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Optical Shubnikov–de Haas oscillations in two-dimensional electron systems
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We report on dynamic Shubnikov–de Haas (SdH) oscillations that are measured in the optical response,
subterahertz transmittance of two-dimensional systems, and reveal two distinct types of oscillation nodes:
“universal” nodes at integer ratios of radiation and cyclotron frequencies and “tunable” nodes at positions
sensitive to all parameters of the structure. The nodes in both real and imaginary parts of the measured
complex transmittance are analyzed using a dynamic version of the static Lifshitz-Kosevich formula. These
results demonstrate that the node structure of the dynamic SdH oscillations provides an all-optical access to
quantization- and interaction-induced renormalization effects, in addition to parameters one can obtain from the
static SdH oscillations.
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Shubnikov–de Haas (SdH) oscillations are among the
most well-known basic phenomena reflecting the quantum-
mechanical nature of electrons, in particular in two-
dimensional electron systems (2DES), where they are a
precursor of the quantum Hall effect [1]. Although the SdH
oscillations are thoroughly studied in the static transport
response, their observation in optics is limited to several
fragmentary measurements [2–5]. Because of experimental
difficulties, to the best of our knowledge, there is no sys-
tematic and consistent analysis of such optical Shubnikov–de
Haas oscillations in 2DES so far. Whereas, the optical re-
sponse represents a powerful and noninvasive spectroscopic
tool to test the disorder and electron-electron correlations in
all sorts of two-dimensional materials.

Static and dynamic transport properties are both governed
by the frequency-dependent complex conductivity σ (ω). Even
in the case of complex optical transmission of the film on a
substrate, the relation between the measured signal and the
conductivity can be written in a simple form, see Eq. (1)
below. One may thus expect that the quantum corrections
to the conductivity would lead to experimental dependences,
which are similar in statics and dynamics. However, already
after first treatments of the optical SdH oscillations [2,6] it
has been noticed that they have a node near the cyclotron
resonance (CR) and reverse their phase around it. Later stud-
ies [3,7,8] have confirmed that the quantum correction to
the dynamic conductivity indeed should have an additional
modulation governed by the ratio of radiation and cyclotron
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frequencies. However, direct evidence for such modulation
remained elusive.

Here we report on the observation of the optical SdH os-
cillations in the transmittance of 2DES. Two types of nodes
can be unraveled there, “universal” and “tunable” nodes. We
analyze the node structure of oscillations and find that it can
be well reproduced using the dynamic version of the Lifshitz-
Kosevich formula obtained within the self-consistent Born
approximation following Refs. [6–8].

The standard expression for the transmittance of the cir-
cularly polarized light through a dielectric slab containing an
isotropic 2DES can be written as [2,9]

|t±|2 = 1

|s1(1 + σ±Z0) + s2|2 . (1)

Here σ± = σxx ± iσyx is the dynamic conductivity of 2DES.
It is given by the standard Drude expression, σ D

± = σ0/[1 −
iμ(BCR ∓ B)], in the classical region of perpendicular mag-
netic field B where the Landau quantization is negligible.
Plus and minus signs correspond to the right- and left-
handed circular polarization, respectively, σ0 = enμ is the
dc conductivity at B = 0, BCR = mCRω/e is the CR mag-
netic field defining the CR effective mass mCR of the charge
carriers, μ is the mobility, n is the 2DES density, and
Z0 ≈ 377 � is the impedance of vacuum. Two complex pa-
rameters s1 = [cos(kd ) − iε−1/2 sin(kd )]/2, s2 = [cos(kd ) −
i
√

ε sin(kd )]/2 describe the Fabry-Pérot interference in the
substrate and are controlled by the product of the sample
thickness d and the wave number k = √

ε ω/c, where ε is the
dielectric constant of the substrate.

Beyond the Drude model, Landau quantization results in
the SdH oscillations of the dc resistance, described by the
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FIG. 1. (a) Scheme of the transmission measurements (the irradiated sample area is highlighted). (b) Magnetic field dependence of the
transmittance, |t−|2, measured at ω/2π = 213 GHz (blue line). (c) Transmittance oscillations in 1/B scale, the smooth part 〈|t−|2〉 of the
transmittance is subtracted. Theory curves (red) in (b) and (c) are calculated using Eqs. (1) and (3). (d) SdH oscillations observed in the static
longitudinal resistance. The node in the dynamic SdH in (c) separates regions with the same and inverted phase with respect to the transport
SdH oscillations shown in (d).

static Lifshitz-Kosevich formula [1,10,11],

R(B) = R0 − 4R0δ
XT

sinh XT
cos

(
2π2h̄n

eB

)
, (2)

where R0 = R(B = 0). These 1/B oscillations are the result
of modulation of the density of states, and their period is con-
trolled by the carrier density n. At zero temperature, T = 0,
the decay of SdH oscillations at low B is described by the
Dingle factor δ = exp(−π/ωcτq), where the quantum relax-
ation time τq characterizes the disorder broadening of Landau
levels separated by h̄ωc = h̄e|B|/m. The factor containing
XT = 2π2kBT/h̄ωc accounts for the additional T smearing.
In the regime of weak oscillations, where Eq. (2) is valid,
transport SdH oscillations provide a powerful and reliable
tool to determine such properties of 2DES as the density n,
single-particle lifetime τq, and effective mass m of charge car-
riers (entering XT ). In what follows, we present transmission
experiments and test the less established, dynamic version of
the Lifshitz-Kosevich formula, Eq. (3), in particular, its nodal
structure governed by the ratio ω/ωc.

Methods. 2DES with parabolic dispersion was studied in a
12 nm GaAs quantum well with AlAs/GaAs superlattice bar-
riers [12–15]. The van der Pauw sample size was 10 × 10 mm,
and ohmic contacts were placed at the corners. After exposure
to the room light, the electron density and mobility were n =
1.8 × 1012 cm−2 (only one size-quantized level is occupied)
and μ = 2.8 × 105 cm2/Vs, respectively.

2DES with linear dispersion was studied in 6.5 nm
HgTe quantum well [16]. The van der Pauw sample
size was 5 × 5 mm. A semitransparent Ti/Au gate has
been deposited on the 400 nm SiO2/Si3N4 insulator. The

electron density and mobility at Vg = 9 V were equal to
n = 6.6 × 1011 cm−2 and μ = 5.1 × 104 cm2/Vs. The Drude
optical response of this device was previously studied
in Ref. [17].

The schemes of our measurements are illustrated in
Fig. 1(a) (power transmission, circular polarization) and in
Fig. 4(a) (phase-sensitive Mach-Zehnder interferometry, com-
plex transmission amplitude, linear polarization). The samples
were irradiated from the substrate side through an 8 mm
(GaAs device) or 4 mm (HgTe device) aperture. Backward-
wave oscillators were used as sources of the normally
incident continuous monochromatic radiation. The transmit-
tance through the sample was measured using a He-cooled
bolometer. The device resistance R (GaAs device) and capaci-
tance C (HgTe device) were measured in situ using a standard
lock-in technique. All presented results were obtained at tem-
perature T = 1.9 K.
Results.
Dynamic SdH oscillations in GaAs. Figure 1(b) shows the
magnetic field dependence of the transmittance |t−|2 mea-
sured at ω/2π = 213 GHz. Here we studied a GaAs quantum
well of high density, n = 1.8 × 1012 cm−2, and used the
left-handed circular polarization, so that only one CR at
B = −BCR ≈ −0.59 T corresponding to the CR mass mCR ≈
0.077m0 is seen, with m0 being the free electron mass. The
value of mCR is higher than the conduction band effective
mass in bulk GaAs, 0.067 m0. This deviation can be attributed
to the nonparabolicity of the band dispersion [18,19] and to
the wave-function penetration into the AlGaAs alloy outside
the quantum well; it is typical for the high-density 2DES in
narrow quantum wells. Apart from the deep CR minimum,
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the transmittance oscillations are formed at high positive and
negative magnetic fields. The oscillations are better seen in
Fig. 1(c), where the smooth part of |t−(B)|2 is subtracted,
and the data are replotted against 1/|B|. Figure 1(d) shows
transport SdH oscillations, measured in situ. It is seen that the
transmittance and transport oscillations have the same period,
which confirms their direct correspondence.

As demonstrated in Figs. 1(c) and 1(d), optical and trans-
port SdH oscillations reveal substantial differences as well.
The dynamic oscillations have nodes. Here, in Fig. 1(c), there
is one node at B ≈ −1.5 T. Across the node, that does not
appear in the transport response, the phase of the optical SdH
oscillations is flipped, and becomes opposite to that of SdH
in R(B) at |B| above the node. Note that the shape of the
SdH oscillations in the static resistance excludes spin splitting
[20,21] as the origin of the observed nodes in optical SdH
oscillations.

Dynamic SdH oscillations in Dirac system. In applying the
Lifshitz-Kosevich formula, a parabolic dispersion is normally
assumed. In order to prove, whether the form of dispersion re-
lations is relevant for the optical SdH oscillations, experiments
in a HgTe quantum well of critical thickness d = 6.5 nm have
been carried out. This structure hosts Dirac fermions with a
linear dispersion and the square root mass-density relation
[16,17,22,23]. In Fig. 2(a) the B dependences of the trans-
mittance measured at 950 GHz and different gate voltages
Vg are shown. An increase of the gate voltage results in
the increase of the Fermi level position, density, mobility,
and the cyclotron mass of the system. This makes the CR
minima deeper and wider, and shifts them to higher values
of |B|. The smooth part of these dependences can be well
fitted using Eq. (1) and the Drude conductivity. The square
root connection between the cyclotron mass and the elec-
tron density, Fig. 2(b), confirms the linearity of the spectrum
[17,24,25]. At high densities the optical SdH oscillations are
also seen.

We compare such oscillations with simultaneously mea-
sured static capacitance oscillations in Figs. 2(c) and 2(d).
Here, as in GaAs, the period of the optical and static SdH
oscillations is the same, and there is a phase flip around the
node in the transmittance oscillations. From positions of the
nodes, the CR and effective masses differ by about 4%. This
proves the need to include the interaction effects for the Dirac
fermions in HgTe quantum wells [26].

Discussion. Our analysis below demonstrates that the ob-
served nodal structure of the optical SdH oscillations can
be accurately reproduced using the dynamic version of the
Lifshitz-Kosevich formula, Eq. (3). This formula for the com-
plex dynamic conductivity σ± = σxx ± iσyx, entering Eq. (1),
describes a combined effect of impurity scattering and Landau
quantization within the self-consistent Born approximation
[6]. Previous theoretical treatments of this problem aimed
primarily at calculation of the magnetoabsorption, and con-
sidered the real dissipative part Re(σxx) only [3,6,7]. It has
been shown that the dynamic SdH in Re(σxx) are modulated
as sin(2πω/ωc), with well-defined nodes at integer and half-
integer ω/ωc [3,7]. As we will see, the nodal structure of the
full conductivity σ± is more complex.

We analyze the observed optical SdH oscillations us-
ing the following dynamic version of the Lifshitz-Kosevich

FIG. 2. (a) Magnetic field dependence of the transmittance mea-
sured at 950 GHz and with different gate voltages corresponding
to different Fermi level positions. (b) Gate voltage dependence of
the cyclotron effective mass which corresponds to the linear elec-
tron spectrum in the HgTe quantum well with critical thickness.
(c) Transmittance oscillations measured at 1019 GHz and at Vg = 9 V
together with SdH oscillations of capacitance (d), the smooth part of
the transmittance 〈|t |2〉 was subtracted. The theory curve (red line)
is calculated using Eqs. (1) and (3) of the main text. The phase of
dynamic SdH oscillations is flipped across the node.

formula (2):

σ± = σ0

1 − iα±
− 4σ0δ

XT

sinh XT
cos

(
2π2h̄n

eB

)

× f (α±)
ωc

πω
sin

(
πω

ωc

)
exp

(
iπω

ωc

)
. (3)

Here f (x) = (1 + i/2x)/(i + x)2 and α± = μ(BCR ± B).
Equation (3) is a generalization of the expression for Re(σxx)
presented in Ref. [7], and can also be extracted from the
results of Ref. [8] that considered 2DES with two pop-
ulated subbands. Similar to Eq. (2), here it is assumed
that the disorder-broadened Landau levels strongly over-
lap, and only the leading quantum correction, linear in δ =
exp(−π/ωcτq) � 1, is retained. Correspondingly, Eq. (3) is
valid away from the CR, μ|BCR ± B| � δ, where such a series
expansion is formally justified. However, this does not restrict
our analysis below, since we can still rely on the flip of phase
of optical SdH oscillations across the node at ω = ωc in the
transmittance data.
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In high-mobility 2DES, the parameter μBCR is usually
large. Thus, the complex factor f (α±) in Eq. (3) reduces to
a real factor f 	 α−2

± ∝ μ−2 at all nodes apart from that at
ω = ωc. In this limit, the absorptance given by Re(σ±) ∝
sin(2πω/ωc) is expected to have nodes at both integer and
half-integer ω/ωc [3,7]. As detailed in Ref. [3], the ω/ωc mod-
ulation in this simplest case can be derived using the Fermi
golden rule for the optical transitions, and stems from an
oscillating product ν(ε)ν(ε + h̄ω) of initial and final density
of states for transitions between disorder-broadened Landau
levels.

In contrast to the absorptance, the optical SdH oscillations
in transmittance are determined by quantum correction to full
complex conductivity which does not vanish at half-integer
ω/ωc. The reason is that, unlike the real part, quantum cor-
rections to the full σ± cannot be expressed solely through
the oscillating density of states: They also explicitly includes
oscillatory energy renormalization terms originating from the
interplay of Landau quantization and disorder [7,8].

As a result, the SdH oscillations in transmittance possess
two kinds of nodes, illustrated in Fig. 3. First, these are nodes
at integer ω/ωc, where the oscillatory part of the conductivity
Eq. (3) vanishes. These nodes, which we call universal, appear
in all optical measurements: transmission, reflection, and ab-
sorption. By contrast, the half-integer absorption nodes do not
arise in the transmittance signal. At the same time, additional
nodes emerge due to the fact that both the Drude transmit-
tance amplitude tD = |tD|eiϕD and its quantum correction δt
are complex numbers. Thus, they can be perpendicular to each
other on the complex plane, see Fig. 3(a). Taking into account
that |δt | � |tD| while f (α±) is approximately real away from
B = BCR, from Eqs. (1) and (3) one obtains that additional
nodes appear when (see Sec. S4 of the Supplemental Material
[27])

tan

(
πω

ωc

)
=

√
ε + tan(ϕD) tan(kd )√
ε tan(ϕD) − tan(kd )

. (4)

It is immediately seen that the positions of these nodes can
be optically tuned by changing the Fabry-Pérot phase kd ,
therefore we call them tunable nodes. A graphical solution of
Eq. (4) is illustrated in Fig. 3(d).

Figure 1 demonstrates that the theory curves (red lines),
calculated using Eqs. (1) and (3), closely reproduce our
experimental observations, including the formation of the
nodes in the transmittance SdH oscillations. The position of
the nodes determines the value of the quasiparticle effective
mass m that enters Eq. (3) through ωc = e|B|/m. All other
parameters entering Eqs. (1) and (3), including τq, can be
obtained from the static resistance, see Fig. 1(d), and from
the shape of smooth classical transmittance on top of which
small quantum oscillations are formed. Small deviations
between theory and experiment can be partially attributed to
transition to the separated Landau levels regime, where higher
expansion terms in δ should also be included into the theory.
Such deviations are also seen in Fig. 1(d) at B � 1 T where
the amplitude of the static SdH oscillations starts to deviate
from the cosinelike Eq. (2).

From the positions of the nodes, for the GaAs sam-
ple in Fig. 1 we obtain m = 0.073 m0, about 5% lower

FIG. 3. Origin of universal and tunable nodes in the transmit-
tance. (a) Imaginary vs real parts of the transmission amplitude t .
The tunable nodes arise when t and its small correction δt are per-
pendicular to each other on the complex plane. (b) and (c): Magnetic
field dependences of sin(πω/ωc ) (universal nodes) and of calculated
transmittance SdH oscillations, see also Sec. S4 of the Supplemental
Material [27]. (d) Graphical solution of Eq. (4) determining the
tunable nodes in transmittance.

than the CR mass mCR ≈ 0.077m0, obtained from the posi-
tion of the CR minimum. In line with the previous studies
[18,19,28–30], we attribute this difference to the effective
mass renormalization due to electron-electron interactions.
Such optical experiments provide an access to quantization-
and interaction-induced renormalization effects in 2DES
[29,30].

Phase measurements. We further test the validity of the
dynamic Lifshitz-Kosevich formula, Eq. (3), for the phase
measurements. Our Mach-Zehnder interferometer setup pro-
vides an opportunity to simultaneously measure real and
imaginary parts of the complex transmittance amplitude
[31–34]. The measurements were performed in configuration
with two parallel wire grid polarizers before and after the
sample, “beam splitter” and “beam joiner” in Fig. 4(a). In
this way, we obtained both the absolute value |tp| and phase ϕ

of the parallel transmittance amplitude tp = |tp|eiϕ describing
the part of transmitted radiation field with the same linear
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FIG. 4. (a) Mach-Zehnder interferometer arrangement for the phase measurements. (b) and (c) Magnetic field dependences of the amplitude
of the parallel transmittance |tp| and its phase ϕ, respectively, measured at 360 GHz. (d) and (e) Oscillations of the parallel transmittance
amplitude and its phase in 1/B scale, the smooth parts in 〈|tp|2〉 and 〈ϕ〉 were subtracted. Black thick lines are experimental data, red thin lines
are fits based on Eqs. (1) and (3).

polarization as in the initial beam. In terms of circular trans-
mission amplitudes entering Eq. (1), tp = (t+ + t−)/2. The
interferometric measurements allow us to independently study
the real and imaginary parts of the transmittance and, thereby,
to test further the dynamic Lifshitz-Kosevich formula (3).

In Figs. 4(b) and 4(c) we show the magnetic field de-
pendences of the magnitude of the parallel transmittance
amplitude |tp| and its phase ϕ, respectively, measured at
360 GHz on the GaAs sample. Both signals reveal optical
SdH oscillations. Panels (d) and (e) show the same data in 1/B
scale, with the smooth Drude background subtracted. Thanks
to higher frequency, more nodes are resolved here. There is
one universal node at ω/ωc = 1 on both curves, other nodes
are tunable and have different magnetic field positions in the
transmittance amplitude and its phase. The theory curves,
shown in red, are calculated using Eqs. (1) and (3), and they
demonstrate that the positions of all nodes are well reproduced
using the same effective mass as in Fig. 1, m = 0.073 m0. It
should be mentioned that some deviations between the curves
can be due to standing waves in the optical setup, see Sec. S3
of the Supplemental Material [27] and Ref. [9] for more de-
tails. Further on, the high-field node position in Fig. 4(b) at
1/B ≈ 0.63 T−1 is poorly fitted. This can be due to the tran-
sition to a regime of separated Landau levels which requires
next-order expansion terms in Eq. (3). In theoretical fits, we
omitted the CR regions where the condition μ(BCR − B) � δ

no longer holds. At the same time, it is seen that the phase
shift of the calculated optical SdH oscillations agrees well
with the experiment on both sides of the CR, which con-
firms the node at ω = ωc. Overall, the comparison shows
that Eq. (3) for the optical SdH oscillations works well, and

reproduces the position of nodes and the phase jumps of the
oscillations.

Summary and outlook. The observed SdH oscillations in
transmittance are as fundamental as their static counterpart
that provides a powerful tool to characterize 2DES. They are
formed in the optical response of the system irrespective of
the type of the band dispersion, and their main frequency is
precisely determined by the 2DES density. In contrast to the
well known static SdH oscillations, the dynamic oscillations
in transmittance have an extra modulation that is controlled
by the ω/ωc ratio in a unique way—the quantum conductivity
correction has an imaginary part that is as essential as the
real part. There are universal nodes in the transmittance
oscillations at integer ω/ωc that should appear in the same
positions in absorption and transmission. There is also a
similar number of additional, tunable nodes that appear at
different positions in the amplitude and phase measurements
of the transmission and reflection, while in the absorption
they translate into the nodes at half-integer ω/ωc [3]. The
optically tunable nodes in transmittance can be explored
using both constant frequency and time-domain setups, and
are sensitive to all parameters of the structure allowing to
determine these parameters with high accuracy.
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