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Abstract

Across many domains of interaction, both natural and artificial, individuals use past experience to shape future behaviors. The results
of such learning processes depend on what individuals wish to maximize. A natural objective is one’s own success. However, when
two such “selfish” learners interact with each other, the outcome can be detrimental to both, especially when there are conflicts of
interest. Here, we explore how a learner can align incentives with a selfish opponent. Moreover, we consider the dynamics that arise
when learning rules themselves are subject to evolutionary pressure. By combining extensive simulations and analytical techniques,
we demonstrate that selfish learning is unstable in most classical two-player repeated games. If evolution operates on the level of
long-run payoffs, selection instead favors learning rules that incorporate social (other-regarding) preferences. To further corroborate
these results, we analyze data from a repeated prisoner’s dilemma experiment. We find that selfish learning is insufficient to explain
human behavior when there is a trade-off between payoff maximization and fairness.

Significance Statement:

A natural first approach to learning is to attempt to improve one’s own outcome (e.g. wealth, resources, or reputation), without
regard for others. This kind of “selfish” learning, however, can be detrimental in social dilemmas, in which the individuals’ incen-
tives are at odds. Here, we study the evolutionary dynamics of different learning rules, demonstrating that selfish learning can be
driven to extinction in evolving populations. To this end, we contrast selfish learning with a competing learning rule, which uses
simple social preferences. The competing rule attains superior outcomes across a wide range of social interactions, even when
interacting with selfish learners, and it ensures that these outcomes are both fair and socially optimal.

Introduction
Individuals naturally adapt to their environment, either by mod-
ifying their existing behaviors or by considering alternative ones
when necessary (1, 2). The study of behavioral adaptation is far-
reaching, with applications ranging from microbial dynamics (3,4)
to social preferences in humans (5–7) to learning algorithms in
multiagent systems (8, 9). Evolutionary game theory, a tool for
modeling behavioral adaptations (10–17), has been used to de-
scribe how people learn to engage in reciprocity (18–30), how so-
cial norms evolve over time (31,32), how groups are formed (33),
how thriving communities can suddenly be undermined by cor-
ruption (34,35), and how artificial agents behave “in silico” (36–39).
A key assumption in evolutionary game theory is that individu-
als might not act optimally from the outset. Rather, adaptation
happens over time through either cultural or genetic mechanisms
(10–15).

To describe how people learn new behaviors, the respective lit-
erature has considered various cognitive processes. Some models

stipulate that individuals learn by imitating their peers (40–42),
whereas others assume that learning is based on aspiration levels
(43,44), reinforcement (45, 46), or introspection (47, 48). Crucially,
however, learning rules are frequently based on the assumption
that individuals strive to increase their own immediate payoffs.
Although errors, mutations, and chance events may temporar-
ily lead individuals to adopt inferior strategies, better performing
strategies are favored on average. We refer to learning rules with
this property as “selfish learning.”

In reality, many models ask neither whether individuals actu-
ally learn based on strict payoff maximization nor whether they
have a long-run incentive to do so (40–48). This assumption might
be justified when interactions lack any strategic component (as
in single-player optimization). However, the rationale for selfish
learning is less clear in social dilemmas, where there are conflicts
of interest between the individual and the group (49–51). When
social dilemmas give rise to multiple equilibria, selfish optimiza-
tion may easily result in detrimental outcomes that are socially
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inefficient. This drawback is already well-recognized in the field
of multiagent reinforcement learning, where selfish learners are
considered “naïve” and serve as a benchmark for other learning
rules (52). If selection acts upon the learning rules that deter-
mine how players choose strategies, then it may select for differ-
ent learning rules altogether.

The problem of optimal learning is best illustrated with a
key model of evolutionary game theory: the repeated prisoner’s
dilemma (19). In each round of the game, two players indepen-
dently choose whether to cooperate or defect. Each player has
an incentive to defect even though mutual cooperation is in ev-
erybody’s interest. For repeated games with sufficiently long time
horizons, there is a wide range of possible equilibria (53). In par-
ticular, players may always cooperate, always defect, or alternate
between cooperation and defection (54). After decades of research,
much is known about particular strategies that sustain coopera-
tion, such as “tit-for-tat” (55) or “win-stay, lose-shift” (36). Much
less is known how such desirable strategies can be learned in the
first place, especially when players are learning concurrently. If
strategy updating is described by imitation, for example, players
may end up defecting for a substantial amount of time (56). Such
detrimental outcomes become increasingly likely when the game
involves only a few rounds, offers a small benefit of cooperation,
or when players commit errors (21).

In this study, we ask whether there is a learning rule that helps
individuals find more profitable equilibria, even when the oppo-
nent is self-interested. To this end, we imagine two individuals
interacting in a repeated game. Each individual has its own learn-
ing rule for adapting its strategy, with the ultimate goal of achiev-
ing a high payoff. As a baseline, we consider a variant of selfish
learning. At regular time intervals, a selfish learner compares the
performance of its present strategy with the (hypothetical) perfor-
mance of a slightly perturbed version of its strategy. The learner
adopts the perturbed strategy if it yields a higher payoff, regard-
less of its effects on others.

We contrast selfish learning with a learning rule we term
“fairness-mediated team learning” (FMTL). Players with this learn-
ing rule balance two objectives, efficiency and fairness. To pro-
mote efficiency, FMTL favors strategies that increase the total pay-
off of the group (i.e. the “team” payoff). In this way, FMTL aims to
avoid equilibria that leave everybody worse off. To prevent them-
selves from getting exploited, however, FMTL players simultane-
ously aim to minimize payoff differences within their group (i.e.
promote “fairness”). The respective weights assigned to efficiency
and fairness are dynamically adjusted based on the players’ cur-
rent payoffs. Increasing efficiency is the primary objective when
payoff inequalities are negligible.

The definition of FMTL has a natural connection to the field
of multiagent learning (57–61). Two of the most well-studied ar-
eas involve so-called “fully-cooperative” and “fully-competitive”
interactions. In fully cooperative interactions, players have iden-
tical payoff functions; what is good for one player is equally good
for the other. In fully competitive settings, the players’ incentives
are perfectly opposed. The iterated prisoner’s dilemma falls some-
where in between and is often referred to as a “mixed” or “general-
sum” game (62,63). As such, it presents a more difficult learning
problem. In striving for fairness, FMTL forces the players to have
approximately equal payoffs, which is reminiscent of the fully co-
operative setting. Once payoffs are sufficiently close, FMTL views
itself and the opponent as a team and attempts to optimize the
total payoff. The approach of optimizing a team score is common
in cooperative settings, especially when individuals have mostly
(but not completely) aligned incentives (9).

When all learners are driven by fairness and efficiency, it may
not be surprising that the learning dynamics favor socially benefi-
cial outcomes. Remarkably, however, such outcomes already arise
when only one learner has these objectives. For a wide range of
two-player games, we show that FMTL players tend to settle at
equilibria that are both individually optimal and socially efficient
even when interacting with selfish opponents. Based on these
observations, we explore the dynamics that arise when the two
learning rules themselves are subject to evolution. We consider
a process with two timescales. On a short timescale, individuals
have a fixed learning rule that they use to guide their strategic
choices. On a longer timescale, players can switch their learning
rule, based on how successful it proved to be. The resulting evolu-
tionary dynamics depend on which game is played, and on the rel-
ative pace at which learning rules are updated (compared to how
often strategies are updated). When learning rules and strategies
evolve at a similar timescale, selfish learning is favored. However,
when learning rules evolve at a slower rate, selfish learning is rou-
tinely invaded and ceases to be stable in many classical games.

Results
A model of learning in repeated games
To compare different learning rules, we consider two players who
interact in a repeated game. In each round, players independently
decide whether to cooperate or defect. As a result, each player
obtains a payoff (Fig. 1a). After every round, players interact for
another round with probability λ. They decide whether to coop-
erate based on their strategies. A strategy is a rule that tells the
player what to do in the next round, given the history of previous
play. In the simplest version of the model, players use memory-
one strategies (13). These strategies are contingent on only the
last round of play, and they reasonably approximate human be-
havior in economic experiments (64–67). A memory-one strategy
for player X consists of an initial probability of cooperation, p0, to-
gether with a four-tuple of conditional cooperation probabilities,
p = (pCC, pCD, pDC, pDD ) ∈ [0, 1]4. Here, pxy is the probability that X
cooperates in the next round when X played x and Y played y in
the previous round. For example, an unconditional defector is rep-
resented by a memory-one strategy with p0 = 0 and p = (0, 0, 0, 0).
Tit-for-tat takes the form p0 = 1 and p = (1, 0, 1, 0). Given strate-
gies p and q of the two players, we can compute how likely they
are to cooperate over the course of the game, and which overall
payoffs πX (p, q) and πY (p, q) they obtain (Fig. 1b and “Methods”).

After each repeated game, players may update their strategies
based on their experience with the opponent. They do so by imple-
menting a learning rule. We consider learning rules that consist of
four elements: a distribution D over initial strategies, a sampling
procedure S, a set of objective functions V, and a priority assign-
ment �. The first element, the distribution over initial strategies,
determines the player’s default strategy that is used before any
learning takes place. The second element, the sampling proce-
dure, determines how to generate an alternative strategy in each
learning step. Throughout the main text, we assume that a player
X with current strategy p generates an alternative strategy p′ us-
ing local random search (68) (Fig. 1c). After generating an alterna-
tive strategy, the player decides whether to accept it. To this end,
the set of objective functions V specifies what the player’s strategy
ought to maximize. If X’s objective is to maximize V ∈ V, the player
switches to p′ if and only if V (p′, q) > V (p, q). This decision may
involve, for example, a comparison between the player’s current
payoff, πX (p, q), and the payoff πX (p′, q) the player could have ob-
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Fig. 1. Learning in repeated games and FMTL. (a) In each encounter of a repeated game, players engage in a “one-shot” game. Both choose actions, C or
D, and receive payoffs, R, S, T, or P. (b) A repeated game consists of a sequence of one-shot games. Both players choose strategies, p and q, and receive
overall payoffs, πX and πY, respectively. (c) To update strategies, players occasionally sample a new, nearby strategy p′ (“local search”). (d) When X uses
strategy p′ against Y’s strategy, q, the players get new payoffs, π ′

X and π ′
Y . This new strategy is then evaluated based on a player’s learning rule. (e) If X

is a selfish learner, p′ is accepted only if it improves X’s payoff, i.e. if π ′
X > πX . (f) If X uses FMTL, then with probability 1 − ω she takes p′ only if it brings

the two players’ payoffs closer together (fairness). Otherwise, with probability ω, she takes p′ only if it improves the sum of the two players’ payoffs
(efficiency). The probability ω is a decreasing function of the payoff difference so that fairness becomes more important to FMTL as one player starts to
do better than the other.

tained using the alternative strategy (Fig. 1d). However, a player’s
priorities over her objectives may change over time. The priority
assignment � (p, q) determines with which probability each ob-
jective V ∈ V is chosen.

We compare the performance of two learning rules. Accord-
ing to selfish learning, a player switches to the alternative strat-
egy if and only if it increases the player’s payoff. Within our
framework, selfish learning can be represented by the objective

function VS (p, q) = πX (p, q), which the player strives to maxi-
mize (Fig. 1e). We refer to such a player as a selfish learner.
The other learning rule is FMTL (Fig. 1f). FMTL has two objec-
tive functions, V = {VE,VF}. The first objective is to achieve effi-
ciency. With the objective function VE (p, q) = πX (p, q) + πY (p, q),
the player aims to maximize the group’s total payoff. The other
objective is fairness. Here, a player aims to minimize payoff
differences, which is equivalent to maximizing the objective
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Fig. 2. FMTL versus a selfish learner in the repeated donation game. (a) X and Y initially choose random strategies and receive payoffs that fall within
the feasible region. (b) When X and Y are both selfish learners, we let X and Y update until neither one has accepted a new strategy for 104 update
steps. This process is repeated for 105 iterations. The resulting distribution of payoffs is concentrated around the mutual defection payoff. Only a small
number of runs (approximately 6%) result in mutual cooperation, and an even smaller number settle at alternating cooperation. (c) When X plays
FMTL instead, final payoffs are concentrated around the payoff for mutual cooperation. This is also the fair and socially optimal outcome. (d) As one
may expect, two selfish learners require a substantial benefit-to-cost ratio to coordinate on the optimal outcome (b − c) with high probability. In
contrast, FMTL against a selfish learner gives excellent outcomes even when b/c is small. The endpoints in (b) and (c) are based on 105 random initial
strategy pairs, and for b = 2 and c = 1.

VF (p, q) = − ∣∣πX (p, q) − πY (p, q)
∣∣. FMTL prioritizes efficiency if the

players’ current payoffs are sufficiently close, and it prioritizes
fairness if there is substantial inequality. For a precise description
of the priority assignment, see “Methods.”

Learning dynamics across different repeated
games
To compare the two learning rules, we first assume each player’s
learning rule is fixed. Across a range of different two-player games,
we explore how the players’ learning rules affect their payoffs. As
the baseline scenario, we consider two selfish learners. We then

contrast this scenario with groups where either one or both play-
ers use FMTL.

Prisoner’s dilemma
We start by exploring how players fare in one of the most basic and
well-studied social dilemmas, the donation game (13). Here, coop-
eration means paying a cost c > 0 to deliver a benefit of b > c to the
coplayer. This results in a prisoner’s dilemma: players individu-
ally prefer to defect, yet mutual cooperation yields a better payoff
than mutual defection. Players start out with random memory-
one strategies (Fig. 2a) and the game is repeated for many rounds
(see “Methods”). Previous work shows there are four types of
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Fig. 3. Robustness of FMTL. (a) To illustrate how FMTL can help players to escape from mutual defection, we consider a scenario where X uses FMTL
and Y is a selfish learner. Initially, both X and Y play ALLD (“always defect”). Even under such hostile initial conditions, the process moves toward
mutual cooperation. (b) Across all benefit-to cost-ratios, pairs with an FMTL learner reliably escape mutual defection. In contrast, two selfish learners
never escape. (c) and (d) In addition to the donation game, we also consider simulations for a prisoner’s dilemma with (S + T)/2 > R. In this game,
optimal play requires alternating cooperation and defection. When FMTL is matched with a selfish learner, players are indeed most likely to settle at
this outcome, although they have no explicit information about R relative to (S + T)/2. Game parameters: (a and b) R = 1, S = −1, T = 2, and P = 0; (c
and d) R = 3, S = −1, T = 9, and P = 0.

symmetric equilibria among memory-one players (54): players ei-
ther both cooperate, both defect, alternate, or they use so-called
equalizers (20,69).

We use simulations to explore which of these equilibrium out-
comes is eventually realized (if any), depending on which learning
rules the players apply. When two selfish learners interact, most
of the time they either end up in mutual cooperation or mutual
defection (Fig. 2b). Although cooperation is socially optimal, an
overwhelming majority of simulations give rise to an all-defection
equilibrium with low payoffs. The observed learning dynamics
change completely if one (or both) of the two learners switches to
FMTL. In that case, most simulated pairs of learners end up coop-
erating (Fig. 2c; see Figure S1 for a depiction of the final strategies).
Remarkably, players yield almost full cooperation already for low
benefit-to-cost ratios, for which cooperation is usually difficult to
establish (21) (Fig. 2d).

To explore which mechanism allows FMTL to evade inefficient
equilibria against selfish learners, we consider simulations in
which initially both players defect (Fig. 3a). In this initial state, the
players’ payoffs are equal but inefficient. As a result, FMTL pri-
oritizes efficiency over fairness, leading the respective learner to
cooperate occasionally. While this reduces the payoff to FMTL, it
also provides some strategic leverage. By cooperating condition-
ally, the learner can affect how profitable it is for the selfish op-
ponent to cooperate. Once the FMTL player adopts a strategy that
makes cooperation a best response, even a selfish opponent has
an incentive to adapt (Figure S2 and Video S1). In this way, FMTL
triggers dynamics of ever-increasing cooperation rates. Eventually,
players reach an equilibrium in which both players cooperate. Dif-
ferent simulated trajectories vary due to stochasticity, but they
almost always lead from defection to cooperation, independent
of the magnitude of the benefit-to-cost ratio (Fig. 3b). We observe
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similar dynamics when players start out with random strategies
(see Figure S3).

Donation games may favor successful learning because effi-
ciency requires only a simple pattern of behavior: both players
merely need to cooperate each round. Instead, additional coordi-
nation problems might arise if efficiency requires the players to
cooperate in turns. This problem occurs, for example, in a pris-
oner’s dilemma with R < (S + T)/2. Here, it is socially optimal to
agree on a policy of alternation: X cooperates and Y defects in
even rounds, whereas X defects and Y cooperates in odd rounds.
Again, we explore the dynamics of this game when players use
either selfish learning or FMTL. When they both use selfish learn-
ing, they typically fail to cooperate altogether (Fig. 3c). But if one
of them adopts FMTL, they overwhelmingly discover the optimal
policy of alternation (Fig. 3d). We observe a similar pattern in the
context of a harmony game (here, R > T and S > P, such that coop-
eration is dominant (70)). When R < (S + T)/2, two selfish learners
typically coordinate on mutual cooperation. But if one of the two
players switches to FMTL, they both achieve the superior alterna-
tion outcome. Specifically, when two selfish learners interact in a
game with payoffs R = 1, S = 2, T = 0.5, and P = 0, we find that over
99% of runs give a payoff of (R, R) = (1, 1). Once one of the learners
switches to FMTL, more than 99% of runs end up at ((S + T)/2, (S +
T)/2) = (1.25, 1.25).

Generalized social dilemmas: stag hunt and snowdrift
games
While the prisoner’s dilemma has been instrumental in model-
ing human cooperation, there are other natural rankings of the
game’s payoffs. These alternative rankings result in weaker forms
of conflict. To further explore the performance of FMTL, we con-
sider generalized social dilemmas, defined by three properties (49–
51): (i) the payoff for mutual cooperation exceeds the payoff for
mutual defection, R > P; (ii) when players choose different actions,
the defector obtains a larger payoff than the cooperator, T > S;
and (iii) irrespective of their own action, players prefer their op-
ponent to cooperate, R > S and T > P. In addition to the prisoner’s
dilemma and the harmony game, there are two more generalized
social dilemmas (71): the stag hunt (72) and the snowdrift (73,74)
game.

The stag hunt game has the payoff ranking R > T > P > S. In par-
ticular, mutual defection is an equilibrium of the one-shot game,
but so is mutual cooperation. For repeated stag hunt games, we
find that players do not need to settle at socially optimal out-
comes, even if they both adopt FMTL (Figure S4a–f). Such ineffi-
ciencies may arise more generally. They can occur in all games
with equilibria that are fair but inefficient, and where one player
alone is unable to raise the group payoff (see Supporting Informa-
tion for analytical results). Nevertheless, we find that FMTL makes
players less likely to settle at such inefficient equilibria in the first
place. As a result, each player performs better on average if at least
one of them adopts FMTL.

In the other generalized social dilemma, the snowdrift game,
the payoff ranking is T > R > S > P. Mutual defection is no longer
an equilibrium because unilateral cooperation is a better outcome
for both players. When two selfish learners engage in a repeated
snowdrift game, they often approach one of these two pure equi-
libria. Eventually, one player cooperates each round and the other
defects (Figures S4g and S5a). Which of the two players ends up
cooperating depends on their initial strategies and on chance. In
contrast, if one of them switches to FMTL, players most likely co-
ordinate on a pattern of play that is both fair and efficient. Similar
to the prisoner’s dilemma, this pattern requires players to either

mutually cooperate (if (S + T)/2 < R; Figure S4h), or to cooperate
in an alternating fashion (if (S + T)/2 > R; Figure S5b). In the lat-
ter case, already two selfish learners tend to achieve an efficient
(albeit possibly unfair) outcome. The role of FMTL here, relative to
selfish learning, is to eliminate inequality.

Alternative forms of conflict: hero game
Finally, we consider an example that does not meet the conditions
of a social dilemma: the hero game (15). This game, sometimes
referred to as a (symmetric) battle of the sexes (75,76), satisfies S
> T > R ≥ P. Here, mutual C is preferred to mutual D, but when
both players use C, a single player can act as a “hero” and im-
prove both players’ payoffs by switching to D (77). The one-shot
game has two pure equilibria, but players disagree on which equi-
librium they prefer. When two selfish learners engage in the re-
peated game, they frequently converge toward one of these pure
one-shot equilibria (Figure S5d). In contrast, groups with at least
one FMTL player reliably learn to alternate (Figure S5e and f). Self-
ish learning is able to generate efficient outcomes, but only FMTL
makes sure the realized outcome is fair, irrespective of the learn-
ing rule of the opponent. Table S1 summarizes these results across
the different games we study.

Evolutionary dynamics of learning rules
After analyzing how different learning rules affect adaptation, we
study how the learning rules themselves evolve over time. We con-
sider two timescales. In the short run, the players’ learning rules
are fixed. Players use their learning rule to adapt to their oppo-
nent. In the long run, learning rules reproduce, based on how well
players with the respective rule perform. This process may reflect
cultural or biological evolution (i.e. successful learners are either
imitated more often, or they have more offspring). Just as repeated
games can be thought of as a “supergame” layered over a one-shot
game (53) (Fig. 1a and b), the process describing the evolution of
learning rules can be thought of as a supergame layered over the
repeated game (Fig. 1c–f).

Description of the evolutionary process
To describe this supergame formally, we consider a population of
learners who use either selfish learning (S) or FMTL (F). In the short
run, players are randomly matched to engage in repeated games
with a fixed partner. Over the course of their interactions, they
update their strategies according to their learning rules, as in the
previous section. As a result, they receive a payoff that depends
on the game being considered, the players’ learning rules, and on
the time that has passed for learning to unfold. For a given game,
let aij(n) denote the expected payoff of a learner i against another
learner j after n learning steps (i.e. after the players had n opportu-
nities to revise their strategies). We estimate these payoffs using
numerical simulations.

For a given number of learning steps n, the four payoffs aSS(n),
aSF(n), aFS(n), and aFF(n) can be assembled in a 2 × 2 payoff matrix.
We interpret the entries of this matrix as the payoff of each learn-
ing rule, and we interpret n as the players’ learning horizon. Payoff
matrices for different values of n reflect different assumptions on
how patient players are. For small n, players are impatient. They
assess the quality of their learning rule by how well they perform
after only a few learning steps. In contrast, for large n, players as-
sess the quality of their learning rule according to how well it per-
forms eventually (even if it may be ineffective in the short run).

For a given payoff matrix, we use the replicator equation to
model the evolutionary dynamics among learning rules (78). The
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Fig. 4. Evolutionary dynamics of FMTL in the donation game. (a) In general, the players’ payoffs depend on their learning rule and on how many
learning steps they had to update their strategies. Here, we show these (supergame) payoffs for the donation game with b = 2 and c = 1. If the number
of learning steps is small (fewer than ≈ 20 in this example), the payoffs of FMTL and selfish learning take the form of a prisoner’s dilemma: FMTL yields
the better payoff when adopted by everyone, but it is dominated by selfish learning. With slightly more learning steps, the dynamics transition into
bistable competition. Moreover, after only ≈ 60 learning steps, FMTL globally dominates selfish learning. (b) Starting from an initial frequency of x0 =
10−3, FMTL quickly spreads in a population of selfish learners under replicator dynamics. Depicted here are evolutionary trajectories for the donation
game when c = 1 and b varies from 2 to 15. The dynamics in (b) are shown for the supergame payoffs after convergence of the learning process; but
due to (a) similar results hold when the timescale of learning is much shorter.

equation tracks the frequencies of each learning rule over time,
and it favors those rules with higher average payoffs (see “Meth-
ods”). For 2 × 2 games, as in our case, replicator dynamics can
result in four different scenarios (10, 13). Either one learning rule
is globally stable (dominance), there is a mixed population that
is globally stable (coexistence), each learning rule is locally stable
(bistability), or any mixed population is stable (neutrality).

Evolutionary dynamics across different games
The resulting dynamics between the two learning rules depend
on the game and on the players’ learning horizon. Figure 4(a)
shows the possible scenarios for the donation game. If the learn-
ing horizon is short, then learning rules are selected according to
whether they result in an immediate advantage. As a result, we
find that selfish learning is dominant, as one might expect. How-
ever, as players become increasingly patient, the dynamics first
take the form of bistable competition, and then FMTL becomes
globally stable. In this parameter regime, which starts after n ≈
60 learning steps, already a small initial fraction of FMTL learners
is sufficient to drive selfish learning to extinction (Fig. 4b). Since
clusters of FMTL learners perform better than clusters of selfish
learners, the evolutionary advantage of FMTL is even more pro-
nounced in structured populations (79, 80) (see “Methods” for de-
tails).

These patterns generalize to other games. In each case, self-
ish learning is dominant when players have a very short learn-
ing horizon. As players become sufficiently patient, FMTL becomes
dominant in all variants of the prisoner’s dilemma and the stag-
hunt game, as well as in the snowdrift game when (S + T)/2 < R
(Figures S6 and S7). Only for the snowdrift game with (S + T)/2 > R
and the hero game may selfish learning prevail for long learning
horizons. Table S2 gives a summary of these results. Interestingly,
the games in which FMTL becomes globally stable are exactly
those in which two selfish learners are at a considerable risk of

settling at inefficient equilibria (Table S1). Conversely, the games
in which selfish learning can prevail are those in which selfish
learners tend to achieve efficient outcomes (Figure S5a and d). For
example, in all simulated cases of the hero game, selfish learners
settle at equilibria with maximum average payoffs (even though
payoffs may be shared unfairly). Because replicator dynamics de-
pend on only the average payoffs (not on the distribution of pay-
offs), and because selfish learning achieves the maximum average
payoff against itself, FMTL cannot invade. This conclusion does not
require replicator dynamics. Instead, it remains true for all evo-
lutionary dynamics that depend on only a trait’s average payoff,
including stochastic models of weak selection (81).

Importantly, for FMTL to be successful, each of its components,
fairness and efficiency, is vital. To illustrate this point, we repeat
the previous simulations for the donation game with alternative
learning rules (Figure S9): players either value only fairness, only
efficiency, or they combine fairness with selfishness. Against a
selfish learner, we find that each alternative rule performs worse
than FMTL. When the focal player values only fairness, payoffs
tend to be equal but inefficient (Figure S9a). When the focal player
values only efficiency, the focal player tends to cooperate uncondi-
tionally, whereas the selfish coplayer defects (Figure S9b). Finally,
when the focal player combines fairness and selfish learning, the
overall performance is similar to the case of two selfish learn-
ers (Figure S9c). These results highlight that FMTL’s two compo-
nents are effective only when combined. Learners who only aim
for efficiency are subject to exploitation; learners who only value
fairness obtain equal payoffs, but at the price of obtaining low
payoffs.

Selfishness versus fairness in a repeated
prisoner’s dilemma experiment
The results presented herein cast doubt on the assumption that
selfish learning can fully explain human adaptation processes in
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Fig. 5. Selfish learning fails to explain human behavior when there is a tension between payoff maximization and fairness. To empirically distinguish
between selfish learning and fairness-mediated learning, we reanalyze data from a repeated prisoner’s dilemma experiment (84). In this experiment,
human participants interact with a computerized opponent who implements a fixed strategy. Human participants are not informed about the nature
of their opponent. (a) The computer implements either an extortionate (20) or a generous (25) zero-determinant strategy. Such strategies ensure that
there is a linear relationship between the payoffs of the two players (indicated by the black dashed line). If human participants wish to maximize their
payoffs, they should learn to cooperate in either case. If participants wish to enhance fairness, they should cooperate against generous strategies but
not against extortioners. (b) The experiment finds that humans become more cooperative against generous strategies. There is no trend toward
cooperation against extortioners. (c) To shed further light on these observations, we simulate the possible learning dynamics. We consider a single
learner, who either adopts selfish learning or FMTL. Only for FMTL do we recover that subjects fail to fully cooperate against extortioners. (d) The
previous results are based on two treatments in which the trade-off between fairness and payoff maximization is strongest. When the computer
instead implements so-called mildly generous and extortionate strategies, this trade-off is weaker. As a result, while generous coplayers still tend to
induce more cooperation, the effect is now smaller. Error bars indicate standard errors, and any statistical statements are based on nonparametric
tests (Mann–Whitney U test and Wilcoxon test). For details, see “Methods.”

repeated games. While it has been suggested that selfish learn-
ing reasonably approximates cooperative behavior in linear mul-
tiplayer games (82,83), such games differ in crucial aspects from
the two-player interactions studied herein. For example, in multi-
player games, each individual has less of an impact on other group
members. Moreover, each player’s defection can only be pun-
ished collectively (by withholding cooperation from all other group
members). In contrast, pairwise interactions provide individuals
with more immediate possibilities to affect their coplayer’s fu-
ture behavior. It is pairwise games where learning rules have the
strongest strategic impact.

To explore the relevance of selfish learning for pairwise games,
we reanalyze data from a prisoner’s dilemma experiment (84).
In this experiment, human participants play against a computer
program (unbeknownst to the human subjects). The computer
program either implements an extortionate (20) or a generous
(25) “zero-determinant” strategy (20,21). Against both classes of
strategies, the payoff-maximizing choice for human participants
is to cooperate in every round. However, while full cooperation
is also the fairness-maximizing choice against generous oppo-
nents, it leads to maximally unequal outcomes against extortion-
ers (Fig. 5a).

There are two reasons why this experimental paradigm al-
lows for a clean comparison between selfish learning and other
learning rules based on other-regarding preference: (i) Because the
computer’s strategy is fixed (and known to the researcher), each
human participant’s learning behavior can be studied in isolation.
(ii) The two competing learning rules make opposing predictions
for this experiment: If human participants use selfish learning,
they should equally learn to cooperate against either computer
strategy. In contrast, if behavior is better described by FMTL, we
expect more cooperation against the generous strategy (Fig. 5c;
see “Methods” for a detailed description of the experimental setup
and our predictions).

In Fig. 5(b), we compare experimental data for the “strongly
extortionate” and the “strongly generous” computer strategy (for
which fairness considerations are most likely to impede coopera-
tion in the extortion treatment). For both treatments, human co-
operation rates are similar in the beginning (31.3% during the first
three rounds). Against the generous program, humans increase
their cooperation rate to 85.4% by the end of the experiment (dur-
ing the last three rounds). In contrast, against the extortionate
program, overall cooperation rates are largely unchanged (33.3%),
although the monetary incentives for cooperation are identical.

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/1/4/pgac141/6650683 by library@

ist.ac.at user on 06 August 2024



McAvoy et al. | 9

These experimental results are consistent with learning behavior
that is shaped by fairness considerations. In line with this view,
when the computer implements a strategy that is only mildly ex-
tortionate or generous, there is less of a difference in human co-
operation rates (Fig. 5d). Moreover, the difference disappears alto-
gether if individuals are informed ahead of the experiment that
they are matched with a computerized opponent, in which case
fairness considerations can be expected to be absent (85). Overall,
these results suggest that fairness motives are of crucial impor-
tance to describe human behavior in pairwise interactions, even
though they may be less salient in multiplayer games (82, 83).

Discussion
Given the extensive effort to explore strategies that sustain co-
operation in repeated social dilemmas (18–30), it seems quite
remarkable that relatively little is known about how strategies
with desirable properties can be learned most effectively. Instead,
much of the existing work tends to take the way in which indi-
viduals learn as given. While details vary between studies (40–47),
most often it is assumed that individuals adopt strategies that en-
hance their own payoff, abandoning strategies that are personally
disadvantageous. This modeling assumption could be justified on
theoretical grounds if selfish payoff maximization were indeed an
optimal learning policy. Here, we have explored under which con-
ditions selfish learning can be expected to succeed. We show theo-
retically that selfish learning performs well when individuals wish
to optimize their short-run performance. However, if individuals
are motivated by how well they fare eventually, selfish learning
can be of limited use in navigating conflicts of interest.

To assess the performance of selfish learning, we contrast it
with an alternative rule termed FMTL. Rather than maximizing
just one’s own payoff, a learner who adopts FMTL strives to en-
hance either the efficiency of the resulting game outcome or its
fairness. By striving to increase efficiency, FMTL attempts to evade
inferior equilibria that leave all group members worse off. By
striving to increase fairness, FMTL avoids exploitation when other
group members continue to learn selfishly. Using individual-based
simulations, we show that FMTL can help individuals to settle at
better equilibria. These equilibria are either more equitable or
more efficient. Moreover, when players select their learning rules
according to how well they perform eventually, FMTL outcompetes
selfish learning for most of the games we study. Qualitatively, the
ability of FMTL to draw out better outcomes also extends to learn-
ing based on imitation as opposed to introspection (Section S4 of
Supporting Information; Figures S11 and S12) as well as asymmet-
ric games (Section S5 of Supporting Information; Figure S13).

Our theoretical results are further corroborated by an analysis
of human cooperation in a repeated prisoner’s dilemma with fixed
opponent strategies (84,85). When interactions entail a trade-off
between fairness and payoff maximization, selfish learning fails
to explain crucial patterns of human behavior (Fig. 5). There is
a considerable literature within behavioral economics seeking to
describe human behavior that deviates from models of pure self-
interest (86). In particular, there is ample empirical evidence that
fairness and efficiency are important drivers of human behavior.
Humans value fairness starting from a young age (87, 88), and they
are often willing to accept substantial reductions in their own in-
come to achieve more egalitarian outcomes (89). Such a demand
for fairness can have substantial economic consequences, as it
constrains a firm’s profit seeking behavior (90) and market prices
(91). There is similar experimental evidence about the importance
of efficiency (6, 92). In dictator games, human participants often

give up some of their own payoff in order to increase that of the
pair (86,93). At the same time, however, human decisions to in-
crease efficiency via “gifts” are constrained by fairness considera-
tions (94), consistent with the constraint built-in to FMTL.

Our results are related to the “indirect evolutionary approach,”
which explores the evolution of preferences with game-theoretic
methods (95–98). The respective literature distinguishes between
objective and subjective payoffs. Objective payoffs include mone-
tary rewards and reproductive success (fitness). Subjective pay-
offs capture how individuals experience certain outcomes and
what they strive to maximize when making decisions. Similar to
our model, this approach is “indirect” because preferences that
guide behaviors do not need to align with objective payoffs. How-
ever, while this literature explicitly models the evolutionary dy-
namics of preferences (98, 99), it usually does not describe how
preferences affect the way individuals learn (see Supporting In-
formation for a more detailed discussion). The learning process
is the main focus of our study. We explore how different learning
heuristics influence the way in which subjects navigate between
equilibria of differing efficiency. To this end, our framework re-
quires a notion of learning rules that is slightly more general than
the notion of preferences considered before. Learning rules do not
only specify the objectives that players wish to maximize. Instead,
they also determine how players choose between different objec-
tives and how they generate alternative strategies. In this way, our
framework also applies to learning on shorter time scales, wherein
subjects update their learning rules even before the learning dy-
namics reach an equilibrium (Table S2).

Our results also have implications for objective design in mul-
tiagent learning. Previous work has shown that objectives based
on a convex combination of the players’ payoffs can improve out-
comes relative to selfish learning in stag hunt games (100). An
alternative approach is to implement a look-ahead into the op-
ponent’s learning process in order to shape their future behav-
ior (52) (however, this forward-looking approach requires substan-
tial information about the opponent; see Supporting Information).
While the space of possible objective functions is vast, we intro-
duce a learning rule (one of many, perhaps) that can outcompete
naïve selfish learning. Compared to the rules considered previ-
ously, FMTL has the advantage of being comparably simple, and
its components are natural for both humans and machines to im-
plement. Much in the same way that the most rudimentary strat-
egy (tit-for-tat) won Axelrod’s tournaments (55), here too a simple
learning rule is able to align incentives with a selfish learner.

Even if individuals are ultimately driven by their own advan-
tage, optimal learning rules may require them to take into account
other considerations, such as the well-being of others. Of course,
the repeated two-player games studied herein cannot capture all
realistic interactions in which learning is relevant. However, these
simple baseline models can help to understand the general prin-
ciples at work in more complex settings (101). Delineating which
aspects are crucial for successful learning is, in our view, one of
the most exciting directions for future research.

Methods
Strategies and payoffs in repeated games
All of the strategies we consider for repeated games are “memory-
one” strategies, which means that they consist of a five-tuple of
probabilities, (p0, pCC, pCD, pDC, and pDD), where p0 is the probability
of cooperating (action C) in the initial round and pxy is the prob-
ability a player cooperates after using x ∈ {C, D} in the previous
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round against an opponent using y ∈ {C, D}. The initial distribution
over the outcomes (CC, CD, DC, and DD), where the first action is
that of X and the second is that of Y, is

ν0 (p, q) = (p0q0, p0 (1 − q0) , (1 − p0) q0, (1 − p0) (1 − q0)) . (1)

Following the initial round, transitions between states are de-
scribed by the stochastic matrix

M (p, q) =

⎛
⎜⎜⎜⎝

pCCqCC pCC (1 − qCC ) (1 − pCC ) qCC (1 − pCC ) (1 − qCC )
pCDqDC pCD (1 − qDC ) (1 − pCD ) qDC (1 − pCD ) (1 − qDC )
pDCqCD pDC (1 − qCD ) (1 − pDC ) qCD (1 − pDC ) (1 − qCD )
pDDqDD pDD (1 − qDD ) (1 − pDD ) qDD (1 − pDD ) (1 − qDD )

⎞
⎟⎟⎟⎠ .

(2)

After t ≥ 0 rounds, the distribution over states is νt (p, q) =
ν0 (p, q) M (p, q)t . With discounting factor λ ∈ [0, 1), the mean pay-
offs to X and Y when X plays p and Y plays q are

πX (p, q) = (1 − λ)
∞∑

t=0

λt < νt (p, q) , (R, S, T, P) >

= < (1 − λ) ν0 (p, q) (I − λM (p, q))−1
, (R, S, T, P) >; (3a)

πY (p, q) = (1 − λ)
∞∑

t=0

λt < νt (p, q) , (R, T, S, P) >

= < (1 − λ) ν0 (p, q) (I − λM (p, q))−1
, (R, T, S, P) >, (3b)

respectively, where <·, · > denotes the standard inner (dot) product
on R

4. To approximate the results of an infinite-horizon game, we
use a discounted game with a small discounting rate, λ = 1 − 10−3.
In this way, we ensure that the limiting payoffs always exist, even
if the players adopt strategies that allow for multiple absorbing
states, such as tit-for-tat (13).

Learning rules
In the following, we describe the four components of a learning
rule (the initial strategy distribution, the sampling procedure, the
set of objective functions, and the priority assignment) for both
selfish learning and FMTL.

Distribution over initial strategies
When two individuals are first paired with one another, they each
choose an initial strategy for their first interaction, which is to
be subsequently revised during the learning process. Two of the
most natural choices are (i) to choose each coordinate of the strat-
egy independently from a uniform distribution on [0, 1], and (ii) to
choose each coordinate independently from an arcsine (Beta(1/2,
1/2)) distribution on [0, 1]. For the figures presented herein, we use
the latter distribution because it is more effective in exploring the
corners of the space [0, 1] 5 of memory-one strategies (36). How-
ever, we obtain similar qualitative results for a uniform initial dis-
tribution. In addition, we also explore the learning dynamics that
arise when players initially defect unconditionally (Fig. 3a and b).

Sampling procedure
We assume strategy sampling to be local in the following sense
(see also Fig. 1c). Let s ∈ [0, 1] and suppose that zi is uniformly
distributed on [ − s, s] (with zi independent of zj for j 	= i). If
pi is the coordinate being “mutated” at a given time step, then
the candidate sample of this coordinate in the next step is p′

i =
min

{
max

{
pi + zi, 0

}
, 1

}
. We use s = 0.1 in our examples, which

allows for exploration while ensuring that the candidate strategy

is not too distant from the current strategy (so that desirable prop-
erties of the current strategy are not immediately discarded). Rel-
atively small values of s make the trajectories of the learning pro-
cess more interpretable (e.g. Fig. 3a), but they also slow down the
learning process. While taking a different value of s can change
the overall performance of each learning rule, we did not find a
scenario in which it reverses the relative ranking of selfish learn-
ing compared to FMTL.

Objective functions
Once a candidate strategy is sampled, the respective player de-
cides whether to accept it based on the player’s objectives. To this
end, each learning rule specifies a set of objective functions,

V =
{

V | V : [0, 1]5 × [0, 1]5 → R

}
. (4)

Each objective function V takes the players’ memory-one strate-
gies p and q as an input, and returns a value that indicates to
which extent the players’ objectives are met. Throughout our
study, we consider objective functions that depend on only the
players’ payoffs, πX (p, q) and πY (p, q), but more general formula-
tions are possible . A candidate strategy p′ is accepted if V (p′, q) >

V (p, q), and it is discarded otherwise.
For the simulations, we assume the candidate strategy is ac-

cepted if and only if V (p′, q) > V (p, q) + ε, where 0 < ε � 1 is a
small threshold. This assumption prevents floating point errors
from resulting in faulty decisions, particularly when V (p, q) is ex-
tremely close to V (p′, q). While any one such faulty decision might
have negligible effects on the learning process, these mistakes can
accumulate over many time steps. In all of our numerical exam-
ples, the threshold we use is ε = 10−12. The use of such a threshold
can also be interpreted in terms of bounded rationality (102). Due
to limitations on cognition or information, the learner may not be
able to distinguish two values that are sufficiently close together.
Similarly, in the presence of noise perturbing the observed pay-
offs, ε may be thought of parametrizing the confidence an agent
has that there will truly be an improvement in V by switching to
the new strategy.

We note that objective functions take both players’ strategies
as an input. One interpretation of this assumption is that the
learner needs to have precise knowledge of the coplayer’s strat-
egy in order to forecast whether a given strategy change is prof-
itable. However, we note that this rather stringent assumption is
in fact not necessary. Instead, we only need to assume that indi-
viduals can reliably assess the sign of V (p′, q) − V (p, q) − ε. That
is, players only need to be able to make qualitative assessments.

For selfish learners, the set of objective functions contains a
single element, V = {VS} with VS (p, q) = πX (p, q). For FMTL, the set
of objective functions is V = {VE,VF}. Here, VE (p, q) = πX (p, q) +
πY (p, q) reflects the objective to increase efficiency, whereas
VF (p, q) = − ∣∣πX (p, q) − πY (p, q)

∣∣ corresponds to the objective of
enhancing fairness.

Priority assignments
A learning rule’s priority assignment � determines which of the
players’ different objectives is currently maximized. Formally, a
priority assignment is a map � : [0, 1]5 × [0, 1]5 → � (V ), where
� (V ) denotes the space of probability distributions on V. For each
of the players’ current memory-one strategies p, q ∈ [0, 1]5 it de-
termines the probability with which each possible objective V ∈ V
is chosen for maximization.

In the case of selfish learning, the priority assignment is trivial,
because there is only one possible objective to choose from. In the
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case of FMTL, the priority assignment takes the form � (p, q) =
(ω, 1 − ω), where ω = ω (p, q) is the weight assigned to efficiency.
In our formulation of FMTL, ω depends on the current magnitude
of the payoff difference (see Figure S10a),

ω (p, q) = exp
(
− (πX (p,q)−πY (p,q))2

2σ 2

)
. (5)

The parameter σ > 0 reflects a player’s tolerance with respect to
inequality. In the limit σ → 0, a player always aims to enhance fair-
ness, whereas in the opposite limit σ → ∞, the player always aims
to improve efficiency. In general, neither efficiency nor fairness
alone are sufficient for establishing good outcomes against self-
ish learners (Figure S9). Finding a proper balance between these
two objectives depends on the nature of the interaction, and as a
result the optimal value of σ can vary from game to game.

We choose σ by taking the average payoff for FMTL versus a
selfish learner over a small number of runs (103), for each σ ∈ {0.01,
0.02, …, 1.00}. We then select σ based on which value maximizes
the average payoff of the FMTL individual, except for when this
value is comparable for all such σ , in which case we choose the
value that minimizes the runtime. For the donation game (Figs 2c
and d, 3a and b, and 4; Figures S1, S3, S9c, and S13; Video S1), we
use σ = 0.1; for the prisoner’s dilemma with (S + T)/2 > R (Fig. 3c
and d; Figure S6b) and with (S + T)/2 < P (Figure S6a), we use σ

= 1; for the stag hunt game with (S + T)/2 > P (Figures S4a–c and
S7a), we use σ = 0.01; for the stag hunt game with (S + T)/2 <

P (Figures S4d–f and S7b), we use σ = 1; for the snowdrift game
with (S + T)/2 < R (Figures S4g–i and S7c), we use σ = 0.1; for the
snowdrift game with (S + T)/2 > R (Figures S5a–c and S8a), we
use σ = 1; and for the hero game (Figures S5d–f and S8b), we use
σ = 0.1. The use of different values of σ in different games is a
result of treating σ as a hyperparameter (103) that can be fine-
tuned according to the nature of a given repeated game. However,
we note that we get qualitatively similar (even if not completely
optimized) results when we use a single value of σ across all our
main examples (e.g. σ = 0.25).

Instead of a bell curve, ω could be a bump function such as

ω (p, q) =

⎧⎪⎪⎨
⎪⎪⎩

e
− (πX (p,q)−πY (p,q))2

α2σ2 (α2−(πX (p,q)−πY (p,q))2 ) ∣∣πX (p, q) − πY (p, q)
∣∣ < α

0
∣∣πX (p, q) − πY (p, q)

∣∣ � α

, (6)

(see Figure S10b). In practice, we do not see significant qualitative
differences between these two functions provided the parameters
are chosen properly. However, relative to Eq. (6), the function in
Eq. (5) does have the advantage of depending on only one shape
parameter, σ .

Implementation of learning rules
For two players with given learning rules, we explore the result-
ing learning dynamics with simulations. The code is available (see
“Data Availability” statement). For these simulations, the learning
process is terminated after neither learner has accepted a new
candidate strategy in a fixed threshold number of update steps
(here, 104). All of the examples we consider terminate.

In addition, Fig. 4(a) and Figures S6–S8 illustrate the expected
payoffs as a function of the number of learning steps. In these
graphs, the horizontal axis shows how many opportunities the
two players had to revise their strategies. The vertical axis repre-
sents the average payoff over sufficiently many simulations. This
payoff depends on the learning rules of the focal player and the
opponent.

Evolutionary dynamics of learning rules
The learning rules considered here may be viewed as strategies
for a “supergame.” The payoffs of this supergame are given by the
players’ expected payoffs after n updating steps. Here, we con-
sider n as a fixed parameter of the model, and we refer to it as
the player’s learning horizon. When n is small, individuals evalu-
ate the performance of their learning rule based on how well they
fare after a few learning steps. In contrast, when n is large, learn-
ing rules are evaluated according to how well they fare eventually.

Because we consider the competition between two learning
rules, this supergame can be represented as a 2 × 2 matrix. To
this end, we fix a base game G ∈ {HE, PD, SH, SD}, where HE is the
hero game, PD is the prisoner’s dilemma, SH is the stag hunt game,
and SD is the snowdrift game. For a given learning horizon n, we
can write the resulting 2 × 2 matrix as

⎛
⎝

FMTL SELFISH

FMTL aG
FF (n) aG

FS (n)

SELFISH aG
SF (n) aG

SS (n)

⎞
⎠ . (7)

When the game and the learning horizon is clear (or irrelevant),
we sometimes drop the indices G and n for better readability.

Evolutionary dynamics in well-mixed populations
Given the payoff matrix, we explore the evolutionary dynamics
between learning rules using the replicator equation (78). The
replicator equation describes deterministic evolution in infinite
populations. Let x ∈ [0, 1] denote the frequency of FMTL in the
population. The frequency of selfish learners is 1 − x. Using the
payoffs of Eq. (7), the fitness values of the two types are

fF (x) = xaFF + (1 − x) aFS; (8a)

fS (x) = xaSF + (1 − x) aSS, (8b)

respectively. The average fitness in the population is f (x) =
x fF (x) + (1 − x) fS (x). Under replicator dynamics, the frequency
of FMTL satisfies the ordinary differential equation

dx
dt

= x
(

fF (x) − f (x)
)

. (9)

When aFF ≥ aSF and aFS ≥ aSS, we have fF(x) ≥ fS(x), and thus
fF (x) � f (x) for all x ∈ (0, 1). Moreover, if one of the inequalities
is strict, aFF > aSF or aFS > aSS, then fF (x) > f (x). This payoff re-
lationship holds in prisoner’s dilemmas and stag hunt games, as
well as in the snowdrift game with (S + T)/2 < R, when n is suffi-
ciently large. In that case, there are two equilibria. The equilibrium
x = 0 is unstable, whereas x = 1 is globally stable. It follows that
FMTL evolves from all initial populations with x > 0. Figure 4(b)
illustrates these dynamics for the donation game as the benefit of
cooperation varies. It is worth pointing out that the relative value
of aSF compared to aFS does not affect replicator dynamics. More
precisely, even though a selfish learner always gets at least the
coplayer’s payoff in any interaction with FMTL (i.e. even though
aSF ≥ aFS for all games we studied), selfish learning may still go
extinct.

Evolutionary dynamics in structured populations
The classical replicator equation describes populations in which
all individuals are equally likely to interact with each other. To
explore how population structure is expected to affect our evolu-
tionary results, we use the approach of Ohtsuki and Nowak (104).
They show that under weak selection, various stochastic evolu-
tionary processes on regular graphs can be approximated by a
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replicator equation with modified payoffs. Instead of aij, the payoff
of strategy i against strategy j is now given by ãi j := ai j + bi j. Here,
bij depends on the game, the evolutionary process under consider-
ation, and the degree k > 2 of the network. For example, for death-
birth updating,

bi j = (k + 1) aii + ai j − aji − (k + 1) aj j

(k + 1) (k − 2)
. (10)

When we apply this formula to the four payoffs aFF, aFS, aSF, and
aSS, the modified payoffs are

ãFF = aFF; (11a)

ãFS = aFS + (k+1)aFF+aFS−aSF−(k+1)aSS
(k+1)(k−2) ; (11b)

ãSF = aSF + (k+1)aSS+aSF−aFS−(k+1)aFF
(k+1)(k−2) ; (11c)

ãSS = aSS. (11d)

For replicator dynamics, only payoff differences matter. These can
be written as follows:

ãFF − ãSF =
(

1 + 1
(k + 1) (k − 2)

) (
aFF − aSF

)

+ 1
(k + 1) (k − 2)

(
aFS − aSS

)

+ k
(k + 1) (k − 2)

(
aFF − aSS

) ; (12a)

ãFS − ãSS =
(

1 + 1
(k + 1) (k − 2)

) (
aFS − aSS

)

+ 1
(k + 1) (k − 2)

(
aFF − aSF

)

+ k
(k + 1) (k − 2)

(
aFF − aSS

)
. (12b)

In a well-mixed population, the condition for FMTL to be globally
stable is aFF ≥ aSF and aFS ≥ aSS, with at least one inequality being
strict. In the examples where we observe FMTL to globally stable,
the inequality aFF > aSS is also satisfied (Fig. 4a; Figures S6 and
S7). For those games, Eq. (12) allows us to conclude that if FMTL
is globally stable in a well-mixed population, then it is also stable
in any regular network. Moreover, especially if the degree k of the
network is small, regular networks may require a smaller learning
horizon for FMTL to become globally stable.

Empirical analysis of a repeated prisoner’s
dilemma experiment
Experimental methods
To compare our theoretical predictions to actual human behav-
ior, we reanalyze the experimental data collected by Hilbe et al.
(84). In this experiment, human subjects play 60 rounds of a re-
peated prisoner’s dilemma against a computer program. Humans
are not told the nature of their opponent; instead, they only learn
that they are “matched with an opponent with whom they will
interact for many rounds.” In each round, participants can either
cooperate or defect. The payoffs per round are derived from the
payoffs used in Axelrod’s tournament (19):

R = 0.30 EUR; S = 0.00 EUR; T = 0.50 EUR; P = 0.10 EUR. (13)

In addition, all participants get a show-up fee (independent of
their performance) of 10 EUR. All participants are first-year biol-
ogy students recruited from the universities of Kiel and Hamburg,
Germany.

The experiment consists of four treatments, which only differ
in the memory-one strategies implemented by the computer pro-
gram. The four strategies are referred to as being “strongly ex-
tortionate,” “mildly extortionate,” “mildly generous,” and “strongly
generous,” and they are specified as follows:

Strongly extortionate: p0 = 0, p = (0.692, 0, 0.538, 0) ;
Mildly extortionate: p0 = 0, p = (0.857, 0, 0.786, 0) ;
Mildly generous: p0 = 1, p = (1, 0.077, 1, 0.154) ;
Strongly generous: p0 = 1, p = (1, 0.182, 1, 0.364) .

(14)

For the given payoff values, these four strategies represent so-
called zero-determinant strategies (20,21). By using one of these
strategies, the computer program ensures that there is an approx-
imately linear relationship between the payoff of the human par-
ticipant πH and the payoff of the computer program πC. The re-
spective linear relationships are (84)

Strongly extortionate: πH − P = 1
3 (πC − P) ;

Mildly extortionate: πH − P = 2
3 (πC − P) ;

Mildly generous: πH − R = 2
3 (πC − R) ;

Strongly generous: πH − R = 1
3 (πC − R) .

(15)

The interpretation of these payoff relationships is as follows. If
the program is extortionate, the human coplayer’s surplus (over
the mutual defection payoff) is only one-third or two-thirds of the
computer’s surplus. On the other hand, if the program is generous,
the human coplayer’s loss (compared to the payoff for mutual co-
operation) is only one-third or two-thirds of the computer’s loss.
In particular, an extortionate computer program always obtains
at least as much as the human coplayer, whereas a generous pro-
gram only obtains at most the payoff of the human coplayer (21).
In Fig. 5(a), the payoff relationships for the strong strategy vari-
ants are indicated by a black dashed line. In the extortionate case,
the black dashed line is always on or below the main diagonal. In
the generous case, the black dashed line is always on or above the
main diagonal. The colored dots represent experimental data, av-
eraged over all participants of the respective treatment. Each dot
indicates the payoff of the human participant and the computer
opponent for consecutive five-round intervals. Overall, the study
has been conducted with 60 participants (16 participants in each
of the two strong treatments and 14 participants in each of the
two mild treatments).

Theoretical predictions
For the interpretation of the experimental results with respect to
our theoretical framework, three aspects of the strategies are cru-
cial.

(1) According to Eq. (15), there is a positive linear relationship
between the payoffs of the computer program and the hu-
man participant. In particular, if humans wish to maximize
their own payoff, they should strive to maximize their oppo-
nent’s payoff. That is, they should cooperate in every single
round.

(2) In contrast, if humans wish to have equal payoffs πH =
πC against the extortionate program, they should defect in
every round (in which case πH = πC = P). If they wish to
have equal payoffs against the generous program, humans
should cooperate in every round (in which case πH = πC =
R).

(3) Importantly, the monetary incentives for humans to be-
come more cooperative are the same in the strongly extor-
tionate and in the strongly generous treatment. In either
case, for every cent that they increase the coplayer’s payoff
by being more cooperative, their own payoff is increased by
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one-third of a cent. Similarly, the monetary incentives for
increasing cooperation in the two mild treatments are also
identical.

Because of the first and the third property, we would predict
that participants who wish to increase their own payoffs cooper-
ate equally often, independent of whether they are matched with
a strongly extortionate or with a strongly generous opponent. An
analogous prediction applies to the two mild treatments. In con-
trast, because of the second property, we would predict that par-
ticipants who wish to enhance fairness are more likely to coop-
erate in the generous treatments. These predictions are general;
they do not depend on the exact implementation of the partici-
pants’ learning rules.

In addition to these qualitative predictions, we have also run
simulations for the learning rules studied herein. In Fig. 5(c), we
show the average of 1,000 simulations (bold solid lines) as well
as a sample of 20 representative simulation runs (thin dotted
lines). For each simulation, there is one learner who either im-
plements selfish learning or FMTL. Consistent with our theoret-
ical analysis, the learner is restricted to memory-one strategies.
Initially, the learner’s strategy is unconditional, with p0 = 0.35
and p = (0.35, 0.35, 0.35, 0.35). In each simulation, the learner is
given 100 opportunities to revise its memory-one strategy. New
strategies are sampled within an s = 0.1-neighborhood of the par-
ent strategy. For FMTL, we use a sensitivity parameter of σ = 0.1,
as in our main text analysis of the standard prisoner’s dilemma.
The learner’s opponent applies a fixed memory-one strategy that
is either strongly extortionate or strongly generous, as specified
by Eq. (14). Consistent with the qualitative predictions above, we
find that selfish learners equally learn to cooperate no matter
whether the opponent is extortionate or generous. In contrast,
the FMTL player only learns to fully cooperate against a generous
opponent.

Statistical analysis
To test these predictions, we first compare the cooperation dy-
namics against the strongly extortionate strategy and the strongly
generous strategy (participants matched with the strongly extor-
tionate strategy face the strongest trade-off between payoff maxi-
mization and fairness). In Fig. 5(b), each dot represents the human
participants’ cooperation rates, averaged over three rounds. In
particular, the panel shows that initially participants are equally
likely to cooperate against both computer programs (31.3% dur-
ing the first three rounds for both). However, only for the strong
generosity treatment is there a significant increase in cooperation
rates (to 85.4% during the last three rounds; Wilcoxon matched-
pairs signed-rank test: Z = 2.9341, P = 0.003, all tests are two-
tailed). In contrast, in the strong extortion treatment, there is no
such increase (33.3%; Wilcoxon matched-pairs signed-rank test: Z
= 0.3494, P = 0.726.).

We obtain similar results if we compare overall cooperation
rates over all 60 rounds (Fig. 5d). Against the strongly extortion-
ate program, this average cooperation rate is 29.6%, compared to
70.3% against the strongly generous program (Mann–Whitney U
test, Z = 2.789, P = 0.005). For the two mild treatments, the dif-
ference in cooperation rates is smaller, and fails to be significant;
however, players still tend to cooperate more against the gener-
ous program (the cooperation rates are 39.5% and 64.8%, Mann–
Whitney U test, Z = 1.860, P = 0.063). Overall, these results sug-
gest that fairness considerations affect human cooperation rates.
Moreover, this effect is more pronounced the stronger the trade-
off between payoff maximization and fairness.
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