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of Memory Engrams
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Memories are thought to be stored in neural ensembles known as engrams that are specifically reactivated during memory recall.
Recent studies have found that memory engrams of two events that happened close in time tend to overlap in the hippocampus and
the amygdala, and these overlaps have been shown to support memory linking. It has been hypothesized that engram overlaps arise
from the mechanisms that regulate memory allocation itself, involving neural excitability, but the exact process remains unclear.
Indeed, most theoretical studies focus on synaptic plasticity and little is known about the role of intrinsic plasticity, which could
be mediated by neural excitability and serve as a complementary mechanism for forming memory engrams. Here, we developed
a rate-based recurrent neural network that includes both synaptic plasticity and neural excitability. We obtained structural and func-
tional overlap of memory engrams for contexts that are presented close in time, consistent with experimental and computational
studies. We then investigated the role of excitability in memory allocation at the network level and unveiled competitive mechanisms
driven by inhibition. This work suggests mechanisms underlying the role of intrinsic excitability in memory allocation and linking,
and yields predictions regarding the formation and the overlap of memory engrams.
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Significance Statement

In the brain, memories are not formed in isolation from each other. For example, two memories of events that happened close
in time tend to be linked, so that recalling one memory leads to recall of the second one. Although memories are thought to be
formed by strengthening synapses among neurons, understanding memory linking requires us to consider intrinsic properties
of the neurons themselves. In this study, we modeled a neural network aiming at explaining how memories are formed and
linked in the brain. This model is able to reproduce experimental results and allows us to make predictions about how to link
or dissociate memories.

Introduction
Neural circuits have the ability to form and retain memories that
last from hours to years. In particular, pioneering anatomical
studies (Scoville and Milner, 1957) have suggested that such

circuits are located in the hippocampus, although they had
long remained unobserved. Over the past decades, technological
advances such as neural imaging and optogenetics allowed for
the discovery of engram cells inmultiple brain regions as the neu-
ral substrate for memory storage and retrieval (Josselyn and
Tonegawa, 2020). They are defined as a subpopulation of neu-
rons that is initially activated during presentation of a stimulus,
followed by transient physical and/or chemical changes that
lead to its specific reactivation during memory recall (Josselyn
and Tonegawa, 2020). Engram cells have been observed in the
hippocampus (Liu et al., 2012), in the amygdala (Morrison
et al., 2016; Rashid et al., 2016), and the neocortex (Tonegawa
et al., 2015; Kitamura et al., 2017). These studies have shed lights
on the ability of neural populations to store and retrieve memo-
ries but the exact mechanisms responsible for the formation of
memory engrams are not yet fully clear.

The mechanistic understanding of the formation and long-
term stability of memory engrams has long been dominated by
Hebbian learning (Hebb, 1949). Indeed, most computational
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models have focused on synaptic mechanisms, such as long-term
potentiation or depression (Bliss and Collingridge, 1993; Josselyn
and Tonegawa, 2020) that have been able to provide insight into
the formation and stability of neural assemblies (Litwin-Kumar
and Doiron, 2014; Zenke et al., 2015). As a result, the contribu-
tion of other important mechanisms, like intrinsic excitability
(Titley et al., 2017), has remained underexplored. Indeed, previ-
ous experimental works have shown that neurons with high
excitability are preferentially allocated to memory engrams
(Han et al., 2007; Silva et al., 2009; Zhou et al., 2009).
Interestingly, learning is known to transiently increase neural
excitability, reducing the afterhyperpolarization of neurons
over several hours (Thompson et al., 1996; Oh et al., 2003).
This transient increase is likely due to the learning-induced
expression of the transcription factor cAMP Response
Element-Binding Protein (CREB) (Han et al., 2007; Silva et al.,
2009; Rashid et al., 2016), which is known to play a role in regu-
lating neural excitability (Dong et al., 2006). As a result, time-
varying excitability may account for overlapping neural ensem-
bles encoding memories of events that are temporally linked
(Sehgal et al., 2018), namely events spaced by a short temporal
delay, as observed in the lateral amygdala (Rashid et al., 2016),
the hippocampal dorsal CA1 (Cai et al., 2016; Shen et al.,
2022), and the retrosplenial cortex (Sehgal et al., 2021).

Attractor networks (Amit, 1989) have been previously used to
describe the recurrent network properties of overlapping memory
engrams (Gastaldi et al., 2021) but without taking excitability into
account. Previous theoretical works have described how the
dynamics of plasticity-related proteins and excitability can lead to
co-allocation of memories at the dendritic level (Kastellakis et al.,
2016; Sehgal et al., 2021; Chowdhury et al., 2022). Here, we extend
these computational works to focus on the role of excitability in the
recurrent neural network dynamics and its linkwith behavioral out-
put. Combining synaptic plasticity and activity-dependent intrinsic
excitability, our model is able to explain—at the mechanistic level—
experimental findings regarding overlapping neural ensembles and
memory linking. Moreover, we uncover the potential mechanisms
allowing neurons to compete for allocation to memory engrams, as
observed experimentally. Our results suggest that the temporal link-
ing ofmemory engrams arises from co-activation of different neural
ensembles, mediated by the interaction of time-varying excitabil-
ity and synaptic plasticity. Finally, our model makes testable pre-
dictions about how the balance among inhibition, feed-forward
inputs, and excitability is crucial for determining the extent of
overlap among engrams of temporally close events.

Methods
Rate model. Our rate-based model consists of a single recurrent neu-

ral network of N neurons (with firing rate ri, 1≤ i≤N) which receives
inputs from an external region of Nin neurons (with firing rate rini , 1≤
i≤Nin). The weights between the input region and the network are given
by the matrix WFF (Fig. 1b). Recurrent connections are given by the
weight matrix W. Inhibition is introduced as I = I0 + I1

∑N
j=1 rj, where

I0 sets a baseline inhibition level and I1 scales an inhibition term propor-
tional to the sum of the firing rates of the N neurons. Finally, excitability
is added as a time-varying threshold ei(t) of the input–output function.
The rate dynamics of a neuron i is therefore given by

tr
dri
dt

+ ri = ReLU
∑N
j=1

Wijrj +
∑N in

j=1

WFF
ij r

in
j − I + ei(t)

( )
, (1)

where τr is the decay time of the rates and ReLU is the rectified linear acti-
vation function. In Figure 5, the dashed lines correspond to the case

where inhibition is reduced, i.e., I1 is set to a lower value I−1 (see
Table of parameters).

In Figure 7d, noise is applied as random variable sampled at each
integration step from a uniform distribution centered around 0 and of
amplitude 4 (a.u.).

Weights dynamics. The feed-forward weights WFF are static and
define three receptive fields (RFs) that model three different contexts
(Fig. 1b). Neurons 1–15 respond preferentially to the first context, neu-
rons 16–30 to the second context, and neurons 31–45 to the third con-
text. All-to-all recurrent connections W are plastic and the weights Wij

between each presynaptic neuron i and postsynaptic neuron j follow a
Hebbian rule given by

tW
dWij

dt
= (1+ US(t))∗ tanh (ri∗(rj − r0j (t))), (2)

where τW is the learning time constant and US(t) is the unconditioned
stimulus (US) which is equal to US+ when US is applied (synchronously
with stimulation of the context) and 0 otherwise. r0j is the temporal mean

over a time window δ of the firing rate of neuron j, given by

r0j (t) =
1
d

∫t
t−d

rj(t
′)dt′. (3)

An upper cap Wmax and a lower cap Wmin are applied to the recurrent
weights W to prevent them from being negative or too high.

Intrinsic neural excitability. Intrinsic neural excitability follows
dynamics that have been previously hypothesized to be due to the
increase in the CREB transcription factor following learning (Silva
et al., 2009). Each neuron’s initial excitability e0i is sampled from a half-
normal distribution of mean 0 and standard deviation 0.5. If the firing
rate of a given neuron i reaches a set active threshold θ, its excitability
ei moves from its initial value e0i to a higher value E, 2.9 s after neurons
are tagged. Excitability then decays to e0i with a time scale te:

te
dei
dt

+ ei = e0i . (4)

Note that we did not consider any increase in excitability following recall
in all figures but Figure 7c. In the latter, neurons are tagged during recall
of the first memory and excitability of the active neurons is increased
between 300ms and 500ms after recall onset, before decaying to
baseline.

Stimulation protocol. During training, either the first, second, or last
third of theNin neurons from the input region are activated, namely their
firing rates are set to a fixed value rCS. This activation is repeated Nstim

times for a duration ΔT, with an interstimulus delay ΔS. During the recall
period, one of the three contexts is presented for a duration ΔT. During
training in all figures (except Fig. 3), shock is applied synchronously with
the context, namely the value US in the learning rule (Eq. 2) is set to a
non-zero value US+. In Figure 3, shock is applied during the last presen-
tation of the blue context (when specified).

During the simulations where excitability is manipulated (Figs. 4 and
5), the first Ne+ neurons received an enhanced excitability eincrease, that is
added to their initial excitability e0i during presentation of the first con-
text. Then, when inhibition is applied (i+), the first Ni+ neurons receive
an external negative current i.

Behavioral read-out. We introduced a read-out variable of the mem-
ory strength in order to compare it with the freezing levels measured in
experiments. To that end, we modeled this memory strength using an
ideal observer defined as

F =
∑
i[V

∫tr+DT ′

tr

ri(t)dt, (5)
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where tr is the onset of the recall stimulation andΔT′ = 100ms is the inte-
gration time, corresponding to the temporal window during which the
neuron is active. Ω denotes the ensemble of neurons belonging to the
engram, namely the set of neurons crossing the active threshold θ during
the recall time window.

The engram overlap (Figs. 6 and 7) is computed as the number of
neurons responding to both recall of the first context and another context
(either the same context, a novel context, or a context that was presented
with a 6 h or 24 h delay) divided by the number of neurons responding to
the first context.

Exclusion criteria. During some simulations, the firing rates of some
neurons increased and reached non-realistic values. We defined a thresh-
old of 100Hz and decided to exclude any trials where the firing rate of
any neuron reached 100Hz at any time point. Around 10% of the trials
were typically excluded.

Integration. Integration was done using Euler’s method on Python.
A time step of 0.5ms was used during and 3 s after training sessions,
and during and 300ms after recall sessions. Between training and recall,
a time step of 20 s was used. Firing rates of neurons below 10−5 were set to 0.

Table of parameters. An initial set of parameters was used in most of
the figures except in Figure 3. This initial configuration was chosen to
match previous experimental results in the lateral amygdala (Rashid
et al., 2016). In Figure 3, a second set of parameters was used to match
engrams overlap measures observed in the hippocampal dCA1 (Cai
et al., 2016).

Results
Formation of a single memory engram in a recurrent network
with excitability
In order to study the effect of excitability in memory allocation
and linking, we built a rate-based model with feed-forward and

recurrent connections, equipped with excitability and Hebbian
plasticity. Excitability of each neuron i is modeled as a time-
varying threshold ei of the input–output function (Methods,
Eq. 1). This excitability is initially sampled from a random distri-
bution (Methods) and changes to a higher value when the neu-
ron’s firing rate reaches a threshold θ before decaying to its
initial value (Methods, Eq. 4). Feed-forward inputs are defined
as a single layer divided in three subpopulations corresponding
to different contexts. Feed-forward weights are set as a diagonal
block structure to define three receptive fields (RFs, Methods,
Fig. 1a and b), such that presenting a context increases the input
current to a subpopulation of neurons in the main region.
Recurrent connections are assumed to be all-to-all and plastic,
according to a Hebbian learning rule (Methods, Eq. 2), and ini-
tialized at 0. We then stimulated the network by presenting
different contexts (training phase, Methods).

We first observed that, after presenting the first context, the
firing rates of neurons responding preferentially to this context
(Fig. 1d, left) are above the “active” threshold θ, which we defined
as the threshold above which neurons are classified as active. This
was not the case for the other neurons in the network (Fig. 1d,
left). Analyzing the recurrent weights matrix revealed that learn-
ing led to the formation of an assembly of neurons strongly con-
nected to each other (Fig. 1c). The weights between neurons
outside the assembly, however, have not significantly changed
from their initial value equal to zero. We then sought to test
the ability of the network to perform pattern completion. To
this end, we stimulated the network with a partial cue and mea-
sured memory retrieval. We observed that stimulating four out of
the seven neurons composing the assembly, namely those that
were tagged as active during training (Methods), is enough to
activate all the neurons in the assembly (Fig. 1e, right). This result
shows that stimulating a subset of neurons of the assembly is
sufficient to activate other neurons in the same assembly through
strong intra-assembly connections.

Intrinsic neural excitability induces overlap among memory
engrams of temporally close events
Next, we investigated the effect of presenting a second context to
the network either 6 h or 24 h after the first one (Methods,
Fig. 2a), inspired by previous experiments (Rashid et al., 2016).
We designed our model in such a way that, after learning, excit-
ability of neurons taking part in the newly formed assembly is
increased, before slowly decaying to their baseline level
(Methods, Eq. 4). Specifically, there is a transient increase in
excitability after stimulating the network by the first context
(Fig. 2b, red triangle) and the second context (Fig. 2b, blue trian-
gle). We then measured memory recall for both contexts succes-
sively (Fig. 2a). Presenting a second context after a 24 h delay led
to the formation of a second neural assembly in the recurrent
weights matrix, distinct from the first one (Fig. 2c, top, and e).
This second assembly is composed of neurons that are responsive
to only the second context. As in the previous section, neurons
that are part of both assemblies are reactivated independently
during memory recall (Fig. 2d, top). Interestingly, we found
that if the second context is presented after a 6 h delay, some
off-diagonal weights are also reinforced for neurons responding
preferentially to the second context (Fig. 2c, bottom). This sug-
gests that the two memories are encoded by overlapping neural
representations in the case where the contexts are presented 6 h
apart but not 24 h apart. Indeed, when recalling the second mem-
ory, we observed a co-activation of neurons that take part in the
first assembly in the case of a 6 h delay (Fig. 2d, bottom). We can

Parameter Description
Figures 1, 2,
and 4–7 Figure 3

N Number of neurons in the main region 60
Nin Number of neurons in the input layer 30
te Excitability decay time constant 24 h | 12 h
E Excitability increase 3.5 4
τr Rate decay time constant 15 ms
θ Active threshold 6 Hz 4 Hz
I0 Inhibition baseline 6
I1 Inhibition multiplicative factor 0.9
I-1 Reduced inhibition multiplicative factor 0.88
ΔT Stimulation duration 40 ms
Nstim Number of stimulation per training sessions 20 15
ΔS Interstimulus delay 150 ms
WFF
RF Feed-forward weights corresponding to

the RF neurons
0.3

WFF
non-RF Feed-forward weights corresponding to

the non-RF neurons
0.2

τw Hebbian rule time constant 750 ms 500 ms
Wmax Upper cap for plastic recurrent weights 1
Wmin Lower cap for plastic recurrent weights 0
US+ Unconditioned stimulus strength 1 0.5
rCS Firing rate of the neurons from the

input layer when activated
4 Hz

δ Averaging time of firing rates 15 s
Ne+ Number of neurons that receive

enhanced excitability
8 –

eincreased Increase in excitability 5 –
Ni+ Number of neurons that are inhibited 6 –
i Inhibition strength 0.5 –
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therefore quantify the overlap between the two assemblies,
namely the number of neurons that were active during recall of
both contexts, and found that it is higher in the case where the
events were separated by 6 h relative to 24 h (Figs. 6 and 7).
This overlap seems to be independent of the engram size
(Fig. 7b). We also observed similar results when excitability
was increased following recall or when the activation threshold
during training was heterogeneous (Methods, Fig. 7c). The pres-
ence of ongoing noise throughout the simulation did not affect
the results (Methods, Fig. 7d). In contrast, no overlap was
observed when excitability was kept fixed (Fig. 7c).

Linking memories at the behavioral level in a fear
conditioning simulation
We then asked whether this structural overlap among memory
engrams could lead to memory linking. To that end, we modeled
a fear conditioning experiment (Cai et al., 2016). We measured
the strength of the memory recall as an ideal observer, namely
a read-out value that is proportional to the sum of the neurons’
firing rate, integrated over the duration of the recall stimulus
(Methods, Eq. 5). The US was introduced as a multiplicative
term in the Hebbian learning rule (Methods, Eq. 2) such that
the recurrent weights are preferentially increased when the US
is applied.

We presented three distinct contexts to the network, sepa-
rated by 7 d and 5 h (Fig. 3a). In order to test memory linking,
we presented the last context a second time, now paired with
the US (Fig. 3a, in blue) and measured the memory strength of
each of the three contexts. We observed that the memory
strength was high when presenting either the blue context, which
was paired with the US, or the yellow context, which was not
paired with the US but was initially separated by 5 h relative to
the shocked context (Fig. 3b). Conversely, presenting the red
context, delayed by 7 d, elicited a level of memory recall compa-
rable to the control case when no US was applied (Fig. 3b).
Similarly to previous results (Fig. 2), the memory ensemble asso-
ciated to the yellow contexts overlaps with the one associated to
the blue context, but not the red one (Fig. 3c–e). Our model was
then able to show that two memories encoded close in time tend
to be linked in such a way that recalling either memory can lead
to a similar behavioral output, as shown experimentally (Cai
et al., 2016; Shen et al., 2022).

Manipulating initial excitability biases neural allocation of
memories
Given that excitability is a key mechanism for linking memory
engrams, we then asked to what extent excitability could also
play a role in biasing memory allocation. To that end, and
inspired by previous experiments (Rashid et al., 2016), we

Figure 1. Encoding a single memory engram in a recurrent network equipped with intrinsic neural excitability. a, Diagram of the network architecture. Neurons in the input layer (left) project
to the network with feed-forward connections WFF (right). The feed-forward weights are defined such that neurons in the main layer have RFs (only two are shown here, red and blue neurons).
b, Fixed, feed-forward synaptic weights matrix WFF. RFs are defined by strong weights in a block-diagonal structure. When presenting the first context for example, the first 10 neurons of the
input region are activated which in turn stimulate preferentially the first 15 neurons in the main region. c, Recurrent weights matrix after training. The block structure shows a neural assembly
with stronger connections between neurons responding to the red context (0–15). d, Firing rates of all the neurons across time during training (left) and recall (right). Neurons responding
preferentially to the context are shown in red while the other neurons are shown in black and do not respond to the stimulus. Black bars show presentations of the stimulus to the network. The
dashed line is the “active” threshold, i.e., the threshold above which neurons are classified as active. e, Firing rate of each neuron responding preferentially to the first context during training
(left) and recall (right). Black arrows indicate seven neurons that were tagged as “active” during training and that were reactivated during recall. During the recall phase, four of these seven
neurons (black stars) were stimulated.
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increased the initial excitability of a subset of the neurons
that respond preferentially to the first context (e+, Methods,
Fig. 4a) during training of the first context. We then inhibited
this subpopulation during memory recall (i+, Methods, Fig. 4c)
and measured the strength of memory recall. We found
that inhibiting the subpopulation whose excitability was
enhanced reduced the memory strength during recall relative
to the control case without manipulation of excitability
(Fig. 4d and f, top). This suggests that neurons with enhanced

excitability are preferentially allocated to memory engrams
(Fig. 4g, left).

Next, we presented two different contexts to the network, sep-
arated by 6 h or 24 h, and tested how increasing excitability to a
subset of neurons during formation of the first memory could
bias the overlap between the two memory engrams. We inhibited
the subpopulation that received enhanced excitability during
recall of the second context and we measured the memory
strength of the second context (Fig. 4b and f, bottom). In the

Figure 2. Training-induced increase in excitability induces overlap among memory engrams of temporally close events. a, Simulation protocol for studying the effect of forming two mem-
ories, spaced by different temporal delays. During the training phase, two contexts are presented 6 h or 24 h apart. After 24 h, both contexts are recalled, separated by 25 min. b, Time course of
excitability for each neuron of the network. Whenever the firing rate of a neuron crosses the active threshold, its excitability moves to a higher value (red and blue triangles corresponding to
training on the first and second contexts, respectively), before decreasing to their initial value on a time scale of 24 h (Methods). Red and blue traces correspond to neurons responding pref-
erentially to the first and second contexts, respectively. c, Recurrent weights matrix immediately after training, in the case where the contexts are presented 24 h apart (top) and 6 h apart
(bottom). d, Firing rates of individual neurons during recall of the first context (left) and the second context (right), in the case where the events are separated by 24 h (top) and 6 h (bottom).
Neurons 1–15 respond preferentially to the first context (red) and neurons 16–30 respond preferentially to the second context (blue). The dashed line corresponds to the active threshold and the
black bars to the stimulation. e Time course of the firing rate of all the neurons during presentation of the second context, when presented 24 h after the first context (same protocol as Fig. 2).
f, Same as e, when the second context is presented 6 h after the first one.
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case where the events were separated by 6 h, inhibiting the sub-
population resulted in a reduction of the memory strength as
compared to the case where the events were delayed by 24 h
(Fig. 4e and f, bottom). Given that the subpopulation e+ is com-
posed of neurons responding preferentially to the first context,
this suggests that this subpopulation preferentially took part in
the overlap between the two memory engrams (Fig. 4g, right).

Inhibition-induced competition among neurons crucially
regulate memory allocation for temporally close events
Finally, we sought to evaluate how much neurons compete for
memory allocation. To that end, we repeated the same protocol
as in the previous section, but inhibiting the subpopulation (i+)
during presentation of the second context, instead of during
recall (Fig. 5a). We observed that the formation of the second
memory was impaired when the contexts were presented 6 h
apart compared to the 24 h delay (Fig. 5b, solid lines). Note

that this is the case whether or not the subpopulation (e+) is
inhibited (i+) during recall (Fig. 5b, solid lines).

We then hypothesized that this memory impairment was
driven by inhibition. We repeated the simulation as above while
reducing the amount of inhibition in the network (Methods) dur-
ing presentation of the second context, as inspired by previous
experiments (Rashid et al., 2016). We observed that the memory
strength was less impaired by inhibition of the subpopulation (i+)
when the network inhibition was reduced (Fig. 5b, dashed lines).
Indeed, the memory strength of the second context increased
more for a delay of 6 h compared to 24 h, relative to the case
with baseline inhibition (Fig. 5b, dashed lines).

The balance among inhibition, feed-forward inputs, and
excitability is crucial for forming overlaps
Overall, we found that excitability can induce overlap between
memory engrams. This overlap is dependent on the temporal

Figure 3. Memory linking in a fear conditioning simulation. a, Simulation protocol of fear conditioning. Three contexts are used and are delayed by either 7 d (red and yellow) or 5 h (yellow
and blue). Shock is then applied 2 d later in the blue context by pairing the context with an unconditioned stimulus (Methods). Memories are then recalled independently for each of the three
contexts. b, Memory strength read-out upon recalling the three memories, when shock is applied (left) or not (right). n= 10 simulations and data are shown as mean ± s.e.m. c, Firing rates of all
the neurons across time during training in the fear conditioning protocol depicted in a. Each color represents a population of neurons that receives high input current when one of the contexts is
presented. The first, second, and third panels correspond, respectively, to the presentation of the first, second, and third contexts, with a delay of 7 d (between the first and the second one) and 5
h (between the second and the third one). Shock is applied 2 d after the first presentation of the third context (rightmost panel). The dashed line corresponds to the active threshold and the black
bars to the stimulation. d, Firing rate of the neurons during recall of the first, second, and third memory, respectively, 2 d after the shock. e, Corresponding recurrent weights matrices after
presentation of each of the three contexts (first three panels) and after the second presentation of the third context paired with the shock (rightmost panel).
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delay between the two contexts in a manner consistent with
experimental findings in the lateral amygdala (Rashid et al.,
2016) and in the hippocampal dorsal CA1 (Cai et al., 2016).
Our result predicts that the engram overlap arises from reactiva-
tion of the first ensemble when forming the second memory
(Fig. 2f ). Indeed, co-activation of neurons encoding the first
memory (red traces) along with neurons responding preferen-
tially to the second context (blue traces) lead to strengthening
of the weights between these two ensembles, due to Hebbian plas-
ticity (Fig. 2c and f ). We varied the temporal delay between the
two contexts and found that the amount of overlap decreases
when this delay increases (Fig. 6b).

We also predict that increasing the level of inhibition I0 leads
to a decrease in the overlap between the two ensembles. Indeed, if
the two events are separated by 6 h, increasing I0 leads to a

decrease in the overlap as compared to the control case
(Fig. 6c, I+0 ). We found that decreasing the excitability decay
timescale te also leads to a decrease in the overlap (Fig. 6c, t−e ).
Indeed, the excitability increase following learning needs to be
above a threshold otherwise the first ensemble cannot be reacti-
vated even if the second context is presented after 6 h (Fig. 7j).
Similarly, the overlap among memory engrams decreases with
the active threshold set during training (Fig. 7a).

Finally, we predict that the network can only form overlap-
ping memory engrams if the feed-forward weights that do not
form RFs (WFF

non-RF) are within a defined range (Fig. 7i). If these
weights are too low, neurons that are not preferentially activated
by the second context cannot be reactivated when presenting this
context after 6 h. On the other hand, if they are too high, the
ensembles overlap independently of the temporal delay between

Figure 4. Neurons with enhanced excitability are preferentially allocated to memory engrams and overlapping ensembles. a, Protocol for biasing memory allocation to a subpopulation of
neurons. Excitability of a subset of neurons is enhanced during training (e+, top). During recall, this subpopulation is blocked (i+, Methods). In the control case, excitability is not manipulated.
b, Protocol for biasing the overlap to a subset of neurons. Again, excitability is enhanced (e+) for a subset of neurons during presentation of the first context (red). Then, a second context is
presented (blue) after 6 h or 24 h, and the memory strength of the second context is measured while blocking the subpopulation that received enhanced excitability (i+). c, Spatial representation
of the protocol: a subset of Ne+ neurons receives an enhanced excitability e+ , that is added to their initial excitability. During inhibition, Ni+ neurons from this subset are inhibited, receiving a
negative current i+ (Methods). d, Memory strength of the context while blocking the subset of neurons, in the case where excitability is enhanced (e+) or not (control). e, Memory strength when
recalling the second memory in b, when the two contexts are separated by either 6 h or 24 h. For all simulations, n= 50 simulations and data are shown as mean ± s.e.m. f, Same as d and e,
when the subset is either inhibited (i+) or not (control) during recall. For each conditions, n= 50 simulations and data are shown as mean ± s.e.m. g, Recurrent weight matrix after presentation
of the first context (left) and the second context (right) for a 6 h delay.
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the two contexts. In that case, we even observed an overlap with
the novel context (Fig. 7i, yellow line).

Discussion
Learning a single memory
We first showed that our network is able to formmemories when
stimulated by a feed-forward input. We attributed this formation
to synaptic plasticity, independently from the dynamics of neural
excitability. Indeed, the time scale of excitability is much slower
than the time scale of Hebbian plasticity in our model, suggesting
that the initial activation of the neurons by feed-forward inputs
leads to strengthening of the synaptic weights through Hebbian
learning. The structure of the neural assembly holding the
formed memory is similar to previous theoretical works that
have used attractor networks (Amit, 1989; Gastaldi et al.,
2021). These neural assemblies are formed during the learning
phase and are reactivated during memory recall. Importantly,
memories can be recalled even when stimulated by a partial
cue, suggesting that the neural activity is driven by recurrent con-
nections. In particular, the structural change that leads to the for-
mation of neural assemblies leads to the formation of a memory,
as suggested in previous definitions of engram cells (Josselyn and
Tonegawa, 2020).

The ability of the network to perform pattern completion is
complemented by its ability to perform pattern separation.

However, we did not evaluate pattern separation in our model.
This would be interesting in particular because a recent study
has shown that increased neural excitability in dentate gyrus
improves pattern completion and separation (Pignatelli et al.,
2019). The role of the recall-induced increase in excitability could
explain this improvement. This could be directly tested in our
model, for example by presenting a conflicting cue to the network
and measuring pattern separation after recall of the memory.

In our model, the range of the firing rates of neurons during
stimulations is consistent with electrophysiological recordings
during fear conditioning in the amygdala (Lee et al., 2021) and
in CA1 (Cohen et al., 2017). Here, we did not consider sponta-
neous firing rate apart from when introducing background noise
in Figure 7d. Finally, our model does not take into account the
evolution of memory engrams across time. Indeed, when the net-
work is not stimulated, the recurrent weights are kept static. In
this framework, the delay between the training phase and the
recall phase has no impact on the recurrent weights.

Overlap between memory engrams of temporally close events
Here, we built a model that is able to reproduce the overlap
among memory engrams of events that are temporally linked.
These overlaps have been observed in the amygdala (Rashid
et al., 2016), the hippocampus (Cai et al., 2016), and the retro-
splenial cortex (Sehgal et al., 2021) while it has been reported

Figure 5. Neurons compete for allocation to memory engrams. a, Same protocol as Figure 4b but with the inhibition of the subset (i+) applied during presentation of the second context. The
subset is then either inhibited (i+) or not (control) during recall. b, Fear measurement when recalling the second memory when the events are separated by either 6 h or 24 h. The dashed line
corresponds to the case where global inhibition I1 is reduced (Methods). For all simulations, n= 50 simulations and data are shown as mean ± s.e.m. (nine trials were excluded, Methods).

Figure 6. Predictions regarding the overlap among memory engrams. a, Protocol for forming overlap among memory engrams. During training, two contexts were presented, separated by a
given temporal delay. The recall protocol allows for measuring the amount of overlap between engrams associated to the first context (red) and the second context (blue). b, Overlap among
engrams against the temporal delay between the contexts. For each temporal delay, n= 20 simulations (three were excluded, Methods). Results are shown as mean ± s.e.m. c, Overlap obtained
for a 6 h delay in the control case, the case where inhibition was increased I+0 and the case where the excitability decay time was decreased t−e . For the control case, n= 50 simulations (five
were excluded, Methods) and for I+0 and t−e , n= 20 simulations. Data are shown as mean ± s.e.m.
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Figure 7. Further model analysis. a, Overlap among two engrams when the contexts are separated by 6 h (same protocol as Fig. 2, Methods) against the activation threshold during training.
Here, the activation threshold during recall remains fixed (6 Hz). n= 10 simulations (one was excluded, Methods) and data are shown as mean ± s.e.m. b, Overlap among two engrams when
the contexts are separated by 6 h against the size of the first engram. Each dot shows one simulation. The top and right histograms show the distribution of engram sizes and overlaps,
respectively. n= 100 simulations (11 were excluded, Methods). c, Overlap among two engrams when the contexts are separated by 6 h in four scenarios: (1) control case (as in Fig. 2),
(2) excitability is increased following recall of the memories, (3) activation threshold during training is sample from a half-normal distribution of mean 6 Hz and standard deviation 1 Hz,
and (4) excitability is left at baseline during the entire simulation. n= 10 simulations (one was excluded, Methods) and data are shown as mean ± s.e.m. d, Neurons firing rate 1 h after
learning the first memory in the presence of ongoing noise throughout the whole simulation, when two contexts are presented 6 h apart. Traces in red correspond to neurons responding
preferentially to the first context, other neurons’ firing rate are at baseline. e, Overlap measured during the same protocol as Figure 2 as a function of the main parameters of the model
(Methods, Table of parameters). The dashed blue line and the solid blue line correspond to the 6 h delay and the 24 h delay, respectively. The red line corresponds to the case where the
same context is presented and the yellow to the case where a novel context is presented. n= 50 simulations (five were excluded, Methods) and data are shown as mean ± s.e.m. Each
gray line corresponds to the parameter that has been selected for the simulations in the main figures.
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that these three regions are involved in a memory consolidation
process known as systems consolidation (Kitamura et al., 2017;
Tonegawa et al., 2018). However, it remains unclear what infor-
mation is transferred from one region to another and investigat-
ing a potential transfer of overlap between brain regions would
help understand how temporal memory linking evolves over
the course of systems consolidation.

Structural overlap of memory engrams induces memory
linking
Here, we reproduced a fear conditioning experiment by model-
ing the US as a three-factor learning rule. We reasoned that an
aversive event (e.g., foot shock) would increase some neuromo-
dulators that in turn modulate plasticity. On the other hand,
our measure of memory strength (averaged firing rates of the
neurons belonging to the engram) is comparable to the fear read-
out in experimental works on rodents (freezing response), which
is also a proxy for memory strength.

After showing that memories of temporally close events are
structurally linked in overlapping neural ensembles, we showed
that this overlapping structure can induce memory linking. In
line with recent experimental studies (Cai et al., 2016; Yokose
et al., 2017), we observed in our model that this overlap supports
memory linking as the fear associated with one context can be
transferred to another context (Fig. 3).

We also note that this memory linking is a result of the short
temporal delay between contexts. Indeed, in contrast to previous
studies (de Sousa et al., 2021; Gastaldi et al., 2021), the overlap
between two memory engrams is independent from the concep-
tual relation between the contexts in question, which we did not
consider here. However, it is possible that this overlap supports
the formation of mnemonic structures, as they have been
observed in the hippocampus for instance (Deuker et al., 2016;
Barron et al., 2020). Further work could be done to investigate
the importance of overlapping memory engrams for more com-
plex cognitive processes such as inferential reasoning
(Zeithamova et al., 2012; Barron et al., 2020).

Manipulating excitability biases neural allocation of memories
In our model, memory allocation is determined by two main fac-
tors. On the one hand, engrams are preferentially allocated to
neurons that receive increased feed-forward inputs, as defined
in the feed-forward weights (Fig. 1). On the other hand, we
showed that memory allocation is also biased toward neurons
with high excitability (Fig. 4), consistent with previous studies
(Zhou et al., 2009; Rashid et al., 2016). However, for the sake
of simplicity, we did not explicitly probe the relative importance
of the feed-forward weights compared to intrinsic excitability. To
that end, it would be necessary to introduce some variability in
the structure of the RFs, and subsequently investigate how neu-
ronal memory allocation is impacted by feed-forward inputs ver-
sus excitability dynamics.

Here, we considered that excitability is mainly governed by
the transcription factor CREB. We modeled its dynamics by
increasing excitability instantaneously after learning and then
allowing it to decay over a time scale of a few hours, as motivated
by several experimental studies (Moyer et al., 1996; Thompson
et al., 1996; Oh et al., 2003; Kitagawa et al., 2017). Although
the results might be similar, it is important to note that these
dynamics are conceptualized and that other mechanisms that
are not considered here are also known to regulate neural excit-
ability. For instance, internalization of Kir2.1 channel increases
neural excitability during memory recall (Pignatelli et al., 2019)

while the expression of the C-C chemokine receptor type 5 is
known to decrease excitability (Zhou et al., 2016; Shen et al.,
2022). Adult-born neurons are also known to be more excitable
than their counterparts (Silva et al., 2009). Overall, the exact rela-
tionship between firing rate and change in excitability is not
known. For this reason, we abstracted the dynamics of excitabil-
ity by only considering the increase of excitability following
learning and a slow decay over a timescale of several hours.
Finally, memory allocation may also be influenced by other
mechanisms beyond the scope of the present study such as
synaptic tagging and spine clustering (Rogerson et al., 2014;
Kastellakis et al., 2016).

We also showed that artificially increasing excitability in an
ensemble of neurons could also bias co-allocation of this ensem-
ble to further memories as shown in previous experimental
findings (Rashid et al., 2016). This result arose naturally in our
model because neurons with enhanced excitability are preferen-
tially allocated to the first memory, and will then overlap with the
second engram (Fig. 4g).

Role of inhibition in memory allocation and linking
Finally, we showed that neurons can compete for memory allo-
cation and that the outcome of this competition is determined
by both the initial excitability of neurons and the amount of inhi-
bition in the network. We first showed that blocking neurons
which received enhanced excitability during presentation of the
first context impaired learning of a second context presented
shortly after, suggesting that these neurons have a competitive
advantage over the others for memory allocation. Second, we
showed that reducing inhibition restored the ability of the net-
work to learn the second memory, suggesting that competition
is driven by inhibition.

In our model, neurons with a higher initial excitability are
favored for memory allocation and inhibit the remaining neu-
rons, preventing them from taking part in a memory engram.
This process has been previously shown experimentally (Han
et al., 2007; Rashid et al., 2016) and this study provides a compu-
tational model that sheds light on the underlying competitive
mechanism. Finally, we use a homogeneous global inhibition
model, but further studies could explore the effect of populations
of different inhibitory cell types on engram overlap and memory
linking.

Conclusion
In summary, we have built a recurrent neural network model that
can reproduce the experimentally observed neuronal overlap
between temporally linked memory engrams by combining
both synaptic plasticity and neural excitability. Our results sug-
gest that engram overlaps are crucially determined by the balance
among inhibition, feed-forward inputs, and excitability.

References
Amit DJ (1989)Modeling brain function: the world of attractor neural networks.

Cambridge: Cambridge University Press. https://www.cambridge.org/core/
books/modeling-brain-function/2EA95FDABF616D187220A6B9596091B7

Barron HC, et al. (2020) Neuronal computation underlying inferential rea-
soning in humans and mice. Cell 183:228–243.e21.

Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term
potentiation in the hippocampus. Nature 361:31–39.

Cai DJ, et al. (2016) A shared neural ensemble links distinct contextual mem-
ories encoded close in time. Nature 534:115–118.

Chowdhury A, Luchetti A, Fernandes G, Filho DA, Kastellakis G, Tzilivaki A,
Ramirez EM, Tran MY, Poirazi P, Silva AJ (2022) A locus coeruleus-

10 • J. Neurosci., May 22, 2024 • 44(21):e0846232024 Delamare et al. • Excitability Biases Memory Engrams Formation

https://www.cambridge.org/core/books/modeling-brain-function/2EA95FDABF616D187220A6B9596091B7
https://www.cambridge.org/core/books/modeling-brain-function/2EA95FDABF616D187220A6B9596091B7


dorsal CA1 dopaminergic circuit modulates memory linking. Neuron
110:3374–3388.e8.

Cohen JD, Bolstad M, Lee AK (2017) Experience-dependent shaping of hip-
pocampal CA1 intracellular activity in novel and familiar environments.
eLife 6:e23040.

de Sousa AF, Chowdhury A, Silva AJ (2021) Dimensions and mechanisms of
memory organization. Neuron 109:2649–2662.

Deuker L, Bellmund JL, Navarro Schröder T, Doeller CF (2016) An event map
of memory space in the hippocampus. eLife 5:e16534.

Dong Y, Green T, Saal D, Marie H, Neve R, Nestler EJ, Malenka RC (2006)
CREB modulates excitability of nucleus accumbens neurons. Nat
Neurosci 9:475–477.

Gastaldi C, Schwalger T, Falco ED, Quiroga RQ, Gerstner W (2021) When
shared concept cells support associations: theory of overlapping memory
engrams. PLoS Comput Biol 17:e1009691.

Han J-H, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL,
Guzowski JF, Silva AJ, Josselyn SA (2007) Neuronal competition and
selection during memory formation. Science 316:457–460.

Hebb DO (1949) The organization of behavior: a neuropsychological theory.
Mahwah, NJ: L. Erlbaum Associates.

Josselyn SA, Tonegawa S (2020) Memory engrams: recalling the past and
imagining the future. Science 367:eaaw4325.

Kastellakis G, Silva AJ, Poirazi P (2016) Linking memories across time via
neuronal and dendritic overlaps in model neurons with active dendrites.
Cell Rep 17:1491–1504.

Kitagawa H, Sugo N, Morimatsu M, Arai Y, Yanagida T, Yamamoto N (2017)
Activity-dependent dynamics of the transcription factor of
cAMP-response element binding protein in cortical neurons revealed
by single-molecule imaging. J Neurosci 37:1–10.

Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM,
Redondo RL, Tonegawa S (2017) Engrams and circuits crucial for systems
consolidation of a memory. Science 356:73–78.

Lee J, An B, Choi S (2021) Longitudinal recordings of single units in the basal
amygdala during fear conditioning and extinction. Sci Rep 11:11177.

Litwin-Kumar A, Doiron B (2014) Formation and maintenance of neuronal
assemblies through synaptic plasticity. Nat Commun 5:5319.

Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K,
Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram
activates fear memory recall. Nature 484:381–385.

Morrison DJ, Rashid AJ, Yiu AP, Yan C, Frankland PW, Josselyn SA (2016)
Parvalbumin interneurons constrain the size of the lateral amygdala
engram. Neurobiol Learn Mem 135:91–99.

Moyer JR, Thompson LT, Disterhoft JF (1996) Trace eyeblink conditioning
increases CA1 excitability in a transient and learning-specific manner.
J Neurosci 16:5536–5546.

Oh MM, Kuo AG, Wu WW, Sametsky EA, Disterhoft JF (2003) Watermaze
learning enhances excitability of CA1 pyramidal neurons. J Neurosci 90:
2171–2179.

Pignatelli M, Ryan TJ, Roy DS, Lovett C, Smith LM, Muralidhar S, Tonegawa
S (2019) Engram cell excitability state determines the efficacy of memory
retrieval. Neuron 101:274–284.e5.

Rashid AJ, et al. (2016) Competition between engrams influences fear mem-
ory formation and recall. Science 353:383–387.

Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, Lopez-Aranda MF, Silva AJ
(2014) Synaptic tagging during memory allocation. Nat Rev Neurosci
15:157–169.

ScovilleWB,Milner B (1957) Loss of recent memory after bilateral hippocam-
pal lesions. J Neurol Neurosurg Psychiatry 20:11–21.

Sehgal M, et al. (2021) Co-allocation to overlapping dendritic branches in the
retrosplenial cortex integrates memories across time. Pages:
2021.10.28.466343. Section: New Results.

Sehgal M, Zhou M, Lavi A, Huang S, Zhou Y, Silva A (2018) Memory alloca-
tion mechanisms underlie memory linking across time. Neurobiol Learn
Mem 153:21–25.

Shen Y, et al. (2022) CCR5 closes the temporal window for memory linking.
Nature 606:146–152.

Silva AJ, Zhou Y, Rogerson T, Shobe J, Balaji J (2009) Molecular and cellular
approaches to memory allocation in neural circuits. Science 326:391–395.

Thompson LT, Moyer JR, Disterhoft JF (1996) Transient changes in excitabil-
ity of rabbit CA3 neurons with a time course appropriate to support mem-
ory consolidation. J Neurophysiol 76:1836–1849.

Titley HK, Brunel N, Hansel C (2017) Toward a neurocentric view of learn-
ing. Neuron 95:19–32.

Tonegawa S, Liu X, Ramirez S, Redondo R (2015) Memory engram cells have
come of age. Neuron 87:918–931.

Tonegawa S, Morrissey MD, Kitamura T (2018) The role of engram cells in
the systems consolidation of memory. Nat Rev Neurosci 19:485–498.

Yokose J, et al. (2017) Overlapping memory trace indispensable for linking,
but not recalling, individual memories. Science 355:398–403.

Zeithamova D, Schlichting ML, Preston AR (2012) The hippocampus and
inferential reasoning: building memories to navigate future decisions.
Front Hum Neurosci 6:70.

Zenke F, Agnes EJ, GerstnerW (2015) Diverse synaptic plasticitymechanisms
orchestrated to form and retrieve memories in spiking neural networks.
Nat Commun 6:6922.

Zhou M, et al. (2016) CCR5 is a suppressor for cortical plasticity and hippo-
campal learning and memory. eLife 5:e20985.

Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J, Neve R, Poirazi
P, Silva AJ (2009) CREB regulates excitability and the allocation of mem-
ory to subsets of neurons in the amygdala. Nat Neurosci 12:1438–1443.

Delamare et al. • Excitability Biases Memory Engrams Formation J. Neurosci., May 22, 2024 • 44(21):e0846232024 • 11


	 Introduction
	 Methods
	Outline placeholder
	 

	 Rate model
	 Weights dynamics
	 Intrinsic neural excitability
	 Stimulation protocol
	 Behavioral read-out
	 Exclusion criteria
	 Integration
	 Table of parameters



	 Results
	 Formation of a single memory engram in a recurrent network with excitability
	 Intrinsic neural excitability induces overlap among memory engrams of temporally close events
	 Linking memories at the behavioral level in a fear conditioning simulation
	 Manipulating initial excitability biases neural allocation of memories
	 Inhibition-induced competition among neurons crucially regulate memory allocation for temporally close events
	 The balance among inhibition, feed-forward inputs, and excitability is crucial for forming overlaps

	 Discussion
	 Learning a single memory
	 Overlap between memory engrams of temporally close events
	 Structural overlap of memory engrams induces memory linking
	 Manipulating excitability biases neural allocation of memories
	 Role of inhibition in memory allocation and linking
	 Conclusion

	 References

