𝑁
𝑁∏
𝑗=2

𝔼 exp

(
−
1

𝑡2

(
𝒆
⊺
𝑗
(
√
𝑁(𝑋 +ℜ𝐴))𝒘

)2)
.

(7.5)

Then for each 𝑗 ∈ ⟦2,𝑁⟧, since ‖𝒘‖ = 1, the random variable 𝒆⊺
𝑗
(
√
𝑁𝑋 +ℜ𝐴)𝒘 has a density

bounded by ℭ0𝔟 by Lemma 5.4. This gives

ℙ[‖𝐽(1)(𝑋 +ℜ𝐴)𝒘‖ ≤ 𝑡] ≤ (𝐶0𝑡)
𝑁−1, (7.6)

for a constant 𝐶0 depending only on 𝔟, which in turn implies

𝔼‖𝐽(1)(𝑋 +ℜ𝐴)𝒆1‖−𝑟 ≤𝐶𝑟0 + 𝔼‖𝐽(1)(𝑋 +ℜ𝐴)𝒆1‖−𝑟𝟙‖𝐽(1)(𝑋+ℜ𝐴)𝒆1‖≤𝐶−10
=𝐶𝑟0 + ∫

∞

𝐶𝑟
0

ℙ[‖𝐽(1)(𝑋 +ℜ𝐴)𝒆1‖ ≤ 𝑥−1∕𝑟]d𝑥 ≤ 𝐶𝑟0 + 𝐶𝑟0 ∫
∞

1

𝑥−(𝑁−1)∕𝑟d𝑥.

(7.7)
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CONDITION NUMBER OF RANDOMMATRICES 3835

Taking 𝑟 = 2 and recalling 𝑁 ≥ 4 > 𝑟 + 1 we have

‖‖‖‖𝐽(1)(𝑋 +ℜ𝐴)𝒆1‖−1‖‖‖2 ≤ 𝐶(𝔟). (7.8)

Substituting this into (7.4) and then (7.3) proves (2.27). Given (2.27), (2.28) follows directly from
𝔼‖𝑋‖4 ≤ 𝐶(𝔪), which is a classical result that can be proved following [52]. □

Proof of Lemma 7.2. We reuse the same notations as in the proof of Lemma 6.2 for the real case.
Namely, for a suitable unitary matrix𝑈 wemay write 𝒗 = 𝑈∗𝑃∗1 with 𝑃1 defined in (6.5), so that(

Re[𝒗∗𝒃]

Im[𝒗∗𝒃]

)
=  [𝑃1𝑈𝒃] = 𝑄𝒃, (7.9)

with the same𝑄 as in Lemma 6.3 for 𝑘 = 1. Againwewrite the same singular value decomposition
of 𝑄 as in (6.15), but here we replace the matrices in (6.16) by the following, that use both𝑚1 and
𝑚2:

𝑅′ ∶=
∑
𝑖=1,2

𝒚𝑖𝒙
⊺
𝑖
, 𝑃′ ∶=

∑
𝑖=1,2

𝒚𝑖𝒚
⊺
𝑖
, 𝑉′ ∶=

∑
𝑖=1,2

𝒆𝑖𝒚
⊺
𝑖
, 𝐷′ ∶= diag(𝑚1,𝑚2). (7.10)

Now we may follow similar lines as in the proof of Lemma 6.2: We define 𝒂′ by the exact same
formula as in (6.19), butwithmatrices in (6.16) replaced by those in (7.10) so that𝒂′ ∈ span(𝒚1, 𝒚2).
Then, denoting the distribution of 𝑉′(𝑃′𝒃 + 𝒂′) by 𝜈′1, we have

𝔼(𝑐0 + |𝒗∗(𝒃 + 𝒂)|2)−1 =𝔼(𝑐0 + ‖𝑃1𝑈(𝒃 + 𝒂)‖2)−1 ≤ 𝔼(𝑐0 + ‖𝐷′𝑉′(𝑃′𝒃 + 𝒂′)‖2)−1
=∫

ℝ2

(𝑐0 + ‖𝐷′𝒙‖2)−1d𝜈′1(𝒙) ≤ 1 + 𝐶
‖𝜈′1‖∞
det𝐷′

| log 𝑐0|. (7.11)

By the exact same argument as in the proof of Lemma 6.2 we have ‖𝜈′1‖∞ ≤ 𝐶(𝔟), thus it only
remains to estimate (det 𝐷′)−1 = (𝑚1𝑚2)

−1.
Applying Lemma 6.3 we immediately have 𝑚1 ≥ 1∕

√
2, hence it suffices to estimate 𝑚2 from

below. Writing out the definition of 𝑄 in this case, we have

𝑄 =

(
Re[𝒗]⊺

− Im[𝒗]⊺

)
. (7.12)

Then we immediately find

𝑚2 = min
𝒔∈ℝ2,‖𝒔‖=1 ‖𝑄⊺𝒔‖ = min

𝜃∈[0,2𝜋]

‖‖‖‖‖(Re[𝒗] − Im[𝒗]
)(cos 𝜃

sin 𝜃

)‖‖‖‖‖ = min
𝜃∈[0,2𝜋]

‖Re[ei𝜃𝒗]‖. (7.13)

We thus obtain

det 𝐷 = 𝑚1𝑚2 ≥
√
2 min
𝜃∈[0,2𝜋]

‖Re[ei𝜃𝒗]‖, (7.14)

and plugging this into (7.11) concludes the proof of Lemma 7.2. □
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3836 ERDŐS

Proof of Lemma 7.1. Throughout the proof, we abbreviate 𝐽 ∶= 𝐽(1) and 𝜆 ∶= 𝜆1(𝐵) for simplicity.
Since 𝒗 is a null vector of 𝐽(𝑌 + i𝐵), we get from taking the real part of ei𝜃𝐽(𝑌 + i𝐵)𝒗 = 0 that

0 = 𝐽𝑋 Re[ei𝜃𝒗] − 𝐽𝐵 Im[ei𝜃𝒗] = 𝐽𝑋 Re[ei𝜃𝒗] − 𝐽𝐵𝑃𝒘⟂ Im[ei𝜃𝒗] (7.15)

for any 𝜃 ∈ ℝ, where 𝑃𝒘⟂ ∈ ℝ𝑁×𝑁 is the projection onto the orthogonal complement of𝒘. Then,
writing the smallest non-zero singular value of 𝐽𝐵 by 𝜆1(𝐽𝐵), (7.15) implies

𝜆2(‖ Im[ei𝜃𝒗]‖2 − | Im[ei𝜃𝒘⊺𝒗]|2) =𝜆2‖𝑃𝒘⟂ Im[ei𝜃𝒗]‖2 ≤ 𝜆1(𝐽𝐵)‖𝑃𝒘⟂ Im[ei𝜃𝒗]‖2
≤‖𝐽𝐵𝑃𝒘⟂ Im[ei𝜃𝒗]‖2 ≤ ‖𝐽𝑌‖2‖Re[ei𝜃𝒗]‖2, (7.16)

where we used 𝜆 ≤ 𝜆1(𝐽𝐵) from Cauchy interlacing theorem in the first inequality. This in turn
gives

𝜆2(1 − |𝒘∗𝒗|2) ≤ (‖𝐽𝑌‖2 + 𝜆2)‖Re[ei𝜃𝒗]‖2 ≤ (‖𝐽𝑌‖ + ‖𝐵‖)2‖Re[ei𝜃𝒗]‖2. (7.17)

Comparing (7.1) with (7.17) and noticing the first factor on the right-hand side of (7.17), since 𝜃
was arbitrary, in order to prove (7.1) it only remains to show

1 − |𝒘∗𝒗|2 ≥ 1

5

‖𝐽𝑌𝒘‖2
(‖𝐽𝑌‖ + ‖𝐵‖)2 . (7.18)

Next, we prove (7.18). First of all, since 𝒗 is a null vector of 𝐽(𝑌 + i𝐵), we have the following
inequality of positive semi-definite matrices for all 𝜂 > 0;

𝒗𝒗∗ ≤ 𝜂2

𝜂2 + (𝑌 + i𝐵)∗𝐽∗𝐽(𝑌 + i𝐵)
. (7.19)

We then take 𝑈 ∈ ℝ𝑁×𝑁 to be a real orthogonal matrix with 𝑈𝒆1 = 𝒘, so that for all 𝜂 > 0

|𝒘∗𝒗|2 = |𝒆∗1𝑈∗𝒗|2 ≤ 𝒆∗1
𝜂2

𝜂2 + 𝑈∗(𝑌 + i𝐵)∗𝐽∗𝐽(𝑌 + i𝐵)𝑈
𝒆1 = 𝜂 Im

[
𝐺(1)(i𝜂)

]
𝑁+1,𝑁+1

(7.20)

where in the last equality we used (5.28) and defined

𝐺(1)(i𝜂) ∶=
(
�̃�(1) − i𝜂

)−1
, �̃�(1) ∶=

(
0 𝐽(𝑌 + i𝐵)𝑈

𝑈∗(𝑌 + i𝐵)∗𝐽∗ 0

)
∈ ℂ⟦2,2𝑁⟧×⟦2,2𝑁⟧.

(7.21)
On the other hand, we use Schur complement formula to get

−
1

[𝐺(1)(i𝜂)]𝑁+1,𝑁+1
= i𝜂 +

∑
𝑖,𝑗∈⟦2,𝑁⟧∪⟦𝑁+2,2𝑁⟧ �̃�

(1)
𝑁+1,𝑖

[
(�̃�(1,1) − i𝜂)−1

]
𝑖𝑗
�̃�
(1)
𝑗,𝑁+1

, (7.22)

where �̃�(1,1) is the matrix obtain from �̃�(1) by deleting the (𝑁 + 1)-th rows and columns.
Equivalently, �̃�(1,1) is the Hermitization of 𝐽(𝑌 + i𝐵)𝑈𝐽∗ ∈ ℂ⟦2,𝑁⟧2 , that is,

�̃�(1,1) ∶=

(
0 𝐽(𝑌 + i𝐵)𝑈𝐽∗

𝐽𝑈∗(𝑌 + i𝐵)∗𝐽∗ 0

)
∈ ℂ(⟦2,𝑁⟧∪⟦𝑁+2,2𝑁⟧)2 . (7.23)
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Thus, by the fact that (𝐺(1)(i𝜂))𝑁+1,𝑁+1 ∈ iℝ, the definition of �̃�(1), and another application of
Schur complement formula, we have

1

𝜂 Im
[
𝐺(1)(i𝜂)

]
𝑁+1,𝑁+1

= 1 +
1

𝜂
𝒆∗1𝑈

∗(𝑌 + i𝐵)∗𝐽∗
(

𝜂

𝐽(𝑌+i𝐵)𝑈𝐽∗𝐽𝑈∗(𝑌+i𝐵)∗𝐽∗+𝜂2

)
𝐽(𝑌 + i𝐵)𝑈𝒆1 ≥ 1 +

‖𝐽(𝑌+i𝐵)𝒘‖2‖𝐽(𝑌+i𝐵)𝑈𝐽∗‖2+𝜂2 ≥ 1 +
‖𝐽𝑌𝒘‖2‖𝐽(𝑌+i𝐵)‖2+𝜂2 ,

(7.24)

where in the second line we used 𝑈𝒆1 = 𝒘, 𝐽𝐵𝒘 = 0, and the positive semi-definiteness of

1

𝑍𝑍∗ + 1
−

1‖𝑍‖2 + 1
≥ 0 (7.25)

which is true for any matrix 𝑍. We then combine (7.20) and (7.24) to get

1 − |𝒆∗1𝒗|2 ≥ 1 − 𝜂 Im[𝐺(1)(i𝜂)]𝑁+1,𝑁+1 ≥ 1 −

(
1 +

‖𝐽𝑌𝒘‖2‖𝐽(𝑌 + i𝐵)‖2 + 𝜂2

)−1

. (7.26)

Finally, since 𝜂 can be arbitrary, we take the limit 𝜂 ↘ 0 in (7.26) to obtain

1 − |𝒆∗1𝒗|2 ≥ ‖𝐽𝑌𝒘‖2‖𝐽𝑌𝒘‖2 + ‖𝐽(𝑌 + i𝐵)‖2 ≥ 1

5

‖𝐽𝑌𝒘‖2
(‖𝐽𝑌‖ + ‖𝐵‖)2 . (7.27)

This completes the proof of Lemma 7.1. □

Remark 7.3. As pointed out in Remark 2.14, the suboptimality in (2.28) is due to that of Lemma 7.1.
In particular the inequality (7.16) is far from being optimal: For Gaussian 𝑋 and 𝐴 = −𝑧, so that
𝑌 = 𝑋 − Re 𝑧 and 𝐵 = − Im𝑧, numerical experiments show that Re[𝒗] and Im[𝒗] have almost
equal size when | Im 𝑧| ≳ 𝑁−1∕2. In this case, we believe that the typical size of the right-hand
side of (7.1) is

(
1 ∧ 𝑁| Im 𝑧|2) up to a positive random variable of size 𝑂(1). Nonetheless, we do

not know whether the first negative moment of this random variable is finite which is crucial for
our proof; see (7.4)
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APPENDIX A: GENERALIZED DOMAIN FOR THEOREM 2.7
The goal of this section is to prove that we may replace the square in Theorem 2.7 by a general
Borel set0, instead of a square, under the condition that

|0 +
[
−𝑁−𝐾,𝑁−𝐾

]2| ≤ 𝐶|0| (A.1)

for some constants 𝐶,𝐾 > 0, where we recall that || is the Lebesgue measure of any planar
domain ||.
For simplicity, we write 𝑥 ∶= 𝑁−𝐾 and  ∶= [−𝑥, 𝑥]2. First, note that it suffices to prove that

Theorem 2.7 is true with the choice  =  +  for any Borel set  ⊂ ℂ. Suppose this has been
done, then for a given0 satisfying (A.1), we define Ξ0

∶= Ξ0+ and write

𝔼𝟙Ξ0
∑

𝑖∶𝜎𝑖∈0

𝑖𝑖 ≤ 𝔼𝟙Ξ0+
∑

𝑖∶𝜎𝑖∈0+
𝑖𝑖 ≲ 𝑁1+𝜉(𝑁|0 + |) ≲ 𝑁1+𝜉(𝑁|0|).

This proves Theorem 2.7 for = 0.
In order to prove the result for  =  +  , we prove that this Minkowski sum can be covered

by non-intersecting copies of  , so that the total area is comparable to | + |.
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LemmaA.1. For any Borel measurable ⊂ ℂ, the discrete set ∶= (2𝑥ℤ)2 ∩ ( + 2) satisfies
 + 𝑆 ⊂  +  and | + | ≤ 3| + |. (A.2)

Proof. Define |𝑧|∞ = |Re 𝑧| ∨ | Im 𝑧| for 𝑧 ∈ ℂ. To prove the first assertion, take a point 𝑧 ∈
 +  . Then we have a point𝑤 ∈ (2𝑥ℤ)2 and 𝑧0 ∈  such that |𝑧 − 𝑤|∞ ≤ 𝑥 and |𝑧0 − 𝑧|∞ ≤ 𝑥.
Thus we immediately have |𝑤 − 𝑧0|∞ ≤ 2𝑥 so that 𝑤 ∈ (2𝑥ℤ)2 ∩ (𝑧0 + 2) ⊂ . Thus 𝑧 ∈ 𝑤 +

 ⊂  +  .
The second assertion follows from  ⊂  + 2 since

| + | ≤ | + 2 + | = | + 3| ≤ 3| + |.
This finishes the proof. □

Next, we prove that Theorem 2.7 is true for  =  +  with any Borel set . Let 0 ∶=  ∩

[−2, 2]2 where is the discrete set given by Lemma A.1. Apply Theorem 2.7 for each square 𝑧 + 
with 𝑧 ∈ 0, so that ℙ[Ξ𝑐𝑧+ ] ≤ 𝑁−2𝐾−𝐷−1 and (2.14) holds true with the choice = 𝑧 +  .
Define Ξ+ ∶=

⋂
𝑧∈0 Ξ𝑧+ ∩ Ξ0 where Ξ0 is the event [‖𝑋‖ ≤ 3]. Then we have ℙ[Ξ𝑐+ ] ≤

𝑁−𝐷 from |0| = 𝑂(𝑁2𝐾) and ℙ[Ξ𝑐0] ≤ 𝑁−𝐷−1. Note that on the event Ξ0 there is no eigenvalue
in the rightmost side, hence all, of

( + ) ⧵ (0 + ) ⊂ ( ⧵ 0) +  = ( ∩ ([−3, 3]2)𝑐) +  ,
where we used the first inequality of (A.2). Then it follows that

𝔼𝟙Ξ+
∑

𝑖∶𝜎𝑖∈+
𝑖𝑖 ≤ ∑

𝑧∈0
𝔼𝟙Ξ𝑧+

∑
𝑖∶𝜎𝑖∈(𝑧+)

𝑖𝑖 ≲ 𝑁1+𝜉

(𝑁
∑
𝑧∈0

|𝑧 + |) = 𝑁1+𝜉(𝑁|0 + |) ≤ 3𝑁1+𝜉(𝑁||),
where in the last step we used the second inequality of (A.1). This proves that we may take  =

 +  , and hence0 satisfying (A.1), in Theorem 2.7.
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