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Abstract
The Upper Bound Theorem for convex polytopes implies that the p-th Betti number of the Čech
complex of any set of N points in Rd and any radius satisfies βp = O(Nm), with m = min{p+1, ⌈d/2⌉}.
We construct sets in even and odd dimensions, which prove that this upper bound is asymptotically
tight. For example, we describe a set of N = 2(n + 1) points in R3 and two radii such that the first
Betti number of the Čech complex at one radius is (n + 1)2 − 1, and the second Betti number of the
Čech complex at the other radius is n2. In particular, there is an arrangement of n contruent balls
in R3 that enclose a quadratic number of voids, which answers a long-standing open question in
computational geometry.
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1 Introduction

Given a finite set of points A in Rd and a radius, their Čech complex is the collection of subsets
of the points whose closed balls have a nonempty common intersection. This is an abstract
simplicial complex isomorphic to the nerve of the balls, and by the Nerve Theorem [5], it
has the same homotopy type as the union of the balls. This property is the reason for the
popularity of the Čech complex in topological data analysis; see e.g. [7, 9]. Of particular
interest are the Betti numbers, which may be interpreted as the numbers of holes of different
dimensions. These are intrinsic properties, but for a space embedded in Rd, they describe
the connectivity of the space as well as that of its complement. Most notably, the (reduced)
zero-th Betti number, β0, is one less than the number of connected components, and the last
possibly non-zero Betti number, βd−1, is the number of voids (bounded components of the
complement). Spaces that have the same homotopy type – such as a union of balls and the
corresponding Čech complex – have identical Betti numbers. While the Čech complex is not
necessarily embedded in Rd, the corresponding union of balls is, which implies that also the
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53:2 Maximum Betti Numbers of Čech Complexes

Čech complex has no non-zero Betti numbers beyond dimension d− 1. To gain insight into
the statistical behavior of the Betti numbers of Čech complexes, it is useful to understand
how large the numbers can get, and this is the question we study in this paper.

The question of maximum Betti numbers lies at the crossroads of computational topology
and discrete geometry. Originally inspired by problems in the theory of polytopes [20,
28], optimization [22], robotics, motion planning [23], and molecular modeling [21], many
interesting and surprisingly difficult questions were asked about the complexity of the union
of n geometric objects, as n tends to infinity. For a survey, consult [1]. Particular attention
was given to estimating the number of voids among N simply shaped bodies, e.g., for the
translates of a fixed convex body in Rd. In the plane, the answer is typically linear in N (for
instance, for disks or other fat objects), but for d = 3, the situation is more delicate. The
maximum number of voids among N translates of a convex polytope with a constant number
of faces is Θ(N2), but this number reduces to linear for the cube and other simple shapes [3].
It was conjectured for a long time that similar bounds hold for the translates of a convex
shape that is not necessarily a polytope. However, this turned out to be false: Aronov,
Cheung, Dobbins and Goaoc [2] constructed a convex body in R3 for which the number
of voids is Ω(N3). This is the largest possible order of magnitude for any arrangement of
convex bodies that are not necessarily translates of a fixed one [19]. It is an outstanding
open problem whether there exists a centrally symmetric convex body with this property.

For the special case where the convex body is the unit ball in R3, the maximum number of
voids in a union of N translates is O(N2). This can be easily derived from the Upper Bound
Theorem for 4-dimensional convex polytopes. It has been open for a long time whether this
bound can be attained. Our main theorem answers this question in the affirmative, in a
more general sense.

▶ Main Theorem. For every d ≥ 1, 0 ≤ p ≤ d− 1, and N ≥ 1, there is a set of N points in
Rd and a radius such that the p-th Betti number of the Čech complex of the points and the
radius is βp = Θ(Nm), with m = min{p+ 1, ⌈d/2⌉}.

For d = 3, the maximum second Betti number is β2 = Θ(N2) in R3, which is equivalent to
the maximum number of voids being Θ(N2). In addition to the Čech complex, the proof of
the Main Theorem makes use of three complexes defined for a set of N points, A ⊆ Rd, in
which the third also depends on a radius r ≥ 0:

the Voronoi domain of a point a ∈ A, denoted dom(a,A), contains all points x ∈ Rd that
are at least as close to a as to any other point in A, and the Voronoi tessellation of A,
denoted Vor(A), is the collection of dom(a,A) with a ∈ A [26];
the Delaunay mosaic of A, denoted Del(A), contains the convex hull of Σ ⊆ A if the
common intersection of the dom(a,A), with a ∈ Σ, is non-empty, and no other Voronoi
domain contains this common intersection [8]; it is closed under taking faces and, therefore,
is a polyhedral complex;
the Alpha complex of A and r, denoted Alf(A, r), is the subcomplex of the Delaunay
mosaic that contains the convex hull of Σ if the common intersection of the dom(a,A),
with a ∈ Σ, contains a point at distance at most r from the points in Σ; see [10, 11].

The Delaunay mosaic is also known as the dual of the Voronoi tessellation, or the Delaunay
triangulation of A. Note that Alf(A, r) ⊆ Alf(A,R) whenever r ≤ R, and that for sufficiently
large radius, the Alpha complex is the Delaunay mosaic. Similar to the Čech complex, the
Alpha complex has the same homotopy type as the union of balls with radius r centered
at the points in A, and thus the same Betti numbers. It is instructive to increase r from 0
to ∞ and to consider the filtration or nested sequence of Alpha complexes. The difference
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between an Alpha complex, K, and the next Alpha complex in the filtration, L, consists
of one or more cells. If it is a single cell of dimension p, then either βp(L) = βp(L) + 1 or
βp−1(L) = βp−1(L) − 1, and all other Betti numbers are the same. In the first case, we say
the cell gives birth to a p-cycle, while in the second case, it gives death to a (p− 1)-cycle, and
in both cases we say it is critical. If there are two or more cells in the difference, this may
be a generic event or accidental due to non-generic position of the points. In the simplest
generic case, we simultaneously add two cells (one a face of the other), and the addition is
an anti-collapse, which does not affect the homotopy type of the complex. More elaborate
anti-collapses, such as the simultaneous addition of an edge, two triangles, and a tetrahedron,
can arise generically. The cells in an interval of size 2 or larger cancel each other’s effect on
the homotopy type, so we say these cells are non-critical. We refer to [4] for more details.

With these notions, it is not difficult to prove the upper bounds in the Main Theorem. As
mentioned above, the Čech and alpha complexes for radius r have the same Betti numbers.
Since a p-cycle is given birth to by a p-cell in the filtration of Alpha complexes, and every
p-cell gives birth to at most one p-cycle, the number of p-cells is an upper bound on the
number of p-cycles, which are counted by the p-th Betti number. The number of p-cells in
the Alpha complex is at most that number in the Delaunay mosaic, which is, by the Upper
Bound Theorem for convex polytopes [20, 28], at most O(Nm), with m = min{p+ 1, ⌈d/2⌉}.

By comparison, to come up with constructions that prove matching lower bounds is delicate
and the main contribution of this paper. Our constructions are multipartite and inspired by
Lenz’ constructions related to Erdős’s celebrated question on repeated distances [14]: what
is the largest number of point pairs in an N -element set in Rd that are at distance 1 apart?
Lenz noticed that in 4 (and higher) dimensions, this maximum is Θ(N2). To see this, take
two circles of radius √

2/2 centered at the origin, lying in two orthogonal planes, and place
⌈N/2⌉ and ⌊N/2⌋ points on them. By Pythagoras’ theorem, any two points on different
circles are at distance 1 apart, so the number of unit distances is roughly N2/4, which is
nearly optimal. For d = 2 and 3, we are far from knowing asymptotically tight bounds. The
current best constructions give Ω(N1+c/ log log N ) unit distance pairs in the plane [6, page
191] and Ω(N4/3 log logN) in R3, while the corresponding upper bounds are O(N4/3) and
O(N3/2); see [25] and [18, 27]. Even the following, potentially simpler, bipartite analogue of
the repeated distance question is open in R3: given N red points and N blue points in R3,
such that the minimum distance between a red and a blue point is 1, what is the largest
number of red-blue point pairs that determine a unit distance? The best known upper bound,
due to Edelsbrunner and Sharir [13] is O(N4/3), but we have no superlinear lower bound.
This last question is closely related to the subject of our present paper.

It is not difficult to see that the upper bounds in the Main Theorem also hold for the
Betti numbers of the union of N not necessarily congruent balls in Rd. This requires the
use of weighted versions of the Voronoi tessellation and the Upper Bound Theorem. In the
lower bound constructions, much of the difficulty stems from the fact that we insist on using
congruent balls. This suggests the analogy to the problem of repeated distances.

Outline. Section 2 proves the Main Theorem for sets in even dimensions. Starting with
Lenz’ constructions, we partition the Delaunay mosaic into finitely many groups of congruent
simplices. We compute the radii of their circumspheres and obtain the Betti numbers by
straightforward counting. In Section 3, we establish the Main Theorem for sets in three
dimensions. The situation is more delicate now, because the simplices of the Delaunay mosaic
no longer fall into a small number of distinct congruence classes. Nevertheless, they can be
divided into groups of nearly congruent simplices, which will be sufficient to carry out the
counting argument. The generalization to odd dimensions larger than 3 can be found in the
arXiv version of this paper [12]. Section 4 contains concluding remarks and open questions.

SoCG 2024



53:4 Maximum Betti Numbers of Čech Complexes

2 Even dimensions

In this section, we give an answer to the maximum Betti number question for Čech complexes
in even dimensions. To state the result, let nk be the minimum integer such that the edges
of a regular nk-gon inscribed in a circle of radius 1/

√
2 are strictly shorter than

√
2/k. For

example, if k = 2, we have n2 = 5, as the side length of an inscribed square is equal to 1.

▶ Theorem 1 (Maximum Betti Numbers in R2k). For every 2k ≥ 2 and n ≥ nk, there exist a
set A of N = kn points in R2k and radii ρ0 < ρ1 < . . . < ρ2k−2 such that

βp(Čech(A, ρp)) =
(

k
p+1

)
· np+1 ±O(1), for 0 ≤ p ≤ k − 1; (1)

βp(Čech(A, ρp)) =
(

k−1
p+1−k

)
· nk ±O(1), for k ≤ p ≤ 2k − 2. (2)

For p = 2k − 1, there exist N = k(n+ 1) + 2 points in R2k and a radius such that the p-th
Betti number of the Čech complex is nk ±O(nk−1).

The reason for the condition n ≥ nk will become clear in the proof of Lemma 5, which
establishes a particular ordering of the circumradii of the cells in the Delaunay mosaic. The
proof of the cases 0 ≤ p ≤ 2k− 2 is not difficult using elementary computations, the results of
which will be instrumental for establishing the more challenging odd-dimensional statements
in Section 3 as well as Section 4 in [12]. The proof consists of four steps presented in four
subsections: the construction of the point set in Section 2.1, the geometric analysis of the
simplices in the Delaunay mosaic in Section 2.2, the ordering of the circumradii in Section 2.3,
and the final counting in Section 2.4. The proof of the case p = 2k − 1 in R2k readily follows
the case p = 2k − 2 in R2k−1, as described in [12].

2.1 Construction
Let d = 2k. We construct a set A = A2k(n) of N = kn points in Rd using k concentric circles
in mutually orthogonal coordinate planes: for 0 ≤ ℓ ≤ k − 1, the circle Cℓ with center at the
origin, 0 ∈ Rd, is defined by x2

2ℓ+1 + x2
2ℓ+2 = 1

2 and xi = 0 for all i ̸= 2ℓ+ 1, 2ℓ+ 2. On each
of the k circles, we choose n ≥ 3 points that form a regular n-gon. The length of the edges
of these n-gons will be denoted by 2s. Obviously, we have s =

√
2

2 sin π
n . Assuming k ≥ 2,

the condition n ≥ nk implies that the Euclidean distance between consecutive points along
the same circle is less than 1, and by Pythagoras’ theorem, the distance between any two
points on different circles is 1. It follows that for r = 1

2 , neighboring balls centered on the
same circle overlap, while the balls centered on different circles only touch. Correspondingly,
the first Betti number of the Čech complex for a radius slightly less than 1

2 is β1 = k. To get
the first Betti number for r = 1

2 , we add all edges of length 1, of which k − 1 connect the k
circles into a single connected component, while the others increase the first Betti number to
β1 = k +

(
k
2
)
n2 − (k − 1) =

(
k
2
)
n2 + 1.

To generalize the analysis beyond the first Betti number, we consider the Delaunay mosaic
and two radii defined for each of its cells. The circumsphere of a p-cell is the unique (p− 1)-
sphere that passes through its vertices, and we call its center and radius the circumcenter
and the circumradius of the cell. To define the second radius, we call a (d− 1)-sphere empty
if all points of A lie on or outside the sphere. The radius function on the Delaunay mosaic,
Rad: Del(A) → R, maps each cell to the radius of the smallest empty (d− 1)-sphere that
passes through the vertices of the cell. By construction, each Alpha complex is a sublevel set
of this function: Alf(A, r) = Rad−1[0, r]. The two radii of a cell may be different, but they
agree for the critical cells as defined in terms of their topological effect in the introduction.
It will be convenient to work with the corresponding geometric characterization of criticality;
see also [24]:
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▶ Definition 2 (Critical Cell). A critical cell of Rad: Del(A) → R is a cell Σ ∈ Del(A) that
(1) contains the circumcenter in its interior, and (2) the (d − 1)-sphere centered at the
circumcenter that passes through the vertices of Σ is empty and the vertices of Σ are the only
points of A on this sphere.

There are two conditions for a cell to be critical for a reason. The first guarantees that
its topological effect is not canceled by one of its faces, and the second guarantees that it
does not cancel the topological effect of one of the cells it is a face of. As proved in [4],
the radius function of a generic set, A ⊆ Rd, is generalized discrete Morse; see Forman [15]
for background on discrete Morse functions. This means that each level set of Rad is a
union of disjoint combinatorial intervals, and a simplex is critical iff it is the only simplex in
its interval. Our set A is not generic because the (d − 1)-sphere with center 0 ∈ R2k and
radius √

2/2 passes through all its points. Indeed, Del(A) is really a 2k-dimensional convex
polytope, namely the convex hull of A and all its faces. Nevertheless, the distinction between
critical and non-critical cells is still meaningful, and all cells in the Delaunay mosaic of our
construction will be seen to be critical.

The value of the 2k-polytope under the radius function is √
2/2, while the values of its

proper faces are strictly smaller than √
2/2. Let Σℓ,j be such a face, in which ℓ + 1 is the

number of circles that contain one or two of its vertices, and j + 1 is the number of circles
that contain two. Specifically, Σℓ,j has j + 1 disjoint short edges of length 2s, while the
remaining long edges all have unit length. Indeed, the geometry of the simplex is determined
by ℓ and j and does not depend on the circles from which we pick the vertices or where along
these circles we pick them, as long as two vertices from the same circle are consecutive along
this circle. For example, Σ1,−1, Σ1,0, and Σ1,1 are the unit length edge, the isosceles triangle
with one short and two long edges, and the tetrahedron with two disjoint short and four long
edges, respectively. We call the Σℓ,j ideal simplices. In even dimensions they are precisely
the simplices in the Delaunay mosaic of our construction. However, in odd dimensions, the
cells in the Delaunay mosaic only converge to the ideal simplices. This will be explained in
detail in Section 3 as well as in Section 4 of the arXiv version of this paper [12].

2.2 Circumradii of ideal simplices
In this section, we compute the sizes of some ideal simplices, beginning in four dimensions.
The ideal 2-simplex or triangle, denoted Σ1,0, is the isosceles triangle with one short and two
long edges. We write h(s) for the height of Σ1,0 (the distance between the midpoint of the
short edge and the opposite vertex), and r(s) for the circumradius. There is a unique way
to glue four such triangles to form the boundary of a tetrahedron: the two short edges are
disjoint and their endpoints are connected by four long edges. This is the ideal 3-simplex or
tetrahedron, denoted Σ1,1. We write H(s) for its height (the distance between the midpoints
of the two short edges), and R(s) for its circumradius.

▶ Lemma 3 (Ideal Triangle and Tetrahedron). The squared heights and circumradii of the
ideal triangle and the ideal tetrahedron in R4 satisfy

h2(s) = 1 − s2, 4r2(s) = 1
1 − s2 , (3)

H2(s) = 1 − 2s2, 4R2(s) = 1 + 2s2. (4)

Proof. By Pythagoras’ theorem, the squared height of the ideal triangle is h2 = 1 − s2. If
we glue the two halves of a scaled copy of the ideal triangle to the two halves of the short
edge, we get a quadrangle inscribed in the circumcircle of the triangle. One of its diagonals
passes through the center, and its squared length satisfies 4r2 = 1 + (s/h)2 = 1 + s2

1−s2 .

SoCG 2024



53:6 Maximum Betti Numbers of Čech Complexes

By Pythagoras’ theorem, the squared height of the ideal tetrahedron is H2 = h2 − s2 =
1 − 2s2. Hence, the squared diameter of the circumsphere is 4R2 = H2 + (2s)2 = 1 + 2s2. ◀

To generalize the analysis beyond the ideal simplices in four dimensions, we write rℓ,j(s) for
the circumradius of Σℓ,j , so r1,−1(s) = 1

2 , r1,0(s) = r(s), and r1,1(s) = R(s). For two kinds
of ideal simplices, the circumradii are particularly easy to compute, namely for the Σℓ,−1 and
the Σℓ,ℓ, and we will see that knowing their circumradii will be sufficient for our purposes.

▶ Lemma 4 (Further Ideal Simplices). For ℓ ≥ 0, the squared circumradii of Σℓ,−1 and Σℓ,ℓ

satisfy r2
ℓ,−1(s) = ℓ/(2ℓ+ 2) and r2

ℓ,ℓ(s) = (ℓ+ 2s2)/(2ℓ+ 2).

Proof. Consider the standard ℓ-simplex, which is the convex hull of the endpoints of the ℓ+1
unit coordinate vectors in Rℓ+1. Its squared circumradius is the squared distance between
the barycenter and any one of the vertices, which is easy to compute. By comparison, the
squared circumradius of the regular ℓ-simplex with unit length edges is half that of the
standard ℓ-simplex:

R2
ℓ = 1

2

[
ℓ2

(ℓ+ 1)2 + 1
(ℓ+ 1)2 + . . .+ 1

(ℓ+ 1)2

]
= ℓ

2(ℓ+ 1) , (5)

Since r2
ℓ,−1(s) = R2

ℓ , this proves the first equation in the lemma. Note that the convex hull
of the midpoints of the ℓ+ 1 short edges of Σℓ,ℓ is a regular ℓ-simplex with edges of squared
length H2(s) = 1 − 2s2. The short edges are orthogonal to this ℓ-simplex, which implies

r2
ℓ,ℓ = H2(s) ·R2

ℓ + s2 = R2
ℓ + (1 − 2R2

ℓ )s2 = ℓ+ 2s2

2ℓ+ 2 , (6)

which proves the second equation in the lemma. ◀

2.3 Ordering the radii
In this subsection, we show that the radii of the circumspheres of the ideal simplices increase
with increasing ℓ and j:

▶ Lemma 5 (Ordering of Radii in R2k). Let 0 < s < 1/
√

2k. Then the ideal simplices satisfy
rℓ,ℓ(s) < rℓ+1,−1(s) for 0 ≤ ℓ ≤ k − 2, and rℓ,j(s) < rℓ,j+1(s) for −1 ≤ j < ℓ ≤ k − 1.

Proof. To prove the first inequality, we use Lemma 4 to compute the difference between the
two squared radii:

r2
ℓ+1,−1(s) − r2

ℓ,ℓ(s) = ℓ+ 1
2(ℓ+ 2) − ℓ+ 2s2

2(ℓ+ 1) = 1 − 2s2(ℓ+ 2)
2(ℓ+ 2)(ℓ+ 1) . (7)

Hence, r2
ℓ,ℓ(s) < r2

ℓ+1,−1(s) iff s2 < 1/(2ℓ+ 4). We need this inequality for 0 ≤ ℓ ≤ k − 2, so
s2 < 1/(2k) is sufficient, but this is guaranteed by the assumption.

We prove the second inequality geometrically, without explicit computation of the radii.
Fix an ideal simplex, Σℓ,j , and let Sd−1 be the (d− 1)-sphere whose center and radius are
the circumcenter and circumradius of Σℓ,j . Assume w.l.o.g. that the circles C0 to Cj contain
two vertices of Σℓ,j each, and the circles Cj+1 to Cℓ contain one vertex of Σℓ,j each. For
0 ≤ i ≤ k− 1, write Pi for the 2-plane that contains Ci and xi for the projection of the center
of Sd−1 onto Pi. Note that ∥xi∥2 is the squared distance to the origin, and for 0 ≤ i ≤ ℓ

write r2
i for the squared distance between xi and the one or two vertices of Σℓ,j in Pi. Fixing
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i between 0 and ℓ, the squared radius of Sd−1 is r2
i plus the squared distance of the center of

Sd−1 from Pi, which is the sum of the squared norms other than ∥xi∥2. Taking the sum for
0 ≤ i ≤ ℓ and dividing by ℓ+ 1, we get

r2
ℓ,j(s) = 1

ℓ+ 1

[∑ℓ

i=0
r2

i + ℓ ·
∑ℓ

i=0
∥xi∥2 + (ℓ+ 1) ·

∑k−1

i=ℓ+1
∥xi∥2

]
. (8)

By construction, r2
ℓ,j(s) is the minimum squared radius of any (d − 1)-sphere that passes

through the vertices of Σℓ,j . Hence, also the right-hand side of (8) is a minimum, but since
the 2-planes are pairwise orthogonal, we can minimize in each 2-plane independently of the
other. For ℓ + 1 ≤ i ≤ k − 1, this implies ∥xi∥2 = 0, so we can drop the last sum in (8).
For j + 1 ≤ i ≤ ℓ, xi lies on the line passing through the one vertex in Pi and the origin.
This implies that Sd−1 touches Ci at this vertex, and all other points of the circle lie strictly
outside Sd−1. For 0 ≤ i ≤ j, xi lies on the bisector line of the two vertices, which passes
through the origin. The contribution to (8) for an index between 0 and j is thus strictly
larger than for an index between j + 1 and ℓ. This finally implies r2

ℓ,j(s) < r2
ℓ,j+1(s) and

completes the proof of the second inequality. ◀

Recall that 2s is the edge length of a regular n-gon inscribed in a circle of radius 1/
√

2.
By the definition of nk, the condition s < 1/

√
2k in the lemma holds, whenever n ≥ nk.

For the counting argument in the next subsection, we need the ordering of the radii
as defined by the radius function, but it is now easy to see that they are the same as the
circumradii, so Lemma 5 applies. Indeed, Rad(Σℓ,j) = rℓ,j(s) if Σℓ,j is a critical simplex of
Rad. To realize that it is, we note that the circumcenter of Σℓ,j lies in its interior. To see
that also the second condition for criticality in Definition 2 is satisfied, we recall that Sd−1 is
the (d− 1)-sphere whose center and radius are the circumcenter and circumradius of Σℓ,j .
By the argument in the proof of Lemma 5, Sd−1 is empty, and all points of A other than the
vertices of Σℓ,j lie strictly outside this sphere.

2.4 Counting the cycles
To compute the Betti numbers, we make essential use of the structure of the Delaunay mosaic
of A, which consists of as many groups of congruent ideal simplices as there are different
values of the radius function. For each 0 ≤ ℓ ≤ k − 1, we have ℓ+ 2 groups of simplices that
touch exactly ℓ+ 1 of the k circles. In addition, we have a single 2k-cell, convA, with radius
√

2/2, which gives 1 + 2 + . . .+ (k+ 1) =
(

k+2
2

)
groups. We write Aℓ,j = Rad−1[0, rℓ,j ] for the

Alpha complex that consists of all simplices with circumradii up to rℓ,j = rℓ,j(s). We prove
Theorem 1 in two steps, first the relations (1) for 0 ≤ p ≤ k − 1 and second the relations (2)
for k ≤ p ≤ 2k − 2. The case p = 2k − 1 is settled in Section 4 of [12]. To begin, we study
the Alpha complexes whose simplices touch at most ℓ+ 1 of the k circles.

▶ Lemma 6 (Constant Homology in R2k). Let k be a constant, A = A2k(n) ⊆ R2k, and
0 ≤ ℓ ≤ k − 1. Then βp(Aℓ,ℓ) = O(1) for every 0 ≤ p ≤ 2k − 1.

Proof. Fix ℓ and a subset of ℓ+ 1 circles. The full subcomplex of Aℓ,ℓ defined by the points
of A on these ℓ+ 1 circles consists of all cells in Del(A) whose vertices lie on these and not
any of the other circles. Its homotopy type is that of the join of ℓ+ 1 circles or, equivalently,
that of the (2ℓ + 1)-sphere; see [17, pages 9 and 19]. This sphere has only one non-zero
(reduced) Betti number, which is β2ℓ+1 = 1. There are

(
k

ℓ+1
)

such full subcomplexes. The
common intersection of any number of these subcomplexes is a complex of similar type,
namely the full subcomplex of Del(A) defined by the points on the common circles, which
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has the homotopy type of the (2i + 1)-sphere, with i ≤ ℓ. By repeated application of the
Mayer–Vietoris sequence [17, page 149], this implies that the Betti numbers of Aℓ,ℓ are
bounded by a function of k and are, thus, independent of n. Since we assume that k is a
constant, we have βp(Aℓ,ℓ) = O(1) for every p. ◀

Now we are ready to complete the proof of Theorem 1 for p ≤ 2k − 2. To establish
relation (1), fix p between 0 and k − 1 and consider Ap,−1 = Rad−1[0, rp,−1], which is the
Alpha complex consisting of all simplices that touch p or fewer circles, together with all
simplices that touch p+ 1 circles but each circle in only one point. In other words, Ap,−1 is
Ap−1,p−1 together with all the

(
k

p+1
)
np+1 p-simplices that have no short edges. By Lemma 6,

Ap−1,p−1 has only a constant number of (p− 1)-cycles. Hence, only a constant number of
the p-simplices can give death to (p− 1)-cycles, while the remaining p-simplices give birth to
p-cycles. This is because every p-simplex either gives birth or death, so if it cannot give death
to a (p− 1)-cycle, then it gives birth to a p-cycle. Hence, βp(Ap,−1) =

(
k

p+1
)
np+1 ±O(1), as

claimed. The proof of relation (2) is similar but inductive. The induction hypothesis is

βp(Ak−1,p−k) =
(

k−1
p−k+1

)
· nk ±O(1). (9)

For p = k − 1, it claims βk−1(Ak−1,−1) = nk ± O(1), which is what we just proved. In
other words, relation (1) furnishes the base case at p = k − 1. A single inductive step
takes us from Ak−1,p−k to Ak−1,p−k+1; that is: we add all simplices that touch all k circles
and p − k + 2 of them in two vertices to Ak−1,p−k. The number of such simplices is the
number of ways we can pick a pair of consecutive vertices from p − k + 2 circles and a
single vertex from the remaining 2k − p− 2 circles. Since there are equally many vertices as
there are consecutive pairs, this number is

(
k

p−k+2
)
nk. The dimension of these simplices is

(k− 1) + (p− k+ 1) + 1 = p+ 1. Some of these (p+ 1)-simplices give death to p-cycles, while
the others give birth to (p+ 1)-cycles in Ak−1,p−k+1. By the induction hypothesis, there are(

k−1
p−k+1

)
· nk ±O(1) p-cycles in Ak−1,p−k, so this is also the number of (p+ 1)-simplices that

give death. Since
(

k
p−k+2

)
−

(
k−1

p−k+1
)

=
(

k−1
p−k+2

)
, this implies

βp(Ak−1,p−k+1) =
(

k−1
p−k+2

)
· nk ±O(1), (10)

as required to finish the inductive argument.

3 Three dimensions

In this section, we answer the maximum Betti number question for Čech complexes in the
smallest odd dimension in which it is non-trivial:

▶ Theorem 7 (Maximum Betti Numbers in R3). For every n ≥ 2, there exist N = 2n + 2
points in R3 such that the Čech complex for a radius has first Betti number β1 = (n+ 1)2 − 1
and for another radius has second Betti number β2 = n2.

The proof consists of four steps: the construction of the set in Section 3.1, the analysis of
the circumradii in Section 3.2, the argument that all simplices in the Delaunay mosaic are
critical in Section 3.3, and the final counting of the tunnels and voids in Section 3.4.

3.1 Construction
Given n and 0 < ∆ < 1, we construct the point set, A = A3(n,∆), using two linked circles
in R3: Cz with center vz = (− 1

2 , 0, 0) in the xy-plane defined by (− 1
2 + cosφ, sinφ, 0) for

0 ≤ φ < 2π, and Cy with center vy = ( 1
2 , 0, 0) in the xz-plane defined by ( 1

2 − cosψ, 0, sinψ)
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for 0 ≤ ψ < 2π; see Figure 1. On each circle, we choose n+ 1 points close to the center of
the other circle. To be specific, take the points (0,−∆, 0) and (0,∆, 0), and project them
to Cz along the x-axis. The resulting points are denoted by a0 = (− 1

2 +
√

1 − ∆2,−∆, 0)
and an = (− 1

2 +
√

1 − ∆2,∆, 0). Divide the arc between them into n equal pieces by
the points a1, a2, . . . , an−1. Symmetrically, project the points (0, 0,−∆) and (0, 0,∆) to
b0 = ( 1

2 −
√

1 − ∆2, 0,−∆) and bn = ( 1
2 −

√
1 − ∆2, 0,∆) lying on Cy, and place n− 1 points

b1, b2, . . . , bn−1 on the arc between them, dividing it into n equal pieces. Let ε = ε(n,∆) be
the half-length of the (straight) edge connecting two consecutive points of either sequence.
Clearly, ε is a function of n and ∆, and it is easy to see that

∆/n < ε < π
2 ∆/n and ε

∆→0−→ ∆/n. (11)

x

Cz

b0
an

a0

Cy

bn

z

y

vz

vy

Figure 1 Two linked unit circles in orthogonal coordinate planes of R3, each touching the shaded
sphere centered at the origin and each passing through the center of the other circle. There are n + 1
points on each circle, on both sides and near the center of the other circle.

A sphere that does not contain a circle intersects it in at most two points. It follows that
the sphere that passes through four points of A is empty if and only if two of the four points
are consecutive on one circle and the other two are consecutive on the other. This determines
the Delaunay mosaic: its N = 2n+ 2 vertices are the points ai and bj , its 2n+ (n+ 1)2 edges
are of the forms aiai+1, bjbj+1, and aibj , its 2n(n + 1) triangles are of the forms aiai+1bj

and aibjbj+1, and its n2 tetrahedra of the form aiai+1bjbj+1. Keeping with the terminology
introduced in Section 2, we call the edges aibj long and the edges aiai+1 and bjbj+1 short.
Hence, every triangle in the Delaunay mosaic has one short and two long edges, and every
tetrahedron has two short and four long edges.

3.2 Divergence from the ideal
The simplices in Del(A) are not quite ideal, in the sense of Section 2. We, therefore, need
upper and lower bounds on their sizes, as quantified by their circumradii. We will make
repeated use of the following two inequalities, which both hold for x > −1:

√
1 + x ≤ 1 + x

2 , (12)
√

1 + x ≥ 1 + x
2+x . (13)
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For example, we will obtain some bounds on the radii of the triangle and tetrahedron in
Lemma 3, avoiding the use of square roots. For the triangle, we rewrite (3) to 4r2(s) = 1 + x

with x = s2/(1 − s2), and for the tetrahedron, we have 4R2(s) = 1 + x with x = 2s2:

1 + 1
2s

2 < 1 + s2/(1 − s2)
2 + s2/(1 − s2) ≤ 2r(s) ≤ 1 + s2

2 − 2s2 < 1 + 10
19s

2, (14)

1 + 10
11s

2 ≤ 1 + s2

1 + s2 ≤ 2R(s) ≤ 1 + s2, (15)

where we assume that n is large enough to imply 2 − 2s2 > 1.9 and therefore 1 + s2 < 1.1.
We begin by proving bounds on the lengths of long edges.

▶ Lemma 8 (Bounds for Long Edges in R3). Let 0 < ∆ < 1 and A = A3(n,∆) ⊆ R3. Then
the half-length of any long edge, E ∈ Del(A), satisfies 1

2 ≤ RE ≤ 1
2 (1 + ∆4).

Proof. To verify the lower bound, let a ∈ Cz and consider the sphere with unit radius
centered at a. This sphere intersects the xz-plane in a circle of radius at most 1, whose
center lies on the x-axis. The circle passes through vz ∈ Cy, which implies that the rest of
Cy lies on or outside the circle and, therefore, on or outside the sphere centered at a. Hence,
∥a− b∥ ≥ 1 for all b ∈ Cy, which implies the required lower bound.

To establish the upper bound, observe that the distance between a and b is maximized
if the two points are chosen as far as possible from the x-axis, so 4R2

E ≤ ∥a0 − b0∥2. By
construction, a0 = (− 1

2 +
√

1 − ∆2,−∆, 0) and b0 = ( 1
2 −

√
1 − ∆2, 0,−∆). Hence,

4R2
E ≤ ∥(−1 + 2

√
1 − ∆2,−∆,∆)∥

2
= 5 − 2∆2 − 4

√
1 − ∆2 (16)

≤ 5 − 2∆2 − 4
(

1 − ∆2

2 − ∆2

)
= 1 + 2∆4

2 − ∆2 (17)

≤ 1 + 2∆4, (18)

where we used (13) to get (17) from (16), and ∆2 < 1 to obtain the final bound. Applying
(12), wet get 2RE ≤ 1 + ∆4, as required. ◀

Next, we estimate the circumradii of the triangles in Del(A). To avoid the computation
of a constant, we use the big-Oh notation for ∆, in which we assume that n is fixed.

▶ Lemma 9 (Bounds for Triangles in R3). Let 0 < ∆ <
√

2/n, A = A3(n,∆) ⊆ R3, and ε =
ε(n,∆). Then the circumradius of any triangle, F , satisfies 1

2 + 1
4ε

2 ≤ RF ≤ 1
2 + 1

4ε
2 +O(∆4).

Proof. To see the lower bound, recall that the short edge of F has length 2ε and the two long
edges have lengths at least 1. We place the endpoints of the short edge on a circle of radius
r(ε). By the choice of the radius, there is only one point on this circle with distance at least 1
from both endpoints, and it has distance 1 from both. For any radius smaller than r(ε), there
is no such point, which implies that the circumradius of F satisfies RF ≥ r(ε) ≥ 1

2 + 1
4ε

2,
where the second inequality follows from (14).

To prove the upper bound, we draw F in the plane, assuming its circumcircle is the circle
with radius RF centered at the origin. Let a, b, c be the vertices of F , where a and c are the
endpoints of the short edge. We have 0 ∈ F , since otherwise one of the angles at a and c is
obtuse, in which case the squared lengths of the two long edges differ by at least 4ε2. By
assumption,

√
2∆2 < 2∆/n ≤ 2ε, in which we get the second inequality from (11). But this

implies that the difference between the squared lengths of the two long edges is larger than



H. Edelsbrunner and J. Pach 53:11

2∆4, which contradicts (18). Hence, b lies between the antipodes of the other two vertices,
a′ = −a and c′ = −c. By construction, ∥a′ − c′∥ = 2ε. Assuming ∥b− a′∥ ≤ ∥b− c′∥, this
implies

∥b− a′∥ ≤ RF arcsin ε
RF

≤ arcsin ε = ε+O(ε3). (19)

Here, the second inequality follows from RF ≥ 1, using the convexity of the arcsin function,
and the final expression using the Taylor expansion arcsin x = x+ 1

6x
3 + 3

40x
5 + . . .. Now

consider the triangle with vertices a, a′, b. By the Pythagorean theorem,

4R2
F = ∥b− a∥2 + ∥b− a′∥2

< 1 + 4∆4 + ε2 +O(ε4) = 1 + ε2 +O(∆4), (20)

where we used Lemma 8 and (19) to bound ∥b− a∥2 and ∥b− a′∥2, respectively. We get
the final expression using ε < ∆. Applying (12), we obtain 2RF ≤ 1 + 1

2ε
2 + O(∆4), as

claimed. ◀

Similar to the case of triangles, it is not difficult to establish that the circumradius of any
tetrahedron in the Delaunay mosaic is at least the circumradius of the ideal tetrahedron.

▶ Lemma 10 (Lower Bound for Tetrahedra in R3). Let 0 < ∆ < 1, A = A3(n,∆) ⊆ R3, and
ε = ε(n,∆). Then the circumradius of any tetrahedron T ∈ Del(A) satisfies 1

2 + 5
11ε

2 ≤ RT .

Proof. By construction, T has two disjoint short edges, both of length 2ε. We place the
endpoints of one short edge on a sphere of radius R(ε). The set of points on this sphere that
are at distance at least 1 from both endpoints is the intersection of two spherical caps whose
centers are antipodal to the endpoints. We call this intersection a spherical bi-gon. Since
the two caps have the same size, the two corners of the bi-gon are further apart than any
other two points of the bi-gon. By choice of the radius, R(ε), the edge connecting the two
corners has length 2ε. Hence, these corners are the only possible choice for the remaining
two vertices of T , and for a radius smaller than R(ε), there is no choice. It follows that the
circumradius of T is at least R(ε), and we get the claimed lower bound from (15). ◀

3.3 All simplices are critical
Since no empty sphere passes through more than four points of A, the Delaunay mosaic of A
is simplicial, and the radius function on this Delaunay mosaic is a generalized discrete Morse
function [4]. Furthermore, all simplices are critical; see Definition 2. The point set depends
on two parameters, n and ∆, and we consider n fixed while ∆ goes to zero.

▶ Lemma 11 (All Critical in R3). Let n ≥ 2, ∆ > 0 sufficiently small, and A = A3(n,∆) ⊆ R3.
Then every simplex of the Delaunay mosaic of A is critical.

Proof. It is clear that the vertices and the short edges are critical, but the other simplices in
Del(A) require an argument. We begin with the long edges. Fix i and j, and write S2(i; j)
for the smallest sphere that passes through ai and bj . Its center is the midpoint of the long
edge and by (18) its squared diameter is between 1 and 1 + 2∆4. The distance between
ai and any aℓ, ℓ ̸= i, is at least 2ε. Assuming aℓ is on or inside S2(i; j), we thus have
∥aℓ − bj∥2 ≤ 1 + 2∆4 − 4ε2, which, for sufficiently small ∆ > 0, is less than 1. But this
contradicts the lower bound in Lemma 8, so aℓ lies outside S2(i; j). By a symmetric argument,
all bℓ, ℓ ̸= j, lie outside S2(i; j). Hence, S2(i; j) is strictly empty, for all 0 ≤ i, j ≤ n, which
implies that all edges of Del(A) are critical edges of the radius function.
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The fact that all edges of Del(A) are critical implies that all triangles are acute. Indeed,
if aibjbj+1 is not acute, then the midpoint of one long edge is at least as close to the third
vertex as to the endpoints of the edge. Hence, any non-acute triangle would be an obstacle
to the criticality of an edge, which implies that no such triangle can exist. However, the fact
that all triangles are acute does not imply that all of them are critical. To prove the criticality
of the Delaunay triangles, let x be the circumcenter of aibjbj+1, let S2(i; j, j + 1) be centered
at x and pass through ai, bj , bj+1, and let a be the point other than ai in which S2(i; j, j+ 1)
intersects Cz. Since aibjbj+1 is acute, x lies in the interior of the triangle. It remains to
show that the sphere is strictly empty. To this end, let x′ and x′′ be the centers of S2(i; j)
and S2(i; j + 1), let a′ and a′′ be the points other than ai in which the two spheres intersect
Cz, and consider the lines that pass through x and x′ and through x and x′′, respectively.
Note that x lies in the angle between the half-lines from ai that pass through x′ and x′′.
This implies that a is between a′ and a′′. Since S2(i; j) and S2(i; j + 1) are strictly empty,
a′ and a′′ lie strictly between ai−1 and ai+1, and so does a. Hence, S2(i; j, j + 1) is strictly
empty, which implies that all triangles of Del(A) are critical triangles of the radius function.

Since all triangles are critical, all tetrahedra of Del(A) must also be critical. One can
argue in two ways. Combinatorially: the radius function pairs non-critical tetrahedra with
non-critical triangles, but there are no such triangles. Geometrically: since every triangle
has a non-empty intersection with its dual Voronoi edge, every tetrahedron must contain its
dual Voronoi vertex. ◀

3.4 Counting the tunnels and voids
Before counting the tunnels and voids, we recall that Rad: Del(A) → R maps each simplex
to the radius of its smallest empty sphere that passes through its vertices. By Lemma 11, all
simplices of Del(A) are critical, so Rad(E) is equal to the circumradius of E, for every edge
E ∈ Del(A), and similarly for every triangle and every tetrahedron.

▶ Corollary 12 (Ordering of Radii in R3). Let ∆ > 0 be sufficiently small, let A = A3(n,∆) ⊆
R3, and let Rad: Del(A) → R be the radius function. Then Rad(E) < Rad(F ) < Rad(T )
for every edge E, triangle F , and tetrahedron T in Del(A).

Proof. Using Lemma 8 for the edges, Lemma 9 for the triangles, and Lemma 10 for the
tetrahedra in the Delaunay mosaic of A, we get

Rad(E) = RE < 1
2 +O(∆4), (21)

1
2 + 1

4ε
2 ≤ Rad(F ) = RF < 1

2 + 1
4ε

2 +O(∆4), (22)
1
2 + 5

11ε
2 ≤ Rad(T ) = RT , (23)

so for sufficiently small ∆ > 0, the edges precede the triangles, and the triangles precede the
tetrahedra in the filtration of the simplices. ◀

For the final counting, choose ρ1 to be any number strictly between the maximum radius
of any edge and the minimum radius of any triangle. The existence of such a number is
guaranteed by Corollary 12. The corresponding Čech complex is the 1-skeleton of the Delaunay
mosaic. It is connected, with N = 2n+ 2 vertices and 2n+ (n+ 1)2 edges. The number of
independent cycles is the difference plus 1, which implies β1(Čech(A, ρ1)) = (n+ 1)2 − 1, as
claimed. Similarly, choose ρ2 between the maximum radius of any triangle and the minimum
radius of any tetrahedron, which is again possible, by Corollary 12. The corresponding Čech
complex is the 2-skeleton of the Delaunay mosaic. The number of independent 2-cycles is
the number of missing tetrahedra. This implies β2(Čech(A, ρ2)) = n2, as claimed.
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4 Discussion

In this paper, we give asymptotically tight bounds for the maximum p-th Betti number of
the Čech complex of N points in Rd. These bounds also apply to the related Alpha complex
and the dual union of equal-size balls in Rd. They do not apply to the Vietoris–Rips complex,
which is the flag complex that shares the 1-skeleton with the Čech complex for the same
data. In other words, the Vietoris–Rips complex can be constructed by adding all 2- and
higher-dimensional simplices whose complete set of edges belongs the 1-skeleton of the Čech
complex. This implies β1(Rips(A, r)) ≤ β1(Čech(A, r)), since adding a triangle may lower
but cannot increase the first Betti number.

As proved by Goff [16], the 1-st Betti number of the Vietoris–Rips complex of N points
is O(N), for all radii and in all dimensions, so also in R3. Compare this with the quadratic
lower bound for Čech complexes proved in this paper. This implies that the first homology
group has a basis in which all but O(N) generators are tri-gons; that is: the three edges of a
triangle. The circumradius of a tri-gon is less than

√
2 times the half-length of its longest

edge, which implies that the corresponding generators exist only for a short range of radii.
In the language of persistent homology [9], most points in the 1-dimensional persistence
diagram represent 1-cycles with small persistence. This argument generalizes to the cases
p ≤ m = min{p + 1, ⌈d/2⌉}, when the maximum number of p-cycles in the Vietoris–Rips
complex is o(Np) [16], which is asymptotically less than Θ(Nm) for the Čech complex.
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