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Abstract
We compute the deterministic approximation for mixed fluctuation moments of prod-
ucts of deterministic matrices and general Sobolev functions of Wigner matrices.
Restricting to polynomials, our formulas reproduce recent results of Male et al.
(Random Matrices Theory Appl. 11(2):2250015, 2022), showing that the underly-
ing combinatorics of non-crossing partitions and annular non-crossing permutations
continue to stay valid beyond the setting of second-order free probability theory. The
formulas obtained further characterize the variance in the functional central limit
theorem given in the recent companion paper (Reker in Preprint, arXiv:2204.03419,
2023). and thus allow identifying the fluctuation around the thermal value in certain
thermalization problems.

Keywords Wigner matrix · Global fluctuations · Fluctuation moments · Annular
non-crossing permutations · Free probability

Mathematics Subject Classification 60B20 · 15B52 · 46L54

1 Introduction

In his seminal work [32], Wigner established that the empirical spectral measure of
certain random matrix ensembles converges, as the dimension goes to infinity, to the
semicircle distribution. Since then, many variations and extensions of this result have
been considered, yielding a variety of asymptotic phenomena for a wide range of
random matrix models. One particular example is the fact that the resolvent G(z) =
(W − z)−1 of a large Hermitian random matrix W tends to concentrate around a
deterministic matrix M = M(z) for spectral parameters z ∈ C even just slightly away
from the real axis (see, e.g., [5] and references therein for a collection of recent results).
It was recently shown (see [5, 6]) that a similar concentration holds for alternating
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products of the form
F[1,k] := f1(W )A1 . . . fk(W )Ak, (1.1)

where A1, . . . , Ak are bounded deterministic matrices and f1, . . . , fk are regular test
functions, allowing in particular for f j (W ) = G(z j ). Apart from resolvents, two
choices of f j are of special interest in this setting. First, consider the case f j (x) = eit j x

with t j ∈ R. Interpreting the Wigner matrix W as the Hamiltonian of a mean-field
quantum system and the deterministic boundedmatrix A as an observable, the quantity

A(t) := eitW Ae−itW

describes the Heisenberg time evolution of A. For k ≥ 2, (1.1) hence describes the
time evolution of multiple observables, possibly to different times, in the same quan-
tum system. Considering the regime where the differences between the individual
times are large links the matrix product to thermalization problems in mathematical
physics (see [6, Sect. 2.1] and [5, Rem. 2.8]). Second, products of the form (1.1)
with f j (W ) replaced by (polynomials of) the random matrix itself play a key role
in free probability theory, as they characterize the joint non-commutative probability
distribution of Wigner and deterministic matrices.

We remind the reader that a (tracial first-order) non-commutative probability space
is a pair (A, ϕ1) consisting of a complex unital algebraA and a tracial linear functional
ϕ1 : A → C with ϕ1(1A) = 1, where 1A is the unit element of the algebra. One
particular example is the space (A, ϕ1) = (MN×N (L∞−(�,P)),E〈·〉) of N × N
random matrices, where (�,P) is a classical probability space, MN×N (S) denotes
the N × N -matrices with entries in S, the space

L∞−(�,P) :=
⋂

1≤p<∞
L p(�,P)

contains all random variables with all finite moments, and 〈·〉 denotes the normalized
trace. Note that this definition includes deterministic and Wigner matrices. In this
context, the non-commutative probability distribution of a ∈ A is characterized in
terms of its moments (ϕ1(ak))k with the joint distribution of multiple elements of
A being defined analogously. Recent work by Cipolloni, Erdős and Schröder [6]
established that the structure of the limit of E〈F[1,k]〉 as in (1.1) matches the formulas
obtained in free probability, and reproduces known results for the alternating moments
E〈W1D1 . . .WkDk〉 of a finite family of independent Wigner matrices (Wj ) j and a
finite family of deterministic matrices (Dj ) j (see, e.g., [22, Sect. 4.4]) in the case
f j (x) = x . More precisely, in the large N limit, the leading-order term m1[F[1,k]] of
E〈F[1,k]〉 is of the form

m1[F[1,k]] :=
∑

π∈NCP([k])

( ∏

B∈π

〈 ∏

j∈B
A j

〉)
�(1)

π ( f1, . . . , fk), (1.2)

where NCP([k]) denotes the non-crossing partitions of the cyclically ordered set
{1, . . . , k} and the functions �

(1)
π only depend on f1, . . . , fk and π ∈ NCP([k]).
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Hence, the right-hand side of (1.2) is a sum of terms that factorize into a contribution
of the deterministicmatrices resp. the test functions appearing in the product (1.1) with
the underlying combinatorics matching the results obtained for the case f j (x) = x
in free probability theory. Note, however, that resolvents and functions with an N -
dependent mesoscopic scaling are typically not accessible in free probability as many
of the standard techniques rely on explicit moment computations for polynomials.
The results in [6] thus show that the underlying combinatorics continue to apply in
a more general context. In particular, evaluating (1.2) for f j (x) = eit j x with t j ∈ R

implies a closed formula for the thermal value of quantities such as 〈eitW A1e−itW A2〉,
which allows for a direct analysis of the t 	 1 regime relevant for thermalization (see,
e.g., [6, Cor. 2.9]).

After considering the concentration of (1.1), the next natural step is to study the
fluctuations around the deterministic value. It is well-known that the linear statistics
Tr f (W ) = ∑N

j=1 f (λ j ) with a regular test function f : R → R have a variance of
order one (first observed in [14]) and, in fact, satisfy a central limit theorem (CLT)with
a Gaussian limit, as shown, e.g., in [15] for the Wigner case and in [13] for invariant
ensembles. By now, the statistics Tr f (W ) are well-studied on both macroscopic and
mesoscopic scales (see, e.g., [1–3, 11, 12, 16, 18, 19, 29–31] for the Wigner case
and [7, 27] for further references on previous results for Wigner matrices and other
models). However, while the fluctuations of Tr[ f (W )A] are known for general regular
functions f (see [17] and [7]), traces of products of the form (1.1) for k ≥ 2 have so
far only been studied for f j being polynomials in the context of second-order freeness
(see, e.g., [22, Chap. 5] or [8, 20, 21]).

We remind the reader that a second-order non-commutative probability space is
a triplet (A, ϕ1, ϕ2), where the functional ϕ2 : A × A → C is bilinear, tracial in
both arguments, symmetric under the interchanging of its arguments, and satisfies
ϕ2(a, 1A) = ϕ2(1A, a) = 0 for all a ∈ A. The second-order probability distribution
of a ∈ A is characterized in terms of (ϕ2(ak, a�))k,�, called the fluctuation moments,
with the joint moments of multiple elements again being defined analogously. As
a canonical example, we remark that MN×N (L∞−(�,P)) may be endowed with
the functional ϕ2(·, ·) = Cov(Tr(·),Tr(·)), to make it a second-order probability
space. In contrast to the first-order structure, the fluctuation moments are sensitive
to the symmetry class of the underlying Wigner matrix and explicitly involve the
fourth cumulant of the entry distribution (see [21, Thm. 6], as well as [7, 25, 26]). In
particular, we observe a breaking of universality compared to the first-order problem of
computing E〈·〉. The joint fluctuation moments of Wigner and deterministic matrices
are explicitly known (cf. [22, Thm. 13 of Ch. 5] for the GUE case and [21, Thm. 6]
for general Wigner matrices).

A functional CLT for traces of products of the form (1.1) has recently been estab-
lished in the companion paper [27] and the limiting covariance is derived using
a recursion. In the present paper, we supply the combinatorial argument neces-
sary to obtain the solution to the recursion and compute the limiting covariance
explicitly. In particular, we show that if W is a GUE matrix, the leading order
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term m2[F[1,k]|F[k+1,k+�]] of the covariance of Tr(F[1,k]) and Tr(F[k+1,k+�]) (with
F[k+1,k+�] = fk+1Ak+1 . . . fk+�Ak+� of the same build as (1.1)) is given by

m2[F[1,k]|F[k+1,k+�]] =
∑

π∈−−−→
NCP(k,�)

( ∏

B∈π

〈 ∏

j∈B
A j

〉)
�(2)

π ( f1, . . . , fk+�)

+
∑

π1×π2∈NCP(k)×NCP(�)

( ∏

B1∈π1,B2∈π2

〈 ∏

j∈B1
A j

〉〈 ∏

j∈B2
A j

〉)

×�
(2)
π1×π2

( f1, . . . , fk+�). (1.3)

Here,
−−−→
NCP(k, �) denotes the non-crossing permutations of the (k, �)-annulus and

the functions �
(2)
π resp. �

(2)
π1×π2

only depend on f1, . . . , fk+� and the underlying
permutation resp. partition. Similar to (1.2),we thus obtain a sumof terms that factorize
into a contribution of the deterministicmatrices resp. the test functions appearing in the
product (1.1) with the underlying combinatorics again matching the results obtained
for the case f j (x) = x in free probability theory (see [24]). Moreover, we show that
the overall structure of (1.3) continues to hold if W is chosen to be a Wigner matrix
with Wi j

d= N−1/2χod for i < j and Wj j
d= N−1/2χd for general entry distributions

χod and χd . In the general case, however, the sum in the first line of the right-hand
side of (1.3) splits into four summands �

(GUE)
π , κ4�

(κ)
π , σ�

(σ)
π , and ω̃2�

(ω)
π which

have different prefactors in terms of the deterministic matrices A1, . . . , Ak+�. Here,
�

(GUE)
π corresponds to the GUE case in (1.3) and the remaining contributions are

associated with the parameters

κ4 = E|χod |4 − 2, σ = Eχ2
od , ω̃2 = Eχ2

d − 1 − σ (1.4)

of theWigner matrixW . A similar decomposition is also observed for�(2)
π1×π2

in (1.3).
In particular, we find that the closed expression obtained from solving the recursion
in [27] has the same overall structure as the formulas in [21, Thm. 6]. This shows
that the analogies [6] established in the first-order setting have a counterpart for the
second-order structures. Our combinatorial approach further allows us to give the
functions in (1.3) in a closed form, thus yielding a fully explicit formula for the
limiting covariance in the GUE case.

We remark that the main results of the present paper, i.e., combinatorial formulas
form2[F[1,k]|F[k+1,k+�]] such as (1.3), are applied to obtain an explicit limiting covari-
ance structure for the multi-point functional CLT [27, Thm. 2.7]. Here, replacing the
recursive definition of the limiting variance by a closed formula allows for an eas-
ier application of the theorem, e.g., to thermalization problems in physics. Although
the form of the limiting variance in the k = 2 case considered in [27, Cor. 2.12] is
sufficiently simple and could be derived without additional combinatorial tools, char-
acterizing the fluctuation for general k ≥ 2 does require them to obtain an explicit
formula for the variance. We further emphasize that the main results in the compan-
ion paper [27] are of analytic nature and that their main technical difficulty lies in
including functions with a mesoscopic scaling of the form

f j (x) = g j (N
γ (x − E)) (1.5)
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where g j is a regular N -independent function, E ∈ R lies in the bulk of the limit-
ing spectrum of W , and N−γ is larger than the typical eigenvalue spacing around E .
In contrast, we assume all test functions to be N -independent in the present paper
and focus on the combinatorial structures arising in the multi-point functional CLT.
While an extension to the functions in (1.5) is possible using the techniques from [27],
restricting to the macroscopic regime allows for a cleaner presentation of the results.
It further facilitates working with more general assumptions on the Wigner matrixW .
Note that [27, As. 1.1] corresponds to setting σ = ω̃2 = 0 in (1.4), while Assump-
tion 1.1 matches the setting of [7, 21] with general σ ∈ [−1, 1] and ω̃2 ≥ −2, thus
generalizing the formulas from [27].

We conclude the section with a brief overview of the paper. After introducing
some commonly used notations, the assumptions on theWigner matrixW are given in
Assumption 1.1.We then give a brief overview of the combinatorics needed to identify
the deterministic approximation of 〈T1 . . . Tk〉 where Tj := G(z j )A j , and the multi-
resolvent local laws needed for the analysis of the fluctuations (Sect. 1.2) as well as the
definitions from free probability that are used to characterize the limiting covariance
of 〈T1 . . . Tk〉 − E〈T1 . . . Tk〉 and 〈Tk+1 . . . Tk+�〉 − E〈Tk+1 . . . Tk+�〉 (Sect. 1.3). To
prepare for the statements of our main results, we give a CLT for the case that all
functions f j are resolvents (Theorem 2.3). The role of the limiting covariance in
the theorem is played by a recursively defined set function m2[·|·] (Definition 2.1),
which is the main object of interest in the present paper. We study the recursion in
detail in Sect. 2.2 and obtain the main results, explicit combinatorial formulas for its
solution (Theorems 2.4, 2.6 - 2.8). In Sect. 2.3, we extend the CLT to more general
test functions (Theorem 2.9 and Corollary 2.10) to discuss the connection to free
probability theory in detail. In particular, we apply the results to the case f j (x) = x
and show that the limiting covariance in the functional CLT reduces to the formula for
the joint fluctuation moments of GUE and deterministic matrices (Corollary 2.11) as
given in [21]. Lastly, the proofs are given in Sects. 3 and 4. To keep the presentation
concise, some routine calculations are deferred to the appendix. This includes the
proof of a multi-resolvent global law with transposes (Appendix A.1) and the proof
of the resolvent CLT in Theorem 2.3 (Appendix A.2) which are similar to previous
results in [6] and [27], respectively.

1.1 General Notation

We start by introducing some notation used throughout the paper. For two positive
quantities f , g, we write f � g and f ∼ g whenever there exist (deterministic, N -
independent) constants c,C > 0 such that f ≤ Cg and cg ≤ f ≤ Cg, respectively.
We denote the Hermitian conjugate of a matrix A by A∗ and the complex conjugate
of a scalar z ∈ C by z. Moreover, ‖ · ‖ denotes the operator norm, Tr(·) is the usual
trace and 〈·〉 = N−1 Tr(·). We further denote the covariance of two complex random
variables X1, X2 by Cov(X1, X2) and follow the convention

Cov(Y1,Y2) = E(Y1 − EY1)(Y2 − EY2),
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i.e., the covariance is linear in the first and anti-linear in the second entry. For k, a, b ∈
N with a ≤ b, we set [k] = {1, . . . , k} and adopt the interval notation [a, b] =
{a, a + 1, . . . , b}. We further write 〈a, b] or [a, b〉 to indicate that a or b are excluded
from the interval, respectively. Ordered sets are denoted by (. . .) instead of {. . .}. Sets
of the form [k] and intervals are treated as ordered sets.

Given a matrix A ∈ CN×N , the traceless part of A is denoted by Å := A − 〈A〉Id
where Id denotes the identity matrix. Further, a := diag(A) denotes the diagonal
matrix obtained from extracting only the diagonal entries of A and A1 
 A2 denotes
the entry-wise (or Hadamard) product of two matrices A1 and A2. For a Hermitian
matrix W and spectral parameters z1, . . . , zk ∈ C \ R, we write the corresponding
resolvents as G j = G(z j ) := (W − z j )−1 and index products of resolvents using the
interval notation

G[a,b] := GaGa+1 . . .Gb

for a, b ∈ N with a ≤ b. Recalling that angled brackets indicate that an edge point
of the interval is excluded, we write G〈a,b] and G[a,b〉 to exclude Ga or Gb from
the product, respectively. Moreover, G∅ is interpreted as zero. Note that this notation
differs slightly from [5, 6]. Aswe often consider alternating products of resolventswith
deterministic matrices A1, . . . , Ak , define Tj := G j A j and apply the same interval
notation as above to write

T[k] := T1 . . . Tk = G1A1 . . .Gk Ak, T[a,b] := TaTa+1 . . . Tb. (1.6)

Again, angled brackets are used to exclude Ta or Tb from the product, respectively,
and T∅ is interpreted as zero. We call a product of the type (1.6) resolvent chain of
length k.

Throughout the paper, we assumeW to be an N×N real or complexWigner matrix
satisfying the following assumptions.

Assumption 1.1 Thematrix elements ofW are independent up toHermitian symmetry
Wi j = Wji and we assume identical distribution in the sense that there is a centered
real random variable χd and a centered real or complex random variable χod such that
Wi j

d= N−1/2χod for i < j andWj j
d= N−1/2χd , respectively.We further assume that

E|χod |2 = 1 as well as the existence of all moments of χd and χod , i.e., there exist
constants Cp > 0 for any p ∈ N such that

E|χd |p + E|χod |p ≤ Cp.

We remark that Assumption 1.1 matches the model considered in [7] and [21].
Compared to the conditions Eχ2

od = 0 and Eχ2
d = 1 in [27], we allow for arbitrary

values of the parameters σ = Eχ2
od ∈ [−1, 1] and ω2 = Eχ2

d ≥ 0. This description
includes real symmetric Wigner ensembles such as GOE (σ = 1) as well as matrices
of the form W = D + iS where D is a diagonal matrix and S is skew-symmetric
(σ = −1). We further introduce the notation

κ4 := E|χod |4 − 2 (1.7)
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for the normalized fourth cumulant of the off-diagonal entries as well as

ω̃2 := ω2 − 1 − σ. (1.8)

The eigenvalue density profile of W is described by the semicircle law

ρsc(x) :=
√
4 − x2

2π
1[−2,2](x) (1.9)

which mainly enters our analysis in the form of its Stieltjes transform

m(z) :=
∫

ρsc(x)

x − z
dx, z ∈ C \ R. (1.10)

We remind the reader that m(z) is the unique solution of the Dyson equation

− 1

m(z)
= m(z) + z, �z�(m(z)) > 0 (1.11)

and that its derivative satisfies

m′(z) = m(z)2

1 − m(z)2
. (1.12)

Given fixed z1, . . . , zk ∈ C \ R, set m j = m(z j ) and m′
j = m′(z j ), respectively. We

further introduce
qi, j = mim j

1 − mim j
, (1.13)

and remark that q j, j = m′
j whenever i = j .

1.2 Preliminaries Part 1: First-Order Quantities

In this section, we briefly summarize the definitions and results from [5, 6] which are
needed to characterize the deterministic approximation of 〈T[1,k]〉.
Definition 1.2 (Non-crossing partitions) Let S be a finite (cyclically) ordered set of
integers. We call a partition π of the set S crossing if there exist blocks B �= B ′ in π

with a, b ∈ B, c, d ∈ B ′, and a < c < b < d, otherwise we call it non-crossing. The
set of non-crossing partitions is denoted by NCP(S) and we abbreviate NCP(k) :=
NCP([k]). For each non-crossing partition π = {B1, . . . , Bn}, set |π | := n for the
number of blocks in the partition.

Recall that non-crossing partitions have an alternative geometrical definition:
Arrange the elements of S equidistantly in clockwise order on the circle and for each
π ∈ B consider the convex hull PB of the points s ∈ B. Then π is non-crossing if
and only if the polygons {PB |B ∈ π} are pair-wise disjoint. Because of this, we also
call the elements of NCP(k) disk non-crossing to distinguish them from their annulus
analog defined below. We further recall the definition of the Kreweras complement
(see Fig. 1 for an example).
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Fig. 1 The non-crossing
partition π =
{{1, 3, 4}, {2}, {5, 8, 9}, {6, 7}, {10}}
(black) and its Kreweras
complement K (π) =
{{1, 2}, {3}, {4, 9, 10}, {5, 7}, {6}, {8}}
(red). Singleton sets are
indicated by a black or red dot,
respectively. (Color figure
online)

Definition 1.3 (Kreweras complement, disk case) Let S ⊂ N be a finite set of integers
equidistantly arranged in clockwise order on the circle and label the midpoints of the
arcs between the points s ∈ S also by the elements of S. We arrange the new labels
such that the arc s follows the point s in clockwise order. Let π ∈ NCP(S). Then
the (disk) Kreweras complement of π , denoted by K (π), is the element of NCP(S)

such that r , s belong to the same block of K (π) if and only if the arcs labeled r , s are
in the same connected component in the complement D \ ∪B∈π PB of the polygons
{PB |B ∈ π} in the labeled disk D.

Observe that D \ ∪B∈π PB has |S| − |π | + 1 connected components, hence |π | +
|K (π)| = |S| + 1. Further, K 2 = K ◦ K recovers π up to a rotation of D, i.e., K 2(π)

is the partition where for S = {s1, . . . , sk} the elements in each block of π are shifted
by s1 �→ s2 �→ · · · �→ sk �→ s1. In particular, taking the Kreweras complement is
invertible as a map on NCP(S).

Definition 1.4 (Free cumulant function) Fix k ∈ N, denote the power set1 of [k] by
P([k]) and let ( fn)n be a family of functions such that fn maps n-element sets inP([k])
to C. We define the (first-order) free cumulants ( f◦,n)n associated with the sequence
( fn)n through the relation

f|S|[S] =
∑

π∈NCP(S)

∏

B∈π

f◦,|B|[B] (1.14)

for any S ⊆ [k]. For simplicity. we associate the sequences ( fn)n (resp. ( f◦,n)n)
with a single function f (resp. f◦) by setting f [s1, . . . , sn] := fn[{s1, . . . , sn}] (resp.
f◦[s1, . . . , sn] := f◦,n[{s1, . . . , sn}]) and call f◦ the (first-order) free cumulant func-
tion associated to f .

We emphasize that Definition 1.4 does not require the functions fn to have any
particular symmetries. However, in the free probability literature, f usually arises from

1 Recall that [k] is treated as an ordered set. Hence, the subsets in P([k]) carry a natural ordering inherited
from [k].
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a family of tracial functionals and is hence symmetric under the cyclic permutation of
its entries (cf., e.g., [22, Ch. 2]). The implicit relation in (1.14) can be recursively turned
into an explicit definition of f◦. Alternatively,wemay also invert (1.14) explicitly using
the Möbius function associated with the lattice of non-crossing partitions. Recall that
NCP(S) is a lattice with respect to the refinement order, i.e., the partial order in which
π ≤ ν if and only if for each B ∈ π there exists B ′ ∈ ν with B ⊂ B ′. Moreover, there
are unique maximal and minimal elements given by 0S := {{s}|s ∈ S} and 1S := {S},
respectively. The free cumulant function can then be written as

f◦[S] =
∑

π∈N PC[S]
μ(π, 1S)

∏

B∈π

f [B], μ(π, ν) :=
{
1, π = ν,

−∑
π<τ≤ν μ(τ, ν), π < ν,

(1.15)

using the Möbius function μ : {(π, ν)|π ≤ ν ∈ NCP(S)} → Z that is recursively
defined by (1.15). We remark that μ(π, 1S) can be given in a closed form using the
Catalan numbers (see, e.g., [6, Lem. 2.16]).

The following choice for the function f is of particular interest. Recall that m
denotes the Stieltjes transform of the semicircle law (1.9).

Definition 1.5 (Divided differences) For finite sets {z1, . . . , zk} ⊂ C\Rwe recursively
define

m[z1, . . . , zk] := m[z2, . . . , zk] − m[z1, . . . , zk−1]
zk − z1

.

The definition readily extends to multi-sets {z1, . . . , zk} ⊂ C\R by setting

m[z j , . . . , z j︸ ︷︷ ︸
k times

] := m(k−1)(z j )

(k − 1)!

whenever an element z j occurs with a multiplicity greater than one. Here, m(k−1)

denotes the (k − 1)th derivative of the function m in (1.10). Note that m[·] is well-
defined in the sense that m[z1, . . . , zk] is independent of the ordering of the multi-set
{z1, . . . , zk}. We abbreviate m[1, . . . , k] := m[z1, . . . , zk].

We emphasize that m[·], and hence m◦[·], have full permutation symmetry, which
is much more than what was assumed for f in Definition 1.4. The following example
illustrates the combinatorial formulas (1.14) and (1.15) for f = m[·].
Example 1.6 (First-order free cumulants) In the case k = 1 we simply have m[1] =
m(z1). For k = 2, the only non-crossing partitions are (12) and (1)(2) such that

m◦[1, 2] = m[1, 2] − m1m2, m j := m[ j] = m[z j ]

while for k = 3 we have

m◦[1, 2, 3] = m[1, 2, 3] − m1m[2, 3] − m2m[1, 3] − m3m[1, 2] + 2m1m2m3.
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Fig. 2 An element of NCG(10) and its connected subgraphs

The quantities m and m◦ were studied in detail in [6], yielding a close connection
to non-crossing graphs. We recall the definition and give an example in Fig. 2. These
graphs are planar. For later convenience, we use a slightly more general notion of
planar graphs throughout the paper than the standard literature by allowing for self-
connections (loops) and multi-edges.

Definition 1.7 (Disk non-crossing graphs) Let S ⊂ N be a finite (cyclically) ordered
set of integers equidistantly arranged in clockwise order on the circle. We call an
undirected planar graph (S, E) on the vertex set S without loops or multi-edges (disk)
crossing if there exist two edges (a, b), (c, d) ∈ E with a < c < b < d, otherwise we
call it (disk) non-crossing.2 The set of all (disk) non-crossing graphs with vertex set S
is denoted by NCG(S) and we denote the subset of connected graphs as NCGc(S).
Whenever S = [k], abbreviate NCG(k) := NCG([k]).

Emphasizing that Definition 1.7 lives on a disk is important, as we later introduce a
non-crossing property on the annulus.Whenever both definitions are used together, we
use the specifications disk non-crossing and annular non-crossing to distinguish the
underlying geometry. By construction, every � ∈ NCG(S) induces a non-crossing
partition with blocks representing the vertices in the connected components of �.
Further, any connected component of � is itself a (disk) non-crossing graph.

Lemma 5.2 of [6] proves the representations

m[S] =
( ∏

s∈S
ms

) ∑

�∈NCG(S)

∏

(i, j)∈E(�)

qi, j , (1.16)

m◦[S] =
( ∏

s∈S
ms

) ∑

�∈NCGc(S)

∏

(i, j)∈E(�)

qi, j (1.17)

in terms of the weights qi, j in (1.13). Here, E(�) is the edge set of the graph �. Note
that (1.16) and (1.17) are still well-defined if S is an ordered multi-set, i.e., if some
elements are repeated. In this case, we consider NCG(|S|) instead of NCG(S) and

2 The edges of a disk non-crossing graph � can be drawn in the interior of the disk without intersecting,
i.e., � is a planar graph drawn inside a labeled disk.
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Fig. 3 The graphs contributing to the sum on the right-hand side of (1.16) (top and bottom row) and (1.17)
(bottom row only) for the multi-set S = (1, 1, 2). Note that the prefactor is given by

∏
s∈S ms = m2

1m2

use the one-to-one correspondence between the (possibly repeated) labels {s|s ∈ S}
and {1, . . . , |S|} to obtain a uniquely defined right-hand side (see Fig. 3).

A key technical tool in the proof of our main results is the optimal multi-resolvent
local law [5, Thm. 2.5]. As we only work on macroscopic scales, i.e., with N -
independent spectral parameters, in the present paper, we state the result in the form
of a global law and omit the dependence on η∗ = min |�z j |. Recall the commonly
used definition of stochastic domination.

Definition 1.8 (Stochastic domination) Let

X = {X (N )(u)|N ∈ N, u ∈ U (N )} and Y = {Y (N )(u)|N ∈ N, u ∈ U (N )}

be two families of non-negative random variables that are indexed by N and possibly
some other parameter u in some (possibly N -dependent) domain U (N ). We say that
X is stochastically dominated by Y , denoted by X ≺ Y or X = O≺(Y ), if, for all
ε,C > 0 we have

sup
u∈U (N )

P(X (N )(u) > N εY (N )(u)) ≤ N−C

for large enough N ≥ N0(ε,C).

Theorem 1.9 (Macroscopic version of [5, Thm. 2.5]) Fix k ∈ N and pick spectral
parameters z1, . . . , zk ∈ C\R with |�z j | � 1 and max j |z j | ≤ N 100 as well as
deterministic matrices A1, . . . , Ak ∈ CN×N with ‖Ai‖ � 1. Define3

M[k] :=
∑

π∈NCP(k)

( ∏

B∈K (π),
k /∈B

〈 ∏

j∈B
A j

〉 ∏

i∈B(k)\{k}
Ai

)( ∏

B∈π

m◦[B]
)

, (1.18)

3 The noncommutative product
∏

j∈B A j for B = ( j1, . . . , jr ) is defined as A j1 . . . A jr in the order
inherited from B ⊆ S.

123



   10 Page 12 of 65 J. Reker

where B(k) is the block in K (π) that contains k. Recalling that Tj = G j A j , we have
the averaged,4 local law

〈T[1,k]〉 = 〈M[k]Ak〉 + O≺
(
1

N

)
, (1.19)

and for x, y ∈ CN with ‖x‖, ‖y‖ � 1 we have the isotropic local law

〈x, T[1,k〉Gky〉 = 〈x, M[k]y〉 + O≺
(

1√
N

)
. (1.20)

As we frequently encounter 〈M[k]Ak〉 in the following sections, we introduce the
notation

m1[T1, . . . , Tk] = m1[z1, A1, . . . , zk, Ak] := 〈M[k]Ak〉. (1.21)

In particular,

m1[T1, . . . , Tk] =
∑

π∈NCP(k)

( ∏

B∈K (π)

〈 ∏

j∈B
A j

〉)( ∏

B∈π

m◦[B]
)

(1.22)

and we have m1[G1, . . . ,Gk] = m[1, . . . , k] as a consequence of (1.14). Compar-
ing (1.22) with the formulas in [22, Sect. 4.4], the set functions m and m◦ may be
interpreted as the moments resp. free cumulants characterizing the limiting non-
commutative probability distribution of resolvents (G j ) j while m1[·] describes the
limiting joint distribution of resolvents (G j ) j and deterministic matrices (A j ) j .

We further apply (1.19) or (1.20) for a product Ts1 . . . Tsk−1Gsk that is indexed by
a (cyclically) ordered set S = (s1, . . . , sk) instead of an interval. In this case, the
deterministic approximation is denoted as

MS = M(s1,...,sk )

with the same definition as in (1.18).

Remark The quantities m[1, . . . , k], m◦[1, . . . , k], m1[T1, . . . , Tk], (M[k])i j , and
‖M[k]‖ are of order one for any k ∈ N and i, j ∈ [N ] in the macroscopic regime
(cf. Lemma 2.4 and Appendix A of [5]). Theorem 1.9 asserts that the deterministic
M[k] is the leading order approximation of T[1,k〉Gk . In particular, the error terms
in (1.19) and (1.20) are smaller than the natural upper bound on their leading term by
a factor of 1/N and 1/

√
N , respectively.

We further need a generalization of the averaged local law (1.19) that includes
transposes.

4 Recall that 〈·〉 carries a N−1 normalization factor, but 〈·, ·〉 does not. For A := |y〉〈x| with two unit
vectors x, y ∈ CN , we hence have 〈xG(z)y〉 = Tr[G(z)A] and 〈G(z)A〉 = N−1〈x,G(z)y〉.
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Theorem 1.10 (Global law for resolvent chains with transposes) Let k ∈ N and pick
spectral parameters z1, . . . , zk with |�(z j )| � 1 and max j |z j | ≤ N 100 as well as

deterministic matrices A1, . . . , Ak with ‖A j‖ � 1. Moreover, let G�
j denote either the

resolvent G j = G(z j ) or its transpose Gt
j and denote by # the binary vector that has

a one in j th position if G�
j = Gt

j and a zero otherwise. Then,

〈G�
1A1 . . .G�

k Ak〉 =
∑

π∈NCP(k)

( ∏

B∈K (π)

〈 ∏

j∈B
A j

〉)( ∏

B∈π

m#,σ◦ [B]
)

+ O≺
(
1

N

)

(1.23)
where m#,σ◦ [·] denotes the free cumulants associated with the set function m#,σ [·] by
Definition 1.4. Here, m#,σ [·] is defined to satisfy m#,σ [∅] = 0 as well as the recursion

m#,σ [1, . . . , k] = m1(1 + q�
1,k)

×
(
m#,σ [2, . . . , k] +

k∑

j=2

c1, jm
#,σ [1, . . . , j]m#,σ [ j, . . . , k]

)
(1.24)

with q�
1,k = q1,k = m1mk

1−m1mk
whenever #1 = #k , i.e., either both G1 and Gk occur as

transposes in the product G�
1 . . .G�

k or neither of them, and q
�
1,k = σm1mk

1−σm1mk
otherwise.

Similarly, c1, j = 1 whenever #1 = # j and c1, j = σ otherwise. Recall that σ = Eχ2
od

where χod is the real or complex random variable that specifies the distribution of the
off-diagonal entries of the Wigner matrix W.

The proof of Theorem 1.10 is, modulo careful bookkeeping of the transposes, similar
to the proof of the averaged local law in [6, Thm. 3.4]. For the convenience of the
reader, a brief sketch of the argument is included in Appendix A.1. We remark that the
same resultmay be obtained onmesoscopic scaleswith optimal error bounds following
the strategy of [5] (cf. [5, Rem. 2.2]) and that several examples in the cases k ∈ {2, 3}
are considered in Proposition 3.4 and Remark 3.5 of [4] as well as in Propositions 3.3
and 3.4 of [7].

Note thatσ = 1 implies that thematrixW is real and its resolvent satisfiesGt
j = G j .

Hence, the statement of Theorem 1.10 reduces to that of an averaged global law for real
symmetricWignermatrices in this case. Due to the structural similarity between (1.22)
and (1.23), we will slightly abuse notation and write the right-hand side of (1.23) as

m1[G�
1A1, . . . ,G

�
k Ak] :=

∑

π∈NCP(k)

( ∏

B∈K (π)

〈 ∏

j∈B
A j

〉)( ∏

B∈π

m#,σ◦ [B]
)

. (1.25)

Moreover, by Definition 1.4, we have m1[G�
1, . . . ,G

�
k] = m#,σ [1, . . . , k] and (1.24)

reduces to the divided differences in Definition 1.5 whenever # is the zero vector.
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1.3 Preliminaries Part 2: Second-Order Quantities

In this section, we give an overview of the definitions from free probability that are
used in later sections (roughly following the notation of [22, Ch. 5]) as well as some
related quantities appearing in the CLTs.

Recall that the key picture for describing the expectation of 〈T[1,k]〉 is a disk with
the labels 1, . . . , k organized in clockwise order along its boundary. In a very similar
spirit, the key picture for describing the corresponding second-order object, i.e., the
covariance of 〈T[1,k]〉 and 〈T[k+1,k+�]〉, consists of two concentric labeled circles. Let
k, � ∈ N and arrange the numbers 1, . . . , k equidistantly in clockwise order on the
outer circle and the numbers k + 1, . . . , k + � equidistantly in counter-clockwise order
on the inner circle. We refer to the planar domain between these two circles together
with the labeled points on its boundary as the (k, �)-annulus (see Fig. 4). The labeled
points will often serve as vertices of a graph. In this case, any edges connecting two
points are drawn inside the annulus.

Definition 1.11 (Annular non-crossing permutations) Let k, � ∈ N. We call a permu-
tation of [k + �] an annular non-crossing permutation if we can draw its cycles5 on
the (k, �)-annulus such that the following conditions (see [22, Def. 5 in Ch. 5]) are
satisfied:

(i) Non-crossing property: The cycles do not cross.
(ii) Standardness: Each cycle encloses a region in the annulus that is homeomorphic

to the disk with boundary oriented clockwise (in particular, the cycles follow the
orientation of the numbering of the circles).

(iii) Connectedness: At least one cycle connects both circles.

The set of annular non-crossing permutations is denoted by
−−−→
NCP(k, �). Any cycle

that connects both circles is referred to as connecting cycle.

We remark that
−−−→
NCP(k, �) can be fully characterized by the avoidance of certain

crossing patterns (cf. analogous geometric characterization of NCP(k) below Def-
inition 1.2) and an algebraic analog of the standardness condition. This equivalent
definition is discussed, e.g., in [23, Sect. 3], but we will not use it here.

Definition 1.12 (Annular non-crossing partitions) Let k, � ∈ N. We call the parti-
tions induced by the cycles of

−−−→
NCP(k, �) annular non-crossing partitions. The set of

annular non-crossing partitions is denoted by NCP(k, �). A block that arises from a
connecting cycle is referred to as connecting block.

While there is a one-to-one correspondence between the non-crossing partitions
of the disk in Definition 1.2 and the permutations of [k] avoiding the same crossing
pattern, there is a crucial difference between non-crossing partitions and permutations
on the (k, �)-annulus. In particular, there is no bijective mapping between a permu-
tation in

−−−→
NCP(k, �) and the partition of [k + �] induced by its cycles, as, e.g., both

permutations (123) and (132) correspond to the partition {{1, 2, 3}}, but give rise to
5 Recall that every permutation has a unique cycle decomposition. We represent a cycle (abc . . . x) by an
oriented graph with edge set {(a, b), (b, c), . . . , (x, a)}.

123



Fluctuation Moments for Regular Functions of Wigner Matrices Page 15 of 65    10 

Fig. 4 The labels of the
(4, 3)-annulus

different pictures due to the orientation induced by Definition 1.11(ii) (see Fig. 5).
In general, a permutation always uniquely determines the underlying partition, but a
partition can be obtained from more than one permutation. This happens if and only
if there is exactly one connecting block (cf. [23, Sect. 4]).

Lastly, we consider partitions arising from permutations that respect the non-
crossing property and standardness condition but do not have a connecting cycle.
In this case, we may consider the permutation restricted to each circle separately,
i.e., as an element of NCP(k) × NCP(�), and introduce an artificial connection by
marking one block on each circle.

Definition 1.13 (Marked non-crossing partition) Consider π ∈ NCP(k) × NCP(�)

that naturally splits intoπ = π1×π2 withπ1 ∈ NCP(k),π2 ∈ NCP(�).We pick one
block of π1 and one of π2, respectively, and mark them by underlining. The resulting
object is referred to as a marked non-crossing partition.

Marking a block on each circle allows us to artificially introduce a connecting
block by considering the union of the two marked blocks. As a consequence, any
marked non-crossing partition can be associated with a unique element of NCP(k, �).
We further note that there are |π1| · |π2| possibilities to mark the blocks of π =
π1 ×π2 ∈ NCP(k)× NCP(�). For example, {{1}, {2}}×{{3}} and {{1}, {2}}×{{3}}
are considered differentmarked partitions although both arise from {{1}, {2}}×{{3}} ∈
NCP(2) × NCP(1) (see Fig. 6).

Fig. 5 The non-crossing permutations (123) and (132) on the (1, 2)-annulus. They are different as permu-
tations, but their cycles induce the same non-crossing partition
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Fig. 6 A visualization of {{1}, {2}} × {{3}} and {{1}, {2}} × {{3}}. Marking is indicated by a dashed line

We further recall from [22, Ch. 5] that there is a second-order analog of Defini-
tion 1.4.

Definition 1.14 (Second-order free cumulant function) Let ( fm,n)m,n be a sequence
of functions such that fm,n maps tuples (S1, S2) of two finite (cyclically) ordered sets
of integers with |S1| = m and |S2| = n to C. Assume further that the functions are
symmetric under interchanging of the two arguments in the sense that fm,n[S1|S2] =
fn,m[S2|S1] and cyclic, i.e., fm,n[S1|{s1, . . . , sn}] = fm,n[S1|{s2, . . . , sn, s1}]. More-
over, we assume that fm,0[S1|∅] = f0,n[∅|S2] = 0. Similar to Definition 1.4, we
associate the sequence ( fm,n)m,n with a single function f by setting

f [s1, . . . , sm |sm+1, . . . , sm+n] := fm,n[{s1, . . . , sm}|{sm+1, . . . , sm+n}].

We implicitly define the second-order free cumulant function of f as the unique map
f◦◦ defined on pairs of finite (cyclically) ordered sets (U1,U2) that satisfies

f [S1|S2] =
∑

π∈−−−→
NCP(|S1|,|S2|)

∏

B∈π

f◦[B]

+
∑

π1×π2∈NCP(|S1|)×NCP(|S2|),
U1∈π1,U2∈π2 marked

f◦◦[U1|U2]
∏

B∈π1\U1∪π2\U2

f◦[B] (1.26)

for any finite S1, S2. Here, f◦ is the first-order free cumulant function introduced in
Definition 1.4.

Note that we use a set function f that is symmetric under the interchanging of its argu-
ments instead of its skew-symmetric version f [S1|S2] = f [S2|S1] typically used in
the free probability literature to mimic the covariance functional (cf. [22, Ch. 5]). This
choice will simplify the computations by reducing the number of complex conjugates
arising in the intermediate steps.

Similar to (1.14), the implicit relation (1.26)may be turned into an explicit definition
of f◦◦ by recursion. Note that the term f◦◦[[k] | [k + 1, k + �]] in formula (1.26) with
f [[k] | [k + 1, k + �]] on the left-hand side only occurs for the marked partition
{{1, . . . , k}} × {{k + 1, . . . , k + �}} and hence always has coefficient one, so we can
express it in terms of f , f◦, and the previously identified values of f◦◦. This shows
that f◦◦ is well-defined. Although we will not rely on Möbius inversion to express
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f◦◦, we remark that it is possible to include both
−−−→
NCP(k, �) and the marked elements

of NCP(k) × NCP(�) into one common definition, the non-crossing partitioned
permutations, which can be endowed with a partial ordering and hence render it
suitable forMöbius inversion. This would allow to rewrite the right-hand side of (1.26)
to a structure similar to (1.14) and obtain a closed formula similar to (1.15). We refer
to Sects. 4 and 5 of [8] for the full construction.

Similar to (1.14) above, the relation (1.26) is applied for one particular choice of f
built up from the Stieltjes transformm(z). We will later see that the set function m̃[·|·]
defined below arises as the deterministic approximation of the (appropriately scaled)
covariance of 〈G[1,k]〉 and 〈G[k+1,k+�]〉 in a similar way that the divided differences
m[·] arise for the expectation of 〈G[1,k]〉. In particular, m̃[·|·] satisfies the symmetry
and cyclicity assumption in Definition 1.14. We give a recursive definition of m̃[·|·]
for now, however, closed formulas are later obtained in Sect. 2.2.

Definition 1.15 Let S1 = (z1, . . . , zk′) ⊂ C\R and S2 = (zk′+1, . . . , zk′+�′) ⊂ C\R
be two finite ordered multi-sets. We define m̃[·|·] to be the set function taking values
in C with the properties (i)–(iii) listed below. Similar to m[·] in Definition 1.5, we
interpret m̃[·|·] as a function of the indices of the spectral parameters.

(i) Symmetry: m̃[·|·] is symmetric under the interchanging of its arguments, i.e., for
any sets B1 ⊆ S1, B2 ⊆ S2 we have

m̃[(i, zi ∈ B1)|( j, z j ∈ B2)] = m̃[( j, z j ∈ B2)|(i, zi ∈ B1)].

(ii) Initial condition: For any sets B1 ⊆ S1, B2 ⊆ S2 we have

m̃[(i, zi ∈ B1)|∅] = m̃[∅|( j, j ∈ B2)] = 0. (1.27)

(iii) Recursion: Let B1 ⊆ S1 and B2 ⊆ S2 be ordered subsets with |B1| = k ≤ k′ and
|B2| = � ≤ �′ elements, respectively. For simplicity, we index them by [k] and
[k + 1, k + �]. The function m̃[·|·] satisfies the following linear recursion

m̃[1, . . . , k|k + 1, . . . , k + �]
= m1

1 − m1mk

(
m̃[2, . . . , k|k + 1, . . . , k + �]

+
k−1∑

j=1

m̃[1, . . . , j |k + 1, . . . , k + �]m[ j, . . . , k] (1.28)

+
k∑

j=2

m[1, . . . , j]m̃[ j, . . . , k|k + 1, . . . , k + �] + sGUE + sκ + sσ + sω

)

where the source terms in the last line are given by

sGUE :=
�∑

j=1

m[1, . . . , k, k + j, . . . , k + �, k + 1, . . . , k + j]
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sκ := κ4

k∑

r=1

∑

k+1≤s≤t≤k+�

m[1, . . . , r ]

× m[r , . . . , k]m[s, . . . , t]m[t, . . . , k + �, k + 1, . . . , s]

sσ := σ

�∑

j=1

m#,σ [1, . . . , k, k + j, . . . , k + �, k + 1, . . . , k + j]

sω := ω̃2

�∑

j=1

m[1, . . . , k]m[k + j, . . . , k + �, k + 1, . . . k + j].

Here, we wrote out the underlying multi-set in the definition of sκ to indicate that
it evaluates to m[s, s] instead of ms if t = s and the vector # ∈ {0, 1}k+�+1 is
given by #1 = · · · = #k = 0 and #k+1 = · · · = #k+�+1 = 1. Recall that m[·]
denotes the divided differences as introduced in Definition 1.5 and that m#,σ [·]
was introduced in Theorem 1.10.

Note that the recursion for m̃[·|·] is linear with different types of source terms in
the last line of (1.28). Therefore, we may introduce the decomposition

m̃[·|·] = m̃GUE [·|·] + κ4m̃κ [·|·] + σ m̃σ [·|·] + ω̃2m̃ω[·|·] (1.29)

where m̃GUE [·|·] satisfies (1.28) for κ4 = σ = ω̃2 = 0 and κ4m̃κ [·|·], σ m̃σ [·|·], and
ω̃2m̃ω[·|·] satisfy (1.28) with sκ , sσ , and sω as the only source term, respectively.

Note that the right-hand side of (1.28) only contains divided differences and
m̃[B1|B2] for |B1| + |B2| < k + �, so (1.28) indeed defines m̃[·|·] recursively. The
symmetry assumption in (i) then extends (1.28) to the second entry of m̃[·|·]. More-
over, all source terms in the last line of (1.28) are fully expressable as a function of
m1, . . . ,mk+� by (1.16), making m̃[·|·] eventually a function ofm1, . . . ,mk+� as well.

As an example, setting σ = ω̃2 = 0 and applying the recursion once gives

m̃[1|2] = m2
1m

2
2

(1 − m2
1)(1 − m2

2)(1 − m1m2)2
+ κ4

m3
1m

3
2

(1 − m2
1)(1 − m2

2)

= m′
1m

′
2

(1 − m1m2)2
+ κ4m1m

′
1m2m

′
2 (1.30)

with m′
i = m′(zi ). We remark that m̃GUE [1|2], seen as a function of (z1, z2), is

sometimes referred to as the second-order Cauchy transform of the GUE ensemble in
the free probability literature (cf. [10]). The corresponding first-order object is−m(z),
which is obtained by applying the usual Cauchy transform to the semicircle law.6

We consider another special case in the following example.

6 The Cauchy transform of a probability measure μ is given by c(z) = ∫
R

μ(dx)
z−x and hence only differs

from the Stieltjes transform by a sign.
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Example 1.16 Whenever κ4 = σ = ω̃2 = 0 and one argument of m̃GUE [·|·] is a
singleton set, only the fourth line of (1.28) gives a non-zero contribution. Rewriting
this term using (1.16) (cf. Lemma 1.17) yields the closed formula

m̃GUE [1|2, . . . , � + 1] = m1

1 − m2
1

�+1∑

j=2

m[1, . . . , j, . . . , � + 1, j]

=
( �+1∏

s=1

ms

)( ∑

�∈NCG([�+1])

∏

(a,b)∈E(�)

qa,b

)

×
�+1∑

j=2

m′
1

m1

m′
j

m j

(
1 +

∑

i �= j

qi, j

)
. (1.31)

For � = 2, we hence obtain

m̃GUE [1|2, 3] = m′
1(m

′
2m3(1 − m1m3) + m2m′

3(1 − m1m2))

(1 − m1m2)2(1 − m1m3)2(1 − m2m3)
.

Note that the right-hand side of (1.31) is fully expressed terms of non-crossing
graphs on a labeled disk. This is because

−−−→
NCP(1, �) and marked elements of

NCP(1) × NCP(�) can be reduced to disk non-crossing partitions in this special
case. In particular, the orientation of the circles is not relevant for this example.

The proof of (1.31) is immediate from the following combinatorial lemma which
may be of independent interest. We give its proof in Appendix B.1.

Lemma 1.17 For j ∈ {1, . . . , k}, k ≥ 1, we have

m[1, . . . , j, . . . , k, j] = m[1, . . . , k]
(
1 +

∑

l∈[k]\{ j}
q j,l

)m′
j

m j
(1.32)

with qi, j as in (1.13).

We also give some examples to illustrate the combinatorial formula (1.26) for the
choice f [·|·] = m̃GUE [·|·].
Example 1.18 (Second-order free cumulants) Let κ4 = σ = ω̃2 = 0. In the case
k = � = 1, the only non-crossing annular permutation is (12) and there is also only
one option for marking {{1}} × {{2}}, namely {{1}} × {{2}}. Rearranging (1.26), we
thus get

m◦◦[1|2] = m̃[1|2] − m[1, 2] + m1m2.

Similarly, considering k = 1 and � = 2 yields

m◦◦[1|2, 3] = m̃[1|2, 3] − m̃[1|2]m3 − m̃[1|3]m2 − 2m[1, 2, 3]
+ 2m1m[2, 3] + 2m2m[1, 3] + 2m3m[1, 2] − 4m1m2m3.
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Fig. 7 The 18 elements of
−−−→
NCP(2, 2)

In the case k = � = 2, there are 18 distinct non-crossing annular permutations (see
Fig. 7) and 4 elements in NCP(2) × NCP(2). However, the second sum in (1.26)
consists of 9 terms in total due to themarking of the blocks as, e.g., {{1}, {2}} × {{3, 4}}
and {{1}, {2}} × {{3, 4}} correspond tom◦◦[1|3, 4]m2 andm◦◦[2|3, 4]m1, respectively,
which do not need to coincide. In total, the formula definingm◦◦[1, 2|3, 4] has 27 terms
on the right-hand side of (1.26).

We conclude this section by recalling the Kreweras complement for annular non-
crossing permutations from [23] (see Fig. 8 for an example). Similarly to the disk case,
taking the Kreweras complement is an invertible map on

−−−→
NCP(k, �).

Definition 1.19 (Kreweras complement, annulus case) Consider the (k, �)-annulus
and label the midpoints of the arcs between the points 1, . . . , k + � (black in Fig. 8)
also by 1, . . . , k + � (red in Fig. 8). Respecting the orientation of the two circles, we
arrange the new labels such that the arc s follows the point s. Let π ∈ −−−→

NCP(k, �)
be visualized on the (k, �)-annulus as in Definition 1.11. The (annular) Kreweras
complement K (π) ∈ −−−→

NCP(k, �) is defined as the maximal annular non-crossing

123



Fluctuation Moments for Regular Functions of Wigner Matrices Page 21 of 65    10 

Fig. 8 The annular non-crossing
permutation π = (1275)(34)(6)
in black and its Kreweras
complement
K (π) = (1)(2456)(3)(7) in red.
(Color figure online)

permutation on [k + �] that can be drawn using only the labels at the midpoints of
the arcs and without intersecting the cycles of π . In particular, each cycle of K (π)

again encloses a region in the annulus that is homeomorphic to the disk with boundary
oriented clockwise. In this context, we consider an annular non-crossing permutation
maximal if none of its cycles can be extended (by merging cycles) without inducing
a crossing.

Note that |π |+|K (π)| = k+� for any π ∈ −−−→
NCP(k, �) (see, e.g., [23, Sect. 6]).We

remark that while defining the annular Kreweras complement on the level of partitions
would also be possible, the resulting map does not have the same properties as in the
disk case (see, e.g., [23, Sect. 1] for a discussion). Therefore, we will only consider
the annular Kreweras complement for permutations. Note that one can further assign
a unique Kreweras complement to any marked non-crossing partition π arising from
some element π1 ×π2 ∈ NCP(k)× NCP(�) by applying Definition 1.3 circle-wise.
In this case, we write K (π) = K (π1) × K (π2).

2 Main Results

The main focus of the present paper lies in determining the limiting covariance struc-
ture arising in the CLT for the centered statistics

Xα := 〈T[1,k]〉 − E〈T[1,k]〉 = 〈G1A1 . . .Gk Ak〉 − E〈G1A1 . . .Gk Ak〉, (2.1)

Yα := 〈 f1(W )A1 . . . fk(W )Ak〉 − E〈 f1(W )A1 . . . fk(W )Ak〉. (2.2)

Here, α = ((z1, A1), . . . , (zk, Ak)) resp. α := (( f1, A1), . . . , ( fk, Ak)) is a multi-
index containing bounded deterministic matrices A1, . . . , Ak and either the spectral
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parameters z1, . . . , zk ∈ C\R with |�z j | � 1 appearing in the resolvents or the
test functions f1, . . . , fk ∈ Hk+1(R) with ‖ f j‖ � 1. Whenever we need to refer
to the number k of resolvents (resp. test functions) in the product Xα (resp. Yα), we
carry the parameter k as a superscript and write X (k)

α (resp. Y (k)
α ). Recall that we set

Tj = G j A j = G(z j )A j as well as T[i, j] = Ti Ti+1 . . . Tj . Similarly, we introduce
Fj := f j (W )A j and use the interval notation

F[i, j] := fi (W )Ai . . . f j (W )A j

for i < j as well as F∅ = 0.

2.1 Resolvent Central Limit Theorem and Recursion

We start by identifying the joint distribution of multiple X (ki )
αi with different ki and

αi . To state the limiting covariance structure, we introduce a recursively defined set
function m2[·|·], which we later identify as the deterministic approximation of the
(appropriately scaled) covariance of 〈T[1,k]〉 and 〈T[k+1,k+�]〉 similar to M[k] andm1[·]
arising for the expectation of T[1,k〉Gk (see Theorem 1.9 as well as (1.21) and (1.22)).7

Note that α = ((z1, A1), . . . , (zk, Ak)) contains the same information on the spectral
parameters and deterministic matrices involved as the set of matrices (Tj , j ∈ [k]).
We will, therefore, occasionally abuse notation and use (z j , A j ) and Tj = G j A j

interchangeably. In particular, we write

m2[α|β] = m2[T1, . . . , Tk |Tk+1, . . . , Tk+�]

where the two multi-indices α and β index the spectral parameters and deterministic
matrices in T1, . . . , Tk and Tk+1, . . . , Tk+�, respectively. At this point, we only give
a recursive definition for m2[·|·], however, explicit formulas are later obtained in
Sect. 2.2. Note that the case σ = ω̃2 = 0 of Definition 2.1 was already given in [27].

Definition 2.1 Let S1 = (T1, . . . , Tk′) and S2 = (Tk′+1, . . . , Tk′+�′) be two (ordered)
finite sets of complex N × N -matrices of the form Tj = G j A j . We define m2[·|·] as
the (deterministic) function of pairs of sets S1, S2 with values in C and the following
properties:

(i) Symmetry:m2[·|·] is symmetric under the interchanging of its arguments, i.e., for
any sets B1 ⊆ S1, B2 ⊆ S2 we have

m2[(Ti , i ∈ B1)|(Tj , j ∈ B2)] = m2[(Tj , j ∈ B2)|(Ti , i ∈ B1)].

(ii) Initial condition: For any sets B1 ⊆ S1, B2 ⊆ S2 we have

m2[(Ti , i ∈ B1)|∅] = m2[∅|(Tj , j ∈ B2)] = 0. (2.3)

7 Note the similarity between the notations m1[·] and m2[·|·], which take one and two resolvent chains as
arguments, respectively.
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(iii) Recursion: Let B1 ⊆ S1 and B2 ⊆ S2 be ordered subsets with |B1| = k ≤ k′ and
|B2| = � ≤ �′ elements, respectively. We index the matrices in B1 by [k] and the
matrices in B2 by [k + 1, k + �]. The functionm2[·|·] satisfies the following linear
recursion

m2[T1, . . . , Tk |Tk+1, . . . , Tk+�]
= m1

(
m2[T2, . . . , Tk−1,Gk Ak A1|Tk+1, . . . , Tk+�]

+ q1,km2[T2, . . . , Tk−1,Gk A1|Tk+1, . . . , Tk+�]〈Ak〉 (2.4)

+
k−1∑

j=1

m2[T1, . . . , Tj−1,G j |Tk+1, . . . , Tk+�]

+ (
m1[Tj , . . . , Tk] + q1,km1[Tj , . . . , Tk−1,Gk]〈Ak〉

)

+
k∑

j=2

m1[T1, . . . , Tj−1,G j ](m2[Tj , . . . , Tk |Tk+1, . . . , Tk+�]

+ q1,km2[Tj , . . . , Tk−1,Gk |Tk+1, . . . , Tk+�]〈Ak〉) + sGUE + sκ + sσ + sω)

where the source terms sGUE , sκ , sσ , and sω are given by

sGUE :=
�∑

j=1

(m1[T1, . . . , Tk , Tk+ j , . . . , Tk+ j−1,Gk+ j ]

+ q1,km1[T1, . . . , Tk−1,Gk , Tk+ j , . . . , Tk+ j−1,Gk+ j ]〈Ak〉) (2.5)

sκ := κ4

k∑

r=1

k+�∑

s=k+1

( s∑

t=k+1

〈M[r ] 
 M(s,...,k+�,k+1,...,t)〉〈(M[r ,k]Ak) 
 M[t,s]〉

+
k+�∑

t=s

〈M[r ] 
 M[s,t]〉〈(M[r ,k]Ak) 
 M(t,...,k+�,k+1,...,s)〉
)

+ κ4q1,k

k∑

r=1

k+�∑

s=k+1

( s∑

t=k+1

〈M[r ] 
 M(s,...,k+�,k+1,...,t)〉〈M[r ,k] 
 M[t,s]〉

+
k+�∑

t=s

〈M[r ] 
 M[s,t]〉〈M[r ,k] 
 M(t,...,k+�,k+1,...,s)〉
)

〈Ak〉. (2.6)

sσ := σ

�∑

j=1

m1[T1 . . . , Tk ,G
t
k+ j A

t
k+ j−1, . . . ,G

t
k+�A

t
k+1, . . . ,G

t
k+ j−1A

t
k+ j ,Gk+ j ]

+ q1,kσ
�∑

j=1

m1[T1 . . . , Tk−1,Gk ,G
t
k+ j A

t
k+ j−1, . . . ,G

t
k+�A

t
k+1,

. . . ,Gt
k+ j−1A

t
k+ j ,Gk+ j ]〈Ak〉 (2.7)
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sω := ω̃2

�∑

j=1

〈(M[k]Ak) 
 M(k+ j,...,k+�,k+1,...k+ j)〉

+ q1,k ω̃2

�∑

j=1

〈M[k] 
 M(k+ j,...,k+�,k+1,...k+ j)〉〈Ak〉 (2.8)

Recall that
 denotes the Hadamard product, q1,k was defined in (1.13), and M(...)

was defined in Theorem 1.9. Moreover, recall thatm1[·] was defined in (1.21) and
the notation with transposes was introduced in (1.25).

Note that setting A1 = · · · = Ak+� = Id reduces (2.4) to (1.28), showing that

m2[G1, . . . ,Gk |Gk+1, . . . ,Gk+�] = m[1, . . . , k|k + 1, . . . , k + �].

We use the linearity of the recursion and the different types of source terms to
introduce the decomposition

m2[·|·] = mGUE [·|·] + κ4mκ [·|·] + σmσ [·|·] + ω̃2mω[·|·], (2.9)

where mGUE [·|·] satisfies (2.4) for κ4 = σ = ω̃2 = 0, and κ4mκ [·|·], σmσ [·|·] resp.
ω̃2mω[·|·] satisfy (2.4) with sκ , sσ resp. sω as only source term. Note that sGUE +sκ +
sσ + sω in (2.4) is fully expressible as a function of A1, . . . , Ak+� and m1, . . . ,mk+�

by (1.22), (1.17) and Lemma A.2, eventually making m2[·|·] a function of the same
quantities.

Recall thatwe set Xα = 〈T1 . . . Tk〉−E〈T1 . . . Tk〉withα = ((z1, A1), . . . , (zk, Ak)).
Before stating the CLT for Xα , we note the following definition.

Definition 2.2 Consider two functions of the Wigner matrix W in Assumption 1.1,
whichwedenote as N -dependent randomvariables X (N ) andY (N ).We say that X (N ) =
Y (N ) + O(N−c) with c > 0 in the sense of moments if for any polynomial P it holds
that

EP(X (N )) = EP(Y (N )) + O(N−c+ε),

for any smal ε > 0,where the implicit constant inO(·) only depends on the polynomial
P and the constants in Assumption 1.1.

We now give a CLT for Xα in (2.1). As the main interest of the present paper
is the deterministic approximation m2[·|·], we restrict the discussion of the CLT to
the macroscopic regime (|�zi | � 1) for technical simplicity. Note that this implies in
particular thatm2[·|·] aswell as its componentsmGUE [·|·],mκ [·|·],mσ [·|·], andmω[·|·]
are of order one. The proof of Theorem 2.3 is analogous to that of [27, Thm. 3.6]. For
the convenience of the reader, we include the necessary modifications for adapting the
proof in [27] to the generalized model in Assumption 1.1 in Appendix A.2.

Theorem 2.3 (Macroscopic CLT for resolvents) Fix p ∈ N, let α1, . . . , αp be
multi-indices, and let W be a Wigner matrix satisfying Assumption 1.1. For each
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j = 1, . . . , p pick a set of spectral parameters z( j)1 , . . . , z( j)k j
with |�z( j)i | � 1 and

max j |z j | ≤ N 100 as well as deterministic matrices A( j)
1 , . . . , A( j)

k j
with ‖A( j)

i ‖ � 1.
Then,

N pE

( p∏

j=1

Xα j

)
=

∑

Q∈Pair([p])

∏

{i, j}∈Q
m2[αi |α j ] + O

(
N ε

√
N

)
(2.10)

for any ε > 0. Here, Pair(S) denotes the pairings of a set S and m2[·|·] is a set
function that satisfies Definition 2.1. Equation (2.10) establishes an asymptotic ver-
sion of Wick’s rule and hence identifies the joint limiting distribution of the random
variables (Xα j ) j as asymptotically complex Gaussian in the sense of moments in the
limit N → ∞.

By (2.9), Theorem 2.3 implies in particular that

lim
N→∞ N 2E(XαXβ) = mGUE [α|β] + κ4mκ [α|β] + σmσ [α|β] + ω̃2mω[α|β].

We remark that m2[·|·] is cyclic in the sense that

m2[(Tj , j ∈ S1)|T1, . . . , Tk] = m2[(Tj , j ∈ S1)|T2, . . . , Tk, T1]

and that further

m2[(Tj , j ∈ S1)|T1, . . . , Tk−1,Gk]
= m2[(Tj , j ∈ S1)|T2, . . . , Tk−1,Gk A1] − m2[(Tj , j ∈ S1)|T1, . . . , Tk−1]

zk − z1
.

whenever z1 �= zk , Ak = Id, and σ = 0. These identities can be obtained from
the “meta argument” below [5, Lem. 4.1] (see also [27, Cor. 3.7]) using that the
analogous formulas for the original resolvent chains are trivially true by resolvent
identities. However, any additional information onm2[·|·] has to be obtained from the
recursion (2.4) directly.

2.2 Solution of the Recursion

After identifying m2[α|β] as the deterministic approximation of E[XαXβ ], we con-
sider Definition 2.1 in detail. In this section, we derive the main result, which is a
solution to the (deterministic) recursion (2.4). This characterizes the overall structure of
the functionm2[·|·] and yields explicit combinatorial formulas to replace the recursive
definition in applications. Making use of the linearity of the recursion and the decom-
position (2.9), it is sufficient to consider the components mGUE [·|·], mκ [·|·],mσ [·|·],
and mω[·|·] separately. We start by studying mGUE [·|·]. The proof consists of two
steps that are carried out in Sect. 3.
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Theorem 2.4 Let α = ((z1, A1), . . . , (zk, Ak)) and β = ((zk+1, Ak+1),

. . . , (zk+�, Ak+�)) for some k, � ∈ N. Then,

mGUE [α|β] =
∑

π∈−−−→
NCP(k,�)

( ∏

B∈K (π)

〈 ∏

j∈B
A j

〉) ∏

B∈π

m◦[B]

+
∑

π1×π2∈NCP(k)×NCP(�),
U1∈π1,U2∈π2 marked

( ∏

B1∈K (π1),
B2∈K (π2)

〈 ∏

j∈B1
A j

〉〈 ∏

j∈B2
A j

〉)
m◦◦[U1|U2]

×
∏

B1∈π1\U1,
B2∈π2\U2

m◦[B1]m◦[B2] (2.11)

with m◦ and m◦◦ being the first and second-order free cumulant functions as defined
in (1.14) and (1.26), respectively.

Observe that the right-hand side of (2.11) reduces to the combinatorial expression
in (1.26) if A1 = · · · = Ak+� = Id.

Remark Note that the right-hand side of (2.11) is symmetric with respect to inter-
changing of ((z1, A1), . . . , (zk, Ak)) and ((zk+1, Ak+1), . . . , (zk+�, Ak+�)), which
is consistent with the symmetry of m2[·|·] in Definition 2.1(i). We can check this
directly from (2.11) by observing that there is a one-to-one correspondence between
non-crossing permutations of the (k, �)-annulus and those of the (�, k)-annulus. This
follows from drawing the cycles of the permutation as curves on the respective annuli
and observing that interchanging the inner and outer circle with a conformal map (e.g.,
by inversion to a concentric circle between the outer and inner circle) preserves the
standardness and non-crossing property of the picture (cf. Definition 1.15). Moreover,
this symmetry of m̃GUE [·|·] implies that m◦◦[·|·] is also invariant under interchang-
ing ((z1, A1), . . . , (zk, Ak)) and ((zk+1, Ak+1), . . . , (zk+�, Ak+�)) since m̃GUE [·|·]
determines m◦◦[·|·] uniquely by Definition 1.14.

Example 2.5 (Asymptotics of covariances for GUE) We consider a special case of
Theorem 2.3. Let p = 2, k1 = k2 = 1, and assume that W is a GUE matrix.8 By
decomposing A1 and A2 into a tracial and a traceless part, the deterministic approxi-
mation for the covariance follows directly from [7, Thm. 4.1], giving

N 2E(〈T1〉 − E〈T1〉)(〈T2〉 − E〈T2〉)

= 〈A1A2〉 m2
1m

2
2

(1 − m1m2)
+ 〈A1〉〈A2〉

(
m′

1m
′
2

(1 − m1m2)2
− m2

1m
2
2

(1 − m1m2)

)
+ O

(
N ε

√
N

)

= 〈A1A2〉m◦[1, 2] + 〈A1〉〈A2〉m◦◦[1|2] + O
(

N ε

√
N

)
,

where the last equation follows from the formulas in Examples 1.6 and 1.18. Note that
the error bound �/

√
L in [7, Eq. (91)] evaluates toO(1/

√
N ) on macroscopic scales.

8 Note that we are only using that W satisfies Assumption 1.1 and κ4 = σ = ω̃2 = 0.
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We remark that the deterministic leading term matches the formula for mGUE [T1|T2]
obtained from applying (2.4) to the initial condition mGUE [T1|∅] = 0.

Next, we consider the recursion for mκ [·|·]. We obtain a closed solution similar
to Theorem 2.4, i.e., a sum of terms that factorizes into two parts depending only
on the deterministic matrices A1, . . . , Ak+� and the spectral parameters z1, . . . , zk+�,
respectively. The proof of Theorem 2.6 is given in Sect. 4.1.

Theorem 2.6 Let α = ((z1, A1), . . . , (zk, Ak)) and β = ((zk+1, Ak+1), . . . , (zk+�,

Ak+�)) for some k, � ∈ N. Then there exist

(i) a family (ψπ,B)B∈π of functions ψB,π : C|B| → C for every π ∈ −−−→
NCP(k, �) and

(ii) a family (ψπ,U1,U2)U1⊂[k],U2⊂[k+1,k+�] of functions ψπ,U1,U2 : C|U1| ×C|U2| → C

that are invariant under interchanging of the two arguments as well as functions
(ψπ1,B1)B1∈π1\U1 and (ψπ2,B2)B2∈π2\U2 with ψπi ,Bi : C|Bi | → C for every π =
π1 × π2 ∈ NCP(k) × NCP(�) with marked blocks U1 ∈ π1 and U2 ∈ π2

such that

mκ [α|β] =
∑

π∈−−−→
NCP(k,�)

∏

B∈K (π)

〈( ∏

j∈B∩[k]
A j

)



( ∏

j∈B∩[k+1,k+�]
A j

)〉

×
∏

B∈π

ψπ,B(z j | j ∈ B)

+
∑

π=π1×π2∈NCP(k)×NCP(�),
U1∈π1,U2∈π2 marked

( ∏

B1∈K (π1),
B2∈K (π2)

〈 ∏

j∈B1
A j

〉〈 ∏

j∈B2
A j

〉)
(2.12)

× ψπ,U1,U2 (z j | j ∈ U1 ∪U2)
∏

B1∈π1\U1,
B2∈π2\U2

ψπ1,B1 (z j | j ∈ B1)ψπ2,B2 (z j | j ∈ B2),

where 
 denotes the Hadamard product.

Theorem 2.6 is a purely structural result which shows thatmκ [·|·] can be written in
terms of non-crossing permutations and partitions similar to mGUE [·|·]. Despite the
obvious similarities between (2.11) and (2.12), considering the minimal example

m2[T1|T2] = mGUE [T1|T2] + κ4mκ [T1|T2]

= 〈A1A2〉 m2
1m

2
2

(1 − m1m2)
+ 〈A1〉〈A2〉

(
m′

1m
′
2

(1 − m1m2)2
− m2

1m
2
2

(1 − m1m2)

)

+ κ4(〈a1a2〉m3
1m

3
2 + 〈A1〉〈A2〉(2m1m

′
1m2m

′
2 − m3

1m
3
2))

with σ = ω̃2 = 0 already shows that the functions ψi describing the dependence on
the spectral parameters do not coincide with the free cumulant functions m◦[·] and
m◦◦[·|·] in general. However, (2.4) implies that the functions ψi themselves satisfy a
recursion. Theorem 2.6 hence reduces the computation of mκ [·|·] from iterating (2.4)
to an inductive computation of the part that only depends on the spectral parameters.
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We continue by deriving an explicit formula for mσ [·|·]. As the source term sσ in
the corresponding recursion is, up to transposes, identical to sGUE , the solution of the
recursion is analogous to Theorem 2.4 but uses m#,σ [·] instead of the iterated divided
differences m[·]. We give the proof in Sect. 4.2.

Theorem 2.7 Letα = ((z1, A1), . . . , (zk, Ak)),β = ((zk+1, Ak+1), . . . , (zk+�, Ak+�))

for some k, � ∈ N and abbreviate

m̃σ [1, . . . , k|k + 1, . . . , k + �] := mσ [G1, . . .Gk |Gk+1, . . . ,Gk+�]

in the special case A1 = · · · = Ak+�. If B ∈ π is a connecting cycle ofπ ∈ −−−→
NCP(k, �)

decomposed as B = (i1, . . . , ir ) ◦ ( j1, . . . , js) with i1, . . . , ir ⊂ [k] and j1, . . . , js ⊂
[k + 1, k + �], we introduce the notation

Bσ := (i1, . . . , ir ) ◦ ( js, . . . , j1).

Then,

mσ [α|β] =
∑

π∈−−−→
NCP(k,�)

( ∏

B∈K (π)

〈 ∏

j∈B∩[k]
A j

( ∏

j∈B∩[k+1,k+ j]
A j

)t〉) ∏

B∈π

m#,σ◦ [Bσ ]

+
∑

π1×π2∈NCP(k)×NCP(�),
U1∈π1,U2∈π2 marked

( ∏

B1∈K (π1),
B2∈K (π2)

〈 ∏

j∈B1
A j

〉〈 ∏

j∈B2
A j

〉)
(2.13)

× (mσ )◦◦[U1|U2]
∏

B1∈π1\U1,
B2∈π2\U2

m#,σ◦ [B1]m#,σ◦ [B2]

where # = (0, . . . , 0, 1, . . . , 1) with the number of zeros and ones matching the
number of labels on the inner and outer circle involved in B, respectively. Moreover,
m#,σ◦ [·] denotes the free cumulant function associated with m#,σ [·] via (1.14) and
(mσ )◦◦[·|·] denotes the second-order free cumulant function associated to m̃σ [·|·] and
m#,σ [·] via (1.26), respectively.

Note that the set function mσ [·|·] satisfies the same factorization property as
mGUE [·|·] and mκ [·|·]. For k = � = 1, it readily follows that

mσ [T1|T2] = 〈A1A
t
2〉

m2
1m

2
2

1 − σm1m2
+ 〈A1〉〈A2〉

(
m′

1m
′
2

(1 − σm1m2)2
− m2

1m
2
2

1 − σm1m2

)
.

We further remark that (2.9) evaluates tom2[·|·] = mGUE [·|·]+mσ [·|·] in the case
of GOE matrices (σ = 1 and κ4 = ω̃2 = 0).

It remains to consider mω[·|·]. The proof of Theorem 2.8 is given in Sect. 4.2.

Theorem 2.8 Let α = ((z1, A1), . . . , (zk, Ak)) and β = ((zk+1, Ak+1), . . . , (zk+�,

Ak+�)) for some k, � ∈ N. Then there exist
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(i) a family (�π,B)B∈π of functions �B,π : C|B| → C for every π ∈ −−−→
NCP(k, �) and

(ii) a family (�π,U1,U2)U1⊂[k],U2⊂[k+1,k+�] of functions�π,U1,U2 : C|U1| ×C|U2| → C

that are invariant under interchanging of the two arguments as well as functions
(�π1,B1)B1∈π1\U1 and (�π2,B2)B2∈π2\U2 with �πi ,Bi : C|Bi | → C for every π =
π1 × π2 ∈ NCP(k) × NCP(�) with marked blocks U1 ∈ π1 and U2 ∈ π2

such that

mω[α|β] =
∑

π∈−−−→
NCP(k,�)

∏

B∈K (π)

〈( ∏

j∈B∩[k]
A j

)



( ∏

j∈B∩[k+1,k+�]
A j

)〉

×
∏

B∈π

�B,π (z j | j ∈ B)

+
∑

π=π1×π2∈NCP(k)×NCP(�),
U1∈π1,U2∈π2 marked

( ∏

B1∈K (π1),
B2∈K (π2)

〈 ∏

j∈B1
A j

〉〈 ∏

j∈B2
A j

〉)

× �π,U1,U2 (z j | j ∈ U1 ∪U2)
∏

B1∈π1\U1,
B2∈π2\U2

�π1,B1(z j | j ∈ B1)�π2,B2 (z j | j ∈ B2).

(2.14)

Similar to Theorem 2.6, Theorem 2.8 is a pure structural result. It shows that the
last contributionmω[·|·] satisfies the same factorization property asmGUE [·|·],mκ [·|·],
and mσ [·|·]. In the case k = � = 1, we have the formula

mω[T1|T2] = 〈a1a2〉m2
1m

2
2 + 〈A1〉〈A2〉(m′

1m
′
2 − m2

1m
2
2).

It further follows from (2.4) that the functions �i themselves satisfy a recursion.
Theorem 2.8 thus reduces the computation of mω[·|·] to the inductive computation of
the part that only depends on the spectral parameters.

2.3 General Test Functions and Applications to Free Probability

We conclude the discussion by comparing the explicit formulas from Sect. 2.2 to the
free probability results in [21]. To do so, we generalize the CLT for resolvents in
Theorem 2.3 to a full multi-point functional CLT for (N -independent) test functions
f1, . . . , fk , i.e., aCLT for the statisticsYα in (2.2).GivenTheorem2.3 and the formulas
fron Sect. 2.2, the proof follows from a classical application of the Helffer–Sjöstrand
formula (analogous to the proof of [27, Thm. 2.7]) and is hence omitted. Note that we
restrict Theorem 2.9 to real-valued test functions only for simplicity. Extending the
results in this section to complex-valued test functions only requires minor modifica-
tions to the argument.

Theorem 2.9 (Macroscopic multi-point functional CLT) Let k ∈ N and pick deter-
ministic matrices A1, . . . , Ak ∈ CN×N with ‖A j‖ � 1. Let further W be a Wigner
matrix satisfying Assumption 1.1 and let f1, . . . , fk ∈ Hk+1(R) be real-valued com-
pactly supported test functions with ‖ f j‖ � 1. Then, for any ε > 0, the centered
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statistics (2.2) are approximately distributed (in the sense of moments) as

NY (k,a)
α = ξ(α) + O

(
N ε

√
N

)
(2.15)

with a centered (N-dependent) Gaussian process ξ(α) satisfying

Eξ(α)ξ(β) =
∑

π∈−−−→
NCP(k,�)

( ∏

B∈K (π)

〈 ∏

j∈B
A j

〉)
�(GUE)

π ( f1, . . . , fk+�)

+ κ4
∑

π∈−−−→
NCP(k,�)

∏

B∈K (π)

〈( ∏

j∈B∩[k]
A j

)



( ∏

j∈B∩[k+1,k+�]
A j

)〉

× �(κ)
π ( f1, . . . , fk+�)

+ σ
∑

π∈−−−→
NCP(k,�)

( ∏

B∈K (π)

〈 ∏

j∈B∩[k]
A j

( ∏

j∈B∩[k+1,k+ j]
A j

)t〉)

× �(σ)
π ( f1, . . . , fk+�)

+ ω̃2

∑

π∈−−−→
NCP(k,�)

∏

B∈K (π)

〈( ∏

j∈B∩[k]
A j

)



( ∏

j∈B∩[k+1,k+�]
A j

)〉

× �(ω)
π ( f1, . . . , fk+�)

+
∑

π1×π2∈NCP(k)×NCP(�),
U1∈π1,U2∈π2 marked

( ∏

B1∈K (π1),
B2∈K (π2)

〈 ∏

j∈B1
A j

〉〈 ∏

j∈B2
A j

〉)

× �π1×π2,U1×U2( f1, . . . , fk+�). (2.16)

Here, β denotes another multi-index of length � containing the deterministic matri-
ces Ak+1, . . . , Ak+� satisfying ‖A j‖ � 1 and the test functions fk+1, . . . , fk+� ∈
H �+1(R). The functions �

(·)
π and �π1×π2,U1×U2 in (2.16) can be computed recur-

sively and only depend on the underlying permutation resp. marked partition, the
functions f1, . . . , fk+� and the model parameters κ4, σ , and ω̃2.

For the later applications, we note the following formulas for the case
κ4=σ=ω̃2= 0. Corollary 2.10 is proven in [27] by explicitly evaluating the integrals
that are obtained from the Helffer–Sjöstrand formula in the proof of the functional
CLT.

Corollary 2.10 (Cor. 2.9 in [27]) Consider Theorem 2.9 for a GUE matrix9 W. In this
case, we have

�(GUE)
π ( f1, . . . , fk+�) :=

∏

B∈π

sc◦[B], (2.17)

9 We only use that W satisfies Assumption 1.1 and κ4 = σ = ω̃2 = 0.
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where sc◦[·] denotes the free cumulant function associated with

sc[i1, . . . , in] :=
∫ 2

−2

[ n∏

j=1

fi j (x)

]
ρsc(x)dx, (2.18)

with ρsc as in (1.9), and

�π1×π2,U1×U2( f1, . . . , fk+�) := sc◦◦[U1|U2]
∏

B1∈π1\U1,
B2∈π2\U2

sc◦[B1]sc◦[B2], (2.19)

where sc◦◦[·|·] denotes the second-order free cumulants associated with sc[·] in (2.18)
and

sc[i1, . . . , in |in+1, . . . , in+m ] := 1

2

∫ 2

−2

∫ 2

−2

( n∏

j=1

fi j (x)

)′( m∏

j=1

fin+ j (y)

)′
u(x, y)dxdy

(2.20)
by Definition 1.14. The kernel u : [−2, 2] × [−2, 2] → R is given by

u(x, y) := 1

4π2 ln

[
(
√
4 − x2 + √

4 − y2)2(xy + 4 − √
4 − x2

√
4 − y2)

(
√
4 − x2 − √

4 − y2)2(xy + 4 + √
4 − x2

√
4 − y2)

]
.

(2.21)

We remark that the formula (2.21) also appears in [9] and [28] (see also [27,
Cor. 3.8]).

Whenever f j (x) = x for all j = 1, . . . , k + � or, more generally, f j is an (N -
independent) polynomial,10 the N → ∞ limit of (2.16) describes the second-order
limiting distribution of GUE and deterministic matrices in free probability. It is readily
checked that Theorem 2.9 indeed coincides with the free probability literature in this
case. The computations to obtain Corollary 2.11 are included in Appendix B.2.

Corollary 2.11 Under the assumptions of Corollary 2.10 let f1(x)= · · · = fk+�(x)=x,
i.e., Y (k,a)

α = 〈W A1 . . .W Ak〉 −E〈. . .〉 and Y (�,b)
β = 〈W Ak+1 . . .W Ak+�〉 −E〈. . .〉.

Then,

lim
N→∞ N 2E

(
Y (k,a)

α Y (�,b)
β

)
=

∑

π∈−−−→
NCP2(k,�)

( ∏

B∈K (π)

〈 ∏

j∈B
A j

〉)
(2.22)

where
−−−→
NCP2(k, �) denotes the pairings in

−−−→
NCP(k, �).

10 We implicitly assume f j to be compactly supported by setting f̃ j (x) = f j (x)χ(x), where f j is a
polynomial supported on all of R and χ is a smooth cutoff function that is equal to one on [−5/2, 5/2]
and equal to zero on [−3, 3]c . Since f j (W ) = f̃ j (W ) with high probability by eigenvalue rigidity, we may
use f j and f̃ j interchangeably here.
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We remark that the limit in (2.22) reproduces the well-known result of second-
order freeness of GUE and deterministic matrices from [24]. Moreover, computations
similar to Corollaries 2.10 and 2.11 for the GOE (σ = 1 and κ4 = ω̃2 = 0) yield

lim
N→∞ N 2E

(
Y (k,a)

α Y (�,b)
β

)

=
∑

π∈−−−→
NCP2(k,�)

( ∏

B∈K (π)

〈 ∏

j∈B
A j

〉)

+
∑

π∈−−−→
NCP2(k,�)

( ∏

B∈K (π)

〈 ∏

j∈B∩[k]
A j

( ∏

j∈B∩[k+1,k+ j]
A j

)t〉)

which is the (real) second-order freeness of GOE and deterministic matrices estab-
lished in [26]. Apart from these two special cases, the deterministic approximation
in Theorem 2.9 mirrors the overall structure of the joint second-order distribution of
Wigner and deterministic matrices described in [21, Eq. (3)]. We remark that resol-
vents and functions with an N -dependent mesoscopic scaling (1.5) as considered
in [27] are usually not accessible in free probability theory as many of the standard
techniques rely on explicit moment computations. Theorem 2.9 and its mesoscopic
analog [27, Thm. 2.7] thus show that the underlying combinatorics of non-crossing
annular permutations and marked partitions are, in fact, more general.

We further remark that the parallels between Theorem 2.9 and [21] continue to hold
if we consider multiple independent Wigner matrices instead of one matrix W . More
precisely, for n independent GUE (or GOE) matrices, the underlying combinatorial
structure is given by the so-called non-mixing annular non-crossing permutations resp.
non-mixing marked partitions for n colors (cf. Remark [27, Cor. 2.11]).

3 Proof of Theorem 2.4 (Formula formGUE[·|·])
The proof of Theorem 2.4 consists of two main steps:

(1) Solve the recursion for mGUE [·|·] in the case A1 = · · · = Ak+� = Id. As m[·]
can be expressed in terms of non-crossing graphs on the disk, we can rewrite the
coefficients and the source term of the recursion in terms of graphs. By defining
a suitable family of graphs on the (k, �)-annulus, we extend this representation to
obtain an ansatz for m̃GUE [·|·] and, by Definition 1.14, also an expression for the
second-order free cumulant function.

(2) Using the formula for m̃GUE [·|·] obtained in Step 1, write out the right-hand
side of (2.11) and show that it satisfies the recursion for mGUE . Checking that
this ansatz also satisfies the remaining properties in Definition 2.1 yields equality
between the two sides of (2.11).

We address the two steps in Sects. 3.1 and 3.2, respectively.
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3.1 Step 1: Graphs

As we only consider m̃GUE throughout this section, let κ4 = σ = ω̃ = 0 and
thus m̃GUE [·|·] = m̃[·|·]. Recall from (1.16) and (1.17) that both m[·] and m◦[·] are
expressable in terms of disk non-crossing graphs. In this section, we give analogous
combinatorial formulas for m̃[·|·] and m◦◦[·|·]. For this task, we define a new, albeit
closely related, multi-set of graphs on the (k, �)-annulus. We start by introducing a
transformation that translates between the disk and the annulus picture (cf. [22, Thm. 8
in Ch. 5]).

Definition 3.1 Fix k, � ∈ N, 1 ≤ j ≤ �, and consider a disk with the k + � + 1 labels
1, . . . , k, k + j, . . . , k + �, k + 1, . . . , k + j equidistantly placed around its boundary
in clockwise order. We define a map τ , refered to as mediating map, that takes this
picture to the (k, �)-annulus as follows:

(1) Use a homeomorphic continuous deformation, e.g., a conformal map, to map the
disk and its labels to the (k, � + 1)-annulus with a slit located between 1 and k on
the outer circle and the two copies of k + j on the inner circle.

(2) Remove the slit to obtain an annulus.
(3) Merge the two copies of the label k + j .

We visualize τ for an example in Fig. 9. The two labels k + j are denoted as 6
and 6’ to distinguish between them more easily.

The map τ induces a transformation of any graph � defined on the labeled disk to
a graph defined on the (k, �)-annulus. We denote the resulting annulus graph as τ(�).
By construction, τ(�) is planar whenever � is a disk non-crossing graph. Recall that
we use a slightly more general notion of planar graphs than the standard literature
by allowing for loops and multi-edges. We give an example in Fig. 10. For better
visibility, the loop arising in the last step is moved from between the two (1, 3) edges
to the right.

We can now introduce the family of graphs G(k, �) that constitute the key tool in
the proof of Theorem 2.4. In analogy to the disk non-crossing graphs in Definition 1.7,
we require the elements of G(k, �) to be drawn on the (k, �)-annulus with the vertices
placed around the boundary and the edges drawn in the interior of the annulus (see
Fig. 10 and Example 3.4).

1

2

3

46

7

5

6′

|

|

conformal map−→

1

2

3

4 56’
6 7

remove slit−→
join vertices

1

2

3

4 56
7

Fig. 9 The geometry of the transformation τ for k = 4, � = 3, and j = 2. (Color figure online)
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1 2

33’

map to annulus−→

1

2

3’
3

join vertices−→

1

2

3

Fig. 10 Construction of τ(�) for a graph � ∈ NCG({1, 2, 3, 3′})

Definition 3.2 For k, � ∈ N we define G([k], [k + 1, k + �]) to be the multi-set11 of
undirected, planar graphs on the (k, �)-annulus with vertex set {1, . . . , k+�} and pos-
sible loops or double edges that is obtained from the following recursive construction:

(i) For any S1 ⊂ [k] and S2 ⊂ [k + 1, k + �] we have

G(S1,∅) = G(∅, S2) = ∅. (3.1)

(ii) The multi-set G([k], [k + 1, k + �]) can be constructed from the multi-sets
G(S1, [k+1, k + �]) with S1 � [k] as follows: We define

G¬(1,k) := G1 ∪ G2 ∪ G3 ∪ G4, (3.2)

as the disjoint union of the sets

G1 := {� ∪ {1}|� ∈ G([2, k], [k + 1, k + �])}

G2 :=
k⋃

j=2

{� = �1 ∪ �2|�1 ∈ NCG([1, j])

with edge (1, j), �2 ∈ G([ j, k], [k + 1, k + �])},

G3 :=
k−1⋃

j=1

{� = �1 ∪ �2|�1 ∈ G([1, j], [k + 1, k + �])

with edge (1, j), �2 ∈ NCG([ j, k])},

G4 :=
�⋃

j=1

τ
({

� ∈ NCG ({1, . . . , k, k + j, . . . , k + �, k + 1, . . . , k + j − 1, k + j})
∣∣∣

� has edge (1, k + j)
})

.

Here, the union � ∪ {1} in G1 is to be understood as adding a separated vertex 1
to � while the union �1 ∪ �2 in G2 and G3 refers to the graph with the vertex set
{1, . . . , k + �} and the edge set given by the union of the edge sets of �1 and �2,

11 The graph � may be obtained in several different ways from the recursive construction. This is reflected
by the multiplicity of � in the multi-set G([k], [k + 1, k + �]).
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respectively. Further, recall τ from Definition 3.1. We remark that all elements of
G1, . . . ,G4 are planar graphs. Next, let

G(1,k) := {� ∪ {(1, k)}|� ∈ G¬(1,k)},

where the union is to be understood as adding an edge (1, k) to each graph in
G¬(1,k). Observe that the resulting graphs are again planar. Finally, we define

G([k], [k + 1, k + �]) := G(1,k) ∪ G¬(1,k), (3.3)

where any graphs that occur more than once are counted with multiplicity. In par-
ticular, whenever the same graph occurs in both G(1,k) and G¬(1,k), the multiplicity
of� ∈ G([k], [k+1, k+�]) is the total number of occurrences of� in both subsets.

(iii) G(S1, S2) = G(S2, S1) for any S1 ⊂ [k] and S2 ⊂ [k + 1, k + �] (in the sense that
there is a well-defined bijective mapping that takes each element of G(S1, S2) to
its counterpart).

We abbreviate G(k, �) := G([k], [k + 1, k + �]) and refer to its elements as good
graphs. The subset of connected good graphs is denoted by Gc(k, �). Any edge (i, j)
with i ∈ [k] and j ∈ [k + 1, k + �] is referred to as connecting edge.

We give a schematic overview of the elements in G(k, �) in Fig. 11. To avoid
overcrowding, labels and edges that are not prescribed by the definition are left out.

Remark The occurrence of multi-edges or loops is inherent to the construction of
G(k, �), which can be seen from a simple counting argument. First, note that an element
of G(k, �) can have at most 2(k + �) edges by construction. To see this, observe that
the elements of G¬(1,k) with the highest number of edges lie in G4 and that � ∈ G4
has the same number of edges as the underlying disk non-crossing graph. As any disk
non-crossing graph on n vertices has at most 2n−3 edges (realized by a triangulation),
the maximal number of edges for � ∈ G4 is 2(k + �+ 1)− 3 = 2(k + �)− 1. As (3.3)
may add another edge to �, the maximum for G(k, �) is 2(k + �) edges. On the other
hand, the maximal number of edges in a planar graph on the (k, �)-annulus without
multi-edges or loops is only 2(k + �) if k, � ≥ 3 (again realized by a triangulation).
It is readily seen that such a graph has strictly less than 2(k + �) edges if either k
or � is one or two. As the construction in Definition 3.2 does not introduce crossings

1 2k 1

j

1

j

1

k + j

Fig. 11 Schematic visualization of the elements of G1, G2, G3, and G4 (left to right). Different subgraphs
are indicated by different line styles
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and begins with the cases k, � ≤ 2, the difference between the two maxima must be
reflected as multi-edges or loops.

We further remark that G(k, �) is a genuine multi-set, i.e., some graphs appear with
multiplicity larger than one, unless k = � = 1 (cf. Lemma 3.5(d) and Fig. 13). The
key property shared by all elements of G(k, �) is that each graph arises from some disk
non-crossing graph along the recursive construction. Therefore, we may interpret G4
as a kind of source term. In view of Lemma 3.3, the multi-set G(k, �) gives an annulus
analog to the disk non-crossing graphs, as it plays the same role in the combinatorial
description of m̃[·|·] as NCG(S) does for m[·].
Lemma 3.3 For fixed k, � ∈ N, we have

m̃[1, . . . , k|k + 1, . . . , k + �] =
( k+�∏

s=1

ms

) ∑

�∈G(k,�)

∏

(i, j)∈E(�)

qi, j . (3.4)

Proof As qi, j = q j,i by (1.13) and G(k, �) = G(�, k) by Definition 3.2(iii), it readily
follows that the right-hand side of (3.4) is symmetric under the interchanging [k]
and [k + 1, k + �]. Similar to the proof of [6, Lem. 5.2], we use the combinatorial
formula (3.4) as an ansatz to solve the recursion given in (1.27) and (1.28). First,
observe that

( k∏

s=1

ms

) ∑

�∈G(S1,∅)

∏

(i, j)∈E(�)

qi, j =
( k+�∏

s=k+1

ms

) ∑

�∈G(∅,S2)

∏

(i, j)∈E(�)

qi, j = 0

for any S1 ⊂ [k] and S2 ⊂ [k + 1, k + �] due to the sums being empty. Hence, the
initial condition (1.27) is satisfied.

It remains to check (1.28). We introduce the notation

q� :=
∏

(i, j)∈E(�)

qi, j

and conclude from the decompositions (3.3) and (3.2) that
∑

�∈G(k,�)

q� = (1 + q1,k)
∑

�∈G¬(1,k)

q�

= (1 + q1,k)

( ∑

�∈G1
q� +

∑

�∈G2
q� +

∑

�∈G3
q� +

∑

�∈G4
q�

)
. (3.5)

Noting that the vertex 1 in � ∈ G1 has no adjacent edges, we may write
∑

�∈G1
q� =

∑

�∈G([2,k],[k+1,k+�])
q�.

Further, the transformation τ only changes the geometry underlying a graph�, but does
not influence its edge set. By the definition of G4, any� ∈ NCG([1, . . . , k+�, k+ j])
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used in the construction must have at least one edge (1, k + j). As a consequence, the
product q� always includes the factor q1,k+ j = m1mk+ j (1 + q1,k+ j ). This yields

∑

�∈G4
q� =

�∑

j=1

(m1mk+ j

∑

�∈NCG([1,...,k+�,k+ j])
q�).

Note that the identityq1,k+ j = m1m j (1+q1,k+ j ) allowswriting summations restricted
to graphs with an edge (1, k+ j) on the left-hand side into an unrestricted sum over all
graphs on the right-hand side.We use the same trick for G2 and G3 as q�1∪�2 = q�1q�2

for the union of graphs introduced in Definition 3.2. With these replacements, (3.5)
can be written as

1

1 + q1,k

∑

�∈G(k,�)

q�

=
∑

�∈G([2,k],[k+1,k+�])
q� +

k∑

j=2

m1m j

( ∑

�∈NCG([1, j])
q�

)( ∑

�∈G([ j,k],[k+1,k+�])
q�

)

+
k−1∑

j=1

m1m j

( ∑

�∈G([1, j],[k+1,k+�])
q�

)( ∑

�∈NCG([ j,k])
q�

)

+
�∑

j=1

m1mk+ j

( ∑

�∈NCG([1,...,k+�,k+ j])
q�

)
.

Multiplying both sides with
∏k+�

s=1 ms and noting that 1 + q1, j = (1 − m1m j )
−1, we

see that the right-hand side of (3.4) satisfies (1.28) as claimed.

Example 3.4 We have |G(1, 1)| = 8. The graphs are visualized in Fig. 12.
In particular, we readily reobtain (1.30) by evaluating q� for every graph in the

above list. Note that decomposing (1.30) into the formm1m2
∑

�∈G(1,1) q� is possible
in multiple ways. However, picking graphs that contain a connecting edge yields the
set G(1, 1) in Fig. 12 as the smallest possible set.

Fig. 12 The elements of G(1, 1)
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We state a few properties of the elements of G(k, �). In Lemma 3.5, we focus on
general characteristics of � ∈ G(k, �) as a planar graph drawn on the (k, �)-annulus.
The properties of G(k, �) that are needed for the proof of the combinatorial formula
for m◦◦ are given in the separate Lemma 3.6.

Lemma 3.5 Let k, � ∈ N.

(a) The connected components of any� ∈ G(k, �) give rise to a non-crossing partition
of the (k, �)-annulus. In particular, � contains a connecting edge if k, � ≥ 1.

(b) � ∈ G(k, �) may have at most two loops. Loops only occur at vertices that are
adjacent to a connecting edge. Two loops on vertices on the same circle do not
occur.

(c) � ∈ G(k, �) may have up to k + � − 1 double edges. Double edges are either
connecting edges or adjacent to a connecting edge. Edges with a multiplicity
higher than two do not occur.

(d) G(k, �) is a genuine multi-set unless k = � = 1.

Proof (a) We use proof by induction. First, note that the elements of G(S1,∅) = ∅
and G(∅, S2) = ∅ with S1 ⊆ [k] and S2 ⊆ [k + 1, k + �] clearly give rise to an
annular non-crossing partition. Moreover, Example 3.4 establishes the claim in the
case k = � = 1 and shows that any � ∈ G(1, 1) contains at least one connecting edge.

Assume next that the elements of G(S1, [k + 1, k + �]) give rise to an annular non-
crossing partition for any S1 ⊂ [k] with |S1| ≤ k − 1 and a fixed � ≥ 1. We aim to
show that the connected components of any � ∈ G(k, l) also correspond to the blocks
of some π ∈ NCP(k, �). Due to the symmetry induced by Definition 3.2(iii), this is
enough to establish the induction step.

By definition, the vertices 1 and k lie next to each other on the outer circle. Hence,
adding an edge (1, k) may connect two connected components, but cannot introduce
a crossing in the partition obtained from them. It is, therefore, sufficient to check the
claim for elements of G¬(1,k) or, equivalently, for the sets G1, G2, G3, and G4 in (3.2).
First, note that the transformation τ indeed takes the disk partition induced by the disk
non-crossing graph to an annular non-crossing partition. This is due to the continuous
homeomorphism used in the definition of τ . Moreover, the edge (1, k + j) prescribed
for � ∈ NCG({1, . . . , k, k + j, . . . , k + j − 1, k + j}) by the definition is mapped
to a connecting edge, ensuring that the resulting partition has a connecting block.

By construction, the graphs in G1, G2, and G3 contain an element of G(S1, [k +
1, k + �]) with some S1 ⊂ [k] as a subgraph. Applying the induction hypothesis for
G([2, k], k+1, k+�]) and noting that a separate vertex 1 only adds a singleton set to the
underlying partition, we can conclude that G1, too, behaves as claimed. The argument
for G2 and G3 is similar. Here, the key observation is that the connected components
of the added disk non-crossing graph induce a non-crossing partition of an interval
placed along the outer circle. Recalling that all elements of NCP(k, �) have at least
one connecting block, the corresponding connected component of � ∈ G(k, �) must
contain a connecting edge.

(b) It is readily seen that the elements of G(S1,∅) = ∅ and G(∅, S2) = ∅ with
S1 ⊆ [k] and S2 ⊆ [k+1, k+�], as well as all � ∈ G(1, 1) have the claimed structure.
Moreover, adding an edge (1, k) to a graph cannot introduce a loop unless k = 1, so
it is again sufficient to establish the induction step for G¬(1,k).
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By Definition 1.7, a disk non-crossing graph does not contain any loops. Hence,
any loops of � ∈ G1∪G2 ∪G3 must occur in the subgraph in G(S1, [k+1, k+�])with
S1 ⊂ [k] used to construct �. As the induction hypothesis applies to this subgraph,
we conclude that � has at most two loops that satisfy the claimed placement rules,
respectively. For � ∈ G4, note that applying τ to an element of NCG({1, . . . , k,
k+ j, . . . , k+ j −1, k+ j}) yields an annulus graph with a loop if and only if the disk
non-crossing graph contains an edge (k + j, k + j). As the latter must also contain an
edge (1, k + j) by definition, a loop in � is always adjacent to a connecting edge.

We remark that the loops in � ∈ G(k, �) are a consequence of the definition of τ

rather than an artifact of the recursive construction of G(k, �), i.e., they can be created
only once. In particular, � can only contain a loop if it arises from G4 or its analog in
a previous iteration. Hence, the construction cannot yield a graph with more than two
loops or more than one loop per circle, respectively. In particular, any graph in G(k, �)
containing more than one loop is necessarily obtained from an element in G(1, 1)with
two loops.

(c) Again, the elements of G(S1,∅) = ∅ and G(∅, S2) = ∅ with S1 ⊆ [k] and
S2 ⊆ [k + 1, k + �], as well as all � ∈ G(1, 1) have the claimed structure. We
further note that any double edges of � ∈ G1 ∪ G2 ∪ G3 must occur in the subgraph
in G(S1, [k + 1, k + �]) with S1 ⊂ [k] used to construct � and that the induction
hypothesis applies to the latter. For � ∈ G4, a double edge occurs if and only if the
corresponding element of NCG({1, . . . , k, k+ j, . . . , k+ j − 1, k + j}) has a vertex i
that shares an edge with both copies of k + j . However, there is at most one such
vertex in [k] and [k + 1, k + �], respectively, as having two vertices i, i ′ connected to
both copies of k + j in either set induces a crossing. In particular, any double edge
shares a vertex with the edge (1, k + j) ∈ � prescribed by the definition. Hence, all
graphs in G¬(1,k) have the claimed structure.

It remains to consider G(1,k), i.e., to add an edge (1, k) to the graphs considered
previously. In the case j = k of G2, this doubles an existing (1, k) edge. By part (a),
any such graph must also have an edge connecting k with a vertex in [k + 1, k + �].
This shows that the placement rule for double edges is satisfied. Further, at most one
doubled edge can be added with each application of the recursion, i.e., there are at
most k+�−1 double edges in total. It is readily checked that two is indeed the highest
edge multiplicity possible.

(d) As the case k = � = 1 has already been discussed in Example 3.4, let k = 2,
� = 1, and consider τ(NCG({1, 2, 3, 3})). We relabel the vertices as 1, 2, 3, 3′ to
distinguish between the two copies of the doubled vertex 3 more easily. Observe that
the graphs �1 and �2 with edge sets {(1, 3′), (2, 3′)} and {(1, 3′), (2, 3)}, respectively,
give rise to the same element of G(2, 1), namely the annulus graph with edge set
{(1, 3), (2, 3)} (see Fig. 13).

Hence, G(1, 2) is indeed a multi-set. By Definition 3.2, either G(1, 2) or G(2, 1) is
used in the construction of G(k, �) for k, � > 2, i.e., the construction yields again a
multi-set.

For the following discussion, we introduce the disjoint decomposition

G(k, �) = Gdec(k, �) ∪ G¬dec(k, �), (3.6)
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Fig. 13 Two disk non-crossing graphs (left) that give rise to the same annulus graph (right)

where Gdec(k, �) denotes the graphs in G(k, �) that have double edges or loops and
G¬dec(k, �) denotes the graphs that do not have either. We refer to the elements of
Gdec(k, �) as decorated graphs.

Lemma 3.6 Let k, � ∈ N.

(a) Whenever � ∈ G(k, �) has more than one connected component that contains a
connecting edge, every connected component of � can be uniquely identified with
a disk non-crossing graph.

(b) Whenever � ∈ G(k, �) has exactly one connected component with a connecting
edge and � is not decorated, the same identification as in (a) holds, but it is
no longer unique. If �1 denotes the connected component of � that contains a
connecting edge and U1 ∪U2 with U1 ⊂ [k] and U2 ⊂ [k + 1, k + �] is the vertex
set of �1, there are |U1| · |U2| different ways to identify the connected components
of � with a disk non-crossing graph.

Lemma 3.6 translates between a graph � ∈ G(k, �), the partition induced by its
connected components and the cycle structure arising in (2.11). We give a schematic
of the construction of the disk graphs in Fig. 14. Recall from Definition 1.11 that any
cycle of an annular non-crossing permutation encloses a region homeomorphic to the
unit disk with the boundary oriented clockwise.

Note that the assignment of the orientation in the second step on the left of Fig. 14
is not unique if π� has only one connecting block (cf. [23, Prop. 4.6], see Fig. 5 for an
example). We remark that (a) and (b) are almost complementary cases and that only
decorated graphs with exactly one connected component containing a connecting edge

1
2

39

→

1
2

39

→

1
2

39

1

9 3

Fig. 14 A subgraph of � ∈ G(k, �) with the induced partition π� and a possible permutation π ′
� (left) as

well as the disk non-crossing graph obtained for a connected component of � (right)
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are not covered byLemma3.6. The proof of (a) further shows that any� ∈ G(k, �)with
at least two connected components containing a connecting edge cannot be decorated.

We give the full construction behind the schematics in Fig. 14.

Proof of Lemma 3.6 (b) It follows from Lemma 3.5(a) that the connected components
of� give rise to a partition π� ∈ NCP(k, �). By Propositions 4.4. and 4.6 of [23], any
element of NCP(k, �) may be identified with an annular non-crossing permutation,
i.e., its blocks can be given an orientation (see the left of Fig. 14). This orientation
of the individual cycles is naturally induced by the orientation of the inner and outer
circle. However, the identification between NCP(k, �) and

−−−→
NCP(k, �) is only unique

whenever the underlying partition has more than one connecting block. If there is only
one connecting blockU1∪U2 withU1 ⊂ [k],U2 ⊂ [k+1, k+�], there are |U1| · |U2|
possibilities to identify π� with an annular non-crossing permutation (cf. Fig. 5). We
fix one π ′

� ∈ −−−→
NCP(k, �) that is associated with π� in this way.

By definition, the cycles of π ′
� can be drawn on the (k, �)-annulus such that each

cycle encloses a region between the circles homeomorphic to the disk with boundary
oriented clockwise. Adding the elements of the cycle around the boundary yields
a labeled disk as in Definition 1.7. We may use the same transformation to map a
connected component of � to a disk non-crossing graph (see Fig. 15). Note that this
transformation cannot induce any crossings of the edges of �, however, any loops or
double edges of the original graph are kept. Hence, we only obtain a disk non-crossing
graph in the sense of Definition 1.7 if � does not contain any loops or double edges
to begin with.

(a) Assume next that � ∈ G(k, �) has at least two connected components that
contain a connecting edge. It follows from Definition 3.2 that this structure can only
arise from G4 in (3.2) or its analog in a previous iteration of the recursive definition.
Since adding subgraphs that only live on one circle of the (k, �)-annulus does not
interfere with the following argument, assume w.l.o.g. that � arises from G4 directly.
To have two connecting blocks, � must have at least two connecting edges (i1, i2) and
(i ′1, i ′2) where i1, i ′1 ∈ [k], i2, i ′2 ∈ [k + 1, k + �] and i1 �= i ′1, i2 �= i ′2. Note that either
(i1, i2) or (i ′1, i ′2) may coincide with the edge (1, k + j) prescribed by the definition.

Let �̃ ∈ NCG({1, . . . , k, k + j, . . . , k + j − 1, k + j}) denote a disk non-crossing
graph such that τ(�̃) = �. Here, τ denotes the map introduced in Definition 3.1.
By construction, �̃ also has two edges edges (i1, i2) and (i ′1, i ′2) with i1, i ′1 ∈ [k],
i2, i ′2 ∈ [k + 1, k + �] and i1 �= i ′1, i2 �= i ′2. This structure imposes several restrictions
on �̃, as can be seen from Fig. 16.

1
2

39

→

1

9 3

1
2

39

→

1

9 3

Fig. 15 Transformation of a cycle of π ′
� ∈ −−−→

NCP(k, �) to a circle (left) and the induced transformation of
a connected component of � ∈ G(k, �) into a disk graph (right)

123



   10 Page 42 of 65 J. Reker

1

i1

i′1

kk + j

i′2

i2

k + j
k + j − 1

→

1k

i1i′1

k+j

i′2 i2
→

1k

i1i′1

k+j

i′2 i2

Fig. 16 A schematic visualization of �̃ (left) and its mapping to the original graph � = τ(�̃) (right). (Color
figure online)

First, there cannot be an edge (1, k) ∈ �̃ without violating the non-crossing con-
dition. Together with (3.3), this implies that � = τ(�̃) has at most a single edge
(1, k). Further, �̃ cannot contain a vertex that connects to both copies of k + j . This
implies that � = τ(�̃) cannot have any double edges. Lastly, � cannot have any
loops, as �̃ containing an edge (k + j, k + j) would induce a crossing, too. Hence,
any � ∈ G(k, �) with more than one connected component containing a connecting
edge has only single edges and no loops.

So far, we have only considered the non-crossing annular partition induced by an
element of G(k, �). The following lemma allows us to partially reverse this relation
and explicitly construct a graph that is associated with a given π ∈ NCP(k, �).

Lemma 3.7 For every π ∈ NCP(k, �) there is at least one � ∈ G(k, �) for which the
vertex sets of the connected components coincide with the blocks of π . If π has exactly
one connecting block, then there is at least one such graph in Gdec(k, �) and one in
G¬dec(k, �), respectively.

We briefly sketch the construction of an element on G(k, �) from a given annular
non-crossing partition. For the example, we assume that the sketched connecting block
is the only one in the partition. After completing the steps sketched in Fig. 17, the
remaining connected components of the graph are readily added using steps corre-
sponding to G1, G2, and G3 in Definition 3.2 and the symmetry under interchanging of
the inner and outer circle.

1

27

→

1

27

→

17’

7 2

τ→

1

2

7

Fig. 17 The construction of an element of G(2, 1) (right) from the connecting block of an annular non-
crossing partition (left)
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Proof of Lemma 3.7 Fix π ∈ NCP(k, �) and assume first that π has at least two
connecting blocks. W.l.o.g. let 1 and k be assigned to different blocks of π . Indeed,
if 1 and k occurred in the same block, we may split it into two disjoint parts that
contain 1 and k, respectively, and later add an edge (1, k) to the graph obtained from
this modified partition. Further, assume w.l.o.g. that 1 is contained in a connecting
block. If i > 1 were the smallest element that occurs in a connecting block, we may
further remove any blocks containing {1, . . . , i − 1} from the partition and later add
a suitable subgraph. Note that the latter is possible by only using steps corresponding
to G1 and G2 in Definition 3.2.

Under these assumptions, there exists π̃ ∈ NCP({1, . . . , k, k+ j, . . . , k+ j − 1,
k + j}) such that the transformation τ in Definition 3.1 maps the blocks of π̃ to the
blocks of π . This is readily seen from Fig. 9, as 1 and k being in different blocks
implies that none of the blocks of π intersects the slit between 1 and k. We pick j
such that 1 and k + j are in the same block of π and may further choose π̃ such
that one copy of the doubled label k + 1 occurs as a singleton set. Finally, define
�̃ ∈ NCG({1, . . . , k, k + 1, . . . , k + �, k + 1}) by considering each block B =
{i1, . . . , in} ∈ π̃ separately and adding the edges (i1, i2), . . . , (i1, in) to the graph.
By construction, the vertex sets of the connected components of �̃ coincide with the
blocks of π̃ . Considering �π = τ(�̃) now yields the element of G(k, �) with the
claimed properties (cf. Fig. 17, where the procedure is sketched for a single block).

Next, consider π ∈ NCP(k, �) that has only one connecting block U = U1 ∪ U2
with U1 ⊆ [k], U2 ⊆ [k + 1, k + �]. Similar to the first case, we can construct a disk
non-crossing graph �U for which τ(�U ) ∈ Gc(|U1|, |U2|). As τ(�U ) is only required
to have one connecting edge, there is also a choice for �U containing a (k + j, k + j)
edge (cf. Fig. 15). In particular, we obtain at least one graph in Gc,¬dec(|U1|, |U2|)
and one graph in Gc,dec(|U1|, |U2|), respectively. The remaining connected subgraphs
of �π are then added recursively by alternating between adding an isolated vertex (cf.
G1) and a disk non-crossing graph (cf. G2 and G3) to τ(�U ). Note that starting from
τ(�U ) ∈ Gc,¬dec(|U1|, |U2|) yields a graph that is not decorated while starting from
τ(�U ) ∈ Gc,dec(|U1|, |U2|) yields a decorated graph.

Using the properties of� ∈ G(k, �) from Lemmas 3.6 and 3.7, we obtain an explicit
non-recursive combinatorial formula for m◦◦.

Lemma 3.8 Let k, � ∈ N. Then,

m◦◦[1, . . . , k|k + 1, . . . , k + �] =
( k+�∏

s=1

ms

) ∑

�∈Gc(k,�)
c�q�, (3.7)

with suitable constants c� ∈ Z. In particular, c� = 1 for � ∈ Gdec(k, �).

Note that the constants c� for � ∈ G¬dec(k, �) are readily obtained from the multi-
plicity of the corresponding graph in the multi-set, however, their exact values are not
needed for the proof of Theorem 2.4.
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Proof We start by observing that any connected component of � ∈ G(k, �) with a
connecting edge is itself an annular non-crossing graph. Further, a connected compo-
nent of � that only involves vertices from either [k] or [k + �] cannot contain loops
or double edges (cf. (b) and (c) of Lemma 3.5) and we may identify it with a disk
non-crossing graph.

To simplify notation, decompose any B ⊆ S1∪S2 as a union B1∪B2 with B1 ⊆ [k],
B2 ⊆ [k + 1, k + �] and associate it with a tuple (B1, B2) if neither of the subsets is
empty. This allows us to use the common notation NCG(B) for both disk and annular
graphs by setting NCG(B) = G(B1, B2) whenever B contains elements from both
[k] and [k + 1, k + �], and NCG(B) = NCG(B1) resp. NCG(B) = NCG(B2) if it
does not. Splitting the sum in (3.4) according to the underlying partition, we can write

m̃[1, . . . , k|k + 1, . . . , k + �] =
( k+�∏

s=1

ms

) ∑

�∈G(k,�)

q�

=
∑

π∈NCP(k,�)

∏

B∈π

[( ∏

s∈B
ms

) ∑

�∈NCGc(B)

q�

]
(3.8)

where NCGc(B) denotes the connected graphs in NCG(B). By Lemma 3.7, none of
the sums on the right-hand side are empty. However, there may be multiple permuta-
tions in

−−−→
NCP(k, �) as well as a marked element of NCP(k) × NCP(�) associated

with a given annular non-crossing partition π ∈ NCP(k, �). To obtain the same struc-
ture as in (1.26), we thus need to decompose the sum over π ∈ NCP(k, �) on the
right-hand side of (3.8) further.

Distinguishing by the number of connecting blocks of π yields

∑

π∈NCP(k,�)

∏

B∈π

[( ∏

s∈B
ms

) ∑

�∈NCGc(B)

q�

]
(3.9)

=
∑

π∈NCP(k,�),
1 conn. block

∏

B∈π

[( ∏

s∈B
ms

) ∑

�∈NCGc(B)

q�

]

+
∑

π∈NCP(k,�),
≥2 conn. blocks

∏

B∈π

[( ∏

s∈B
ms

) ∑

�∈NCGc(B)

q�

]
.

As an annular non-crossing partition with at least two connecting blocks uniquely
corresponds to an annular non-crossing permutation (cf. [23, Prop. 4.4]), we may
replace NCP(k, �) by

−−−→
NCP(k, �) in the summation if we interpret a cycle as an

ordered set. Together with Lemma 3.6 and (1.17), it follows that

∑

π∈NCP(k,�),
≥2 conn. blocks

∏

B∈π

[( ∏

s∈B
ms

) ∑

�∈NCGc(B)

q�

]
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=
∑

π∈−−−→
NCP(k,�),

≥2 conn. cycles

∏

B∈π

[( ∏

s∈B1∪B2

ms

) ∑

�∈NCGc(B1∪B2)

q�

]

=
∑

π∈−−−→
NCP(k,�),

≥2 conn. cycles

∏

B∈π

m◦[B1 ∪ B2]. (3.10)

where we used thatm◦ is invariant under permutation of the spectral parameters (z j ) j .
Applying a similar argument for the partitions with one connecting blockU , inter-

preted as (U1,U2) with U1 = U ∩ [k],U2 = U ∩ [k + 1, k + �], yields
∑

π∈NCP(k,�),
1 conn. block

∏

B∈π

[( ∏

s∈B
ms

) ∑

�∈NCGc(B)

q�

]

=
∑

π∈NCP(k,�),
1 conn. block

[( ∏

s∈U
ms

) ∑

�∈Gc(U )

q�

] ∏

B∈π\{U }

[( ∏

s∈B
ms

) ∑

�∈NCGc(B)

q�

]

=
∑

π∈NCP(k,�),
1 conn. block

[( ∏

s∈U
ms

) ∑

�∈Gc(U )

q�

] ∏

B∈π\{U }
m◦[B] (3.11)

by (1.17). Note that B �= U cannot involve both sets [k] and [k + 1, k + �], as U is
the only connecting block. Using (3.6), we decompose

∑

�∈Gc(U )

q� =
∑

�∈Gc,dec(U )

q� +
∑

�∈Gc,¬dec(U )

q�

and recall from Lemma 3.7 that neither sum on the right-hand side is empty. Note
that the split induced by (3.6) also decomposes the right-hand side of (3.11) into two
terms.

Next, consider the term corresponding to Gc,¬dec(U ) and recall that any � ∈
Gc,¬dec(U ) can be identified with a disk non-crossing graph by Lemma 3.6(b). How-
ever, this identification is not unique. Decompose U into U1 = U ∩ [k],U2 =
U ∩[k+1, k+�]. Then there are |U1| · |U2| different disk graphs that can be obtained
from a given � ∈ Gc,¬dec(U ). As the resulting graphs only differ in the labeling of
the vertices and m◦ is invariant under permutation of its arguments, the contribution
of each graph to the sum is the same. Recall that the number of annular non-crossing
permutations arising from π ∈ NCP(k, �) is equal to |U1| · |U2| by [23, Prop. 4.6].
We thus write

∑

�∈Gc,¬dec(U )

q� = |U1| · |U2|
∑

�∈NCGc(U1∪U2)

q� +
∑

�∈Gc,¬dec(U )

c�q�.

with suitable constants c� ∈ Z. In particular, we do not necessarily have c� = 1.
This can be seen from considering the element of G(2, 1) that has the edge set
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{(1, 2), (1, 3), (2, 3)}. Hence,
∑

�∈Gc(U )

q� = |U1| · |U2|
∑

�∈NCGc(U1∪U2)

q� +
∑

�∈Gc(U )

c�q�. (3.12)

where we set c� = 1 for � ∈ Gc,dec(U ). Note that the contribution of the first term
of (3.12) to (3.11) is

∑

π∈NCP(k,�),
1 conn. block U

[( ∏

s∈U
ms

)
· |U1| · |U2|

∑

�∈NCGc(U1∪U2)

q�

] ∏

B∈π\{U }
m◦[B]

=
∑

π∈−−−→
NCP(k,�),

1 conn. block

∏

B∈π

m◦[B1 ∪ B2]. (3.13)

Putting everything together, the right-hand side of (3.9) reads

m̃[1, . . . , k|k + 1, . . . , k + �] =
∑

π∈−−−→
NCP(k,�)

∏

B∈π

m◦[B]

+
∑

π∈NCP(k)×NCP(�),
U1,U2 marked

∏

B∈π\{U1,U2}
m◦[B1 ∪ B2]

×
[( ∏

s∈U
ms

) ∑

�∈Gc(U )

c�q�

]
. (3.14)

with c� ∈ Z as in (3.12) and U = U1 ∪ U2. The first term on the right-hand side
of (3.14) is the sum of (3.10) and (3.13). The second term is obtained from the second
term in (3.12) by noting that U is the only connecting block of the partition, i.e., any
block of π \ {U } only lives on one of the circles. Observing that this matches the
structure in (1.26), we obtain (3.7) by comparing term-by-term.

We finally have all the necessary tools to prove Theorem 2.4.

3.2 Step 2: Conclusion

Proof of Theorem 2.4 Let f denote the right-hand side of (2.11). We recall that the
initial condition (2.3) is immediate from Definition 3.2(ii) and that the symme-
try in Definition 2.1(i) follows from the remark on Theorem 2.4 above. Hence, it
only remains to check that f satisfies the recursion (2.4). To simplify notation, we
interpret f as a function of the multi-indices α and β.

Similar to the proof of [6, Lem. 4.4], we use (1.17) and (3.7) to write out the first
and second-order free cumulant functions in terms of suitable graphs. This yields

f[α|β]
m1 . . .mk+�

=
∑

π∈−−−→
NCP(k,�)

( ∏

B∈K (π)

〈 ∏

j∈B
A j

〉) ∏

B∈π

( ∑

�∈NCGc(B1∪B2)

q�

)
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+
∑

π∈NCP(k)×NCP(�),
U1,U2 marked

( ∏

B∈K (π)

〈 ∏

j∈B
A j

〉)( ∑

�∈NCGc(U1,U2)

c�q�

)

×
∏

B∈π\{U1,U2}

( ∑

�∈NCGc(B1∪B2)

q�

)
. (3.15)

To collect the terms involving the deterministic matrices A1, . . . , Ak , we define

F(π) :=
∏

B∈K (π ′)
〈
∏

j∈B
A j 〉 (3.16)

for any π∈NCP(k, �) that has more than one connecting block. Here, π ′ ∈−−−→
NCP(k, �) denotes the unique permutation for which the blocks of π ′ coincide
with π . Further, we define

F(π) :=
∑

π ′∈−−−→
NCP(k,�)

blocks(π ′)=π

( ∏

B∈K (π ′)

〈 ∏

j∈B
A j

〉)
+

∏

B∈K (π ′′)

〈 ∏

j∈B
A j

〉
(3.17)

for any π ∈ NCP(k, �) that has exactly one connecting block U . Here, π ′′ is the
marked partition obtained from π by splitting the connecting block intoU1 = U ∩[k]
and U2 = U ∩ [k + 1, k + �], and marking U1,U2 on the respective circles.

Next, we decompose the sum over
−−−→
NCP(k, �) in (3.15) according to the number

of connecting cycles in the permutation and rewrite the right-hand side as

f[α|β]
m1 . . .mk+�

=
∑

π∈NCP(k,�)

F(π)
∏

B∈π

( ∑

�∈NCGc(B)

q�

)

using (3.16) and (3.17). Recall that any connected component of � ∈ G(k, �) can
either be identified with a disk non-crossing graph or itself satisfies Definition 3.2. We
can thus interpret NCGc(B) as a connected component of a bigger graph and rewrite

∑

π∈NCP(k,�)

F(π)
∏

B∈π

( ∑

�∈NCGc(B)

q�

)
=

∑

�∈G(k,�)

F(π�)q�. (3.18)

Here,π� denotes the partition arising from the vertex sets of the connected components
of �.

Using (3.3) from Definition 3.2, decompose the right-hand side of (3.18) as

∑

�∈G(k,�)

F(π�)q� =
∑

�∈G¬(1,k)

q�(F(π�) + q1,kF(π�∪{(1,k)})). (3.19)

Recall that � ∪ {(1, k)} denotes the graph obtained from adding an edge (1, k) to �

and that, therefore, q�∪{(1,k)} = q1,kq� . Next, apply (3.2) to split the right-hand side
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of (3.19) into contributions corresponding to G1, G2, G3, and G4. This yields
∑

�∈G(k,�)

F(π�)q� =
∑

�∈G([2,k],[k+1,k+�])
q�(F(π�) + q1,kF(π�∪{(1,k)}))

+
k∑

j=2

∑

�∈NCG(1, j)([1, j])×G([ j,k],[k+1,k+�])
q�(F(π�)

+ q1,kF(π�∪{(1,k)}))

+
k−1∑

j=1

∑

�∈G(1, j)([1, j],[k+1,k+�])×NCG([ j,k)]
q�(F(π�)

+ q1,kF(π�∪{(1,k)}))

+
�∑

j=1

∑

�∈NCG(1,k+ j)({1,k,k+ j,...,k+�,...,k+ j})
q�(F(π�)

+ q1,kF(π�∪{(1,k)})), (3.20)

where the edges prescribed in the definitions of G2, G3, and G4 are added as a subscript
to NCG and G, respectively. It remains to compare (3.20) with (2.4).

Computation of the first line of (3.20): Recall that∑
�∈G1 q�= ∑

�∈G([2,k],[k+1,k+�]) q� . As any � ∈ G1 has an isolated vertex 1, the set
{1} appears as a singleton block of the underlying partition π� . Let π ′

� denote an annu-
lar non-crossing permutation with blocks given by π� . Then (. . . k1 . . .) ∈ K (π ′

�),
i.e., 1 and k appear in the same cycle of the Kreweras complement. This gives

∏

B∈K (π ′
�)

〈 ∏

j∈B
A j

〉
=

∏

B∈K (π ′
�)|(1,k]∪[k+1,k+�]

〈 ∏

j∈B
A′
j

〉
(3.21)

where A′
j = A j for j = 2, . . . k − 1 and j ∈ [k + 1, k + �], but A′

k = Ak A1.
Considering F(π�∪(1,k)), note that adding an edge (1, k) to the graph � implies that
(k) ∈ K (π�∪{(1,k)}), i.e., 〈Ak〉 always occurs as a separate factor inF.Hence,whenever
π� has more than one connecting block we can use (3.16) to evaluate

F(π�) + q1,kF(π�∪{(1,k)})

=
∏

B∈K (π ′
�)|〈1,k]∪[k+1,k+�]

〈 ∏

j∈B
A′
j

〉
+ q1,k〈Ak〉

∏

B∈K (π ′
�)|(1,k)∪[k+1,k+�]

〈 ∏

j∈B
A j

〉

(3.22)

with A′
j as in (3.21). In the remaining cases, π� has only one connecting blockU , and

F is a sum of two terms. As the first term of (3.17) can be evaluated similarly to (3.22),
we only consider the second term. Let π ′′

� denote the element of NCP(k) × NCP(�)

in which the blocks U1 = U ∩ [k] and U2 = U ∩ [k + 1, k + �] are marked. Recall
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that the marking does not influence the Kreweras complement, which is taken for
both circles separately here. As 1 and k lie on the same circle, we can argue as in the
permutation case. It follows that

( k+�∏

s=1

ms

) ∑

�∈G([2,k],[k+1,k+�])
q�

(
F(π�) + q1,kF(π�∪{(1,k)})

)

= m1(F[T2, . . . , Tk−1,Gk Ak A1|Tk+1, . . . , Tk+�]
+ q1,k F[T2, . . . , Tk−1Gk A1|Tk+1, . . . , Tk+�]〈Ak〉). (3.23)

Computation of the second line of (3.20): For the contribution arising fromG2, recall
that� = �1∪�2 with�1 ∈ NCG(1, j)([1, j]) and�2 ∈ G([ j, k], [k+1, k+�]) implies
q� = q�1q�2 , i.e., the weights factorize. Further, the term involving �1 evaluates to

∑

�1∈NCG(1, j)([1, j])
q�1 = q1, j

1 + q1, j

∑

�1∈NCG[1, j])
q�1 = m1m j

∑

�1∈NCG[1, j])
q�1 (3.24)

as q�1 always includes a factor q1, j if �1 ∈ NCG(1, j)([1, j]).
Let π� ∈ NCP( j) × NCP(k − j + 1, �) denote the partition associated with a

graph � ∈ NCG(1, j)([1, j]) × G([ j, k], [k + 1, k + �]) in the second term of (3.20)
and let π ′

� is be an annular non-crossing permutation with blocks given by π� . Since
the edge (1, j) must occur in �, the vertices 1 and j must be associated with same
cycle of π ′

� . Hence, the elements in [1, j〉 and [ j, k] are in different cycles of K (π ′
�).

Moreover, none of 1, . . . , j − 1 can be part of a connecting cycle in K (π ′
�). This

implies the decomposition

∏

B∈K (π ′
�)

〈 ∏

j∈B
A j

〉
=

( ∏

B∈K (π ′
� |[1, j])

〈 ∏

i∈B\{ j}
Ai

〉)( ∏

B∈K (π ′
� |[ j,k]∪[k+1,k+�])

〈 ∏

i∈B
Ai

〉)
.

Again, the only difference betweenF(π�) andF(π�∪{(1,k)}) is the fact that 〈Ak〉 must
occur as a separate factor in the second case. Thus, we can argue as in (3.22) and
evaluate

F(π�) + q1,kF(π�∪{(1,k)})

=
( ∏

B∈K (π� |[1, j])

〈 ∏

i∈B\{ j}
Ai

〉)( ∏

B∈K (π ′
� |[ j,k]∪[k+1,k+�])

〈 ∏

i∈B
Ai

〉)

+ q1,k〈Ak〉
( ∏

B∈K (π� |[1, j])

〈 ∏

i∈B\{ j}
A j

〉)

×
( ∏

B∈K (π ′
� |[ j,k]∪[k+1,k+�])

〈 ∏

i∈B\{k}
Ai

〉)
(3.25)

whenever π� has more than one connecting block and (3.16) applies.
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In the remaining cases, F(π�) is evaluated using (3.17). Here, the first term can
be treated similarly to (3.25), leaving only the contribution of the marked partition
π ′′

� . Recalling that [1, j〉 and [ j, k] lie on the same circle and that K (π ′′
�) is evaluated

circle-wise, we can argue as in the permutation case. In particular,

F(π�) =
∑

π ′
�∈−−−→

NCP(k,�)
blocks(π ′

�)=π�

( ∏

B∈K (π ′
� |[1, j])

〈 ∏

i∈B\{ j}
Ai

〉)( ∏

B∈K (π ′
� |[ j,k]∪[k+1,k+�])

〈 ∏

i∈B
Ai

〉)

+
( ∏

B∈K (π ′′
� |[1, j])

〈 ∏

i∈B\{ j}
Ai

〉)( ∏

B∈K (π ′′
� |[ j,k]∪[k+1,k+�])

〈 ∏

i∈B
Ai

〉)

=
( ∏

B∈K (π� |[1, j])

〈 ∏

i∈B\{ j}
Ai

〉)
F(π�2)

i.e., F factorizes similar to (3.25). Here, �2 denotes the subgraph of � ∈ G2 that lies
in G([ j, k], [k + 1, k + �]). Using (1.22) and (1.17), we evaluate

( k+�∏

s=1

ms

) ∑

�∈NCG(1, j)([1, j])×G([ j,k],[k+1,k+�])
q�

(
F(π�) + q1,kF(π�∪{(1,k)})

)

= m1m1[T1, . . . , Tj−1,G j ]
(
F[Tj , . . . , Tk |Tk+1, . . . , Tk+�]

+ q1,k F[Tj , . . . , Tk−1,Gk |Tk+1, . . . , Tk+�]〈Ak〉
)

. (3.26)

Computation of the third line of (3.20): The contribution from G3 can be treated
similarly to the second line of (3.20).

Computation of the fourth line of (3.20): For the term that arises from G4, recall
that τ only influences the geometry of the graph, but not its edge set. Hence, the
summation reduces to the underlying disk non-crossing graphs and we can evaluate
it using (1.22) and (1.17). As the only difference between F(π�) and F(π�∪{(1,k)}) is
again the fact that 〈Ak〉 must occur as a separate factor in the second case, we obtain

( k+�∏

s=1

ms

) ∑

�∈NCG(1,k+ j)({1,k,k+ j,...,k+�,...,k+ j})
q�

(
F(π�) + q1,kF(π�∪{(1,k)})

)

= m1(m1[T1, . . . , Tk, Tk+ j , . . . , Tk+ j−1,Gk+ j ]
+ q1,km1[T1, . . . , Tk−1,Gk, Tk+ j , . . . , Tk+ j−1,Gk+ j ]〈Ak〉). (3.27)

Similar to (3.24), � containing an edge (1, k+ j) ensures that the contribution has the
prefactor m1.

Putting (3.23), (3.26), and (3.27) together, we see that (3.20) is equivalent to (2.4)
with f[·|·] in place of m2[·|·]. We conclude that f[·|·] satisfies the same symmetry
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and initial condition as m2[·|·], as well as the same recursion. Recall that these three
properties uniquely identify f[α|β] and m2[α|β] for any multi-indices α, β. It now
readily follows by induction that f[α|β] andm2[α|β] indeed coincide for all α, β, i.e.,
that f[·|·] = m2[·|·], as claimed.

4 Proof of the Formulas form�[·|·],m�[·|·], andm![·|·]
4.1 Proof of Theorem 2.6

We use proof by induction over the length of the multi-indices and the recursion
for mκ [·|·] from (2.4). First, recall that by definition of NCP(k), NCP(�), and−−−→
NCP(k, �) both sums on the right-hand side of (2.12) are empty whenever either
α or β is empty. Observing that Definition 2.1(i) together with Theorem 2.4 implies
that mκ [S1|∅] = mκ [∅|S2] = 0, the base case is established. As the formula on the
right-hand side of (2.12) is further symmetric under the interchanging α and β (cf.
Remark Theorem 2.4), it is sufficient to only carry out the induction step for one of
the arguments in mκ [·|·].

Fix k, � ∈ N and assume that (2.12) holds for multi-indices α of length 1, . . . , k−1
and β of length �. Recalling that κ4mκ [·|·] satisfies (2.4) with sκ in (2.6) as the only
source term, we can use the recursion to express mκ [α|β] in terms of m1[·] and
mκ [α′|β] with multi-indices α′ of length 1, . . . , k − 1. The claim thus follows by
applying the induction hypothesis and showing that the expression obtained from the
recursion can be rewritten to match the structure on the right-hand side of (2.12). We
start by considering the summands on the right-hand side of (2.4) separately and then
check that their sum, i.e., mκ [·|·], is of the same form. To facilitate keeping track of
the individual contributions, we start with the terms on the right-hand side of (2.4)
that do not contain the prefactor q1,k and abbreviate

K1 := m1mκ [T2, . . . , Tk−1,Gk Ak A1|Tk+1, . . . , Tk+�]
K ( j)
2 := m1mκ [T1, . . . , Tj−1,G j |Tk+1, . . . , Tk+�]m1[Tj , . . . , Tk], j ∈ [k − 1]

K ( j)
3 := m1m1[T1, . . . , Tj−1,G j ]mκ [Tj , . . . , Tk |Tk+1, . . . , Tk+�], j ∈ [2, k]

K (r ,s,t)
4 := m1〈M[r ] 
 M[s,t]〉〈(M[r ,k]Ak) 
 M(t,...,k+�,k+1,...,s)〉,

r ∈ [k], k + 1 ≤ s ≤ t ≤ k + �.

As the argument is similar, we fix j resp. r , s, t and omit the superscripts for the
following discussion.

Structure of K1: By the induction hypothesis, mκ [T2, . . . , Tk−1,Gk Ak A1|Tk+1,

. . . , Tk+�] factorizes into expressions involving only deterministic matrices or spectral
parameters, respectively, and further has the structure specified on the right-hand side
of (2.12) in terms of z2, . . . , zk+� and the matrices A2, . . . , Ak−1, Ak A1, Ak+1, . . . ,

Ak+�. As a consequence, the matrices Ak and A1 always occur together in the matrix
products. On the level of the indices of the deterministic matrices, we may reinter-
pret this as an element π ∈ −−−→

NCP(k, �) with a cycle (. . . k1 . . .) or an element of
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π ∈ NCP(k) × NCP(�) with a block {. . . , k, 1, . . .} depending on the rest of the
underlying structure. The treatment of the two cases is identical and we consider them
in parallel. As the indices 1 and k always occur together in K (π), the index 1 must
occur separated in K−1(π), either as a fixed point (1) or a singleton set {1}, to match
the structure in (2.12). Note that the spectral parameter z1 only appears in the prefactor
m1. Hence, setting the functions ψK−1(π),(1) resp. ψK−1(π),{1} equal to m(z1) yields
the missing contribution. It follows that K1 matches the structure on the right-hand
side of (2.12). Note that all ψi associated with permutations without a fixed point (1)
and partitions without a singleton block {1}, respectively, are equal to zero for K1.

Structure of K2: We apply the induction hypothesis for mκ [T1, . . . , Tj−1,G j |
Tk+1, . . . , Tk+�] as well as (1.22) for m1[Tj , . . . , Tk] to rewrite K2 as a sum of terms
that naturally factorize into expressions involving only z1, . . . , zk+� or A1, . . . , Ak+�,
respectively. It remains to check for the structure on the right-hand side of (2.12),
i.e., that each summand can be associated with an annular non-crossing permuta-
tion π or a marked element π ∈ NCP(k) × NCP(�) such that the terms involving
spectral parameters factorize according to cycles resp. blocks of π and the contri-
bution of the deterministic matrices factorizes according to the cycles resp. blocks
in the Kreweras complement K (π). As treatment of the cases π ∈ −−−→

NCP(k, �) and
π ∈ NCP(k) × NCP(�) is identical, we consider them in parallel.

Observe that the induction hypothesis and (1.22) already prescribe the desired
complement structure for the indices of the spectral parameters and deterministic
matrices occurring in m1mκ [T1, . . . , Tj−1,G j |Tk+1, . . . , Tk+�] and m1[Tj , . . . , Tk],
respectively. As we may visualize the elements of NCP( j) with their Kreweras com-
plement on an interval by cutting the boundary of the labeled disk (cf. Fig. 1), we can
draw both factors of K2 onto the same annulus. The result is visualized on the left of
Fig. 18. For simplicity, we omit most of the intermediate labels and only add some
of the matrices associated with the vertices on the midpoints of the arcs between the
labels in red.

Note that the interval is placed such that the orientation inherited from the disk
aligns with the orientation of the underlying annulus. Moreover, Fig. 18 matches
the picture of a (k, �)-annulus up to the label j occurring twice and the label on
the midpoint of the arch connecting the two copies of j that is associated with the
identity matrix. Since this identity matrix does not influence the value of K2, we may
remove the label corresponding to Id from the picture in Fig. 18. This leaves k + �

labels at the midpoints of arches along the annulus, one associated with each matrix
A1, . . . , Ak+�. On the level of the indices of the deterministic matrices, each term in
in K2 can thus be identified with an element π ∈ −−−→

NCP(k, �) resp. an element of
π ∈ NCP(k)×NCP(�). As the two labels j now occur next to each other, we merge
them to obtain the (k, �)-annulus as the structure underlying the indices of the spectral
parameters. The result is visualized on the right of Fig. 18. Note that the labels now
match Definition 1.19 exactly.

It is readily checked that the cycle resp. block structure obtained from merging the
two labels j matches K−1(π) and that any cycles resp. blocks that were connected
in this step can be interpreted as a cycle of an element in

−−−→
NCP(k, �) resp. a block

of an element of NCP(k) × NCP(�). In particular, the contribution of the spectral
parameters factorizes as claimed on the right-hand side of (2.12). Comparing the
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Fig. 18 Visualization of the indices in m1mκ [T1, . . . , Tj−1,G j |Tk+1, . . . , Tk+�] (dashed) and in
m1[Tj , . . . , Tk ] (dotted) before the rewriting (left) and the indices after merging the two labels j (right).
(Color figure online)

permutations resp. partitions contributing to each K ( j)
2 and noting that the right-hand

side of (2.12) is linear in each ψi , the sum
∑

j K
( j)
2 also has the desired structure.

Structure of K3: The treatment of K3 is analogous to that of K2.
Structure of K4: From the formula for M(...) in (1.18), it follows that K4 can be

written as a sum of terms that naturally factorize into expressions involving only
z1, . . . , zk+� or A1, . . . , Ak+�, respectively. In particular, the part that involves deter-
ministicmatrices always consists of two factors of the form 〈(∏ j∈I1 A j )
(

∏
j∈I2 A j )〉

with index sets I1 ⊆ [k] and I2 ⊆ [k + 1, . . . , k + �] due to the Hadamard product in
K4. It remains to check for the structure on the right-hand side of (2.12).

Using the same trick as for K2 and K3, we can visualize the terms involved in K4
on the same annulus. The result is sketched in Fig. 19. Again, we omit most of the
labels and add the matrices associated with the vertices on the midpoints of the arcs
in red. To avoid overcrowding the labels in the interior of the inner circle, we further
visualize the two circles separately.

Observe that whenever a label occurs twice, both copies are placed next to one
another and the label at the midpoint of the arch connecting them is always associated
with the identity matrix. As the identity matrices do not contribute to K4, we may
argue as before and remove the corresponding labels from the picture in Fig. 19.
Note that this leaves k + � labels at the midpoints of arches along the annulus, one

Fig. 19 Visualization of the indices inm1〈M[r ]
M[s,t]〉 (dashed) and 〈(M[r ,k]Ak )
M(t,...,k+�,k+1,...,s)〉
(dotted) on the outer (left) and inner circle (right) of the (k, �)-annulus (pictured separately). (Color figure
online)
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associated with each matrix A1, . . . , Ak+�, such that we can reinterpret the structure
on the level of the indices of the deterministic matrices as an element π ∈ −−−→

NCP(k, �)
resp. π ∈ NCP(k)×NCP(�). Since the two copies of r , s, and t are now placed right
next to their counterpart, we merge them to obtain a (k, �)-annulus as the structure
underlying the indices of the spectral parameters. It is readily checked that the cycle
resp. block structure obtained from this step matches K−1(π) and that any cycles resp.
blocks that were connected by merging two identical labels can be interpreted as a
cycle of an element in

−−−→
NCP(k, �) resp. a block of an element of NCP(k)×NCP(�).

In particular, whenever the merging of the labels creates two new cycles, the cycles
can be drawn onto the (k, �)-annulus without crossing. It follows that the contribution
of the spectral parameters factorizes as claimed on the right-hand side of (2.12).
Comparing the permutations resp. partitions contributing to each K (r ,s,t)

4 and noting
that the right-hand side of (2.12) is linear in each ψi , summing over r , s, t preserves
the structure of the term.

The remaining terms with prefactor q1,k〈Ak〉 can be rewritten similarly. As the
factor 〈Ak〉 always occurs separately, the structure underlying the indices of the deter-
ministic matrices is an element π ∈ −−−→

NCP(k, �) resp. π ∈ NCP(k) × NCP(�)

with a fixed point (k) resp. a singleton set {k}. Hence, K−1 must contain a cycle
(. . . k1 . . .) resp. a block {. . . , k, 1, . . .} in which 1 and k occur together. Recalling
that q1,k = m1mk

1−m1mk
, it is ensured that the part of the term depending on z1, . . . , zk

contains a factor ψi (. . . , zk, z1, . . .). With this modification, we can use the same
argument as for K1, . . . , K4 to conclude that all terms contributing to the recursion
match the structure on the right-hand side of (2.12). Comparing the permutations resp.
partitions contributing to each term and recalling that the right-hand side of (2.12) is
linear in each ψi , it follows that the same holds for their sum, i.e., for mκ [α|β]. This
concludes the induction step. ��

4.2 Proof of Theorems 2.7 and 2.8

The proofs of Theorems 2.7 and 2.8 are similar to those of Theorems 2.4 and 2.6,
respectively. We, therefore, mainly focus on the necessary modifications below.

Proof of Theorem 2.7 The overall argument is analogous to the proof of Theorem 2.4
in Sects. 3.1 and 3.2 up to the definition of the graphs appearing in the combinatorial
formula for m̃σ [·|·]. Recalling that the structure of the recursion for m̃σ [·|·] is similar
to the one for m̃GUE [·|·], the multi-set of graphs can be constructed as described in
Definition 3.2. However, since the source term involvesm#,σ [·], the resultingmulti-set
of graphs will carry the same kind of vertex coloring. By replacing G4 in Definition 3.2
by

Gσ
4 :=

�⋃

j=1

τ
({

� ∈ NCG#({1, . . . , k, k + j, k + j − 1, . . . , k + 1, k + �, k + j})
∣∣∣

� has edge (1, k + j)
})

.
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where # = (0, . . . , 0, 1, . . . , 1) with k zeros and k + � + 1 ones, we obtain a family
Gσ (k, �) of graphs with the desired properties. Recall that map τ was introduced in
Definition 3.1. An example in the current setting is given in Fig. 20. Note the different
arrangement of the indices on the left compared to Fig. 9, which results from the
structure of the source term in the recursion for m̃σ [·|·]. Further, τ does not influence
the coloring of the vertices.

Similar to the proof of Lemma 3.3, we obtain

m̃σ [1, . . . , k|k + 1, . . . , k + �] =
( k+�∏

s=1

ms

) ∑

�∈Gσ (k,�)

∏

(i, j)∈E(�)

q�
i, j

where q�
i, j is as in Lemma A.2, i.e., q�

i, j = qi, j = mim j
1−mim j

whenever the edge (i, j)

connects two vertices of the same color and q�
i, j = σmim j

1−σmim j
otherwise. From here,

the remaining steps are carried out as in the proof of Theorem 2.4.

Proof of Theorem 2.8 We use again proof by induction. As the recursions for mω[·|·]
and mκ [·|·] are the same up to the source term, it only remains to show that

K ( j)
5 := 〈(M[k]Ak) 
 M(k+ j,...,k+�,k+1,...k+ j)〉, j ∈ [�]

is of the form (2.14) and that summing up the contributions on the right-hand side of the
recursion (2.4) does not break the structure. We start by noting that each K ( j)

5 contains
the matrices A1, . . . , Ak+� exactly once and that the indices involved in the first and
second factor of the Hadamard product match the indices on the outer and inner circle
of the (k, �)-annulus, respectively. The desired structure now follows from (1.22)
and the fact that any annular non-crossing permutation of the (k, �)-annulus can be
decomposed uniquely into a composition of two permutations that only act on the
inner and outer circle, respectively. Note that the index k + j occurring twice in
M(k+ j,...,k+�,k+1,...k+ j) does not influence the structure of the Kreweras complement.
When visualizing the term on a labeled disk, the two vertices labeled k + j lie next
to each other and the vertex on the midpoint of the arch connecting the two copies
is associated with the identity matrix, i.e., its effect is not visible when the matrix
product in M(k+ j,...,k+�,k+1,...k+ j) is evaluated.

1

2

3

46′

5

7

6

|

|

conformal map−→

1

2

3

4 76
6’ 5

remove slit−→
join vertices

1

2

3

4 76
5

Fig. 20 The geometry of the transformation τ for k = 4, � = 3, and j = 2. (Color figure online)
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A Proofs for the CLT in the Resolvent Case

A.1 Proof of Theorem 1.10 (Global Lawwith Transposes)

The proof of Theorem 1.10 is, modulo careful bookkeeping of the transposes, similar
to the proof of the averaged local law in [6, Thm. 3.4]. In particular, an explicit
formula for m#,σ [·] and the associated free cumulants is obtained along the way. For
the convenience of the reader, we give a brief overview of the necessary changes. As
there is nothing to prove if σ = 1 and the case σ = −1 needs an additional argument,
consider σ ∈ (−1, 1) first. We start by introducing a renormalization that captures the
general second moment structure of W more precisely (cf. [4] and [7]). Let

W f (W ) := W f (W ) − ẼW̃ (∂W̃ f )(W ) (A.1)

with W̃ an independent copy of W . This yields, e.g.,

WG1 = WG1 + 〈G1〉G1 + σ

N
Gt

1G1 + ω̃2

N
diag(G1)G1, (A.2)

WT1 . . . Tk = WG1A1T[2,k] +
k∑

j=2

(〈T[1, j〉G j 〉T[ j,k] + σ

N
(T[1, j〉G j )

t T[ j,k]

+ ω̃2

N
diag(T[1, j〉G j )T[ j,k]). (A.3)

Note that a simpler renormalization can be obtained by choosing W̃ to be an inde-
pendent GUE matrix instead of an independent copy of W . For the formulas (A.2)
and (A.3) above, the difference between the two renormalizations is negligible. How-
ever, it becomes significant if the matrix product involves at least one transpose of a
resolvent (cf. [4, Rem. 4.3]). As an example, consider the normalized trace of

WGt
1 = WGt

1 + 1

N
G1G

t
1 + σ 〈G1〉Gt

1 + ω̃2

N
diag(G1)G

t
1

where σ 〈G1〉2 ∼ 1.
To obtain (1.23), we rewrite G�

1A1 . . .G�
k Ak in terms of WG�

1A1 . . .G�
k Ak and

estimate the resulting terms. We start by considering the case A1 = · · · = Ak = Id.
For k = 2, we obtain, e.g.,

WG1G
t
2 = WG1G

t
2 + 1

N
(G1G

t
2)

tGt
2 + σ 〈G1G

t
2〉Gt

2 + ω̃2

N
diag(G1G

t
2)G

t
2

which yields

(
1 − σm1m2 + O≺

(
1

N

))
〈G1G

t
2〉 = m1m2 − m1WG1G

t
2 + m1

N
(σ 〈Gt

1G1G
t
2〉

+ ω̃2〈diag(G1)G1G
t
2
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+ diag(G1G
t
2)G

t
2〉) + O≺

(
1

N

)

by (A.2), the resolvent identity WG − zG = Id, (1.11), and the local law for 〈G j 〉.
Noting that |〈WGt

1G2〉| = O≺(N−1) following the bounds in [4, Thm. 4.1] and

that the term with prefactor N−1 is also of lower order (cf. [7, Eq. (69)–(70)]), we
obtain (1.23) with

m1[G1,G
t
2] = m(0,1),σ [1, 2] = m1m2

1 − σm1m2
.

Note that the only effect of the inclusion of transposes lies in the emergence of the
stability factor 1 − σm1m2. However, as |1 − σm1m2| > 1 − |σ | for |σ | < 1, the
term is bounded from below and does not change the outcome of the estimates. The
analog for general k ≥ 2 follows by induction over the number of resolvents. Similar
to [6, Thm. 3.4], the above argument allows us to extract a recursion that is satisfied by
the deterministic approximation of 〈G�

1 . . .G�
k〉 up to an O≺(N−1) error. By defining

m#,σ [·] to satisfy this recursion exactly, i.e., defining it by (1.24), yields the desired
statement. The recursion for m1[G�

1A1, . . . ,G
�
k Ak] is obtained analogously.

The explicit formula (1.23) now follows by solving this recursion. As the treatment
of the deterministic matrices is completely analogous to [6, Thm. 3.4], we restrict the
discussion to the case A1 = · · · = Ak = Id, i.e., to (1.24). Here, we obtain thatm#,σ [·]
and the associated free cumulants have a representation in terms of non-crossing graphs
that mirror (1.16) and (1.17).

Definition A.1 (BicoloredNCG) Let k ∈ N and denote by # a binary vector of length k.
For every � ∈ NCG(k), color the vertex j∈{1, . . ., k} red if the j th entry of # is 1,
otherwise color it black. We call the resulting set of graphs bicolored (disk) non-
crossing graphs on {1, . . . , k} and denote it by NCG#(k).

Lemma A.2 Let k ∈ N and fix a binary vector # of length k. Then

m#,σ [1, . . . , k] =
( k∏

s=1

ms

) ∑

�∈NCG#(k)

q#� (A.4)

m#,σ◦ [1, . . . , k] =
( k∏

s=1

ms

) ∑

�∈NCG#
c (k)

q#� (A.5)

where NCG#
c (k)denotes the connectedgraphs in NCG#(k)andq� := ∏

(i, j)∈E(�) q
�
i, j

with E(�) denoting the edge set of �. The edge weights q�
i, j are such that q�

i, j :=
qi, j = mim j

1−mim j
whenever the edge (i, j) connects two vertices of the same color and

q�
i, j := σmim j

1−σmim j
whenever (i, j) connects a red vertex to a black one.
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The proof is analogous to [6, Lem. 5.2] using the recursive structure of NCG(k).
Note that the modified edge weights as well as the factors q�

1,k and c1, j in the recur-
sion account for the stability factor 1−σmim j arisingwhenever the productG

�
1 . . .G�

k
involves both resolvents and their transposes. We illustrate Lemma A.2 with an exam-
ple.

Example A.3 Let k = 3 and pick spectral parameters z1, z2, z3 ∈ C with |�z j | � 1
as well as A1 = A2 = A3 = Id. By Theorem 1.10, the deterministic approximation
of 〈G1Gt

2G
t
3〉 is given by m#,σ [1, 2, 3] with # = (0, 1, 1). We visualize the elements

of the set NCG#(3) in Fig. 21. For a better overview, the edges are drawn as solid or
dashed according to their contribution to q#� . We use this sketch to compute

m#,σ [1, 2, 3] = m1m2m3

∑

�∈NCG#

= m1m2m3

(1 − σm1m2)(1 − σm1m3)(1 − m2m3)
.

Note that we thus reobtain [7, Eq. (49)] on macroscopic scales if z2 = z3.

It remains to consider the case σ = −1. Here, the Wigner matrix is of the form
W = D + iS with a diagonal matrix D and a skew-symmetric matrix S. Note that
whenever the diagonal part is equal to zero, the resolvent R(z j ) = (iS−z j )−1 satisfies
R(z j )t = −R(−z j ). This allows treating the proof of (1.23) for 〈R(z1)� . . . R(zk)�〉
with R(z j )� ∈ {R(z j ), R(z j )t } analogous to the case 〈G1 . . .Gk〉. Recall that this
requires in particular a local law for 〈R(z j )〉, which holds even if the Wigner matrix
has zero diagonal. The general case follows from the bound

〈G�
1 . . .G�

k〉 = 〈R(z1)
� . . . R(zk)

�〉 + O≺
(
1

N

)
(A.6)

Fig. 21 The elements of NCG#(3) for # = (0, 1, 1). The solid edges contribute a factor of
mim j

1−mim j
to q#�

while dashed edges contribute a factor
σmim j

1−σmim j
. (Color figure online)
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which reduces the proof of (1.23) to the previously considered case D = 0. The proof
of (A.6) is given for 〈G1Gt

2〉 in [7, App. B]. By expanding G�
3,…, G�

k analogously,
the argument readily extends to k ≥ 3 resolvents. ��

A.2 Proof of Therorem 2.3 (CLT for Resolvents)

We follow the general outline of the proof of [27, Thm. 3.6] to identify the necessary
modifications for the general model described by Assumption 1.1. As the formulas in
the general case are derived analogously, we assume w.l.o.g. 〈Ak〉 = 0 throughout to
keep the following equations short. The first step is the analog of [27, Lem. 2.3] that
characterizes the difference between 〈T[1,k]〉−m1[T1, . . . , Tk] and 〈T[1,k]〉−E〈T[1,k]〉,
thus connecting the statistics Xα back to the local law (1.19).

Lemma A.4 Let k ∈ N and fix spectral parameters z1, . . . , zn with |�z j | � 1 and
max j |z j | ≤ N 100 as well as bounded deterministic matrices A1, . . . , Ak such that
〈Ak〉 = 0. Then,

E〈T1 . . . Tk〉 = m1[T1, . . . , Tk] + 1

N
E[T1, . . . , Tk] + O

(
N ε

N 3/2

)
(A.7)

with m1[·] as in (1.21) and a set function E[·] that satisfies E[∅] = 0 as well as the
recursion

E[T1, . . . , Tk ] = m1(E[T2, . . . , Tj−1,Gk Ak A1] +
k−1∑

j=1

E[T1, . . . , Tj−1,G j ]m1[Tj , . . . , Tk ]

+
k∑

j=2

m1[T1, . . . , Tj−1,G j ]E[Tj , . . . , Tk ] + ω̃2

N

k∑

j=1

〈M[ j] 
 (M[ j,k]Ak)〉

+ σ

N

k∑

j=1

m1[Gt
j A

t
j−1, . . . ,G

t
2A

t
1,G

t
1, Tj , . . . , Tk ]

+ κ4
∑

1≤r≤s≤t≤k

〈M[r ] 
 M[s,t]〉〈M[r ,s] 
 (M[t,k]Ak)〉),

where 
 denotes the Hadamard product and m2[·|·] is interpreted as in (1.25).

Proof We note the following modifications to the proof of [27, Lem. 2.3]. Using the
renormalization in (A.1) with W̃ being an independent copy of W (compared to the
independent GUE matrix W̃ used in [27]), we obtain the relation

〈T[1,k]〉 − m1[T1, . . . , Tk ] = m1(−〈WT[1,k]〉
+(〈T[2,k〉Gk Ak A1〉 − m1[T2, . . . , Tk−1,Gk Ak A1])

+
k−1∑

j=1

(〈T[1, j〉G j 〉 − m1[T1, . . . , Tj−1,G j ])m1[Tj , . . . , Tk ]
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+
k∑

j=2

m1[T1, . . . , Tj−1,G j ](〈T[ j,k]〉 − m1[Tj , . . . , Tk ])

+ σ

N

k∑

j=1

〈(T[1, j〉G j )
t T[ j,k]〉

+ ω̃2

N

k∑

j=1

〈diag(T[1, j〉G j )T[ j,k]〉) + O≺
(

1

N 2

)
. (A.8)

Recall that the deterministic approximationm1[·] is independent of the value of σ and
ω̃2 (cf. [6, Thm. 3.4]). The terms in the last line of (A.8) involve an additional factor
of N−1. Applying Theorem 1.10 as well as the isotropic local law (1.20) thus yields

〈(T[1, j〉G j )
t T[ j,k]〉 = m1[Gt

j A
t
j−1, . . . ,G

t
2A

t
1,G

t
1, Tj , . . . , Tk] + O≺

(
1

N

)

〈diag(T[1, j〉G j )T[ j,k]〉 = 1

N

N∑

r=1

(T[1, j〉G j )rr (T[ j,k])rr

= 1

N

N∑

r=1

(M[ j])rr (M[ j,k]Ak)rr + O≺
(

1√
N

)

and we can replace the respective terms in (A.8) by their deterministic approximation.
Note that this also changes the error term to O≺(N−3/2). Computing the expectation
of (A.8) is now analogous to [27, Lem. 2.3]. In particular, the cumulant expansion

NE〈WT[1,k]〉 =
∑

n≥2

∑

x,y∈[N ]

∑

ν∈{xy,yx}n
κ(xy, ν)

n! E∂ν(T[1,k])yx

yields the same result, since the term does not involve any second moments of the
entries of W .

Next, we identify the limiting covariance of two modes Xα and Xβ . This yields an
analog of [27, Lem. 2.5] for the model in Assumption 1.1 on macroscopic scales and
thus constitutes the base case for the induction argument in the proof of Theorem 2.3.

Lemma A.5 Fix k, � ∈ N and let α, β be two multi-indices of length k and �, respec-
tively. Assume that the Wigner matrix W satisfies Assumption 1.1 and pick spectral
parameters z1, . . . , zk+� with |�z j | � 1 and max j |z j | ≤ N 100 as well as determin-
istic matrices A1, . . . , Ak+� with ‖A j‖ � 1. Then, for any ε > 0,

N 2EX (k,a)
α X (�,b)

β = m2[α|β] + O
(

N ε

√
N

)
,

with m2[·|·] as introduced in Definition 2.1.
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Proof of LemmaA.5 The proof is analogous to that of [27, Lem. 2.5] with one key
difference. When evaluating the cumulant expansion

N 2E(〈WT[1,k]〉X (�)
β ) = N

∑

n≥1

∑

x,y∈[N ]

∑

ν∈{xy,yx}n
κ(xy, ν)

n! E∂ν((T[1,k])yx X (�)
β ),

the second moment structure of the model in Assumption 1.1 has to be taken into
account for evaluating the n = 1 term. We obtain

N
∑

x,y∈[N ]

∑

ν∈{xy,yx}
κ(xy, ν)E∂ν((T[1,k])yx X (�)

β )

= −
�∑

j=1

E(〈T[1,k]T[k+ j,k+�]T[1,k+ j〉Gk+ j 〉 + σ 〈T[1,k](T[k+ j,k+�]T[1,k+ j〉Gk+ j )
t 〉

+ ω̃2〈diag(T[1,k])diag(T[k+ j,k+�]T[1,k+ j〉Gk+ j )〉),

which, compared to the computation in the proof of [27, Lem. 2.5], additionally
involves σ and ω̃2. The deterministic approximation of the terms follow from (1.19),
Theorem 1.10 and (1.20), respectively, which yields the source terms sGUE , sσ , and
sω in (2.4). The rest of the expansion evaluates exactly as its counterpart in [27] since
the term does not involve any second moments of the entries of W .

The rest of the proof of Theorem 2.3 is analogous to that of [27, Thm. 3.6], i.e., we
apply induction on the number of factors in (2.10) using EXα = 0 and Lemma A.5
as base cases. ��

B Additional Proofs and Computations

B.1 Proof of Lemma 1.17

Using (1.16) for the ordered multi-set S = {z1, . . . , z j , . . . , zk, z j }, rewrite the left-
hand side of (1.32) as

m[1, . . . , j, . . . , k, j] = m1 . . .m j−1m
2
jm j+1 . . .mk

∑

�∈NCG[{1,...,k, j}]

∏

(a,b)∈E(�)

qa,b.

(B.1)
Recalling that m[S] is invariant under any permutation of the elements of S, we pick
an ordering in which the two j’s occur in two consecutive positions and visualize
the corresponding non-crossing graphs by equidistantly arranging the vertices on a
circle. In this picture, the edge e connecting both j’s cannot be involved in any cross-
ing, even in an arbitrary planar graph on the given vertices (see left of Fig. 22).
Hence, for any non-crossing graph with edges {e1, . . . , en} �� e, the graph with edge
set {e1, . . . , en, e} is also non-crossing. In particular, every non-crossing graph that
involves e has a counterpart that does not. Next, note that there is at most one vertex l
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Fig. 22 An edge between two consecutive vertices never results in a crossing (left), but connecting two
distinct vertices to both copies of j always does (right). (Color figure online)

among 1, . . ., j−1, j + 1, . . . , k that is connected to both copies of j , as having two
distinct vertices l, l ′ with this property results in a crossing (see right of Fig. 22).

Consider the disjoint decomposition

NCG({1, . . . , j, . . . , k, j}) = S1 ∪ (
⋃

l∈[k]\{ j}
S(l)
2 )

where S(l)
2 contains all � ∈ NCG({1, . . . , j, . . . , k, j}) for which the vertex l ∈

[k] \ { j} is connected to both copies of j and S1 contains any remaining �. This
implies

∑

�∈NCG[{1,...,k, j}]

∏

(a,b)∈E(�)

qa,b =
∑

�∈S1

∏

(a,b)∈E(�)

qa,b +
∑

l∈[k]\{ j}

∑

�∈S(l)
2

∏

(a,b)∈E(�)

qa,b.

(B.2)
Next, merge both vertices with the label j . The resulting graphs are either an element
of NCG(k) or arise from an element of NCG(k) by adding a loop ( j, j). Recalling
that

q j, j = m2
j

1 − m2
j

= m′
j (B.3)

where the second equality follows from (1.12), we can factor out (1+m′
j ) on the right-

hand side of (B.2) and reduce to summation over NCG(k)without further restriction.
Note that this also results in the edge (l, j) doubling whenever� ∈ S(l)

2 , i.e., we obtain
an extra factor of q j,l in this case. Hence,

∑

�∈NCG[{1,...,k, j}]

∏

(a,b)∈E(�)

qa,b = (1 + m′
j )

( ∑

�∈NCG[{1,...,k}]

∏

(a,b)∈E(�)

qa,b

)(
1 +

∑

l∈[k]\{ j}
q j,l

)
.

Noting that (B.3) is equivalent to m j (1 + m′
j ) = m′

j
m j

and applying (1.16) to recover
m[1, . . . , k] yields (1.32). ��
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B.2 Proof of Corollary 2.11

We start by evaluating sc[i1, . . . , in] and sc[i1, . . . , in|in+1, . . . , in+m] before consid-
ering the associated free cumulant functions. First, note that

sc[i1, . . . , in] =
∫ 2

−2
xnρsc(x)dx =

{
0, if n odd,

Cn/2, if n even,

where C0,C1,C2, . . . denote the Catalan numbers. In particular, sc[i1, . . . , in] coin-
cides with the number of non-crossing pairings of the set [n]. It readily follows
that sc◦[i1, i2] = 1 and that sc◦[i1, . . . , in] = 0 whenever n is odd. Moreover,
sc◦[i1, . . . , in] = 0 for any even n ≥ 4. The latter follows inductively from (1.14) by
writing

sc◦[i1, . . . , in] = sc[i1, . . . , in] −
∑

π∈NCP(n)\{[n]}

∏

B∈π

sc◦[B], (B.4)

and observing that only pairings contribute to the sum on the right-hand side of (B.4),
i.e., the two terms cancel.

Next, we compute sc[i1, . . . , in|in+1, . . . , in+m]. Observe that by (1.26) and The-
orem 2.9,

sc[i1, . . . , in|in+1, . . . , in+m] = lim
N→∞E[(TrWn − EWn)(TrWm − EWm)].

The limit on the right-hand side is well-known in the free probability literature
(see, e.g., [21]) and hence readily identified as the number of non-crossing pair-
ings of the (n,m)-annulus. Solving (1.26) for sc◦◦[i1, . . . , in|in+1, . . . , in+m], it
follows inductively that sc◦◦[i1, . . . , in|in+1, . . . , in+m] = 0 for any n,m. Hence,
�π1×π2,U1×U2( f1, . . . , fk+�) = 0 and

�π( f1, . . . , fk+�) =
{
1, if π ∈ −−−→

NCP2(k, �),

0, otherwise,

which is the claim. Note that the error in (2.16) evaluates toO(N ε−1/2) as ‖ fi‖H p for
i = 1, . . . , k resp. ‖ f j‖Hq for j = k + 1, . . . , k + � are N -independent constants in
the macroscopic regime. ��
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