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ABSTRACT
Payment channel networks (PCNs) are one of the most promi-
nent solutions to the limited transaction throughput of blockchains. 
Nevertheless, PCNs suffer themselves from a throughput limi-
tation due to the capital constraints of their channels. A similar 
dependence on high capital is also found in inter-bank payment 
settlements, where the so-called netting technique is used to 
mitigate liquidity demands.

In this work, we alleviate this limitation by introducing the 
notion of transaction aggregation: instead of executing transac-
tions sequentially through a PCN, we enable senders to aggre-
gate multiple transactions and execute them simultaneously to 
benefit from several amounts that may “cancel out”. Two direct 
advantages of our proposal is the decrease in intermediary fees 
paid by senders as well as the obfuscation of the transaction 
data from the intermediaries.

We formulate the transaction aggregation as a computational 
problem, a generalization of the Bank Clearing Problem. We 
present a generic framework for the transaction aggregation 
execution, and thereafter we propose WISER as an implemen-
tation of this framework in a specific hub-based setting. To 
overcome the NP-hardness of the transaction aggregation prob-
lem, in WISER we propose a fixed-parameter linear algorithm 
for a special case of transaction aggregation as well as the Bank 
Clearing Problem. WISER can also be seen as a modern variant 
of the Hawala money transfer system, as well as a decentralized 
implementation of the overseas remittance service of Wise.
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1 INTRODUCTION
1.1 Motivation
Payment channel networks (PCNs) [12, 13, 29, 33] are a promis-
ing technology to significantly increase the transaction through-
put of blockchain-based cryptocurrencies such as Bitcoin [30].
Two parties can open a payment channel by locking coins in
a joint account on-chain. Thereafter, the parties can transact
off-chain via updating the distribution of the coins in the chan-
nel to depict the new transaction. Only if the parties want to
close the channel or allocate extra budget, do they need to
go on-chain. Therefore, payment channels can facilitate arbi-
trary many transactions off-chain with a constant number of
on-chain transactions, significantly increasing the transaction
throughput. These payment channels collectively constitute a
payment channel network (PCN) which allows two parties to
transact off-chain even if they do not share a payment chan-
nel by using other parties as intermediaries in routing their
transactions [13, 33].

In order to provide high and reliable transaction through-
put, PCNs require many well connected high-capacity payment
channels. The reason is that channels may quickly deplete if
several transactions are forwarded along a channel or path in the
same direction, thus preventing any further use of the channel
in that direction. However, locking large amount of capital for
a long period of time comes with a cost. To mitigate this cost,
the users of PCNs ask for a service fee for relaying transactions
of others through their channels. As a result, a business oppor-
tunity arises: wealthy individuals can act as (transaction) hubs
by establishing well-connected high-capacity nodes, offering
routing of transactions as a service. In this way, capital reserves
can be used to generate passive income.

While this business model benefits the PCN’s users, it also
introduces several challenges: (a) the liquidity of the hubs still
poses a constraint to the PCN’s overall liquidity and hence
limits the transaction throughput, (b) the transaction fees that
are typically proportional to the transaction value may be high,
and (c) the hubs may learn a significant amount of transactions,
thus compromising the privacy of users.

To address these challenges, we introduce the notion of trans-
action aggregation (Figure 1). In high level, we enable users
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to aggregate multiple transactions and execute them simultane-
ously in the PCN instead of sequentially, i.e., one-by-one. This
way multiple transactions may “cancel out” effectively reduc-
ing the transferred amounts and the corresponding transaction
fees, thus increasing the PCN’s liquidity and consequently the
transaction throughput. Moreover, the transaction aggregation
obfuscates the individual transactions routed through a channel,
as only the aggregated amount is executed.

A closely related notion to transaction aggregation in finance
is netting that deals with the aggregation of various financial
obligations, say, to mitigate risk. In particular, the application
of netting in inter-bank payment systems essentially tackles the
first aforementioned challenge. The computation problem of
optimal netting, i.e., optimal aggregation of payments across
traditional banks, is known as the Bank Clearing Problem or
BCP. The transaction aggregation problem we introduce in this
work is a more generic formulation of the BCP problem, hence
demonstrating the potential impact of our work in the financial
landscape even beyond blockchains.

Transaction aggregation can also be seen as a decentralized
and privacy-enhancing variant of the payment system Wise (for-
merly TransferWise) [46] built on payment channel networks.
Wise is a financial technology allowing convenient online trans-
actions, often used to cheaply transfer money abroad. Another
similar financial system is Hawala [35], a centuries-old system
of fund transfer across long distances and overseas. A system
that implements transaction aggregation can be interpreted as
a modern and improved digital version of the Hawala money
transfer system, which is still in use in parts of the Middle East
and South Asia.

1.2 Contribution
The goal of this work is to address the three challenges of PCNs
in the hub-based business model, i.e., (a) improve the through-
put of payment channel networks while (b) minimizing fees in
the process and also (c) accounting for privacy concerns. To do
so, we propose a system which allows hubs to act cooperatively,
combining their capital to serve all their clients. Any two users
connected to any of the hubs can thereafter transact thought the
hubs. The transactions collected over a fixed time interval are
then aggregated into a single monetary flow through the net-
work. This flow is consequently executed atomically through
the PCN, meaning that either all the selected transactions are ex-
ecuted or none. We term the computational problem of finding
a subset of transactions that can be aggregated into a feasible
resultant flow as the transaction aggregation problem (Figure
1).

Specifically, we present a generic framework which com-
bines three building blocks: (a) a protocol to enable optimal
liquidity usage among hubs, (b) an efficient algorithm for the
transaction aggregation problem, and (c) a protocol for atomic
multi-channel state updates, i.e., the atomic execution of the
selected transaction in the PCN. We present a skeleton protocol,
that is an abstraction of the composed protocols, to illustrate its
benefits as well as technical challenges. We further determine
the necessary properties for such a system and show that our
abstraction satisfies them.

A B

D C
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10

10 10

Figure 1: Transaction aggregation example. User A wants
to make a payment of 10 coins to user B and user C wants
to make a payment of 10 coins to user D. The A-to-B and
C-to-D payment paths might render the transaction infea-
sible and incur routing fees linear to the path length. In-
stead, if A pays D and C pays B, each 10 coins, the trans-
actions success depends on the capacity of fewer channels
and the fees are reduced.

We then present WISER, a concrete implementation of the
generic framework. WISER uses channel factories [9] and
Thora [1] as substantiations of the aforementioned building
blocks ((a) and (c) respectively). As the final building block
(b), we present a fixed-parameter linear1 algorithm to solve the
transaction aggregation problem, which we first show to be NP-
hard. For the execution of our algorithm, we leverage secure
multi-party computation (MPC) to conceal channel balances
and transaction data.

We further derive a connection between transaction aggre-
gation and netting, and exploit this connection to enrich both
notions. On one hand, our fixed-parameter linear algorithm de-
veloped for WISER is directly applicable to BCP. Our algorithm
exhibits the best known parameterized complexity, improving
dependence on number of transactions from pseudo-polynomial
to linear. On the other hand, algorithms for the Bank Clearing
Problem with inferior asymptotic complexity may still be faster
in certain parameter regimes. WISER can be implemented with
any of these optimization algorithms as a building block, so
that work on BCP also bolsters the versatility of our protocol.

1.3 Organisation
The remainder of this paper is organized as follows. In Section
2, we present the model and additional assumptions, as well
as the proposed skeleton protocol for solving the transaction
aggregation problem and the desired properties it should fulfil.
In Section 3, we present our implementation of the skeleton
protocol, namely WISER, and in Section 4 we prove that our
implementation provides the desired guarantees. In Section
5 we demonstrate the connection to the netting problem and
discuss further extensions of our protocol. Finally, in Section 6
we compare to related work and we conclude with Section 7.

2 MODEL AND PROTOCOL OVERVIEW
In this section, we first describe payment channel networks,
and then introduce the assumptions of our work. Later, we
formulate transaction aggregation as an optimization problem,
then provide a high-level overview of our solution (skeleton
protocol), and conclude the section by defining the desired
properties for our system.

1FPL is a subclass of the fixed-parameter tractable (FPT) complexity class [15].
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2.1 Payment Channel Networks
In this subsection, we provide a brief introduction to payment
channel networks with standard fees as they currently operate.

We assume that a payment channel is characterized by the
public keys of the two users opening it, and the funds and for-
warding fees that each user adds to each direction of the channel
upon its creation [33]. Let 𝑢, 𝑣 be two users that have opened
a payment channel {(𝑢, 𝑣), (𝑣,𝑢)} and 𝑐 (𝑒), 𝑏𝑓 (𝑒), 𝑝 𝑓 (𝑒), 𝑒 ∈
{(𝑢, 𝑣), (𝑣,𝑢)} be the current capacity, the base forwarding fee,
and the proportional forwarding fee of each channel direction,
respectively. Users 𝑢 and 𝑣 can do an arbitrary number of pay-
ments to each other by subtracting any non-negative amount
𝑥 ≤ 𝑐 (𝑒), 𝑒 ∈ {(𝑢, 𝑣), (𝑣,𝑢)}, and increasing 𝑐 (𝑒 ′) by 𝑥 , where
𝑒 ′ ∈ {(𝑢, 𝑣), (𝑣,𝑢)} \ {𝑒}. Note that the forwarding fees and
𝑐 (𝑢, 𝑣) + 𝑐 (𝑣,𝑢) is public information, while each summand
(current balance) is not.

A payment channel network (PCN) is the network built over
all payment channels. Users that do not share payment channels
can perform payments via paths in the network, by covering
a forwarding cost to the intermediate nodes of the path. For
example, if payment channels exist between 𝑢, 𝑣 and 𝑣,𝑤 , but
not between 𝑢,𝑤 , then 𝑢 can transfer an amount 𝑥 to 𝑤 in two
steps: (i) 𝑢 transfers 𝑥 + (𝑏𝑓 (𝑣,𝑤) +𝑝 𝑓 (𝑣,𝑤) · 𝑥) coins to 𝑣 and
(ii) 𝑣 transfers 𝑥 coins to 𝑤 , i.e. 𝑏𝑓 (𝑣,𝑤) + 𝑝 𝑓 (𝑣,𝑤) · 𝑥 are the
forwarding fees charged by 𝑣 . The transaction is feasible only
if 𝑥 + (𝑏𝑓 (𝑣,𝑤) + 𝑝𝑓 (𝑣,𝑤) · 𝑥) ≤ 𝑐 (𝑢, 𝑣) and 𝑥 ≤ 𝑐 (𝑣,𝑤).

In general, suppose that user 𝑠 wants to pay 𝑥 coins to user
𝑟 , via a payment path {(𝑠,𝑢1), ..., (𝑢𝑘 , 𝑟 )}. Then 𝑢𝑘 receives
𝑟𝑐𝑣𝑘 = 𝑥 + (𝑏𝑓 (𝑢𝑘 , 𝑟 ) + 𝑝 𝑓 (𝑢𝑘 , 𝑟 ) · 𝑥) and forwards 𝑥 coins to
𝑟 , 𝑢𝑘−1 receives 𝑟𝑐𝑣𝑘−1 = 𝑥 + (𝑏𝑓 (𝑢𝑘−1, 𝑢𝑘 ) + 𝑝 𝑓 (𝑢𝑘−1, 𝑢𝑘 ) ·
𝑟𝑐𝑣𝑘 ) and forwards 𝑟𝑐𝑣𝑘 coins to 𝑢𝑘 , and so on. Moreover,
the transaction is feasible only if every node in the path has
sufficient capacity to route the forwarded amount. This is not
always the case, since current balances are private and senders
might have to try different payment paths towards a successful
transaction.

A transaction along a payment path is successful when all
intermediate transactions go through, and otherwise none of
them is performed. That is, PCNs must ensure atomicity in
transaction routing. In the Bitcoin Lightning Network, this is
ensured by Hash Timelock Contracts (HTLCs) [33].

2.2 Assumptions
In this subsection, we introduce the cryptographic and network
assumptions as well as the considered PCN topology.

Cryptographic assumptions. We assume the existence of
secure communication channels between users.

Blockchain and network model. We assume the underlying
block-chain satisfies persistence and liveness as defined in [19].
We also assume a synchronous network model. That is, there is
a known network delay which bounds the time needed for any
user to receive any incoming message.

Studied PCN topology. We restrict the PCN topology to
allow for a computationally tractable implementation of trans-
action aggregation. Let𝑉 = 𝐻 ∪𝐶 be the set of all users, which

h1
h2

h3h4

c2
c3 c4

c1

c9
c8

c7

c6

c5

Figure 2: Example of the restricted PCN topology. Each
client (nodes {𝑐1, . . . , 𝑐9}) is connected to one of hub nodes
(nodes {ℎ1, . . . , ℎ4}) and the hub nodes are well intercon-
nected (potential edges are dashed). We propose a solution
for hub connectivity in our protocol description.

we split to a relatively small set of hub nodes 𝐻 and the remain-
der set of client nodes𝐶. The hubs are well interconnected, and
the client nodes are those connected to only one hub (Figure 2).

Users and transactions. We assume the users of the protocol
follow the protocol specification unless they can monetarily
gain from deviating from it.

Over time, users accumulate transactions before initiating
the protocol. The list T𝑢 of transactions that user 𝑢 submits
must not exceed the capacity of the channel 𝑢 has with their
hubℎ𝑢 . In other words, users must not authorize a total payment
of funds exceeding their balance with the hub. Moreover, the
same must also hold for the set of incoming transactions where
𝑢 is the recipient.

Fee function. We assume that the forwarding fees charged
by hubs for each channel are publicly known before the pro-
tocol execution. We also assume that the forwarding fee is a
non-negative function 𝐹 (𝑎, 𝑏) of the initial and final states 𝑎, 𝑏
of the channel and that the triangle inequality holds: for all
states 𝑎, 𝑏, 𝑐: 𝐹 (𝑎, 𝑐) ≤ 𝐹 (𝑎, 𝑏) + 𝐹 (𝑏, 𝑐). As described in Sec-
tion 2.1 above, the standard fee functions are simply a base
fee plus a proportional fee, which do satisfy our more general
assumptions. Intuitively, it should not be cheaper to forward a
given amount along a channel in multiple parts compared to
one.

Note that our proposed solution does not aim to minimize
the fees, but rather to maximize the volume of transactions that
are cleared. We nevertheless show that transaction aggregation
implicitly reduces incurred fees for the above class of fee func-
tions. We discuss a more sophisticated consideration of fees in
Section 5.

2.3 (Computational) Problem Definition
Let 𝐺 = (𝑉 , 𝐸) be a directed graph that models a PCN with
integral edge capacities 𝑐 (𝑒). Let 𝑉 = {𝑣1, . . . 𝑣𝑛}, |𝐸 | = 𝑚. A
payment channel between 𝑣𝑖 and 𝑣 𝑗 is modelled as two unidi-
rectional edges (𝑣𝑖 , 𝑣 𝑗 ) and (𝑣 𝑗 , 𝑣𝑖 ).

A flow through this network is an 𝑚-dimensional vector
f = (f (𝑒))𝑒∈𝐸 that satisfies the capacity constraints:

0 ≤ f (𝑒) ≤ 𝑐 (𝑒) ∀𝑒 ∈ 𝐸.
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Figure 3: A transaction aggregation example. The non-
depleted edges are annotated with their capacity (e.g.
𝑐 (𝑣2, 𝑣1) = 0, while 𝑐 (𝑣1, 𝑣2) = 4). Let T =

[(10, 0,−10, 0, 0, 0), (10, 0,−10, 0, 0, 0), (0, 0, 0, 10, 0,−10)], i.e.,
two transactions of 10 coins from 𝑣1 to 𝑣3 and one trans-
action of 10 coins from 𝑣4 to 𝑣6. These transactions are
non feasible when done sequentially. However, T ∗ =

[(10, 0,−10, 0, 0, 0), (0, 0, 0, 10, 0,−10)] is feasible by the flow
noted with red edges ((𝑣1, 𝑣6) and (𝑣4, 𝑣3)). That is, the flow
f such that f (𝑣1, 𝑣6) = f (𝑣4, 𝑣3) = 10 and f (𝑒) = 0 otherwise,
realizes the demand vector d = (10, 0,−10, 10, 0,−10), which
is the sum of the transactions in T ∗.

A demand vector d = (𝑑1, . . . 𝑑𝑛) ∈ Z𝑛 is a vector repre-
senting the monetary flow through each vertex. For instance, a
transaction of 1 unit from 𝑣1 to 𝑣2 can be represented as the de-
mand vector (1,−1, 0, . . . 0). A flow f is said to route a demand
vector d if for every vertex 𝑣 :∑

(𝑣,𝑢) ∈𝐸
f (𝑣,𝑢) −

∑
(𝑢,𝑣) ∈𝐸

f (𝑢, 𝑣) = d(𝑣)

A demand vector is feasible if there is a flow that routes it.
For example, the demand vector (1,−1, 0, . . . 0) representing a
transaction of amount 1 from 𝑣1 to 𝑣2 is feasible if, say, there is
an edge (payment channel) from 𝑣1 to 𝑣2 of capacity at least 1.

Consider a list of transactions T = [t1, . . . t𝑘 ] each repre-
sented as a demand vector, i.e., t𝑖 is a demand vector with 𝑤𝑖

in the position of the sender, −𝑤𝑖 in the position of the receiver,
and zero otherwise, where 𝑤𝑖 is the transaction amount of t𝑖 .
We denote by |t𝑖 | := 𝑤𝑖 the amount of transaction t𝑖 . We define
transaction aggregation as the process of:
(i) algebraically adding up all the demand vectors in T , to ob-
tain a demand vector d =

∑
t∈T

t,

(ii) computing a flow f that routes d, and then
(iii) executing this flow on the payment channel network as a
means of executing all the transactions in T .

The computational challenge of transaction aggregation lies
in finding a subset T ′ whose aggregate demand vector can
feasibly be routed, which we define below.

Definition 2.1. The Transaction Aggregation Problem on
a directed graph 𝐺 concerns computing a sublist T ∗ ⊆ T =

[t1, . . . t𝑘 ] that can feasibly be aggregated, and which is optimal
in terms of total throughput

∑
t𝑖 ∈T∗ |t𝑖 |.

Next, we reformulate the Bank Clearing Problem [21, 38]
in our notation, noting it to be a special case of transaction
aggregation.

Definition 2.2. The Bank Clearing Problem with 𝑛 partic-
ipants {𝑣1, . . . , 𝑣𝑛}, each with current balance (also known as
cover money) b = (𝑏1, . . . 𝑏𝑛) concerns computing a sublist

v5
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v4

v1

v3

10

10

10

10

10

10

Figure 4: Examples of cancelling out of transac-
tions. Capacities are annotated only on the edges
relevant to the examples. We consider two exam-
ples: T1 = [(0, 5, 0,−5, 0), (0, 0, 5, 0,−5)] and T2 =

[(0, 0, 5, 0,−5), (0, 0,−2, 0, 2)]. Transaction aggregation ben-
efits T2, but not T1. That is, aggregating T2 produces
(0, 0, 3, 0,−3) (reduced flow, one transaction instead of two),
while aggregating T1 outputs (0, 5, 5,−5,−5) (equivalent to
sequential transaction execution).

T ∗ ⊆ T = [t1, . . . t𝑘 ] that can be aggregated into a demand
vector d∗ such that d∗ ≤ b, and which is optimal in terms of
total throughput (also known as clearing volume)

∑
t𝑖 ∈T∗ |t𝑖 |.

Let us briefly elaborate on the throughput benefits of trans-
action aggregation. First, it may be that the complete list T
cannot be aggregated into a feasible demand vector, but sublists
of transactions can (Figure 3). Figure 3 also illustrates that
routing an aggregate may require less flow along channels, or
use shorter paths, and thus incur lower fees. Secondly, there
is a varying degree of cancelling out of the demand vector d,
depending on transactions in T . That is, transactions might be
completely independent (payment paths are disjoint), or all of
them can cancel out (e.g. 𝑠 and 𝑟 want to pay each other the
same amount), leading to a smaller demand vector, or anything
between these two extremes. This form of canceling out is ben-
eficial regardless of channel capacities. We give an example
in Figure 4. Note that the cancelling out feature of transac-
tion aggregation might render a list of transactions feasible,
even though channel capacities do not suffice for sequential
execution.

In what follows, we will refer to oracles O as algorithms that
can solve the transaction aggregation problem, possibly under
certain assumptions on 𝐺 and T , to return a feasible sublist
T ∗ that maximizes a linear function of T . The transaction
aggregation problem is generally computationally hard as we
show in Section 4.

2.4 Protocol overview
In this section, we introduce a protocol abstraction or the “skele-
ton” protocol for solving and executing the transaction aggre-
gation problem in a payment channel network formulated as
described in Section 2.3 under our assumptions.

Our skeleton protocol consists of two phases: a flow compu-
tation phase and an execution phase. The goal of the flow com-
putation phase is to privately compute and output an optimal
transaction flow from the list of transaction requests submitted
to the protocol. The goal of the execution phase is to execute
the flow in an atomic fashion. An illustration of the flow of the
skeleton protocol can be found in Figure 5.
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T
Nodes accumulate 

transactions within a 
time interval

T*
Computation of optimal 

sublist of T and per 
channel flows f

Validation
Nodes validate f

Execution
Nodes execute f

Flow computation phase Execution phase

Figure 5: Skeleton protocol for transaction aggregation.

Flow computation phase. The flow computation phase initi-
ates when a pre-specified amount of time elapses or when suffi-
ciently many transactions have been collected by the users2. In
this phase, the list of transactions T as well as the respective
channel balances are taken as input. The output of the flow
computation phase is a sublist of transactions T ∗ that will be
eventually executed in the PCN, along with a resultant flow f
that routes the aggregate of these transactions.

Execution phase. Out of the computed solution T ∗ and f ,
individual users 𝑣 are provided with the sublist of T ∗ containing
only those transactions where 𝑣 is a sender or recipient, and the
flow f (𝑒) for edges 𝑒 adjacent to 𝑣 . With this data, each user
verifies the validity of the solution, and that balance security
holds, i.e., the user does not lose any money given the resulting
flow and the transactions to be executed. After this verification,
the users must execute f atomically. The flow output from the
previous flow computation phase might involve disconnected
components of the network; therefore, simple HTLCs may not
suffice to atomically execute the transactions T ∗. Instead, a
clever solution is needed where atomicity of all transactions in
T ∗ is maintained regardless of the graph topology.

We will introduce the specific protocols that will be lever-
aged to implement the skeleton protocol described above in
Section 3.

2.5 Desired Properties
In this section, we discuss the desiderata of our protocol WISER

and then formally define the protocol goals.
First, we demand that our protocol is practical, i.e., that the

solution of the transaction aggregation problem is computation-
ally feasible. Second, WISER should maintain security of the
channel balances, meaning that the users should not lose money
due to the protocol execution. In particular, the intermediaries
(hubs) should not lose any money, while the users should only
have a deficit equal to the sum of the amounts of the selected
transactions in T ∗. This security property is encapsulated by
Balance Security.

Furthermore, we demand two optimization properties: one
that ensures that our solution transfers the maximum amount
of value possible, termed Optimality, and one that ensures our
solution is cheaper (or equivalent at worse) than executing
the same transactions sequentially in the PCN, termed Cost
Efficiency. The former property guarantees that WISER does

2The decision of when the protocol triggers is left to the users. The core idea is
to be able to accumulate many transactions per user may that be after some time
interval or when a specific number of transactions per user is reached.

not output a trivial solution and the solution maximizes the
transaction throughput, while the latter guarantees that WISER

is beneficial in terms of fees compared to the no-aggregation
solution where each user executes its transactions sequentially
and without the need for coordination on the PCN.

Lastly, due to the potential aggregation of transactions per
user, the resulting flow may enhance the privacy of the proto-
col compared to the simple sequential execution per user. For
instance, if the transaction aggregation selects two transactions
for a user that partially cancel out (e.g., the user receives 5 coins
and sends 3 coins), the user’s channel to the hub will only be
updated by the difference (e.g., 5-3=2 coins); thus, the hub only
learns the aggregated flow and not the individual transactions.
To capture this improvement on privacy guarantees, we define
the Privacy property.

In particular, we define the notion of privacy we wish to
achieve during the entire course of our protocol, i.e. both the
flow computation and execution phases. We want to enforce,
firstly, that each uninvolved user should only learn that they
are not involved in the protocol. Secondly, each involved user
(whether client or hub) should only learn the flow output on
each of the incident channels to the hubs. We stress that the
above two conditions imply value privacy: users will not know
the flow (and thus the transaction amounts) along channels they
are not a part of. Finally, we allow each involved user to learn
the number of other involved users in the protocol 3.

Formally, WISER should achieve the following properties:

Definition 2.3 (Computational Feasibility). The transaction
aggregation problem as per Definition 2.1 is fixed-parameter
linear (FPL complexity class) [15], i.e., its running time is
polynomial in the number of clients and exponential in the
number of hubs.

Definition 2.4 (Balance Security). The change in user bal-
ances, after the execution of our protocol, must be the aggre-
gated demand vector of some sublist T ′ ⊂ T of transactions.

Definition 2.5 (Optimality). For a given list of transactions,
the aggregation should select a maximal sublist in the sense of
total demand fulfilled.

Definition 2.6 (Cost Efficiency). The total fees levied to
users should be less than or equal to the amount that would have
been levied had the transactions been processed sequentially.
3Ideally, involved users should not learn any information about the set of other
involved users in the protocol. However, our proposed flow execution protocol
requires the number of involved users to be known in advance. We are working
on future work to bound the number of involved users each involved user needs
to know.
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Definition 2.7 (Privacy). Our notion of privacy is based on
the following indistinguishability game between an passive ad-
versaryA and a transaction aggregation and execution protocol
Π when run on the subgraph of users interested in participating
in the protocol 𝐺 = (𝑉 , 𝐸):

• A chooses a subset of users 𝑉 A ⊂ 𝑉 to corrupt, i.e., A
gains access to the transcripts of every corrupted user
𝑣 ∈ 𝑉 A . 𝑉 A can consist solely of hubs, clients, or a
mix of both. Let 𝐺A be the subgraph created by taking
the union of all corrupted nodes and their incident edges.
Additionally, if a hub node is in𝑉 A , we add all the other
hubs in the network and all their incident edges to 𝐺A .
• A chooses the following for 𝑖 ∈ {0, 1}: A creates a list

of transactions tuples T 𝑖 =
[
(𝑥 𝑗 , 𝑠 𝑗 , 𝑟 𝑗 )

]𝑛𝑖
𝑗=1 where the

𝑗 th transaction tuple consists of a transaction amount
𝑥 𝑗 , the vertex 𝑠 𝑗 that requested the transaction, and the
vertex 𝑟 𝑗 that should receive the transaction. 𝑛𝑖 is the
number of transaction tuples in the 𝑖th list.
• For every node and channel in 𝐺A , the following con-

dition needs to hold: the resulting flow returned by Π
restricted to the subgraph 𝐺A when run on 𝐺 and when
given transaction tuple lists T 0 and T 1 has to be the
same. Additionally, the set of involved users as com-
puted by Π should be the same when given T 0 or T 1 as
input.
• (Challenge phase.) We choose a random bit 𝑏 ∈ {0, 1}

and run Π with transaction tuple list T𝑏 .
• A gets the flow output sent to each corrupted user from
Π.
• A outputs a bit 𝑏 ′. If 𝑏 ′ = 𝑏, A wins the game.

We say a transaction aggregation and execution protocol Π
is 𝜖-private if A wins the above game with probability at most
1
2 + 𝜖, and private if it is 𝜖-private for some negligible 𝜖.

3 WISER ARCHITECTURE
In this section, we present WISER, a protocol that solves the
transaction aggregation problem under our system model. In
Section 3.1, we present the topology over which WISER is
designed to operate. This restriction is necessary to design a
computationally tractable solution to the otherwise NP-hard
transaction aggregation problem (NP-hardness is proved in
Section 4.1). Then we present WISER, which is illustrated in
an abstract level in Figure 6.

WISER consists of a flow computation phase (Section 3.2)
and an execution phase (Section 3.3). Nodes accumulate trans-
actions within a fixed time interval and then secret share these
transactions and their balances to all hub nodes, which in turn
run a flow computation module. This module privately com-
putes an optimal (in terms of maximum throughput) sublist of
transactions to be executed and a flow that realizes these transac-
tions. WISER then proceeds to the execution phase. Each node
locally validates the flow and selected transactions received
by the computation module and then proceeds to atomically
executing the flow. That is, either all flows are executed or none.
We summarize WISER in Algorithm 1 (Section 3.4).

3.1 PCN topology & Channel Factories
We consider the restricted topology presented in Section 2.2.
That is, the set of nodes is composed by a small set of hub nodes
𝐻 and a set client nodes, such that each client is connected to
exactly one hub. This assumption ensures that transactions, and
general demand vectors, can only be routed by unique flows
in our PCN. In such a PCN, transaction aggregation problem
is fixed parameter tractable (see Section 4.1 for more details).
Moreover, we assume that the hub nodes are interconnected
with a channel factory.

Channel factories were first introduced as an intermediate
construction between layer 1 on-chain transactions and layer
2 payment channel transactions[9]. These factories are set up
between 3 or more individuals, and henceforth can be used to
instantly open and close off-chain standard payment channels
between any 2 of the involved parties.

Two parties set up a conventional payment channel by com-
mitting some amount of their individual funds into a 2-signature
wallet considered as a shared account. In much the same way,
𝑘 parties may set up a channel factory among themselves by
locking funds in a 𝑘-signature wallet. The internal working of
a channel factory relies in fact on conventional payment chan-
nels, however these are not broadcast publicly nor included in
the blockchain. Since the funds in the internal channels of the
factory can be reallocated to new channels instantly, channel
factories provide greater flexibility and scalability.

A conventional payment channel can execute arbitrarily
many transactions between two parties provided the resultant
balance lies within the channel’s capacity, and a channel factory
can achieve the same functionality for 3 or more parties. For-
mally, a channel factory between 𝑟 parties 𝑣1, . . . 𝑣𝑟 of current
capacity (𝑐1, 𝑐2, . . . 𝑐𝑟 ) (the total capacity is 𝐶 = 𝑐1 + 𝑐2 + . . . 𝑐𝑟
and is fixed) can route any demand vector (𝑑1, . . . 𝑑𝑟 ) provided
𝑑𝑖 ≤ 𝑐𝑖 ,∀1 ≤ 𝑖 ≤ 𝑟 . Another equivalent description of channel
factories is that the transaction aggregation problem on 𝑟 parties
connected by a channel factory reduces to the bank clearing
problem on 𝑟 banks.

There is a natural generalization of fees from payment chan-
nels to channel factories, where a node 𝑣𝑖 would charge a
fee for a certain state transition from c = (𝑐1, 𝑐2, . . . 𝑐𝑟 ) to
c′ = (𝑐 ′1, 𝑐

′
2, . . . 𝑐

′
𝑟 ) if 𝑐 ′

𝑖
< 𝑐𝑖 ie. if their balance decreases. Our

assumption on the fee function as stated in Section 2.2 gen-
eralized to the following: the total forwarding fee must be a
non-negative function 𝐹 (c0, c1) of the initial and final states
c0, c1 of the channel factory. 𝐹 must also satisfy the triangle
inequality: for any states c0, c1, c2, we have

𝐹 (c0, c2) ≤ 𝐹 (c0, c1) + 𝐹 (c1, c2).
The improvements of channel factories come at the cost of

minor liveness assumptions, namely, that the internal channels
in a factory can only be reorganized when all involved parties
are online. Although this assumption is generally impractical,
it is a reasonable one to make in the setting of WISER. Only
the hubs, and not the clients, are required to set up a channel
factory. Based on their role as payment service providers, it is
fair to expect them to be online regularly.

Channel factories are not crucial to our protocol, but they
provide an increase in throughput compared to solely using
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Transaction aggregation oracle:
● Dynamic programming   
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Figure 6: Proposed implementation of the skeleton protocol for transaction aggregation. Secret sharing is used before the
computation module to select the delegates and share the inputs, MPC is used throughout the computation module and until
the module’s output is delivered to the nodes. The tools used for the computation and (atomic) execution modules are noted
below those boxes.

payment channels. We recommend a channel factory between
the hubs, as opposed to the hubs building various channels
between each other for the following reason: suppose the hubs
commit the same amount of capital to a set of payment channels
between them to create a PCN 𝐺𝐻 between them. Any demand
vector d that can feasibly be routed in 𝐺𝐻 can also be routed
by the channel factory. On the other hand, there are always
demands d that a given 𝐺𝐻 cannot route but the factory can.
In this way, the throughput of the network is maximized for a
given amount of capital per hub.

3.2 Flow computation phase
The flow computation phase begins when sufficiently many
transactions have been collected by the users, or when a pre-
specified time has elapsed. In this phase, the transaction ag-
gregation problem is solved. In WISER we aim to preserve
the privacy of transactions. For this reason, we employ secret
sharing and secure multi-party computation to solve the opti-
mization problem. The output of the flow computation phase is
a list of transactions T ∗ and a flow f to be executed in the next
phase. The two separate components of this phase are discussed
below.

Secret Sharing the Transaction Aggregation Input. With se-
cret sharing we refer to protocols that allow a user to distribute a
secret among a group of participants, each of whom is allocated
a share of the secret. The secret can be then reconstructed but
only when a sufficient number of shares are combined (thresh-
old), meaning that a sufficient number of participants cooperate.
Furthermore, the individual shares (or a subset of the shares
with cardinality less than the threshold) leak no information
on the secret. When 𝑛 is the number of participants that get
shares and 𝑡 is the reconstruction threshold, the protocol is
called (𝑡, 𝑛)−threshold secret sharing. WISER is agnostic to
the selection of a specific secret sharing protocol, so any such
scheme can be used such as Shamir’s secret sharing [39].

In WISER, the list of transactions T as well as the channel
capacities in either direction are secret shared by the users, in
order to perform a multi-party computation of the transaction
aggregation problem. In particular, we assume the protocol
specifies a specific block header from the underlying blockchain
that provides common randomness to the users. Using this

randomness, the users select 𝑘 delegates among the hubs, which
will be the ones that will later execute the optimization oracle
to provide a solution of the transaction aggregation problem to
all users in a privacy-preserving manner. The users then (𝑘, 𝑘)-
threshold secret share to the 𝑘 delegates their inputs, specifically
their outgoing transactions and their channel balances. For
privacy reasons, we demand that all users send transactions –
even if they are of zero value, when a user has only incoming
transactions.

We stress that the 𝑘 delegates should be sampled from the
set of hubs (as opposed to sampling from clients or a mixture
of both) for the following reasons: firstly, as hubs are large busi-
ness holders in the PCN, it becomes expensive, hence difficult,
for an adversary to launch Sybil attacks to counterfeit them
in order to control a disproportionate fraction of the delegates.
Secondly, computing the solution to the transaction aggrega-
tion problem imposes resource and liveness constraints on the
delegates: all delegates need to have sufficient computational
power to perform the computation, and they need to be on-
line throughout the computation process. It would therefore be
more reasonable to assume that hubs, as large financial service
providers in the PCN, indeed have the capacity to fulfil these
requirements.

Input Validation. Once the transactions and constraints have
been secret shared, the delegates should validate the well-
posedness of the input. In particular, the delegates verify that
no user submits outgoing transactions that would exceed the
capacity of their channel with their hub, as assumed in Sec-
tion 2.2.

Solving the Transaction Aggregation Problem. Let O denote
an optimization oracle that, when given a PCN graph 𝐺 and a
list of transactions T , returns a sublist T ∗ along with a resultant
flow f that routes the aggregate of T ∗. T ∗ is optimal in the
sense that the throughput

∑
t𝑖 ∈T∗

|t𝑖 | is maximized. We elaborate

on our proposed optimization oracle below.
As stated in Section 3.1, our PCN consists of hubs, connected

by a channel factory, and clients connected to one hub only. The
assumption on T is that for each client 𝑣 , their channel with
the hub contains enough liquidity to route all transactions in T
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Algorithm 1: WISER – pseudocode for node 𝑢
Local input: 𝑜𝑢𝑡 (T , 𝑢) a set of outgoing transactions from node 𝑢, where T := ∪𝑢𝑜𝑢𝑡 (T , 𝑢) and the balances of adjacent

channels {𝑐 (𝑢,𝑤), 𝑐 (𝑤,𝑢) |𝑢 and 𝑤 share a channel}.
Local output: Result of atomic execution of a flow that realizes a sublist 𝑜𝑢𝑡 (T ∗, 𝑢) ⊆ 𝑜𝑢𝑡 (T , 𝑢), such that

T ∗ = ∪𝑢𝑜𝑢𝑡 (T ∗, 𝑢) is optimal in terms of total throughput
∑
t∈T |t|.

Macros:
f (𝑢): denotes the entries of a flow f referring to edges adjacent to 𝑢;
𝑖𝑛(T , 𝑢), 𝑜𝑢𝑡 (T , 𝑢): the list of incoming, and respectively, outgoing transactions with respect to node 𝑢 in the transaction list
T ;
/* Flow computation phase */

1 secretSharingProtocol(𝑜𝑢𝑡 (T , 𝑢), {𝑐 (𝑢,𝑤), 𝑐 (𝑤,𝑢) | 𝑢 and 𝑤 share a channel}); /* share input to hubs */

2 if 𝑢 is a hub (i.e., MPC delegate) then
/* Input validation */

3 for 𝑣 ∈ 𝑉 \ 𝐻 do
4 if

∑
t∈𝑜𝑢𝑡 (T,𝑣) |t| ≥ 𝑐 (𝑣, ℎ𝑣) then T ← T \ 𝑜𝑢𝑡 (T , 𝑣); /* exclude txns violating outgoing

capacity */
5 if

∑
t∈𝑖𝑛 (T,𝑣) |t| ≥ 𝑐 (ℎ𝑣, 𝑣) then T ← T \ 𝑖𝑛(T , 𝑣); /* exclude txns violating incoming

capacity */

6 optimizationOracle();
7 return 𝑜𝑢𝑡 (T ∗, 𝑣), f∗ (𝑣) to each node 𝑣 ;

8 𝑜𝑢𝑡 (T ∗, 𝑢), f∗ (𝑢) ← 𝑀𝑃𝐶 (); /* 𝑢 receives MPC output from hubs */

/* Execution phase */

9 if ∃t ∈ 𝑜𝑢𝑡 (T ∗, 𝑢) s.t. t ∉ 𝑜𝑢𝑡 (T , 𝑢) then abort; /* validation of 𝑜𝑢𝑡 (T ∗, 𝑢) */
10 if ∃t ∈ 𝑖𝑛(T ∗, 𝑢) ∪ 𝑜𝑢𝑡 (T ∗, 𝑢) s.t. t ∉ 𝑖𝑛(T ∗, 𝑣) ∪ 𝑜𝑢𝑡 (T ∗, 𝑣) ∧ t is a transaction between 𝑢 and 𝑣 then abort;
11 if f∗ (𝑢) does not match the entries for 𝑢 in f∗ (𝑣) s.t. transactions between 𝑢 and 𝑣 appear in T ∗ then abort;
12 if

∑
𝑒=(𝑣,𝑢) ∈𝐸

f (𝑒) − ∑
𝑒=(𝑢,𝑣) ∈𝐸

f (𝑒) ≠ d(𝑣) then abort /* validation of d vs f */

13 𝑇ℎ𝑜𝑟𝑎(f∗ (𝑢)); /* 𝑢 executes f (𝑢) by participating in Thora [1] */

where 𝑣 is the sender. The same channel must also have suffi-
cient liquidity in the opposite direction to route all transactions
where 𝑣 is the recipient.

Under these assumptions, the transaction aggregation prob-
lem reduces to an integer program with |T | variables and |𝐻 |
constraints. Although solving such integer programs generally
takes time exponential in |T |, we employ a recent result by
Eisenbrand and Weismantel [18] that solves integer programs in
time linear in |T |, albeit exponential in |𝐻 |, i.e., the algorithm
is fixed-parameter linear [15]. Their algorithm uses discrep-
ancy techniques (which address the question of rearranging a
sequence of vectors to limit the norm of their partial sums) to
facilitate dynamic programming. In Theorem 4.3 of Section
4.1 we prove that the proposed optimization oracle solves the
transaction aggregation problem and compute its computational
complexity.

3.3 Execution phase
The flow computation phase concludes with a solution to the
transaction aggregation problem, albeit encoded as secret shares.
The solution consists of the list of accepted transactions T ∗ ⊆
T , along with a resultant flow f on the network. An execution
of this flow would be equivalent to a simultaneous execution
of every transaction in T ∗. However, the solution must first be
checked for validity, and then be executed atomically though the
entire network. In the following, we discuss how the validation

of the solution will be performed as well as the execution of the
accepted transactions through the network in an atomic manner.
We further propose a specific structure for the interconnection
of the hubs, known as payment channel factories [9].

Flow Validation. To check that a solution (T ∗, f) is valid is
to check that T ∗ ⊆ T , that aggregation of T ∗ yields a feasible
demand vector d =

∑
t∈T∗

𝑡 , and that the flow f routes d.

A trusted third party could easily verify the above, but we
require users to verify these conditions locally. We present a
method for local verification, such that a solution is valid if and
only if every user locally verifies the above conditions.

A user 𝑣 is supplied with a list T ∗𝑣 ⊂ T ∗ such that a transac-
tion 𝑡 ∈ T ∗𝑣 whenever 𝑣 is the sender or the recipient. Represent-
ing transactions as demand vectors, T ∗𝑣 = {t ∈ T ∗ : t𝑣 ≠ 0}.
Moreover, 𝑣 is supplied with f (𝑒) for every edge 𝑒 adjacent to
𝑣 ie. 𝑒 = (𝑢, 𝑣) or 𝑒 = (𝑣,𝑢).

The users can verify that the provided local data is consistent
with that of other users: for every 𝑡 ∈ T , the sender-recipient
pair 𝑢, 𝑣 can verify that 𝑡 ∈ T ∗𝑢 if and only if 𝑡 ∈ T ∗𝑣 . Similarly,
every pair of adjacent vertices 𝑢, 𝑣 with (𝑢, 𝑣) ∈ 𝐸 can verify
they have both been provided the same value of f (𝑢, 𝑣).

𝑣 verifies that every transaction in T ∗𝑣 also belongs in T𝑣 and
therefore in T . 𝑣 computes their aggregate demand d(𝑣) under
T ∗𝑣 . To verify that f routes T ∗ locally, 𝑣 simply checks if the

224



Wiser: Transaction Aggregation in PCNs AFT ’22, September 19–21, 2022, Cambridge, MA, USA

net flow of f through 𝑣 is equal to d(𝑣):∑
𝑒=(𝑣,𝑢) ∈𝐸

f (𝑒) −
∑

𝑒=(𝑢,𝑣) ∈𝐸
f (𝑒) = d(𝑣).

Atomic Execution. After this verification, the users must
execute f atomically, i.e., ensuring that our protocol executes
the set of payments atomically and efficiently after performing
transaction aggregation, is critical for security. An incomplete
update of channels does not typically correspond to any mean-
ingful financial activity like the execution of a sublist of ag-
gregated transactions. The flow output from the previous flow
computation phase might involve disconnected components of
the network. To ensure atomicity of channel updates across all
disjoint paths, we employ the solution proposed in Thora [1]
that ensures any number of disjoint channels can be atomically
updated within a constant time interval.

We first note that existing HTLC-based solutions like [25,
27, 33] can guarantee atomicity of the channel updates only
when the subgraph induced by the set of channels form a path.
Moreover, these solutions require users along the path to lock
their payment amount for a time linear in the length of the
path. For these reasons, in WISER we leverage Thora, which
is solution that performs the multi-channel updates atomically
in constant time [1]. Furthermore, Thora operates in any graph
structure as it does not depend on the PCN topology or the
connectivity among channels.

In more detail, let f denote the flow in which all channels
need to be updated atomically. Let us denote the support of
the flow by 𝐸∗ = {𝑒𝑖 = (𝑠𝑖 , 𝑟𝑖 )}𝑚𝑖=1, where 𝑠𝑖 denotes the sender
and 𝑟𝑖 denotes the receiver in the 𝑖th channel. In Thora, each
receiver first creates and signs a special transaction, txep, which
contains “dummy” outputs for every receiver 𝑟𝑖 , 𝑖 ∈ [𝑛] of value
𝜖 and requires a signature from each sender 𝑠𝑖 . Each sender 𝑠𝑖
then creates a transaction to update the state of channel 𝑒𝑖 and
another payment transaction for their corresponding receiver
𝑟𝑖 . A payment transaction between 𝑠𝑖 and 𝑟𝑖 takes as input the
output to 𝑟𝑖 in any txep, and must be spent by a timeout period
𝑇 . Thus, as long as any txep is posted by any receiver to the
ledger before a given timeout period of 𝑇 , receivers can use
their corresponding output in the txep to ensure they get their
payment and spend it. If any receiver does not spend their
payment transaction by the timeout period 𝑇 , all senders will
get a refund with the refund amount being the amount of the
payment. In this way, atomicity of channel updates is ensured.

In Thora, the timeout period 𝑇 is independent of 𝑚, the
number of channels involved. In particular, if all users are
honest, all channel updates and payments can be instantaneous,
while security is guaranteed even in the presence of malicious
adversaries. We note that Thora guarantees value privacy with
respect to channel balances, but requires all users involved to
know the public keys of the other involved users. These public
keys can nevertheless be made pseudonymous (see Section 5.3
for more details).

3.4 Algorithm description
We consolidate the description of WISER in Algorithm 1. We
present WISER from the point of view of a node 𝑢; be it client
or hub. The input to the protocol is the list of transactions

𝑜𝑢𝑡 (T , 𝑢) originating from 𝑢 and the balances of channels ad-
jacent to 𝑢. The output of WISER is the result of the atomic
execution of a flow f∗ that realizes a sublist T ∗ of T , which is
optimal in terms of total throughput

∑
t∈T |𝑡 |.

Lines 1–8 consist of the flow computation phase. In line 1
node 𝑢 secret shares its local input to the hubs (MPC delegates).
That is, the outgoing transactions (or a single zero transaction
if there is no outgoing transaction) and the capacities of all
adjacent channels. Then, the hub nodes run lines 2–8. They
first check if the incoming and outgoing transactions submit-
ted are feasible with the given channel capacities (lines 3–5)
and exclude user inputs otherwise. Subsequently, they run the
optimization oracle (line 6), and return the output to all nodes
(line 7). With the given output (line 8), node 𝑢 proceeds to the
execution phase. It first validates the output in lines 9–12 and
then participates in Thora with its local input 𝑓 ∗ (𝑢) (line 13).

4 FORMAL ANALYSIS
In this section, we prove that WISER satisfies the protocol
goals. We first discuss the complexity of the transaction ag-
gregation problem, and show that the presented algorithm is
fixed-parameter linear in the number of hubs. Later, we demon-
strate that WISER satisfies balance security, optimality and cost
efficiency. Lastly, we prove security with our indistinguishabil-
ity game as per Definition 2.7.

4.1 Complexity of the Transaction
Aggregation Problem

In section 3.2, we referred to an optimization oracle O to ab-
stract out the algorithmic challenge of computing an optimal
sublist T ∗ ⊂ T . Here, we will first show that the problem is
NP-hard in general via reduction from the well-known subset
sum problem. Then we will restrict attention to our specific
graph and show that the problem is fixed-parameter linear. That
is, we show that the computational complexity of the opti-
mization oracle is linear in the number of transactions |T | but
exponential in𝑚, the number of hubs.

THEOREM 4.1. The Transaction Aggregation Problem is
NP-hard.

PROOF. In fact, the problem is NP-hard even for a graph on
two vertices and no edges. Consider an instance of the Subset
Sum problem, well-known to be NP-hard: given a positive
integer 𝐴 and a set {𝑎1, . . . , 𝑎𝑘 } of positive integers, find a
subset of them that sum to 𝐴.

Let𝐺 = (𝑉 , 𝐸) with𝑉 = {𝑣1, 𝑣2}, 𝐸 = ∅. Let T = {(𝑎1,−𝑎1),
(𝑎2,−𝑎2), . . . (𝑎𝑘 ,−𝑎𝑘 ), (−𝐴,𝐴)}. Finding any nonempty sub-
set of T , let alone one optimal in terms of throughput, which
can feasibly be aggregated, yields a solution of the Subset Sum
problem. □

Remark: Transaction aggregation coincides with BCP when
the graph has only two vertices. Thus, the NP hardness (and
in fact inapproximability) follows from the NP-hardness and
inapproximability of BCP with two participants[21].

We now proceed to calculating the computational complexity
of the optimization oracle (Section 3.2). Let us first state the
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relevant theorem from [18] before proceeding to apply it to our
setting.

THEOREM 4.2 (THEOREM 8 IN [18]). An integer program
of the form4

maxwTx such that

Ax ≤ b, 0 ≤ x ≤ u, x ∈ Z𝑘 .

for c ∈ Z𝑘 ,A ∈ Zℎ×𝑘 , b ∈ Zℎ, u ∈ Z𝑘+, can be solved in time
𝑂 (𝑘 (ℎΔ)ℎ2 ), provided all entries of A are bounded in absolute
value by Δ.

THEOREM 4.3. The Transaction Aggregation problem of
WISER can be solved in time 𝑂 (𝑘 (ℎΔ)ℎ2 ), where Δ is an upper
bound on the demand of every transaction, 𝑘 is the number of
transactions in T and ℎ is the number of hubs.

PROOF. It is sufficient to reformulate the transaction aggre-
gation problem as one satisfying the hypothesis of Theorem 4.2
above.

Consider an arbitrary ordering of the transactions in T =

{t1, . . ., t𝑘 }. For a vector 𝑥 ∈ {0, 1}𝑘 , let T (x) = {t𝑖 : x𝑖 = 1}.
We need to construct a matrix A and vectors w, b such that
finding the optimal sublist T ∗ ⊂ T is equivalent to finding a
vector x maximizing wTx subject to Ax = b and 0 ≤ x ≤ u,
where u is the all ones vector.

The main idea behind the construction of A is that, by our
assumption on client-hub channels having sufficient capacity to
route all transactions from T , we need only consider feasibility
of the demand vector of a sublist T ′ with respect to the channel
factory between the hubs.

So let us order the hubs as ℎ1, ℎ2, . . . , ℎ𝑚 and define b =

(𝑏1, 𝑏2, . . ., 𝑏𝑚) as: 𝑏𝑖 is the current balance of ℎ𝑖 in the channel
factory. Now, for every transaction t𝑖 ∈ T of demand |t𝑖 |, we
define A𝑖 , the 𝑖th row of A coordinate-wise as: A𝑖, 𝑗 = |t𝑖 | if
the sender of t𝑖 is connected to the hub ℎ 𝑗 . A𝑖, 𝑗 = −|t𝑖 | if the
recipient of t𝑖 is connected to hub ℎ 𝑗 , and 0 otherwise. We
define w as w𝑖 = |t𝑖 |.

The vector Ax represents the requisite flow in the channel
factory for routing the aggregate of T (x). Due to our assump-
tion on the capacity of client-hub channels, this is sufficient for
checking for the feasibility of the aggregate. Since b represents
the current state of the channel factory, the aggregate of T (x)
is feasible if and only if Ax ≤ b. We conclude the proof by
observing that maximizing the objective max cTx is equivalent
to maximizing the throughput

∑|t𝑖 | of the aggregate. □

Theorem 4.3 immediately implies the following.

COROLLARY 4.4. WISER satisfies computational feasibil-
ity as in Definition 2.3.

4The integer program in [18] is presented in the so-called standard form of
Ax = b, whereas we use the inequality form Ax ≤ b here for simplicity of
exposition. Any integer program can be reformulated from inequality form to
standard form by the introduction of slack variables, which doubles the number
of variables. This is inconsequential in our case as our dependence on the number
of variables is linear.

4.2 Balance Security
Here, we show that the users of WISER do not lose any money
through their participation in the protocol.

THEOREM 4.5. WISER satisfies balance security as in Def-
inition 2.4.

PROOF. The flow execution phase of WISER is the only
phase that involves monetary flow, hence requiring atomicity.
In WISER, flow execution is done using Thora, which guaran-
tees atomicity of channel updates assuming rational adversaries
(see [1] for more details). Thus, WISER also inherits atomic-
ity against rational adversaries. As a result, either the atomic
execution of a flow that routes our optimal list T ∗ succeeds,
implies that the change in user balances corresponds to the
same sublist T ∗ ⊂ T . Or, the atomic execution failed, in which
case the user balances are unchanged, corresponding to the
empty sublist ∅ ⊂ T . □

4.3 Optimality & Cost Efficiency
Here, we first show that the selected set transaction is maximal
in terms of throughput. Next, we show that the users of WISER

may benefit from their participation in the system in terms of
fees.

THEOREM 4.6. WISER satisfies optimality as in Defini-
tion 2.5.

PROOF. This follows immediately from the objective func-
tion of the transaction aggregation problem (Definition 2.1) and
the correctness of the optimization oracle (Theorem 4.3). □

THEOREM 4.7. WISER satisfies cost efficiency as in Defini-
tion 2.6.

PROOF. We wish to prove that total fee levied to users
should be no greater than the fees that would have been levied
had the transactions been processed sequentially. Although
WISER routes an optimal sublist T ∗, we prove the above for
any list T of transactions that can feasibly be aggregated. The
main idea of this proof is that forwarding fees satisfy the trian-
gle inequality, and that transactions can only be routed along
unique paths (Section 2.2).

Suppose T = [t1, . . . t𝑘 ] and the flow f routes T . Note
that a sequential execution of transactions may not be possible
although the atomic execution of the aggregate (this is in fact
one of the benefits of transaction aggregation), in which cost
efficiency holds trivially. Suppose that a sequential execution of
transactions is indeed possible, and without loss of generality
assume this order is t1, t2 . . . t𝑘 .

Consider any channel or channel factory 𝐶 in our PCN, and
let 𝑎0 be its initial state. Suppose the atomic execution of f
leaves 𝐶 in the final state 𝑎𝑓 , and this incurs fee 𝐹 = 𝐹 (𝑎0, 𝑎𝑓 ).
Next, suppose the sequential execution of transactions takes 𝐶
along states 𝑎0, 𝑎1, . . . 𝑎𝑘 = 𝑎𝑓 , so that the routing of t𝑖 involves
a state transition from 𝑎𝑖−1 to 𝑎𝑖 and costs 𝐹 (𝑎𝑖−1, 𝑎𝑖 ). Since
the fee function satisfies the triangle inequality,

𝐹 (𝑎0, 𝑎𝑓 ) = 𝐹 (𝑎0, 𝑎𝑘 ) ≤
𝑘∑
𝑖=1

𝐹 (𝑎𝑖−1, 𝑎𝑖 ) .

226



Wiser: Transaction Aggregation in PCNs AFT ’22, September 19–21, 2022, Cambridge, MA, USA

Observing that the total fees incurred is simply the sum of
forwarding fees per channel, this establishes cost efficiency. □

4.4 Privacy
Our transaction aggregation solution as well as the execution
protocol satisfies our privacy notion, i.e.,

THEOREM 4.8. WISER satisfies the privacy notion from
Definition 2.7 (assuming the users running the MPC protocol
satisfy the trust assumptions required by the underlying MPC
protocol).

PROOF. Consider the indistinguishability game as defined
in Definition 2.7. Let us assume during the challenge phase of
the game there exists a trusted third party (TTP) that computes
a flow f𝑏 from the challenge transaction tuple list T𝑏 . Suppose
additionally that the computed flow satisfies all the constraints
as detailed in Definition 2.7. The TTP subsequently lets each
user in 𝑉 know how much they need to send or receive on each
of their incident edges.

Each corrupted user learns, from the TTP, only the amount
they need to send or receive on each of their incident channels.
Since the flow restricted on 𝐺A has to be the same when the
protocol is run on either T 0 or T 1, the joint view of the adver-
sarial nodes when the protocol is run on T 0 or T 1 is identical
(and thus trivially indistinguishable).

Now we can replace the above assumption of a TTP with
an MPC protocol that computes the same functionality with
the same privacy guarantees. If the parties running the MPC
protocol satisfy the trust assumption of the underlying protocol,
privacy is preserved. A natural choice would be to use a compu-
tationally (rather than information theoretically) secure MPC
protocol (so we have privacy unless all the users are corrupted),
and (for efficiency reasons) pick a small random subset of the
users to run the MPC protocol after receiving the secret-shared
inputs from all the participating users. This way privacy is pre-
served unless the entire randomly picked subset of users has
been corrupted by the adversary.

The execution phase of our protocol uses the Thora protocol
as a black box, and Thora guarantees that payment values along
any channel that needs to be updated are not known to anyone
except the channel owners. This again ensures that involved
users only know the payments and hence flow on their incident
channels. Thora leaks the set of involved users, but they can be
made pseudonymous using ephemeral keys (see Section 5.3).
Thus, the only information involved users gain is the number
of all other involved users, which is allowed in our privacy
definition.

Since we restrict the set of involved users to be exactly the
same when the protocol computes the flow given transaction
tuples T 0 and T 1, the view of an adversarial node when the
execution phase of the protocol is run on T 0 or T 1 is again
indistinguishable, hence the execution phase is private. □

5 DISCUSSION & EXTENSIONS
In this section, we first discuss the WISER architecture and
its various components. Then, we elaborate on our privacy

definition and potential extensions. Finally, we revisit the as-
sumptions of this work and in particular the fees requested for
routing by the hubs.

5.1 WISER modularity
WISER implements the skeleton protocol described in Sec-
tion 2.4. However, the specific components of the skeleton
protocol are modular, in the sense that they can be replaced
with other protocols that maintain the same guarantees.

As mentioned previously, there are various suitable MPC
frameworks we can use. As an active area of research, we
expect improvements on the side of secret sharing and MPC
protocols, which would directly apply to WISER. The delegates
conducting the MPC can also be chosen from any set of parties
that have sufficient computing power and strong identities. The
MPC may even be entirely replaced by a semi-trusted third
party if the application does not require privacy of transactions
and channel balances.

The rest of the components are also replaceable. Executing
the flow derived from aggregating transactions can be imple-
mented by any protocol, like Thora, that provides atomicity of
channel updates.

In WISER we assume the hubs have created an on-chain
channel factory. Although this construction benefits the proto-
col in terms of throughput, lower liquidity requirements as well
as runtime, this structure is by no means restrictive or necessary
for our protocol execution. Hubs that are already connected
via traditional payment channels in an arbitrary graph struc-
ture can implement transaction aggregation without paying for
constructing channel factories.

Most importantly, the optimization oracle is also replaceable.
In Section 5.2 below, we demonstrate the equivalence of BCP,
the Bank Clearing Problem and transaction aggregation on
channel factories. Due to the modularity of WISER, we can use
any of the algorithms developed for BCP as our optimization
oracles. We also discuss applicable algorithms below.

5.2 Connection to Netting
As observed in Section 3.1, the use of channel factories between
ℎ hubs with capacities c = (𝑐1, 𝑐2, . . . 𝑐𝑟 ) allows for routing
of any demand vector d = (𝑑1, 𝑑2, . . . 𝑑𝑟 ) so long as d ≤ c.
Observe that this feasibility constraint is identical to that of the
Bank Clearing Problem when ℎ participants have capital (or
cover money) c. Since both transaction aggregation and BCP
aim to maximize throughput or clearing volume, the problem
of transaction aggregation on a channel factory is equivalent to
BCP.

On one hand, this means our fixed-parameter linear algo-
rithm from Section 4 also shows that BCP is fixed-parameter
linear in the parameter (ℎΔ). This linear dependence on the
number of transactions is not only best possible (since simply
reading a list of 𝑘 transactions requires 𝑂 (𝑘) time), but also
improves upon the previous known polynomial dependence on
𝑘 .

Although the algorithm we present in Section 4.1 enjoys the
best known asymptotic complexity, other, simpler algorithms
such as the pseudopolynomial time dynamic programming
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solution of [21] may be faster in certain parameter regimes.
Moreover, although BCP has been shown to be inapproximable
unless P = NP, [38] propose a fast heuristic for approximately
solving it, which may also be employed here to achieve even
faster implementations at the cost of optimality.

5.3 Privacy
Here we discuss two privacy issues regarding our protocol.

Revealing the full set of involved users. As briefly mentioned
in Definition 2.7, we use Thora to execute the computed flow
atomically, and this leaks the full set of involved users. This is
because every receiver in Thora has to create a special trans-
action txep that contains outputs for every other receiver and
signed with a signature from each sender. Not only is it possi-
ble, but it is also good practice, to use fresh ephemeral public
keys (also known in the literature as receive addresses) when
receiving tokens in UTXO-based cryptocurrencies. If all users
employ fresh receive addresses each time they participate in
our protocol, the only information leaked would be the number
of involved users. We consider this a non-issue, as the set of
involved users is not revealed, but only the size of this set.

Hiding transaction requests from hubs. In WISER, users se-
cret share their transaction requests and the transaction aggrega-
tion problem is solved using MPC. Thus, the flow computation
stage conceals transactional data.

In the execution phase, the hubs see the aggregated flow out-
put on all their incident channels, but they cannot confidently
determine sender-recipient pairs or demands since the number
of transactions is not known to them. This gives users an ad-
ditional potential privacy benefit when using our protocol as
compared to when the hubs sequentially execute transaction
requests.

5.4 Optimizing for Fees
The algorithm presented in Section 4.1 seeks a feasible sublist
of transactions that maximizes throughput without considering
the fees incurred in the execution of flow. As a result, we can
only guarantee the weak notion of cost efficiency as given in
Definition 2.6: that the fee is no greater than the case with-
out transaction aggregation at all ie. had the transactions been
processed sequentially.

WISER can in fact achieve greater cost efficiency by modify-
ing the optimization oracle. In fact, only the objective function,
and not the algorithm itself, must be modified to a sum of
throughput and total fees incurred, with a certain trade-off fac-
tor relating the importance of these two objectives. By leaving
the constraints of the integer program unchanged, this extension
enjoys the same runtime as given by Theorem 4.3.

6 RELATED WORK
Payment channel networks have received much attention re-
cently as a promising way to increase the limited transaction
throughput of blockchains. Payment channels were originally
introduced by Spilman [41], but the first bidirectional construc-
tions followed later with the Bitcoin Lightning Network [33]

and the Duplex Micropayment Channels [13]. There is cur-
rently a flurry of payment channel proposals each optimizing
a different aspect [2, 3, 6, 7, 12, 16, 17, 28, 29]; see [14] for a
recent survey.

Routing on PCNs. The original proposals for payment chan-
nels faced many practical challenges. A major challenge was
how to design an efficient routing algorithm for a PCN: as the
current balances on the network are not known, identifying a
viable short path from sender to receiver proved to be difficult.
Several routing protocols for PCNs have been developed to
provide efficient solutions to this problem. Flare [34] and Silen-
tWhispers [24] both employ highly connected nodes to route
the payments in order to improve the scalability of the routing
algorithm. SpeedyMurmurs [37] and VOUTE [36] improve the
process by leveraging a routing approach called prefix embed-
dings. Flash [47] uses a modified max-flow algorithm to find
the optimal path, while Perun [16] introduces virtual channels
to avoid routing through intermediaries. On a different front,
other routing discovery algorithms focus on maintaining the
anonymity and privacy during the route discovery [5, 32] or the
transaction execution [44].

However, all of these works focus on a different problem,
that of efficient (and often privacy-preserving) routing in PCNs
with arbitrary graph structure. We, on the other hand, simplify
the network structure and examine how the users of such a
graph topology can benefit from other functionalities of trans-
action aggregation such as canceling out and “transferwise”, in
order to increase throughput and decrease the intermediaries’
fees.

Rebalancing PCNs. The previously mentioned routing ap-
proaches generally ignore the issue of balance depletion; chan-
nels that transfer coins mainly in one direction will soon get
depleted and must top-up the balance on-chain. The rebalanc-
ing problem was identified and addressed in Revive [22], which
was the first work to propose the use of rebalancing strategies.
Many interesting follow-up works spawned afterwards: Pick-
hardt et al. [31] improved the balances of a PCN as a sequence
of rebalancing operations of the channel funds, while Avarikioti
et al. presented Hide & Seek, [8] a privacy-preserving decen-
tralized rebalancing protocol that improved upon Revive. Also
the Bitcoin Lightning Network comes with rebalancing plug-
ins, e.g., c-lightning5 and lnd6. The Spider Network [40] splits
payments into smaller units and routes them over multiple
paths using waterfilling, aiming to efficiently route transac-
tions while maintaining balanced channels. The Merchant [45]
utilises adaptive fee strategies to incentivize the balanced use of
payment channels, and [23] uses estimated payment demands
along channels to plan the amount of funds to inject into a chan-
nel during channel creation. There also exist several interesting
approaches to save fees in payment channel networks, e.g., vir-
tual channels [16], and studies on the security implications of
such fee mechanisms [43].

Transaction aggregation is intrinsically related to the ques-
tion of rebalancing in the sense that multiple flows can execute

5https://github.com/lightningd/plugins/tree/master/rebalance
6https://github.com/bitromortac/lndmanage
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a given aggregate of transactions, and an appropriate choice of
flow inevitably results in minimal channel depletion. In other
words, rebalancing can be interpreted as transaction aggrega-
tion of an empty list of transactions. However, none of these
works leverage transaction aggregation to increase throughput
in PCNs and hence do not enable routing transactions even
in a disconnected graph topology with the newly introduced
“transferwise” functionality.

Atomic multi-hop transaction execution. Traditional pay-
ment channel networks like the Bitcoin Lightning network
achieve the atomic execution of multi-hop payments using
Hash Timelock Contracts or HTLCs [13, 33]. however, HTLC
suffer from sepcific attacks such as the wormhole attack [26]. In
a recent line of work, several proposals exist that improve upon
the use of simple HTLCs to guarantee the atomic execution
of transactions, typically targeting efficiency and security in
an extended model [1, 4, 42]. These works are complementary
to ours because our proposed solution requires the use of a
protocol that can execute transactions in an atomic manner in
general topologies where the graph can even be disconnected.
Therefore, any efficiency improvements on the atomic trans-
action execution in generic topologies implies immediately an
efficiency improvement on WISER.

Netting. Our work is closely related to netting systems in fi-
nancial markets, specifically netting for inter-bank settlements,
which involve using a central entity (typically a central bank)
to settle all liabilities of involved financial institutions [20].
The netting problem for banks, also known as the Bank Clear-
ing Problem, is NP-complete and inapproximable. However,
heuristic-based algorithms that yield approximate solutions in
practice have been developed in [21] and [38]. On the side of
exact algorithms, a pseudopolynomial time exact algorithm
for BCP was presented in [21]. This exact algorithm is based
on dynamic programming, but processes transactions in the
same order as input. Our algorithm, also based on dynamic
programming, improves upon theirs by exploiting discrepancy
techniques to reorder the transactions and hence reduce time
and memory requirements to linear.

Besides the algorithmic connection, netting is also related
to our work in terms of privacy and decentralization. Although
inter-bank netting traditionally relies on central banks as medi-
ators, there are multiple reasons to seek decentralized alterna-
tives. Central banks are trusted to preserve the confidentiality
of transactional data, as well as perform the netting correctly,
which incurs greater liability for all involved parties. As ob-
served in [10], finding trusted mediators for cross-border multi-
currency transfer is also challenging. To this end, there are
some works which aim to implement decentralised netting sys-
tems [10, 11]. In particular, the work of Cao et al. provides a
decentralized and optimal netting solution that also guarantees
the privacy of payment amounts using smart contracts and zero
knowledge proofs on the blockchain [10]. Our work, in contrast,
aims to address this problem for payments on payment channel
networks, and thus all our proposed solutions in WISER seek to
reduce the usage of the underlying blockchain for arbitration.

7 CONCLUSION
In this work, we formulated the transaction aggregation prob-
lem and presented a protocol solving it. Transaction aggre-
gation can potentially increase throughput and even realize
payments that were infeasible when executed sequentially. We
presented a skeleton protocol for a hub-based business model
that abstracts the components required to (i) privately compute
the flows through each channel maximizing the transaction
throughput, and (ii) execute those flows atomically. We then
presented WISER, an implementation of our skeleton proto-
col: In WISER we employed channel factories as the intra-hub
channel structure. We further proposed a fixed-parameter linear
algorithm to solve the transaction aggregation problem, which
we execute via an MPC to maintain privacy of transactions and
channel balances. Finally, WISER utilized Thora to execute the
flow atomically across the PCN. With WISER we (a) enhanced
the liquidity of the PCN, (b) effectively reducing the transac-
tion fees to the hubs, while (c) maintaining the privacy of the
transaction’s and channels’ data.

We regard our work as a first step toward more general proto-
cols. Specifically, an interesting future work is to design a com-
putationally tractable protocol for more general topologies than
the hubs/clients topology we use. Algorithmic breakthroughs
in the specific topology we consider would also benefit central-
ized or decentralized netting protocols. Also, we can improve
the privacy guarantees by anonymizing the involved users or
hiding transaction requests from hubs. Moreover, it is orthog-
onal to our work to compute a fee mechanism charged by the
hubs. Note that including fees in the optimization component is
straightforward and does not affect the protocol’s complexity,
although its effect on throughput is not understood.
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