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Abstract
Upper and lower bounds, of the expected order of magnitude, are obtained for the
number of rational points of bounded height on any quartic del Pezzo surface over Q

that contains a conic defined over Q.
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1 Introduction

A quartic del Pezzo surface X over Q is a smooth projective surface in P4 cut out by
a pair of quadrics defined over Q. When X contains a conic defined over Q it may
be equipped with a dominant Q-morphism X → P1, all of whose fibres are conics,
giving X the structure of a conic bundle surface. Let U ⊂ X be the Zariski open set
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obtained by deleting the 16 lines from X and consider the counting function

N (B) = �{x ∈ U (Q) : H(x) � B},

for B � 1,where H is the standard height function onP4(Q). TheBatyrev–Manin con-
jecture [13] predicts the existenceof a constant c � 0 such that N (B) ∼ cB(log B)ρ−1,
as B → ∞, where ρ = rank PicQ(X) � 6. To date, as worked out by de la Bretèche
and Browning [2], the only example for which this conjecture has been settled is the
surface

x0x1 − x2x3 = x20 + x21 + x22 − x23 − 2x24 = 0,

with Picard rank ρ = 5. For a general quartic del Pezzo surface the best upper bound

we have is N (B) = Oε,X (B
3
2+ε), for any ε > 0, which appears in forthcoming work

of Salberger.
In work presented at the conference “Higher dimensional varieties and rational

points” at Budapest in 2001, Salberger noticed that one can get much better upper
bounds for N (B) when X has a conic bundle structure over Q, ultimately showing
that N (B) = Oε,X (B1+ε), for all ε > 0. Leung [21] revisited Salberger’s argument to
promote the Bε to an explicit power of log B. On the other hand, recent work of Frei,
Loughran and Sofos [15, Thm. 1.2] provides a lower bound for N (B) of the predicted
order of magnitude for any quartic del Pezzo surface over Q with a Q-conic bundle
structure and Picard rank ρ � 4. (In fact they have results over any number field and
for conic bundle surfaces of any degree.) Our main result goes further and shows that
the expected upper and lower bounds can be obtained for any conic bundle quartic del
Pezzo surface over Q.

Theorem 1.1 Let X be a quartic del Pezzo surface defined over Q, such that X(Q) �=
∅. If X contains a conic defined over Q then there exist effectively computable con-
stants c1, c2, B0 > 0, depending on X, such that for all B � B0 we have

c1B(log B)ρ−1 � N (B) � c2B(log B)ρ−1.

It is worth emphasising that this appears to be the first time that sharp bounds are
achieved towards the Batyrev–Manin conjecture for del Pezzo surfaces that are not
necessarily rational over Q.

Let X be a quartic del Pezzo surface defined over Q, with a conic bundle structure
π : X → P1. There are 4 degenerate geometric fibres of π and it follows from work
of Colliot-Thélène [10] and Salberger [25], using independent approaches, that the
Brauer–Manin obstruction is the only obstruction to the Hasse principle and weak
approximation. Let δ0 � δ1 � 4, where δ1 is the number of closed points in P1 above
which π is degenerate and δ0 is the number of these with split fibres. (Recall from [28,
Def. 0.1] that a scheme over Q is called split if it contains a non-empty geometrically
integral open subscheme.) It follows from [15, Lemma 2.2] that

ρ = 2 + δ0. (1.1)
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Counting rational points on quartic del Pezzo surfaces 979

For comparison, Leung’s work [21, Chapter 4] establishes an upper bound for N (B)

with the potentially larger exponent 1 + δ1. This exponent agrees with the Batyrev–
Manin conjecture if and only if X → P1 is a conic bundle with a section over Q, a
hypothesis that our main result avoids.

Our proof of the upper bound makes essential use of [29], where detector functions
are worked out for the fibres with Q-rational points. Combining this with height
machinery and a uniform estimate [7] for the number of rational points of bounded
height on a conic, the problem is reduced to finding optimal upper bounds for divisor
sums of the shape

∑

(s,t)∈Z2

max{|s|,|t |}�x

n∏

i=1

∑

di |�i (s,t)

(
Gi (s, t)

di

)
. (1.2)

Here, n = δ1 and �1, . . . ,�n ∈ Z[s, t] are the closed points of P1 above which π is
degenerate, with G1, . . . ,Gn ∈ Z[s, t] being certain associated forms of even degree.
Thus far, such sums have only been examined in the special case that G1, . . . ,Gn all
have degree zero. In this setting, work of la Bretèche and Browning [1] can be invoked
to yield the desired upper bound. Unfortunately, this result is no longer applicable
when one of G1, . . . ,Gn has positive degree.

Using [15], we shall see in Sect. 3 that our proof of the lower bound in Theorem 1.1
may proceed for surfaces X → P1 of Picard rank ρ = 2. In this case the fibre above
any degenerate closed point of P1 must be non-split by (1.1). Ultimately, following
the strategy of [15], this leads to the problem of proving tight lower bounds for sums
like (1.2) in the special case that none of the characters (

Gi (s,t)· ) are trivial. One of
the key ingredients in this endeavour is a generalised Hooley �-function. Let K/Q

be a number field and let ψK be a quadratic Dirichlet character on K . We define an
arithmetic function on integral ideals of K via

�(a;ψK ) = sup
u∈R

0�v�1

∣∣∣
∑

d|a
eu<NK d�eu+v

ψK (d)
∣∣∣,

for any ideal a in the ring of integers oK of K , where NK denotes the ideal norm.When
K = Q this recovers the twisted �-function considered by la Bretèche–Tenenbaum
[3] and Brüdern [9]. Our treatment of the lower bound requires a second moment
estimate for �(a;ψK ) and this is supplied in a companion paper of Sofos [30].

Remark 1.2 Châtelet surfaces provide the other family of relatively minimal conic
bundle surfaces of degree 4. When they are defined over Q, the Batyrev–Manin con-
jecture also makes a prediction for the distribution of Q-rational points on them.Work
of Browning [6] shows that the relevant counting function satisfies an upper bound
of the expected size. Although we shall not provide any details here, if we suppose
that the Châtelet surface has a Q-rational point, then a lower bound of the proper size
follows from the work in this paper, on taking the forms G1, . . . ,Gn to have degree
0 in (1.2).

123



980 T. D. Browning, E. Sofos

Themain novelty in our work lies in howwe overcome the difficulty of divisor sums
involving characters without a fixed modulus in (1.2). In Sect. 2.2, drawing inspiration
from recent work of Reuss [24], we replace the divisor functions at hand by generalised
divisor functionswhich run over certain integral ideal divisors belonging to the number
field obtained by adjoining a root of�i , for each 1 � i � n. Our proof of Theorem 1.1
then relies upon an extension to number fields of work by Nair and Tenenbaum [22]
on short sums of non-negative arithmetic functions. This is achieved in an auxiliary
investigation [8], the outcome of which is recorded in Sect. 2.1.

2 Preliminary results

2.1 Nair–Tenenbaum over number fields

Let K/Q be a number field and let oK be its ring of integers. Denote byIK the set of
ideals in oK . We say that a function f : IK → R�0 is pseudomultiplicative if there
exist strictly positive constants A, B, ε such that

f (ab) � f (a)min{A	K (b), B(NK b)ε},

for all coprime ideals a, b ∈ IK , where	K (b) =∑p|b νp(b).We denote the class of
all pseudomultiplicative functions associated to A, B and ε byMK = MK (A, B, ε).
Note that any f ∈ MK satisfies the bounds f (a) � A	K (a) and f (a) � (NK a)ε,
for any a ∈ IK .

We will need to work with functions supported away from ideals of small norm.
To facilitate this, for any ideal a ∈ IK and W ∈ N, we set

aW =
∏

pν‖a
gcd(NK p,W )=1

pν . (2.1)

We extend this to rational integers in the obvious way. Similarly, for any f ∈ MK ,
we define fW (a) = f (aW ).

Remark 2.1 We will always assume that W is of the form

W =
∏

p�w

pν, (2.2)

for some w > 0 and ν a positive integer. Throughout Sect. 3 we shall take ν to be
a large constant depending only on various polynomials that are determined by X ,
while in Sect. 4 we shall take ν = 1. In either case we have gcd(NK p,W ) = 1 if and
only if p > w, if NK p = p fp for some fp ∈ N. Our notation is reminiscent of the
“W -trick” that appears in work of Green and Tao [16]. Whereas in their context it is
important that the parameter w tends to infinity, in our setting we shall choose w to be
a suitably large constant, where the meaning of “suitably large” is allowed to change
at various points of the proof.
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Counting rational points on quartic del Pezzo surfaces 981

Let
P◦

K ={a ⊂ oK : p | a ⇒ fp = 1} (2.3)

be the multiplicative span of all prime ideals p ⊂ oK with residue degree fp = 1. For
any x > 0 and f ∈ MK we set

E f (x;W ) = exp

⎛

⎜⎜⎜⎜⎜⎝

∑

p∈P◦
K prime

w<NK p�x
fp=1

f (p)

NK p

⎞

⎟⎟⎟⎟⎟⎠
,

if f is submultiplicative, and

E f (x;W ) =
∑

NK a�x
a∈P◦

K square-free
gcd(NK a,W )=1

f (a)

NK a
,

otherwise.
Suppose now that we are given irreducible binary forms F1, . . . , FN ∈ Z[x, y],

which we assume to be pairwise coprime. Let i ∈ {1, . . . , N }. Suppose that Fi has
degree di and that it is not proportional to y, so that bi = Fi (1, 0) is a non-zero integer.
It will be convenient to form the homogeneous polynomial

F̃i (x, y) = bdi−1
i Fi (b

−1
i x, y). (2.4)

This has integer coefficients and satisfies F̃i (1, 0) = 1.We let θi be a root of the monic
polynomial F̃i (x, 1). Then θi is an algebraic integer and we denote the associated
number field of degree di by Ki = Q(θi ). Moreover,

NKi /Q(bi s − θi t) = F̃i (bi s, t) = bdi−1
i Fi (s, t),

for any (s, t) ∈ Z2. If bi = 0, so that Fi (x, y) = cy for some non-zero c ∈ Z, we
take θi = −c and Ki = Q in this discussion. Our work on Theorem 1.1 requires
tight upper bounds for averages of f1,W ((b1s − θ1t)) . . . fN ,W ((bN s − θN t)), over
primitive vectors (s, t) ∈ Z2, for general pseudomultiplicative functions fi ∈ MKi

and suitably large w.
For any k ∈ N and any polynomial P ∈ Z[x], we set

ρP (k) = �{x (mod k) : P(x) ≡ 0 (mod k)}. (2.5)

Let ρi (k) = ρFi (x,1)(k) if Fi (1, 0) �= 0 and ρi (k) = 1 if Fi (1, 0) = 0. Moreover, put

h∗(k) =
∏

p|k

(
1 − ρ1(p) + · · · + ρN (p)

p + 1

)−1

. (2.6)
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982 T. D. Browning, E. Sofos

To any non-empty bounded measurable regionR ⊂ R2, we associate

KR = 1 + ‖R‖∞ + ∂(R) log(1 + ‖R‖∞) + vol(R)

1 + ‖R‖∞
,

where ‖R‖∞ = sup(x,y)∈R{|x |, |y|}. We say that such a region R is regular if its
boundary is piecewise differentiable, R contains no zeros of F1 · · · FN and there
exists c1 > 0 such that vol(R) � Kc1

R . Bearing all of this in mind, the following result
is [8, Thm. 1.1].

Lemma 2.2 Let R ⊂ R2 be a regular region, let V = vol(R) and let G ⊂ Z2 be
a lattice of full rank, with determinant qG and first successive minimum λG. Assume
that qG � V c2 for some c2 > 0. Let fi ∈ MKi (Ai , Bi , εi ) for 1 � i � N and let

ε0 = max

{
1 + 4

c1
,
4(5 + 3max{ε1, . . . , εN })

c1

}( N∑

i=1

diεi

)
.

Then, for any ε > 0 and w > w0( fi , Fi , N ), we have

∑

(s,t)∈Z2
prim∩R∩G

N∏

i=1

fi,WqG ((bi s − θi t)) � V

(log V )N

h∗
W (qG)

qG

N∏

i=1

E fi (V ;W )

+ K 1+ε0+ε

R

λG
,

where the implied constant depends at most on c1, c2, Ai , Bi , Fi , ε, εi , N ,W.

Let 1 � i � n. In the statement of this result we recall the convention that the
function fi,WqG is defined in such a way that fi,WqG (a) = fi (aWqG ) for any integral
ideal a ⊂ oKi , where

aWqG =
∏

pν‖a
gcd(NK p,W )=1
gcd(NK p,qG )=1

pν .

2.2 Divisor sums over number fields

Let K/Q be a finite extension of degree d. We write o = oK and N = NK for the ring
of integers and ideal norm, respectively. Let σ1, . . . , σd : K ↪→ C be the associated
embeddings and let {ω1, . . . , ωd} be a Z-basis for o. Let a ⊂ o be an integral ideal
with Z-basis {α1, . . . , αd}. We henceforth set �(α1, . . . , αd) = | det(σi (α j ))|2, and
similarly for {ω1, . . . , ωd}. According to [20, Satz 103], we have

�(α1, . . . , αd) = (N a)2DK , (2.7)

where DK = �(ω1, . . . , ωd) is the discriminant of K .
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Counting rational points on quartic del Pezzo surfaces 983

Let F,G ∈ Z[x, y] be non-zero binary forms with F irreducible, G of even degree
and non-zero resultant Res(F,G). We shall assume that F has degree d and that it is
not proportional to y. In particular b = F(1, 0) is a non-zero integer. Let W ∈ N. For
any (s, t) ∈ Z2

prim such that F(s, t) �= 0, we define

hW (s, t) =
∑

k|F(s,t)
gcd(k,W )=1

(
G(s, t)

k

)
. (2.8)

This is a modified version of the functions that appear in (1.2). We recall from (2.4)
the associated binary form F̃(x, y) = bd−1F(b−1x, y), with integer coefficients and
F̃(1, 0) = 1. We conclude that for all non-zero integer multiples c of b, we have

hcW (s, t) =
∑

k|F̃(bs,t)
gcd(k,cW )=1

(
G(s, t)

k

)
,

since k | F̃(bs, t) if and only if k | F(s, t).
We henceforth let θ be a root of the polynomial f (x) = F̃(x, 1). Then θ is an

algebraic integer and K = Q(θ) is a number field of degree d over Q. It follows that
Z[θ ] ⊂ o is an order of K with discriminant �θ = �(1, θ, . . . , θd−1). In view of
(2.7) we have

�θ = [o : Z[θ ]]2DK . (2.9)

We now let L = K (
√
g(θ)), where g(x) = G(b−1x, 1) ∈ Q[x]. We shall assume

that L/K is a quadratic extension and we let DL/K be the ideal norm of the relative
discriminant DL/K . Let f = fL/K be the conductor of the extension L/K . Let J f be
the group of fractional ideals in K coprime to f and let Pf be the group of principal
ideals (a) such that a ≡ 1 (mod f) and a totally positive. As explained byNeukirch [23,
§VII.10], theArtin symbolψ(a) = (

L/K
a ) gives rise to a characterψ : J f/Pf → {±1}

of the ray class group J f/Pf, with a (mod Pf) �→ (
L/K
a ). This has the property that

ψ(p) = 1 if and only if p splits in L , for any unramified prime ideal p ∈ J f.
Let

D = 2bDL/K�θ N f. (2.10)

Note that D is a non-zero integer. Recall the definition (2.3) ofP◦
K of themultiplicative

span of degree 1 prime ideals. We shall mainly work with the subset

PK ={a ⊂ P◦
K : p1p2 | a ⇒ NK p1 �= NK p2 or p1 = p2} (2.11)

cut out by ideals divisible by at most one prime ideal above each rational prime. It is
not hard to see thatPK has positive density inIK . The proof of the following result
is inspired by an argument found in recent work of Reuss [24, Lemma 4].

Lemma 2.3 Let W ∈ N, let (s, t) ∈ Z2
prim such that F(s, t) �= 0, and let D be given

by (2.10). Then the following hold:
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984 T. D. Browning, E. Sofos

(i) a ∈ PK for any integral ideal a | (bs − θ t) such that gcd(N a, DW ) = 1;
(ii) there exists a bijection between divisors a | (bs − θ t) with N a = k coprime to

DW and divisors k | F̃(bs, t) coprime to DW, in which 	(k) = 	K (a) and
(
G(s,t)

k ) = ψ(a);
(iii) we have

hDW (s, t) =
∑

a|(bs−θ t)
gcd(N a,DW )=1

ψ(a).

In particular, when G(s, t) is the constant polynomial 1 in (2.8), then L = K and
ψ is just the trivial character in part (iii). We note that 	K (a) = 	(N a) and τK (a) =
τ(N a) for any ideal a ∈ PK , where τK (a) = ∑d|a 1. Similarly, if h : N → R�0 is
any arithmetic function, we have

∏

p|a
(1 + h(N p)) =

∏

p|N a

(1 + h(p)) ,

for any a ∈ PK . We shall use these facts without further comment in the remainder
of the paper.

Proof of Lemma 2.3 Let (s, t) ∈ Z2
prim such that F(s, t) �= 0.We form the integral ideal

n = (bs−θ t).This has normN n = |F̃(bs, t)|.Let k | F̃(bs, t)with gcd(k, DW ) = 1.
In particular gcd(k,�θ ) = 1.

Part (i) is proved in [8, Lemma 2.3]. Turning to part (ii), it follows from (i) that
(p, n) is a prime ideal for any p | k. Thus there is a bijection between each factorisation
|F̃(bs, t)| = ke, with gcd(k, DW ) = 1, and each ideal factorisation n = ab, with
N a = k coprime to DW and N b = e. In order to complete the proof of part (ii) of
the lemma, it will suffice to show that

(
G(s, t)

p

)
= ψ(p),

where p = (p, n). Since G has even degree we have

(
G(s, t)

p

)
=
(
G(st, 1)

p

)
.

Recall the notation g(x) = G(b−1x, 1).Wemay suppose that p = (p, θ−n), for some
n ∈ Z/pZ such that bst − n ≡ 0 (mod p), and we recall from (2.10) that p � 2DL/K .
We observe that p splits in L = K (

√
g(θ)) if and only if g(n) is a square in o/p, since

g(θ) ≡ g(n) (mod p). But this is if and only if

(
g(bst)

p

)
= 1,
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Counting rational points on quartic del Pezzo surfaces 985

since n ≡ bst (mod p) and N p = p. Noting that g(bst) = G(st, 1), this completes
the proof of part (ii). Finally, part (iii) follows from part (ii). ��

We close this section with an observation about the condition a | (bs − θ t) that
appears in Lemma 2.3, the proof of which is found in [8, Lemma 2.4].

Lemma 2.4 Let a ∈ PK such that gcd(N a, DK ) = 1. Then there exists k = k(a) ∈ Z

such that a | (bs − θ t) ⇔ bs ≡ kt (modN a), for all (s, t) ∈ Z2.

2.3 Uniform upper bounds for conics

Let Q ∈ Z[y1, y2, y3] be a non-singular isotropic quadratic form. Denote its discrim-
inant by �Q and the greatest common divisor of the 2 × 2 minors of the associated
matrix by DQ . It follows from [26, §IV.2] that there is a quadratic Dirichlet character
χQ such that

�{y (mod p) : Q(y) ≡ 0 (mod p), p � y} = p(p − 1)
(
1 + χQ(p)

)+ p − 1,

for any prime p such that p | �Q and p � 2DQ .
The main aim of this section is to establish the following result.

Lemma 2.5 Let w, B1, B2, B3 > 0 be given. Then

�
{
y ∈ Z3

prim : Q(y) = 0, |yi | � Bi
}

� C(Q, w)

⎛

⎝1 + (B1B2B3)
1
3 D

1
2
Q

|�Q | 13

⎞

⎠ ,

with an absolute implied constant, where

C(Q, w) =
∏

pξ ‖�Q
p|2DQ or p�w

τ(pξ )
∏

pξ ‖�Q
p>w
p�2DQ

⎛

⎝
ξ∑

k=0

χQ(p)k

⎞

⎠ .

Since C(Q, w) � τ(�Q), this result is a refinement of work due to Browning and
Heath-Brown [7, Cor. 2]. In fact, although not needed here, one can show that for any
prime p � 2DQ , the p-adic factor appearing above is commensurate with the p-adic
Hardy–Littlewood density for the conic Q = 0. Furthermore, if this curve has no
Qp-points for some prime p � 2DQ , then the constant in the upper bound vanishes.
Therefore, Lemma 2.5 detects conics with a rational point. This is the point of view
adopted in the work of Sofos [29].

Proof of Lemma 2.5 The proof of [7, Cor. 2] relies on earlier work of Heath-Brown
[17, Thm. 2]. The latter work produces an upper bound for the number of lattices
(with determinant depending on the coefficients of Q) that any non-trivial zero of Q
is constrained to lie in. For each prime p such that pξ‖�Q , it turns out that there are
at most L(pξ ) � cpτ(pξ ) lattices to consider, where cp = 1 for p > 2.
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986 T. D. Browning, E. Sofos

Suppose that y ∈ Z3
prim is a non-zero vector for which Q(y) = 0. Let p be a prime

such that pξ‖�Q , with p � 2DQ and χQ(p) = −1. On diagonalising over Z/pξ+1Z,
we may assume that

a1y
2
1 + a2y

2
2 + pξ y23 ≡ 0 (mod pξ+1),

for coefficients a1, a2 ∈ Z such that p � a1a2. In particular, we have χQ(p) =
(−a1a2

p ) = −1. Hence L(pξ ) = 1 when ξ is even, since then y is merely constrained

to lie on the lattice {y ∈ Z3 : y1 ≡ y2 ≡ 0 (mod pξ/2)}. Likewise, when ξ is odd,
there can be no solutions in primitive integers y.

Note that

ξ∑

k=0

χQ(p)k =

⎧
⎪⎨

⎪⎩

τ(pξ ) if χQ(p) = 1,

1 if χQ(p) = −1 and ξ is even,

0 if χQ(p) = −1 and ξ is odd.

It follows that the total number of lattices emerging is

� 1(�Q)
∏

pξ ‖�Q
p|2DQ

τ(pξ )
∏

pξ ‖�Q
p�w
p�2DQ

τ(pξ )
∏

pξ ‖�Q
χQ(p)=1

p>w
p�2DQ

τ(pξ ) = C(Q, w),

where 1(�Q) = 0 (resp. 1(�Q) = 1) if there exists pξ‖�Q such that χQ(p) = −1,
with ξ odd and p � 2DQ (resp. otherwise). This completes the proof of the lemma. ��

2.4 Lattice point counting

We will need general results about counting lattice points in an expanding region. Let
D ⊂ R2 \ {0} be a non-empty open disc and put δ(D) = ‖D‖∞, in the notation of
Sect. 2.1. Let b, c, q ∈ Z and x0 ∈ Z2 such that q � 1 and gcd(x0, q) = 1. For each
e ∈ N such that gcd(e, q) = gcd(b, c, e) = 1, we define the non-empty set

�(e) = {(s, t) ∈ Z2 : bs ≡ ct (mod e)}.

We then fix, once and for all, a non-zero vector of minimal Euclidean length within
�(e) and we call it v(e). We are interested in

N (x) = �{x ∈ Z2
prim ∩ xD ∩ �(e) : x ≡ x0 (mod q)},

as x → ∞. We shall prove the following result.
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Counting rational points on quartic del Pezzo surfaces 987

Lemma 2.6 LetD, b, c, x0, q,�(e), v(e), N (x)beas above, andassume that |v(e)| �
δ(D)x. Then

N (x) = vol(D)x2

ζ(2)eq2
∏

p|e

(
1 + 1

p

)−1∏

p|q

(
1 − 1

p2

)−1

+ O

⎛

⎝(β + γ ) x

⎧
⎨

⎩

⎛

⎝
∑

d|e

1

d|v(e/d)| log
(
2 + δ(D)x

d|v(e/d)|
)⎞

⎠+ 1

e

∑

d|e
|v(d)|

⎫
⎬

⎭

⎞

⎠ ,

where

β = δ(D) + ∂D

q
, γ = vol(D)

δ(D)q2
.

The implied constant in this estimate is absolute.

For any d | e, let us denote v(e/d) by (x0, x1), temporarily. Then

e

d
| (bx0 − cx1) ⇒ (dx0, dx1) ∈ �(e),

whence
|v(e)| � d|v(e/d)|. (2.12)

Moreover, using the basic properties of the minimal basis vector, one obtains

1

e

∑

d|e
|v(d)| � 1

e

∑

d|e

√
d � τ(e)√

e
� τ(e)

|v(e)| . (2.13)

These inequalities may be used to simplify the error term in Lemma 2.6.

Proof of Lemma 2.6 Our argument is based on a modification of the proof of [29,
Lemma 5.3].Wewrite δ = δ(D) for short and put x0 = (s0, t0). Since gcd(s0, t0, q) =
1, an application of Möbius inversion gives
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988 T. D. Browning, E. Sofos

N (x) =
∑

m∈N
gcd(m,eq)=1

μ(m)
∑

(u,v)∈ x
mD∩�(e)

gcd(u,v,e)=1
(u,v)≡m(s0,t0)(mod q)

1

on making the substitution s = mu and t = mv. The inner sum is empty if m is large
enough. Indeed, if it contains any terms then we must have

1 � |v(e)| = min{|y| : y ∈ �(e) \ {0}} � max
{
|y| : y ∈ x

m
D
}

� δx

m
.

Thus, on using the Möbius function to remove the condition gcd(u, v, e) = 1, we find
that

N (x) =
∑

m∈N
gcd(m,eq)=1
m� δx

|v(e)|

μ(m)
∑

d|e
μ(d)

∑

(u,v)∈ x
mD∩�(e)

d|u, d|v
(u,v)≡m(s0,t0)(mod q)

1.

Making the substitution u = ds and v = dt , and arguing as before we find that

N (x) =
∑

m∈N
gcd(m,eq)=1
m� δx

|v(e)|

μ(m)
∑

d|e
d� δx

|v(e/d)|m

μ(d)
∑

(s,t)∈ x
dmD∩�(e/d)

(s,t)≡dm(s0,t0)(mod q)

1.

Now let n ∈ Z be such that n ≡ dm (mod q). Then we can make the change of
variables (s, t) = n(s0, t0) + q(s′, t ′) in the inner sum. Noting that �(e/d) defines a
lattice in Z2 of determinant e/d, the inner sum is found to be

vol(D)x2

dem2q2
+ O

(
1 +

x
dm ∂D

q|v(e/d)|
)

= vol(D)x2

dem2q2
+ O

(
β

x

md|v(e/d)|
)

,

with an absolute implied constant, since the upper bound on d implies that

1 � δx

dm|v(e/d)| .

In summary, we have shown that

N (x) =
∑

m∈N
gcd(m,eq)=1
m� δx

|v(e)|

μ(m)
∑

d|e
d� δx

|v(e/d)|m

μ(d)

(
vol(D)x2

dem2q2
+ O

(
β

x

md|v(e/d)|
))

.
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Counting rational points on quartic del Pezzo surfaces 989

The contribution from the error term is

� βx
∑

d|e

1

d|v(e/d)|
∑

m� δx
d|v(e/d)|

1

m
� βx

∑

d|e

1

d|v(e/d)| log
(
2 + δx

d|v(e/d)|
)

.

The main term equals

vol(D)x2

eq2
∑

m∈N
gcd(m,eq)=1

μ(m)

m2

∑

d|e
d� δx

|v(e/d)|m

μ(d)

d
,

since (2.12) implies that the extra constraint in m-sum is implied by the constraint in
the d-sum. But this is equal to

vol(D)x2

eq2
∑

d|e

μ(d)

d

∑

m∈N
gcd(m,eq)=1

μ(m)

m2 + O

⎛

⎝vol(D)x

δq2
· 1
e

∑

d|e
|v(e/d)|

⎞

⎠ ,

which thereby completes the proof. ��

2.5 Twisted Hooley1-function over number fields

Adopting the notation of Sect. 1, it is now time to reveal the version of the Hooley �-
function that arises in our work. Let K/Q be a number field and let ψK be a quadratic
Dirichlet character on K . We let � : IK → R>0 be the function given by

�(a;ψK ) = sup
u∈R

0�v�1

∣∣∣
∑

d|a
eu<NK d�eu+v

ψK (d)
∣∣∣, (2.14)

for any integral ideal a ∈ IK . We shall put �(a) = �(a; 1) for the corresponding
function in which ψK is replaced by the constant function 1.

We begin by showing that � belongs to the class MK of pseudomultiplicative
functions introduced in Sect. 2.1. For coprime ideals a1, a2 ⊂ oK , any ideal divisor
d | a1a2 can be written uniquely as d = d1d2, where di | ai . Therefore

∑

d|a1a2
eu<NK d�eu+v

ψK (d) =
∑

d1|a1
ψK (d1)

∑

d2|a2
eu−logNK d1<NK d2�eu−logNK d1 ev

ψK (d2).

Thus the triangle inequality yields �(a1a2;ψK ) � τK (a1)�(a2;ψK ), where τK is
the divisor function on ideals of oK . This shows that �(·, ψK ) belongs toMK and an
identical argument confirms this for �(·).

We shall need the following result proved in [30].
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990 T. D. Browning, E. Sofos

Lemma 2.7 Define the function

ε̂(x) =
√
log log log(16 + x)

log log(3 + x)
,

for any x � 1 and recall the definition (2.3) of P◦
K .

(i) There exists a positive constant c = c(K ) such that

∑

a∈P◦
K square-free
NK a�x

�(a)

NK a
� (log x)1+ĉε(x).

(ii) Let ψK be a quadratic Dirichlet character on K and let W ∈ N. There exists a
positive constant c = c(K , ψK ) such that

∑

a∈P◦
K square-free

gcd(NK a,W )=1
NK a�x

�(a;ψK )2

NK a
� (log x)1+ĉε(x).

The implied constant in both estimates is allowed to depend on K and, in the second
estimate, also on W and the character ψK .

3 The lower bound

In order to prove the lower bound in Theorem 1.1, we first appeal to work of Frei,
Loughran and Sofos [15]. It follows from [15, Thm. 1.2] that the desired lower bound
holds when ρ � 4. Suppose that ρ = 3. Then (1.1) implies that in the fibration
π : X → P1 there is at least one closed point P ∈ P1 above which the singular fibre
XP is split. Since the sum c(π) defining the complexity of π in [15, Def. 1.5] is at most
4 for conic bundle quartic del Pezzo surfaces, we infer that c(π) � 3 when ρ = 3, so
that the lower bound in Theorem 1.1 is a consequence of [15, Thm. 1.7]. Throughout
this section, it therefore suffices to assume that ρ = 2 and δ0 = 0, so that X is a
minimal conic bundle surface.

Invoking [15, Thm. 1.6], the lower bound in Theorem 1.1 is a direct consequence
of the divisor sum conjecture that is recorded in [14, Con. 1], for the relevant data
associated to the fibration π . Note that the principal result in [14] only covers cubic
divisor sums, since we still lack the technology to asymptotically evaluate divisor
sums of higher degree with a power saving in the error term. The goal of this section
is to estimate certain quartic divisor sums, with a logarithmic saving in the error term,
which turns out to be sufficient for proving the lower bound inTheorem1.1. The divisor
sums relevant here shall involve complicated quadratic symbols whose modulus tends
to infinity, a delicate task that will be the entire focus of this section.
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Counting rational points on quartic del Pezzo surfaces 991

We proceed to explain the particular case of the divisor sum conjecture that is
germane here. Assume that we have forms F1, . . . , Fn,G1, . . . ,Gn ∈ Z[x, y] with

Fi irreducible, Fi � Gi , 2 | deg(Gi ), and
n∏

i=1

Fi separable.

For each i such that Fi (1, 0) �= 0, we define the associated binary form F̃i (x, y) =
bdi−1
i Fi (b

−1
i x, y), as in (2.4), where di = deg Fi and bi = Fi (1, 0). For such i we let

θi ∈ Q be a fixed root of F̃i (x, 1) = 0. If, on the other hand, Fi (x, y) is proportional
to y, we define θi = −Fi (0, 1). We may assume that

n∑

i=1

di = 4 (3.1)

and thatGi (θi , 1) /∈ Q(θi )
2 for every i , because in the correspondence outlined in [15],

the binary forms F1, . . . , Fn are equal to the closed points �1, . . . , �n from Sect. 1.
Indeed, under this correspondence, the statement Gi (θi , 1) /∈ Q(θi )

2 is equivalent to
the singular fibre above�i being non-split, which holds for any i since we are working
with minimal conic bundle surfaces.

Let

f (d) =
∏

p|d

(
1 − 2

p

)
. (3.2)

We need to prove that there exists a finite set of primes Sbad = Sbad(Fi ,Gi ) such that
for all W ∈ N, all (s0, t0) ∈ Z2

prim, and all non-empty compact discs D ⊂ R2, which
together satisfy the conditions

(C1) p ∈ Sbad ⇒ p | W ;
(C2)

∏n
i=1 Fi (s0, t0) �= 0;

(C3) (s, t) ∈ R2 ∩ D ⇒∏n
i=1 Fi (s, t) �= 0; and

(C4) for all (s, t) ∈ Z2
prim ∩ xD with x � 1 and (s, t) ≡ (s0, t0) (mod W ) we have

(
Gi (s, t)

Fi (s, t)W

)
= 1;

we have the lower bound DW (x) � x2, where

DW (x) =
∑

(s,t)∈Z2
prim∩xD

(s,t)≡(s0,t0) (modW )

n∏

i=1

⎛

⎝ f (Fi (s, t)W )
∑

d|Fi (s,t)W

(
Gi (s, t)

d

)⎞

⎠ . (3.3)

Here, we recall the notation mW =∏p�W pνp(m) for all m,W ∈ N.
We shall prove this conjectured lower bound when Sbad is taken to be the set of all

primes up to a constant w = w(Fi ,Gi ). In what follows we shall often write that we
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992 T. D. Browning, E. Sofos

need to enlarge w. This statement is to be interpreted as having already taken a very
large constant w at the outset of the proof of the conjecture, rather than increasing w

within the confines of the lower bound arguments. The primary goal of this section
is now to establish the following bound, which directly leads to the lower bound in
Theorem 1.1.

Proposition 3.1 Let Fi ,Gi , f be as above. Then there exists a constantw = w(Fi ,Gi )

such for any W , (s0, t0),D satisfying (C1)–(C4) as above, we have

DW (x) � x2.

Here the implied constant depends on Fi ,Gi , s0, t0,D, w and W, but not on x.

Suppose that ν > νp(W ) for all p | W and write W0 = ∏
p|W pν . Then, since

every summand in (3.3) is non-negative and Fi (s, t)W = Fi (s, t)W0 for all 1 � i � n,
we conclude that DW (x) � DW0(x). In this way we see that it will suffice to prove
the lower bound in Proposition 3.1 under the assumption that W =∏p|W pν with

ν > max
1�i�n
p|W

{νp(Fi (s0, t0))}.

In this case the identity Fi (s0 + pνX , t0 + pνY ) ≡ Fi (s0, t0) (mod pν) guarantees
that νp(Fi (s, t)) = νp(Fi (s0, t0)) for any (s, t) appearing in the outer summation of
(3.3) and any p | W . Hence, for such (s, t), we can always assume that

Fi (s, t)W = |Fi (s, t)|
∏

p|W
p−νp(Fi (s0,t0)). (3.4)

3.1 Dirichlet’s hyperbola trick

Let i ∈ {1, . . . , n}. For any (s, t) ∈ Z2 appearing in (3.3), let

ri (s, t) =
∑

k|Fi (s,t)W

(
Gi (s, t)

k

)
.

Then, possibly on enlarging w, it follows from Lemma 2.3 that

ri (s, t) =
∑

d|(bi s−θi t)
gcd(Ni d,W )=1

d∈Pi

ψi (d),

where d runs over integral ideals of Ki = Q(θi ), Ni denotes the ideal norm NKi /Q

andPi = PKi , in the notation of (2.11). Furthermore, for all (s, t) in (3.3), we have

Ni d � Ni (bi s − θi t) = |F̃i (bi s, t)| � ci x
di ,
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for some positive constant ci that depends at most on Fi and D . We define

X = x max

{
c

1
d1
1 , . . . , c

1
dn
n

}
,

so that the previous inequality becomes Ni d � Xdi .
On relabelling the indices we may suppose that dn = min1�i�n di . In particular,

we have
dn � min

1�i�n
deg(�i ). (3.5)

Suppose that n > 1. Then for each i ∈ {1, . . . , n − 1} and (s, t) appearing in (3.3),
we set

r (0)
i (s, t) =

∑

d|(bi s−θi t), d∈Pi

gcd(Ni d,W )=1

Ni d�X
di
2

ψi (d), r (1)
i (s, t) =

∑

e|(bi s−θi t), e∈Pi

gcd(Ni e,W )=1

Ni e�X− di
2 Fi (s,t)W

ψi (e).

Dirichlet’s hyperbola trick implies that

ri (s, t) = r (0)
i (s, t) + r (1)

i (s, t). (3.6)

Indeed, if (bi s−θi t)W denotes the part of the ideal (bi s−θi t) that is composed solely
of prime ideals whose norms are coprime to W , as in (2.1), then the sum in ri (s, t) is
over ideals d, e such that de = (bi s − θi t)W . Recalling (C4), it follows from part (ii)
of Lemma 2.3 that ψi ((bi s − θi t)W ) = 1. This concludes the proof of (3.6).

We proceed by introducing the quantity

L = (log x)α, (3.7)

for some α > 0 that will be determined in due course. (When n > 1 we shall take α

to be a large constant, but when n = 1 it will be important to restrict to 0 < α < 1.)
For (s, t) appearing in (3.3), we proceed by defining

r (0)
n (s, t) =

∑

d|(bns−θn t), d∈Pn
gcd(Nn d,W )=1

Nn d�L−1X
dn
2

ψn(d), r (1)
n (s, t) =

∑

e|(bns−θn t), e∈Pn
gcd(Nn e,W )=1

Nn e�L−1X− dn
2 Fn(s,t)W

ψn(e)

and

r (∞)
n (s, t) =

∑

d|(bns−θn t), d∈Pn
gcd(Nn d,W )=1

L−1X
dn
2 <Nn d<LX

dn
2

ψn(d).
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994 T. D. Browning, E. Sofos

As before, we may now write

rn(s, t) = r (∞)
n (s, t) + r (0)

n (s, t) + r (1)
n (s, t). (3.8)

For each j = ( j1, . . . , jn) ∈ {0, 1}n , we define

Dj(x) =
∑

(s,t)∈Z2
prim∩xD

(s,t)≡(s0,t0) (modW )

n∏

i=1

f (Fi (s, t)W )r ( ji )
i (s, t),

and

D∞(x) =
∑

(s,t)∈Z2
prim∩xD

(s,t)≡(s0,t0) (modW )

r (∞)
n (s, t)

n−1∏

i=1

ri (s, t),

in which we recall the definition (3.2) of f . (Here, we recall our convention that
products over empty sets are equal to 1.) Injecting (3.6) and (3.8) into (3.3) yields

DW (x) −
∑

j∈{0,1}n
Dj(x) � D∞(x).

The validity of Proposition 3.1 is therefore assured, provided we can show that

Dj(x) � x2 (3.9)

and
D∞(x) = o(x2). (3.10)

We shall devote Sects. 3.2–3.4 to the proof of (3.10) and Sect. 3.5 to the proof of (3.9).

3.2 The generalised Hooley1-function

In this section we initiate the proof of (3.10). Define

A(∞)
n (x) =

⎧
⎪⎪⎨

⎪⎪⎩
(s, t) ∈ Z2

prim ∩ xD :
(s, t) ≡ (s0, t0) (modW )

∃d ∈ Pn such that:
• d | (bns − θnt)W
• L−1X

dn
2 < Nn d < LX

dn
2

⎫
⎪⎪⎬

⎪⎪⎭
. (3.11)

It immediately follows that

D∞(x) =
∑

(s,t)∈A(∞)
n (x)

r (∞)
n (s, t)

n−1∏

i=1

ri (s, t).
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Defining

B∞(x) =
∑

(s,t)∈A(∞)
n (x)

n−1∏

i=1

ri (s, t), (3.12)

we use Cauchy’s inequality to arrive at

D∞(x) � B∞(x)
1
2

⎛

⎜⎝
∑

(s,t)∈A(∞)
n (x)

∣∣∣r (∞)
n (s, t)

∣∣∣
2 n−1∏

i=1

ri (s, t)

⎞

⎟⎠

1
2

.

Recall the definition (2.14) of the twisted Hooley �-function �(a;ψn) associated
to the Dirichlet character ψn and any integral ideal a. Putting

H∞(x) =
∑

(s,t)∈Zprim∩xD
(s,t)≡(s0,t0) (modW )

�((bns − θnt);ψn)
2
W

n−1∏

i=1

ri (s, t), (3.13)

and partitioning the interval (L−1X
dn
2 , LX

dn
2 ) into at most O(log log x) e-adic inter-

vals, we deduce that

∑

(s,t)∈A(∞)
n (x)

∣∣∣r (∞)
n (s, t)

∣∣∣
2 n−1∏

i=1

ri (s, t) � (log log x)2H∞(x).

In summary, we have shown that

D∞(x) � (log log x)
√
B∞(x)H∞(x).

Therefore, in order to prove (3.10), it will be sufficient to prove that there exists a
constant δ > 0, that depends only on the data given at the start of Sect. 3, such that

B∞(x) � x2(log x)−δ (3.14)

and
H∞(x) � x2(log x)o(1). (3.15)

We shall call B∞(x) the interval sum and H∞(x) the Bretèche–Tenenbaum sum.
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3.3 The interval sum

By recycling work of la Bretèche and Tenenbaum [4, § 7.4], the case n = 1 is easy to
handle. Indeed, in this case F1 is an irreducible quartic form and (3.12) becomes

B∞(x) = �A(∞)
1 (x) � �

⎧
⎪⎪⎨

⎪⎪⎩
(s, t) ∈ Z2

prim ∩ xD :
(s, t) ≡ (s0, t0) (modW )

∃d ∈ P1 such that:
• d | (b1s − θ1t)W
• X2/L < N1 d < LX2

⎫
⎪⎪⎬

⎪⎪⎭
.

Note that assumption (C2) ensures that |F1(s, t)| � 1whenever (s, t) ∈ D . Increasing
w so that every prime factor of b1 also divides W , shows that

F̃1(b1s, t)W = (bd1−1
1 F1(s, t))W = F1(s, t)W .

Thus it follows from (3.4) that F̃1(s, t)W � |F1(s, t)|, for implied constants that
depend on F1, s0, t0, w and W . Hence

N1((b1s − θ1t)W ) = F̃1(b1s, t)W � |F1(s, t)| � x4 � X4.

Therefore, on introducing e through the factorisation de = (b1s − θ1t)W , we can infer
that we must have either

X2/L � N1 d � X2 or X2/L � N1 e � X2.

Without loss of generality we shall assume that we are in the former setting. Therefore
there exist constants c0, c1 > 0 such that

B∞(x) � �

{
(s, t) ∈ Z2

prim ∩ xD : (s, t) ≡ (s0, t0) (modW )

∃d | F1(s, t) s.t. c0x2/L < d < c1x2

}
.

But now we can employ the bound [4, Eq. (7.41)], with

T = F1, � = ξ = x, y1 = c0x
2/L, y2 = c1x

2, and 1 � σ, ϑ � 1.

This implies that for any η ∈ (0, 1
2 ), we have

B∞(x) � x2
(

L

(log x)Q(2η)
+ log log x

(log x)Q(1+η)

)
,

where Q(λ) = λ log λ−λ+1. In particular, Q(2η) → 1 as η → 0+ and Q(1+η) > 0
for all η > 0. Recalling the definition (3.7) of L , this means that provided α < 1, we
may choose η > 0 small enough (but away from 0), so as to ensure that (3.14) holds
when F is irreducible.

It remains to establish (3.14) when n > 1. In this case (3.5) implies that dn =
deg(Fn) � 2. Fix η ∈ (0, 1). To estimate B∞(x), drawing inspiration from [4, § 9.3],
we shall divide the terms in the sum (3.12) into two categories.
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First case: (bns − �nt) has many prime divisors

Wedenote by B(1)∞ (x) the contribution to B∞(x) from the set of vectors (s, t) for which
	n((bns − θnt)W ) > (1+η) log log x, where 	n(a) = 	Kn (a) is the total number of
prime ideal factors of an ideal a ⊂ oKn . Recall that, as in Sect. 3.1, we denote NKn (a)
by Nn(a). We have

B(1)∞ (x) � (log x)−(1+η) log(1+η)
∑

(s,t)∈Z2
prim∩xD

(1 + η)	n((bns−θn t)W )
n−1∏

i=1

ri (s, t),

(3.16)
since (1 + η)−(1+η) log log x = (log x)−(1+η) log(1+η). Our plan is now to apply
Lemma 2.2 for N = n, with fN (a) = (1 + η)	n(aW ) and

fi (a) =
∑

d|a
d∈Pi

ψi (d),

for i < N . Fix any ε > 0. It is easy to see that if i < N then there exists B > 0 such
that fi ∈ MKi (2, B, ε). Thus, in the notation of Lemma 2.2, one can take

i < N ⇒ εi = ε. (3.17)

When i = N , however, we will show that for every ε > 0 there exists w such that if
W is given by (2.2) then

(1 + η)	n(aW ) ∈ MKn (1 + η, 1, ε).

Indeed, we have

(1 + η)	n(aW ) =
∏

pξ ‖a
gcd(Nn p,W )=1

(1 + η)ξ �
∏

pξ ‖a
Nn p>w

(1 + η)ξ .

Taking w � 21/ε, so that (1 + η) � wε, yields

∏

pξ ‖a
Nn p>w

(1 + η)ξ �
∏

pξ ‖a
Nn p>w

wεξ �
∏

pξ ‖a
Nn p>w

(Nn p)
εξ � (Nn a)

ε.

This means that in the notation of Lemma 2.2 one can take

εN = ε. (3.18)

Furthermore, we shall take G = Z2 andR = xD . Thus qG = 1,R is regular and we
have V � x2 and KR � x log x , in the notation of the lemma. This means that for
large x we can take c1 = 1, hence by (3.1), (3.17) and (3.18) we have
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998 T. D. Browning, E. Sofos

N∑

i=1

diεi = 4ε.

Therefore, assuming that ε ∈ (0, 1) is fixed, the relevant constant in Lemma 2.2 is
ε0 = max{5, 20+ 12ε}4ε � 199ε. This shows that if ε is fixed and 200ε < 1/3 then

K 1+ε0+ε

R

λG
� (x log x)1+200ε � x3/2,

hence the secondary term of Lemma 2.2 makes a satisfactory contribution. The con-
tribution of the first term of Lemma 2.2 towards the sum in (3.16) is

� x2

(log x)n
exp

⎛

⎜⎜⎜⎝

n−1∑

i=1

∑

p∈P◦
i

Ni p�x2

1 + ψi (p)

Ni p
+ (1 + η)

∑

p∈P◦
n

Nn p�x2

1

Nn p

⎞

⎟⎟⎟⎠

� x2

(log x)n
exp((n − 1) log log x + (1 + η) log log x)

� x2(log x)η.

The proof of these estimates is standard and will not be repeated here. (See Heilbronn
[18], for example.) Thus B(1)∞ (x) � x2(log x)−(1+η) log(1+η)+η. The exponent of the
logarithm is strictly negative for all η > 0, which is clearly sufficient for (3.14).

Second case: (bns − �nt) has few prime divisors

We denote by B(2)∞ (x) the contribution to B∞(x) from the set of vectors (s, t) for
which 	n((bns − θnt)W ) � (1 + η) log log x . Recall from the definition (3.11) of
A(∞)
n (x) that there exists d ∈ Pn such that d | (bns − θnt), with gcd(Nn d,W ) = 1

and

L−1X
dn
2 < Nn d < LX

dn
2 .

Condition (C3) ensures that Nn((bns−θnt)W ) � Xdn . Defining e via the factorisation
de = (bns − θnt)W , we can then infer that gcd(Nn e,W ) = 1 and e ∈ Pn , with

L−1X
dn
2 � Nn e � LX

dn
2 , where the implied constants depend at most on D and

Fn . Note that

	n(d) + 	n(e) = 	n((bns − θnt)W ) � (1 + η) log log x .

Thus, either 	n(d) � 1
2 (1 + η) log log x , or 	n(e) � 1

2 (1 + η) log log x . We will
assume without loss of generality that we are in the latter case.
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It follows that

B(2)∞ (x) �
∑

e∈Pn

L−1X
dn
2 �Nn e�LX

dn
2

	n(e)� 1
2 (1+η) log log x

gcd(Nn e,W )=1

Be(x),

where

Be(x) =
∑

(s,t)∈Z2
prim∩xD

(s,t)≡(s0,t0) (modW )
e|(bns−θn t)

n−1∏

i=1

ri (s, t).

This is a non-archimedean version of Dirichlet’s hyperbola trick, where instead of
looking at the complimentary divisor to reduce the size, we have tried to reduce the
number of prime divisors. Lemma 2.4 implies that the condition e | (bns−θnt) defines
a lattice in Z2 of determinant e = Nn e, which we shall call G. Hence we may write

Be(x) =
∑

(s,t)∈Z2
prim∩xD∩G

(s,t)≡(s0,t0) (modW )

n−1∏

i=1

ri (s, t).

Let v ∈ Z2 be such that |v| = max{|v1|, |v2|} is the first successive minimum of G.
Lemma 2.2 can be applied withR = xD , qG = e, N = n − 1, and

fi (a) =
∑

d|a
ψi (d),

for 1 � i � n − 1. For such fi one can take εi in Lemma 2.2 to be arbitrarily small,
whence

Be(x) � x2
h∗(e)
e

+ x1+ε

|v| ,

for any ε > 0, where

h∗(e) =
∏

p|k

(
1 − ρ1(p) + · · · + ρn−1(p)

p + 1

)−1

.

(Note that h∗
W (e) = h∗(e), since gcd(e,W ) = 1.)

We have e = Nn e � LX
dn
2 and so |v| �

√
LX

dn
2 �

√
LX , since dn � 2.

Since Fn is irreducible, we note that dn = 1 when Fn(v) = 0. Next, we introduce
g(e) = �{e ∈ Pn : Nn e = e}. The second term is therefore seen to make the overall
contribution
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� x1+ε
∑

|v|�√
LX

Fn(v) �=0

1

|v|
∑

e|Fn(v)
g(e) + x1+ε

∑

|v|�√
LX

Fn(v)=0

1

|v|
∑

e�L
√
X

g(e) � x
3
2+2ε,

which is satisfactory.
Next, the overall contribution from the term x2h∗(e)/e is O(x2�), where

� =
∑

L−1X
dn
2 �e�LX

dn
2

	(e)� 1
2 (1+η) log log x

gcd(e,W )=1

g(e)h∗(e)
e

.

Letting A =
(
1+η
2

)−1
> 1, we get

� � (log x)
log A
A

∑

L−1X
dn
2 �e�LX

dn
2

gcd(e,W )=1

g(e)h∗(e)
e

A−	(e).

Put

S(y) =
∑

e�y
gcd(e,W )=1

g(e)h∗(e)A−	(e).

Then it follows from Shiu’s work [27] that

S(y) � y

log y
exp

⎛

⎜⎜⎝A−1
∑

p�y
p�W

g(p)h∗(p)
p

⎞

⎟⎟⎠� y

log y
exp

⎛

⎜⎜⎝A−1
∑

p�y
p�W

ρn(p)

p

⎞

⎟⎟⎠

� y(log y)
1
A−1.

Partial summation now leads to the estimate

B(2)∞ (x) � x2(log log x)(log x)
log A
A + 1

A−1

= x2(log log x)(log x)
η−1
2 −

(
1+η
2

)
log
(
1+η
2

)

.

The exponent of log x is strictly negative for all η ∈ (0, 1), which thereby completely
settles the proof of (3.14).
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3.4 The Bretèche–Tenenbaum sum

We saw in Sect. 2.5 that the Hooley �-function defined in (2.14) belongs toMn . The
stage is now set for an application of Lemma 2.2 with N = n and G = Z2, and with
fN (a) = �(a;ψn)

2 and fi (a) =∑d|a ψi (d), for i < N . For such fi one can take εi
in Lemma 2.2 to be arbitrarily small, whence this gives

H∞(x) � x2

log x
E�(·;ψn)2

(x2;W )

in (3.13). The statement of (3.15) now follows from part (ii) of Lemma 2.7.

3.5 Small divisors

In this section we establish (3.9), as required to complete the proof of Proposition 3.1.
When n > 1, the proof follows from the treatment in [15] and will not be repeated
here. Thus, provided that one takes α to be sufficiently large in the definition (3.7) of L ,
one gets an asymptotic formula for Dj(x) with a logarithmic saving in the error term.
The proof of (3.9) when n = 1 is more complicated. In this case F1 is an irreducible
binary quartic form. In order to simplify the notation, we shall drop the index n = 1
in what follows (and in particular, we shall denote PK1 = P1 by P). Our task is to
estimate

Dj (x) =
∑

(s,t)∈Z2
prim∩xD

(s,t)≡(s0,t0) (modW )

f (F(s, t)W )r ( j)(s, t),

for j ∈ {0, 1}. Opening up the definition of f (F(s, t)W ), it follows from parts (i) and
(ii) of Lemma 2.3 that

f (F(s, t)W ) =
∑

e|F(s,t)
gcd(e,W )=1

τ(e)μ(e)

e
=

∑

e|(bs−θ t)
gcd(N e,W )=1

e∈P

τ(e)μ(e)

N e
,

since τ(N e) = τK1(e) = τ(e), say, for any e ∈ P .
Let y > 0. The overall contribution to Dj (x) from e such that N e > y is

�
∑

y<N e�x4

gcd(N e,W )=1
e∈P

τ(e)|μ(e)|
N e

∑

(s,t)∈Z2
prim∩xD

e|(bs−θ t)

r ( j)(s, t).

The condition e | (bs − θ t) defines a lattice in Z2 of determinant N e by Lemma 2.4.
Thus we can apply Lemma 2.2, finding that
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1002 T. D. Browning, E. Sofos

∑

(s,t)∈Z2
prim∩xD

e|(bs−θ t)

r ( j)(s, t) � x2
h∗
W (N e)

N e
+ x1+

ε
2 ,

for any ε > 0, where h∗ is given by (2.6) with N = 1. Hence we arrive at the overall
contribution

� x2
∑

N e>y

(N e)−2+ε + x1+
ε
2
∑

N e�x4

(N e)−1+ ε
8 � x2√

y
+ x1+ε,

from N e > y. Taking y = log log x , we therefore conclude that

Dj (x) =
∑

N e�log log x
gcd(N e,W )=1

e∈P

τ(e)μ(e)

N e

∑

(s,t)∈Z2
prim∩xD

e|(bs−θ t)
(s,t)≡(s0,t0) (modW )

r ( j)(s, t) + O

(
x2√

log log x

)
.

Note that by enlarging w we may assume that any prime factor of b is present in the
factorisation of W .

We henceforth focus on the case j = 0, the case j = 1 being similar. First, we
define for any a ∈ P with gcd(N a,W ) = 1 the set

H (a) = {(s, t) ∈ Z2 : a | (bs − θ t)
}
.

By Lemma 2.4 there exists k = k(a) ∈ Z such that a vector (s, t) ∈ Z2 belongs to
H (a) if and only if N a | bs − kt . Therefore, H (a) is a lattice in Z2 of determinant
N a. Recalling the definition of r (0)(s, t) we obtain

D0(x) =
∑

N e�log log x
gcd(N e,W )=1

e∈P

τ(e)μ(e)

N e

∑

N d�L−1X2

gcd(N d,W )=1
d∈P

ψ(d)
∑

(s,t)∈Z2
prim∩xD

(s,t)∈H (d)∩H (e)
(s,t)≡(s0,t0) (modW )

1

+ O

(
x2√

log log x

)
.

(3.19)

In fact, for coprime integers s, t , part (i) of Lemma 2.3 ensures that we only have
(s, t) ∈ H (d) ∩ H (e) if the least common multiple [d, e] of d and e belongs to
P . It now follows from Lemma 2.4 that there exists k = k(d, e) ∈ Z such that
(s, t) ∈ H (d) ∩ H (e) if and only if bs ≡ kt (mod M), where M = [N d,N e] is
the least common multiple of N d and N e. We let v(M) = v(M; d, e) denote a fixed
non-zero vector (s, t) ∈ Z2 of minimal length such that bs ≡ kt (mod M).

Note that gcd(b, k, M) = 1, since gcd(M,W ) = 1 and we chose W in such a way
that any prime factor of b also divides W . The inner sum over s, t is now in a form
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Counting rational points on quartic del Pezzo surfaces 1003

that is suitable for Lemma 2.6, with c = k, e = M and

1 � δ(D) � 1, β, γ � 1.

Arguing as in [15, Sects.4.3–4.5], once inserted into (3.19), the contribution from the
main term (denoted by Mψ in [15]) in Lemma 2.6 is � x2. This is satisfactory for
(3.9). It remains to consider the effect of substituting the error term in Lemma 2.6.

Let

r∗(m) = �{a ∈ P◦ : N a = m, gcd(N a,W ) = 1},

for any m ∈ N, where we recall that P◦ is the multiplicative span of prime ideals
with residue degree 1. This function is multiplicative and has constant average order.
We claim that r∗(cd) � r∗(c)r∗(d) for all c, d ∈ N, which we shall keep in use
throughout this section. It is enough to consider the case c = pa and d = pb for a
rational prime p � W with r∗(p) �= 0. Letting p1, . . . , pm+1 be all the degree 1 prime
ideals above p, we easily see that r∗(pk) = (k+m

m

)
. We therefore have to verify that

(
a + b + m

m

)
�
(
a + m

m

)(
b + m

m

)
,

for all integers a, b,m � 0. This is obvious when m = 0. When m � 1 the inequality
is equivalent to

1 �
m∏

i=1

(a + i)(b + i)

i(a + b + i)
,

the validity of which is clear.
The error term in Lemma 2.6 is composed of two parts. According to (2.13), the

second part contributes

� x
∑

N d�x2/L
N e�log log x

τ(e)|μ(e)|
N e

· 1

M

∑

d|M

√
d,

with M = [N d,N e]. Taking M � N d = q, say, and

∑

d|M

√
d � τ(N e)

√
N e
∑

d|q

√
d,

we conclude that the second part contributes

� x
∑

q�x2/L
N e�log log x

τ(e)2|μ(e)|√
N e

r∗(q)

q

∑

d|q

√
d � x log log x

∑

q�x2/L

r∗(q)

q

∑

d|q

√
d.
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1004 T. D. Browning, E. Sofos

Writing q = cd and recalling r∗(cd) � r∗(c)r∗(d), this is

� x log log x
∑

cd�x2/L

r∗(c)r∗(d)

c
√
d

� x log log x
∑

c�x2/L

r∗(c)
c

√
x2

cL

� L− 1
2 x2 log log x .

This is satisfactory for any α > 0 in (3.7).
Finally, the overall contribution from the first part of the error term of Lemma 2.6

is

� x
∑

Nd�x2/L
Ne�log logx

[d,e]∈P
gcd(NdNe,W )=1

τ(e)|μ(e)|
N e

∑

u∈N
u|M

1

u|v(M/u)| log
(
2 + x

u|v(M/u)|
)

.

Here we recall that v(M/u) is a vector (s, t) ∈ Z2 of minimal length for which
bs ≡ kt (mod M/u). In particular it also depends on d and e since k does. Put d = N d
and e = N e, so that M = [d, e]. If u | [d, e] then we claim that there is a factorisation
u = u′u′′ such that u′ | d, u′′ | e and such that d/u′ divides [d, e]/u. To see this let
νp(d) = δ and νp(e) = ε for any prime p. If u | [d, e] then νp(u) � max{δ, ε} for
any prime p. We take

u′ =
∏

pν‖u
pmin{ν,δ} and u′′ =

∏

pν‖u
pν−min{ν,δ}.

It is clear that u′ | d and u′′ | e. Moreover, one easily checks that

νp(d/u′) = δ − min{ν, δ} � max{δ, ε} − ν = νp([d, e]/u),

for any prime p, whence d/u′ | [d, e]/u. In particular, this implies that

|v([d, e]/u; d, e)| � |v(d/u′; d, e)|.

Our argument so far shows that the term in which we are interested is

� x
∑

e�log log x

τ(e)2

e

∑

e∈P
N e=e

S(e), (3.20)
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where

S(e) =
∑

d�x2/L
gcd(d,W )=1

∑

d∈P
N d=d

∑

u′|d

1

u′|v(d/u′)| log
(
2 + x

u′|v(d/u′)|
)

�
∑

u′�x2/L
gcd(u′,W )=1

1

u′
∑

d ′�x2/(u′L)

gcd(d ′,W )=1

∑

d∈P
N d=d ′u′

1

|v(d ′)| log
(
2 + x

|v(d ′)|
)

,

with the caveat that v(d ′) still depends on d and e. Moreover if there exists d ∈ P with
gcd(N d,W ) = 1 such that N d = d ′u′ then there exists d′ ∈ P with gcd(N d′,W ) =
1 such that N d′ = d ′. Hence d′ must divide (v(d ′)1 − θv(d ′)2) and so it follows that
d ′ | F(v(d ′)). Furthermore, we note that |v(d ′)| � √

d ′ � x/
√
L in our upper bound

for S(e).
The contribution from d ′, d for which |v(d ′)| � x/(log x)ϒ is seen to be

� log x
∑

u′�x2/L
gcd(u′,W )=1

r∗(u′)
u′

∑

v=(v1,v2)∈Z2

0<|v|�x/(log x)ϒ

1

|v|
∑

d ′|F(v)

r∗(d ′) � x(log x)−ϒ+10,

by [1]. Here we have used the fact that r∗(d ′) � τ4(d ′) and

∑

u′�U

r∗(u′)
u′ �

∑

u′�U

rK (u′)
u′ � logU , (3.21)

where rK are the coefficients in the associated Dedekind zeta function. Once inserted
into (3.20) this contributes

� x2(log x)−ϒ+10
∑

e�log log x

τ(e)2r∗(e)
e

� x2(log x)−ϒ+9,

which is satisfactory, on taking ϒ sufficiently large.
In the opposite case, we plainly have d ′ � |v(d ′)|2 � x2/(log x)2ϒ, whence

log(2 + x/|v(d ′)|) �ϒ log log x . Moreover, the inequalities d ′ � x2/(u′L) and
d ′ � x2/(log x)2ϒ together provide us with u′ � (log x)2ϒ . Thus it remains to study
the contribution

�ϒ log log x
∑

u′�(log x)2ϒ

1

u′
∑

x2/(log x)2ϒ�d ′�x2/L
gcd(d ′,W )=1

∑

d∈P
N d=d ′u′

|v(d ′)|�x/(log x)ϒ

1

|v(d ′)|

�ϒ log log x
∑

u′�(log x)2ϒ

1

u′
∑

v∈Z2

|v|�x/
√
L

1

|v|
∑

x2/(log x)2ϒ�d ′�x2/L
gcd(d ′,W )=1

∑

d∈P
N d=d ′u′

bv1≡kv2 (mod d ′)

1,
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where we recall that k depends on d and e. For any d ∈ P with N d = d ′u′ and
gcd(N d,W ) = 1, there is a factorisation d = d1d2 with d1, d2 ∈ P such that
N d1 = d ′, N d2 = u′. Hence

∑

d∈P
N d=d ′u′

bv1≡kv2 (mod d ′)

1 � r∗(u′)
∑

d1∈P
N d1=d ′

d1|(bv1−θv2)

1,

by Lemma 2.4. On appealing to (3.21) to estimate the u′-sum, we are left with the
contribution

�ϒ (log log x)2
∑

v∈Z2

|v|�x/
√
L

1

|v|
∑

d1∈P
d1|(bv1−θv2)

x2/(log x)2ϒ�N d1�x2/L
gcd(N d1,W )=1

1.

We will need to restrict the outer sum to a sum over primitive vectors in order to
bring Lemma 2.2 into play. Let h = gcd(v1, v2) so that v = hw for w ∈ Z2

prim. Then
(bv1 − θv2) = (h)(bw1 − θw2), where (h) is the principal ideal generated by h. By
unique factorisation, we have d1 | (h)(bw1 − θw2) if and only if

f−1d1 | (bw1 − θw2),

where f is defined to be the greatest common ideal divisor of d1 and (h). Writing
c = f−1d1, we see that

∑

d1∈P
d1|(bv1−θv2)

x2/(log x)2ϒ�N d1�x2/L
gcd(N d1,W )=1

1 �
∑

f∈P
f|(h)

gcd(N f,W )=1

∑

c∈P
c|(bw1−θw2)

x2

(log x)2ϒ N f
�N c� x2

L N f

gcd(N c,W )=1

1.

Splitting into e-adic intervals the inner sum is easily seen to be

�ϒ (log log x)�((bw1 − θw2)W ),

where �(·) = �(·, 1), in the notation of Sect. 2.5. Since there are at most r∗(h) ideals
f ∈ P such that f | (h) and gcd(N f,W ) = 1, we are left with the final contribution

�ϒ (log log x)3
∑

h

r∗(h)

h

∑

w∈Z2
prim

|w|�x/(h
√
L)

�((bw1 − θw2)W )

|w| .

Splitting into dyadic intervals, we now apply Lemma 2.2 withG = Z2, combined with
part (i) of Lemma 2.7. Noting that one can take ε1 > 0 in Lemma 2.2 to be arbitrarily
small, we deduce that the sum over w can be bounded by
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�ε (log x)ε/2
x

h
√
L

for any ε > 0. This leads to the overall bound

�ε,ϒ

x(log x)ε√
L

∑

h

r∗(h)

h2
�ε,ϒ

x(log x)ε√
L

,

which thereby completes the proof of (3.9).

4 The upper bound

This section is concerned with proving the upper bound in Theorem 1.1. Let X be
a quartic del Pezzo surface defined over Q, containing a conic defined over Q. We
continue to follow the convention that all implied constants are allowed to depend in
any way upon the surface X .

We appeal to [15, Thm. 5.6 andRem. 5.9]. This shows that there are binary quadratic
forms q(i)

1,1, q
(i)
1,2, q

(i)
2,2 ∈ Z[s, t], for i = 1, 2, such that

N (B) �
∑

i=1,2

∑

(s,t)∈Z2
prim

|s|,|t |�√
B

�(i)(s,t) �=0

�
{
y ∈ Z3

prim : Q(i)
s,t (y) = 0, ‖y‖s,t � B

}
, (4.1)

where ‖y‖s,t = max{|s|, |t |}max{|y1|, |y2|} and

Q(i)
s,t (y) = q(i)

1,1(s, t)y
2
1 + q(i)

1,2(s, t)y1y2 + q(i)
2,2(s, t)y

2
2 + y23 .

Moreover, the discriminant �(i)(s, t) of Q(i)
s,t is a separable quartic form. The indices

i = 1, 2 are related to the existence of the two complimentary conic bundle fibrations.
The two cases i = 1, 2 are treated identically and we shall therefore find it convenient
to suppress the index i in the notation. It is now clear that we will need a good upper
bound for the number of rational points of bounded height on a conic, which is uniform
in the coefficients of the defining equation, a topic that was addressed in Sect. 2.2.

4.1 Application of the bound for conics

Returning to (4.1), we apply Lemma 2.5 to estimate the inner cardinality. For any
(s, t) ∈ Z2

prim, an argument of Broberg [5, Lemma 7] shows that DQs,t = O(1). In our
work W is given by (2.2), with ν = 1 and w a large parameter depending only on X ,
which we will need to enlarge at various stages of the argument. In the first instance,
we assume that 2DQs,t < w � 1. We deduce that
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1008 T. D. Browning, E. Sofos

N (B) �
∑

(s,t)∈Z2
prim

|s|,|t |�√
B

�(s,t) �=0

C(Qs,t , w)

(
1 + B

|�(s, t)| 13 max{|s|, |t |} 2
3

)
,

for any w > 0, where

C(Qs,t , w) �
∏

pξ ‖�(s,t)
p�w

τ(pξ )
∏

pξ ‖�(s,t)
p>w

⎛

⎝
ξ∑

k=0

χQs,t (p)
k

⎞

⎠ .

Since s, t � √
B and deg(�) = 4, we see that

|�(s, t)| 13 max{|s|, |t |} 2
3 � max{|s|, |t |}2 � B,

whence

1 + B

|�(s, t)| 13 max{|s|, |t |} 2
3

� B

|�(s, t)| 13 max{|s|, |t |} 2
3

.

Now let

�(s, t) =
n∏

i=1

�i (s, t) (4.2)

be the factorisation of�(s, t) into irreducible factors overQ. Each�i is separable and
Res(�i ,� j ) �= 0, whenever i �= j . We suppose that X has δ0 = m split degenerate
fibres andwe re-order the factorisation of�(s, t) in such away that the split degenerate
fibres correspond to the closed points�1(s, t), . . . ,�m(s, t), with the non-split fibres
corresponding to the closed points �m+1(s, t), . . . , �n(s, t). We enlarge w so that

w > max
i �= j

| Res(�i ,� j )|.

Loughran, Frei and Sofos [15, Part (5) of Lemma 4.8] have shown that for each
i > m there exists a binary form Gi (s, t) ∈ Z[s, t] of even non-negative degree, with
Res(Gi ,�i ) non-zero, such that

χQs,t (p) =
(
Gi (s, t)

p

)
,

for all (s, t) ∈ Z2
prim with �(s, t) �= 0, and all primes p > w with p | �i (s, t).

We proceed by introducing the arithmetic functions

τ0(s, t) =
∑

d|�(s,t)
d|W∞

1, τi (s, t) =
∑

d|�i (s,t)
gcd(d,W )=1

1, (1 � i � m), (4.3)
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Counting rational points on quartic del Pezzo surfaces 1009

and

ri (s, t) =
∑

d|�i (s,t)
gcd(d,W )=1

(
Gi (s, t)

d

)
, (m < i � n). (4.4)

We put

S(s, t) = τ0(s, t)
m∏

i=1

τi (s, t)
n∏

i=m+1

ri (s, t), (4.5)

for any (s, t) ∈ Z2
prim. Note that S(s, t) � 0. Our work so far shows that

N (B) � B
∑

(s,t)∈Z2
prim

|s|,|t |�√
B

�(s,t) �=0

S(s, t)

|�(s, t)| 13 max{|s|, |t |} 2
3

.

Sincewe are only interested in coprime integers s, t , there is a satisfactory contribution
of O(B) to the right hand side from those vectors (s, t) in which one of the components
is zero. Hence, by symmetry, Theorem 1.1 will follow from a bound of the shape

∑

(s,t)∈Z2
prim

1�|s|�|t |�√
B

�(s,t) �=0

S(s, t)

|�(s, t)| 13 |t | 23
� (log B)m+1, (4.6)

since (1.1) implies that m + 1 = ρ − 1.

4.2 Reduction to divisor sums

For β ∈ C and x, y > 0 we let

V = {(s, t) ∈ R2 : 1 � |s| � |t | � x, |s − βt | � y, �(s, t) �= 0}.

Consider the divisor function

Dβ(x, y) =
∑

(s,t)∈V ∩Z2
prim

S(s, t), (4.7)

where S(s, t) is given by (4.5). In this section we shall establish (4.6) subject to the
following bound for Dβ(x, y), whose proof will occupy the remainder of the paper.

Proposition 4.1 Let β ∈ C, let η ∈ (0, 1) and assume that xη � y � x. Then
Dβ(x, y) �β,η xy (log x)m .

We proceed to show how (4.6) follows from Proposition 4.1. Since �(s, t) is sep-
arable, it may contain the polynomial factor t at most once. Therefore there exists
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1010 T. D. Browning, E. Sofos

c0 ∈ Q∗ and pairwise unequal αi , α j ∈ Q such that �(s, t) admits the factorisa-
tion c0t

∏3
i=1(s − αi t) or c0

∏4
i=1(s − αi t) , according to whether t |�(s, t) or not,

respectively. Putting

α = 1

2
min
i, j,k
i �= j

{|αi − α j |, |αk |
}
, (4.8)

the set of integer pairs (s, t) appearing in (4.6) can be partitioned according to whether
or not (s, t) belongs to the set

A = {(s, t) ∈ R2 : |s − αi t | � α|t |, for all i}.

If (s, t) ∈ A then �(s, t) � |t |4 and it follows that

∑

(s,t)∈A ∩Z2
prim

1�|s|�|t |�√
B

�(s,t) �=0

S(s, t)

|�(s, t)| 13 |t | 23
�

∑

(s,t)∈A ∩Z2
prim

1�|s|�|t |�√
B

�(s,t) �=0

S(s, t)

|t |2 .

Breaking into dyadic intervals T /2 < |t | � T and applying Proposition 4.1 with
x = y = T and β = 0, we readily find that the right hand side is O((log B)m+1),
which is satisfactory for (4.6).

It remains to consider the contribution to (4.6) from (s, t) ∈ Z2
prim \A . For each i

we define

Si (B) =
∑

(s,t)∈Z2
prim

1�|s|�|t |�√
B

�(s,t) �=0
|s−αi t |<α|t |

S(s, t)

|�(s, t)| 13 |t | 23
.

It now suffices to prove Si (B) = O((log B)m+1) for each i and each αi . If (s, t) is
counted by Si (B) then (4.8) implies that for any j �= i we have

|s − α j t | � 1

2
|αi − α j ||t |,

thus |�(s, t)| � |t |3|s − αi t | in Si (B). Likewise, we obviously have the reverse
inequality |�(s, t)| � |t |3|s − αi t |.

We begin by dealing with the contribution of pairs (s, t) with |s − αi t | � 1. For
given S, T satisfying 1 � S � T � √

B, the overall contribution to Si (B) from
elements s, t such that T /2 < |t | � T and S/2 < |s − αi t | � S is seen to be

� 1

S
1
3 T

5
3

Dαi (T , S),
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Counting rational points on quartic del Pezzo surfaces 1011

in the notation of (4.7). If S � T
1
10 then Proposition 4.1 shows that this is

� S
2
3 (log B)m

T
2
3

.

Summing over dyadic S, T satisfying T
1
10 � S � T � √

B gives an overall

contribution O((log B)m+1). On the other hand, if S � T
1
10 , we take S(s, t) � T ε

for any ε > 0, by the standard estimate for the divisor function, so that Dαi (T , S) �
ST 1+ε. Taking ε = 1

30 , we therefore arrive at the contribution

� S
2
3 T

1
30

T
2
3

� T− 2
3+ 1

10 ,

from this case. Again, summing over dyadic S, T satisfying S � T
1
10 and 1 � T �√

B, this shows thatwe have an overall contributionO(1), which is plainly satisfactory.
It remains to consider the contribution to Si (B) from s, t with |s − αi t | < 1.

In fact for irrational αi there are infinitely many pairs of coprime integers s, t for

which |s − αi t | < |t |−1. The divisor bound gives S(s, t) � |t | 1
10 , which leads to the

contribution

�
∑

(s,t)∈Z2
prim, �(s,t) �=0

1�|s|�|t |�√
B

|s−αi t |<1

1

|s − αi t | 13 |t | 53− 1
10

(4.9)

to Si (B). We now invoke a result of Davenport and Roth [12, Cor. 2], which shows
that �L = O(1), where

L =
{

(s, t) ∈ Z2
prim :

∣∣∣αi − s

t

∣∣∣ <
1

|t |2+ 1
100

}
.

Moreover, the implied constant is effective and only depends on the coefficients of
�(s, t). The contribution to (4.9) fromL is therefore seen to be

∑

(s,t)∈L , �(s,t) �=0
1�|s|�|t |

1

|s − αi t | 13 |t | 53− 1
10

� L � 1,

since |s − αi t | � |�(s, t)||t |−3 � |t |−3. On the other hand, the contribution to (4.9)
outside of L is

�
∑

(s,t)∈Z2
prim\L

1�|s|�|t |�√
B

|s−αi t |<1

1

|t | 43− 1
10− 1

300

�
∑

|t |�√
B

1

|t | 43− 1
10− 1

300

� 1,
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1012 T. D. Browning, E. Sofos

since for given t there are finitely many integers s in the interval |s − αi t | < 1. This
completes the deduction of (4.6) from Proposition 4.1.

4.3 Small divisors

The function τ0(s, t) in (4.5) is concerned with the contribution toS(s, t) from small
primes p � w. Our work in Sect. 2.2 only applies to divisor sums supported away
from small prime divisors. Hence we shall begin by using the geometry of numbers
to deal with the function τ0(s, t), before handling the remaining factors in S(s, t).

Following Daniel [11], for any a ∈ N we call two vectors x, y ∈ Z2 equivalent
modulo a if

gcd(x, a) = gcd(y, a) = 1 and �(x) ≡ �(y) ≡ 0 (mod a),

and,moreover, there existsλ (mod a) such that x ≡ λy (mod a). The set of equivalence
classes is denoted by A(a) and the class elements as A . Letting

�∗(a) = � {(σ, τ ) (mod a) : gcd(σ, τ, a) = 1, �(σ, τ ) ≡ 0 (mod a)} ,

we find that �∗(a) = ϕ(a)�A(a). Moreover, we clearly have

�∗(a) � ϕ(a)(ρ�(x,1)(a) + ρ�(1,x)(a)),

in the notation of (2.5). Since �(s, t) is separable, it follows from Huxley [19] that

ρ�(x,1)(a) � 4ω(a)| disc(�)| 12 , and similarly for ρ�(1,x)(a). Hence

�A(a) = �∗(a)

ϕ(a)
� 4ω(a). (4.10)

For each (s, t) ∈ V ∩ Z2
prim, write

r(s, t) =
m∏

i=1

τi (s, t)
n∏

i=m+1

ri (s, t).

Then

Dβ(x, y) �
∑

q�x4

q|W∞

∑

(s,t)∈V ∩Z2
prim

q|�(s,t)

r(s, t)

�
∑

q�x4

q|W∞

∑

A ∈A(q)

∑

(s,t)∈V ∩G(A )∩Z2
prim

r(s, t),
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Counting rational points on quartic del Pezzo surfaces 1013

where G(A ) = {x ∈ Z2 : ∃λ ∈ Z ∃y ∈ A s.t. x ≡ λy (mod q)} is the lattice
generated by the vectors inA . The determinant of this lattice is q. We shall establish
the following result.

Proposition 4.2 Let η ∈ (0, 1) and assume that xη � y � x. Then

∑

(s,t)∈V ∩G(A )∩Z2
prim

r(s, t) �β,η,N xy

(
(log x)m

q
+ 1

(log x)N

)
,

for any N > 0, where the implied constant is independent of q.

We now show how Proposition 4.1 follows from this result. Employing (4.10), we
deduce that

Dβ(x, y) �β,η,N xy(log x)m
∑

q�x4

q|W∞

4ω(q)

q
+ xy

(log x)N
∑

q�x4

q|W∞

4ω(q).

The first sum is � (logw)4 � 1. On the other hand, the second sum is

�
∏

p�w

(16 log x + O(1)) � (log x)π(w).

Choosing N = π(w), we therefore conclude the deduction of Proposition 4.1 from
Proposition 4.2.

4.4 The final push

The aim of this section is to prove Proposition 4.2. Recall from (4.2) that we have a
factorisation

�(s, t) =
m∏

i=1

�i (s, t)
n∏

i=m+1

�i (s, t),

where each �i ∈ Z[s, t] is irreducible and the fibre above the closed point �i is split
if and only if i � m. We now want to bring into play the work in Sect. 2.2, in order to
transform the sum in Proposition 4.2 into one that can be handled by Lemma 2.2.

Let i ∈ {1, . . . , n}. Recall from (4.3) and (4.4) that we are interested in the divisor
sum

∑

d|�i (s,t)
gcd(d,W )=1

(
Gi (s, t)

d

)
,

where Gi (s, t) ∈ Z[s, t] is a form of even degree (and we allow Gi (s, t) to be identi-
cally equal to 1). This is exactly of the form considered in (2.8). Let bi = �i (1, 0) ∈ Z
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1014 T. D. Browning, E. Sofos

and suppose for the moment that bi �= 0. As previously, let θi be a root of the polyno-
mial �̃i (x, 1), in the notation of (2.4), and write Ki = Q(θi ). Let oi denote the ring
of integers of Ki . We enlarge w to ensure that w > 2bi DLi /Ki �θi , where �θi is given

by (2.9) and Li = Ki (

√
Gi (b

−1
i θi , 1)). Thus

[Li : Ki ] =
{
1 if i � m,

2 if i > m.

Next, letψi be the quadratic Dirichlet character constructed in Sect. 2.2 (takingψi = 1
when Gi (s, t) is identically 1). Let Ni denote the ideal norm in Ki . Then it follows
from part (iii) of Lemma 2.3 that for any (s, t) ∈ Z2

prim such that �i (s, t) �= 0, we
have ∑

d|�i (s,t)
gcd(d,W )=1

(
Gi (s, t)

d

)
=

∑

a|(bi s−θi t)
gcd(Ni a,W )=1

ψi (a). (4.11)

Moreover, if P◦
i , Pi are defined as in (2.3) and (2.11), respectively, then part (i) of

Lemma 2.3 implies that a ∈ Pi for any a | (bi s − θi t) such that gcd(Ni a,W ) = 1.
Suppose now that bi = 0, so that �i (s, t) = ct for some non-zero c ∈ Z. We

enlarge w to ensure that w > c. In this case we have

∑

d|�i (s,t)
gcd(d,W )=1

(
Gi (s, t)

d

)
=

∑

d|t
gcd(d,W )=1

(
Gi (s, t)

d

)
=

∑

d|t
gcd(d,W )=1

(
Gi (1, 0)

d

)
,

since Gi has even degree and (s, t) ∈ Z2
prim. But this is of the shape (4.11), with

bi = 0, θi = 1, Ki = Q, and ψi (d) = (
Gi (1,0)

d ).
Let i ∈ {1, . . . , n} and let c ⊂ oi be an integral ideal. We define multiplicative

functions ti , ri ∈ MKi , in the notation of Sect. 2.1, via

ti (c) =
∑

a∈Pi
a|c

1, (1 � i � m),

and

ri (c) =
∑

a∈Pi
a|c

ψi (a), (m < i � n).

It follows that

r(s, t) =
m∏

i=1

ti,W (bi s − θi t)
n∏

i=m+1

ri,W (bi s − θi t)

in Proposition 4.2, for any (s, t) ∈ Z2
prim.
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Counting rational points on quartic del Pezzo surfaces 1015

We are now in a position to apply Lemma 2.2 with R = V , G = G(A ) and
qG = q. In particular it follows that

xy � V = vol(R) � xy and x log x � KR � x log x .

According to the statement of Proposition 4.2, we are given η ∈ (0, 1) and x, y such
that xη � y � x . Thus R is regular. Since q � x4, it therefore follows that all
the hypotheses of Lemma 2.2 are met with each εi > 0 being arbitrarily small. On
enlarging w suitably, we deduce that

∑

(s,t)∈V ∩G(A )∩Z2
prim

r(s, t) �η,W
xy

(log x)n
h∗
W (q)

q

m∏

i=1

Eti (x
2; 1)

n∏

i=m+1

Eri (x
2; 1)

+ x1+
η
2 ,

Note that h∗
W (q) = 1, since q | W∞. Moreover, since x1+

η
2 �N xy(log x)−N , for

any N > 0, the second term here is plainly satisfactory for Proposition 4.2.
Finally, we have

Eti (z; 1) = exp

⎛

⎜⎜⎜⎝
∑

Ni p�z
p∈P◦

i

ti (p)

Ni p

⎞

⎟⎟⎟⎠ = exp

⎛

⎜⎜⎜⎝
∑

Ni p�z
p∈P◦

i

2

Ni p

⎞

⎟⎟⎟⎠� (log z)2,

for i ∈ {1, . . . ,m}, and

Eri (z; 1) = exp

⎛

⎜⎜⎜⎝
∑

Ni p�z
p∈P◦

i

ri (p)

Ni p

⎞

⎟⎟⎟⎠ = exp

⎛

⎜⎜⎜⎝
∑

Ni p�z
p∈P◦

i

1 + ψi (p)

Ni p

⎞

⎟⎟⎟⎠� log z,

for i ∈ {m + 1, . . . , n}. Thus the first term makes the overall contribution

� xy(log x)m

q
,

which thereby completes the proof of Proposition 4.2.
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