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A key feature of many developmental systems is their ability to self-organize spatial
patterns of functionally distinct cell fates. To ensure proper biological function, such
patterns must be established reproducibly, by controlling and even harnessing intrinsic
and extrinsic fluctuations. While the relevant molecular processes are increasingly
well understood, we lack a principled framework to quantify the performance of such
stochastic self-organizing systems. To that end, we introduce an information-theoretic
measure for self-organized fate specification during embryonic development. We show
that the proposed measure assesses the total information content of fate patterns
and decomposes it into interpretable contributions corresponding to the positional
and correlational information. By optimizing the proposed measure, our framework
provides a normative theory for developmental circuits, which we demonstrate on
lateral inhibition, cell type proportioning, and reaction–diffusion models of self-
organization. This paves a way toward a classification of developmental systems based
on a common information-theoretic language, thereby organizing the zoo of implicated
chemical and mechanical signaling processes.

self-organization | development | information theory | signaling networks

From the first cell division to the fully formed embryo, developmental systems exhibit
a remarkable ability to generate functionally distinct cell types with precise positioning,
timing, and proportions. This process typically starts by establishing patterns of signaling
activity through cell–cell interactions, followed by the specification of individual cells
into a cell fate. To achieve identical body plans across individuals, these patterns of cell
fates must be reproducible (1). In many classes of animals, including worms, insects, and
amphibia, the initial symmetry breaking to establish such patterns is driven by external
input signals (2). For example, in the early fly embryo, morphogen gradients produced by
the fly mother break the initial symmetry, and their precise establishment and readout are
responsible for the developmental reproducibility (3–5). In contrast, a broad variety of
developmental systems exhibit autonomous symmetry breaking and self-organization
of gene expression patterns. This includes the development of early mammalian
embryos, where cells remain indistinguishable until the 8-cell stage, followed by self-
organized polarity establishment (6). Furthermore, recently developed experimental
in vitro stem-cell patterning systems, such as two-dimensional assemblies (7), intestinal
organoids (8, 9), and gastruloids (10), reveal a striking self-organization capability
mimicking various stages of development. In all these examples, the system starts from
an initially homogeneous, isotropic assembly of cells and—in the absence of spatially
structured external signals—spontaneously breaks symmetry and self-organizes cell fate
patterns.

Self-organization in biological systems relies on the collective communication of
constituent cells. This communication is implemented by different biophysical processes,
including cell–cell signaling, morphogen dynamics, as well as cellular force generation
and tissue mechanics (11–14). To understand how these processes combine to control
self-organization, mechanistic physical models, including reaction–diffusion, dynamical
systems, and mechanochemical models, have been developed (15–17). Nevertheless, the
broad variety of mechanisms—which often lead to qualitatively different final states—
has hampered the search for generally applicable principles and a common quantitative
language for self-organization. For instance, while gastruloids self-organize by establishing
positional patterning along an axis (10), intestinal organoids break symmetry by switching
the fate of a single cell (9), and early mammalian embryo initially patterns its inner cell
mass into accurate cell type proportions without positional order (18). While precision
in individual systems has been assessed by focusing on their idiosyncratic features,
e.g., gene expression boundaries or cell type proportions, a generic, mechanism- and
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system-independent measure of reproducible self-organized cell
fate patterning is currently lacking.

Self-organizing patterning processes generate, transmit, trans-
form, and distribute information in space and time. Much as
physics equips us with a formalism to describe how the flows of
matter generate patterns, information theory provides a formal
language to quantify statistical structures present in such patterns.
In stochastic input–output systems driven by external inputs,
performance can be defined in terms of the mutual information
between input and output signals (19–21), which is maximized
for optimally efficient information transmission channels (22).
This approach has previously been applied to formalize the
notion of “positional information” (PI) in developmental sys-
tems (4, 23, 24), where inputs are the maternally provided
morphogen gradients. However, for self-organizing patterns,
input signals are either absent or not very expressive, and thus a
more general approach is needed to quantify their information
content.

Here, we address this challenge by proposing an information-
theoretic measure of self-organization performance in embryonic
development, which we introduce in Section 1. Section 2 defines
developmental processes in the language of stochastic dynamical
systems. The main focus of this paper is the application of our
information-theoretic approach to three paradigmatic stochastic
models of self-organized patterning: lateral inhibition signaling
(Section 3), cell type proportioning and sorting (Section 4), and
reaction–diffusion dynamics (Section 5). For all these systems,
we identify optimal parameter regimes where cell fates can
emerge reproducibly in the presence of fluctuations, and where,
furthermore, these fates can be locked into spatial orderings that
correspond to precise body plans.

1. Information-Theoretic Framework for
Self-Organized Cell Fate Patterns

1.1. Utility Function for Self-Organization. Self-organization
refers to phenomena where elementary constituents of a system
interact with each other to create system-wide spatiotemporal
ordering—in other words, a “pattern.” Self-organized patterning
typically fulfills two criteria: 1) starting from an initially homo-
geneous state, the system generates patterns in the absence of
external (spatially structured) input, except for various sources
of noise, such as random initial conditions and intrinsic stochas-
ticity; 2) patterning occurs reproducibly, meaning that multiple
replicates of the system self-organize into similar final patterns.
This second criterion is fundamental to the biological function of
development: to build a reliable body plan, patterning processes
must achieve high levels of reproducibility of cell fate assignments
across embryos. Note that this notion of reproducibility refers to
the biological reproducibility of the system, rather than a measure
of experimental or technical reproducibility.

Mathematically, criteria (1) and (2) can be subsumed by a
single utility function, such that “self-organized” systems will be
the ones that tend to optimize the utility; and the evaluation of
this utility over patterns generated by some system can serve as
a quantification of the self-organizing capability of the system.
Specifically, we consider a very general class of developmental
mechanisms that establish patterns of chemical and/or mechan-
ical signals through interactions between cells (defined more
precisely in Section 2). These patterns are then interpreted by
each single cell to specify a discrete cell fate. For a system (such as
an embryo or an organoid), which at a particular developmental
stage is composed of N cells, we represent the fate pattern of each
replicate as a vector

Ez = (z1, ..., zi, ..., zN ), [1]

where zi ∈ {1, ..., Z} is the fate of cell i chosen among Z
possible fates. Here, the index i enumerates the cells, where
the indices i are tied to cell positions Ex = (x1, ..., xi, ..., xN ),
which are not necessarily one-dimensional. Since there is some
freedom in how this indexing should be done, we here adopt a
convention where we use global symmetries of the system (such
as periodic boundaries or left–right symmetry) to align patterns
where possible (SI Appendix).

An ensemble of fate patterns represents replicate outcomes
of a developmental process, such as a collection of embryos
(representative of a natural population) or of organoids, subject
to naturalistic sources of noise and variability (Fig. 1A). A typical
patterning process will result in fate patterns that share similar
features, but are not always identical. We can think of these
replicates as samples from a joint probability distribution P(Ez),
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Fig. 1. Entropy and information plane characterize self-organization out-
comes. (A) Schematic of the statistical approach to cell fate patterns, in
which an assembly of cells of different cell fates is represented as a vector
of discrete fates (Left). Cells may have different shapes, sizes, and may be
placed in complex, not necessarily one-dimensional, spatial arrangements.
Sampling from the developmental ensemble P(Ez) results in a list of replicates
(Middle). The ensemble is characterized by the distribution of fates Pz(z)
pooled across systems and positions; and the marginal distribution Pi(zi)
at each position (Right). (B–E) Examples of ensembles, their entropy values,
and information content. (F ) Entropy plane spanned by the patterning and
reproducibility entropies. (G) Information plane spanned by the PI and
correlational information (CI) contributions to the utility. (H) Overview of the
three key entropic quantities, and the three information quantities obtained
by combinations of the entropies.
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which we refer to as the developmental ensemble. To measure
how reproducible these patterns are, we consider the entropy of
the developmental ensemble, or reproducibility entropy:

Srep = 1
N S [P(Ez)] = − 1

N
∑
Ez P(Ez) log2 P(Ez). [2]

Reproducibility entropy has a minimum value of Srep = 0 bits,
corresponding to perfect reproducibility, which is realized by an
ensemble of identical replicates; and a maximum value log2 Z
bits, which is realized by a maximally irreproducible ensemble
where all possible fate patterns have equal probability. Thus,
a system with four possible fates can have at most 2 bits of
reproducibility entropy.

Reproducibility alone is not sufficient to define self-
organization: a uniform system without any pattern can be
perfectly reproducible. To measure the diversity of realized cell
fates in the system, we first construct the pooled distribution
Pz(z) = 1

N
∑N

i=1
∑Z

zi=1 P(Ez)�(zi, z) (Fig. 1A), where �(zi, z)
is the Kronecker delta. One can think of Pz(z) as a distribution
over cell fates in the entire developmental ensemble, i.e., as if
one dissociated and pooled all cells together across positions and
replicates. To quantify the patterning diversity, we define the
patterning entropy:

Spat = S[Pz(z)] = −
∑Z

z=1 Pz(z) log2 Pz(z). [3]

This entropy provides a scale for pattern diversity: If all cells
have the same fate (no pattern), Spat = 0 bits, while for equal
proportions of all available fates, Spat = log2 Z bits.

Based on these definitions, we can formalize our two criteria
for self-organization: a self-organizing system should seek to
minimize Srep while maximizing Spat. A utility function that is
maximized by a self-organizing system can therefore be written as:

U = Spat − Srep. [4]

Clearly, specific biological systems may have been evolutionar-
ily selected to produce very particular spatial patterns rather than
just favoring any sufficiently diverse pattern. Similarly, we could
require patterns to exhibit a certain degree of complexity and
could formulate alternatives to our utility to favor such outcomes
(Section 6).

Such additional requirements are, however, unlikely to be
generic. Furthermore, our proposed utility function would iden-
tify those more complicated outcomes as well, with additional
biological or evolutionary considerations breaking the degeneracy
between candidate reproducible patterns. Put conversely, systems
whose utility is zero or vanishingly small cannot reasonably self-
organize, no matter what nontrivial fate pattern is desired. Indeed,
whatever specific pattern may be optimal for the system at hand,
the fundamental trade-off between being reproducible across
replicates while creating diversity of cell types is general. Thus, in
the absence of more specific constraints, Eq. 4 provides a general
and agnostic formulation of this trade-off.

An important feature of our utility function is that it trades off
the two entropies on equal terms, rather than using a trade-off
parameter. This ensures that the utility has a lower bound at
U = 0 that is realized for any system generated by random,
uncorrelated assignments of fates drawn from the pooled distribu-
tion Pz(z) (Fig. 1B). The fate pattern distribution corresponding
to this scenario is the maximum entropy distribution given the
observed pooled distribution,

Q(Ez) =
∏N

i=1 Pz(zi), [5]

for which Srep = Spat. This construction allows us to rewrite
the utility (Eq. 4) as a Kullback–Leibler (KL) divergence
between the observed distribution P and the maximum entropy
distribution Q (SI Appendix):

U = 1
NDKL [P(Ez)||Q(Ez)] = 1

N
∑
Ez P(Ez) log2

(
P(Ez)
Q(Ez)

)
. [6]

Evidently, the state of no patterning has zero utility, since in that
case P = Q by definition, and the divergence vanishes (Fig. 1C ).

Developmental ensembles produced by patterning systems can
be visualized in the entropy plane, the two-dimensional space
spanned by the two entropies, Srep and Spat. This plane is bisected
by a diagonal defined by the limit of maximal irreproducibility
(Fig. 1F ). Due to the equal trade-off of the two entropies, this
limit corresponds to minimal utility, and all lines of constant
utility are parallel to the diagonal; the optimum at maximal
utility ofU = log2 Z bits is in the top right corner. This optimum
corresponds to a system with high patterning diversity and perfect
reproducibility, such as a perfect “flag”-pattern (Fig. 1E). In
summary, the utility scores the outputs of any possible patterning
mechanism onto a unique quantitative scale, without reference
to the underlying mechanisms. Conversely, optimal parameters
of a patterning process can be identified by using the utility as an
optimization function.

1.2. Decomposition Into PI and CI. Reproducibility is achieved
by tightening the joint probability distribution P(Ez) in the high-
dimensional space of cell fate assignments, raising the question
of how to conceptualize the information contained in such a
distribution. The width of the probability distribution of cell fates
at each position i—the marginal distribution Pi(zi)—determines
how much local information is contained in the pattern, i.e., how
much information the position i carries about the fate zi and vice
versa (Fig. 1A). However, reproducibility entropy can also be
reduced through correlations from position to position. What is
the additional information contained in such correlations?

We can formalize this question by decomposing the utility into
two interpretable quantities. First, tightening the marginal distri-
butions while maximizing the patterning entropy corresponds to
maximizing the PI of the pattern (4, 23, 24). Specifically, since
indices are tied to positions in space, the PI of an ensemble of
fate patterns is given by the mutual information of cell fate z and
cell index i:

PI =
∑N

i=1
∑Z

z=1 P(z, i) log2

(
P(z,i)

Pz(z)Pindex(i)

)
, [7]

where P(z, i) is the joint distribution of cell fates and indices,
averaged over the developmental ensemble. Using Bayes’ rule
P(z, i) = Pi(zi)Pindex(i) and the fact that the indices are by
definition uniformly distributed, Pindex(i) = 1/N , this simplifies
to (SI Appendix):

PI = Spat − Scf , [8]

where we defined the correlation-free entropy,

Scf = 1
N
∑N

i=1 S[Pi(zi)], [9]

which is the entropy of a joint distribution constructed from
independent marginals, i.e., P(Ez) =

∏N
i=1 Pi(zi), corresponding

to a system with no spatial correlations. We can now compute the
reduction in entropy due to the presence of spatial correlations,
which we term CI:

PNAS 2024 Vol. 121 No. 23 e2322326121 https://doi.org/10.1073/pnas.2322326121 3 of 12
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CI = Scf − Srep. [10]

This information can be rewritten as a KL divergence between the
developmental ensemble and the correlation-free distribution,
CI = 1

NDKL

[
P(Ez)||

∏N
i=1 Pi(zi)

]
. This measure of correlation

in a joint probability distribution has been previously defined in
the information-theoretic literature and is often referred to as the
“multi-information” of the distribution (25, 26).

Combining Eqs. 7 and 10, we find that

U = PI + CI. [11]

The utility can therefore be understood as the sum of two
nonnegative contributions, the local (PI) and the nonlocal (CI)
information, that together provide a quantification of the total
information content of an ensemble of patterns.

To gain intuition for this decomposition, a helpful geometric
construction is to consider the information plane spanned by the
PI and CI (Fig. 1G). Unlike the entropy plane, the information
plane has a unique location for the minimum of the utility, where
both information terms vanish, and a broad range of possible
combinations of the two terms that result in similar utility
values. Both terms vanish for uniform or maximally disordered
ensembles (Fig. 1 B and C ). Systems with strong correlation
of cell fate to cell position, and therefore, low-entropy marginal
distributions, have high PI (Fig. 1E). However, patterns with low
PI may still contain significant structure. For instance, a perfect
alternating pattern with random shifts has zero PI, but high CI
(Fig. 1D). Self-organization can thus proceed by 1) setting up
correlations of gene expression with position and/or by 2) setting
up correlations across positions. Note that the state of maximum
utility necessarily corresponds to maximum PI, as the only way
to globally maximize the utility is if all replicates are identical,
implying U = PI = log2 Z and CI = 0, by construction. On
the one hand, this result is a mathematical necessity by virtue
of our careful definitions; on the other, however, its biological
significance is deeply nontrivial: If a biological system can achieve
values of utility close to their maximal bound, the only way
to do so is to maximize PI, i.e., to generate a reproducible
body plan.

Taken together, our framework identifies three entropies to
quantify patterning, which combine to give three quantities to
estimate the total, the PI, and the CI. All six quantities are
summarized in Fig. 1H.

2. Self-Organized Patterning as a Stochastic
Dynamical System

To illustrate how our framework can be applied, we consider a
general dynamical process that governs a stage of development
which, after a finite time T , gives rise to a spatial pattern of cell
fates. Our aim is to quantify the performance of self-organized
patterning at this readout time. For times t ∈ [0, T ], we consider
a very generic implementation of a chemical reaction network,
which could include gene regulatory and cell signaling dynamics,
cell-to-cell coupling, as well as cell divisions and apoptosis. At
the readout time, we take the system to be composed of N
discrete cells. Here, we fix the cell number N throughout the
developmental stage for convenience, but this simplification can
be relaxed. The state of each cell i at time t is described by the
chemical concentration vector gi(t). We assemble the state of
each replicate into a concentration vector

Eg(t) = (g1(t), ..., gi(t), ..., gN (t)). [12]

The regulatory dynamics of each cell are described by a stochastic
dynamical system (Fig. 2B)

∂gi
∂t

= F(1)
� (Eg) + �(gi)�(t). [13]

where �(t) is a multivariate zero-mean unit-covariance Gaussian
white noise process. We allow for a state-dependent magnitude
�(gi) to model, for example, multiplicative gene expression noise.
The dynamical system F (1)

� (Eg) is a general nonlinear function
that describes spatial coupling, chemical reactions, and cell–cell
interactions, and is determined by a set of parameters �. Impor-
tantly, Eq. 13 can be generalized to include mechanochemical
pattern-forming processes as well, by including the cell positions
xi as dynamical variables and allowing for couplings between
mechanical and chemical degrees of freedom (16, 17).

To investigate the performance of self-organizing systems, we
treat noise as an integral part of the problem, since it imposes
constraints and trade-offs on signaling mechanisms which need
to be navigated to achieve final states of high utility. We therefore
focus on self-organization of intrinsically stochastic systems and
consider the following sources of noise (Fig. 2A): 1) noise in
the initial conditions, i.e., in Eg(t = 0), 2) intrinsic noise �(t)
with state-dependent magnitude �(gi) due to thermal and small

A B C D E F

Fig. 2. Cell fate patterning processes. We describe cell fate patterning as a sequence of steps, shown as a schematic (Top), with the corresponding description
in our theoretical approach (Middle), and possible biological implementations (Bottom). (A) The system is subject to various sources of stochasticity, including
intrinsic noise and extrinsic noise across cells or replicates. The dynamics can also start with randomness in initial conditions. (B) The cells subsequently signal
to each other through the signaling network determined by the dynamical systems specified by Eq. 13. (C) This communication establishes self-organized
patterns Eg(t). (D) Each cell autonomously interprets the patterning concentrations at readout time T to decide its fate zi . (E) Fate decisions of all cells yield the
fate pattern of one replicate, Ez. (F ) A large number of replicates constitutes the developmental ensemble P(Ez).
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number fluctuations in mechanochemical processes (Eq. 13), and
3) extrinsic noise, which subsumes cell-to-cell and replicate-to-
replicate (i.e., embryo-to-embryo) variability in the parameters,
such as size or temperature fluctuations across embryos. In the
case of cell-to-cell variability, this means that parameters for each
cell i are drawn from a distribution �i ∼ P�(�; �̄, ��), which
we will assume to be Gaussian in our examples below. Here, the
magnitude of the variability �� is held fixed as a constraint and
we seek to optimize �̄.

The concentrations of the signaling molecules eventually
trigger the specification of each cell into a discrete cell fate. Thus,
while the continuous concentration variables gi can be spatially
coupled, the commitment to a discrete cell fate typically includes
cell-autonomous decision points where an individual cell i, based
on the local concentrations gi, locks into a particular “memory”
state (the cell fate) (Fig. 2 C and D). The cell autonomy of
this step is motivated by the fact that cell fate decisions are
typically implemented at the level of the genome, i.e., within
each cell nucleus. To this end, we include a fate decision step
that maps continuous concentration levels in each cell gi to a
discrete fate zi. This step is defined by the fate decision function
zi = F (2)

� (gi(t)). This formulation encompasses multiple ways
of thinking about cell fate decisions. For example, F (2) could
be implemented as a set of thresholds acting on a single
concentration at the final time point gi(T ), corresponding
to the classical Wolpertian “French-Flag” picture (27). More
generally, the decision function could combine multiple input
concentrations nonlinearly to select a cell fate (28). Alternatively,
the decision step could be implemented via a dynamical system
with discrete attractors, which can be seen as a mathematical
realization of the Waddington landscape proposed in previous
work (29, 30). Irrespective of the details, in all these cases, each
cell will autonomously convert continuous inputs into a discrete
cell fate. Note that the decision function is also parameterized by
the parameter vector � and is therefore subject to optimization
of the utility function. This final fate decision step yields the
discrete fate pattern in each replicate, Ez (Fig. 2E, Eq. 1). Based
on an ensemble of such fate patterns (Fig. 2F ), we can then
evaluate the utility with Eqs. 2–4.

3. Example 1: Lateral Inhibition Signaling

In our first example, we explore the optimal performance of
lateral inhibition signaling (LIS). Biologically, LIS is realized
by the Delta-Notch pathway (31), which plays a key role in a
broad range of self-organized developmental systems (9, 32–35).
In a minimal model of this pathway, each cell i produces a
chemical gi, which inhibits the production of the same chemical
in neighboring cells (36). We start with a simple stochastic
production–degradation dynamics:

dgi
dt

=
1

1 + exp[−f (gi, si)]
− gi + ��(t), [14]

where f (gi, si) is a generic regulatory function that controls the
production of g in response to multiple inputs: g itself as well as
the signal received from neighboring cells, si. Different choices
for f correspond to a range of previously studied models (SI
Appendix). The signal sent by neighboring cells is si =

∑
j 6=i cijgj,

where cij is the connectivity of the cells, here taken according to
a 1D ordering and closed boundaries (i.e., cij = 1 for j = i ± 1,
and cij = 0 otherwise).

We first consider a single regulatory input to f , i.e., the signal
si from neighboring cells. The simplest choice corresponds to
f (gi, si) = −�ssi, which, for sensitivity �s > 0, will result in
the desired repression of gi by neighboring cells. In the presence
of stochasticity, here implemented through the intrinsic noise
�(t) with magnitude �, lateral inhibition leads to symmetry
breaking into cells with high and low concentrations of g. The
fate decision function in this example is simply a deterministic
binary threshold zi = H(gi(T ) − �), where H is a Heaviside
step function and � is the threshold parameter. Thus, intracellular
concentrations are thresholded into patterns of two cell fates, with
some variability across replicates (Fig. 3A). This example can be
seen as an instantiation of the general scheme shown in Fig. 2.

Our minimal model for LIS only has two parameters, � =
{�s, �}, yet already generates a complex space of patterning
outcomes with different apparent levels of reproducibility.
Entropy calculations confirm this observation and identify three
patterns with nearly perfect reproducibility (Srep ≈ 0 bits),
corresponding to no patterning, specification of boundary cells
only, and alternating patterns (Fig. 3 B and E). Positive
values for patterning entropy rule out trivial outcomes and
quantitatively distinguish between high-diversity patterns, such
as the alternating solution with Spat = 1 bit, and lower-diversity
patterns, such as the boundary cell specification with Spat ≈ 0.81
bit (Fig. 3 C and E). Combining both entropy terms into the
utility function finally identifies the optimal parameters where
reproducible, high-diversity patterns emerge at the maximum
utility value of U = 1 bit (star in Fig. 3D).

In this example, the parameter space is low-dimensional
and thus easily visualized. For complex networks with high-
dimensional parameter spaces, direct visualization and parameter
scans will no longer be feasible, but (stochastic) optimization
of the utility can nevertheless be performed to identify optimal
parameters, �∗ = argmax� U (�). An alternative approach is to
visualize patterning outcomes in the two-dimensional entropy
plane, which is possible regardless of the dimensionality of the
model’s parameter space. To demonstrate this, we randomly draw
parameters � for our LIS model from a broad domain of values
and visualize the entropies corresponding to each draw (Fig. 3F ).
We recover the utility-maximizing alternating patterns in the
top right corner of the entropy plane, as expected. The point
cloud shape in the entropy plane is determined by the underlying
mechanism, which constrains the possible patterning outcomes,
as well as the discreteness of the system; it depends on N, Z and
the boundary conditions (SI Appendix).

We next ask whether our framework can identify nontrivial
utility optima, and how these optima vary as a function of noise
in the system, which we treat as a parametric constraint. Indeed,
as the noise is increased, the optimal region in parameter space
shrinks (Fig. 3G). Specifically, there is a minimum sensitivity
�min
s below which cells are insensitive to the received signal and

no patterning occurs. While at vanishing noise, the sensitivity can
grow arbitrarily large with no detrimental effect on patterning,
as noise is increased, a clear upper bound �max

s emerges. Above
this bound, cells become too sensitive to the noise in the system,
causing the utility to drop precipitously. Even with the values of
parameters optimized independently for every choice of noise,
the absolute value of the utility drops significantly as noise is
increased (Fig. 4D, gray line).

Optimization of our model invariably ensures maximal pat-
terning entropy through optimal placement of the decision
threshold. Thus, in this example, utility maximization reduces
to maximization of reproducibility, subsuming the concept of
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Fig. 3. Optimal patterning in a minimal stochastic lateral inhibition system. (A) The production of chemical g in each cell is subject to inhibition by neighboring
cells with a sensitivity parameter �s . We simulate N = 8 cells in 1D with nearest neighbor interactions and closed boundary conditions. As time unfolds,
symmetry is broken with some cells having a high and some cells a low concentration of g. These concentrations are thresholded with threshold � at readout
time T into Z = 2 cell fates (depicted with black and white in the developmental ensemble). (B–D) Reproducibility entropy, patterning entropy, and utility,
respectively, as a function of �s and � , with fixed � = 0.01. Numbers (1)–(4) denote example ensembles shown in panel E. (E) Depictions of four developmental
ensembles: no patterning (1), maximally irreproducible ensemble (2), boundary cells only (3), and reproducible alternating patterning (4). (F ) Visualization of
patterning outcomes in entropy planes for four increasing intrinsic noise levels (� = {0.001,0.01,0.05,0.1}). Each of the 105 dots corresponds to a developmental
ensemble defined by a random draw of its parameters � = {�s , �}. (G) High-utility regions in parameter space, defined as U(�) > 0.99U(�∗), for various noise
levels � (color-coded).

optimizing robustness to noise (37). To investigate whether
additional regulatory complexity can enhance the patterning
performance at large noise levels, we extend our model by adding
a self-activation term to f and write f (gi, si) = −�ssi +�ggi with
�g > 0. Self-activation leads to a cell-intrinsic bistability, such
that regulatory input from neighboring cells biases the focal cell
into one of the two effective potential minima (attractors), each
corresponding to a possible cell fate (34).

To gain intuition, we first set �s = �g = �, which captures
the essential phenomenology (SI Appendix). In this case, � is
a bifurcation parameter with a critical value �c = 4: Intrinsic
cell behavior switches from monostable for � < �c to bistable for
� > �c (Fig. 4A). For small noise, utility is close to maximal across
a broad range of � values: The minimum of this range at very
small � corresponds to regulation functions that are too “shallow”
to permit patterning; the maximum corresponds to excessive
sensitivity to noisy signals that force the cells to stochastically
transition to the “wrong” attractor (Fig. 4 A and B). Interestingly,
at intermediate noise (10−2 ≲ � ≲ 10−1), the utility optimum
becomes increasingly narrow and peaks in the monostable regime
just short of the bifurcation (Fig. 4C ); this may be due to efficient
noise averaging afforded by the lengthening correlation time
close to criticality (38). At larger noise, fluctuations destroy

pattern reproducibility in the monostable regime due to the
graded response of the cells to noisy inputs. Instead, the bistable
regime becomes optimal, as the attractors protect the system
from random fluctuations (39). These results reveal a surprising
nonmonotonic dependence of optimal parameters—and even of
qualitative optimal network behavior—on the noise level, sug-
gesting that bistability only enhances patterning reproducibility
in the large noise regime. When noise is low, hysteresis causes fate
decision defects, and graded responses are preferable to bistability.
Finally, we demonstrate that optimizing the utility across the
entire parameter space � = {�s, �g , �} indeed substantially
expands the range of noise amplitudes where high reproducibility
patterns are attainable (Fig. 4D).

4. Example 2: Cell-Type Proportioning and
Sorting

In the lateral inhibition example, local cell–cell interactions
established cell fate patterns with high positional order and thus
high utility. Yet high utility can also arise when positional order
is absent. This could happen, for instance, when a developmental
system generates precisely controlled proportions of various cell
types whose locations are, however, random across replicates.
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Fig. 4. Optimal patterning in a stochastic lateral inhibition system with self-
regulation. (A) Nullclines of Eq. 14 as a function of the bifurcation parameter
�. Solid and dotted lines correspond to stable and unstable fixed points,
respectively. The dashed line between panels indicates the onset of bistability
at critical �c = 4. (B) Developmental ensembles for different bifurcation
parameter values and nullclines as shown in A. Rows (1)–(3) correspond to
three intrinsic noise levels � = {0.001,0.01,0.4}. Gray frames indicate the
optimal parameter ranges at each noise level, as in C. (C) Utility as a function
of � and �. Optimal parameter range for � for each value of � is indicated by
the hatched region, defined as those values of � that have at least 90% of the
maximum utility at each noise level. The blue dashed line indicates the onset
of bistability at critical �c = 4. (D) Utility of optimal LIS models without (gray)
and with (blue) self-regulation, as a function of noise. For each noise level, all
parameters of both LIS models were optimized independently. Insets show
optimal response curves of both models at three example noise levels. All
panels are plotted with optimized thresholds �∗.

Known mechanisms that lead to such “cell-type proportion-
ing” include lineage dynamics (40), competition for a limited
resource (41), or long-ranged inhibitory interactions (42–44).
In some cases, proportioning is followed by “cell-type sorting,”
where different cell types segregate in space to form spatial
patterns. Here, we would like to understand pattern formation
based on proportioning and sorting through the lens of our
information-theoretic measures.

A simple implementation of the proportioning process em-
ploys long-range inhibition to which cells respond with a
cell-intrinsic bistability. Mathematically, a convenient model is
Eq. 14 introduced in the previous section, but with an all-to-all
connectivity (cij = 1 for all j 6= i), as schematized in Fig. 5A. This
leads to self-organized proportioning into two equally represented
cell types with no positional order (Fig. 5B). Importantly, the
distribution of cell fates can be substantially tightened around
the ideal 1:1 split via the long-range inhibition, compared to
the binomial expectation when cells do not signal to each other
and decide their fates independently (Fig. 5C ). It is precisely this
divergence between the developmental ensemble of interacting
cells that are making correlated decisions, and the independent
cells scenario, that is responsible for the substantial amount
of CI and high utility even when PI remains precisely at zero
(Fig. 5D).

For an idealized 1:1 position-independent proportioning, we
can compute the theoretically maximal value of CI (SI Appendix).
Note that this maximal value decreases with the number of cells
N , i.e., it is a nonextensive quantity. This suggests that the role of

CI may be particularly relevant in proportioning processes early
in development, when the total number of cells is small. We find
that our minimal model can achieve this bound at sufficiently
low noise if its bifurcation parameter � is optimized (Fig. 5E).
Interestingly, for a range of very low noise levels, the optimal
� is close to the bifurcation point, �∗ ∼ �c ; as noise increases,
it moves further into the bistable regime while still maintaining
CI at the theoretical maximum (Fig. 5E); until, for sufficiently
large noise, optimization can no longer compensate and CI drops
rapidly toward zero. Thus, while the shift into the bistable regime
with increasing noise is similar to that observed for LIS (Fig. 4C ),
the global inhibition network in the proportioning process does
not perform patterning at subcritical values of �. Future work
will investigate how the underlying features of the super- and
subcritical dynamical systems relate to noise level (38).

Further analysis of the results in Fig. 5F highlights the
importance of timescales in our optimization framework. The
baseline results assumed T → ∞ to ensure that the utility

B C D

FE

IHG

A

Fig. 5. Optimization of cell-type proportioning and sorting. (A) Schematic of
an all-to-all inhibition network with N = 8 cells, including self-activation in
each cell (interactions shown for a single focal cell). Eq. 14 with f (gi , si) =
�(gi − si) is used. (B) Developmental ensembles based on independent
(binomial) cell fate decisions with equal probability P = 0.5 for both fates (Top,
gray); or on proportioning mechanism of panel Awith � = 3, � = 0.15 (Bottom,
green). (C) Proportioning distribution P(Nk) of the number of black cells Nk
per replicate, for the binomial ensemble (gray line) and the proportioning
mechanism (green). (D) PI, CI, andU for the proportioning mechanism. The red
dashed line indicates the maximum possible CI for a proportioning process,
CImax = log2 Z− 1

N log2[N!/(N/Z)Z ] (assuming N is divisible by Z, SI Appendix).
(E) Utility as a function of the bifurcation parameter � for varying intrinsic
noise level � (color bar). The blue dashed line indicates �c; the red dashed
line indicates CImax. (F ) Utility as a function of � with optimally chosen �
at each noise level. Different grayscale curves are computed for different
values of readout time T (color bar). (G) Schematic of the cell sorting process:
cells in each replicate swap places until all black cells are on the Right. (H)
Developmental ensembles obtained by noise-free sorting of the ensembles
in B. (I) PI as a function of intrinsic noise in the initial proportioning process,
obtained after noise-free sorting of the ensembles in F. Blue dashed line:
lower bound on PI obtained by sorting a binomial ensemble (SI Appendix).
Optimized thresholds �∗ are used throughout.
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function scores steady-state developmental ensembles. What
happens, however, if the readout time T is treated as a constraint
that is progressively shortened? This is biologically relevant, since
developmental steps usually follow a precise temporal schedule;
scenarios where the readout happens before the system has fully
relaxed have previously been suggested (45). Indeed, as T is
shortened, the degeneracy over noise levels is lifted: An optimal
noise level emerges at which the utility can be globally maximized
with an appropriate choice of � (Fig. 5F ). This happens because
favored values � ∼ �c give rise to critical or bistable potential
landscapes where dynamics drastically slows down or possibly
gets stuck in a wrong attractor, such that a judicious addition
of noise will help the system reach high-utility steady states even
within a limited T .

After establishing two cell types in a proportioning process, a
common developmental step is cell sorting into distinct spatial
domains. This establishes positional order and thus generates PI,
which we explore in a minimal model of proportioning followed
by sorting that adds no further sources of stochasticity (Fig. 5
G and H ). Sorting can establish PI even in the absence of
initial CI (by sorting draws from a binomial ensemble), thereby
providing a lower bound to the generated PI (Fig. 5I and SI
Appendix). Substantially higher PI (and utility) values can be
reached; however, if sorting acts on an ensemble proportioned
precisely with an optimal choice of �. In this case, we find that
PI closely mirrors the behavior of CI as a function of noise, both
in steady-state as well as under limited T scenarios (Fig. 5 F and
I ). The sorting process therefore both generates PI and converts
CI into PI, leading to increased total information, indicating
that such conversion can occur without conservation of the total
information of the pattern (Fig. 5 F and I ). Taken together,
our framework suggests how evolution could co-opt low levels of
biological noise and optimize a common, simple signaling system
to improve patterning performance via interaction-driven cell
proportioning and sorting—namely, by generating correlational
order and efficiently converting it into PI.

5. Example 3: Stochastic Reaction–Diffusion
Systems

A key developmental paradigm is cell fate patterns established by
diffusible morphogens (14, 15). Here, we study a minimal model
for this paradigm, i.e., a reaction–diffusion system with two
chemical species—an “activator” and an “inhibitor” (46, 47)—
and search for its optimal self-organization parameters in the pres-
ence of noise. Activator–inhibitor patterning describes a number
of developmental and regenerative systems (48), including palatal
ridge formation (49), digit patterning (50), and long-range axis
patterning in planarian worms (51).

Activator and inhibitor species are tracked in space and time
by variables A(x, t) and I(x, t), respectively, which we collect
into a two-component concentration vector g = (A, I) whose
dynamics can be seen as a special case of Eq. 13. The two species
diffuse with coefficients DA and DI , and interact with Hill-type
reaction terms f (A, I) = Ah/(Ah + I h) (52):

∂tA = DA∂
2
x A + �Af (A, I)− �AA + ��(t)

∂t I = DI∂
2
x I + �I f (A, I)− �I I + ��(t), [15]

where � denotes the intrinsic noise magnitude. Motivated by
the example of long-range axis patterning (51), we solve this
system on a one-dimensional domain of length L with reflecting
boundary conditions. If the inhibitor diffuses much faster than

the activator, spatial patterns emerge with shapes that depend on
the ratios of the diffusive length scales of either species, `A,I =
√
DA,I/�A,I , to the system size L. To account for the left–right

symmetry of the system, we align patterns through reflection
around x = L/2 (SI Appendix). In our example, steady-state
concentration patterns are subsequently interpreted by individual
cells that threshold their local activator levels, A(xi, T →∞), to
commit to one of the Z possible cell fates. Ultimately, variability
in the developmental ensemble is controlled by noise (Fig. 6A):
intrinsic (here with fixed � = 0.005) as well as extrinsic, whose
role we explore in depth in what follows. Here, we implement
extrinsic noise as fluctuations in the activator production rate
across replicates, �A ∼ N (�̄A, �2

A), and we treat its magnitude
�A as a parametric constraint (see SI Appendix for a similar analysis
with varying intrinsic noise).

Utility depends nontrivially on two key dimensionless pa-
rameters, L/`A and L/`I , revealing a broad utility optimum
at intermediate activator diffusion (Fig. 6B). To understand this
optimum, we fix L/`I and vary L/`A, taking the system through
multiple regimes: at large activator diffusion (small L/`A), there
are no spontaneously generated patterns; this is followed by
the onset of patterning in an intermediate L/`A regime with
a single stable wavelength due to the finite system size (pattern
monostability); while at small activator diffusion (large L/`A),
multiple wavelengths fit into the system, leading to pattern
multistability (Fig. 6F ).

How do utility optima depend on the noise level? At small
noise, monostability is preferred, with a broad flat maximum as
a function of L/`A (Fig. 6C ). As the extrinsic noise is increased,
the optimum becomes progressively narrower, and shifts toward
larger values of L/`A. This is because larger values of L/`A (i.e.,
smaller DA) increase the pattern amplitude (Fig. 6F ), thereby
increasing the effective signal-to-noise ratio that makes patterning
more robust to fluctuations. At even larger extrinsic noise, the
optimum transitions into the multistable regime: It is better, from
the utility perspective, to further increase the pattern amplitude
and maintain robust patterning in face of noise even though this
splits the developmental ensemble into a mixture of at least two
distinct “body plans” (Fig. 6 C and G).

This split is the reason why, at the onset of multistability, PI
sharply drops and a large CI contribution to the utility emerges
with increasing L/`A (Fig. 6D). A similar effect is observed in
systems with L/`A optimized separately for each extrinsic noise
level, as the noise increases (Fig. 6H ). In sum, when noise is
sufficiently low for theoretically maximal utility values to be
approached, maximizing utility corresponds to maximizing PI
with vanishing CI, with an emergence of a single reproducible
body plan, as we noted already in Section 1; yet at higher noise,
multistability of body plans cannot be avoided. Interestingly,
if the number of possible cell fates Z with which the system
needs to be reliably patterned increases, noise represents a more
severe constraint and the multistable patterns become optimal
already at lower noise levels (Fig. 6E). Assuming that multistable
body plans are not evolutionarily favored, we wondered whether
additional regulatory mechanisms could implement error cor-
rection to improve patterning outcomes even at high extrinsic
noise.

To that end, we extended our basic model, Eq.15, by including
an additional diffusible species N (x, t), which feeds back onto
the cell fate decision process (Fig. 6J ). By considering multiple
network topologies, we find that when fate decisions are made
by thresholding a read-out species activated via an incoherent
feed-forward loop (53, 54) by A while simultaneously inhibited
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Fig. 6. Optimal patterning in a stochastic activator–inhibitor system. (A) Schematic of the cell fate patterning process in the activator–inhibitor system. Fate
patterns are generated by thresholding the activator profile using a set of thresholds {�1 , ..., �Z−1} for Z fates. (B) Normalized utility U/ log2 Z as a function of the
activator and inhibitor diffusive length scales (�A = 0). (C) Normalized utility as a function of L/`A with L/`I = 2, corresponding to the gray rectangle marked in
B, for increasing extrinsic noise magnitude �A using fixed Z = 4. Shaded bars at the top correspond to the stability regimes indicated in F. Stars denote maximal
utility solutions at each noise level. (D) PI and CI contributions to the utility as a function of L/`A (�A = 0). (E) Top 1% utility parameter regions as a function of
�A (color bar in C) and Z. (F ) Activator profiles (Top) and fate patterns (Bottom) as a function of L/`A with L/`I = 2 (�A = 0.05). (G) Activator profiles as a function
of increasing �A. For each noise level, L/`A is chosen optimally, corresponding to stars in C. (H) PI and CI contributions to the utility of the optimal patterns in G
as a function of �A. (I) Top 1% utility parameter regions as a function of L/`A and �A. Stars correspond to the maximal utility solutions in C. (J) Schematic of the
network with an additional normalizer species N. (K ) Example profiles of the activator (Left, solid), normalizer (Left, dashed), and normalizer-corrected profiles
(Right). Twenty samples are shown in thin gray lines, with three examples highlighted in blue, green, and red. (L) Normalizer-corrected profiles Ã for optimal
parameter values of L/`A as a function of increasing extrinsic noise level �A. (M) PI and CI contributions to the utility of the optimal normalizer-corrected profiles
as a function of noise level. (N) Top 1% utility parameter regions of the normalizer network as a function of L/`A and �A. Throughout this example, we use a
dimensionless parameterization, with the free parameters held fixed at �A�I/(�A�I) = 0.5 and h = 5. We align activator profiles such that maxima are located
at x = L and use optimized thresholds. See SI Appendix for a similar analysis with varying intrinsic noise.

by fast-diffusing N (which is in turn also activated by A),
extrinsic-noise-induced fluctuations are corrected (Fig. 6K and
SI Appendix). Since this loop normalizes the activator profiles,
we term the additional species the “normalizer,” in analogy to
fast-diffusing “expander” species previously shown to control
pattern scaling (52, 55, 56). When we optimize the parameters
of this normalizer network (SI Appendix), we are driven toward
very fast diffusion for the normalizer species, allowing N to
essentially become a global “sensor” for the overall replicate-
to-replicate amplitude variation of A which can consequently
be compensated for (Fig. 6L). With these optimal parameters,
we find a reliable preference for the monostable regime of the
underlying activator–inhibitor network even as extrinsic noise is
increased, resulting in high-utility values that lead to a unique and
reliable body plan for which U ≈ PI (Fig. 6 M and N ). Taken

together, our framework predicts both the topology and optimal
parameter values for a normalizer module that can be added onto
the classical activator–inhibitor system to drastically improve its
patterning performance in the face of extrinsic variability.

6. Discussion

In this study, we introduced a mathematical framework that
defines information content of self-organized spatial patterns.
Maximization of this measure allowed us to identify optimal op-
erating regimes of several paradigmatic developmental patterning
systems in the presence of realistic sources of noise. The results
demonstrate how and why such noise can fundamentally alter the
mechanisms required to generate reproducible patterns. Func-
tionally, our framework allows us to rationalize the existence, and
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assess the importance, of individual mechanisms and modules
that comprise biological patterning systems.

The utility measure, Eq. 4, encapsulates a very generic trade-
off: We hypothesize that an essential feature of self-organization
in developmental systems is a simultaneous maximization of
reproducibility and of cell type diversity. While we expect the re-
producibility entropy term to be general, different alternatives to
maximizing diversity are possible. For example, rather than being
maximized, the cell type diversity could just need to be sufficient,
as when two cell types should be generated reliably in known, yet
unequal proportions (18, 57). Our framework accommodates
this situation easily, by minimizing reproducibility entropy at
fixed patterning entropy, formalizing the notion of robustness to
noise (37). One can also contemplate more elaborate measures
to be traded against the reproducibility, for example “pattern
complexity.” To quantify complexity, a number of definitions
based on algorithmic information theory have been introduced,
including Kolmogorov complexity, effective complexity, logical
depth, and complextropy (58). While such complexity measures
could be considered in future work as additional trade-off terms
along the lines proposed previously (59), one should bear in mind
that these measures typically lack tractability (e.g., Kolmogorov
complexity is uncomputable in most cases) or generality (e.g.,
assumptions must be made about what is “complex”). A less
abstract set of alternatives would trade off reproducibility against
a term that minimizes the divergence of the model-generated
patterns from a desired (usually measured) pattern (60). This
allows exploring trade-offs induced by biophysical constraints
and maximizing reproducible patterning outcomes that are
similar to the observed pattern (61–63). Another productive
approach is to start with the PI itself as the utility (63, 64) to be
maximized. Here, our results provide the theoretical justification
for this proxy, which should be relevant i) in the low noise regime
and ii) in the stages of patterning after any spontaneous symmetry
breaking has already occurred.

The information content of an ensemble of patterns can be
decomposed into two interpretable contributions. PI measures
the local spatial ordering that directly reflects the specification of a
reproducible body plan. CI quantifies the amount of nonlocal sta-
tistical structure that increases developmental reproducibility but
does not directly imply a tight correspondence between cell types
and positions. This decomposition suggests that, interestingly, a
number of developmental systems might undergo phases that are
dominated by CI, followed by conversion to states with high PI
(Fig. 7). For instance, intestinal organoids first break symmetry

through lateral inhibition, thereby selecting a positionally ran-
dom, but statistically correlated, subset of cells to differentiate
into Paneth cells, followed by establishment of positionally
ordered patterns of crypt-like and villus-like regions (9) (Fig. 7A).
Furthermore, the inner cell mass compartment of the early
mammalian embryo initially self-organizes precise proportions
of two cell types (primitive endoderm and epiblast) (18, 57),
followed by sorting through differential adhesion into a positional
pattern (65). Finally, 3D gastruloids first establish salt-and-
pepper patterns of Brachyury positive and negative cells (66),
while later stages exhibit remarkably precise positional pat-
terns (67); a similar transformation has also been observed
in neural tube organoids (68). All these systems appear to
initially generate CI through symmetry breaking, which is then
converted into PI—our suggestion is to visualize and analyze
these processes as trajectories in the information plane (Fig. 7B).
Other, not fully self-organized, developmental systems can also
be understood in terms of the same framework. For instance,
2D stem cell assemblies self-organize concentric patterns of cell
fates (7, 69, 70), albeit based on an initial “boundary condition”
of receptor localization (71). Furthermore, self-organized lateral
inhibition signaling in Drosophila patterning operates on a long
wavelength “prepattern” (11). Understanding how all these
systems set up and transform information as the developmental
processes unfold may provide a unifying classification scheme
for patterning mechanisms and suggest generic routes toward
self-organized patterns and body plans with high PI.

Self-organized fate patterning proceeds through a sequence
of steps, from noisy initial conditions, to patterns of signaling
activity, to cell fate commitment. Self-organization through
cell–cell communication has been described by physical mod-
els ranging from reaction–diffusion systems to contact-based
interactions (14, 15) and mechanochemical processes (16, 17).
Fate specification at the single-cell level has been described by
intracellular gene regulatory networks and dynamical systems
models inspired by Waddington’s landscape (29, 30). An attrac-
tive view is that both steps can be understood in the language of
dynamical systems, which provides strong constraints on the type
of bifurcation motifs that comprise these systems (30). We build
on this integrative view to consider both pattern establishment
and the commitment to discrete cell fates, followed by the
utility-based evaluation of the final outcome. In the future, it
would be interesting to investigate how the information content
of the patterns increases over time, and how this limits the
utility of discretized cell fate patterns. Our approach allows us

Fig. 7. Classification of self-organized systems in information space. (A) Schematic of developmental stages of three self-organized developmental systems:
in vitro intestinal organoids (Top), the early mammalian embryo at the blastocyst stage (Middle), and in vitro 3D gastruloids (Bottom). (B) Hypothesized trajectory
in the information plane: initial nonpatterned stages have no information (1), intermediate stages give rise to CI (2), and final stages establish reproducible fate
patterns with high PI (3).
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to ask why, given a certain structure and magnitude of various
noise sources, particular regulatory motifs should be favored.
It also allows us to ask how the established signals would be
best compressed into discrete cell fates (72). As demonstrated
by the mono- vs. bistable lateral inhibition signaling example
(Fig. 4), different motifs indeed can generate the same amount
of information in the absence of noise, but exhibit divergent
performance at larger noise magnitudes. Such optimization
in the presence of noise would be interesting to incorporate
into functional large-scale screens of computational patterning
models, such as multispecies Turing systems (73, 74), which have
thus far been limited to deterministic regimes. Furthermore, our
example of cell type proportioning shows how under finite-time
constraints, addition of noise can actually increase utility, in line
with previously proposed noise-dependent mechanisms of spatial
patterning (75, 76) and fate decisions (77, 78). More generally,
our results reinforce the notion that noise is not just a “small
correction” to patterning (even if it appears as such in evolved
systems that we experimentally study), but—in the broad space of
evolutionary possibilities—should be simultaneously considered
both as a deleterious force to be kept in check as well as a source
of variability to be harnessed during early development.

Beyond optimization, our framework lays the foundation
for estimating the total information content of experimentally
observed patterns. Specifically, we provide a generalization
of PI to the total information content of a pattern, which
also includes CI. In the context of morphogen patterns that
are informative about position, CI lower-bounds the excess
information that may be gained by making use of spatial
correlations. This suggests a possible generalization of local (5)
to nonlocal decoding. Indeed, recent work demonstrates that
additional information is contained in spatial correlations of
the pair rule stripes in Drosophila (79). Here, we entertained
the minimal idea that permitted converting CI into PI through
a fast-diffusing “normalizer” species (52, 55, 56) integrated as
an incoherent feed-forward loop (53, 54, 80). The circuit that
can compensate for the effects of extrinsic noise represents a
form of spatial buffering, in analogy with temporal buffering in
circadian clocks, where a long-lived chemical builds up robustness
against temperature changes (81). Similar principles could apply
to sensing mechanisms in a local neighborhood, as was recently
suggested in the context of epiblast patterning in a “neighborhood
watch model” (82).

While our primary focus was to formalize the notion of infor-
mation establishment in self-organized systems and illustrating it
on a broad range of well-understood toy models, the application
of this framework to large-scale high-dimensional datasets ne-
cessitates further development of sophisticated computational,
approximative, and inference schemes. In future work, this
could allow estimation of information content from experimental
datasets of spatiotemporal signaling and gene expression, such
as multiplex staining (83), high-throughput live imaging (84),
single-cell sequencing (85) or spatial transcriptomics (86); as
well as datasets of tissue mechanical patterns (87). Linking our
optimality framework to rigorous statistical inference and hy-
pothesis testing via a recently proposed Bayesian framework (60)
would allow quantitative, data-driven inference of the patterning
performance from experimental data.

7. Materials and Methods

7.1. Numerical Simulations of Pattern Formation and Optimization.
Throughout all three examples, the stochastic pattern formation dynamics are
simulated using custom-written python code using numpy (88). Specifically, the
discretized version of Eq.13 is integrated numerically, followed by thresholding
into cell fate patterns. To explore model parameter spaces, we perform grid-
based parameter scans. To find optimal fate thresholds, we use scipy’s differential
evolution optimizer (89). For more details, please refer to SI Appendix.

Data, Materials, and Software Availability. There were no data generated
as part of this study. Code to perform simulations, evaluate entropy and
information quantities, and optimize parameters is available at https://github.
com/dbrueckner/SelforgInformation (90).
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