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We propose and implement a family of quantum-informed recursive optimization (QIRO) algorithms
for combinatorial optimization problems. Our approach leverages quantum resources to obtain informa-
tion that is used in problem-specific classical reduction steps that recursively simplify the problem. These
reduction steps address the limitations of the quantum component (e.g., locality) and ensure solution fea-
sibility in constrained optimization problems. Additionally, we use backtracking techniques to further
improve the performance of the algorithm without increasing the requirements on the quantum hard-
ware. We showcase the capabilities of our approach by informing QIRO with correlations from classical
simulations of shallow circuits of the quantum approximate optimization algorithm, solving instances
of maximum independent set and maximum satisfiability problems with hundreds of variables. We also
demonstrate how QIRO can be deployed on a neutral atom quantum processor to find large independent
sets of graphs. In summary, our scheme achieves results comparable to classical heuristics even with rela-
tively weak quantum resources. Furthermore, enhancing the quality of these quantum resources improves
the performance of the algorithms. Notably, the modular nature of QIRO offers various avenues for mod-
ifications, positioning our work as a template for a broader class of hybrid quantum-classical algorithms
for combinatorial optimization.
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I. INTRODUCTION

Quantum optimization has been identified as a promis-
ing area of research towards practical quantum advantage.
On noisy intermediate-scale quantum (NISQ) devices,
much effort has been dedicated to studying hybrid
quantum-classical algorithms such as the quantum approx-
imate optimization algorithm (QAOA) [1]. Importantly,
QAOA is a local algorithm. This means that at any con-
stant circuit depth, only qubits that are separated by less
than a certain distance in the interaction graph of the opti-
mization problem are able to communicate. Together with
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the solution space properties of certain optimization prob-
lems such as the Z2 symmetry, or the overlap gap property
[2], locality was shown to severely limit the performance
of QAOA [3–6].

Because introducing nonlocal updates in quantum algo-
rithms comes with additional hardware requirements,
applying nonlocal updates classically has been proposed
as an alternative in recursive QAOA (RQAOA) [3,7].
Here, values of variables are iteratively frozen by round-
ing the correlations between variables as measured in the
quantum state prepared by QAOA. Hence, as variables
are removed from the optimization problem, the distances
between nodes in the interaction graph are reduced iter-
atively. As such, the nonlocal effects introduced via the
new connections between previously unconnected nodes
counterbalance the locality inherent to QAOA.

Building upon RQAOA, here we propose a family of
hybrid quantum-classical algorithms, dubbed quantum-
informed recursive optimization (QIRO). In QIRO, infor-
mation generated by quantum resources is used to recur-
sively reduce the size of the optimization problem by
means of problem-specific classical optimization routines;
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FIG. 1. Schematic visualization of the core principles of the
quantum-informed recursive optimization (QIRO) algorithm pre-
sented in this work. Quantum resources (e.g., QAOA) are used
to obtain information, e.g., in the form of one-point and two-
point correlations. This information is then used to simplify the
problem through problem-specific classical update rules. Here
we exemplify the update rules with simple examples for the max-
imum independent set and satisfiability problems—details on the
update rules can be found in Sec. III B. The (simplified) problem
obtained by means of the classical update rules is then used to
restart the cycle. The algorithm terminates when the problem has
been fully simplified.

see Fig. 1 for a schematic illustration. This scheme
allows us to leverage decades of research in (classical)
combinatorial optimization [8], and tailor the classical sub-
routines to the particular optimization problem of interest,
thereby enhancing the algorithm’s performance.

Moreover, the inclusion of problem-specific update
rules comes with additional benefits. It allows us to
broaden the scope of our algorithm beyond gate-based
architectures to analog devices, as shown in our experi-
ments with the QuEra Aquila neutral atom analog quan-
tum processor. This approach is reminiscent of previous
approaches leveraging spin-freezing schemes on quantum
annealers and in various Monte Carlo methods [9]. Fur-
thermore, for problems with hard constraints, the update
rules can offer options to enforce feasibility by design,
even in the presence of noise.

Finally, we propose backtracking as a strategy to further
improve the performance of QIRO, by attempting to iden-
tify and correct nonideal decisions made at earlier stages
of the algorithm. Backtracking provides a way to enhance
algorithmic performance without necessitating an increase
in circuit depth, as is commonplace in quantum optimiza-
tion algorithms. Taken together, the robustness of QIRO,
its applicability to analog devices, and the possibility to
improve its efficacy without demanding better quantum
resources make QIRO a promising NISQ algorithm.

In this work we provide concrete implementations
for two paradigmatic NP-hard combinatorial optimiza-
tion problems, namely, the maximum independent set
and maximum satisfiability. However, our work should
be seen mainly as a proof-of-concept demonstration of a
general template for designing hybrid quantum-classical
algorithms for combinatorial optimization. We study the

performance of QIRO by means of large-scale simulations
of low-depth QAOA circuits with up to two hundred vari-
ables. Furthermore, we use QIRO to solve the maximum
independent set problem on the QuEra Aquila neutral atom
quantum device accessed via Amazon Braket. Finally,
we compare the performance of QIRO against commonly
used classical and quantum optimization techniques. This
allows us to assess the role of the quantum resources used
in QIRO, and showcase the value of classical subroutines.

The remainder of the paper is organized as follows.
In Sec. II we introduce the two problem classes studied
in this work, in Sec. III we provide details about QIRO,
and in Sec. IV we study the performance of QIRO on
the maximum independent set and maximum satisfiability
problems. We discuss the implications of our findings in
Sec. V and we conclude by suggesting potential extensions
to our framework in Sec. VI.

II. PROBLEM CLASSES

Because problem-specific update rules are at the core of
QIRO, we first introduce the specific optimization prob-
lems considered in this work. We formalize these prob-
lems, and provide mappings to quantum Hamiltonians Ĥc,
which can in turn be implemented on different quantum
devices [10,11].

A. Maximum independent set

The maximum independent set (MIS) problem is a
paradigmatic NP-hard combinatorial optimization prob-
lem. It is of commercial relevance in areas such as network
design or traffic optimization [12]. For a graph G = (V, E)
with vertex set V and an edge set E, the MIS problem
amounts to finding the largest subset S ⊆ V such that no
two vertices in S are adjacent [see Fig. 5(a) below for an
example]. For a binary vector x ∈ {0, 1}|V|, finding the MIS
is equivalent to finding the ground state of the (classical)
Hamiltonian

H(x) = −
∑

i∈V

xi + λ
∑

(i,j )∈E

xixj . (1)

Here, λ > 1 is a penalty term to enforce the independence
constraint [10]. However, one should be mindful of the
pitfalls of enforcing the independence constraint as a soft
penalty term, because low-energy states (other than the
ground states) of H(x)might not necessarily obey the inde-
pendence constraint. Performing the mapping zi = 2xi − 1
to Ising variables zi = ±1, and promoting the spin vari-
ables to quantum operators zi → Ẑi translates Eq. (1) to a
quantum Hamiltonian suitable for quantum devices [10].

Moreover, the MIS problem on a family of graphs called
unit disk graphs (UDGs) has been shown to have a natural
mapping to neutral atom quantum devices [13,14]. There,
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the Rydberg blockade mechanism—which prevents simul-
taneous excitations of nearby atoms—enforces the inde-
pendence constraint. Finding the MIS of a general UDG,
despite being a specialized family of graphs, remains an
NP-hard problem [13] and has commercial applications
(e.g., in network design [15]). For additional details, we
refer the reader to Appendix D.

B. Maximum satisfiability

The satisfiability (SAT) problem is arguably one of the
best-studied combinatorial optimization problems and was
the first problem proven to be NP-complete [16]. Given a
propositional logic formula φ of n Boolean variables xi ∈
{0, 1}, the SAT problem is a decision problem that asks
for the existence of an assignment of the variables xi that
satisfies φ. Each clause can then be written as

C̃j =
Kj∨

k=1

�jk ,

where literals �jk are either a variable xjk or its negation x̄jk
for jk ∈ {1, . . . , n}, and Kj is the length of the j th clause.
For a fixed Kj = K , the corresponding problem of whether
or not the Boolean formula with m clauses

φ =
m∧

j =1

C̃j

has a satisfying assignment is referred to as the K-SAT
problem.

Here, we focus on the optimization version of satisfia-
bility, referred to as maximum satisfiability (MAX SAT).
In MAX SAT, the goal is to find an assignment of the vari-
ables xi that minimizes the number of violated clauses. The
MAX-K-SAT problem deals with propositional logic for-
mulae with at most K literals per clause. An important
parameter of a (MAX-)K-SAT problem is the clause-to-
variable ratio α := m/n, which strongly influences the
algorithmic hardness of random problem instances [17].
Research indicates that there is a phase transition in com-
putational complexity [18]. While for the K-SAT problem
an easy-hard-easy transition is observed [19,20], MAX-K-
SAT exhibits a transition from easy underconstrained to
hard overconstrained problems at a certain αc [21]. In what
follows we limit ourselves to K = 2 (clauses contain either
one or two literals), as MAX-2-SAT is already NP-hard
[22], despite its decision version (2-SAT) being solvable in
linear time [23]. Here, the phase transition occurs at αc = 1
[24].

We use the fact that, for Boolean (binary) variables x̄i ≡
(1 − xi), solving the MAX-2-SAT problem for a given
formula φ is equivalent to finding a ground state of the

(classical) Hamiltonian

H(φ) =
m∑

j =1

Cj =
m∑

j =1

Kj∏

k=1

(1 − �jk ). (2)

It is important to keep in mind that the �jk are nothing but
the Boolean variables xjk (or their negations x̄jk ). Hence,
by using the transformation into Ising variables outlined in
the case of the MIS problem in Sec. II A, we can likewise
encode the MAX-2-SAT problem onto quantum devices.

III. ALGORITHM

We now provide details about QIRO. Essentially, in
QIRO quantum resources are utilized to inform update
rules that recursively simplify the problem at hand (see
Fig. 1). The idea is a generalization of previous work,
in particular RQAOA [3,7] (also described in Appendix
B). However, in contrast to RQAOA, the update steps
used in QIRO are problem specific. This comes with sev-
eral advantages and facilitates cross-pollination with ideas
from classical optimization [8].

At each iteration of the QIRO algorithm, for a given
problem Hamiltonian, we first prepare a low-energy quan-
tum state, generically in the form of a superposition of
low-energy candidate solutions to the optimization prob-
lem. Next, we use this quantum state to extract information
(e.g., correlations between variables), which is then passed
to a classical update step with the goal of simplifying
the problem. We design this update step to complement
the quantum part of the algorithm by performing opera-
tions better suited to classical hardware. This may include
nonlocal steps that address the identified limitations of
(local) quantum algorithms, or enforcing hard constraints.
As such, the classical update step (and the specific design
thereof) is crucial to the performance of QIRO, and is
typically problem specific. As such, it might need to be
modified by the end user, depending on their needs. How-
ever, templates for the update steps may be borrowed from
the literature on classical combinatorial optimization [25].
The procedure of quantum state preparation and the sub-
sequent classical update step is repeated until the size of
the problem is reduced sufficiently, such that, for exam-
ple, we are able to solve it exactly by a brute-force search
or other means if the reduction does not yield problem
sizes amenable to exact solvers. Finally, we propose the
use of backtracking to identify and rectify problem reduc-
tions that led to an unfavorable outcome, thus providing
an additional strategy to obtain enhanced solutions without
requiring deeper quantum circuits.

In what follows, we provide details on the individual
components of QIRO. We begin by describing the quantum
state preparation methods utilized in this work, followed
by the proposed update rules for the MIS and MAX-2-SAT
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problems. Next, we introduce the general strategy of back-
tracking and describe the particular implementation used
in this work. Finally, we combine the building blocks to
present the complete QIRO algorithm.

A. Quantum state preparation

It is desirable that the quantum state that is prepared at
the beginning of each iteration has a low expectation value
with respect to the cost Hamiltonian Ĥc. Therefore, we
hope that the information guiding the classical reduction
steps is extracted from (a superposition of) configurations
corresponding to good candidate solutions to the opti-
mization problem. A plethora of protocols for preparing
low-energy states may be found in the literature; in this
manuscript we consider QAOA [1] and adiabatic state
preparation [26,27], as outlined next.

1. QAOA

Let us first introduce QAOA. For both the MAX-2-
SAT and MIS problems considered in this manuscript,
the cost Hamiltonian can be written in the general (Ising)
form Ĥc = ∑

i,j Jij ẐiẐj + ∑
i hiẐi, where we have omitted

any constant terms. Using the cost Hamiltonian Ĥc from
Sec. II, and defining the mixer Hamiltonian as Ĥmix =
−∑n

i=1 X̂i, the QAOA circuit is given by an alternating
application of the time evolution generated by these two
operators. Specifically, taking the initial state as |ψ0〉 :=
|+〉⊗n, the state produced with QAOA at depth p is

|ψ(β, γ )〉 = e−iβp Ĥmixe−iγp Ĥc · · · e−iβ1Ĥmixe−iγ1Ĥc |ψ0〉 .

The 2p parameters (β, γ ) are then determined by a classi-
cal optimization routine such that 〈ψ(β, γ )| Ĥc |ψ(β, γ )〉
is minimized.

In this work, we predominantly focus on the lowest
QAOA depth (p = 1), with the goal to establish a lower
bound for the performance of QIRO. It is natural to expect
that the improved quality of the quantum information
extracted from higher-depth (p > 1) QAOA circuits (in
the absence of noise) would enhance the performance of
the algorithm. Our p > 1 experiments on small problem
instances shown in Appendix E corroborate this intuition.

For the state produced by QAOA at p = 1, the expec-
tation values of the single- and two-body terms compris-
ing Ĥc can be calculated classically in polynomial time,
enabling us to perform numerical simulations of systems
with several hundred variables [3,7,28]. We note that there
is no method known (to us) how this could be done effi-
ciently for p > 1. For details about our implementation,
we refer the reader to Appendix A.

2. Adiabatic state preparation

We next turn our attention to adiabatic state prepa-
ration. We present a general description of the protocol

and defer the details pertaining to our implementation of
the MIS problem on neutral atom quantum processors to
Appendix D.

At the beginning of an adiabatic protocol, we start in
an easy-to-prepare ground state of a simple Hamiltonian,
e.g., Ĥmix. We then slowly transform the Hamiltonian from
Ĥmix to Ĥc. If the rate of change is slow enough com-
pared to the smallest instantaneous spectral gap (between
the instantaneous ground and first excited states), the adia-
batic theorem guarantees that at the end of the protocol,
the ground state of Ĥc is obtained [26,27]. Inspired by
adiabatic protocols, the quantum annealing computational
paradigm has been the subject of widespread interest in
recent decades [29]. In quantum annealing one forgoes the
strict requirement of adiabaticity and, in general, uses ana-
log protocols to prepare near-ground states. These can, in
turn, be used to inform the classical update steps.

B. Update rules

We now discuss example update rules for the considered
optimization problems. We begin by preparing a low-
energy quantum state |ψ〉 from which information is dis-
tilled. In QIRO this information comes in the form of one-
point 〈ψ | Ẑi |ψ〉 and two-point correlations 〈ψ | ẐiẐj |ψ〉,
which we store in matrix M (see Algorithm 1 below).
Potential generalizations, such as using expectation values
of other observables, are left for future research.

If the lowest depth (p = 1) of QAOA is used to gen-
erate these correlations, the only nonzero values of M in
an ideal numerical simulation as described in Appendix
A (i.e., free of shot and environmental noise) correspond
to pairs of variables that are connected in the original
interaction graph, i.e., to pairs of variables with nonzero
coupling coefficients Jij . Therefore, we design our update
rules to only consider correlations between such connected
variables. Inspired by RQAOA [3,7], we next use these
correlations to successively simplify the problem with each
update step. However, in contrast to RQAOA, the QIRO
update steps are problem specific in that they exploit the
structure of the given optimization problem. As such, at
any stage of the algorithm, the problem that remains to be
solved is a valid instance of the same class of optimization
problems. This will be crucial when deploying QIRO to
solve the MIS problem on neutral atom quantum hardware.

In the two specific cases detailed in the remainder of this
section, only the largest correlation in terms of its absolute
value is used to inform the update step, with ties broken
at random. Intuitively, the largest correlation corresponds
to a variable (pair) that appears in a certain configura-
tion with high probability in the low-energy state |ψ〉.
Thus, it is reasonable to use this information to inform
the update step. For example, if a large positive correla-
tion 〈ẐiẐj 〉 ≈ 1 is measured, it is likely that most of the
low-energy configurations have xi and xj take the same
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ALGORITHM 1. Reduce.

Input: Problem P , partial solution S.
Output Simplified prob. P ′, updated partial solution S′.

1: Prepare low-energy quantum state |ψ〉.
2: Store correlations in M ∈ R

n×n:
∀i ∈ [n] : Mii = 〈ψ| Ẑi |ψ〉,
∀(i, j) ∈ [n] × [n] s.t. Jij �= 0 : Mij = 〈ψ| ẐiẐj |ψ〉.

3: P ′, S′ ← Simplification(P, S, M)
� Problem-specific simplification is informed by the cor-
relations stored in M .

4: return P ′, S′

value. Generalizations of this deterministic scheme to ran-
domized (e.g., evolutionary) schemes will be studied in the
future.

As we lay out next, these update steps are carried out
in the original formulation of the respective optimization
problems, facilitating the adoption of techniques from the
extensive literature on classical combinatorial optimiza-
tion. We call this update step Reduce and describe it in
Algorithm 1.

The problem-specific updates employed for the opti-
mization problems considered in this work constitute the
Simplification function in Algorithm 1, and are
described next. However, we emphasize that the design
choices we make are by no means the only option, with
many modifications and extensions possible.

1. MIS simplification

At the beginning of the Simplification routine
for MIS, we find the entry of M with the largest abso-
lute value. Depending on the sign of the correlation with
the largest absolute value and on whether it lies on the
diagonal (corresponding to a one-point correlation) or not
(corresponding to a two-point correlation), we perform a
different simplification. The simplifications are designed
such that the correlation-informed reductions are consis-
tent with the independence constraint. The four cases are
visualized in Fig. 2 and described next.

(a) If Mii ≥ 0 was selected, we set the ith vertex to
be in the independent set (IS). We then remove all
vertices connected to the ith node from the graph,
as including them would violate the independence
constraint.

(b) If Mii < 0 was selected, we remove the ith vertex
from the graph.

(c) If Mij > 0 [for (i, j ) ∈ E] was selected, we remove
both nodes from the graph—this is because the only
positively correlated assignment of connected ver-
tices consistent with the independence constraint is
not to include either node in the IS.

(d) If Mij < 0 [for (i, j ) ∈ E] was selected, we remove
nodes that are connected to both node i and node

+1 –1

+1 –1

(a) (b)

(c) (d)

FIG. 2. MIS update rules described in the main text carried
out on an example graph. Panels (a) and (b) show reduction
rules for the case of a positive and negative one-point correlation,
respectively. Analogously, panels (c) and (d) show the respective
reduction rules for the case of a positive and negative two-point
correlation.

j simultaneously, i.e., we remove every node k for
which (k, i) ∈ E and (k, j ) ∈ E. Intuitively, we know
that if the variables are negatively correlated, one of
them will be assigned to be in the IS. Thus, we only
remove variables that are connected to both of them
simultaneously.

If no nodes were removed from the graph using the
described simplifications [only possible in case (d)], we
repeat the procedure using the next largest correlation in
terms of its absolute value. Finally, we identify all con-
nected components (i.e., connected subgraphs that are not
part of any other connected subgraph) of the graph. If the
connected component contains less than a certain number
of vertices nc (for concreteness, we use nc = 15 here), we
compute its maximum independent set by a brute-force
search, and remove it from the graph. This step is mostly
performed in an effort to save resources when the algorithm
is deployed on real quantum hardware.

Crucially, the rules delineated above explicitly ensure
that the independence constraint is obeyed. Hence,
the solutions obtained by repeated applications of
Simplification are definitely feasible. This holds
irrespective of the quality of the (quantum) information
used to perform the simplification, thus bestowing the
scheme with the resilience required in the NISQ era. How-
ever, although the update rules improve the performance of
the algorithm by ensuring solution feasibility, the quality
of the obtained solutions ultimately hinges on the quality
of the supplied correlations.

Interestingly, in contrast to the RQAOA update rules the
QIRO-MIS update rules proposed here are local according
to the definition of locality in Sec. I, as no new connec-
tions between variables are created. However, the RQAOA
update rules lead to intermediate Hamiltonians that gener-
ically do not take the form of an MIS Hamiltonian as in
Eq. (1). Conversely, at each stage of the QIRO algorithm
the reduced problem is a valid MIS problem (see also Fig.
2). Thus, if one can encode the original MIS problem onto
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an analog quantum device (e.g., a neutral atom quantum
processor), the same can be done with intermediate, sim-
plified problems. As such, one might be able to harness the
nonlocal effects generated by the quantum many-body time
evolution on a neutral atom quantum processor, circum-
venting the issues of local quantum algorithms. Previously,
such adiabatic protocols have been shown to generate solu-
tions surpassing those obtained by running QAOA, even at
depths higher than p = 1 used in this manuscript [14].

2. MAX-2-SAT simplification

In the MAX-2-SAT case the Simplification step
likewise begins by identifying the entry of M with the
largest absolute value. Depending on whether the largest
value corresponds to a one-point or a two-point correlation,
we apply a different reduction.

(a) If Mii was selected, we set the variable xi →
[sign(Mii)+ 1]/2, i.e., a positive (negative) one-
point correlation corresponds to assigning xi to
TRUE (FALSE).

(b) If Mij (for i < j ) was selected, we replace xi → xj
if sign(Mij ) = 1, and xi → x̄j if sign(Mij ) = −1.
Intuitively, this update step captures the relationship
between variables xi and xj as inferred from the cor-
relation. If there is a positive (negative) correlation,
we assign xi and xj the same (opposite) values.

We note that only the two-point correlation reduction
step described in (b) constitutes a nonlocal update because
it potentially introduces a new link between previously
unconnected variables. Because we only consider formulae
in conjunctive normal form (i.e., conjunctions of disjunc-
tions), setting a certain variable to the value required by
the clause is sufficient to satisfy the clause (see the exam-
ple update step in Fig. 1). Hence, we can remove the clause
from consideration, thus simplifying the problem. Specif-
ically, all clauses in which a given literal evaluates to
TRUE can be removed. Conversely, if the literal evaluates
to FALSE, only the literal itself can be removed from the
clause. If a certain clause becomes empty (i.e., if both liter-
als were removed from it), it corresponds to an unsatisfied
clause.

Next, we apply inference rules, which is a standard tech-
nique in the field of satisfiability solvers [30,31]. Inference
rules deduce information from the structure of the cur-
rent Boolean formula, simplifying it by assigning values
to certain variables and thus speeding up further computa-
tion. The rules guarantee that the optimal solutions of the
current and simplified problems are of equal quality. The
chosen inference rules (e.g., the pure literal rule [32]) are
conceptually simple rules that incur a small computational
overhead. Further details on the specific inference rules we
employ are provided in Appendix C. Finally, if the number
of remaining variables falls below nc (we use nc = 10 for

ALGORITHM 2. QIRO.

Input: Problem P .
Output Complete solution S.

1: Initialize empty solution S.
2: while size(P ) > 0 do
3: P, S ← Reduce (P, S) � See Algorithm 1.
4: end while
5: return �S Return the solution.

the MAX-2-SAT problem), the solution of this simplified
problem is found by a brute-force search of the remaining
solution space.

C. Quantum-informed recursive optimization
algorithm

We now possess all of the ingredients for the QIRO
algorithm. At each step of QIRO, we begin by prepar-
ing a quantum state (as described in Sec. III A). We
proceed by using the correlation information by follow-
ing the problem-specific prescriptions from Sec. III B.
The simple end-to-end QIRO procedure is summarized in
Algorithm 2.

D. Backtracking

We now turn our attention to backtracking. QIRO—as
specified in Algorithm 2—is a polynomial-time algorithm.
Therefore, under common complexity theoretical assump-
tions, there exist instances of NP-hard problems that QIRO
will not be able to solve to optimality. This means that
some of the reduction steps performed by QIRO to arrive
at a candidate solution might be wrong. A similar obser-
vation was made for RQAOA in Ref. [33], prompting
the authors to consider reinforcement learning to steer
RQAOA update steps. Here, we propose backtracking to
derive improved solutions starting from an initial candi-
date solution obtained by QIRO. Through backtracking,
we obtain a method to refine solutions by using the same
quantum resources more frequently. This approach stands
in stark contrast to most other quantum optimization algo-
rithms, which usually require enhanced quantum resources
(e.g., increasing the depth p in QAOA) to deliver improved
solutions.

In this work, we only employ this strategy for the
MAX-2-SAT problem. However, extending this approach
to other optimization problems such as the MIS problem is
straightforward.

As visualized in Fig. 3 the simplification process of
QIRO can be represented by means of a search tree. Deci-
sions (i.e., update steps) made by the algorithm correspond
to arrows in the search tree, which lead to simplified prob-
lems represented by nodes. Following the update rules in
Sec. III B (i.e., successively applying Reduce) traces out
a path through the search tree (see the red arrows and
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FIG. 3. Schematic visualization of the backtracking procedure
used to obtain improved solutions. Starting from the original
problem P(0) and an empty solution S(0), we perform a series
of reductions (red arrows and nodes) that recursively simplify
the problem, until the first candidate solution (Solution(0···00))
is reached. This corresponds to applying QIRO as outlined in
Algorithm 2. Backtracking, as visualized by the dashed teal
arrows, then amounts to revisiting reduction steps made along
the path. At the chosen ancestor node we have backtracked to, we
can then make an alternative reduction, here denoted by Reduce
(see the black arrows). Concretely, Reduce amounts to revers-
ing the initially made decision, not needing extra calls to the
quantum device. In this work, we limit ourselves to making a
binary decision at each node. As such, we can label the reduced
problem and partial solution at each node with a binary string
encoding the path connecting the node to the original problem
node. Each 0 (1) in the superscript labeling P and S corre-
sponds to one application of Reduce (Reduce) starting from
the original problem.

nodes in Fig. 3), which eventually leads to a candidate
solution (see Solution(0···00) in Fig. 3). Here, the superscript
(0 · · · 00) indicates that this is the solution obtained in the
initial passage through the search tree.

We would like to consider alternative solutions, obtain-
able by deviating from the initial path through the search
tree that led to the initial candidate solution Solution(0···00).
To this end, we define the Reduce function, which
reverses the decision previously made at the revisited node
(i.e., partial problem and solution). We emphasize that this
initial reversal of the previously made decision requires no
additional measurements from the quantum device—we

ALGORITHM 3. QIRO + backtracking (QIRO + BT).

Input: Problem P .
Output Complete solution S.

1: Initialize empty solution S.
2: L ← {} � List to store partial problems & solutions.
3: while size(P ) > 0 do
4: Append (P, S) to L.
5: P, S ← Reduce (P, S) � See Algorithm 1.
6: end while
7: for P ′, S′ in L do � Backtracking.
8: P ′, S′ ← Reduce

(
P ′, S′; Solution(0···00)

)

� Make alternative decision.
9: while size(P ′) > 0 do

10: P ′, S′ ← Reduce P ′, S′)(
11: end while
12: Store the obtained solution.
13: end for
14: return Best solution found.

simply perform the opposite reduction to that we per-
formed initially. For example, if at first the decision was
made to assign the value of a variable xi = TRUE, we
reverse that decision and set xi = FALSE instead. Thus,
we diverge from the original path through the search tree as
visualized in Fig. 3. We note that Reduce requires infor-
mation about the solution it is deviating from in order to be
able to perform the reversed decision.

In principle, exploring the entire search tree essentially
corresponds to a brute-force search of the complete solu-
tion space. Because we are interested in designing heuristic
algorithms that run in polynomial time, we limit the per-
mitted exploration. We find that a simple rule for which the
number of QAOA circuit executions scales quadratically
in the problem size is sufficient to produce satisfactory
results for the considered problem sizes of MAX-2-SAT.
However, more (or less) sophisticated approaches can be
designed and tailored to the particular needs and resources
of the end user. Next, we describe the specific backtrack-
ing strategy used in our simulations and refer the reader to
Algorithm 3 for the pseudocode.

First, we generate the initial candidate solution
Solution(0···00) by successively applying Reduce, as visu-
alized in Fig. 3. Put differently, we first apply QIRO
without backtracking. Next, we backtrack to each of the
ancestor nodes of the initial candidate solution (as visu-
alized by the dashed teal lines in Fig. 3). Each of the
revisited parent nodes corresponds to a different simplified
problem and a corresponding partial solution. The decision
made in the initial passage through the search tree is then
reversed (by applying Reduce), whereby a new node in
the search tree (e.g., P(01), S(01) in Fig. 3) is created. Here,
each 0 (1) in the superscript labeling P and S corresponds
to one application of Reduce (Reduce) starting from
the original problem. Subsequently, if the problem has not
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been fully reduced yet, from this new node a new candi-
date solution is generated by repeatedly applying Reduce.
In contrast to the initial application of Reduce the sub-
sequent applications of Reduce require additional calls
to the quantum device—see the definition of Reduce in
Algorithm 1. In other words, each revisited node leads to a
new candidate solution that is identical to the initial candi-
date solution in the values of the variables fixed before the
revisited node. From the revisited node onward, the new
candidate solution differs from the initial solution. Finally,
the output of the algorithm is the best candidate solution
found in this way. We note that the order in which the
parent nodes are revisited is not important.

IV. RESULTS

Next, we present the results obtained by applying
QIRO to random instances of the MIS and MAX-2-SAT
problems. In numerical simulations we compare the per-
formance of quantum algorithms (QIRO, RQAOA) and
two prominent classical heuristics (simulated annealing,
greedy algorithms). Of course, more complex tailored
classical approaches can be used, such as the parallel
tempering [34–36], borealis [37], and extremal optimiza-
tion [38] heuristics, as well as a plethora of exact solvers
benchmarked at the annual (MAX-)SAT competition [39].

Efficient classical simulations of p = 1 QAOA allow us
to study the system size scaling on problem instances with
various connectivities of the underlying interaction graph.
Results using the lowest depth of QAOA should mainly be
interpreted as a lower bound on the performance of QIRO.
Furthermore, we investigate the robustness of QIRO and
RQAOA against perturbations of the optimal parameters of
the QAOA circuits generating the correlations. This allows
us to emulate failures of the classical optimizer to find the
optimal parameters. Notably, we also deploy QIRO on the
QuEra Aquila neutral atom device (as available on Ama-
zon Braket) to (approximately) solve the MIS problem on
unit disk graphs with more than a hundred nodes.

A. MIS

We begin by presenting the results of QIRO and
RQAOA as applied to the MIS problem. First, we consider
the algorithmic performance as a function of the system
size on the well-studied family of Erdős-Rényi graphs,
with fixed average degrees [40]. As a classical comparison,
we use two variants of a greedy algorithm. This choice is
motivated by recent findings that information from quan-
tum devices can be used to enhance the performance of
greedy solvers [41]. First, we consider a simple random
greedy algorithm, which iteratively assigns random nodes
to the independent set, and removes nodes adjacent to the
selected node such that no violations are possible. As the
second comparison, we use the minimal degree greedy

algorithm, which iteratively assigns a node with the min-
imal degree to the independent set and likewise removes
adjacent nodes to ensure the validity of the final solution
[42]. We note that the minimal degree greedy algorithm
was designed chiefly for sparse graphs (i.e., of low average
degree). This is indicated by the performance guarantee of
the greedy algorithm, which is inversely proportional to the
graph’s average degree [42]. However, we note that, even
for the sparse graphs considered throughout this section,
stronger algorithms exist in the literature—see Ref. [43]
for benchmarks.

Importantly, because all of the algorithms considered
here operate by iteratively simplifying the problem, their
performance is indicative of the fitness of the information
used to perform these simplifications.

For each system size and average degree, we generated a
set of 50 random Erdős-Rényi graphs and solved these with
the ReduMis heuristic solver from the KaMIS project
[44,45]. We use the solution obtained by ReduMis as (a
proxy for) the optimal solution, and report the percent-
age of graphs for which each of the algorithms considered
performs on par with the ReduMis reference.

The results for graph sizes with n = 40–200 nodes and
average degrees of 3, 5, and 12 are shown in Fig. 4. We
used λ = 1.1 in the MIS Hamiltonian [see Eq. (1)] for
RQAOA and QIRO. The performance of the two quantum
algorithms (QIRO and RQAOA) is found to lie between
the random and minimal degree greedy algorithms. This
highlights the limitations of the quantum correlations
obtained from QAOA at p = 1, which only “sees” the
immediate neighbors of every node. As such, it is unsur-
prising that the minimal degree greedy algorithm—which
makes the optimal greedy move based on information
from nearest neighbors—outperforms QIRO and RQAOA
informed by p = 1 QAOA. However, our results in
Appendix E indicate that (at least on small graphs), QIRO
with QAOA at p > 1 outperforms the greedy benchmark.

Furthermore, RQAOA (slightly, but consistently) out-
performs QIRO. This is likely due to the fact that the QIRO
simplification rules as defined in Sec. III B 1 are manifestly
local. The fact that the gap between QIRO and RQAOA
seems to diminish for denser graphs (i.e., for increas-
ing average degree) corroborates this intuitive explanation,
as we expect locality to be a weaker limitation if the
underlying interaction graph has a higher connectivity.

A major advantage of QIRO (as compared to, e.g.,
RQAOA) is that the problem-specific classical subroutines
can be used to enforce feasibility of the solutions generated
(i.e., all obtained candidate solutions are guaranteed to be
independent sets). To showcase this feature, we performed
numerical simulations of QIRO and RQAOA with p = 1
QAOA with suboptimal parameters. The goal of these
experiments is to consider the robustness of the algorithms
against lower-quality quantum information. The parame-
ters are generated by sampling a uniform 30 × 30 grid in
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FIG. 4. System size scaling for the success rate of the ran-
dom greedy (“Rnd. greedy”), minimal degree greedy (“Min.
greedy”), RQAOA, and QIRO for Erdős-Rényi graphs with dif-
ferent expectation values of the average degree. At each system
size and average degree 50 graphs were generated, and ten runs
of each algorithm were performed. We report the median per-
centage of graphs for which we find independent sets of the size
found by the classical ReduMis benchmark algorithm. The error
bars denote the minimum and maximum performance observed
across the ten runs. Note that the results for QIRO and RQAOA
are obtained using simulations of QAOA at depth p = 1.

the (β, γ ) parameter plane, and choosing the parameters
corresponding to the qth quantile in the energy values,
among the 30 × 30 energies obtained. Given their rele-
vance for neutral atom quantum devices [13,14], we use
UDGs (see Appendix D) for these experiments.

The results for an ensemble of 50 UDGs with 137
nodes and two different values of the penalty term λ are
shown in Fig. 5(b). For every graph and parameter qual-
ity q, ten runs of each algorithm were performed. We
show the mean approximation ratio of valid solutions pro-
duced by RQAOA and QIRO as plotted against the quality
quantile q of the parameters used to generate the correla-
tions by the QAOA. The parameters at q = 0 correspond
to the fully optimized parameters. As expected, QIRO
only produces valid solutions. Remarkably, if perfect (i.e.,
optimized) parameters are supplied to RQAOA, it like-
wise produces exclusively valid solutions. However, for
both values of λ, there is a sharp drop-off in the number

of valid solutions for RQAOA. Because finding optimal
parameters in an actual experimental setting is challeng-
ing [46,47], the robustness of QIRO is a valuable feature,
in particular for realistic experimental scenarios. Addition-
ally, results in Fig. 5(b) suggest that increasing the quality
of the quantum correlations has a positive impact on the
performance of both QIRO as well as RQAOA. This is in
agreement with the outcome of our experiments at p > 1
in Appendix E, where a clear improved QIRO performance
with increasing p is observed.

Surprisingly, results shown in Fig. 5(b) indicate that the
number of valid solutions produced by RQAOA falls off
at a comparatively better parameter quality (lower q) for
the larger value of λ, defying the expectations that a larger
penalty term λ should favor valid solutions. In general, we
observe complex behaviour in the (λ, q) parameter plane
(see Fig. 10 and the associated discussion in Appendix F).
We note that determining the magnitude of penalty terms
is a well-known issue when incorporating hard constraints
into an unconstrained optimization setup [10,11].

Importantly, at each step of the QIRO algorithm, what
remains to be solved is a valid MIS problem. Moreover,
if the starting graph is a UDG [as in Fig. 5(a)] then so
are all successive (simplified) graphs—see also Fig. 2.
Because UDGs can be naturally embedded on neutral atom
quantum processors [13,14], we can use such devices to
produce the required quantum correlations. In what fol-
lows, we present results from the QuEra Aquila neutral
atom quantum processor, as accessed through Amazon
Braket. The details on the (quasi)adiabatic protocols used
to generate the correlations on the QuEra Aquila device
can be found in Appendix D. Because of the limited acces-
sibility of the device, we report the results on a per-instance
basis. We sort the instances in increasing order of their
classical hardness [see Eq. (D1)], as proposed by Ebadi
et al. [14]. We provide details about the hardness of the
considered graph instances in Appendix D.

In Fig. 6 we display the approximation ratios |IS|/|MIS|
obtained by QIRO with correlations from the QuEra device
(QIRO QuEra) and classical simulations of p = 1 QAOA
(QIRO QAOA). On the QuEra device, we generate the cor-
relations using the protocols outlined in Appendix D. We
compare these to the sizes of the independent sets found by
the minimal degree greedy algorithm. The reference maxi-
mum independent set is computed using the tensor network
algorithm from Ref. [48]. For clarity, results of RQAOA
are omitted from the plot, because the approximation ratios
found for UDGs were generally comparable to those found
by QIRO QAOA [as seen in Fig. 5(b)].

Our results indicate that the quantum correlations from
the QuEra machine are better at guiding the QIRO proce-
dure than numerical simulations of QAOA at p = 1. This
is in line with previous results for solving the MIS problem
using analog protocols on such hardware [14,49]. A larger
sample size would be required to solidify such claims.
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FIG. 5. (a) An example unit disk graph with 137 nodes. Teal nodes indicate a maximum independent set of size |MIS| = 45. (b) Data
for 500 random unit disk graphs with 137 nodes, comparing the robustness of RQAOA and QIRO, for two different magnitudes of the
penalty term λ [see Eq. (1)]. The upper row shows the fraction of valid solutions obtained by each algorithm. The lower row displays
the ratio between the size of the largest independent set (IS) found and the maximum independent set (MIS) size. Both the validity
and |IS|/MIS| are plotted with respect to the quality of the p = 1 QAOA parameters, with parameters at q = 0.0 corresponding to the
optimal parameters, and higher values of q corresponding to worse parameters (see the main text). We note that we only report the
approximation ratio achieved by RQAOA if the solution produced by it is valid (i.e., corresponds to an independent set).

However, initial results appear to suggest that QIRO
QuEra performs comparably to the minimal degree greedy
algorithm, reinforcing our belief that improved quantum
correlations boost the performance of QIRO. Strikingly,
the minimal degree greedy algorithm fails dramatically
on some graphs (e.g., instance 1), where it achieves an
approximation ratio of around 0.6, while QIRO QuEra is
able to solve the same problems (nearly) optimally. This
preliminary evidence showcases the potential utility of
quantum correlations for guiding optimization algorithms.

B. MAX-2-SAT

Next, we analyze the performance of QIRO and QIRO
with backtracking (QIRO + BT) on random MAX-2-SAT

instances with clauses of length two. We compare our
results to those obtained with RQAOA and simulated
annealing (SA) [50], an established and relatively sim-
ple classical heuristic. More detailed simulations with
other, more powerful heuristics are left for future studies.
Details about our implementation of SA can be found in
Appendix G.

We first analyze the system size scaling of the algo-
rithms’ performance for random MAX-2-SAT instances
with up to 160 variables, at three different values of the
clause-to-variable ratio α. We use the MAX-SAT solver
RC2 [51] to compute the optimal solutions, and use paral-
lel tempering (PT) [34] to compute (approximately) opti-
mal solutions for instances where the RC2 solver timed
out. Details of our implementation of PT can be found

1 2 3 4 5 6 7 8 9 10
Graph instance

0.900

0.925

0.950

0.975

1.000

|IS
|/|

M
IS

|

QIRO QuEra QIRO QAOA Min. greedy

FIG. 6. Approximation ratio comparing the size of the independent set |IS| found by QIRO with correlations from the QuEra neutral
atom quantum processor (QIRO QuEra), and correlations from numerical simulations of p = 1 QAOA (QIRO QAOA), with the size
of the maximum independent set |MIS|. For comparison, the ratios obtained by the minimal degree greedy algorithm (“Min. greedy”)
are shown. In instance 1 the obtained approximation ratio of the greedy algorithm is outside of the range of the displayed values with
|IS|/|MIS| ≈ 0.63. The median value over five runs is plotted, with error bars showing the best and worst solutions found.
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FIG. 7. System size scaling of the performance of the differ-
ent algorithms, at three different values of α. At each system size
and α, 50 random instances were generated with two variables
per clause, each variable and its polarity chosen uniformly at
random. Parallel tempering (PT) was used to find nearly opti-
mal solutions; we then report the median percentage of instances
on which an algorithm performs at least as well as PT across ten
independent runs. The error bars indicate the minimal and maxi-
mal performance across these ten runs. Simulation details about
SA and PT can be found in Appendix G.

in Appendix G. We then report the number of times the
algorithms perform at least as well as PT or the RC2 solver.

Figure 7 showcases the results of our experiments.
QIRO performs better than RQAOA for all clause-to-
variable ratios α and over the entire range of the considered
problem sizes. This shows that performance gains can be
made by including very simple problem-specific update
rules that require only modest classical resources. We note,
however, that the improvement is especially prominent
for lower values of α, and diminishes for problems with
higher α (connectivity). Moreover, due to the inclusion of
inference rules, the Boolean formula is simplified in fewer
update steps, thus requiring fewer calls to the quantum
device (and fewer optimizations of the QAOA circuit) than
in RQAOA.

As expected, we note a decrease in performance with
increasing problem sizes, with both QIRO and RQAOA
often struggling to find optimal solutions at the largest
problem sizes considered. However, with the addition of
backtracking, QIRO + BT is able to optimally solve more

than half of the instances for almost all system sizes and all
values of α considered here. For α = 2, it even slightly out-
performs our SA implementation. It should be noted that
while the number of calls to the quantum device increases
significantly (i.e., from linear to quadratic in the problem
size) if backtracking is included, the requirements on the
quantum hardware in terms of the gate and qubit count
are kept constant. This fundamentally differs from QAOA,
where an improved performance can only be obtained
by increasing the circuit depth p , and thus the quantum
resources required.

V. DISCUSSION

In this work we have extended previous efforts on hybrid
quantum-classical algorithms for combinatorial optimiza-
tion, by introducing a family of QIRO algorithms. We pro-
pose the use of quantum-informed classical update steps
to recursively simplify the original optimization problem,
allowing for the incorporation of problem-specific clas-
sical subroutines (e.g., satisfiability inference rules) from
the rich literature on classical combinatorial optimization
[25]. We have shown via numerical simulations for ran-
dom instances of two NP-hard combinatorial optimization
problems that such classical subroutines can significantly
strengthen the algorithm’s performance. Additionally, we
compare the performance of QIRO to RQAOA, providing,
to the best of our knowledge, the first systematic numerical
study of RQAOA on problems that are not Z2 symmetric.

Importantly, we think that QIRO offers a promising
approach for solving optimization problems with hard con-
straints, which have previously proven challenging for
quantum algorithms [10,11,52]. Using the MIS problem as
a guiding example, we have shown how classical update
steps can be used to enforce hard constraints and only
produce feasible solutions. This is true regardless of the
quality of the quantum resources, endowing QIRO with the
robustness essential for algorithms within the NISQ era.

Interestingly, we observe that keeping the quantum
resources equal, RQAOA outperforms QIRO on the MIS
problem. We believe that this is a consequence of the
local nature of the QIRO update rules for MIS. This is
corroborated by our finding that improved quantum cor-
relations from the neutral atom device enhance QIRO’s
performance compared to when QAOA at p = 1 is used
to generate the correlations. The intuitive explanation is
that the quantum many-body evolution on a neutral atom
quantum processor provides sufficient nonlocal effects to
counteract the locality of the update steps. In fact, adiabatic
protocols analogous to those used to generate correlations
here have previously been shown to produce candidate
solutions surpassing those produced by QAOA at depths
higher than p = 1 [14]. Taken together, our results may
serve as yet another indication that locality is a limiting
factor for (quantum) optimization algorithms [53].
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Furthermore, we have confirmed the intuitive expec-
tation that higher-quality quantum correlations should
enhance the performance of the algorithm, as evidenced
by means of extensive numerical simulations, as well as
experiments on an actual neutral atom quantum device.
This result suggests that advances in quantum hardware
should lead to further performance gains.

We note that we performed no optimization of the pro-
tocols used to generate the correlations in our experiments
on the QuEra Aquila neutral atom device. Previously,
dramatic improvements in the quality of candidate solu-
tions have been obtained by first optimizing the schedules
[14,49]. Moreover, the (unoptimized) protocols and device
used in this study (and specified in Appendix D) have
been shown to produce candidate solutions typically corre-
sponding to either very small independent sets, or possess-
ing multiple violations of the independence constraint [49].
Thus, it is reasonable to expect that such schedule opti-
mization schemes could greatly benefit the quantum state
preparation step in QIRO. Moreover, the ability of QIRO
to find good (feasible) solutions despite the limitations of
the quantum hardware serves as yet another demonstration
of its robustness.

In addition, we have introduced the use of backtracking
to obtain improved results via additional calls to existing
quantum hardware, rather than requiring deeper circuits, as
is usually the case in quantum (optimization) algorithms.
This scheme has led to promising results for the MAX-2-
SAT problem, where QIRO enhanced with backtracking
could optimally solve most random problem instances,
even at comparatively large instance sizes. Because large
instances are accessible in numerical simulations (at p = 1
of QAOA), we were able to sensibly compare the perfor-
mance of QIRO(+BT) with widely used classical heuristic
solvers such as simulated annealing.

Finally, we would like to stress that our work should
be seen as a first demonstration of a general template for
a larger class of hybrid quantum-classical algorithms for
combinatorial optimization. We firmly believe that hybrid
techniques will be necessary to unlock the advantages of
quantum devices. The modular nature of QIRO offers a
plethora of ways in which the presented toolbox can be
modified; we touch upon some potential extensions in the
next section.

VI. OUTLOOK

Several modifications to the QIRO algorithm as pre-
sented here can be envisioned. Exploring update rules
for optimization problems beyond those examined in this
manuscript would be a compelling avenue for future
research. Likewise, it would be intriguing to devise
the update rules for weighted versions of the problems
addressed here. Moreover, one could attempt to extend
the information extracted from the quantum state beyond

just the maximal correlation. This could be accomplished
by a randomized strategy, with the selection probabilities
determined as some function of the correlation matrix.
Furthermore, devising update rules incorporating corre-
lations beyond those between nearest neighbors in the
interaction graph might be useful, especially in combi-
nation with deeper QAOA circuits or on analog devices
with long-range interactions (e.g., Rydberg atom arrays).
Additionally, one could exploit the locality of QAOA, and
simultaneously round multiple correlations at each update
step, if the corresponding variables are outside of each
other’s sphere of influence. Thus, one could save resources
by requiring fewer calls to the quantum routines, and thus
mitigate one of the limitations of the presented scheme. On
the other hand, if deeper quantum circuits (e.g., QAOA at
p > 1) are available, extracting correlations beyond those
between variables adjacent in the interaction graph might
be beneficial. Finally, considering problem-tailored alter-
natives to a brute-force search of the remaining solution
space at a threshold problem size nc may significantly
improve the performance and resource efficiency of QIRO.

It is unreasonable to expect that the simple backtrack-
ing strategy presented here would be equally successful for
larger problem instances, or instances from different prob-
lem classes. Hence, one might need to devise improved
backtracking strategies, both in terms of the resources
required, as well as in terms of the performance. One
possibility is the use of reinforcement learning to guide
the reduction process, as proposed by Patel et al. [33].
Resources might be saved by efficient pruning of the search
tree using existing methods [30], identifying and ignoring
unfavorable parts of the solution space. Therefore, fewer
quantum state preparations would be required. Finally, one
could use backtracking to enforce constraints, by identify-
ing steps where a constraint was violated, backtracking to
it, and altering the decision made at that step.

It would likewise be interesting to consider alterna-
tive methods of generating the quantum correlations. This
could include efficient numerical methods to obtain corre-
lations with the QAOA at p > 1, by means of, e.g., tensor
network simulations [54,55]. Naturally, it would be inter-
esting to acquire correlations from higher-depth QAOA
circuits executed on real digital quantum computers, or
by generating them using quantum annealers based on
superconducting flux qubits [56,57]. One could consider
optimizing analog protocols (using, e.g., Bayesian opti-
mization [49]) to obtain better correlations, and enhance
the effectiveness of the algorithm. Moreover, modify-
ing the cost function with respect to which the quantum
resources are optimized might be helpful, similarly to the
approach employed by Caha et al. [58]. Finally, one could
attempt to generate correlations using classical approxima-
tion algorithms, as proposed by Wagner et al. [59]. Long
story short, there is a lot to be done, but this paper is already
long enough.
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Conveniently, the modular nature of QIRO allows us to
analyze the promise of quantum computers for combinato-
rial optimization, e.g., by comparing QIRO with different
quantum and classical methods of computing the correla-
tions. Should shortcomings of quantum approaches (e.g.,
locality) be identified in this manner, the classical sub-
routines in QIRO can be designed to rectify them. As
such, we hope that our work can bring us closer to deter-
mining whether quantum devices can provide value for
combinatorial optimization problems.
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APPENDIX A: LOW-DEPTH QAOA
SIMULATIONS

Here, we provide details of our implementation of the
numerical simulations of QAOA at p = 1. If we limit our-
selves to problems with general Ising-like (i.e., quadratic)
cost Hamiltonians of the form

Ĥc =
∑

i

hiẐi +
∑

i<j

Jij ẐiẐj , (A1)

it was shown that the expectation values of Ẑi and ẐiẐj
according to the depth-(p = 1) QAOA state |ψ(β1, γ1)〉 =
e−iβ1Ĥmixe−iγ1Ĥc |+〉⊗n can be calculated in O(n) time via
simple analytical expressions [3,28]. Because the cost
Hamiltonian comprises O(n2) terms, the complexity of
simulating the calculation of the correlation matrix M in
the update step of Algorithm 1 is O(n3). Therefore, assum-
ing O(n) update steps, this yields an overall complexity
of O(n4) for the full QIRO simulation and O(n5) for the
QIRO + BT simulation, when O(n) backtracking steps are
performed, as is the case following the prescription of
Algorithm 3.

We comment here on the difference in the measurement
processes between QIRO and vanilla QAOA. If the cost
Hamiltonian is k local, the process of finding the optimal
parameters according to the expectation value of the cost
Hamiltonian in principle requires only measurements with
k qubits involved for both algorithms. However, after the
optimal parameters are found, QAOA samples classical bit
strings from the quantum state for which measurements of

all qubits involved are required. This makes QAOA expo-
nentially difficult to simulate classically for any depth p
[61]. In contrast, the sampling step is replaced by a classi-
cal update step in QIRO. Hence, using the depth-(p = 1)
QAOA as state preparation for QIRO allows us to simulate
the algorithm efficiently.

One may wonder why this should be a quantum
algorithm of interest, if it is amenable to efficient classical
simulations. The answer to this lies in the fact that the situ-
ation changes dramatically at higher depths of QAOA with
p > 1 where no method for analytically computing the
one-point and two-point correlations classically in poly-
nomial time is known (to us). The same holds at p = 1
when calculating the expectation values of k-body interac-
tion terms, with k ≥ 3. Therefore, these cases could lead
to an algorithm that provides quantum advantage. In gen-
eral, we expect an increasing performance of QIRO for
higher depths of QAOA, as indicated by the MIS experi-
ments in Sec. IV A. We note that similar observations were
previously made by Bravyi et al. [3].

APPENDIX B: RQAOA

To overcome the limitations of the QAOA due to
its local structure [3,53], Bravyi et al. [3,7] introduced
RQAOA. The algorithm optimizes a QAOA state based
on the current problem Hamiltonian and uses this infor-
mation to reduce the problem via the elimination of a
single variable. Recursive application of this step reduces
the problem until a specified threshold of remaining vari-
ables nc is reached. The remaining problem can be solved
by a classical solver (e.g., by a brute-force search). The
elimination step is motivated by the rounding of fractional
correlations in relaxations of linear programs [3]. While
hardly a fair comparison in terms of resources required,
RQAOA has been shown to significantly outperform
QAOA [7,62].

It was first applied to the Z2-symmetric Max-Cut prob-
lem, which exclusively comprises two-body terms. Here,
we (trivially) extend the approach to also include single-
body terms. We additionally note that a generalization to
Hamiltonians with an arbitrary degree of interaction can be
envisaged. However, for Hamiltonians with K-body terms
with K ≥ 3, one faces an additional obstacle, as the degree
of the interactions can increase when an elimination step is
performed. This comes with additional requirements on the
quantum hardware; as we are mostly interested in NISQ-
era algorithms, we do not consider such extensions here.

Assuming a quadratic Hamiltonian of form (A1), the
pseudocode for the RQAOA, as proposed in Refs. [3,7],
is given in Algorithm 4.

APPENDIX C: MAX-2-SAT SIMPLIFICATION
DETAILS

Here we provide the details on the update rules
employed in the QIRO update step for MAX-2-SAT.
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ALGORITHM 4. RQAOA.

Input: Problem Hamiltonian Ĥ, threshold nc.
Output Solution S.

1: L ← {} � Initialize list to store frozen correlations.
2: for k = 1 to n − nc do
3: Find optimal variational parameters of QAOA:

β∗, γ∗ = arg minβ,γ 〈ψ(β, γ)| Ĥ |ψ(β, γ)〉
4: |ψ〉 ← |ψ(β∗, γ∗)〉
5: Store correlations in M ∈ R

n×n, initialize Mij = 0:
∀i ∈ [n] : Mii = 〈ψ| Ẑi |ψ〉,
∀(i, j) ∈ [n] × [n] s.t. Jij �= 0 : Mij = 〈ψ| ẐiẐj |ψ〉.

6: (i, j) = arg max(i,j)∈[n]×[n] |Mij |
7: Append {(i, j), sign(Mij)} to L.
8: if i = j then � One-point correlation.
9: Ĥ ← Repl. Ẑi in Ĥ with sign(Mii) · 1

10: else � Two-point correlation.
11: Ĥ ← Repl. Ẑi in Ĥ with sign(Mij) · Ẑj

12: end if
13: end for
14: Snc ← Bruteforce(Ĥ) � Solve the remaining problem.
15: S ← Reconstruct(Snc , L) � Extract the solution from L.

return S

Inference rules are a commonly used building block of
many classical satisfiability solvers [31]. They are used to
simplify the formula by fixing the assignments of specific
variables and therefore accelerate the remaining computa-
tion. Here, we use only very simple inference rules that
have low computational (and conceptual) complexity. The
selected rules ensure that the optimal solutions of both
the original and the simplified problems are equally good
in quality. Despite their simplicity, the inference rules
improve the performance of QIRO, both in terms of qual-
ity (see Sec. IV B) and in terms of resource efficiency. This
is because fewer calls to the quantum device are required,
due to the simplifications performed by the inference rules.
The selected rules, listed next, were proposed in Refs.
[30,31].

(a) The pure literal rule [32]: if a literal exclusively
occurs with positive (negative) polarity then the
value of the corresponding variable is set to TRUE
(FALSE).

(b) The almost common clause rule [32]: if a MAX-2-
SAT instance includes the clauses xi ∨ xj and x̄i ∨
xj then both clauses can be replaced with a single-
literal clause (i.e., unit clause) xj . If neither xi nor x̄i
appears in the formula anymore, the variable can be
arbitrarily set to either TRUE or FALSE.

(c) The complementary unit clause rule [63]: if the for-
mula contains single-literal clauses xi and x̄i then
these two clauses are removed. Again, if neither xi
nor x̄i appears in the formula thereafter, the assign-
ment of the variable can be arbitrarily set to either
TRUE or FALSE.

ALGORITHM 5. Reduce (MAX-2-SAT).

Input: Formula φ, partial solution S.
Output Simpl. formula φ, updated partial solution S.

1: Prepare low-energy quantum state |ψ〉.
2: Store correlations in M ∈ R

n×n:
∀i ∈ [n] : Mii = 〈ψ| Ẑi |ψ〉,
∀(i, j) ∈ [n] × [n] s.t. Jij �= 0 : Mij = 〈ψ| ẐiẐj |ψ〉.

3: if i = j then � One-point correlation.
4: Assign variable xi → 1

2 (sign(Mii) + 1).
5: else � Two-point correlation.
6: if sign(Mij) = 1 then
7: Replace xi → xj in φ and extend S accordingly.
8: else
9: Replace xi → x̄j in φ and extend S accordingly.

10: end if
11: end if
12: φ′ ← {} � Initialize empty formula for comparison.
13: while φ �= φ′ and size(φ) > nc do � Inference rules.
14: φ′ ← φ
15: φ, S ← PureLiteral(φ, S)
16: φ, S ← DominatingUnitClause(φ, S)
17: φ, S ← AlmostCommonClause(φ, S)
18: φ, S ← ComplementaryUnitClause(φ, S)
19: end while
20: if size(φ) ≤ nc then
21: φ, S ← BruteForce(φ, S)
22: end if
23: return φ, S

(d) The dominating unit clause rule [63]: if the total
count of clauses, regardless of their length, that con-
tain a variable xi (x̄i) is not greater than the count of
unit clauses that contain x̄i (xi), then the variable xi
is set to FALSE (TRUE).

The complete QIRO update step Reduce for MAX-2-
SAT is shown in Algorithm 5.

Importantly, the MAX-2-SAT QIRO update rules pre-
sented here preserve the problem structure in that only
clauses with two or less variables appear in the formula.
Consequently, the Hamiltonian remains in the same form
as in Eq. (A1).

APPENDIX D: MIS ON A NEUTRAL ATOM
QUANTUM DEVICE

Here, we provide details about the adiabatic protocols
on a neutral atom quantum processor that we used to pre-
pare the quantum states used to guide the QIRO algorithm
for the MIS problem. The MIS problem on UDGs naturally
emerges in the context of neutral atom quantum processors
based on Rydberg atom arrays [13,14]. UDGs are a fam-
ily of graphs, where two nodes are connected only if the
(Euclidean) distance between them is smaller than some
threshold radius Rd.

Here, we generate such graphs by positioning nodes
on an underlying square lattice with lattice constant a.
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TABLE I. Values of the hardness parameter HP for the graph instances presented in Fig. 6.

Graph instance 1 2 3 4 5 6 7 8 9 10
HP 3 8 14 39 49 95 197 383 863 1435

We set
√

2a < Rd < 2a, such that we get nearest-neighbor
and diagonal connectivity. We chose a lattice constant
a = 5.3 µm, inspired by a previous study [49]. The graphs
presented here were generated by positioning 137 nodes
on such an underlying lattice with 14 × 14 sites. This cor-
responds to a filling factor of roughly 70%. An example
graph is shown in Fig. 5(a).

Furthermore, we classified the generated instances in
terms of their classical hardness parameter

HP := N|MIS|−1

|MIS| N|MIS|
, (D1)

where NM denotes the number of independent sets of size
M . The hardness parameter was shown to be related to
the performance of quantum and classical algorithms alike
[14]. However, we note that evidence has recently been
put forward that HP only influences the performance of
Markov chain Monte Carlo–based algorithms (e.g., SA)
[64].

Here, we consider graphs spanning several orders
of magnitude in HP , which we computed using the
tropical tensor network algorithm provided within the
GenericTensorNetworks library [48,65]. Specifi-
cally, the graphs considered in Fig. 6 have been sorted in
order of increasing hardness, with the exact values of HP
given in Table I.

We now briefly summarize how neutral atom arrays
can be used to solve the MIS problem on UDGs [13,14].
The dynamics of neutral atom quantum devices are gov-
erned by the Hamiltonian Ĥ(t) = Ĥdr + Ĥcost, where the
individual terms read

Ĥdr = �

2
	(t)

∑

i

X̂i,

Ĥcost = −�
(t)
∑

i

n̂i +
∑

i<j

Vij n̂in̂j .
(D2)

0 τΩ tf − τΩ tf

0

Ωmax

Ω
(t

)

Δi
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Δf

Δ
( t

)
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Δ(t)

FIG. 8. Time dependency of the Rabi frequency 	(t) and the
laser detuning 
(t). We use tf = 4 µs, 	max = 15.8 MHz, τ	 =
0.1tf, 
i = −30 MHz, and 
f = 60 MHz.

Here, 	 is the Rabi frequency, 
 is the laser detuning,
and the interaction term Vij = C6‖xi − xj ‖−6

2 , with C6 the
van der Waals coefficient. The particular value C6 depends
on the atom species used in the experimental setup. The
number operator n̂i := 1

2 (12 − Ẑi) counts the number of
Rydberg excitations on the ith site.

An essential property of the Hamiltonian in Eq. (D2)
is the so-called Rydberg blockade phenomenon, in which
two atoms cannot simultaneously be in the (excited) state
|1〉 if the distance between them is smaller than the Ryd-
berg blockade radius Rb ≡ (C6/�	)

1/6 [14]. Therefore,
if one sets the UDG radius to be equal to the Rydberg
blockade radius (Rd = Rb), ground states of Ĥcost obey the
independence constraint on UDGs if one assigns atoms
that are in state |1〉 to the MIS [13]. Additionally, if we
set 0 < 
 < Vij , the ground state of Hcost maximizes the
number of excitations, while not violating independence,
hence corresponding to solutions to the original MIS prob-
lem. We thus start the adiabatic protocol with
i < 0, such
that the ground state is |0〉⊗|V| and then (slowly) increase
the detuning until some final positive value, as shown in
Fig. 8, such that the ground states of the final Hamiltonian
correspond to the solutions of the MIS problem.

We ran such protocols on the QuEra Aquila device,
which is available through the Amazon Braket service. The
detailed parameters can be found in the caption of Fig. 8,
and are partially motivated by a previous study [49]. At
each stage of the QIRO algorithm we estimate the correla-
tions using a hundred measurements of the quantum state
prepared by the adiabatic protocol described in Fig. 8.

APPENDIX E: HIGHER-DEPTH QAOA
EXPERIMENTS

To provide additional support to the claim that a higher
quality of correlations yields better performance of QIRO,
we performed numerical simulations of QIRO using cor-
relations from QAOA at p > 1. In contrast to p = 1, no
analytical formulae for the required correlators are known
at p > 1, forcing us to resort to state-vector simulations
of QAOA circuits. Consequently, we had to limit our
experiments to solving the MIS problem on smaller graph
instances with 12 nodes, randomly chosen from the Erdős-
Rényi ensemble as in Sec. IV A. For each fixed expected
degree, we generated a hundred random instances, and
found their MIS using a brute-force search of the solution
space. We then ran QIRO informed by correlations from
the QAOA implementation in the PennyLane library
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FIG. 9. The fraction of optimally solved instances by QIRO
using QAOA at depths p ∈ {1, 2, 3}, and by the minimal degree
greedy algorithm. The height of the bars show the mean fraction
across ten runs of the algorithms, with the error bars indicating
the best and worst performance across those runs.

[66], using the gradient descent optimizer with 300 iter-
ations and 15 restarts of the optimizer at different ran-
dom initial values of the variational parameters. For these
experiments, we set nc = 1 because of the comparatively
smaller problem instance sizes.

The results in Fig. 9 show the fraction of optimal inde-
pendent sets found by QIRO with correlations from QAOA
at depths p ∈ {1, 2, 3}, and by the minimal degree greedy
algorithm. The performance of QIRO clearly improves
with increased QAOA depth, for both considered graph
densities. Together with the results in Sec. IV A, this pro-
vides yet another indication that enhanced correlations
lead to better performance of QIRO. Moreover, these
experiments indicate that correlations from deeper circuits
enable QIRO to surpass the performance of the greedy
benchmark. Although this matches the intuitive expecta-
tions, further experiments on larger instances and quantum
hardware are required to strengthen these claims.

APPENDIX F: FURTHER RQAOA VALIDITY
EXPERIMENTS

In Sec. IV A we assessed the performance of QIRO and
RQAOA at different qualities of QAOA parameters. As the
results presented in Fig. 5(b) exhibited interesting behav-
ior, we here report an extended set of experiments, where
RQAOA validities for additional magnitudes of the penalty
term λ [cf. Eq. (1)] are shown.

Interestingly, the results partially defy the naïve expecta-
tion that a larger penalty term should favor enforcing con-
straints. This is especially prominent in the region between
λ = 1.2 and λ = 5, where the robustness of RQAOA
seems to decrease. However, the trend reverses again for
λ = 10.

While a thorough analysis of the artefacts observed in
Fig. 10 is beyond the scope of this paper, we offer some
insights into what might underpin the peculiar behavior at
intermediate values of λ. We suspect that this is caused
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FIG. 10. Ratio of valid solutions obtained by RQAOA for
different qualities of the QAOA parameters q (at p = 1) and dif-
ferent penalty factors λ. As in the results in Fig. 5(b), at each
(q, λ) the same 50 UDGs of size 137 were generated and ten runs
of RQAOA were performed. We here report the ratio valid (i.e.,
independent) sets found by RQAOA. Black stars indicate values
of (q, λ) where all found solutions were feasible.

by an intricate interplay between the deformations of the
spectrum of the cost Hamiltonian (1) when λ is varied,
with the particularities of QAOA states at p = 1. As λ
is varied, only the energy levels of states that correspond
to configurations with violations of the independence con-
straint are changed. Thus, the nature of the excited states
can change dramatically, i.e., states corresponding to con-
figurations with violations might shift relative to states
corresponding to independent sets. It is difficult to predict
the amplitudes of such excited states in the optimal QAOA
states at p = 1, let alone at perturbed parameters. As such,
a pattern similar to that seen is not inconceivable. How-
ever, more experiments are required to pin down the exact
underlying mechanism.

APPENDIX G: PARALLEL TEMPERING AND THE
SIMULATED ANNEALING SETUP

For a MAX-2-SAT instance with n variables, starting
from a random initial configuration, we perform simu-
lated annealing with 600n attempted variable flips. The
annealing schedule consists of evenly spaced inverse tem-
peratures β = T−1, with an initial value β = 0 and a final
inverse temperature of β = 6.

For PT [34–36], we initialize 12 replicas of the prob-
lem in random configurations with different temperatures.
We chose the fine-tuned temperatures given in Table II.
These were chosen in accordance with the prescription
that replica exchanges should be accepted with probabil-
ities between 0.2 and 0.8 [67]. We tested this empirically
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TABLE II. Temperatures of the replicas in our implementation of PT.

Replica index 1 2 3 4 5 6 7 8 9 10 11 12
Temperature 0.10 0.20 0.29 0.39 0.50 0.62 0.75 0.90 1.09 1.33 1.67 2.20

for a collection of representative MAX-2-SAT instances.
We then used the following PT scheme. In each run of PT
we carried out 15 000 cycles, with one simulation cycle
consisting of one Monte Carlo sweep (n single spin flips)
per replica followed by an attempted replica exchange
between all replica pairs with neighboring temperatures,
starting from the lowest temperature. The configuration
with the lowest energy found in any of the replicas dur-
ing the course of the algorithm was finally returned as the
solution.
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