Formal Methods in System Design (2025) 66:3-48
https://doi.org/10.1007/510703-024-00447-0

®

Check for
updates

Information-flow interfaces

Ezio Bartocci' - Thomas Ferrére? - Thomas A. Henzinger® - Dejan Nickovic* -
Ana Oliveira da Costa®

Received: 29 December 2022 / Accepted: 2 February 2024 / Published online: 23 May 2024
© The Author(s) 2024

Abstract

Contract-based design is a promising methodology for taming the complexity of develop-
ing sophisticated systems. A formal contract distinguishes between assumptions, which are
constraints that the designer of a component puts on the environments in which the com-
ponent can be used safely, and guarantees, which are promises that the designer asks from
the team that implements the component. A theory of formal contracts can be formalized
as an inferface theory, which supports the composition and refinement of both assump-
tions and guarantees. Although there is a rich landscape of contract-based design methods
that address functional and extra-functional properties, we present the first interface theory
designed to ensure system-wide security properties. Our framework provides a refinement
relation and a composition operation that support both incremental design and independent
implementability. We develop our theory for both stateless and stateful interfaces. Addi-
tionally, we introduce information-flow contracts where assumptions and guarantees are
sets of flow relations. We use these contracts to illustrate how to enrich information-flow
interfaces with a semantic view. We illustrate the applicability of our framework with two
examples inspired by the automotive domain.

Keywords Contract-based design - Interface theory - Hyperproperties - Information-flow

< Ana Oliveira da Costa
ana.costa@ista.ac.at

Ezio Bartocci
ezio.bartocci@tuwien.ac.at

Thomas Ferrere
thomas.ferrere @imgtec.com

Thomas A. Henzinger
tah@ist.ac.at

Dejan Nickovic

dejan.nickovic@ait.ac.at
' TU Wien, Vienna, Austria
Imagination Technologies, Kings Langley, UK
IST, Klosterneuburg, Austria

4 AIT, Vienna, Austria

@ Springer

http://orcid.org/0000-0002-8741-5799
http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-024-00447-0&domain=pdf

4 Formal Methods in System Design (2025) 66:3-48

1 Introduction

The rise of pervasive information and communication technologies seen in cyber-physical
systems [1], internet of things, and blockchain services has been accompanied by a tre-
mendous growth in the size and complexity of systems [2]. Subtle dependencies involving
multiple architectural layers and unforeseen environmental interactions can expose these
systems to cyber-attacks. This problem is further exacerbated by the heterogeneous nature
of their constituent components, which are often developed independently by different
teams or providers. In such a scenario, defining and enforcing security requirements across
components at an early stage of the design process becomes a necessity. This engineering
approach is called security-by-design. Although in recent years there has been impressive
progress in the verification of security properties for individual system components, the
science of compositional security design [3, 4] is still in its infancy.

Security policies are usually enforced during design by restricting the flow of informa-
tion in a system [5]. Information-flow policies define which information a user or a soft-
ware/hardware component is allowed to observe or to interfere with while interacting with
another component. The design of systems that satisfy information flow requirements is
mainly supported today by verification methods. Verification of information flow proper-
ties is a well-studied problem with a rich landscape of both theory and tools, ranging from
language-based [6-9] to simulation-based [10] approaches. Existing verification methods
do not exploit the component-based structure of complex systems. First, a single verifi-
cation tool cannot be used in presence of heterogeneous components. Second, there are
no guidelines on how to divide-and-conquer the verification effort. More specifically, it
is not clear what are the properties to assess in individual components that collectively
uphold the system-level information flow policy. In addition, there is no obvious process of
combining verification outcomes from these components to infer system-level properties.
It follows that there is a need for a rigorous and compositional design method that takes
information flow into account from the early stages of system development and that com-
plements and facilitates the subsequent verification effort.

From a formal-language perspective, information flow is a hyperproperty [11] charac-
terized over sets of system executions. Enforcing information flow policies is challenging
due to the presence of side channels and implicit flows, which can potentially breach infor-
mation security measures. For example, in a modern car, the tight coupling between the
cyber and the physical components may allow an attacker to infer computational proper-
ties, such as secrets used for encryption, from side-channels, such as power consumption
and electromagnetic radiation [12]. The increasing connectivity in the automotive systems
facilitates attacks that involve gathering data from a car, exploiting weaknesses of its soft-
ware implementation and ultimately gaining control over it [13, 14].

In this paper, we present a contract-based design [15] approach for information-flow
policies. Contract-based design provides a formal framework for building complex systems
from individual components, mixing both top-down and bottom-up steps. A top-down step
decomposes and refines system-wide requirements; a bottom-up step assembles a system
by combining available components. A formal contract distinguishes between assumptions,
which are constraints that the designer of a component puts on the environments in which
the component can be used safely, and guarantees, which are promises that the designer
asks from the team that implements the component. A theory of formal contracts can be
formalized as an interface theory, which supports the composition and refinement of both
assumptions and guarantees [16—18]. While there is a rich landscape of interface theories

@ Springer

Formal Methods in System Design (2025) 66:3-48 5

for functional and extra-functional properties [19-22], we present the first interface theory
that is designed for ensuring system-wide security properties, thus paving the way for a sci-
ence of safety and security co-engineering.

Our information flow interface theory allows to talk about the flow of information
between system variables while abstracting away on the concrete semantics of how the
information flows. This focus on the structural aspects of information flow enables compo-
sitional reasoning in presence of heterogeneous components and is complementary to the
existing body of work on information flow verification. For example, various heterogene-
ous components can be implemented under different semantics. However, if the compo-
nent flows can be derived from its implementation under its concrete semantics, our theory
needs only to know what these flows are but is agnostic about the underlying semantic
interpretation. This enables compositional design of secure systems from trusted compo-
nents and allows deriving necessary component properties from system-level requirements,
thus providing a divide-and-conquer approach to the verification tasks.

Our theory is based on information-flow assumptions as well as information-flow guar-
antees. As an interface theory, our theory supports both incremental design and independ-
ent implementability [17]. Incremental design allows the composition of different system
parts, each coming with their own assumptions and guarantees, without requiring addi-
tional knowledge of the overall design context. Independent implementability enables the
separate refinement of different system parts by different teams that, without gaining addi-
tional information about each other’s design choices, can still be certain that their designs,
once combined, preserve the specified system-wide requirements. While in previous inter-
face theories, the environment of a component is held responsible for meeting assump-
tions, and the implementation of the component for the guarantees, there are cases of
information-flow violations for which blame cannot be assigned uniquely to the implemen-
tation or the environment. In information-flow interfaces we therefore introduce, besides
assumptions and (open system) guarantees, a new, third type of constraint—called closed-
guarantees—whose enforcement is the shared responsibility of the implementation and the
environment.

We develop our framework for both stateless and stateful interfaces. Stateless informa-
tion-flow interfaces are built from primitive information-flow constraints—assumptions,
open-guarantees, and closed-guarantees—of the form “the value of a variable x is always
independent of the value of another variable y.” Stateful information-flow interfaces add
a temporal dimension, e.g., “the value of y is independent of x until the value of z is inde-
pendent of x.” The temporal dimension is introduced through a natural notion of state and
state transition for interfaces, not through logical operators. We prove that our calculus of
information-flow interfaces satisfies the principles of incremental design and independent
implementability.

Contribution This paper expands and further improves our preliminary manuscript pub-
lished at FASE 2022 [1] with the following new contributions:

e We introduce a natural semantic interpretation for information-flow interfaces (See
Sect. 3.3) as contracts where assumptions and guarantees are sets of flow relations (i.e.,
implementations and environments).

e We add a new example where we show the application of both stateless and stateful
information-flow interfaces to the top-down and bottom-up design of an electronic
vehicle immobilizer (See Sect. 2.3).

e We provide all the detailed proofs of our theory and extend the discussion on the
related work.

@ Springer

6 Formal Methods in System Design (2025) 66:3-48

Fig.1 Representation of the interface component
objects in our theory 0 input [‘ }
g

I output 1

****** :H assumption no-flow

—————— open-guarantee no-flow
e closedzguarantee no-flow

— component flow

e We introduce a semantic definition of complement-flow composition in Definition 3
and prove that it is equivalent to the syntactic expression presented in the conference
paper (c.f., Lemma 2), highlighting the role of the syntactic definition as a general
proof method for compositional properties on information-flow interfaces.

Paper organization Section 2 presents two examples from the automotive industry
motivating the applicability of our theory with two examples from the automotive indus-
try. Section 3 introduces the notion of stateless interface and component algebra for secure
information flows, while Sect. 4 extends this theory with stateful components and inter-
faces. Section 5 discusses the related work and we conclude in Sect. 6.

2 Application examples

We motivate our approach with two examples from the automotive industry.

We adopt the graphical representation depicted in Fig. 1 to represent the different enti-
ties of our interface theory. Interfaces specify no-flow requirements and are meant to be
used as a design or specification formalism, while components abstract concrete imple-
mentations by describing their flow of information. We use a square to denote a component
and a square with rounded edges to denote an interface. During our target system’s suc-
cessive design and refinement steps, we need to reason about its subsystems. Subsystems
are typically open systems, interacting with an external environment by receiving inputs
from their environment and reacting to them by producing appropriate outputs. We make
a visual distinction between inputs and outputs by depicting them with a white and a black
rectangle associated to an interface or a component, respectively.

Interfaces specify restrictions on information flows, which we call no-flow relations
and we depict them with dashed and dotted arrows. Information-flow interfaces distin-
guish between environment and implementations responsibilities by specifying three kinds
of requirements: an assumption on its environment, an open-guarantee on its implemen-
tations, and a closed-guarantee on the closed-system defined by composing its environ-
ment and implementations. Dashed arrows to input variables represent assumptions, while
dashed arrows to output variables represent open-guarantees. Closed-system no-flows
requirements (closed-guarantees) are represented as dotted arrows to output variables. In
contrast, components specify implemented information flows, which we depict by solid-
line arrows.

2.1 Shared communication infrastructure

Our first example is a shared communication infrastructure (also referred to as a shared
bus) in a car that connects the distance warners and a wheel sensor to the breaking system

@ Springer

Formal Methods in System Design (2025) 66:3-48

- ——
distw_fs distw_b_s wh(\cT_ti('k distw_f t

—Sr
distw_b_t odometer

Sending Bus Receiving
distw_f s distw_f s [distw_f_t distw_f_t
& distw_b_s distw_b_s [] distw_b_t distw_b_t
ig L wheel _tick wheel tick [} odometer odometer
= Sending’ Bus' Receiving
; distw_f s distw_f_s /] distw_f_t distw_f_t
< distw_b_s (1ist\v,b;;\,\: [] distw_b_t distw_b_t
g 2. wheel_tick wheel tick | Y[} odometer odometer
- Sending’ T Receiving

Braking System

D distw_f s
3. D distw_b_s
C} wheel_tick

Fig.2 Top-down design of a shared communication infrastructure used by two distance warners, distw_f_s
and distw_b_s, and a wheel sensor, wheel_tick, to communicate with the braking system, distw_f ¢t and
distw_b_t, and the odometer, odometer, respectively

distw_f t
distw_b_t

distw_f_t
distw_b_t

odometer Odometer

odometer

and the odometer. Distance warners sense the car’s proximity to other objects and send
their analysis to other components. In our example, we have two distance warners, one at
the front and another at the back of the car, using the shared bus to communicate with the
braking system. The wheel sensor senses the wheel rotations and sends this information
through the shared bus to the odometer. This example is an adaptation of the industrial case
study presented by Marcus Mikulcak et al. in [10]. In this case study, the authors focused
on the verification task, while in our example, we illustrate how to use our interface theory
to do the stepwise design of such infrastructure.

The main goal of our design process is to guarantee the following system-level require-
ment: “information from the wheel sensor does not flow to the braking system”. In other
words, we require that the communication channel between the distance warners and the
braking system cannot be interfered with (e.g., by the wheel sensor data) because it per-
forms a safety-critical functionality. This requirement is an example of an infegrity policy.
We enforce this integrity policy using our secure-by-design theory by propagating appro-
priate requirements to subsystems and components through successive decomposition and
refinement steps, shown in Fig. 2.

Top-down design. We start the design process with the specification of our system-level
integrity policy. This policy is formalized in the form of two closed-guarantees depicted in
the topmost interface in Fig. 2. These closed-guarantees forbid flow of data from the wheel
sensor wheel_tick to target of the distance warners, distw_f _t and distw_b_t.

Next, we naturally decompose the initial system into three subsystems: the sending sub-
system (warners and wheel sensor), the shared bus, and the receiving subsystem (breaking
system and odometer). The decomposition of the system into subsystems is a manual step
performed by the engineer, in which an interface is associated to each subsystem. Despite
the decomposition being a manual activity, our interface theory provides support to

@ Springer

8 Formal Methods in System Design (2025) 66:3-48

automatically check whether the system is decomposed in a way that preserves the overall
security requirements. In our first attempt (step 1 in Fig. 2), we propose a straight-forward
decomposition of the original requirement: we keep the two closed-guarantees from the
first interface as closed-guarantees in the Bus interface and do not add further assumptions
and guarantees in all three interfaces. However, in this decomposition, the Bus interface
is not well-formed — it misses assumptions and open-guarantees that are required to sup-
port its closed guarantees. We illustrate this issue with an example. For instance, the Bus
interface allows a flow from wheel_tick to the source of the front distance warner through
its environment which, together with the flow from the distance warner source to its target
allowed by Bus open-guarantee, defines a flow from wheel_tick to distw_f ¢t forbidden by
the interface’s closed-guarantee.

To remedy the well-formdness problem, we can use open-guarantees instead of closed-
guarantees to specify the forbidden flows in the Bus interface. However, this is not suf-
ficient — in that case the composition of the sub-system interfaces does not refine the
system-level requirement. In fact, our interface theory tells us that we must add (1) new
assumptions to the Bus interface, and (2) new open-guarantees to the Sending interface
that imply the added Bus interface assumptions. With these additions, shown in the step
2 of Fig. 2, the composition of the three interfaces is now a refinement of the original
requirement.

With this certified decomposition of the original specification, our theory guarantees
that each subsystem can now be further refined independently (possibly by different teams).
The step 3 of Fig. 2 illustrates an independent refinement of the Sending and the Receiving
interfaces.

Stateful top-down design. In Fig. 3, we present the stateful view of the system, requir-
ing the system to satisfy the composition of the Sending, the Bus, and the Receiving inter-
faces derived in Fig. 2 at all times. We refine the initial interface to specify that in each
specification state only one of the sending components can use the bus.

The interfaces that define each state are named after the sending component that can use
the bus (e.g. in the state S, only the wheel_tick can use it). All three states have the same
closed-guarantee requiring no flows from the wheel tick to the distance warners’ target.
For each state, we specify the mutually exclusive use by one of the sending components by
adding to the open-guarantees the requirement that there is no flow from the inputs of the
other sending components to any of the bus outputs. In particular, the open-guarantee in
the interface of the state S,;,..; requires there is no flow from distance warners to any of the
output variables.

As the access to the bus is mutually exclusive, we can simplify the assumptions on the
environment in the Bus interface while keeping our interfaces well-formed. Recall that
closed-guarantees (our primary constraint for well-formedness) specify information-flow
restrictions on the interaction between environments and implementations. With fewer
implementations (the open-guarantee imposes more flow restrictions), we can accept more
environments (we need fewer flow restrictions on the assumption) and still meet the open-
guarantee requirements. In this example, we simplify the assumptions as follows: S,.; has
an empty assumption, while the states specifying the exclusive use of the bus by one of the
distance warners only require from the environment that there is no flow from the wheel
tick to the distance warner that is allowed to use the bus.

Finally, the components of our system can be, for instance, the Simulink and Stateflow
models provided to the authors [10] by their industrial partners. We can then use the tool
introduced in their work to verify whether these components implement the stateful inter-
faces we derived.

@ Springer

Formal Methods in System Design (2025) 66:3-48 9

distw_f_t
. U .
distw_b_sy’ distw_b_t

N
wheel_tick | 4[] odometer

1 ‘ Swheel

OOO 0

distw_f_s distw_f_t
distw_b_t

refine

distw ,l)j i
odometer

Sistw_f O Q Saistw_b

000 000 00

distw_f_s 4 —— - e distw_f_t
“agdistw_b_t
“Al odometer

wheel_tick 1

distw_b_s \
wheel_tick |-

Fig.3 Design of mutually exclusive shared communication infrastructure for distance warners and the
wheel odometer. Each state is defined by the composition of the interfaces inside

In summary, our framework defines relations on both stateless and stateful interfaces
specifying information-flow policies that allow to check if: (i) a given interface refines (or
abstracts) the current specification; (ii) two interfaces are compatible for composition; (iii)
a specification is consistent; (iv) information-flows in a component define an implementa-
tion of a given interface; and (v) a system decomposition refines the system specification.

2.2 Electronic vehicle immobilizer

Our second example considers an electronic vehicle immobilizer (EVI) that is a security
device handling a transponder key. Car manufacturers use it to prevent hot wiring a car,
thus its theft [14, 23]. If the transponder authentication fails, then the engine control unit
blocks the car’s ignition. The communication between the immobilizer and other compo-
nents in the vehicle takes place through the controller area network (CAN), a serial com-
munication technology that is commonly used in automobile architectures to connect elec-
tronic control units (ECUs). This communication protocol does not include native support
of security-related features. Thus, it is the responsibility of the components that use the bus
to enforce confidentiality and integrity policies.

In this example, we illustrate how the main concepts of our interface theory can help in
both the top-down and the bottom-up design of the EVI security requirements. We model

@ Springer

10 Formal Methods in System Design (2025) 66:3-48

ecu

ECU
can CAN Bus
L

deb

Fig.4 High-level view on immo-
bilizer feature requirements

Secret key

Immobilizer
imm

the communication of an automotive engine control with an immobilizer through the CAN,
which is adapted from the architecture described by Lemke [23]. The authentication fol-
lows a challenge-response protocol. The communication session starts with the engine’s
ECU sending a freshly generated random number encrypted with a secret key known to
both of the devices. The immobilizer replies to this challenge with an appropriate response
encrypted with the same key. Figure 4 shows a high-level overview of our model which
must enforce this security property: the secret key shall never leak to the environment via
the CAN bus. More specifically, we depict the shared key as the key variable between the
ECU and the immobilizer; the communication using the CAN bus with variables ecu and
imm connecting the ECU and immobilizer to the CAN, and the variable can broadcasting
the CAN output to them; and deb as a debug variable outputting from the CAN. We now
illustrate how to use our framework to implement this property in (1) a top-down, and (2) a
bottom-up design fashion.

Stateless top-down design. We first demonstrate stepwise refinement of a global speci-
fication: different engineering teams can independently implement subsystems, without
violating the overall specification. We start by illustrating this process for the stateless case
in Fig. 5. We start with the interface F that represents the overall (closed) system when it is
in operation mode. It specifies the global property that information from key is not allowed
to flow to can or deb. We assume that the secret key and the CAN bus are standard com-
ponents provided by third-party suppliers. Our goal is to design the remaining sub-system
consisting of the immobilizer and the ECU. This gives us a natural decomposition of F into
three interfaces: (1) Fy,, specifying the secret key, (2) F,, specifying the CAN bus, and (3)
F,,.n specifying the sub-system that we want to further develop.

The decomposition of a system into subsystems is the responsibility of the design team.
Our framework provides tools for checking whether the subsystems are compatible and
whether their composition is a refinement of the original system. After the first step of
Fig. 5, showing an apparent decomposition of the original specification, the closed-guaran-
tee from F becomes an assumption in F,,,,,. This decomposition fails the checks provided
by our framework, because F,,,, is not compatible with F_,,—their composition would
violate the assumption from F,,,, by enabling the secret key to flow to the CAN via the
ECU or the immobilizer. These two interfaces can be made compatible by strengthening
open-guarantees of F,,,,, and forbidding the key to flow to the ECU and the immobilizer,
resulting in the interface F] . We then further decompose F; into two interfaces: (1)

tea

F,., specifying the ECU component, and (2) F,,,, specifying the immobilizer component.

mm
We note that the composition of Fy,,, F ., F, and F,,, refines the original system-level
specification F. Finally, we implement the four interfaces, derived from the overall specifi-
cation, in components fi,y, focy> Simm and fiqp- We note that the implementation of £, and
Jimm could be done independently, by two separate teams. The ECU (immobilizer) compo-
nent guarantees that the secret key does not flow to its output port and works correctly in

any environment that forbids other means of the secret key flowing to the CAN bus.

@ Springer

Formal Methods in System Design (2025) 66:3-48 11

r
L— — — - -—]
key can deb ecu imm
Ep., Fieam Foan
— key key, 1
-4 - key 0] ecu ecu can
= - . H
E can imm imm deb
2__ Fle y key ['II(cam Fean
o |9 Pl - o R R ecu
~ D key \;{ ----------- 3 i D
can ym
Fley Floey Foan
ke:
g key { ecu
can
frey Secu fimm fean

implement

key key i
key ecu imm e s
can can e

Sdebug

_Stecan

k
ey
y > I imm imm deb

Sonm

key
ecu

refine

~

key
ecu
can
deb

Fig. 6 Stateful design for EVI system

Stateful top-down design. The system being designed can be in one of the following
modes: initialization, operational or debug. This is illustrated in the stateful interface F
in Fig. 6. Stateful interfaces are finite state machines with every state being labeled with
a stateless interface. During initialization no information flows to CAN or the debug port,
this state ends when an immobilizer communicates with the car. Then, the operation mode
is decorated with the same interface F' from the stateless example while the initialization is

@ Springer

12 Formal Methods in System Design (2025) 66:3-48
Fey feeu fimm fean
- key key, ecul can
5 key ecu imm |
g can can Imn deb
Frey Fecy Finm Foun
can
43 deb
2
® Fom
E can
; deb
imm

Fig.7 Bottom-up design for EVI system

decorated with the interface S;,;, in Fig. 6. Debug mode specified in interface S, allows
all information to flow to the debug port.

In the stateful interface ' we illustrate a refinement of the initial specification in [F. We
consider the case that the team needs to accommodate two different architectures for the
operational mode, for example due to backward compatibility constraints. Then, in addi-
tion to the decomposition of F' showcased in Fig. 5, an alternative is specified in which the
immobilizer is a third-party part.

Stateless bottom-up design. The bottom-up design process, illustrated in Fig. 7, is to
a large extent symmetric to the top-down approach. We start with the available secret key,
ECU, immobilizer and CAN components, specified by interfaces Fi,y, Fopps Fipp and Fope
The main design step consists in composing a set of interfaces and inferring new global
closed-guarantees of the composition. These closed-guarantees are flows that cannot be
created given the current set of assumptions and open-guarantees. In the example we infer
two global closed-guarantees, that the secret key can never flow either to the CAN or to the
debug port, because those ports can only be accessed through ecu or imm ports to which key
cannot flow.

3 Stateless information-flow interfaces

This section introduces a stateless interface and component algebra for secure information
flow. In particular, we consider the structural properties of information flow within a sys-
tem. In other words, we are interested in the existence or absence of an information flow
between variables rather than specifying how the flow happens.

An information-flow interface specifies forbidden information flows in an open sys-
tem by defining three types of constraints: assumption, open-guarantee and closed-guar-
antee. An interface assumption characterizes flows that are not allowed in the system

@ Springer

Formal Methods in System Design (2025) 66:3-48 13

environment. While an open-guarantee describes all flows forbidden in the open system
defined by the interface, i.e., flow restrictions local to the interface’s implementations. The
closed-guarantee qualifies flows not allowed at the interaction between the system and its
environment. They specify a requirement on the closed system (environment with imple-
mentations) to be enforced by a combination of the open-guarantee and assumption no-
flows requirements.

Information-flow interfaces explicitly distinguish between variables owned by the envi-
ronment from variables owned by the implementation, referred to as input and output vari-
ables. Variables ownership establishes whose entity is responsible for enforcing restrictions
on the flow of information to each of the system’s variables. We require input and output
variables to define disjoint sets to ensure a clear-cut on the responsibility to enforce such
policies.

We introduce flow relations, as both reflexive and transitively closed relations, to rep-
resent information flow between variables. An information-flow component abstracts the
implementation of a system by a flow relation.

Definition 1 Let X and Y be disjoint sets of inpur and outpur variables, respectively,
with Z =X U Y the set of all variables. A relation M CZ XY is a flow relation iff it is
a transitive relation, and reflexive over Y X Y. A stateless information-flow component is
a tuple (X, Y, M) where M CZ XY is a flow relation, called flows. A stateless informa-
tion-flow interface is a tuple (X, Y, A, G, P) where A C Z X X is a relation, called assump-
tion, G C Z X Y is a relation, called open-guarantee; and P C Z X Y is a relation, called
closed-guarantee.

We say that a component implements a given interface when it does not have flows for-
bidden by the interface’s open-guarantee. Likewise, a component is a permissible environ-
ment of a given interface when it does not have flows forbidden by the interface’s assump-
tion. While implementations of an interface F have the same sets of input and output
variables as F, permissible environments have the same sets but with their roles switched.

Definition 2 Let F = (X,Y,A,G,P) be an information-flow interface. A component
fe=(,X,&) is an environment of F. We say that f; is a permissible environment of F,

denoted fz Eq F, iff £C A, where A= (Z X X)\\A. A component f = (X,Y, M) imple-
ments the interface F, denoted f kg F, iff M C G, where G = (Z X Y\G.

We observe that, as intuitively explained before, closed-guarantees do not influence the
definition of implementations and permissible environment. However, they play a pivotal
role in defining well-formed interfaces introduced next.

An information-flow interface is well-formed when it has at least one implementation
and one permissible environment. Therefore, all of its relations must be irreflexive. We
refer to irreflexive relations as no-flow relations. In this work, we are interested in inter-
faces defined over no-flow relations. Note that, by definition, a variable always has access
to its value. Hence, no implementation can satisfy an interface requiring no flow of infor-
mation from a variable to itself.

A well-formed interface ensures, additionally, that its closed-guarantee is consistent
with its open-guarantee and assumption. A closed-guarantee is inconsistent (for a given
open-guarantee and assumption) when there exists an environment permissible by the
assumption and an implementation allowed by the open-guarantee that, when composed,

@ Springer

14 Formal Methods in System Design (2025) 66:3-48

Bus bus,

b f o distw_f t
distw_f_s [} distw_f_t d.ls“f i) distw bt
distw_b_s [distw_b_t (_hSt“ ’}.)fs[o<io§n§t5£-

wheel tick [] odometer wheel tick[])
sending bus bus,
distw_fs [[~—_ofl distw_f_t distw_f s]] dl'St\\‘,f,t
distw_b_s [il distw_b_t distw_b_sl[] distw.b_t
wheel_tick[] ll odometer wheel _tickl[] odometer
(a) (b)

Fig.8 Interface Bus implementations — bus, bus, and bus, — and one of its permissible environments — send-
ing

includes a flow forbidden by the closed-guarantee. Given two flow relations M and M’,
their composition is the transitive closure of all their flows, i.e., (M U M’)*. To formal-
ize consistency for the closed-guarantee of a given interface F, we define next the set of
all flows defined by the composition N'e N of two no-flow relations N and N, which we
naturally define as the pairwise composition of all flow relations disjoint from one of the
relations being composed.

Definition 3 The ser of flows defined by the complement-flow composition of no-flow rela-
tions NCUxVand NV C U x V'is:

NeN ={zZ)e MUM) | MCN.M CN,

and M and M’are flow relations}.

Example 1 In Fig. 8, we have the first refinement of the interface Bus from our application
example. The Bus interface specifies the requirement on the closed system that there are no
information flows from wheel_tick to both distw_f _t and distw_b_t. The Bus interface also
specifies this requirement as a guarantee on the open system. Then, the bus component (in
the same figure) is an implementation of Bus because it has only a flow from distw_f s to
distw_f t, which is not in the open-guarantee of the Bus interface. Bus does not have any
requirement in its assumption, then the sending component is a permissible environment
for Bus.

The composition of the sending and bus components shows that the Bus interface is not
well-formed because there is a flow from wheel_tick to distw_f_t, which is a flow forbid-
den by the closed-guarantee of Bus. Hence, the assumption and open-guarantee in Bus are
insufficient to enforce the Bus closed-guarantee.

Definition 4 An information-flow interface (X, Y, A, G, P) is well-formed iff A, G and P
are no-flow relations (i.e., irreflexive relations); and the closed-guarantee is consistent with
the open-guarantee and assumption, i.e. (A* G NP =@.

The proposition below proves that our definition of well-formedness captures the

intended relation between a well-formed interface closed-guarantee with its permissible
environments and implementations.

@ Springer

Formal Methods in System Design (2025) 66:3-48 15

Fig.9 Interfaces to illustrate - F!

can

complement-flow composition in
P P key{© ~ ecu] can
Example 3 [~*% imm S
can imm [— —®fl deb

Proposition 1 For all well-formed interfaces F = (X, Y, A, G, P), and for all components
=X, Y, M)and f; = (Y,X,E): if f implements F, f k5 F, and f; is a permissible envi-
ronment of F, f¢ By F, then their combined flows are consistent with the closed-guarantee

of F,(Mu&*nP=40.

Proof Consider an arbitrary interface F, and components f = (X, Y, M) and f; = (¥, X, &),
s.t.: (i) F is a well-formed interface, (ii)f Fg F, and (iii) f¢ k4 F. Let (z,2) € (M U &)*. By
Definition 3 and assumptions (ii) and (iii), (z,z") € A ¢ G, and by our initial assumption (i),
(z,7) & P.Hence MU &E* NP =0. O

Though the definition of complement-flow composition is intuitive, it is not obvi-
ous whether there is an economic way to compute it. Note that the definition requires
evaluating the reflexive and transitive closure over all subsets of the composed rela-
tions complement that are flow relations. We will now discuss how to characterize the
complement-flow composition syntactically, in particular, as a regular expression over
flow relations.

Our first challenge is that the complement of an arbitrary relation does not neces-
sarily define a flow relation because it may not be transitively closed. The biggest chal-
lenge, however, is that not all relations have a maximal flow relation that is a subset of
its complement, i.e., no flow relation subsumes all flow relations that are subsets of a
given relation complement. Within our theory, this means that not all interfaces have
maximal implementations or maximal permissible environments.

Example 2 1In Fig. 8, we have two components, bus, and bus,, that implement the interface
Bus from the previous example. A maximal implementation of Bus must include the flows
in both bus, and bus,. As flows are transitively closed, the maximal implementation would
include a flow from wheel_tick to distw_f_t, which violates the Bus open-guarantee and,
therefore, does not define an implementation of Bus.

Without maximal implementations and maximal permissible environments, we can-
not characterize the flow relation of the closed system defined by an interface F by the
transitive closure of all pairs of variables in the complement of both its assumption and
open-guarantee, i.e., (7\ U 5)“ Note that this approach would yield more flows than the
flows of the closed system defined by F'. Instead, the flow relation of the closed system
defined by F includes all pairs of variables (z,z") such that there exists a path from z to
7' that alternates between flows in the complement of the assumption, ﬁ and the com-
plement of the open-guarantee, G. We illustrate this intuition below and formalize it in
Lemma 2.

Example 3 We present a step-by-step evaluation of the the complement-flow composi-
tion between the two open-guarantees as it will be formalized in the Lemma 2 after this
example.

Consider the interfaces F,,, and F/_ in Fig. 9 with open-guarantees:

@ Springer

16 Formal Methods in System Design (2025) 66:3-48

Gr

im

= {(key,imm), (key,can)} and G, = {(ecu,deb), (imm,deb)}.

As stated in Lemma 2, we can define the complement-flow composition between F,,,,, and
F! . interfaces’ open-guarantees by the following alternating composition between their
open-guarantess complement:

gFimm ° gFr/:an = (Idz v EFimm)o(EF::an oEpimm)*o(ldy v aF{:an)’

whereld, = {(z,2) | z€Z; UZp }andldy ={(z,2) | z€Yr UYp }
We start by considering the set of flows that can be in some implementation of the
immobilizer or the can bus, i.e., their open-guarantees’ complement:

aFimm = {(can, imm), (imm,imm)} and

?F, = {(ecu, can), (imm, can), (can, deb), (deb, can), (can, can), (deb, deb)}.

When we consider sequences of pairs with two steps defined between alternating imple-
mentations of the immobilizer and the can bus we get the sets:

GF,. anéan = {(can, can), (imm, can)} and

Grr 0Gp, = {(ecu, imm), (imm,imm), (deb, imm), (can,imm)}.

can

We highlight in bold pairs that were not present in the previous iteration. The new pair
(ecu,imm) is defined by the sequence that starts with (ecu,can) from G, followed by

(can,imm) in Ep‘mm. The two-step sequences added two new possible flows: from the ECU
input port and the debug output port of the CAN bus to the imm output port in the immobi-
lizer, respectively. We consider next three step sequences:

@FimmoEFéan)oc_]Fimm = {(can, imm), (imm,imm)} = EFM,
Gr,..°Gp oGy)= {(can,imm), (imm,imm)} =G,

(EF/ ogpimm)ogp = {(ecu, can), (imm, can), (deb, can), (can, can)} QEF/ and
EF, o(aFimman,) = {(ecu, can), (imm, can), (can, can)(deb, can)} C E’F, .

We can now stop our evaluation because the sets we obtained are subsets of previous itera-
tions and considering longer sequences will not define new pairs. Then, complement-flow
composition between F,,, and F’ interfaces’ open-guarantees is:

Gr. *Gp =Gr UGy U {(ecu,imm), (deb,imm)}.

Before we prove the lemma below, we remark that interface and component compo-
sition is only meaningful for entities with disjoint sets of outputs. Otherwise, it would
not be possible to determine which entity involved in the composition is responsible for
enforcing requirements on an output. For no-flow relations, output disjointness is equiv-
alent to requiring their sink sets to be disjoint. In Lemma 2 below, we present a syntac-
tic definition for complement-flow composition and prove that it characterizes precisely
the complement-flow composition (c.f., Definition 3) when we consider syntactically

@ Springer

Formal Methods in System Design (2025) 66:3-48 17

well-formed interfaces, i.e., the interfaces that do not share output variables and consist
only of no-flow relations. Besides avoiding iterating through all possible subsets of no-
flow relations to compute complement-flow composition, the syntactic characterization
in Lemma 2 provides an inductive proof method for properties related to the composi-
tion of information-flow interfaces.

Lemma 2 Let NCUXV and N' CU' x V' be no-flow relations, with V and V' being
disjoint sets, VNV' =@, and the set of all variables being Z=UuUuU uVUV'.

Then, NN =(1d, UJT/)O(VO/T/)*O(IdVUV, Uﬁ), where 1d, is the identity rela-
tion over all variables in N and N', 1dy,, is the identity relation over VUV’ and
RoR' = {(z,7") | (z,Z) € Rand (7', 7") € R'} is the usual composition between relations.

Proof Consider arbitrary no-flow relations A'C U X V and A" C U’ x V' where V and V'
are disjoint sets. o —

We start by proving that NeN C (Id; UNyo(N oNy*o(Idy,» UN'). Let
(z,Z) € Ne N. Then, there exists two flow relations M CUXV and M' CU' XV’
st. () MCN, (i) M CN and (i) (z7)€(MUM)* or, equivalently,
(z,7) € (Id; U MH)o(M'ToMF)*o(Idy,,» UM'™). The identity relation in the
rightmost side of the expression is defined over the domain VUV’ (ie., Idy,y)
because 7/ € VUV'. By flow relations being transitively closed, it follows:
(z,7) € ddy U M)o(M'oM)*o(Idy,,,» UM'). By the initial assumptions (i) and (ii),
(z.7) € dd; U NMyo(N oN)*o(Idy,,,» UN).

We prove the other direction: (Id, U N)o(N oN)*o(Idy s UN') C Ne N'. We start

with the case JV O(E ojv)* € Me N'. We remark that all sequences defined by VO(K/’OV)*

have elements of A’ in the odd positions and elements of N in the even positions. We
choose this to simplify the presentation of the proof. The other cases can be proved analo-
gously. We prove this case by proving first the stronger property below for all sequences

defined by N o(NoN')*:

(%) for all ne€N and all sequences (z;,2;)-(2,23) .. " (2, Z,41) Where
(23i-1-20;) EN' and (zy;,251) €N, with 1 <i < [n/2), there is 1 <m<n s.t
2y = 2, and (2}, 2,41) € (M U M")*forflowrelations M" = {(zj,zj,,) | m <j < nand
jisodd}tuldy and M = {(zjz541) | m <j<nandjiseven}* Uldg, with M C V
and M CN.

The property above tell us that for any alternating sequence between elements in the comple-
ment of A" and A’ defining a path from z, to z,,, |, we can use this sequence to define two flow
relations that are allowed by either A" or A/ such that (z,, z,,) is in composition of the defined

flow relations. From this property, it follows that for all pair of variables (z, ') € N o(NoN'),
we can define two flow relations M and M’ that witness (z,7’) € A« . The main challenge
in defining such witnessing flow relations for a pair (z,z’) is that it is not enough to define the
flows relations M and M’ as the sets of all elements in the complement of A/ and N, respec-
tively, in a given alternating sequence from z to z’. Such flow relations may not define proper

witnesses, i.e., it may be that M ¢ N or M’ ¢ N

@ Springer

18 Formal Methods in System Design (2025) 66:3-48

F F
. Zy 22 21
O O

For example, consider the interfaces to our left with open-guarantees G, = {(z;,z3)} and
Gp = 0. A possible alternating sequence derived from the interfaces’ guarantees comple-
ment is (25, 23) - (23,21) - (21,2,) - (25,24) defining a path from z, to z,. Consider the flow
relations My = {(z1,2,), (22, 23)}* and My = {(z3,21), (22, 24)}* defined by pairs in the

sequence that are in §F and EF,, respectively. Then, M, ¢ ?F because (z;,23) € M.
We prove below that when such a case occurs, there exists a cycle at the beginning of the
sequence that can be removed. Once the cycle is removed, the new sequence defines an
alternating path from the same source to the same sink (of the original sequence) that can
be used directly to define our intended flow relations. In this example, we can remove the
path prefix (z,, 23) - (23,2;) * (2}, 2,), to get the path (z,, z,) which satisfies our requirements.

We prove now () by natural induction on the size of the sequences. We start with the
base case, n = 1, i.e., we consider a sequence of the form (z,, z,) where (z;, z,) € N'. Then,
for k = 1, we have (M’ = {(z;,2,)} UIdy,) C N and (M =1d,) C N (no-flow relations
are irreflexive).

For the induction step, we assume by induction hypothesis (IH) that (%) holds for
an arbitrary n € N. Consider arbitrary sequence o = (2;,25) - ... - (Z,41,%,42) Of size
n+ 1. By (IH), there exists 1 < m, < n defining M, and M; over the o’s sub-sequence

(21,22) * (29,23) * -+ * (2, 2,41) Of size n, as specified in (%), s.t. M:, C N and M, C N.
We proceed by cases on the parity of n + 1. o
Let n+ 1 be an odd number, then (z,,,,Z,4,) € N'. Consider the case that the last pair

in the sequence, (z Z.42), together with M:, defines a flow relation that is a subset of

n+1>
N ie., (M; U {(Zq1, 2032 D* C N'. Then, by (IH) there exists m = m,, that satisfies (x)
for the sequence of size n+ 1. Otherwise, there exists a sequence using (z,,;,Z,,,) and
elements of M/ defining a path between a pair of variables in \". Formally, there exists a

sequence for (z},7,,) € N:
@ 25) oo g5 Z42) o (G)

where k €N and {(z],2)) - (z;.2,)} € {(z,z;1) | m<j<nandjisodd}. Note that
both the sequence before and the sequence after (z,,,z,,,) may be empty, i.e., the path
may start or end with (2,1, 2Z,40)- As ./\/l; is transitively closed, the sequence above can be
simplified to:

(T) (le’zn+l) : (Zn+1’zn+2) : (Z,H_z, Z/Q)

where {(2],2,41)» (2,12:2,)} € ./\/l;. Recall that, N'C U x V and N CU xV'.ByV and
V' being disjoint sets and (z,,, 2,4;) € N, it follows that z,,, € V and z,,; & V. Then, for
all variables z, (z,2,,,) & M; . Hence the sequence (1) must start with the pair (z,,, [, 2,2

As (2,4, 2,) € M then there exists a pair in the original sequence that starts with z,,,, and
another pair that ends with z’z. In particular, for m, < h < h' < (n+ 1), we have the follow-
ing sub-sequence of o:

@ Springer

Formal Methods in System Design (2025) 66:3-48 19

Zny2

(Zmn’zmn+l) Cee @ z) - C 2y Zpgy) e '2'2 @y Zpgt) o @t Tug)-

BY (Zy4152u42) €N and V disjoint from V', then z,,, € V' and z,,, ¢ V. Then, as
2, = Z,4» there is no pair (z,_;,z,) € N and the sequence above must start with (z;, 2, 1)-
So,m, = handz, =z, = z,,,and the previous sequence simplifies as follows:

’
Zn42 Zz

(Zm,, ’Zm”+l) Tt (Zh”zh’+1) Teeet (Zn+l’zn+2)'

By (H), z; =z, . Let m=n+1. As n+1is an odd number, it defines the flow rela-
tions M’ .\ ={(z41-242)} UIdy, and M, =Idy. Then, (z,z,,,) € M|, because

n+1
2] = Zy, = Zyyp and (2,49, 2,40) € Idy. By both N and N being no-flow relations and

(Zps1>Zny2) € W then M/, C N and M, C N.
If n + 1is an even number, then (z,,,1,2,,,) € N and the argument is analogous.
We can prove analogously that No(N oy C NeN. Finally, note that

Id,oldy,,» € N« N follows directly from A and A’ being no-flow relations and their
domain. O

3.1 Composition and incremental design

This section presents component and interface composition. We introduce, additionally, a
compatibility predicate between interfaces: two interfaces are compatible when their com-
position defines a well-formed interface. We prove that our notions of composition and
compatibility support incremental design of systems.

From now on, to simplify presentation, elements of an interface (or component)
tuple are annotated with the interface name, i.e., F = (Xp, Yr, Ap, G, Pr). The dif-
ferent types of variables between interfaces F and F’ are defined as Y, = Yy U Yp,
Xpp = XpUXp)\Ypp, and Zp o = Y o U Xp . The same definition applies to com-
ponents f and f’. Variables between interfaces (components) define the set of variables
in the composition of interfaces (components). We will often denote Xz as Xrgpr, Y g
as Ypgp, and Zp o as Zpg . The composition of components f and f' defines the com-
ponent f ® f' = K prs Yrgrs (Mf U ./\/lf/)*). We present interface composition by defining
the open- and closed-guarantee, and the assumption of the composite separately.

We compose interfaces through their shared variables, i.e., all variables that are
input for one of the interfaces while being output for the other. Interface composition
must allow all implementations of the interfaces being composed. Then, the open-
guarantee of such a composition must allow all flows already allowed by one of the
interfaces being composed. Additionally, it must allow all flows in the composition of
any of the interfaces’ implementations. To evaluate all flows in the composition of two
interfaces, we compose their open-guarantees (as in Definition 3) and refer to them as
composite flows.

@ Springer

20 Formal Methods in System Design (2025) 66:3-48

Definition 5 Let F and F’ be information-flow interfaces with open-guarantee G and G,

respectively. The composite open-guarantee of F and F'is Gy i = (Zp o X Y p)\(Gp * Gpr),
also denoted Grg .

We prove below that our definition of composite open-guarantee preserves all flows in
the implementations of the interfaces. The proposition below follows directly from defini-
tion of complement-flow composition and complement of an open-guarantee.

Proposition 3 For all interfaces F and F' with open-guarantee G and G, respectively, and
all components f = (X,Y, M) and f' = (X',Y', M') that implement them, f ks F and
f kg F', the composition of the components satisfies the restriction imposed by the open-
guarantee defined by both interfaces, i.e., (M U M')* C §F®F1.

Recall that open-guarantees only specify constraints on their respective interface’s
implementations. Consequently, as expected, the other direction of the proposition above
does not hold. In the implementations of the composite interface, there may exist flows
derived from the interaction between the interfaces being composed that were not allowed
in the implementations of each interface individually. We illustrate this in the example
below.

Example 4 We illustrate how an interface composite can include a flow that was not
allowed in the implementations of the interfaces being composed. Consider the interfaces
below, where the only no-flow requirement is that x does not flow to y specified in the
open-guarantee of F:

F={xs}h () (L) (D and F' = ({x}, (s} {5 (L (D

We start by observing that the composite interface allows flows from x to y because there
exist implementations of F and F’ that, when composed, define the mentioned flow. One
example of such implementation are the components f; and f/ defined below, which are
implementations of F and F’, respectively:

fi=xs) (73000, (o) and f) = ({x}, {5}, {(5,9), (x,)}

Note that we can have a flow from x to s through f{ followed by a flow from s to y through

fi- Then, (x,y) € §F® - Now, we look at two different components:
fr={xsh (L {0,) and f; = ({x}, {s}, {(s,9)}).

Then, while the component’s composite implements the interfaces’ composite (i.c.,
({(y7 y)> ()C,)’)} U {(S, S)})* c gF®F’)7 f2 does not implement F.

We remark that the complement of the composite open-guarantee of interfaces F
and F’ and their open-guarantee no-flow composition define the same sets. Formally,
Gror = Gr * G because Grgp = (Z X Y)\((Z X Y)\Gr » Gp). It follows directly from
the definition of no-flow composition that it defines a monotonic and associative opera-
tion. Then, the complement of a composite open-guarantee is also monotonic and asso-
ciative, i.e., EF C §F®F/ and §F®F/ = ?F/@,F.

@ Springer

Formal Methods in System Design (2025) 66:3-48 21

Fig. 10 The result of composing Finm F Finm ® Fran

can

: : : B keyC — _o)y imm
interfaces in (a), depicted in (b), k{e) el can B NSy
. . . imm ~ e N

includes a derived assumption o 'mm (L - 80 deb b wE deb

from key to ecu
(a) (b)

The assumption of an interface composition is the weakest condition in the environ-
ment allowing the interfaces being composed to work together while supporting incre-
mental design. Incremental design of systems requires that interfaces’ compatibility for
composition is independent of the order they are composed. Not all assumptions of the
interfaces being composed will stay as assumptions of the composite interface. Note
that shared variables between two interfaces are input variables for one of the interfaces
but will be in the output variables of their composition. Formally, the set of shared vari-
ables of interfaces F and F’, are Shared;. » = (X UXp) N Yy . If the environment can
influence the information flow to a shared variable, we may need to add assumptions to
prevent that flow. We define below derived assumptions, which are new requirements on
the environment’s information-flow derived from no-flow in the assumption pointing to
shared variables.

Example 5 In Fig. 10a, we depict an interface specifying information-flow policies for a car
immobilizer, F,,,, along with an interface for a Controller Area Network (CAN bus), F éan.
Interface F;,,, has only one assumption that key does not flow to can. In this design, the
immobilizer uses the CAN to communicate with the car’s electronic control unit (ECU).
Our goal is to compose both interfaces. These interfaces share the variable can: a shared
variable between the interfaces and an output variable of their composition. The inter-
face F/ cannot guarantee that the only assumption in F,,, is satisfied after composition
because it does not have a port key. As we are working with open systems and assume that
the environment is helpful, we can add further assumptions to ensure the correctness of
this composition. For example, we can add assumptions that prevent key from flowing to an
input port in F/_that can flow to can. Such flows could be part of a flow from key to can,
which would violate the assumption we want to enforce. In this case, we note that in F Z,an
information in ecu can flow to can. So, the composite interface must include the assump-
tion that key does not flow to ecu, which is a derived assumption. The derived assumption

is depicted in Fig. 10b.

Definition 6 Let F and F’ be information-flow interfaces with assumption A, and A,
respectively. The assumption derived from F and F' is:

AF,F’ = {(Z’ Z/) | (Z, S) (S .AF U .AF/ and (Zl, S) S 6F®F/ }.
Their composite assumption is Apgr = (Ap U Ap UAF,F/) N Zppr X Xp pr)-

We remark that by definition of interface’s assumption and composite guarantee, the
variable s in the definition of the derived assumption Ag» must be an input variable of
one of the interfaces (as (z,s) € Ap U A,) while also being an output of one of them (as
(Z,s) € §F®F,). In other words, s is a shared variable of F and F’.

@ Springer

22 Formal Methods in System Design (2025) 66:3-48

Example 6 From the example before, information from the ports ecu, imm
and deb can all flow to can. So, they are flows in the composite interface
and, by Definition 5, {(ecu, can), (imm, can), (deb, can)} C gFi F - Then,

imm>*" can

AF Fo= {(key, can), (key, ecu), (key, imm), (key,deb)}. From those assumptions only

immoF cq

(key, ecu) points to a variable in X r, so Ay

imm

®F = {(key, ecu)}.

The closed-guarantee of the composition contains all pairs of variables in the closed-
guarantees of each interface being composed. We observe that, as more is known about
the system after composition, a composite interface may strengthen the closed-guaran-
tees of each interface. For this reason, composite closed-guarantees include, addition-
ally, all derived closed-guarantees from the assumption and open-guarantees of the
composite. Derived closed-guarantees are all pair of variables (z, y) in a given open-
guarantee such that no composition between any of its implementations with a permis-
sible environment of a given assumption has a flow from z to y.

Definition 7 The derived closed-guarantee from an assumption A and open-guarantee G
is P 46 = 9\(A+G). Let F and F’ be information-flow interfaces with closed-guarantees
‘Pr and Py, respectively. Their composite closed-guarantee is the union of their closed-
guarantees with the derived closed guarantee from the composite assumption and open-
guarantee, i.e., Prgm = Pr U Pp U P Argr Grer

Using the definitions of composite assumption, composite open-guarantee, and
derived closed-guaranteed introduced above, we define below the composition
between any two interfaces. However, not all compositions are meaningful. So, in
addition to the definition of composition, we specify a syntactic and a semantic cri-
terion for composition. We start by observing that output variables are the responsi-
bility of the interface’s implementations. For this reason, we introduce the syntactic
requirement that interfaces should not have overlapping output variables, as it would
not be possible to establish which of the interfaces being composed is responsible
for enforcing guarantees on the overlapping variables. We say that two interfaces are
composable when both interfaces’ output variables are disjoint. From the semantic
point of view, we say that interfaces F and F’ are compatible if whenever one of them
provides inputs (e.g., F) to the other interface (e.g., F’), then the open-guarantee of
the first (G) includes no-flow requirements that support the assumption of the second
interface (Ag).

Definition 8 The composition of information-flow interfaces F and F’ is the information-
flow interface F @ F = (Xp 1, Vi s Apgr» Grgr» Pregr), Where the composite assump-
tion Apg is as in Definition 6, the composite open-guarantee Gg - is as in Definition 5,
and the composite closed-guarantee Prg is as in Definition 7. Interfaces F and F’ are
composable iff Y, N Yy, = @; and they are compatible, denoted F ~ F’, iff they are com-
posable and (A; U Ap) N (Zpp X Yi 1) C Grep-

For well-formed and compatible interfaces, we can simplify the definition of compos-

ite closed-guarantees to consider only the derived closed-guarantees between composite
assumption and open-guarantee, proved below.

@ Springer

Formal Methods in System Design (2025) 66:3-48 23

Lemma 4 For all well-formed and compatible information-flow interfaces F and F' with
closed-guarantees Pp and Py, respectively. The derived closed-guarantees of their com-
posite assumption and open-guarantee subsumes each interface closed-guarantee; for-
mally, Pp U Pp CP Aror Gror

Proof Let F and F’ be well-formed and compatible information-flow interfaces. To prove
our intended statement, we start by proving that any path alternating between elements in
ZF@, m and §F® from any variable of F (or F’) to an output variable of the same interface
can be translated to a path using only the complements of assumptions and open-guaran-
tees of F (or F’). Formally, for compatible interfaces F and F’, and all n € N:

(%) if (2.2) € Zp X Yy and (z,2) € (dy,_, U Apgp)o(Grgr 0 Apgi)'0Frgp then

exists m € Ns.t. (z,7) € (IdZF U ,TlF)o@FoZF)’”oéF_
This property relies on the interfaces’ compatibility requirement that assumptions to their
shared variables are covered by flows allowed by their composite open-guarantee. We
prove (%) by natural induction on n. Consider arbitrary compatible interfaces F and F’ and
let(z,7)) € Zp X Y. _ . _

For the base case, n =0, (2,7) € Grgp U (Apgr0Grgr). We proceed by cases on the
(z,7") domain.

If (z,7)E§F®F, and, by 7/ € Y, and Lemma 2, then the last flow of any
path from z to Z must be in Gp, ie. (7)€ (Idpp UGp)o(GroGp) oGy Let

(z,5) € (dppr U Gp)o(GroGr)* and (s,2) € Gp. If (z,5) = (s, 5), then (z,7') € Gp. Oth-
erwise, by the interfaces being compatible, their set of output variables are disjoint,
and s € Y and s € X. Again by interfaces compatibility, (z,5) € Zp X Yp» and

(z,s5) € §F®F1, then (z,5) € (Ar U Ap) NZpgp X Ypgp). So, in particular, (z,5) € Ar
and, by s € X, (z,5) € ZF Hence, (z,7) € ,TlFoEF.
If (z,7) € .ZF@F/ OE'F®F,, then, by 7 €Yy and Lemma 2,
(2,7) € Apgro(dy v U Gp)o(Gr0Gpm)*0Gy. Consider arbitrary:
(29) € Apgprs (5,5") € (dp o U Gp)o(GroGp)* and (s',y) € Gy

If (s,8") = (¢, 5"), then (z,5") € 7\F®F, and (s',y) € §F. As(z,s') € I\F@,F,, then s’ is an input
variable of both interfaces (s’ € Xpg) and, by (s',y) € G5 and definition of interface, s’
must be an input variable of F (s’ € Xj). Then, by (z,5') € ZF®F, and definition of com-
posite assumptions, (z,s") & Ag. So, by s’ € X, (z,5) € ZF. If (s,5") # (s, "), by inter-
faces compatibility, s" € Yy and s’ € Z, then s’ € X,. Assume towards a contradiction that
(z,5") € Ap. Then, by definition of derived assumptions and (s,s’) € §F®F,, (z,9) GAF,F,.
As(z,5) € 71F®F,, then s € Xpg and (z,5) € Apg - This contradicts (z, 5) € ZF®F,. Hence
(z,5") & Apandso(z,7)) € ,Tlpoép,

For the induction step, we assume as induction hypothesis the statement (%) holds for
n and (z,2) € (dy,_, U Argp)0(Grep0Apgi)™ 0Gpgp. Then, by application of the
induction hypothesis,

7)€ (Idz, v ZF)O(EFOZF)mOEFOZF®F’ °§F®F’

for some m € N. The rest of the proof is analogous to the base case.

@ Springer

24 Formal Methods in System Design (2025) 66:3-48

We prove now that for all pairs of variables that are not in the derived closed-guar-
antee, (z,7) & P Aror Gror® they are also not in the individual closed-guarantees, i.e.,
(2.2') € PrUPp. Consider arbitrary pair (z,7) ¢ P ApgrGrgp- NOte that the domain
of Py and Py, is Zp X Y and Zp X Yy, respectively. If (z,z') is not in the union of these
domains, then (z,7') € PrUPp. Let (2,7) € (Zp X Yp)U(Zp X Yi). Note that, by
Lemma 2, (z,7) € (dg, U .ZF®F,)0(§F®F, °ZF®F/)*°§F®F/~ Now, if we consider the case
that 7’ € Yy, then, by the interfaces being compatible, z’ & Y. Thus, (z,7') € Zp X Yy,
(z,7) & Zp X Yp and, by definition of interface, (z,7') & Pp. By (2,7) € Zp X Yp, F~ F
and (%), (z,7) € (Idz,,, U./_élF)O@FOZF)*OEF, ie., (z,7) € Ap * Gr. Hence, by F being
well-formed, (z,7") & P, as well. The case for 7’ € Y, is analogous. O

We now prove important properties about information-flow interface’s composi-
tion. Clearly, both the composition operator and the compatibility relation are com-
mutative. We prove below that composition between compatible interfaces preserves
well-formedness.

Theorem 5 Let F and F' be well-formed information-flow interfaces. If they are compat-
ible, F ~ F', then their composition, F @ F', defines a well-formed interface.

Proof Consider arbitrary well-formed interfaces F and F’, and assume they are compatible,
F ~ F'. By definition of composition, both the composite open- and closed-guarantee, Gpg
and P, define no-flow relations (i.e. irreflexive). Now, assume towards a contradiction
that composite assumptions are not irreflexive, i.e., there exists an input variable x € Xz ¢
s.t. (x,X) € Apgp. By F and F’ being well-formed interfaces, then (x,x) € Az U Ap. So,
by definition of composite assumptions, it must be the case that (x, x) E/fF’F,. By definition
of derived assumptions, there exists a variable s s.t. (x,s) € Ay U A and (x,5) € EF,F,.
This contradicts our initial assumption that 7 ~ F’. Hence the composite assumption also
defines an irreflexive relation.

To prove that (Apgpe®Grgr) N Prep =@, Wwe start by observing that, by

both F and F’ being well-formed and Lemma 4, 5F®F/ =75F®F,. Consider arbi-
trary (z,7') € Apgr * Grgr- Then, by definition of derived closed-guarantee,

(Z’ Z/) ¢ PAF@F"GI'@F" .

Our next step is to prove that our definition of composition and compatibility ena-
bles the incremental design of systems. Before we prove this result in Theorem 8, we
prove two lemmas establishing that both composite open-guarantees and composite
assumptions are associative. We start with the lemma for open-guarantees and define
Gremer = Zrgr X Yrgr p1)\(Grgr * Gpr) as the open-guarantee defined by first
composing F with F’, followed by composing the resulting interface with F”’.

Lemma 6 Let F, F' and F" be interfaces with pairwise disjoint set of output variables.
Then, QF®(F/®F//) = g(F®F/)®F//.

Proof Let F, F' and F"' be arbitrary interfaces with pairwise disjoint set of output variables.
By definition of variables between different interfaces:

@ Springer

Formal Methods in System Design (2025) 66:3-48 25

Zrgr i X Yege pr = (Zp U Zp U Zp) X (Yp U Y U Yn) = Zp prgn X Ve prgpn-

In what follows, we denote the set of all variables over the three interfaces as Z (i.e.,
Z=27Zp\UZy UZg), and the set of output variables as Y (i.e.,Y = Y, U Y U Yp). By defi-
nition of composite open-guarantees:

g(F®FI)®F" = (Z X Y) \ (gF®F/ hd gF//) and
Orerery = ZXY)\ (G ¢ Gpgr).-

Then, the lemma statement is equivalent to:
gF®Fr L4 gFH = gF L4 gFr®FH.

We present part of the proof to illustrate how to combine properties of composite flows
with Lemma 2 to prove this result. The full proof is in the appendix. We consider the
case Grgr * Gpr € G ¢ Gpgpn, Which is proved by induction on n € N on the following
statement:

if (z,y) € (Id, U Gp)o(Gpgr 0Gpn)"s
there exists m € N s.t. (z,y) € (Id, U EF,@,F,,)O(EFOEF@F”)’"OIdYF”.
We look at the induction step. We assume as induction hypothesis (IH) that the property
holds for n and consider arbitrary (z, y) s.t. (z,¥) € (Id; U Gpn)o(Grgp 0Gpn Y+l To allow

the application of (IH), we decompose (z, y) into two parts, (z,y) = {(z,5)}o{(s,y)}, as
follows:

(%) (z,5) € Id, U ?F//)O(§F®F,O§F/,)n and (s,y) € §F®F, oap,.
By (IH), there exists m € N s.t. (z,5) € (Id, U EF/Q,F/,)O(EFOEF/@,F//)"’OIdyFN. Moreover, by
definition of composite guarantees (Grgr = Gy ¢) and Lemma 2:
(%) (5,¥) € (Id; U G)o(Gp0G)" o(Id; U Gpr)oGpn.
If (z,5) €ld,, then (z,y) =(s,y). By (x%) and monotonicity of open-guarantees,

EF” c EF,@,F”, we have (z,y) € (Id, UaF)°(§F'®F~ an)*an,g,F,,. Which is equivalent to

.y) € (dy U Gpgpn)o(GroGpgp)*.

For the case that (z,s) € Id,, we know that s € Y. By F’ and F” having disjoint sets
of output variables, definition of composite open-guarantees (EF@F,, = Gp * Gpv) and
Lemma 2, we unfold the expression for (z, s) as follows:

(z,s) € dd, U EF'@,F")O(EFOEFugFN)m_I °§F°(Idz V) Epf)o(apf OEF,)*O§F,,.

Then, by (%), and definition of composite open-guarantee,
(z,y) e (dd, U gF,®F,,)o(gFogF,®F,,)'"’ for some m’' > m. O

In the lemma below, we prove that derived assumptions between composable interfaces
are both monotonic and associative. Note that, as composite open-guarantees are commuta-
tive, then composite assumptions are also commutative.

@ Springer

26 Formal Methods in System Design (2025) 66:3-48

Lemma7 Let F, F' and F" be information-flow interfaces that are pairwise composable. (a)
If(z,7) e le,,F”, then (z,7) GAF@,F,,F”. (b) If (z,7) GARF/@F”, then (z,7) GAF@,F,QFH UAF’F,.

Proof Consider arbitrary information-flow interfaces F, F’ and F” that are pairwise com-
posable, i.e., all three interfaces have pairwise disjoint sets of output variables. We focus
on a case of the item (b) we want to prove to illustrate how the different definitions and
properties presented so far contribute to this result. The full proof is in the appendix. We
consider arbitrary pair of variables (z, z') and assume that (z, z') EAF’ pern- By definition of
derived assumptions, there exists a variable s:

(2,5) € Ap U Apgpr and (2, 5) € Gy prgpns Where s € Sharedy, prg -

We proceed by cases on the domain of the shared variable s € (Xp U Xpgpn) N Yp pgpn
and look in detail into the case s € Xpgpn N Yp. Given the domain of s, it can only be the
case that (z, 5) € Ay g and we proceed by cases on A g definition.

If (z,5) € Ap, then s is a shared variable between F and F’ (i.e., s € X N Yy). By associ-
ativity of composite open-guarantees (Lemma 6), (', s) € Grgp * Gpn. By output variables
of all three interfaces being disjoint, s € Y, and Lemma 2, then the last flow from any path

o Y gF”)o(gF@F’OgF”) OgF®F’
Equivalently, there exists a variable s’ s.t. (', s) = (2, s') - (s', 5) with:

from 7' to s must be in QF®F, Formally, (Z,s) = (IdZF®F’

(Z’,S’) S (Id U EF//)O(§F®F/ OEF//)* and (S,,S) S EF@F/'

Zrgr! 1

By (z,5) € Ap and (s, 5) € §F®F,, then (z, s") EAF’F,. We proceed now by cases on (7, s).
If (7,5 € Id;, ., .. then (',s)=(s',5) and so (7', s) € Gpgp. Hence, by (z,5) € Ay and
definition of derived assumption, (z,z’) € AF e () ¢ Idg, ., . then s’ must be an

output variable of F”’ and an input variable of the other interface (i.e., s’ € Y N Xpgp).
Then, (z,5") € Apgp. By (@,5) € é(mp,)@,w and definition of derived assumptions,
(2.7) € Apgpr pr-

If (z, s) €Ap . by definition of derived assumptions there exists a shared vari-
able s’ € Shared o s.t. (2,5') € Ap U Apy and (s, 5") € G e As done for the pre-
vious case, by s being an output variable of F, (Z,s) € gF e and Lemma 2,
(Z,s) € (1d, U QF,®F,,)0(QFOQF,®F,,) oQF Moreover, by (s,5') € QF,’F,,. then

F.F' QF
we know that a flow from s to s’ can be defined by an alternating composition of ele-

ments of EF, and EF/,, i.e. without using elements of EF. Hence (Z,s) - (s,5") € ?F,F@F//
and, by associativity of composite open-guarantees (Lemma 6), (7/,s") EGF@W’F,,. If
(z,8") € Ap, then s’ € Yp, and, by (ii), s’ & Y. Then, s’ € Xpgp and so (z,5') € Apgp.
Hence, by (7, s") € §F®F,,F,, and (z,5") € Apgp (2,7)) EAF@F’,F”' If (z,5") € Apw, then, by
(z,s") € EF@F’,F”’ (z.7) EAF®F’,F”'

Lastly, if (z,) € Ap, then, by (7, s) € ?F@W’Fﬁ and definition of derived assumptions,
(2.7) € Apgp pr- m|

We have now all the necessary intermediary results to prove that information-flow
interfaces support the incremental design of systems, i.e., different parts of a system

can be deemed compatible for composition without requiring further information on the
remaining system.

@ Springer

Formal Methods in System Design (2025) 66:3-48 27

Example 7 In this example, we illustrate one of the interesting cases in the proof of incre-
mental design. In this case, we want to prove that by assuming (F ® F') ~ F”, it follows
that F ~ (F’ ® F"). And, in particular, we want to show that for all pair of variables (z, s)
in the assumption of F' (i.e., (z,5) € Ay) it must be the case that (z,5) € Gp prgpr. We start
by assuming towards a contradiction that (z,s) € Ay N EF,F’@F”' Hence s is a shared var-
iable between F and F’ @ F"'. We elaborate now in the case that s is a shared variable
between F and F’, with a depiction of the interfaces referred to in the argument below.

By composite flows being associative, then (z, s) must be an element of §F® 7 o And,
by (z, s) being an assumption of F' and by definition of propagated assumptions, for all
input variables s’ that can flow to z through an implementation their composition (i.e.,
5,2 € §F®F,), then (z,s") must be in the propagated assumptions of both interfaces (i.e.,
(z,5") EAF,F/). Formally, (z, s") EAF,F, and, as a consequence, (z,5") € Apg . We illustrate
this case in the figure to the left.

Finally, by the initial compatibility assumption, (F ® F') ~ F", (z,5") € Grg s jn. How-
ever, as illustrated by F"” above, z can flow to s’ when F ® F' is composed with F” because
the information in z can first flow to z’ and then flow to s’. Hence (z,5") € §F® g, Which
contradicts our initial assumption.

Theorem 8 Let F, F' and F"' be information-flow interfaces. If F ~ F' and (F @ F') ~ F",
then F' ~F"and F ~ (F' ® F").

Proof Consider arbitrary interfaces F, F’ and F”, such that (i) F ~ F’; and (ii)
F® F' ~ F". Note that from our initial assumptions (iii) all three interfaces have disjoint
sets of output variables.

We start by proving that F’ ~ F”. As noted in (iii), Y N Ypr =@, i.e. F' and F” are
composable. We are missing to prove that their assumptions are supported by the composite
open-guarantees, i.e., ((AF’ U AF”) n (ZF’,F” X YF’,F”)) - gp/®1://. Let (Z, S) S XF’,F” X YF’,F”
and (z,5) € Ap U Ag. Note that by (i) and (ii), s € Y. We want to prove that (z, s) is
in the composite open-guarantee. As s € Y and, by definition of composite assumptions,
if (z,5) € Ap, then (z,5) € Apgp. Then, (z,5) € AF®F, U Ap» and, by the compatibility
between the interfaces (i), (z,5) € Grgp pv- By monotonicity of composite open-guaran-
tees, Gpgrr C G pops and, by their associativity (Lemma 6), G g C Grgpr g Then, by
(2,5) & Grgp g, We have (z,5) € Grgprand, $0, (z,5) € Gpigpn.

We prove now that F ~ F’ @ F"'. From (iii), Yz N Ypgp = @,i.e. Fand F’ ® F" are com-
posable. We are missing to prove that (A U Apgpn) N Xp pgp X Yi pgr)) € Gr prgpn-
Consider arbitrary (z,5) € Xp pgpn X Yp prgp St. (2,5) € Ap U Apgp. We prove that
(z,5) € G prgpn by cases in the (z, s) domain.

@ Springer

28 Formal Methods in System Design (2025) 66:3-48

We start with the case that (z,s) € Ag. Then, s is an input variable of F, s € X, and,
by definition of information-flow interfaces, s Y. If s € Y, then, s is a shared variable
between F and F’ and, by their compatibility (assumption (i), (*) (z,5) € Grgp. Assume
towards a contradiction that (z, $) € G pgpn. S0, (z,5) € éF’F@F,,. By associativity of com-

posite open guarantees (Lemma 6), (z,s) € §F®F/’F,,. By s € Ypgr and Lemma 2, there

exists a variable s’ s.t. (z,5) = (z,§') - (s, 5) with:

(**) (Z, S/) S (Id U EF”)O(EF@F'OEF”)* and (S,,S) S EF@F/'

Zpgr! Fit

By (z,5) € Ap and (', 5) € Grgp, then (z, ") EAF e If (z,8') € Isz v then 2= s’ and
(z,5) € QF®F,, which contradicts (x). Otherwise, s’ € YF,, and, by the interfaces compatibil-
ity (assumption (ii)), then s’ € X rer- Lhen, by (z, s e AF » and definition of composition,
(z,8") € Apgp As 8" € Xpgm N Yy and by (ii), (z,5") € Gpgp v, Which contradicts (xx).
Hence (z,5) & EF’F@FN, i.e. (z,5) € Gp pgpn- For the case that (z,5) € Ap and s € Yp», by
(i), 5 € Xpgr» (2,5) € Apgp and (z,5) € Grgp pv. Then, by associativity of composite
flows (Lemma 6), (z, 5) € G prgpn-

Valdd

When (z,5) € Apigpn, then, s € Xpgpn and we proceed by cases on the definition of
composite assumption. Note that, by the sets of output variables being disjoint, we are only
interested in the cases where s € Yy. If (z,5) € Ap, then it is analogous to the previous
case where (z,5) € Ap and s € Y. If (z,5) € Ag, then previous case where (z,5) € Ap
and s € Y. Otherwise, (z,s) EAF,’F”, and, by monotonicity of derived assump-
tions (Lemma 7), (z,s) EAF®F,,F,,. Then, by (ii) and s € Ypgp g, (2,5) & §F®F,F,, ie.,
(z,5) & EF,F@F,, (Lemma 6). O

We prove now that, for compatible interfaces, composition between information-flow
interfaces is associative. This is a stronger property than incremental design, as the latter
only guarantees that compatibility is independent of the order in which we compose inter-
faces with no guarantee of the outcome of the composition itself.

Theorem9 If F~ F and FQF' ~F',then FQF)QF' =FQ (F' Q F").

Proof Consider arbitrary interfaces ¥, F' and F”. Assume that F ~ F' and F Q F' ~ F".
Then, by Theorem 8, (x) F' ~ F"" and F ~ F' @ F”. By definition of composition, (})
XF®F’ = XFF/®FH, YF®F’ o= YFF/®FH, and ZF®F/ o= ZFF’@F” And by Lemma 6
Grgr pn = Gp pgr- Using our initial assumptions, (x), Lemma 7 and (1), it follows:
AF@F’ Fr = AF F'QF"+ Then (**) PAF@F’
assumptions and (x), it follows:

And, by our initial

P Grgr! F = PAF.F’@F" Grrer”
PF@F/’F// = PF U PF/ U PF” U PAF’@F” Prrgn

U PARF’@F” ,PF'F!®FH = PF,F’@F” .

Note that by (*xx) and definition of derived closed-guarantees,
F cP O

AF/®FH ,PF7®FH AF‘F1®FH 7,PF,F’®F”'

@ Springer

Formal Methods in System Design (2025) 66:3-48 29

3.2 Refinement and independent implementability

We now define a refinement relation between information-flow interfaces. Intuitively, an
interface F” refines F iff F’ admits more environments than F, while possibly constraining
its implementations.

Definition 9 An information-flow interface F' =(X,Y, A, G, P) refines
F=(X,Y,A,G,7P),written F' < F, when A C A, Gr C G and Pr. C Pp.

It follows, by definition of implementations and refinement, that for all components f
that implement refinements of ', F’ < F and f ky F’, then they are an implementation of
F, f g F, too. Likewise, for permissible environments: for all components f; that are per-
missible environments of F, f¢ F, F, and all of F’s refinements, F " < F, then the compo-
nent f is permissible environment of F’, f; Ey F’, too. We remark that the other direction
of both assertions naturally does not hold. Consider the case for refinement and implemen-
tations. An interface F’ that refines F may add new constraints on its open-guarantees. For
example, it may include the pair (x, y). Then, while a component with a flow from x to y
implements F, the same component does not implement F’. This is the expected behavior
from the refinement process: reducing the set of implementations while permitting more
environments. We show next that refinement and composition support the independent
implementability property.

Theorem 10 For all well-formed information-flow interfaces F;, F,and F,, ifF; < F,and
Fy ~ F,,then F{ ~ Fyand F| ® F; < F| ® F,.

Proof Consider arbitrary interfaces F,, F| and F,. Assume that F| < F; and F| ~ F,. By
F| < F1. () Apy € Ap. (ii) Gy, € Gy, and (iii) Py, C Py

By (i) and (ii), we can directly infer that (AF; UAg) € (Ap UAg) and EF; - §F1'
And, by definition of no-flows composition, gFi *Gr, € Gp *Gp,. So, by definition of com-
posite open-guarantees, G, o, € GF/I o, Finally, by F; ~ F, and F | refining F, it follows
((AF; UAR)NXp p, X Y, p,)) C U or, and the set of output variables of F " (note that
Yp = Yp) are disjoint from the set of output variables of F), (i.e., Yp N Y, =). Hence
Fy ~F,.

We prove now that F| ® F, < F| ® F,. First, we note that above we provedA that
(%) Gr,er, € QFE®F2. Then, by (i) and definition of derived assumptions, AFI’Fz CAp F,-
So, (%x%) AF;®F2 c AF1®F2. We are just missing to prove that composite closed-guarantees
satisfy Pr g, € PF; oF,- BY (iil) Pr UPg, C PF; U P, Thus, by definition of composite
. By (%) and

definition of derived closed-guarantees, proving our goal is equivalent to proving:

closed-guarantees, we still need to prove that P Arior, Grior, = F Ap o Grr or
1®F T F 1 ®F, | ®F T F ®F

Y@.y) € Urgr, 1 if (2.)) € Apgr, » Apgr,. then (2.)) € A gr, » Ar o,

Which, by Lemma 2 and both F, and F; having a disjoint set of output variables from F,, is
equivalent to:

@ Springer

30 Formal Methods in System Design (2025) 66:3-48

nl : -/
Ft‘un jL'U” jmm
[J .
ecu can ecu can ecu can

~

imm — 88 deb imm deb immT deb

(a) The contract guarantee derived by Flg, includes all flow relations that are subsets
of the flow relations in components fean Or fegn-

F/IN”[4f‘1””” !Ill””l
ke -) X /_‘ key key imm
[imm mm] /l
can can can|

(b) Flows relations in the components fiym and gimm subsume all flow relations in
the contract assumption and guarantee, respectively, derived by interface Fjm,-

Fig. 11 Example of components with flow relations that subsume all flow relations derived from interfaces
F' andF,

V(z.y) € Gp,or,Vn €N 1 if (z,y) € (Id; U ZF;®F2)°(6F1®F2 OZF; ®F2)n°aF{®F2’
then Im € Ns.t. (z,y) € (Id, U ./71F1®F2)0(§F1®F2 OJ_4FI ®Fz)moap]@,rz.
We can prove this statement by proving the following stronger property, where m is always
equal to n:
V(2.y) € G or,Vn €N 1 if (z.y) € (Id, U ZF; ®F2)O@F; oF, o,TtF; ®F2)”05F; o,
then (z,y) € (Id; U -’_4Fl ®F2)°(§Fl ®F, °-_AF, oF,)" °5Fl ®F,"

Finally, the property above is equivalent to the statement below, where we change the inner
implication for its contrapositive:

V(2.) € G or,Vn €N & if (2.y) & (Id, U Ay g1)0(Gr, @, 0 Ar, or,)"°0r o,

then (z,7) & (Id; U Ap g1)o(Gp or, 0 Apgr,)" °Gr ar, -

We proceed now by proving the statement above for all (z,y) € Gf, gf, by natural induc-
tion over n € N. We start with the base case n=0. Consider arbitrary (z,y) € Gr g,
s.tt. (z,y) & ('_AF1®F2°§F1®F2)U§F1®F2' If (z,y) §E§F1®F2, then, by the domain of (z, y)
and (%), (z,y) € QF{®F2. Hence (z,y) & 61?1@172- If (z,y) & (ZF]®FZOEF,®F2)’ then, for all
(z,5) € AF1®F2 it must be the case that (s, y) & QFI®F2. And,bys € Zandy € Yp, we know
that (s, y) € gmﬁ. Then, by (%) and (%), for all (z,5) € JTlF;®F2 we have (s,y) & EF;®F2.

Thus, (z,y) & AF§®ongFi®F2, as well.
For the induction step, we assume as induction hypothesis (IH) that the state-
ment holds for n. Let (z,y) € (Id; U Ag gF)o(GF, gF, 0 Ar, ®Fz)n+l oG o,

By (IH), (.3) & (d; U Ap o5)9Gr o, 0 Ar o7,)'9Cr 7, Ar,0r,°0F, o1
Then, for all (z5) €(Id; U Apgr)oGrer,0Argr,) °Gpgr, ~ We have

@ Springer

Formal Methods in System Design (2025) 66:3-48 31

9(imm,can) f “mm,can) f Iim"L can
imm [] key key[imm key imm
can |:| can can
deb I:I ecu ecu [} deb ecu deb
Fig. 12 Maximal environment — ;. .., — and maximal implementations — f;,,, ., and f; — of the

imm.can

in Fig. 11

imm

composition of the derived contracts of interfaces F/, and F,

(s,y) ¢._AF]®F2 OEF1®F2' By the same reasoning applied to the base case, then for all
2.5) € (1d, U Apgr)0Grar,0Apar) o0ner, With (5.3) & Apgr,oGper, Thus,
(zy) ¢ (ddu AF;@;FZ)O(QF;@FZOAF’1®F2)n+1 ongz. Hence by definition of derived closed-
guarantees, Pr, g, & Prgr,- And, by definition of refinement, FIQF,<F ®F, O

3.3 Semantics

Information-flow interfaces are a purely syntactical design formalism. All operators
and predicates are over sets of pairs of variables specifying no-flow requirements,
independent of how the systems’ implementations are modelled or flows of informa-
tion can be observed. From a theoretical point of view, their syntactic nature allows
us to identify problems that are transversal to frameworks that support the composi-
tional design of security requirements. While from a practical point of view, it sup-
ports decoupling security requirements from their orthogonal semantic concerns at
design time.

The most natural models for information-flow interfaces are sets of information-flow
components containing all permissible environments and implementations. Note that at
a semantic level, when we are reasoning about concrete implementations, we no longer
need closed-guarantees, as their primary purpose is to express properties about the com-
plete system. Building from this idea, in this section, we introduce a natural seman-
tic interpretation for information-flow interfaces as Assume/Guarantee contracts [15,
24] that specify assumptions and guarantees as sets of flow relations. As for interfaces
before, X and Y are disjoint sets of input and output variables, respectively, with the
set of all variables being defined as Z = X U Y. An information-flow contract is a tuple
(X,Y,A, G) where A C 22X is a set of flow relations to input variables, called (contract)
assumption; and G C 22¥Y is a set of flow relations to output variables, called (contract)
guarantee.

A contract guarantee (assumption) is the set with all of contract’s implementa-
tions (permissible environments). Formally, given the information-flow contract
C=(X,Y,A,G), an information-flow component (X, Y, M) is an implementation of C iff
M € G; while a component (Y, X, £) is a permissible environment of C iff £ € A.

We start by observing that every no-flow relation A/ defines a set with all flow-rela-
tions allowed by A, denoted by [N, and defined as [N = {S is flow relation | S C N
Then, the information-flow contract derived of the information-flow interface
F=X,Y,AGP) is [F]=X,Y,[AL [SG]). In this section, we are only interested
in information-flow interfaces with assumptions and guarantees defined with no-flow

@ Springer

32 Formal Methods in System Design (2025) 66:3-48

relations. Note that, otherwise, the translation to information-flow contracts is not
meaningful, as they are defined over sets of flow relations.

Example 8 Consider the information-flow interface F éan in Fig. 1la and let
[F!, 1 = ({ecu,imm}, {can,deb},A,,,.G,,) where A and G, are explained
next. The interface F’ ~has an empty assumption, then the contract assumption
A_,, contains all components with all possible flow relations to {ecu,imm}. For-

can

mally, A, = {€ flowrelation | £ C {ecu,imm,can,deb} X {ecu,imm}}. The com-
ponents depicted in Fig. 1la are the two maximal implementations for F! . i.e.,
all other implementations refine one of them. Let M, be the flow relation in

/ L, .
fean and M__ be the flow relation in f! . then the contract guarantee for F,, is

can
Gyn = {M flow relation | M € M,,, or M C M’ 1}
Now, consider the information-flow interface F;,,, in the Fig. 11b. Its derived contract
assumption contains all refinements of the flow relation depicted in the component f,,,,;

while the derived contract guarantee has all flows that subsume the flow relation in g;,,,,
Formally, [F;,,,,]l = ({key,can}, {imm},A,,.... Gium) Where

can

imm

A
G

& flow relation | £ C {(imm, key), (imm, can), (can, key), (can, can), (key, key)} }

imm={

= {M flow relation | M C {(can,imm), (imm,imm)}}.

imm

We will now introduce composition, compatibility, and refinement for information-
flow contracts and prove their relation to the matching notions in the interface theory.
We first extend the composition of flow relations to sets of flow relations straightfor-
wardly. Let S, §’ be two sets of flow relations, then their composition defines the follow-
ing set of flow relations:

SmS’ = {(SuS)* | SeSand S €5'}.

This definition is akin to the composition of no-flow relations. In particular, for two no-
flow relations N and A, we have Ne N = {(z,Z) € S | S € [Mar.

When we compose two contracts, their composite guarantee is the pairwise composition
of all their implementations. While their composite assumption is the set of all flow rela-
tions that allow the contracts to work together. In particular, composite assumptions is the
set of environments such that their composition with any implementation of the contracts’
composite is part of a permissible environment in one of the contracts’ assumptions.

Definition 10 The composition of two information-flow contracts C and C’ is defined as
CRC =Xeo Yoo Aoges Gege) Where Yoo =Y UYe, Xeo = XeUXo)\Ye e
Gege = Gesop and

Acge ={€CZe o X Xp o | Eis aflow relation and VM € G U {ldy, }
I €Ac i ((EoM)N Ze X X() € Ec and
I €Ap i (EoM)N Zp X X)) CE Y.

Example 9 Consider the flow contracts [F’ (’ wland [F;,, 1 introduced in the previous exam-

mm
ple. In Fig. 12, we depict components with flow relations that subsume all flow relations
in the composition of those contracts, i.e., in [F’_ 1 X [F;,,]- In particular, we denote

can

by Eimm.can) the flow relation defined by the component gmm cany» @nd by M can) and

@ Springer

Formal Methods in System Design (2025) 66:3-48 33

Méimm’ can) the flow relations defined by the components f(im can) and f(’imchan), respectively.
Then, [F! 1 X [F;,,] = ({key,ecu}, {imm,can,deb}, A can) Gimm.can)) With:

Aimm.cany = 1€ flow relation | £ C Egn can
Glimmcany = {M flow relation | M C M cany @and M C ME

imm,can) }

Computing the composite guarantees is straightforward. We focus now on the com-
posite assumptions and, particularly, on the flow from key to ecu that is not in
the flow relation of the component ggmmcany- FOr this, we look into the flow rela-
tion & = {(key,ecu), (ecu,ecu), (key, key)}, which is the smallest environment for
[F Z‘m]] X [F;,,]l containing (key, ecu). Then, according to Definition 10, & is in the com-
posite permissible environments, iff when composed with all possible composite imple-

mentations (i.e., all flow relations M € G cam U {(key, key), (ecu, ecu)}) then the result
is either part of a permissible environment of [F/_ 1 or [F;,,]. Now, consider the flow
relation M’ = {(ecu, can), (imm, imm), (can, can), (deb, deb)} that is in the composite guar-
antee G(jpmcany and includes a flow from ecu to can. Then, (key,can) € & oM’ because
(key, can) = (key, ecu) - (ecu, can). By can being an input variable of [F,] that has an
assumption preventing a flow from key to can, there is no permissible environment of
[Fi.n] containing (key, can). Hence no flow relation with (key, ecu) is a permissible envi-

ronment of the composite.

We prove below that the contract defined by the composition of two information-flow
interfaces is the same as if we first translate the interfaces to a contract separately and then
compose them using the contract composition operator. This theorem allows us to transfer
information-flow interface composition results to our contract theory.

Theorem 11 Let F and F’' be information-flow interfaces defined with no-flow relations.

[F®F1=[FIXIFI

Proof Consider arbitrary information-flow interfaces F and F’ with assumption and guar-
antees defined with no-flow relations. Let [F ® F'll = Xz, Yi i, Agrgry» Grrery)-
The flow contracts [F] and [F’'] have the same sets of input and output variables as
the interfaces F and F’, respectively. Then, it follows directly from definitions, that
Xirern = Xppigry a0 Yirgry = Yirigir 1

We start by proving that Gyrgsmy € GGy For all flow relations M € Gyrgpry»
by definition of composite open-guarantees, this is equivalent to M C G ¢ Gr. Now con-
sider M = M NG, and M = M nGp. Then, M}, and Mj, are flow relations, and,
by M being a flow relation, (M} UM;,)* = (MpUMp)* =M. So, by definition
of composition of flow relations sets, M € Gypys;- To prove the other direction (i.e.,
Girgr 2 Grr®Gyp), we consider arbitrary S € Gy @Gypy. Then, by definition of
derived contracts and flow relations set composition, there exists flow relations My C G,
and My CGp st. S=(MpUMp)* By definition of composite open-guarantees,
(M UMp)* CGpeGp. Hence (M U Mp)* € Girgpy

We are missing to prove that Aypgey = Apppeye We start with the case
Arrery C© Aprpprg @nd consider an arbitrary flow relation £ € Aypgpy. By

definition of composite assumptions, £ is a flow relation over (Zppm X Xpp) st

@ Springer

34 Formal Methods in System Design (2025) 66:3-48

ECAUAL UAF’F/. Note that by £ QAF,F,, then, for all (z,7') € £,(z,7) & le,F,, and, by
definition of derived assumptions,:

(%%) for all (Z,s) € §F®F,, then (z,5) € Ap U Apr.

By definition of composition between contracts, we are missing prove that for all flow rela-
tions M € Gypgpy U {1dy, , }:

(N3 € Ay & ((EoM)N Zp x Xp) C Ep and
3Em €Ay 1 ((EoM) N Zp X Xp) € Epr.

Assume that M = IdX”_/, then the condition () follows from our assumption that £

is a flow relation and £ C .71,,- N ./Tlp,. Consider now arbitrary M € Gypgp and, assume
towards a contradiction that (a) for all £; € Ay we have ((EoM) N Zp X Xz) & &p. Let
(z,5) € (EoM) N Zp X Xp. Then, (z, s) can be defined by the composition of two pairs
of variables, (z,s) = (z,7') - (Z,), where (z,7/) € £ and (Z,s) € M. By (¢,s) € M and
M e G[[F®F,]], then (/, s) must be an allowed flow by the composition, i.e., (', s) € §F®F,.
By (%), it follows that (z,s) € Ap U Ap. As (z,5) € Zp X X, then, by (z,5) &€ A, there
exists & = {(z,5)} Uldy_that is a flow relation s.t. & C ZF, i.e., & € Aypy. This contra-
dicts assumption (a).

We prove analogously for the case of &p €Ay We prove now that
Arriiey € Aprery- Let € be an arbitrary flow relation over Z¢ o X X that is an ele-
ment of Aypyzpes i (0) € G_AnsznF/n- Assume towards a contradiction that £ is not an
element of Arrgr i.e., €€ Apgp. Then, by definition of composite assumptions, there
exists (z,Z) € € s.t. (z,7) € Ap U Ap UARF,. Consider the case that (z,7') € Ay and let
M =1dy, .. Then, (Eo M) = £, and for all flow relations & C A allowed by the assump-
tions of F, then €N (Z; o X X) € & due to (z,7') € AxNE. This contradicts our
assumption (b), by definition of composite assumptions between contracts. The same rea-
soning applies for the case that (z,7") € Ap. Finally, consider the case that (z,7') € Ay .
By definition of derived assumptions, there exists (z,s) € Ap U Ay and (7, 5) € E’F®F,.
As (Z,s) € §F®F,, then there exists a flow relation M C §F®F, s.t. (z/,s) € M. Then,
by (z.7) €& and (7,s) € M, (z,5) € (EoM). And, by (z,5) € ArU Ap, it follows
that there are no flow relations allowed by the assumptions of both interfaces that sat-
isfy the condition in assumption (b). Formally, for all £,, C ZF and &,y C ./TlF,, then
((EoM)N Zp x Xp) & Ep and ((EoM) N Zp X X) € Ep. And this contradicts (b). O

Two information-flow contracts C and C’ are compatible if when one of them pro-
vides inputs to the other, then flows to shared variables in implementations of one of the
contracts are in the permissible environments of the other contract.

Definition 11 Two information-flow contracts C and C’ are compatible, denoted C ~ C’,
iff they are composable, i.e., their output variables are disjoint, YN Y, = @; and their
implemented flows related to shared variables are in the permissible environments of the
respective contract:

@ Springer

Formal Methods in System Design (2025) 66:3-48 35

VM € (GuGy) IE. € Ae 1 M (Zex Xe) € B and
IE €Ae 1 M N (Zo X Xe) C B,

We prove that checking the compatibility between information-flow interfaces is
equivalent to checking the compatibility between the contracts derived by the given
interfaces.

Theorem 12 Let F and F’ be information-flow interfaces defined with no-flow relations.
F ~ F'iff [FT ~ [F'].

Proof We start by proving the =>-direction of the statement. Assume that F ~ F’.
Then, by definition of compatibility, (Ap U Ap) N (Zpp X Vi) C Grgp. To prove
that [F] = [F'], we start by considering an arbitrary flow relation M € Gz uGypy.
Then, by definition of derived contract and no-flows composition, M C G « Gr.. By
definition of composite guarantees, M C (Zpp X Yp m)\Grgr and, by our initial
assumption, M C (Zpp X Zp p)\(Ap U Ap). Then, for My;=Mn(Z;xX;) and
My = M (Zp X Xp), it follows that M € A, and M, C Ap.

For the <-direction, assume that [F]] ~ [F'], and assume towards a con-
tradiction that (@) (ArUAp)NZrp XYrp) € Grgr. Consider arbitrary
(7)€ ArUAR)N Zrp X Ypp) st (27) € Gpgp. Let M ={(zZ)}Uldy_,
which clearly is a flow relation. By (z,Z') € Grgp» then M € Gypgry and, by
Girgry = GHF]].GE’]] proved in Theorem 11,_/\/1 € GGy By [FT = [F'], then
MNZpxXp) CAp and MN(Zp X X)) C Ap. So, (z,7) € Ap U A, which contra-
dicts (a). O

The definition of refinement is straightforward, as it may allow more environments and
fewer implementations.

Definition 12 An information-flow contract C' = (X,Y,A’,G’) refines the contract
C=(X,Y,A,G),denotedC' < C,iff ACA’and G’ C G.

We prove below that, for two given interfaces, the contract refinement over their derived
contracts is equivalent to the refinement over the interfaces (modulo the closed-guarantees
being a refinement already).

Theorem 13 Let F and F’ be information-flow interfaces. If F' < F, then [F']] < [F]. And,
if Pr C Prand[F']| < [F, then F' <F.

Proof Let F and F’ be two interfaces. Consider first that F’ < F Then, A, C Ay and
Gr € G, and so:

{&is flow relation | £ C ZF} C {&is flow relation | £ C ZF,}

{M is flow relation | M C Ep,} C {M is flow relation | M C EF}.

Hence Ay € Apprgand Gypy € Gy For the other case, with P € Ppand [F']] < [F]), it
follows from definitions that A, C Ay and G C G. Then, F' < F. O

@ Springer

36 Formal Methods in System Design (2025) 66:3-48

From Theorem 11 and Proposition 13, it follows that information-flow contracts derived
from an information-flow interface satisfy both incremental design and independent
implementability.

An important difference between information-flow interfaces and contracts is that while
interfaces organize a system’s design and verification tasks, contracts enable reasoning
about interface implementations and environments, focusing on the different parts of the
system design. We include closed-guarantees in our interfaces to enable the specification of
global no-flow requirements, which are enforced by a combination of open-guarantees and
assumptions (the objects of interest in information-flow contracts). The proposition below
illustrates the role of the closed-guarantees as a higher-level guarantee for an information-
flow contract. In particular, we prove that the closed system defined by an interface (i.e.,
the composition of all of its derived contract’s environments with all of the derived con-
tract’s implementations) refines the contract derived from the interface’s closed-guarantee.

Proposition 14 A stateless information-flow interface ~ F =(X,Y, A, G, P),
with [F1 = X, Y, Ay Grey)s s wellformed, if (CgIKICy) < Cp, where
Cp=0,XVY,0, {Mis flow relation | M C Pg}), C;=X,7,0, Girp) and
Cy=T.X,0,A18.

Proof Follows from definition of contract composition, refinement and Proposition 1.
O

4 Stateful information-flow interfaces

We extend our theory with stateful components and interfaces. These are transition sys-
tems in which each state is a stateless component or interface, respectively. It is important
to note that a stateless interface specifies requirements a system needs to satisfy over the
time the interface specification is required. Stateful interfaces formalize how to transition
between different specification states. Thus, each state in the stateful interface matches a
specification state (specified with a stateless interface), where states are not necessarily in a
1-to-1 relation with single steps in a system execution.

Definition 13 Let X and Y be disjoint sets of input and output variables, respectively, with
Z =X UY the set of all variables. Let Q be a set of states with g € Q being the initial
state and 6 : Q — 29 be a transition relation. A stateful information-flow component f is
a tuple (X, Y,Q,§,8,M), where M : Q — 227 is a state labeling such that for all states
q € O, M(q) defines a flow relation. We denote by f(g) = (X, Y, M(q)) the stateless com-
ponent implied by the labeling of g. A stateful information-flow interface F is a tuple
X,Y,0,4,6,A,G,P), where A : Q — 22X is called assumption; G : Q — 22% is called
open-guarantee; and P : Q — 22%7 is called closed-guarantee. For each state g € Q we
denote by F(q) = (X, Y, A(g), G(g), P(9)) the stateless interface defined by the assumption,
open-guarantee and closed-guarantee of g.

A stateful interface F is well-formed iff F(g) is a well-formed stateless interface,
and for all states g € Q reachable from the intial state g the stateless interface defined
by the state ¢, F(g), is well-formed. In what follows, F = (X,Y,0,q,6,A, G, P) and

@ Springer

Formal Methods in System Design (2025) 66:3-48 37

F=X.Y,0,q9,8,A,G P) are stateful interfaces, and f = (X, Y, Q;, gy, 5z, M) and
te = (Y. X, Q¢ s, 6, E) are stateful components.

A stateful component f implements a stateful interface [if there exists a simulation
relation from f to F such that the stateless components in the relation implement the state-
less interfaces they are related to. Permissible environments require a simulation relation
from the interface they are permissible on to them.

Definition 14 Let F = (X, Y,0,4,5,A,G,P) be a stateful information-flow interface. A
component f = (X, Y, Qg, §¢, 8¢, M) implements the interface F, denoted by f F¢, F, iff there
exists H C Oy X O s.t.(g¢,q) € H and for all (¢4, q) € H:

o 1(gr) g F(@) withF(g) = (X, ¥, A(g), G(g), P(¢)); and
* if gi € 6¢(qr), then there exists a state ¢’ € 6(q) s.t. (¢;,¢") € H.

A component f; = (Y, X, O, §¢, 65, E) is an permissible environment for the interface
[, denoted by f k, F, iff there exists a relation H C Q X Q¢ s.t. (§,g¢) € H and for all

(g.9¢) € H:

o 1(ge) Fag Flg) withF(g) = (X, Y, A(g), G(q), P(¢)); and
o if ¢’ € 5¢(q), then there exists a state ¢}, € 5¢(q¢) s.t. (¢, q;) € H.

As for stateless interfaces, a well-formed stateful interface guarantees that its closed-
guarantee holds under the composition between any of its implementations f with any of
its permissible environments f.

Proposition 15 For all well-formed interfaces F, and all relations H C Q¢ X Q and
H¢ C Q X Qg that witness f Eg F and f¢ Ey F, respectively, it holds:

(@) (M(gg) UE@G)" NP(G) = @; and
(b) for all g € Q that are reachable from q, if (qs,q) € H and (q,qs) € Hg, then
(M(gz) UE(ge)*" nP(g) = 0.

Proof Consider arbitrary well-formed interface F = (X,Y, 0, §,6,A,G,P), and compo-
nents f = (X, Y, Oy, G, 6¢, M) and £, = (Y, X, Q¢, G, 6¢, E). We assume that (i) f kg F and
H C Qg x Q witnesses it; and (ii) ¢ k, F and Hs C Q X Q; is a relation witnessing it. Item
(a) follows from Proposition 1 for stateless interfaces. For the item (b), consider arbitrary
state ¢ € Q that is reachable from the initial state §g. Additionally, consider arbitrary g; and
qe s.t. (gg,q) € H and (g, q¢) € H. By our initial assumptions (i) and (ii), f(g;) Fo F@)
and fg(qe) Fa, F(g). By F being well-formed and by g being accessible from the initial
state g, then F(q) is a well-formed (stateless) interface. Hence, by Proposition 1 for state-
less interfaces, it follows that (M(g;) U E(ge)* N P(g) = 0. O

4.1 Composition and incremental design
We compose stateful interfaces (components) as a synchronous product between the inter-

faces (components) in their states. For interfaces, we only keep the states defined by the
composition of two compatible stateless interfaces.

@ Springer

38 Formal Methods in System Design (2025) 66:3-48

Definition 15 Let F=(X,Y,0,43,6,A,G,P) and F=(X, Y, Q0,9,5 A" G, P
be stateful information-flow interfaces. Their composition is defined as the tuple:
FRF = (XIF,[F/’ YIF,[F” Q[F,[F’! @[F,[F" 6IF,[F/’ A[F,[F" G[F,[F” P[F,IF’)7 where: ‘?[F,[F/ =49
and Orp ={Grp}tVi@.q) | Fl@ ~F @)}k (92.95) € 3¢ 5(q1.9,) iff
q, € 6(g;) and q’2 ed (q’l); assumption and guarantees are defined by the state-
less composition of their respective states, formally for all (g,q’) € Qpy we have
Kep Yer, AW, 4),Glg.), P(g. ")) = F(g) ® F'(¢).

In the proposition below, we prove that the composition of implementations of two
given stateful information-flow interfaces is an implementation of the composition of the
given interfaces. In the proof below, we show how to define the relation witnessing the
implements relation for the composition from any witness relation from two implementa-
tions. We then use the Proposition 3 for stateless interfaces to prove that the implements
relation holds for each pair in the witness relation.

Proposition 16 Let F and F' be stateful information-flow interfaces with open-guarantees
G and G', respectively. If t Fg F and ' kg F', then £ @ ' Fg_, F ® ', where Gg . is the
composite open-guarantee of F and IF'.

Proof Assume that: (i) fkgF and (ii) &' EgF. Then, there exists H;
and Hp that witnesses (i) and (ii), respectively. Consider the relation:
H = {((g49¢), (G, q5)) | qr € Hg(qy) and g € Hy(qg)}. Clearly, by (i) and (i),
(@s» 45> @r»qgr)) € H. Then, £(g;) I:G([;F) F(gr) and £(gg) I=¢3'(51[F,) F'(gg). So, by Propo-
sition 3 for stateless interfaces, it follows that £(g;) ® £/(gs) Fo, e F@F) @ F'(@p)-
Consider arbitrary ((g¢,gg), (gf,qr)) € H. Then, by (1) and (ii), there exists
(gs.qp) € Hy st. 1(gg) Fgg,) F(gp), and there exists (gp.qp) € Hy st
£(gy) Fog,,) F(gp). Thus, by definition of H, ((gy, g5), (¢, 4)) € H. And, by by Prop-
osition 3, gy ® gy Fe, . 7. F(@r) ® F’'(gr). Hence, H is a simulation relation for
fQF kg FRF. O

Two stateful interfaces are compatible if the stateless interfaces defined by their ini-
tial states are compatible, i.e. F(§) ~ F'(§’). As we only keep states defined by compatible
stateless information-flow interfaces during a stateful interface composition, the condition
above effectively guarantees that all states reachable from the initial state are defined from
compatible interfaces. By following a proof strategy analogous to the proof of Proposi-
tion 16, we can easily lift results proved for the stateless interfaces related to composition
and compatibility. In particular, we can prove that compatibility is commutative, compo-
sition preserves well-formedness, and stateful interfaces support incremental design of
systems.

Theorem 17 Let F, F' and F" be stateful information-flow interfaces. If F ~F' and
(F Q@ F') ~ F", thenF' ~ F" andF ~ (F' @ F").

Proof By definition of compatibility between stateful information-flow interfaces, we only
need to prove the following statement for the intial states §, §’ and §"’ of arbitrary interfaces
F,F and F":

@ Springer

Formal Methods in System Design (2025) 66:3-48 39

9

T
Q@ 9 g, Y
z

| y | < —= “
o y
T
Yy
(a)

Fig. 13 Refined interfaces with witness: (a) relation {(ql,qg),(qz,q;)}; and (b) relation
(AN ARCNA)

IfF(@) ~ F'(@") and (F@) ® F'@) ~ F"(@"),
then F'(¢) ~ (") and F(@) ~ (F' (@) ® F"(@")).

Which follows from Theorem 8 for stateless information-flow interfaces. O

The composition operation on stateful information-flow interfaces can be generalized
to distinguish between compatible and incompatible transitions of interfaces when they are
composed. Usually this is done by labeling transitions with letters from an alphabet, so that
only transitions with the same letter can be synchronized. While necessary for practical
modeling, we omit this technical generalization to allow the reader to focus on the novelty
of our formalism, which is the ability to specify information-flow constraints at each state
of an interface.

4.2 Refinement and independent implementability

A stateful interface [, refines [y, if all output steps of [can be simulated by [F,, while all
input steps of [, can be simulated by F,. To formalize this definition, we first define func-
tions that, for each state g of a given stateful interface with a transition relation 8, return the
set with all states that can be reached in one step from ¢ using . Our final goal is to com-
pare assumptions and guarantees that can be reached from each state in different stateful
interfaces. Thus, the computed set is, in fact, a set of states’ sets, with one state set for each
reachable assumption, and reachable open- and closed-guarantee, effectively defining input
and output steps, respectively.

Definition 16 Let F = (X,Y,0,4,6,A,G,P) be an stateful information-flow interface.
Input steps from a given state g € Q are defined as:

§*(q) = {6%(q, A | ACZx X} with §%(q,A) = {¢' €8(q) | A¢) = A}.
While output steps from a given state g € Q are defined as:

§"(q)=1{6"(4.G.P) | GCZXYand PCZXY)
with 6"(q,G,P) = {¢' € 6(9) | G(¢') = Gand P(¢') = P}.

We define below refinement between stateful information-flow interfaces as an alternat-
ing refinement relation [25].

@ Springer

40 Formal Methods in System Design (2025) 66:3-48

Definition 17 The stateful information-flow interface F, = (X, Y, Or, Gg> Sr> Ag> Gr, Pr)
refines Fy = (X,Y,04.q4,64.A4, G4, Py), written F, <F,, iff there exists a relation
H C Qp%xQys.t.(Gg.44) € H and for all (gg,q,) € H:

o [Frlqr) < Fu(gp);
e for all set of states O € 5g(qR), there exists O’ € 5}:(%) s.t. for all set of states

I € 65(q,). there exists I € 63 (qg)s.t. (OND) x (0'nI') CH.

Example 10 In Fig. 13 we depict two examples of refined stateful interfaces.

In Fig. 13(a) the stateless interface in each state only uses output ports and it only
specifies closed-guarantees. The initial state of both stateful interfaces is the same, so they
clearly refine each other. As there are no assumptions and open-guarantees, then, by Defi-
nition 17, we need to check that for all successors of the initial state in the refined inter-
face g, there exists a successor of the initial state in the abstract interface q; such that
PA(q}) C Pg(g,)- This holds for the states (¢,, g’). Hence the relation {(g,, 7)), (¢, ¢5)} wit-
nesses the refinement. Note that the refined interface is obtained by removing a nondeter-
ministic choice on the transition function.

The witness relation for the refinement depicted in Fig. 13(b) is {(g;, q’l),
(4, q’z), (g3, q’z) }. The initial states are the same, so the condition (i) in Definition 17 is triv-
ially satisfied. The refined interface has two distinct output transitions from the initial state
G- It can either go to state g, by choosing the set of open-guarantees and proposition with
only one element (x, y) or it can transition to state g; by committing to the set of no-flows
{(x,y),(x',y)} for the open-guarantees and {(x,y)} as closed-guarantee. From the initial
state of the abstract interface, there exists only one input transition possible, to assume that
x does not flow to x’ and y’ does not flow to x. The following holds for both states acces-
sible from the initial state in the refined interface: Az(g,) € A, (q’z) and Ag(g;) € Ay (‘1/2)-
The refined interface specifies an alternative transition from the initial state (represented by
state g;) that allows more environments while restricting the implementation and preserv-
ing the closed-guarantee.

Theorem 18 LetF, = (X,,Y,,0,,d,.8,,A,,G,,P,) andF, = (X,, Y5, Oy, G, 65, Ay, Gy, P,)
be stateful information-flow interfaces s.t. F, < [,. For all components f and f:

(@) Ifft kg Fy, thent kg F,
(b) If‘fg ':AZ IFz, then ﬂ?g ':Al IFl'

Proof Assume that[F; < [F,. Then, there exists a simulation relation H, C Q, X Q, that wit-
nesses it.

For the item (a), assume that f FG] F,. Then, there exists a simulation rela-
tion H, C Qp X O, that witnesses it. Consider the relation H = HoH_. By defi-
nitions of refinement and implementation, (g, g,) € H. and (§,,4,) € H..
So, @s.9,) EH. Additionally, F(gy) = F(G,) and £(g¢) Fg,) F1(q1)-
Then, £(g¢) Fg,4, F2(@2). Consider arbitrary (¢¢,9,) € H. By construc-
tion of H there exists (g¢,qy) € H. and (q,q9,) € H.. We want to prove that:
if ¢}, € 83(qy), then there exists g, € 6,(q,) s.t. (¢}, q,) € H and f(q}) Fe,) F,(g5).

Assume that g € 6¢(qs). By (¢¢,q,) € H,, then there exists a state g| € 6,(q;) s.t.

(44-9)) € Hy. So, M(q}) C @[ﬁ (¢}). Additionally, by (¢,,q,) € H. and q| € §,(q;), there

@ Springer

Formal Methods in System Design (2025) 66:3-48 41

exists ¢, € 6,(¢,) s.t. G () C G, (¢}). Thus, (g5, ¢5) € H and M(q}) C G,(q)) C G,(g)).
So, by definition of implements for stateless interfaces, f(q;) FGZ(Q«Z) [Fz(q;). Hence H wit-
nesses f Fg F.

For the second item, assume that f F A [F,. Then, there exists a simulation relation
H, € 0, X O that witnesses it. Consider the relation H = H_oH,. We can prove analo-
gously to the previous case that H witnesses f¢ Fy [|

We can now prove that stateful information-flow interface satisfies the independent
implementation of systems.

Theorem 19 For all well-formed interfaces F|,Fy and Fy, if F| < FyandF, ~ [y, then | ~ [,
andF/ @F, <F, QF,

Proof Assume that: (i)Ff < Fj; and (ii) F; ~F,. F/ ~F, follows from (i) and Theo-
rem 10 for stateless interfaces. We prove now that F/ ® F, < F; ® F,. From (i), there
exists a relation H. C Q’1 X O, that witnesses the refinement. Consider the relation:

H = {45 9r,)- 45, 95,)) | GF-q5,) € Hs and Fy(gg,) ~ F>(gg)}-

By (i) and (i), ((‘?F{’ ‘?Fz)’ (‘?IF] 8 ‘?Fz)) € H. Additionally, [Fl/(?][ﬁ’) = [F1(27|F1)~ Then, by The-
orem 10 for stateless interface, [(@H) ® F,(qr,) = Fi(g5) @ F(Gg)

Consider arbitrary ((q[F{’q[Fz)’ (4r,-9r,)) € H and arbitrary O € st ((q'Ff’sz))' Then,

F/®F,
there exists G and P s.t. O = 5;,®[F ((gr> g5, g',P). By H_ witnessing (i) and Defini-
1 2 -
. . / —_ sY
tion 16, there exists G C G and P C P's.t. O’ = o o, ((4F,- 9F,)> Gg,P).

Consider arbitrary I € 5? ®[F2((Q[Fl’ sz)). Then, by H. witnessing (i) and Definition 16,
: <

there exists A s.t. I’ = éfFi@[Fz((q[Fl,q[Fz), A). By H_ witnessing (i), there exists A C Ast.

— sX !
I= 5[F{®[F2 ((q[Fl” Q[Fz)’ A)
Consider arbitrary ((q[’F,, q[’Fz), (qul , q[’Fz)) € (ONI)x (0 NTI). Then, by (i) and H defini-
1
tion, F/(gr,) < [Fl(q[’F]) and [, (qgﬁ) ~ [Fz(quz) So, by Theorem 10 for stateless interfaces,

F(q) ® Fy(q,) = Fi(q)) ® Fy(go).
Hence H is a witness relation for F/ @ F, < F; ® F,. O

5 Related work

To the best of our knowledge, we are the first to provide a theory for top-down and bot-
tom-up design of information-flow system requirements that supports both incremental
design and independent implementability of systems. The literature closest to our work
about information-flow focus on the semantic aspects of it. The novelty of our work lies on
explicit separation of the structural concerns from the semantic aspects of information-flow.
Language-based techniques have been proved useful to verify and enforce informa-
tion flow policies [6]. Examples range from type systems [8] to program analysis using
program-dependency graphs (PDGs) [7, 26]. In our approach we aim at composition and
refinement notions that are independent of the language adopted for the implementations.
Information-flow properties can be specified with respect to the observed behavior of
a system, in which each of its execution runs is abstracted as a trace. In this approach,

@ Springer

42 Formal Methods in System Design (2025) 66:3-48

properties often compare multiple executions of a system to certify that no forbidden flow
can be deduced by an observer. Such properties over multiple execution traces are called
hyperproperties [11]. Temporal logics [27], like LTL or CTL* are used to specify trace
properties of reactive systems. HyperLTL and HyperCTL* [9] extend temporal logics by
introducing quantifiers over path variables. They allow relating multiple executions and
expressing information-flow security properties [9, 11]. Epistemic temporal logics (ETL)
[28] provide the knowledge connective with an implicit quantification over traces. With
ETL we can reason about the knowledge gain of agents over time. Then, we can specify
which information can be learned by the agents while interacting with the system [29].
All these LTL extensions reason about closed systems while our approach allows compo-
sitional reasoning about open systems. Moreover, we focus here on the structural aspect
of information-flow, and not yet on its semantic interpretation. Thus, all information-flow
trace-based semantics are orthogonal to our approach.

Interface theories belong to the broader area of contract-based design [15], originally
popularized by Meyer [30], following earlier ideas introduced by Floyd and Hoare [31,
32]. Our theory follows closely the philosophy for formal frameworks for systems design
introduced for Interface automata (IA) [33] and Assume/Guarantee (A/G) [16] interfaces.
Interface theories were later extended with extra-functional requirements such as resource
[19], timing [20, 21] and security [34] requirements. Unlike in previous interface formal-
isms, we had to introduce the notion of properties which capture the intent of the designer
and can be used to steer the refinement of interfaces.

Interface for structure and security (ISS) [34] is a variant of IA that enables specifica-
tion of two types of actions on (1) low and (2) high confidential information. ISS uses
a bisimulation-based notion of non-interference that checks whether the system behaves
in the same way when high actions are performed or when they are considered hidden
actions. Our approach is orthogonal to IA and their extensions: we do not characterise the
type of actions of each component, but only their input/output ports, defining explicitly the
information-flow relations between variables.

Our approach took inspiration from relational interfaces (RIs) [18]. Rls specify the
legal inputs that the environment is allowed to provide to the component along with the
legal outputs that the component can generate when provided with these input. RIs do
not have assumptions and guarantees defined separately. Instead, they have a contract that
specifies the desired input—output behavior. A contract in Rls is expressed over individual
traces. Then, an RI contract can only relate input and output values in a trace, and not
across multiple traces. This restricts considerably RIs expressivity concerning information-
flow properties. Besides, Rls are trace-based interfaces, while in our approach we focus
on the structural aspect of information-flow, which may change from state to state (in the
stateful case). Our approach can be seen as a limited way to introduce relational properties
into A/G interfaces, namely solely for guiding refinement. This limited way avoids many of
the technical complexities of general relational interfaces [18].

Recently, Incer et al. [35] proposed hypercontracts as a meta-theory for assumption-
guarantee contracts that supports the specification of hyperproperties. Hypercontracts are
pairs of assumptions and guarantees of the close system, each defining a set of compo-
nents. Guarantees of the open system are the quotient between guarantees of the closed
system and the assumptions. Our contract theory is similar to hypercontracts in that our
assumptions and guarantees also specify component sets. However, we decided to keep the
closed system requirements at the interface level. By having both open- and closed- guar-
antees in the definition of our interfaces, we allow the designer to specify further assump-
tions and open-guarantees, even if they are not needed to support the closed-guarantee.

@ Springer

Formal Methods in System Design (2025) 66:3-48 43

6 Conclusion

We propose a novel interface theory to specify information-flow properties. Our frame-
work includes both stateless and stateful interfaces and supports both incremental design
and independent implementability. To achieve this, and unlike in previous interface for-
malisms, we introduce the notion of closed-guarantees which captures the intent of the
designer for the interaction between assumptions and guarantees local to implementations
(called open-guarantees). Moreover, closed-guarantees can be used to steer the refine-
ment of interfaces. We provide a semantic interpretation of information-flow interfaces in
terms of information-flow contracts, in which assumptions and guarantees are represented
as sets of flow relations. The addition of the semantic view to the information-flow inter-
faces closes the gap between abstract modelling steps during concept design and the actual
implementation of the components.

As future work, we will explore how to extend our theory with sets of must-flows, i.e.
support for modal specifications [36]. This will enable, for example, to specify flows that a
state ¢ must implement so that the system can transition to a different state, which is use-
ful to specify declassification of information. Another interesting direction will be to study
the introduction of such design-guiding closed-guarantees in the context of other interface
languages.

Appendix: Proofs
Stateless Information-flow Interfaces

Lemma 6 Let F, F' and F" be interfaces with pairwise disjoint set of output variables.
Then, Grgmory = Yrerer

Proof Consider arbitrary interfaces F, F’' and F" with pairwise disjoint set of output vari-
ables. By definition of variables between different interfaces:

ZF®F’,F” X YF®F’,F” = (ZF U ZF’ U ZF”) X (YF U YF’ U YF//) = ZF,F’@F” X YF,F’@F”'

In what follows, we denote the set of all variables over the three interfaces as Z (i.e.,
Z =7\ Zy UZp), and the set of output variables asY (i.e.,Y = Y, U Y U Yp). By defi-
nition of composite open-guarantees:

g(F®F')®F" = (Z X Y) \ (gp®pr . an) and
Grewer) = Z XY\ (Gr * Grgp)-

Then, what we want to prove is equivalent to proving:
QF®F/ L4 gF// = gF L4 gF/®F//.

We start by proving that Grep ¢ Grw C G ® Grgpn. By Lemma 2, this is equivalent to
prove that for all pair of variables (z,y) € Zx Y and alln € N:

if (z,y) € (Id; U Gp)0o(Gpgp 0Gpn)"o(Idy U Grgm),

there exists m € N's.t. (z,y) € (Id, U EF@F”)O(EFOQU,@F”)’"O(IdY U EF).

@ Springer

44 Formal Methods in System Design (2025) 66:3-48

To simplify the presentation of the proof, we start by proving for the case that y € Y.
Note that, if y € Y, by output variables being disjoint, then, for all variables 7' € Z,

@,y & @F@F, U Gr). Moreover, EF”OIdY,,-// = Gp». Then, we want to prove by induction
on n € Nthat:

if (z,y) € (Idz U Gp)o(Grg oGpn)"s
there exists m € N s.t. (z,y) € (Id, U (_]F/®F//)O(EFOEF@F//)'”OIdYFN.

For the base case, n=0, we consider arbitrary (z,y) € (IdZUEF,,). By mono-
tonicity of composite open-guarantees Gpn C Grgp, and by y € Vi, it follows

(z.y) € Id; U Gpgp)oldy .

For the induction step, we assume as induction hypothesis (IH) that the property
holds for n. Now, consider arbitrary (z, y) s.t. (z,y) € (Id; U Gp)o(Grgp G)", Then,
(2, y) = {(@ 9)}o{(s,y)} with:

(%) (z,9) € (Id; U Gpn)o(GrgpoGen)' and (s,y) € GrgpoGpn.
By induction hypothesis, exists m € N s.t.:
(z.5) € (Id; U Gpgpn)0(GroGpgpn)"oldy .

We proceed by cases on (z, s). _ _
If (z5) €ldzoldy,, then (z,y) €Idy, ,0GpgroGp, and, more generally,

(z,y) € §F®F, °§F~- By definition of composite open-guarantees, (z,y) € (Gp * QF,)OEF,,.
Then, by Lemma 2:

@.y) € (d; U Gr)o(GrroGp) o(ldy U Gp)oGp.
By monotonicity of open-guarantees, EF/ c §F,®F”, EF// c ?F/@,Fu and
EF, ‘@F” c éF,@,F,,, N (zy)eddu EF)O(EF’@JF” ‘@F)*‘@F'@F”- Equivalently,
(Za)’) € (Id U gF’®F”)°(gF°gF/®F”)*‘

If (z,5) € 1d,, then, by (%), s € Y. By F’ and F” having disjoint sets of output vari-
ables, EF,@,F,, = Gp » Gpr and Lemma 2:
(z,8) € (Idz U E]W@F")O(EF‘)?F/@FN)"I_I °§F°(Idz U E}W)o(é[r" OEF')*OEFH-

By (%), Grgr = Gr » G and Lemma 2:

(s,y) € (Id, U G1)0(Gr0Gr)* o(Id,, U G)oG .
Then,

() € (I, U Gpgpn)o(GroGpgp)" 5Gro(d U Gr)o(Grn0Gr) oG pm
o(ld; U Gr)o(GproGp)*old U Gr)oGp

Equivalently, (z,y) € (Id U Gp1gp)0(GroGrgp)™ for some m' > m.
The case y € Ypp is analogous. We prove by a similar inductive argument that
QF®F/ i gF/r 2 gF A QF/®F//. O

@ Springer

Formal Methods in System Design (2025) 66:3-48 45

Lemma7 Let F, F' and F" be information-flow interfaces that are pairwise composable.

@ If(z.7) €Ap o, then (z,7') € Apgpr pr.
(b) If(Z, Z/) GAF,F/Q)F”’ then (Z, Z/) EAF@F’,F” UAAF’F/.

Proof Consider arbitrary information-flow interfaces F, F’ and F” that are pairwise com-
posable, i.e., all three interfaces have pairwise disjoint sets of output variables.

We start by proving item (a). Consider arbitrary (z,7’) € AF/’ . By definition of derived
assumptions, there exists a variable s s.t.:

(Z, S) (S AF' V] AFH and (Z/,S) (S 61:/@1://.

Note that, by definition of interface and domain of composite open-guarantee, s is a shared
variable, i.e., s € Sharedp p», where Sharedp v = (X U Xpn) N (Y U Yp). Then, by
s € Sharedy g, s € Ypr v and, by output variables being disjoint, s cannot be an output
variable of F (i.e., s € Yy). We proceed by cases on the domain of s. If s € Y}, then, by
§ € X U Xpy and definition of information-flow interfaces, s must an input variable of
F"; hence, (z,5) € Ap,. By monotonicity, associativity (Lemma 6) and definition of of
composite open-guarantee, (z,' s) € Grgp * Gpr. S0, by definition of derived assumptions,

(z.7) EAF@W’F”. If s € Ypu, then, by s € X UXp, and definition of information-flow
interfaces, s must an input variable of F’ and (z, s) € Ap. As for the previous case, it fol-
lows that (Z,5) € Grgp * Gpv and consequently (z,7') € AF® e

We now prove item (b). Assume that (z,7') € /fF’ rer- By definition of derived assump-
tions, there exists a variable s s.t.:

(z,5) € Ap U Apgpr and (2, 5) € G prgn, Where s € Sharedy g

By (Z,s) € §F®(F,®F,,) and associativity of composite open-guarantees (Lemma 6), it fol-

lows (bl) (Z,s) € §(F®F,)® . We proceed now by cases on the domain of the shared vari-
able s € (Xp U Xpgpn) N Yi prgpn.

If s€eXy;NYp, by all three interfaces having disjoint sets of output variables,
then s & Y, s € X o and s is a shared variable between F ® F’ and F”’. Moreover, by
(2,5) € Ap U Aprgpn and s € Yy, then s & Xy g and the only relevant case for (z, s) is it
being in the assumption of F, i.e., (z,5) € AF®F,. Then, by (bl) and definition of derived
assumptions, (z,z) € AF@)F,’ -

If s€X;NYp, then, s is a shared variable between F and F'. By s € Y, then
s & X Then, we can assume (z, 5) to be in the assumption of F, i.e., (z,5) € Ap. By
associativity of composite open-guarantees, (', §) € Gpgr ® Gpr. By output variables of all
three interfaces being disjoint, s € Y and Lemma 2, then the last flow from any path from

2 to s must be in Gpgyp. Formally, (7,5) = (Id,_, , U Gp)o(GrgpoGpn)*0Gpgp- Then,

I

there exists a variable " s.t. (7, s) = (¢, s") - (s, 5) with:

(@.s) € (dy,, ., UGm)o(GrgroGm)* and (s',s) € Grgpr-

F
By (z,5) € A, s € Shared , and (5',5) € 5F®F,, then (z,s") EAF‘F,. If (7,5) € Idg, .

then (7', s) = (¢,). Hence (Z,s) € §F®F, and, by (z,5) € A, (z,7) EAF’F,. Otherwise,

@ Springer

46 Formal Methods in System Design (2025) 66:3-48

s’ must be an output variable of F”’' (s’ € Y,) and an input variable of the other inter-
face (s' € Xpgp). Then, (z,5') € Apgp. By (Z,5") € E(F®F,)®F,, and definition of derived
assumptions, (z,2') € Apgpr pr.

If s € Xprgpn N Y, then it can only be the case that (z,5) € Apgp and we proceed by
cases on A g definition. If (z,5) € Ap, then s € X; N Y. The rest is analogous to the
previous case where s € X N Y. If (z,5) € A, then, by (7, 5) € §F® g and definition

of derived assumptions, (z,7) EAF@,F/,FN. Lastly, if (z, 5) EAF,’FN, by definition of derived
assumptions:

(Z, Sl) (S AF/ U AFU and (S, Sl) (S EF/’FH,

with 5" € Shared; ;. By s being an output variable of F, (/,s) € EF’ e and Lemma 2,
(@.5)€(dy,,, ., UEF/@F//)°(§F°§F/®FN)*Oap As (s,5') € EF,’FN then we kilOW tha_t a
flow from s to s’ can be defined by an alternating composition of elements of G5, and G,
i.e. without using elements of EF. Hence (7, s) - (s,5) € ?F,F@F,, and, by associativity of
composite open-guarantees (Lemma 6), (7,s') € EF®F,’F,,. If (z,5") € A, then s’ € Y,
and, by (ii), s’ & Y. Then, s € Xpgp and so (z,5") € Aggp. Hence, by (,s') € §F®F“Fﬁ
and (z,5") € Apgp (2.7) EAF®F,VF”. If (z,5') € Aps, then, by (z,5') € §F®F,’F”,
(2.7) € Apgp pr- |

Acknowledgments This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 956123 and it was funded in part by the Austrian Sci-
ence Fund (FWF) project W1255-N23, by the Austrian FWF project ZK-35, by the FWF project SpyCoDe
10.55776/F85 and by the ERC-2020-AdG 101020093. This paper extends the text and the results of the
manuscript published at FASE 2022 [1].

Funding Open access funding provided by Institute of Science and Technology (IST Austria).
Data availability This manuscript has no associated data.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bartocci E, Ferrére T, Henzinger TA, Nickovic D, da Costa AO (2022) Information-flow interfaces. In:
Proceedings of FASE 2022: the 25th international conference on fundamental approaches to software
engineering. LNCS, vol 13241. pp 3-22. https://doi.org/10.1007/978-3-030-99429-7

2. Ratasich D, Khalid F, Geissler F, Grosu R, Shafique M, Bartocci E (2019) A roadmap toward the
resilient internet of things for cyber-physical systems. IEEE Access 7:13260-13283. https://doi.org/10.
1109/ACCESS.2019.2891969

3. Mantel H (2002) On the composition of secure systems. In: IEEE Symposium on security and privacy,
pp 88-101. 10.1109/SECPRI.2002.1004364

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-99429-7
https://doi.org/10.1109/ACCESS.2019.2891969
https://doi.org/10.1109/ACCESS.2019.2891969

Formal Methods in System Design (2025) 66:3-48 47

10.

11.

12.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Mantel H, Sands D, Sudbrock H (2011) Assumptions and guarantees for compositional noninterfer-
ence. In: IEEE Computer security foundations symposium (CSF), pp 218-232. 10.1109/CSF.2011.22
Schneider FB (2000) Enforceable security policies. ACM Trans Inform Syst Secur 3(1):30-50. https://
doi.org/10.1145/353323.353382

Sabelfeld A, Myers AC (2003) Language-based information-flow security. IEEE J Sel Areas Commun
21(1):5-19. https://doi.org/10.1109/JSAC.2002.806121

Hammer C, Snelting G (2009) Flow-sensitive, context-sensitive, and object-sensitive information flow
control based on program dependence graphs. Int J Inf Secur 8(6):399-422. https://doi.org/10.1007/
510207-009-0086-1

Focardi R, Maffei M (2011) Types for security protocols. Formal Models Tech Anal Secur Protoc
5:143-181. https://doi.org/10.3233/978-1-60750-714-7-143

Clarkson MR, Finkbeiner B, Koleini M, Micinski KK, Rabe MN, Sanchez C (2014) Temporal logics
for hyperproperties. In: Principles of security and trust (POST). LNCS, vol 8414. pp 265-284. https://
doi.org/10.1007/978-3-642-54792-8_15

Mikulcak M, Herber P, Gothel T, Glesner S (2019) Information flow analysis of combined simulink/
stateflow models. Inform Technol Control 48(2):299-315. https://doi.org/10.5755/j01.itc.48.2.21759
Clarkson MR, Schneider FB (2010) Hyperproperties. J Comput Secur 18(6):1157-1210. https://doi.
org/10.3233/JCS-2009-0393

Hamilton MD, Tunstall M, Popovici EM, Marnane WP (2008) Side channel analysis of an automotive
microprocessor. In: IET Irish signals and systems conference (ISSC), pp 4-9. https://doi.org/10.1049/
cp:20080630

Verdult R, Garcia FD, Balasch J (2012) Gone in 360 seconds: Hijacking with hitag2. In: 21st USENIX
Security symposium, pp 237-252

Benadjila R, Renard M, Lopes-Esteves J, Kasmi C (2017) One car, two frames: attacks on hitag-2
remote keyless entry systems revisited. In: 11th USENIX Workshop on offensive technologies
Benveniste A, Caillaud B, Nickovic D, Passerone R, Raclet J, Reinkemeier P, Sangiovanni-Vincentelli
AL, Damm W, Henzinger TA, Larsen KG (2018) Contracts for system design. Found Trends Electron
Des Autom 12(2-3):124-400. https://doi.org/10.1561/1000000053

de Alfaro L, Henzinger TA (2001) Interface theories for component-based design. In: Embedded soft-
ware. LNCS, vol 2211. pp 148-165. https://doi.org/10.1007/3-540-45449-7_11

de Alfaro L, Henzinger TA (2005) Interface-based design. In: Engineering theories of software
intensive systems. NATO science series (Series II: mathematics, physics and chemistry), vol 195, pp
83-104. https://doi.org/10.1007/1-4020-3532-2_3

Tripakis S, Lickly B, Henzinger TA, Lee EA (2011) A theory of synchronous relational interfaces.
ACM Trans Progr Lang Syst TOPLAS 33(4):14. https://doi.org/10.1145/1985342.1985345
Chakrabarti A, de Alfaro L, Henzinger TA, Stoelinga M (2003) Resource interfaces. In: Embedded
software. LNCS, vol 2855. pp 117-133. https://doi.org/10.1007/978-3-540-45212-6_9

de Alfaro L, Henzinger TA, Stoelinga M (2002) Timed interfaces. In: Embedded software. LNCS vol
2491. pp 108-122. https://doi.org/10.1007/3-540-45828-X_9

David A, Larsen KG, Legay A, Nyman U, Wasowski A (2010) Timed I/O automata: a complete speci-
fication theory for real-time systems. In: Proceedings of the 13th ACM international conference on
hybrid systems: computation and control (HSCC), pp 91-100. https://doi.org/10.1145/1755952.17559
67

Larsen KG, Nyman U, Wasowski A (2006) Interface input/output automata. In: Misra J, Nipkow T,
Sekerinski E (eds) International symposium on formal methods (FM). LNCS, vol 4085, pp 82-97.
https://doi.org/10.1007/11813040_7

Lemke K, Sadeghi A-R, Stiible C (2005) An open approach for designing secure electronic immobiliz-
ers. In: Proceedings of ISPEC 2005. LNCS, vol 3439, pp 230-242. https://doi.org/10.1007/978-3-540-
31979-5_20

Benveniste A, Caillaud B, Ferrari A, Mangeruca L, Passerone R, Sofronis C (2008) Multiple view-
point contract-based specification and design. In: Proceedings of FMCO 2007: the 6th International
symposium on formal methods for components and objects. lecture notes in computer science, vol
5382. Springer, pp 200-225. https://doi.org/10.1007/978-3-540-92188-2_9

Alur R, Henzinger TA, Kupferman O, Vardi MY (1998) Alternating refinement relations. In: CON-
CUR’98 Concurrency theory. LNCS, vol 1466. Springer, pp 163—178. https://doi.org/10.1007/BFb00
55622

Graf J, Hecker M, Mohr M (2013) Using JOANA for information flow control in Java programs—a
practical guide. In: Software engineering 2013 - Workshopband. LNI, vol P-215, pp 123-138. https://
dl.gi.de/20.500.12116/17361

@ Springer

https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/353323.353382
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.3233/978-1-60750-714-7-143
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.5755/j01.itc.48.2.21759
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1049/cp:20080630
https://doi.org/10.1049/cp:20080630
https://doi.org/10.1561/1000000053
https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1145/1985342.1985345
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/3-540-45828-X_9
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1007/11813040_7
https://doi.org/10.1007/978-3-540-31979-5_20
https://doi.org/10.1007/978-3-540-31979-5_20
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/BFb0055622
https://doi.org/10.1007/BFb0055622
https://dl.gi.de/20.500.12116/17361
https://dl.gi.de/20.500.12116/17361

48

Formal Methods in System Design (2025) 66:3-48

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Pnueli A (1977) The temporal logic of programs. In: Annual symposium on foundations of computer
science (FOCS), pp 46-57. https://doi.org/10.1109/SFCS.1977.32

Bozzelli L, Maubert B, Pinchinat S (2015) Unifying hyper and epistemic temporal logics. In: Foun-
dations of software science and computation structures (FoSSaCS). LNCS, vol 9034, pp 167-182.
https://doi.org/10.1007/978-3-662-46678-0_11

Balliu M, Dam M, Le Guernic G (2011) Epistemic temporal logic for information flow security. In:
Proceedings of the ACM SIGPLAN 6th workshop on programming languages and analysis for security
(PLAS), pp 1-12. https://doi.org/10.1145/2166956.2166962

Meyer B (1992) Applying design by contract. Computer 25(10):40-51. https://doi.org/10.1109/2.
161279

Floyd RW (1967) Assigning meanings to programs. Proceed Symp Appl Math 19:19-32. https://doi.
org/10.1007/978-94-011-1793-7_4

Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576-580.
https://doi.org/10.1145/363235.363259

de Alfaro L, Henzinger TA (2001) Interface automata. In: European software engineering confer-
ence/foundations on software engineering (ESEC/FSE), pp 109-120. https://doi.org/10.1145/5032009.
503226

Lee M, D’Argenio PR (2010) Describing secure interfaces with interface automata. Electron Notes
Theor Comput Sci 264(1):107-123. https://doi.org/10.1016/j.entcs.2010.07.008

Incer I, Benveniste A, Sangiovanni-Vincentelli AL, Seshia SA (2022) Hypercontracts. In: Proceedings
of NFM 2022: the 14th International symposium. LNCS, vol 13260. pp 674—692. https://doi.org/10.
1007/978-3-031-06773-0

Raclet J-B, Badouel E, Benveniste A, Caillaud B, Legay A, Passerone R (2011) A modal interface the-
ory for component-based design. Fund Inform 108(1-2):119-149. https://doi.org/10.3233/FI-2011-416

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1145/2166956.2166962
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/503209.503226
https://doi.org/10.1145/503209.503226
https://doi.org/10.1016/j.entcs.2010.07.008
https://doi.org/10.1007/978-3-031-06773-0
https://doi.org/10.1007/978-3-031-06773-0
https://doi.org/10.3233/FI-2011-416

	Information-flow interfaces
	Abstract
	1 Introduction
	2 Application examples
	2.1 Shared communication infrastructure
	2.2 Electronic vehicle immobilizer

	3 Stateless information-flow interfaces
	3.1 Composition and incremental design
	3.2 Refinement and independent implementability
	3.3 Semantics

	4 Stateful information-flow interfaces
	4.1 Composition and incremental design
	4.2 Refinement and independent implementability

	5 Related work
	6 Conclusion
	Appendix: Proofs
	Stateless Information-flow Interfaces

	Acknowledgments
	References

