
Artificial Intelligence 334 (2024) 104171

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Delegated online search

Pirmin Braun a, Niklas Hahn b,∗, Martin Hoefer c,∗, Conrad Schecker a,∗

a Goethe University Frankfurt, Germany
b ISTA (Institute of Science and Technology Austria), Austria
c Department of Computer Science, RWTH Aachen University, Germany

A R T I C L E I N F O A B S T R A C T

Keywords:

Delegated search

Online algorithms

Approximation algorithms

Algorithmic game theory

Information design

Principal-agent problem

In a delegation problem, a principal  with commitment power tries to pick one out of 𝑛 options.
Each option is drawn independently from a known distribution. Instead of inspecting the options
herself,  delegates the information acquisition to a rational and self-interested agent . After
inspection,  proposes one of the options, and  can accept or reject.

Delegation is a classic setting in economic information design with many prominent applications,
but the computational problems are only poorly understood. In this paper, we study a natural
online variant of delegation, in which the agent searches through the options in an online fashion.
For each option, he has to irrevocably decide if he wants to propose the current option or discard
it, before seeing information on the next option(s). How can we design algorithms for  that
approximate the utility of her best option in hindsight?

We show that in general  can obtain a Θ(1∕𝑛)-approximation and extend this result to ratios
of Θ(𝑘∕𝑛) in case (1)  has a lookahead of 𝑘 rounds, or (2)  can propose up to 𝑘 different
options. We provide fine-grained bounds independent of 𝑛 based on three parameters. If the ratio
of maximum and minimum utility for  is bounded by a factor 𝛼, we obtain an Ω(log log𝛼∕ log𝛼)-
approximation algorithm, and we show that this is best possible. Additionally, if  cannot
distinguish options with the same value for herself, we show that ratios polynomial in 1∕𝛼 cannot
be avoided. If there are at most 𝛽 different utility values for , we show a Θ(1∕𝛽)-approximation.
If the utilities of  and  for each option are related by a factor 𝛾 , we obtain an Ω(1∕ log 𝛾)-
approximation, where 𝑂(log log 𝛾∕ log 𝛾) is best possible.

1. Introduction

The study of delegation problems is a prominent area with numerous applications. There are two parties – a decision maker
(called principal)  and an agent . 𝑛 actions or options are available to  . Each option has a utility for  and a (possibly different)
utility for , which are drawn from a known distribution . Instead of inspecting options herself,  delegates the search for a good
option to .  sees all realized utility values and sends a signal to  . Based on this signal (and ),  chooses an option. Both parties
play this game in order to maximize their respective utility from the chosen option.

Many interesting applications can be captured within this framework. For example, consider a company that is trying to hire an
expert in a critical area. Instead of searching the market, the company delegates the search to a head-hunting agency that searches the

* Corresponding authors.

E-mail addresses: pirminbraun16@gmail.com (P. Braun), niklas.hahn@ist.ac.at (N. Hahn), mhoefer@cs.rwth-aachen.de (M. Hoefer),
Available online 20 June 2024
0004-3702/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

schecker@em.uni-frankfurt.de (C. Schecker).

https://doi.org/10.1016/j.artint.2024.104171

Received 12 June 2023; Received in revised form 10 January 2024; Accepted 10 June 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:pirminbraun16@gmail.com
mailto:niklas.hahn@ist.ac.at
mailto:mhoefer@cs.rwth-aachen.de
mailto:schecker@em.uni-frankfurt.de
https://doi.org/10.1016/j.artint.2024.104171
https://doi.org/10.1016/j.artint.2024.104171
http://creativecommons.org/licenses/by/4.0/

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

market for suitable candidates. Alternatively, consider an investor, who hires a financial consultant to seek out suitable investment
opportunities. Clearly, principal and agent might not always have aligned preferences. While the investor might prefer investments
with high interest rates, the financial consultant prefers selling the products for which he gets a provision.

Problems of this kind are recently arising as part of the deployment of AI in financial markets. Trading and investment decisions
are increasingly made by automated agents. Delegation problems emerge prominently as part of the interplay of financial agents that
search, analyze, and suggest potential investments for investors. More generally, AI development has been celebrated for the success
in designing and building automated agents for board games such as chess or go. More recent challenges involve the development
of automated strategies for advanced game-theoretic scenarios involving strategic communication (such as bluffing strategies in
poker, or playing games like diplomacy). Strategic communication is also the distinguishing feature of principal-agent problems like
delegation. Algorithmic understanding of this domain can be instrumental to push the frontier of AI development for games with
strategic communication.

A key feature of applications such as searching for job candidates or financial investments is that the availability of options often
changes over time, and the pair of agents needs to solve a stopping problem. For example, many lucrative financial investment
opportunities arise only within short notice and expire quickly. Therefore, a financial service has to decide whether or not to
recommend an investment without exactly knowing what future investment options might become available. Here  faces an online
search problem, in which the 𝑛 options are realized in a sequential fashion. After seeing the realization of option 𝑖, he has to decide
whether to propose the option to  or discard it. In the elementary variant, if the option is proposed,  decides to accept or reject
this option and the process ends. Otherwise, the process continues with option 𝑖 + 1. We also provide results for the more elaborate
variant, in which  can make up to 𝑘 > 1 proposals, and the process ends when  accepts a proposal, or as soon as she has rejected
all 𝑘 proposals.

In the study of delegation problems,  usually has commitment power, i.e.,  specifies in advance her decision for each possible
signal, taking into account the subsequent best response of . This is reasonable in many applications (e.g., an investor can initially
restrict the investment options she is interested in, or the company fixes in advance the required qualifications for the new employee).
Interestingly, although  commits and restricts herself in advance, this behavior is usually in her favor. The induced best response
of  can lead to better utility for  than in any equilibrium, where both parties mutually best respond. Using a revelation-principle
style argument, the communication between  and  can be reduced to  revealing the utilities of a single option and  deciding
to accept or reject that option (for a discussion, see, e.g. [27]).

The combination of online search and delegation has been examined before, albeit from a purely technical angle. Kleinberg and
Kleinberg [27] designed approximation algorithms for delegation, showing that  can obtain a constant-factor approximation to the
expected utility of her best option in hindsight. Their algorithms heavily rely on techniques and tools developed in the domain of
prophet inequalities. However, they are applied to an offline delegation problem. Instead, we consider the natural extension of [27] to
online search. Interestingly, we exhibit a notable contrast – in online delegation a constant-factor approximation might be impossible
to achieve. In fact, the approximation ratio can be as low as 𝑂(1∕𝑛), and Ω(1∕𝑛) can always be achieved. Motivated by this sharp
contrast, we provide a fine-grained analysis based on three natural problem parameters: (1) the discrepancy of utility for the agent,
(2) the number of different utility values for the agent, and (3) the misalignment of agent and principal utilities.

1.1. Model

We study online delegation between principal  and agent  in (up to) 𝑛 rounds. In every round 𝑖, an option is drawn independently
from a known distribution 𝑖 with finite support Ω𝑖 of size 𝑠𝑖. We denote the options of 𝑖 by Ω𝑖 = {𝜔𝑖1, … , 𝜔𝑖,𝑠𝑖} and the random
variable of the draw by 𝑂𝑖. For every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑠𝑖], the option 𝜔𝑖𝑗 has probability 𝑝𝑖𝑗 to be drawn from 𝑖. If this option is
proposed by  and chosen by  , then  has utility 𝑎𝑖𝑗 ≥ 0 and  utility 𝑏𝑖𝑗 ≥ 0.

We assume that  has commitment power. Before the start of the game, she commits to an action scheme 𝜑 with a value 𝜑𝑖𝑗 ∈ [0, 1]
for each option 𝜔𝑖𝑗 . 𝜑𝑖𝑗 is the probability that  accepts option 𝜔𝑖𝑗 when it is proposed by  in round 𝑖. For a deterministic scheme
with all 𝜑𝑖𝑗 ∈ {0, 1}, we define the sets 𝐸𝑖 = {𝜔𝑖𝑗 ∣ 𝜑𝑖𝑗 = 1} of acceptable options in each round 𝑖.

In contrast to  ,  gets to see the 𝑛 random draws from the distributions in an online fashion. He decides in each round 𝑖 whether
he proposes the current option 𝑂𝑖 to  or not. If he decides to propose it, then  sees the option and decides based on 𝜑 whether or
not she accepts it. If  accepts, the utility values of the option are realized; if not, both players get utility 0. In either case, the game
ends after  decides. Both players strive to maximize their expected utility.

Initially, both players know the distribution 𝑖 for every round 𝑖 ∈ [𝑛]. The sequence of actions then is as follows: (1)  decides
𝜑 and communicates this to ; (2) in each round 𝑖,  sees 𝑂𝑖 ∼𝑖 and irrevocably decides to propose or discard 𝑂𝑖; (3) when 
decides to propose some option 𝑂𝑖 = 𝜔𝑖𝑗 , then  accepts it with probability 𝜑𝑖𝑗 , and the game ends.

In Section 2.2 we also touch upon an (arguably more natural) extension in which  can sequentially propose up to 𝑘 different
options, for some given 𝑘 ∈ {2, … , 𝑛}. In this case, the game ends after either  accepts a proposal, or  rejected all 𝑘 proposals.
In this case the action scheme 𝜑 becomes much more complex, since it needs to depend on the proposal history. Multiple sequential
proposals allow  to monitor the behavior of  more closely and thereby reduce or even remove the delegation property (see
Section 2.2 for details). As such, we focus on the conceptually simpler and technically more challenging variant with a single
proposal throughout.

 knows the distributions and the action scheme 𝜑 of upcoming rounds. This determines his expected utility from proposed
options. Hence,  essentially faces an online stopping problem that can be solved via backwards induction. We can assume without
2

loss of generality that all decisions (not) to propose an option by  are deterministic: If the expected utility from the realization in

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

Table 1

An example instance.

Round 1 Round 2

option 𝜔𝑖𝑗 𝜔11 𝜔12 𝜔21 𝜔22
value-pair (𝑎𝑖𝑗 , 𝑏𝑖𝑗) (3,1) (3,8) (2,4) (16,4)

probability 𝑝𝑖𝑗 0.75 0.25 0.75 0.25

the current round is greater than the expected utility that can be obtained by optimal play in the remaining rounds, it is an optimal
decision for  to propose the current option (otherwise not). To avoid technicalities, we assume that  breaks ties in favor of  .

Our goal is to design action schemes 𝜑 with high expected utility for  . In our analysis, we prove approximation ratios1 w.r.t. the
expected utility of  in the non-delegated (online) problem, i.e., when  searches through the 𝑛 realized options herself. The latter
is a classic stopping problem, for which the expected utilities of optimal online and offline search differ by at most a factor of 2 (due
to the basic prophet inequality [28,29]).

We also analyze scenarios with oblivious and semi-oblivious proposals. In both these scenarios,  reveals only the utility value 𝑏𝑖𝑗
for  when proposing an option (but not his own value 𝑎𝑖𝑗). In contrast, when  gets to see the utility values of both agents, we
term this conscious proposals. The difference between the oblivious variants lies in the prior knowledge of  :

Conscious: In the conscious scenario,  is fully aware of the distributions, including all possible utility values 𝑏𝑖𝑗 , 𝑎𝑖𝑗 for both
parties. When an option 𝜔𝑖𝑗 gets proposed in some round 𝑖,  sees both utility values 𝑏𝑖𝑗 and 𝑎𝑖𝑗 .

Semi-Oblivious: In the semi-oblivious scenario,  is fully aware of the distributions, including all potential utility values 𝑏𝑖𝑗 and
𝑎𝑖𝑗 for both parties. However, when an option 𝜔𝑖𝑗 gets proposed in some round 𝑖,  sees only her utility value 𝑏𝑖𝑗 .

Oblivious: In the oblivious scenario,  initially observes the probabilities of all options with her utility values 𝑏𝑖𝑗 . However, all
utility values 𝑎𝑖𝑗 of  remain unknown to  throughout. As such, when an option 𝜔𝑖𝑗 gets proposed in some round 𝑖, 
sees only her utility value 𝑏𝑖𝑗 .

In the scenarios with restricted discrepancy (in Section 3.1), we assume  is aware of the bound 𝛼 =max𝑖,𝑗 𝑎𝑖𝑗∕ min𝑖,𝑗 𝑎𝑖𝑗 .

Example 1. We discuss a simple example to illustrate the definitions. We consider deterministic strategies by  and conscious
proposals. There are two rounds with the options distributed according to Table 1.

For the benchmark, we assume that  can see and choose the options herself. The best option is 𝜔12. If this is not realized in
round 1, the option realized in round 2 is the best choice. Note that this optimal choice for  can be executed even in an online
scenario, where she first sees round 1 and gets to see round 2 only after deciding about round 1. The expected utility of this best
(online) choice for  is 5.

Now in the delegated scenario, suppose  accepts option 𝜔22. Then  would always wait for round 2 and hope for a realization
of 𝜔22, even if 𝜔21 would not be accepted by  . Hence, accepting 𝜔22 leads to an expected utility for  of at most 4. In contrast, the
optimal decision scheme for  is to accept only 𝜔12 and 𝜔21 with an expected utility of 4.25. For the (semi-)oblivious scenario, 
cannot distinguish the options in round 2, and her expected utility is at most 4.

Clearly,  has to strike a careful balance between (1) accepting a sufficient number of high-profit options to obtain a high
expected utility overall and (2) rejecting options to motivate  to propose better options for  in earlier rounds. ⧫

1.2. Contribution and outline

In Section 2 we show that the worst-case approximation ratio for online delegation is 𝑂(1∕𝑛) and a ratio of Ω(1∕𝑛) can always
be achieved. Intuitively,  waits too long and forgoes many profitable options for  .  can only force  to propose earlier if she
refuses to accept later options – this, however, also hurts the utility of  . The instances require a ratio of maximum and minimum
utility values for  that is in the order of 𝑛Θ(𝑛).

We further show that the bounds extend to more general variants in which (1)  has a lookahead of 𝑘 rounds, or (2)  can
propose up to 𝑘 options, resulting in tight approximation ratios of Θ(𝑘∕𝑛). Note that all impossibility results in this paper apply
already for IID instances, while all algorithmic results apply for general instances.

Intuitively, in the extended variants the problem becomes “less online” (with lookahead) or “less delegated” (with 𝑘 proposals).
In the latter variant, when there are up to 𝑛 proposals,  can force the agent to propose every single option (by threatening to reject
all remaining subsequent options). Essentially, this reduces the problem to non-delegated online search. Hence, the challenges of
online delegation arise in the single-proposal variant without lookahead in their most concise form. This provides further motivation
to concentrate on this variant in the subsequent sections.

In Section 3, we examine the effect of the utility values of for  using two different parameters: (1) the discrepancy of utility for
 using the ratio 𝛼 of maximum and minimum utility values, and (2) the number 𝛽 of different possible utility values for .
3

1 Approximation ratios of this type have also been termed delegation gap in [8].

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

Table 2

Asymptotic bounds on the approximation ratio in terms of different instance parameters.

Proposals General
utilities

𝛼-bounded
utilities for 

𝛽 different
values for 

𝛾-bounded

∕-misalignment

Conscious Θ
(

1
𝑛

)
Θ
(

log log𝛼
log𝛼

)
Θ
(

1
𝛽

) Ω
(

1
log 𝛾

)
𝑂

(
log log 𝛾
log 𝛾

)
Semi-Oblivious Θ

(
1
𝑛

) Ω
(

1√
𝛼 log𝛼

)
Θ
(

1
𝑛

) Ω
(

1
𝛾

)
𝑂

(
1√
𝛼

)
𝑂

(
1√
𝛾

)
Oblivious Θ

(
1
𝑛

)
Θ
(

1
𝛼

)
Θ
(

1
𝑛

)
Θ
(

1
𝛾

)

First, we consider 𝛼-bounded utilities in Section 3.1 and obtain an Ω(log log𝛼∕ log𝛼)-approximation of the optimal (online) search
for  . This result is tight. The algorithm limits the acceptable options of  , partitions them into different bins, and then restricts ’s
search space to the best possible bin for  . The challenge is to design a profitable set of options inside a bin that should be accepted
by  without giving  an incentive to forgo proposing many of them. Using our algorithm  obtains a good approximation even if
the differences in utility of  are polynomial in 𝑛.

Additionally, we consider the more challenging semi-oblivious and oblivious scenarios in which  does not get to see the agent’s
utility of the proposed option. In the (fully) oblivious case,  is even a priori unaware of the utility values for  for all options
(and thus remains so throughout). Our algorithm for this scenario achieves an Ω(1∕𝛼)-approximation. This is contrasted with a set of
instances for which no action scheme can extract more than an 𝑂(1∕𝛼)–approximation. In the semi-oblivious scenario,  has a priori
knowledge of the prior, but still does not see the agent’s utility for proposed options. For this setting, our algorithm achieves an
Ω(1∕(

√
𝛼 log𝛼))-approximation, and in general 𝑂(1∕

√
𝛼) is best-possible. The results highlight the effect of hiding ’s utilities from

 (in the proposal, or in the proposal and the prior) – the achievable approximation ratios increase from logarithmic to polynomial
ratios in 𝛼.

Second, for 𝛽 many different utility values for  we extend the techniques developed in the previous subsection to achieve a
Θ(1∕𝛽)-approximation for conscious proposals. In the semi-oblivious scenario, the ratio w.r.t. 𝛽 can become unbounded. This extends
to the oblivious scenario.

In Section 4, we consider the misalignment of agent and principal utilities via a parameter 𝛾 ≥ 1, which is the smallest value such
that all utilities of  and  are related by a factor in [1∕𝛾, 𝛾]. Limited misalignment also leads to improved approximation results
for  . We show an Ω(1∕ log 𝛾)-approximation of the optimal (online) search for  . Moreover, every algorithm must have a ratio in
𝑂(log log 𝛾∕ log 𝛾). For both (semi-)oblivious scenarios, we obtain an Ω(1∕𝛾)-approximation. In the oblivious scenario, this is tight.
In the semi-oblivious scenario, every algorithm must have a ratio in 𝑂(1∕

√
𝛾).

In Table 2, we summarize our lower and upper bounds on the approximation ratio in terms of the different instance parameters.

Overall, our results reveal that the impact of delegation in online search can be severe – in comparison to the undelegated online
search problem, the achieved value can deteriorate by a Θ(𝑛)-factor. We highlight that such a drastic deterioration relies on a number
of pathological worst-case properties, whose absence can significantly improve the performance. Lookahead or multiple proposals by
 lead to a substantially smaller deterioration. Intuitively, lookahead reduces the degree to which the scenario is “online”. Multiple
proposals can be used to closely monitor and penalize the behavior of  and, thus, reduce the degree to which the scenario is
“delegated”. Hence, these adjustments lead to improvements by changing key properties of the underlying search problem.

Bounded utility values for  or bounded misalignment of the utilities of  and  can significantly improve the performance
of delegated online search. The resulting ratios only depend logarithmically on the involved parameters. Interestingly, we also
observe a significant dependence on the information that  receives as part of the proposal. Overall, our results tightly characterize
conditions under which the impact of delegation on the performance is mild. Note that we do not (directly) address the problem of
approximating an optimal scheme for delegated online search, which represents a fascinating direction for future work.

1.3. Related work

Holmstrom [25,26] initiated the study of delegation as a bilevel optimization between an uninformed principal and a privately
informed agent. The principal delegates the decision to the agent who himself has an interest in the choice of decision. Since then,
there have been numerous works on various aspects of delegation. For example, [30,1] studied the impact of (mis)alignment of the
agent’s and the principal’s interests on the optimal delegation sets. Armstrong and Vickers [2] studied the delegation problem over
discrete sets of random cardinality with elements drawn from some distribution. They identify sufficient conditions for the search
problem to have an optimal solution.

A similar model to ours was considered in computer science by Kleinberg and Kleinberg [27], where the option set searched
by the agent consists of 𝑛 IID draws from a known distribution. They show constant-factor approximations of the optimal expected
principal utility when performing the search herself rather than delegating it to the agent. For their analysis, they rely on tools from
online stopping theory. The key difference between their work and our paper is that – albeit using tools from online optimization –
4

they study an offline problem while we focus on an online version.

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

Bechtel and Dughmi [7] recently extended this line of research by combining delegation with stochastic probing. Here a subset
of elements can be observed by the agent (subject to some constraints), and several options can be chosen (subject to a different set
of constraints). Similarly, Bechtel et al. [8] study connections between delegation and a generalized Pandora’s Box problem.

A related but different area is contract theory, which considers principal-agent settings with uncertainty and monetary transfers.
An early formalization was introduced by Grossmann and Hart [22]. Computational aspects of this problem are recently starting to
attract interest, see, e.g., Dütting et al. [18,19], as well as Babaioff et al. [3,4] for earlier work (on a slightly different model).

The study of persuasion, another model of strategic communication, has gained a lot of traction at the intersection between
economics and computation in recent years. Here, the informed party (the “sender”) is the one with commitment power, trying to
influence the behavior of the uninformed agent (the “receiver”). Persuasion has proven to be a popular topic in AI. Castiglioni et
al. [14] studied Bayesian posted price auctions where buyers arrive sequentially and receive signals from the revenue maximizing
seller. Moreover, signaling may be used in other settings, e.g., persuading voters [9,12], or for reducing social cost in congestion
games with uncertain delays [11,21]. Closer to our paper is the study of persuasion in the context of stopping problems [24,23].
These works study persuasion problems in a prophet inequality [23] as well as in a secretary setting [24].

Other notable algorithmic results on persuasion problems concern optimal policies, hardness, and approximation algorithms in
the general case [17] as well as in different variations, e.g., with multiple receivers [5,6,16,31,32], with limited communication
complexity [15,20], or relations to online learning [10,13,33]

2. Impossibility

2.1. A tight bound

As a first simple observation, note that  can always achieve an 𝑛-approximation with a deterministic action scheme, even in
scenarios with oblivious proposals.  accepts exactly all options in a single round 𝑖∗ with optimal expected utility, i.e., 𝐸𝑖∗ = {𝜔𝑖∗ ,𝑗 ∣
𝑗 ∈ [𝑠𝑖∗]} for 𝑖∗ = argmax𝑖∈[𝑛] 𝔼[𝑏𝑖𝑗], and 𝐸𝑗 = ∅ otherwise. This motivates  to always propose the option from round 𝑖∗, and 
gets expected utility 𝔼[𝑏𝑖∗ ,𝑗]. By a union bound, the optimal utility from searching through all options herself is upper bounded by
𝔼
[∑

𝑖 𝑏𝑖𝑗
]
≤ 𝑛 ⋅ 𝔼[𝑏𝑖∗ ,𝑗].

Proposition 1. For online delegation there is a deterministic action scheme 𝜑 such that  obtains at least a 1∕𝑛-approximation of the
expected utility for optimal (online) search.

We show a matching impossibility result, even in the IID setting with 𝑖 = for all rounds 𝑖 ∈ [𝑛], and when  gets to see the
full utility pair of any proposed option. There are instances in which  suffers a deterioration in the order of Θ(𝑛) over the expected
utility achieved by searching through the options herself.

For the proof, consider the following class of instances. The distribution  can be cast as an independent composition, i.e., we
independently draw the utility values for  and . For  there are two possibilities, either utility 1 with probability 1∕𝑛, or utility
0 with probability 1 − 1∕𝑛. For , there are 𝑛 possibilities with agent utility of 𝑛4𝓁 , for 𝓁 = 1, … , 𝑛, where each one has probability
1∕𝑛. In combination, we can view  as a distribution over 𝑗 = 1, … , 2𝑛 options. Options 𝜔𝑗 for 𝑗 = 1, … , 𝑛 have probability 1∕𝑛2 and
utilities (𝑏𝑗 , 𝑎𝑗) = (1, 𝑛4𝑗), for 𝑗 = 𝑛 + 1, … , 2𝑛 they have probability 1∕𝑛 − 1∕𝑛2 and utilities (𝑏𝑗 , 𝑎𝑗) = (0, 𝑛4(𝑗−𝑛)).

Theorem 1. There is a class of instances of online delegation in the IID setting, in which every action scheme 𝜑 obtains at most an 𝑂(1∕𝑛)-
approximation of the expected utility for optimal (online) search.

Proof. For simplicity, we first show the result for schemes 𝜑 with 𝜑𝑖𝑗 = 0 for all rounds 𝑖 ∈ [𝑛] and all 𝑗 = 𝑛 +1, … , 2𝑛. In the end of
the proof we discuss why this can be assumed for an optimal scheme.

Since all options 𝑗 ∈ [𝑛] have the same utility for  , she wants to accept one of them as soon as it appears. If she searches through
the options herself, the probability that there is an option of value 1 is 1 − (1 − 1∕𝑛)𝑛 ≥ 1 − 1∕𝑒. Her expected utility is a constant. In
contrast, when delegating the search to , the drastic utility increase motivates him to wait for the latest round in which a better
option is still acceptable by  . As a result,  waits too long, and removing acceptable options in later rounds does not remedy this
problem for  .

More formally, interpret an optimal scheme 𝜑 as an 𝑛 × 𝑛 matrix, for rounds 𝑖 ∈ [𝑛] and options 𝑗 ∈ [𝑛]. We outline some
adjustments that preserve the optimality of matrix 𝜑.

Consider the set 𝑆 of all entries with 𝜑𝑖𝑗 ≤ 1∕𝑛. For each (𝑖, 𝑗) ∈ 𝑆 , the probability that option 𝑗 is realized in round 𝑖 is 1∕𝑛2.
When it gets proposed by , then it is accepted by  with probability at most 1∕𝑛. By a union bound, the utility obtained from all
these options is at most |𝑆|∕𝑛2 ⋅ 1∕𝑛 ≤ 1∕𝑛.

Suppose we change the scheme by decreasing 𝜑𝑖𝑗 to 0 for each (𝑖, 𝑗) ∈ 𝑆 . Then each entry in 𝜑 is either 0 or at least 1∕𝑛. If 
makes the same proposals as before, the change decreases the utility of  by at most 1∕𝑛. Then again, in the new scheme  can
have an incentive to propose other options in earlier rounds. Since all options with 𝜑𝑖𝑗 ≠ 0 have utility 1 for  , this only leads to
an increase of utility for  . Moreover, in round 1 we increase all acceptance probabilities to 𝜑1𝑗 = 1 for 𝑗 ∈ [𝑛]. Then, upon arrival
of such an option 𝜔𝑗 in round 1, the change can incentivize  to propose this option – which is clearly optimal for  , since this is
an optimal option for her. Since the change is in round 1, it introduces no incentive to wait for . As such, it can only increase the
5

utility for  . Now consider any entry 𝜑𝑖𝑗 ≥ 1∕𝑛. We observe two properties:

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

Table 3

Adjustments from the proof of Theorem 1 for an example scheme 𝜑 for 𝑛 = 4. Left: Entries 𝜑𝑖𝑗 < 1∕𝑛 (bold) get set to 0. The
expected utility for  decreases by at most 1∕𝑛. Middle: Italic entries show options that never get proposed due to options
with bold entries (cf. property 1.). Italic entries can be set to 0. Right: Bold entries have been raised according to property 2.
A Manhattan path of 2𝑛 − 1 entries evolves.

Rnd. 𝜔1 𝜔2 𝜔3 𝜔4
1 0.3 0.2 0.6 0.9

2 0.4 0.3 0.8 1

3 0.2 0.4 0.6 0.2

4 0.5 0.1 0.7 0

→

Rnd. 𝜔1 𝜔2 𝜔3 𝜔4
1 0.3 0 0.6 0.9

2 0.4 0.3 0.8 1

3 0 0.4 0.6 0

4 0.5 0 0.7 0

→

Rnd. 𝜔1 𝜔2 𝜔3 𝜔4
1 0 0 0 1

2 0 0 1 1

3 0 0 0.7 0

4 0.7 0.7 0.7 0

1. Suppose 𝜑𝑖′𝑗′ ≥ 1∕𝑛 for 𝑖′ < 𝑖 and 𝑗′ < 𝑗. Then  accepts realization 𝜔𝑗′ in round 𝑖′ with positive probability, but she will also
accept the better (for ) realization 𝜔𝑗 in a later round 𝑖 with positive probability.  will not propose 𝜔𝑗′ in round 𝑖′ but wait
for round 𝑖, since the expected utility in the later round 𝑖 is at least 𝑛4𝑗 ⋅ 1∕𝑛2 ⋅ 𝜑𝑖𝑗 ≥ 𝑛4𝑗−3 > 𝑛4(𝑗−1) ≥ 𝑛4𝑗

′
⋅ 𝜑𝑖′𝑗′ , the utility in

round 𝑖′. As such, w.l.o.g. we set 𝜑𝑖′𝑗′ = 0 for all 𝑖′ < 𝑖 and 𝑗′ < 𝑗.
2. Suppose 𝜑𝑖′𝑗 < 𝜑𝑖𝑗 for 𝑖′ < 𝑖. By property 1., all realizations 𝜔𝑗′ with 𝑗′ < 𝑗 are not accepted in rounds 1, … , 𝑖 −1. Hence, setting
𝜑𝑖′𝑗 = 𝜑𝑖𝑗 does not change the incentives for  w.r.t. other options, and thus only (weakly) increases the expected utility of  .
By the same arguments, we set 𝜑𝑖𝑗′ = max{𝜑𝑖𝑗′ , 𝜑𝑖𝑗} for all inferior options 𝑗′ < 𝑗 in the same round 𝑖.

We apply the adjustments implied by the two properties repeatedly, starting for the entries 𝜑𝑖𝑛 in the 𝑛-th column for option 𝜔𝑛,
then in column 𝑛 − 1, etc. By 1., every positive entry 𝜑𝑖𝑗 ≥ 1∕𝑛 leads to entries of 0 in all “dominated” entries 𝜑𝑖′𝑗′ with 𝑖′ < 𝑖 and
𝑗′ < 𝑗. As a consequence, the remaining positive entries form a Manhattan path in the matrix 𝜑. The path starts at 𝜑1𝑛, ends at 𝜑𝑛1,
and for each 𝜑𝑖𝑗 ≥ 1∕𝑛 it continues either at 𝜑𝑖+1,𝑗 ≥ 1∕𝑛 or 𝜑𝑖,𝑗−1 ≥ 1∕𝑛. See Table 3 for an example.

We can upper bound the expected utility of  by assuming that all 2𝑛 − 1 entries on the Manhattan path are 1 (i.e., 𝜑 is
deterministic) and  proposes an acceptable option whenever possible. The probability that this happens is at most (2𝑛 − 1)∕𝑛2 =
𝑂(1∕𝑛) by a union bound. This is an upper bound on the expected utility of  and proves the theorem for schemes with 𝜑𝑖𝑗 = 0 for
all 𝑖 ∈ [𝑛] and 𝑗 ≥ 𝑛 + 1.

Finally, suppose 𝜑𝑖𝑗 > 0 for some 𝑗 ≥ 𝑛 + 1. Clearly, option 𝜔𝑗 adds no value to the expected utility of  . Moreover, the fact that
𝜔𝑗 has positive probability to be accepted in round 𝑖 can only motivate  to refrain from proposing inferior options in earlier rounds.
As such, setting 𝜑𝑖𝑗 = 0 only (weakly) increases the utility of  . □

2.2. Extensions

We discuss two generalizations for which a slight adaptation of our lower bound of Θ(1∕𝑛) established in Section 2 is sufficient.
First, we assume  has a lookahead. Second, we allow several proposals to be made by .

2.2.1. Agent with lookahead

Consider online delegation when  has a lookahead of 𝑘 rounds. In round 𝑖,  gets to see all realized options of rounds
𝑖, 𝑖 + 1, … , min{𝑛, 𝑖 + 𝑘}. For simplicity, our benchmark here is the expected value of  for optimal (non-delegated) offline search
(i.e., online search with lookahead 𝑛 −1). Note that the expected value for optimal online search is at least 1/2 of this [28,29]. Hence,
asymptotically all benchmarks of expected utility for optimal offline or online search, with or without lookahead, are the same.

Proposition 2. For online delegation with lookahead 𝑘 there is an action scheme 𝜑 such that  obtains an Ω(𝑘∕𝑛)-approximation of the
expected utility for optimal (offline) search.

Partition the 𝑛 rounds into ⌈𝑛∕(𝑘 +1)⌉ parts with at most 𝑘 +1 consecutive rounds each. Suppose we apply (non-delegated) offline
search on each part individually. The expected value of offline search on the best of the 𝑂(𝑛∕𝑘) parts yields an Ω(𝑘∕𝑛)-approximation
of the expected value of offline search on all 𝑛 rounds.

To obtain an Ω(𝑘∕𝑛)-approximation for the online delegated version, apply online search with  and lookahead of 𝑘 to the best
part of at most 𝑘 + 1 consecutive rounds. Due to the lookahead, this results in offline delegated search. In terms of utility for  ,
offline delegated search using prophet-inequality techniques [27] approximates optimal offline search by at least a factor of 1/2.
Hence, applying the offline delegation algorithm of [27] on the best set of 𝑘 +1 consecutive rounds yields an Ω(𝑘∕𝑛)-approximation.

Let us show that this guarantee is asymptotically optimal. The argument largely follows the proof of Theorem 1. The class of
instances is the same. We only explain which parts of the proof must be adapted.

Corollary 1. There is a class of instances of online delegation with lookahead 𝑘 in the IID setting, in which every action scheme 𝜑 obtains at
most an 𝑂(𝑘∕𝑛)-approximation of the expected utility for optimal (offline) search.

Proof. Using similar observations as in the proof of Theorem 1, we can again (a) assume w.l.o.g. that 𝜑𝑖𝑗 = 0 for all 𝑗 = 𝑛 +1, … , 2𝑛,
and (b) assume that 𝜑𝑖𝑗 = 0 or 𝜑𝑖𝑗 ≥ 1∕𝑛, for all 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 2𝑛, which deteriorates the expected utility for  by at most
6

𝑂(1∕𝑛).

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

Consider the two properties in the proof of Theorem 1. For property (1), we extend the idea to entries 𝜑𝑖′𝑗′ ≥ 1∕𝑛 with 𝑗′ < 𝑗
and 𝑖′ + 𝑘 < 𝑖. In particular,  will decide to wait and not propose option 𝜔𝑗′ in round 𝑖′ if there is a round 𝑖 > 𝑖′ + 𝑘 with a better
option 𝜔𝑗 being acceptable (with probability at least 𝜑𝑖𝑗 ≥ 1∕𝑛). As such, we drop 𝜑𝑖′𝑗′ to 0 whenever such a constellation arises.
Then, whenever an entry remains 𝜑𝑖′𝑗′ ≥ 1∕𝑛, this means that all entries for better options 𝑗 > 𝑗′ in rounds 𝑖 = 𝑖′ + 𝑘 + 1, … , 𝑛 must
be 𝜑𝑖𝑗 = 0.

Now for a given option 𝜔𝑗′ , consider round 𝑖𝑗′ = argmin{𝑖 ∣ 𝜑𝑖𝑗′ ≥ 1∕𝑛}. Then, for all better options with 𝑗 > 𝑗′, property (1)
requires that 𝜑𝑖𝑗 = 0 for all 𝑖 ≥ 𝑖𝑗′ +𝑘 +1. As such, for each option 𝜔𝑗 , there can be at most 𝑘 positive entries “beyond the Manhattan
path”, i.e., 𝑘 rounds in which 𝜔𝑗 remains acceptable (with prob. at least 1∕𝑛) after the first round when any lower-valued 𝜔𝑗′
becomes acceptable (with prob. at least 1∕𝑛).

Property (2) applies similarly as before. As such, we obtain a Manhattan path with 2𝑛 −1 entries, and in addition there can be up
to 𝑛𝑘 entries with 𝜑𝑖𝑗 ≥ 1∕𝑛, i.e., a total of at most (𝑘 + 2)𝑛 − 1 entries. We again upper bound the expected utility of  by assuming
that all these entries are 1 and  proposes an acceptable option whenever possible. The probability that this happens is at most
((𝑘 + 2)𝑛 − 1)∕𝑛2 =𝑂(𝑘∕𝑛) by a union bound, and this implies the upper bound on the expected utility of  . □

2.2.2. Agent with 𝑘 proposals

Now consider the case when  can propose up to 𝑘 options in 𝑘 different rounds. In this case, the definition of an action
scheme becomes more complex – rather than a single matrix, 𝜑 turns into a decision tree. For each round 𝑖, consider the history

𝐻𝑖 = (ℎ1, … , ℎ𝑖−1). For every round 𝑗 = 1, … , 𝑖 − 1, the entry ℎ𝑗 indicates whether or not there was a proposal by  in round 𝑗,
and if so, which option was proposed. Now given a round 𝑖 and a history 𝐻𝑖, an action scheme yields a value 𝜑𝑖𝑗 (𝐻𝑖) ∈ {0, 1}
indicating whether or not  accepts option 𝜔𝑗 when being proposed in round 𝑖 after history 𝐻𝑖. As before,  commits to an action
scheme anticipating the induced rational behavior of . A simple backward induction shows that there is always an optimal proposal
strategy for  which is deterministic. For simplicity, we also restrict attention to deterministic action schemes for  .

Proposition 3. For online delegation with 𝑘 proposals there is a deterministic action scheme 𝜑 such that  obtains an Ω(𝑘∕𝑛)-approximation
of the expected utility for optimal (offline) search.

The scheme is related to the approach in the previous section. Select the best interval 𝓁, … , 𝓁 + 𝑘 − 1 of 𝑘 consecutive rounds
that maximize the expected value of offline search for  over these rounds. We observed in the previous section that optimal offline
search in these 𝑘 rounds yields an Ω(𝑘∕𝑛)-approximation of optimal offline search over 𝑛 rounds. We design an action scheme that
incentivizes  to propose exactly the 𝑘 options in rounds 𝓁, … , 𝓁 + 𝑘 − 1, thereby reducing the scenario to (non-delegated) online
search for  over these rounds. Since the performance of online and offline search are related by a factor of 2, asymptotically we
achieve the same performance as offline search over the 𝑘 rounds.

We set 𝜑𝑖𝑗 (𝐻𝑖) = 0 for rounds 𝑖 < 𝓁 and all 𝑗 and 𝐻𝑖, as well as for rounds 𝑖 > 𝓁 + 𝑘 − 1 and all 𝑗 and 𝐻𝑖. For each round
𝓁 ≤ 𝑖 ≤ 𝓁 + 𝑘 − 1, we set 𝜑𝑖𝑗 (𝐻𝑖) = 0 for all options 𝑗 whenever the history reveals that in at least one of the rounds 𝓁, … , 𝑖 − 1 there
was no proposal from . Otherwise, if 𝐻𝑖 reveals that there was a proposal in each of these rounds, we set 𝜑𝑖𝑗(𝐻𝑖) as in an optimal
online (non-delegated) search over rounds 𝓁, … , 𝓁 + 𝑘 − 1.

In this action scheme,  immediately terminates the search whenever she did not receive a proposal from  in one of the 𝑘
rounds, leaving both agents with a utility of 0. This creates an incentive for  to submit a proposal in each of the 𝑘 rounds, since
this is the only possibility to obtain a positive utility value.

Let us show that the approximation guarantee is asymptotically optimal. The argument uses and extends the result of Theorem 1.
The class of instances is the same.

Theorem 2. There is a class of instances of online delegation with 𝑘 proposals in the IID setting, in which every deterministic action scheme
𝜑 obtains at most an 𝑂(𝑘∕𝑛)-approximation of the expected utility for optimal (offline) search.

Proof. We analyze the process by splitting the evolution of the process into at most 𝑘 non-overlapping phases. Let 𝑖𝓁 be the (random)
round in which  makes the 𝓁-th proposal, for 𝓁 = 1, … , 𝑘. For completeness, we set 𝑖0 = 0. Phase 𝓁 is the set of rounds {𝑖𝓁−1 +
1, … , 𝑖𝓁}.  can accept an option in at most one of the phases. Thus, by linearity of expectation, the expected utility of  is upper
bounded by the sum of expected utilities that  obtains in each phase. In the rest of the proof, we will show that in each phase, the
expected utility for  is at most 𝑂(1∕𝑛). Hence, the total expected utility of  is 𝑂(𝑘∕𝑛), which proves the approximation guarantee.

Towards this end, consider a single phase 𝓁. We condition on the full history of the process before phase 𝓁, i.e., we fix all options
drawn as well as decisions of  and  that have led to the (𝓁 − 1)-th proposal in round 𝑖𝓁−1. We denote this full history by 𝐻𝑓 .
During phase 𝓁 (conditioned on 𝐻𝑓), we want to interpret the process as a single-proposal scenario analyzed in Theorem 1. In
particular, by fixing the history and the starting round of phase 𝓁, the histories 𝐻𝑖 within phase 𝓁 are also fixed. As such, during
phase 𝓁, the scheme 𝜑 can be seen as an action scheme for a single-proposal scenario with 𝑛 − 𝑖𝓁−1 rounds.

Now let us define an auxiliary single-proposal instance with 𝑛 rounds. In this instance, we assume  sets 𝜑′
𝑖𝑗
= 0 for all options

𝑗 = 1, … , 2𝑛 in the first 𝑖 = 1, … , 𝑖𝓁−1 rounds and then in rounds 𝑖 = 𝑖𝓁−1 + 1, … , 𝑛 applies 𝜑′
𝑖𝑗
= 𝜑𝑖𝑗 (𝐻𝑖) (where 𝐻𝑖 is composed of

𝐻𝑓 and no proposal in rounds 𝑖𝓁−1 + 1, … , 𝑖 − 1). Then  behaves in the auxiliary instance exactly as in phase 𝓁 of the 𝑘-proposal
instance. In contrast,  does not necessarily show the same behavior. In the auxiliary instance,  gets utility 0 if the proposal
7

is rejected. In phase 𝓁 of the 𝑘-proposal instance, however, proposing an option that gets rejected can be profitable for . After

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

rejection, phase 𝓁 + 1 is reached and better expected utility for  might be achievable in upcoming rounds (since the scheme could
result in more favorable behavior of  when the 𝓁-th reject decision happens in round 𝑖).

In the auxiliary instance, we model this property by a reject bonus for  – whenever a proposal is rejected in any round 𝑖 ≥ 𝑖𝓁−1+1,
then ( receives no utility and)  receives the conditional expected utility from optimal play in the remaining rounds of the 𝑘-

proposal instance, conditioned on 𝜑 and history 𝐻𝑖+1 composed of 𝐻𝑖 and the rejected proposal in round 𝑖. It is straightforward to
see that in the auxiliary instance with reject bonus, the interaction between  and  exactly proceeds as in phase 𝓁 of the 𝑘-proposal
instance.

Consider the auxiliary single-proposal instance with reject bonus for any given phase 𝓁. We prove that the expected utility for 
does not decrease when the following adjustments are made: (1) the reject bonus is reduced to 0, and (2) we set 𝜑′

𝑖𝑗
= 0 for all rounds

𝑖 and options 𝑗 ≥ 𝑛 + 1 (i.e., the ones with 𝑏𝑗 = 0). We prove the statement by induction over the rounds.

Clearly w.l.o.g. there are no proposals in rounds 𝑖 ≤ 𝑖𝓁−1. We can assume that (1) and (2) hold for all these rounds. Now consider
round 𝑖 = 𝑖𝓁−1 + 1. When rejecting an option, or when accepting an option of value 0, the utility for  is 0. For these options,
adjustments (1) and (2) in round 𝑖 change the utility for  to 0, as well. When facing such an option in round 𝑖, the adjustments
incentivize  to wait for potentially better subsequent options. It weakly increases the expected utility of  .

Towards an induction, suppose the statement is true after the adjustments (1) and (2) in all rounds 𝑖𝓁−1 +1 ≤ 𝑖′ ≤ 𝑖. Now consider
round 𝑖 +1. First, condition on the event that in both instances (with and without adjustments on round 𝑖 +1), we reach round 𝑖 +1.
As argued above, the adjustments in round 𝑖 + 1 imply that  has less incentive to propose an option of value 0 for  in round 𝑖 + 1
and more incentive to wait for subsequent rounds. Hence, the utility for  (conditioned on reaching round 𝑖 + 1) does not decrease.

Note, however, that the probability of reaching round 𝑖 +1 also changes by the adjustments. For every 𝑖𝓁−1 < 𝑖′ < 𝑖 +1, removing
the reject bonus and reducing the set of acceptable options in round 𝑖 +1 lead to a reduction in expected utility for  from the rounds
after round 𝑖′. This increases the probability that  will propose an option in some round 𝑖′ before 𝑖 + 1. It decreases the probability
of reaching round 𝑖 +1. Nevertheless, this is again good news for  : Since by hypothesis  accepts only options of utility 1 and there
is no reject bonus in all rounds 𝑖′ ≤ 𝑖, any proposal in these rounds is accepted and results in optimal utility for  . Overall,  only
profits from the adjustments (1) and (2) in round 𝑖 + 1. By induction, this holds when the adjustments are made in all rounds.

After the adjustments, the auxiliary instance is a standard single-proposal instance studied in the context of Theorem 1. This
shows that the expected utility obtained by  is in 𝑂(1∕𝑛).

As a consequence, the conditional expected utility for  in phase 𝓁 (conditioned on each 𝐻𝑓) is upper bounded by 𝑂(1∕𝑛).
Hence, the overall expected utility from phase 𝓁 is at most 𝑂(1∕𝑛). The expected utility from 𝑘 phases is upper bounded by 𝑂(𝑘∕𝑛).
This proves the theorem. □

3. Agent utilities

In this section, we examine the effects of two parameters on the approximation ratio: (1) the discrepancy of utility values of , or
(2) the number of different utility values of . The lower bound instance in Theorem 1 uses 𝑛 different utility values for , ranging
from 1 to 𝑛Θ(𝑛). Is such a drastic discrepancy necessary to show a substantial lower bound? Can we obtain better approximation
results for instances with a smaller ratio of the maximum and minimum utility values for ? Similarly, can a bound on the number
of utility values for  help to improve the approximation for ?

3.1. Discrepancy of agent utilities

In this subsection, we study the discrepancy of agent utility values, i.e., the ratio between the maximum and the minimum utility
value for . In the next subsection, we begin by studying the setting of conscious proposals.

3.1.1. Conscious proposals

Let us first assume that 𝑎𝑖𝑗 > 0 for all options (see Remark 1 below how to extend our results to the case when 𝑎𝑖𝑗 = 0 is allowed).
Let 𝛼 =max{𝑎𝑖𝑗 ∣ 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑠𝑖]}∕ min{𝑎𝑖𝑗 ∣ 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑠𝑖]}. W.l.o.g. we scale all utility values to 𝑎𝑖𝑗 ∈ [1, 𝛼], where both boundaries
𝛼 and 1 are attained by at least one option. Then  has 𝛼-bounded utilities.

We use Algorithm 1 to compute a good action scheme with respect to parameter 𝛼. Intuitively, we partition the best options for
 that add up a total probability mass of roughly 1∕2 into 𝑂(log𝛼∕ log log𝛼) many bins. Each bin is constructed in a way such that
 is incentivized to propose the first option he encounters from that particular bin, assuming that  only accepts options from that
bin. The algorithm determines the best bin for  and deterministically restricts the acceptable options to the ones from this bin.

Let us discuss the algorithm in more detail. As a first step, the algorithm uses a procedure RestrictOptions(1, … , 𝑛, 𝑚) (Algo-

rithm 2) with parameter 𝑚 = 1∕2 as subroutine. The procedure considers all options in descending order of principal utility until
a total probability mass 𝑚 is reached. Starting out with 𝑄̂ = ∅, options are added to 𝑄̂ = {(𝑖, 𝑗) ∣ 𝑏𝑖𝑗 ≥ 𝑏𝑖′ ,𝑗′ ∀(𝑖′, 𝑗′) ∉ 𝑄̂} as long as ∑

(𝑖,𝑗)∈𝑄̂ 𝑝𝑖𝑗 < 𝑚. The first option (𝑖∗, 𝑗∗) that would reach or surpass the combined mass of 𝑚 (i.e., such that
∑

(𝑖,𝑗)∈𝑄̂∪{(𝑖∗ ,𝑗∗)} 𝑝𝑖𝑗 ≥𝑚)
is considered separately. The procedure RestrictOptions then returns either 𝑄 = 𝑄̂ or 𝑄 = {(𝑖∗, 𝑗∗)}, whichever set provides a better
expected utility for  . As a consequence,

∑
(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗 ⋅ 𝑏𝑖𝑗 ≥𝑚∕2 ⋅ 𝔼𝜔𝑖𝑗∼𝑖 [max𝑖∈[𝑛] 𝑏𝑖𝑗].

Lemma 1 summarizes the claim.

Lemma 1. The subroutine RestrictOptions(1, … , 𝑛, 𝑚) with distributions 1, … , 𝑛 and a parameter 0 < 𝑚 ≤ 1 as input identifies 𝑄, the
8

best set of options for  , such that

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

Algorithm 1: Ω(log log𝛼∕ log𝛼)-approximation.

Input: 𝑛 distributions 1, … , 𝑛

Output: Action Scheme 𝜑

Let 𝑄 = RestrictOptions(1, … , 𝑛, 1∕2).
if 𝑄 spans only a single round then Set 𝐵1 =𝑄.

else

Construct 𝑐 = ⌈log2 𝛼⌉ classes 1, … , 𝑐 such that 𝑘 = {(𝑖, 𝑗) ∈𝑄 ∣ 𝑎𝑖𝑗 ∈ [2𝑘−1, 2𝑘)} for all 𝑘 = 1, … , 𝑐 − 1 and
𝑐 = {(𝑖, 𝑗) ∈𝑄 ∣ 𝑎𝑖𝑗 ∈ [2𝑐−1, 2𝑐]}.

Set 𝑏 = 1, and 𝑠 = 𝑐. Open bin 1 and set 𝐵1 = ∅.

for 𝑘 = 𝑐 down to 1 do

if 2𝑘−1 < 2𝑠 ⋅
∑

(𝑖,𝑗)∈𝐵𝑏∪𝑘
𝑝𝑖𝑗 then

set 𝑏 = 𝑏 + 1 and 𝑠 = 𝑘. //
∑

(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗 < 1∕2, so no open bin stays empty
Open the new bin 𝑏 and set 𝐵𝑏 = ∅

Add class 𝑘 to bin 𝐵𝑏 =𝐵𝑏 ∪ 𝑘 .

𝑏∗ = argmax𝑏=1,…
∑

(𝑖,𝑗)∈𝐵𝑏
𝑝𝑖𝑗𝑏𝑖𝑗 , the bin with highest utility for  .

Set 𝜑𝑖𝑗 = 1 for all (𝑖, 𝑗) ∈ 𝐵𝑏∗ and 𝜑𝑖𝑗 = 0 otherwise.

return 𝜑

Algorithm 2: RestrictOptions.

Input: 𝑛 distributions 1, … , 𝑛, value 𝑚 restricting the mass

Output: Set 𝑄 of good options for 
Set 𝑄̂ = ∅, 𝑝 = 𝑝∗ = 0, 𝑈 =

⋃𝑛

𝑖=1
⋃𝑠𝑖
𝑗=1{(𝑖, 𝑗)}.

while 𝑝 <𝑚 do

𝑈∗ = ∅, 𝑝∗ = 0
for 𝑘 = 1, … , 𝑛 do

Let 𝑈∗
𝑘
= {(𝑘, 𝑗) ∈𝑈 ∣ 𝑏𝑘𝑗 ≥ 𝑏𝑖′𝑗′ for all (𝑖′, 𝑗′) ∈𝑈} be the options in round 𝑘 from the set of all remaining options with the best utility

for 
Set 𝑝𝑘 =

∑
(𝑖,𝑗)∈𝑈∗

𝑘

𝑝𝑖𝑗

if 𝑝∗ + 𝑝𝑘 < 𝑚 then add 𝑈∗ =𝑈∗ ∪𝑈∗
𝑘

, update 𝑝∗ = 𝑝∗ + 𝑝𝑘
else

if 𝑝𝑘 > 𝑝
∗ then set 𝑈∗ =𝑈∗

𝑘

break for-loop

Set 𝑝∗ =∑
(𝑖,𝑗)∈𝑈∗ 𝑝𝑖𝑗 and 𝑏∗ = 𝑏𝑖𝑗 for (𝑖, 𝑗) ∈𝑈∗

/* All options in 𝑈∗ have the same value for . */

if 𝑝 + 𝑝∗ > 𝑚 then set 𝐵 =𝑈∗; else add 𝑄̂ = 𝑄̂ ∪𝑈∗

Remove 𝑈 =𝑈 ⧵𝑈∗, update 𝑝 = 𝑝 + 𝑝∗.

Set 𝑏𝑄̂ =
∑

(𝑖,𝑗)∈𝑄̂ 𝑝𝑖𝑗𝑏𝑖𝑗 and 𝑏𝐵 = 𝑝∗𝑏∗

if 𝑏𝑄̂ < 𝑏𝐵 then set 𝑄 =𝐵 else set 𝑄 = 𝑄̂
return 𝑄

∑
(𝑖,𝑗)∈𝑄

𝑝𝑖𝑗 ⋅ 𝑏𝑖𝑗 ≥𝑚∕2 ⋅ 𝔼𝜔𝑖𝑗∼𝑖 [max
𝑖∈[𝑛]

𝑏𝑖𝑗]

and either (1) the combined mass
∑

(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗 < 𝑚 or (2) all options in 𝑄 arrive in the same round.

Proof. RestrictOptions first restricts the possible set of options to 𝑄̂∪𝐵 consisting of the best options for  , with a union probability
mass of at least 𝑚 in the while-loop in lines 2-13. Inside this while-loop, the options with the highest utility for  are identified
using the for-loop in lines 4-10. This loop ensures that no more than a combined mass of 𝑚 is considered for a set of options from
different rounds with the same (currently highest) utility for  . Should such a set with a higher combined mass than 𝑚 exist, the
if/else-statement in lines 7-10 picks the better part of this set while ensuring that either the combined mass of the set is at most 𝑚 or
only options from a single round are considered.

Hence, by line 13 it holds that

1∕𝑚 ⋅
∑

(𝑖,𝑗)∈𝑄̂∪𝐵

𝑝𝑖𝑗𝑏𝑖𝑗 ≥ 𝔼𝜔𝑖𝑗∼𝑖 [max
𝑖∈[𝑛]

𝑏𝑖𝑗] .

In line 14, the utility for  from the sets 𝑄̂ and 𝐵 is calculated, in line 15, the better one for  is chosen. This means that at most
9

another factor of 2 is lost. In total, the set 𝑄 returned by RestrictOptions guarantees

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

2∕𝑚 ⋅
∑

(𝑖,𝑗)∈𝑄
𝑝𝑖𝑗𝑏𝑖𝑗 ≥ 𝔼𝜔𝑖𝑗∼𝑖 [max

𝑖∈[𝑛]
𝑏𝑖𝑗] . □

If the set 𝑄 returned by RestrictOptions only spans a single round 𝑖, the agent will always be incentivized to propose an acceptable
option in round 𝑖. For this scenario, the algorithm only creates a single bin 𝐵1. Otherwise, it continues with the second and third
step described in the following.

In the second step of the algorithm, the options identified by RestrictOptions are classified by their utility for . The algorithm
divides 𝑄 into 𝑐 = ⌈log2 𝛼⌉ classes depending on the agent utility such that the lowest and highest agent utilities in any given class
differ by at most a factor of 2. More precisely, classes 1, … , 𝑐 are constructed such that 𝑘 = {(𝑖, 𝑗) ∈ 𝑄 ∣ 𝑎𝑖𝑗 ∈ [2𝑘−1, 2𝑘)} for
𝑘 = 1, … , 𝑐 − 1 and 𝑐 = {(𝑖, 𝑗) ∈𝑄 ∣ 𝑎𝑖𝑗 ∈ [2𝑐−1, 2𝑐]}.

For the third step, subsequent classes (by their agent utility value) are combined into bins such that (1) the bins are as big as
possible and (2)  optimizes his own expected utility by proposing the first option he encounters from any bin – assuming that only
options from this bin are allowed. Classes are either added to a bin completely or not at all. Let 𝑠 be the index of the class with
the highest agent utilities currently considered, i.e., the first class to be added to the current bin 𝐵𝑏. We consider the classes by
decreasing agent utility values, i.e., with indices 𝑘 = 𝑠, 𝑠 − 1, … . While 2𝑘−1 ≥ 2𝑠 ⋅

∑
(𝑖,𝑗)∈𝐵𝑏∪𝑘 𝑝𝑖𝑗 , a rational  will always propose

the first option available from the current bin if that is the only allowed bin as it has a higher utility than what  can expect from
later rounds. Hence, the class currently under consideration can be added to the current bin.

Finally, having constructed all bins, the algorithm simply chooses the best one for  .

Lemma 2 shows that our algorithm achieves an approximation ratio which is linear in the number of bins opened. The subsequent
Lemma 3 bounds the number of bins opened, showing that it is in the order of 𝑂(log𝛼∕ log log𝛼). Together, the lemmas prove
Theorem 3, our main result of the section.

Lemma 2. Let 𝓁 be the number of bins opened by the algorithm. Then the scheme computed by the algorithm obtains at least an 1∕(8𝓁)-
approximation of the expected utility of the best option for  in hindsight.

Proof. We know that 𝑄 satisfies 4 ⋅
∑

(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗 ⋅ 𝑏𝑖𝑗 ≥ 𝔼𝜔𝑖𝑗∼𝑖 [max𝑖∈[𝑛] 𝑏𝑖𝑗] =OPT by Lemma 1.

Now consider the construction of the bins. Suppose we split 𝑄 into 𝓁 bins 𝐵1, 𝐵2, … , 𝐵𝓁 . We pick the best one 𝐵𝑏∗ from the 𝓁
bins 𝐵1, … , 𝐵𝓁 , so∑

(𝑖,𝑗)∈𝐵𝑏∗
𝑝𝑖𝑗𝑏𝑖𝑗 ≥

1
𝓁

∑
(𝑖,𝑗)∈𝑄

𝑝𝑖𝑗𝑏𝑖𝑗 ≥
1
4𝓁

⋅OPT .

The action scheme restricts attention to 𝐵𝑏∗ and accepts each proposed option 𝜔𝑖𝑗 from the bin with probability 1. Let 𝑘− =
min{𝑘 ∣ 𝑘 ⊆ 𝐵𝑏∗} be the class of smallest index in 𝐵𝑏∗ , and 𝑘+ the one with largest index, respectively. Now suppose the agent learns
in round 𝑖 that an option 𝜔𝑖𝑗 with (𝑖, 𝑗) ∈ 𝐵𝑏∗ arrives in this round. We claim that  will then decide to propose this option. This is
obvious if all options in 𝐵𝑏∗ are only realized in round 𝑖. Otherwise, the agent might want to wait for an option in a later round. If 
proposes, then his utility is 𝑎𝑖𝑗 . Otherwise, if he waits for another option from 𝐵𝑏∗ in a later round, then a union bound shows that
the expected utility is at most∑

(𝑖′ ,𝑗′)∈𝐵𝑏∗
𝑖′>𝑖

𝑝𝑖′𝑗′ ⋅ 𝑎𝑖′𝑗′ ≤
∑

(𝑖′ ,𝑗′)∈𝐵𝑏∗
𝑖′>𝑖

𝑝𝑖′𝑗′ ⋅ 2𝑘
+
< 2𝑘+ ⋅

∑
(𝑖′ ,𝑗′)∈𝐵𝑏∗

𝑝𝑖′𝑗′ ≤ 2𝑘−−1 ≤ 𝑎𝑖𝑗 ,

where the second-to-last inequality is a consequence from the construction of the bin. Hence, the first option from the bin that is
realized also gets proposed by  and accepted by  .

Now for each option (𝑖, 𝑗) ∈ 𝐵𝑏∗ , the probability that this option is proposed and accepted is the combination of two independent
events: (1) no other option from 𝐵𝑏∗ was realized in any of the rounds 𝑖′ < 𝑖, (2) option 𝜔𝑖𝑗 is realized in round 𝑖. The probability for
event (2) is 𝑝𝑖𝑗 . For event (1), we define 𝑚𝑖 =

∑
(𝑖,𝑗)∈𝐵𝑏∗ 𝑝𝑖𝑗 . With probability

∏
𝑖′<𝑖(1 −𝑚𝑖′), no option from 𝐵𝑏∗ is realized in rounds

𝑖′ < 𝑖. Note that
∑𝑛

𝑖=1𝑚𝑖 ≤ 1∕2. The term
∏𝑛

𝑖=1(1 −𝑚𝑖) is minimized for 𝑚1 = 1∕2 and 𝑚𝑖′ = 0 for 1 < 𝑖′ < 𝑖. Thus
∏𝑛

𝑖=1(1 −𝑚𝑖) ≥ 1∕2,
i.e., the probability of event (1) is at least 1/2.

Overall, by linearity of expectation, the expected utility of  when using 𝜑 is at least∑
(𝑖,𝑗)∈𝐵𝑏∗

1
2
⋅ 𝑝𝑖𝑗 ⋅ 𝑏𝑖𝑗 ≥

1
2𝓁

⋅
∑

(𝑖,𝑗)∈𝑄
𝑝𝑖𝑗 ⋅ 𝑏𝑖𝑗 ≥

1
8𝓁

⋅OPT . □

Lemma 3. Let 𝓁 be the number of bins opened by the algorithm. It holds that 𝓁 =𝑂(log𝛼∕ log log𝛼).

Proof. Consider a bin 𝐵 and its mass 𝑝𝐵 =
∑

(𝑖,𝑗)∈𝐵 𝑝𝑖𝑗 . We want to argue that at most 𝑂(𝑐∕ log 𝑐) bins are opened. To do so, we first
condition on having 𝓁 open bins and strive to lower bound the number of classes in these 𝓁 bins.

Consider a bin 𝐵 starting at 𝑠. The algorithm adds classes to 𝐵 until 2𝑘−1 < 2𝑠𝑝𝐵 . Thus, 𝑠 − 𝑘 + 1 > log2(1∕𝑝𝐵), i.e., the number
of classes in 𝐵𝑖 is lower bounded by log2(1∕𝑝𝐵).

Now consider two bins 𝐵𝑖 and 𝐵𝑖+1 and condition on 𝑞 = 𝑝𝐵𝑖 + 𝑝𝐵𝑖+1 . Together the bins contain at least log2(1∕𝑝𝐵𝑖) + log2(1∕(𝑞 −
10

𝑝𝐵𝑖
)) classes. Taking the derivative for 𝑝𝐵𝑖 , we see that this lower bound is minimized when 𝑝𝐵𝑖 = 𝑞∕2 = 𝑝𝐵𝑖+1 . Applying this balancing

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

step repeatedly, the lower bound on the number of classes in all bins is minimized when 𝑝𝐵𝑖 = 𝑝𝐵𝑗 for all bins 𝐵𝑖, 𝐵𝑗 . Thus, when
opening 𝓁 bins, we obtain the smallest lower bound on the number of classes in these bins by setting 𝑝𝐵𝑖 = 1∕𝓁 ⋅

∑
(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗 < 1∕(2𝓁)

for all bins 𝐵𝑖. Conversely, when opening 𝓁 bins, we need to have at least 𝓁 log2(2𝓁) classes in these bins.

Now, since we need to put 𝑐 classes into the bins, we need to ensure that for the number 𝓁 of open bins we have 𝓁(log2 𝓁+1) ≤ 𝑐,
since otherwise the 𝓁 bins would require more than 𝑐 classes in total. This implies that 𝑐 =Ω(𝓁 log2 𝓁) and, hence, 𝓁 =𝑂(𝑐∕ log 𝑐) =
𝑂(log𝛼∕ log log𝛼). □

Using Lemmas 2 and 3, we can prove the following theorem:

Theorem 3. If the agent has 𝛼-bounded utilities, there is a deterministic action scheme such that  obtains an Ω(log log𝛼∕ log𝛼)-
approximation of the expected utility for optimal (online) search.

Observe that the approximation ratio of this algorithm is tight in general. Consider the instances in Theorem 1 with 𝛼 = 𝑛Θ(𝑛).
The theorem shows that every scheme can obtain at most a ratio of 𝑂(1∕𝑛) = 𝑂(log log𝛼∕ log𝛼).

Remark 1. If there are options with utility 0 for , the maximum ratio between the lowest and highest utility for  becomes
unbounded. Still, if the maximum ratio between the lowest and highest non-zero utility for  is bounded by 𝛼, an Ω(log log𝛼∕ log𝛼)-
approximation can be achieved with a slight modification of Algorithm 1. Suppose there are any options with 𝑎𝑖𝑗 = 0 in 𝑄, then
construct another bin 𝐵0 which consists of all options with 0 utility for  in the set 𝑄. If 𝐵0 is the bin that is chosen as the best bin
in the algorithm, the agent will not receive any utility and, due to tie-breaking in favor of  , can be assumed to execute an online
search for  . Using standard prophet inequality results, this yields a 1∕2-approximation for  within this bin. If bin 𝐵0 is not the
best bin, the analysis from the theorem can be applied.

Remark 1 shows that we can indeed allow options with 𝑎𝑖𝑗 = 0. If all other options with strictly positive utility are 𝛼-bounded,
we obtain the same approximation factor (asymptotically).

Corollary 2. If the agent has 𝛼-bounded utilities for all options with strictly positive utility, there is a deterministic action scheme such that
the principal obtains an Ω(log log𝛼∕ log𝛼)-approximation of the expected utility for optimal (online) search.

3.1.2. Oblivious proposals

In the previous section, we considered algorithms for  when she learns the utility pair for the proposed option. In this section,
we show that (fully) oblivious proposals can be a substantial drawback for  . Obviously, the lower bound in Theorem 1 remains
intact even for oblivious proposals, when  does not learn the utility value of the proposed option for . For oblivious proposals and
𝛼-bounded agent utilities, we can significantly strengthen the lower bound. In contrast to the logarithmic approximation guarantee
above, we provide a linear lower bound in 𝛼 for oblivious proposals.

Theorem 4. There is a class of instances of online delegation with 𝛼-bounded utilities for the agent and oblivious proposals, in which every
action scheme 𝜑 obtains at most an 𝑂(1∕𝛼)-approximation of the expected utility for optimal (online) search.

Proof. Consider the following class of instances. In 𝑖, there are two options with the following probabilities and utilities: 𝜔𝑖1 with
𝑝𝑖1 = 1 − 1∕𝑛 and (𝑏𝑖1, 𝑎𝑖1) = (0, 1), as well as 𝜔𝑖2 with 𝑝𝑖2 = 1∕𝑛 and (𝑏𝑖2, 𝑎𝑖2) = (1, 𝑥𝑖), where 𝑥𝑖 ∈ {1, 𝛼} and 𝛼 ∈ [1, 𝑛]. In the first
rounds 𝑖 = 1, … , 𝑖∗ −1 we have 𝑥𝑖 = 1, then 𝑥𝑖 = 𝛼 for rounds 𝑖 = 𝑖∗, … , 𝑛. The expected utility when  performs (undelegated) online
search is 1 − (1 − 1∕𝑛)𝑛 ≥ 1 − 1∕𝑒.

 wants that  proposes any profitable option 𝜔𝑖2 as soon as possible. As in the proof of Theorem 1, we can assume that all
𝜑𝑖1 = 0 in an optimal scheme – this option has no value for  and can only raise the incentive to wait for .

Due to oblivious proposals,  has to choose 𝜑 without being aware of the value of 𝑖∗. For our impossibility result, we adjust 𝑖∗ to
the scheme 𝜑 chosen by  : Set 𝑖∗ ∈ {1, … , 𝑛} to the largest number such that

∑𝑛

𝑖=𝑖∗ 𝜑𝑖2 ≥ 𝑒 ⋅ 𝑛∕𝛼, or 𝑖∗ = 1 if no such number exists.

First, suppose that 𝑖∗ = 1. Then, even if we force  to propose every option 𝜔𝑖2 as soon as it arises, a union bound shows that the
expected utility of  is upper bounded by

∑𝑛

𝑖=1
1
𝑛
⋅𝜑𝑖2 ≤

𝑒

𝛼
+ 1
𝑛
. Hence,  obtains only an 𝑂(1∕𝛼)-approximation, for any 𝛼 ∈ [1, 𝑛].

Now suppose that 𝑖∗ > 1. Consider an optimal scheme 𝜑 for  . If 𝜔𝑖2 arises in round 𝑖,  decides if it is more profitable to
propose 𝑖 or wait for a later round. Indeed, we show that  never proposes 𝜔𝑖2 in any round 𝑖 < 𝑖∗. Consider the expected utility
from proposing the first option 𝜔𝑘2 arising in rounds 𝑘 = 𝑖∗, … , 𝑛. This is

𝛼 ⋅

(
𝑛∑

𝑘=𝑖∗

1
𝑛

(
1 − 1

𝑛

)𝑘−𝑖∗
𝜑𝑘2

)
= 𝛼 ⋅ 1

𝑛
⋅
𝑛∑

𝑘=𝑖∗

(
1 − 1

𝑛

)𝑘−𝑖∗
𝜑𝑘2 >

𝛼

𝑛
⋅
1
𝑒
⋅
𝑛∑

𝑘=𝑖∗
𝜑𝑘2 ≥

𝛼

𝑒𝑛
⋅
𝑒𝑛

𝛼
= 1 ≥ 𝜑𝑖2 ,

i.e., strictly larger than the expected utility 𝜑𝑖2 from proposing 𝜔𝑖2 in round 𝑖 < 𝑖∗. Hence,  only proposes in rounds 𝑘 = 𝑖∗, … , 𝑛.
Even if  would be able to propose every option 𝜔𝑘2 in rounds 𝑘 = 𝑖∗, … , 𝑛, a union bound implies that the expected utility of 
11

from these rounds is upper bounded by
∑𝑛

𝑘=𝑖∗
1
𝑛
⋅𝜑𝑘2 ≤

𝑒

𝛼
+ 1
𝑛
. For any 𝛼 ∈ [1, 𝑛],  obtains an 𝑂(1∕𝛼)-approximation. □

1

2

3

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

Algorithm 3: Ω(1∕𝛼)-approximation for oblivious proposals.

Input: 𝑛 distributions 1, … , 𝑛

Output: Action Scheme 𝜑
Let 𝑄 = RestrictOptions(1, … , 𝑛, 1∕(2𝛼)).
Set 𝜑𝑖𝑗 = 1 for all (𝑖, 𝑗) ∈𝑄.

return 𝜑

This class of instances is actually a worst-case. In the following, we show that an Ω(1∕𝛼)-approximation can always be achieved
for this setting. To this end, we provide Algorithm 3. It uses the subroutine RestrictOptions (Algorithm 2) with parameter 𝑚 = 1∕(2𝛼)
to determine a set of acceptable options 𝑄. Intuitively,  uses this subroutine to find a small subset of her best options such that
 is incentivized to propose the first realized option from this subset. This is similar to what  did in the conscious setting. The
key difference here is that she cannot use bins (that depend on ’s utilities, of which  is oblivious) to make further selections that
prevent  from waiting. However, as the total probability mass of acceptable options is only a 1∕(2𝛼)-fraction and  has 𝛼-bounded
utilities,  is incentivized to propose an option from 𝑄 as soon as it is realized. Thus,  can indeed accept all options from 𝑄. We
formalize this claim in Theorem 5.

Theorem 5. If the agent has 𝛼-bounded utilities and makes oblivious proposals, there is a deterministic action scheme such that  obtains an
Ω(1∕𝛼)-approximation of the expected utility for optimal (online) search.

Proof. Consider Algorithm 3. The proof follows along the lines of Lemma 2. By Lemma 1, we have 4𝛼 ⋅
∑

(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗𝑏𝑖𝑗 ≥ OPT, the
expected value of the best option in hindsight.

The action scheme accepts each proposed option 𝜔𝑖𝑗 from the set 𝑄 with probability 1. Note that 𝑄 satisfies either that ∑
(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗 < 1∕(2𝛼) or all options in 𝑄 arrive in the same round 𝑖.
In the latter case,  will propose any option 𝜔𝑖𝑗 with (𝑖, 𝑗) ∈𝑄 he encounters in round 𝑖. In a later round 𝑖′ > 𝑖,  will not accept

any option.

Hence, let us consider the former case that 𝑄 satisfies
∑

(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗 < 1∕(2𝛼). Suppose the agent learns in round 𝑖 that an option
𝜔𝑖𝑗 with (𝑖, 𝑗) ∈𝑄 arrives. We claim that  will propose this option. If  proposes, then the expected utility is 𝑎𝑖𝑗 . Otherwise, if he
waits for another option from 𝑄 in a later round, then a union bound shows that the expected utility is at most∑

(𝑖′ ,𝑗′)∈𝑄, 𝑖′>𝑖
𝑝𝑖′𝑗′ ⋅ 𝑎𝑖′𝑗′ ≤

∑
(𝑖′ ,𝑗′)∈𝑄, 𝑖′>𝑖

𝑝𝑖′𝑗′ ⋅ 𝛼 ⋅ 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ,

where the first inequality is due to 𝛼-bounded utilities, and the second inequality follows since
∑

(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗 ≤ 1∕(2𝛼) by construction.
Hence, the first option from 𝑄 that is realized also gets proposed by  and accepted by  .

Now, for each option (𝑖, 𝑗) ∈𝑄, the probability that this option is proposed and accepted is the combination of two independent
events: (1) no other option from 𝑄 was realized in any of the rounds 𝑖′ < 𝑖, (2) option 𝜔𝑖𝑗 is realized in round 𝑖. The probability
of event (2) is 𝑝𝑖𝑗 . For the probability of event (1), we define 𝑚𝑖 =

∑
(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗 . With probability

∏
𝑖′<𝑖(1 − 𝑚𝑖) no option from 𝑄 is

realized in rounds 𝑖′ < 𝑖. Note that
∑𝑛

𝑖=1𝑚𝑖 ≤ 1∕(2𝛼). The term
∏𝑛

𝑖=1(1 −𝑚𝑖) is minimized for 𝑚1 = 1∕(2𝛼) and 𝑚𝑖′ = 0 for 1 < 𝑖′ < 𝑖.
Thus

∏𝑛

𝑖=1(1 −𝑚𝑖) ≥ 1 − 1∕(2𝛼), i.e., the probability of event (1) is at least 1 − 1∕(2𝛼) ≥ 1∕2.

By linearity of expectation, the expected utility of  when using 𝜑 based on 𝑄 is at least∑
(𝑖,𝑗)∈𝑄

1
2
⋅ 𝑝𝑖𝑗 ⋅ 𝑏𝑖𝑗 ≥

1
8𝛼

⋅OPT . □

In contrast to Corollary 2, the result of Theorem 5 does not generalize to the case when  has options with utility 0, and 𝛼 is the
ratio of maximum and minimum non-zero utility. Even in the semi-oblivious scenario (discussed in the next section), all algorithms
must have a ratio in 𝑂(1∕𝑛), even when all utilities for  are 𝑎𝑖𝑗 ∈ {0, 1}.

3.1.3. Semi-oblivious proposals

In this section, we analyze semi-oblivious proposals.  has full a priori information about the prior, but she does not learn the
utility value of  upon a proposal. The information about the prior can indeed help to improve the approximation ratio from Θ(1∕𝛼)
to Ω(1∕(

√
𝛼 log𝛼)), but not to a logarithmic bound as shown for conscious proposals in Theorem 3. In particular, we start by showing

the following limit on the approximation ratio.

Theorem 6. There is a class of instances of online delegation with IID options, 𝛼-bounded utilities for the agent, and semi-oblivious proposals,
in which every action scheme 𝜑 obtains at most an 𝑂(1∕

√
𝛼)-approximation of the expected utility for optimal (online) search.

Proof. The lower bound applies in an IID instance with three different options. One option is bad for both  and , but has a very
high probability of 1 −1∕𝑛. The other two options provide the same (good) utility for  , one of which is good and the other one bad
12

for . The combined probability of both options is 1∕𝑛. Since  cannot distinguish between the two good options, in each round

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

she has to decide to either accept both or reject both. While  would like to accept any of the good options,  has an incentive to
wait and propose only the option that is good for both. Overall, this approach ensures that every achievable approximation ratio for
 must be in 𝑂(1∕

√
𝛼).

More formally, consider the following class of IID instances with 𝑖 =𝑗 =. In , there are three options with the following
probabilities and utilities: 𝜔1 with 𝑝1 = 1 − 1∕𝑛 and (𝑏1, 𝑎1) = (0, 1), 𝜔2 with 𝑝2 = 1∕𝑛 − 1∕(𝑛

√
𝛼) and (𝑏2, 𝑎2) = (1, 2), and 𝜔3 with

𝑝3 = 1∕(𝑛
√
𝛼) and (𝑏3, 𝑎3) = (1, 𝛼), for any 𝛼 ∈ [2, 𝑛2].

Note that  cannot distinguish between the latter options when they are proposed. Thus, in each round 𝑖,  accepts option 𝜔1
with probability 𝜑𝑖1 and options 𝜔2 and 𝜔3 with 𝜑𝑖2. As in the proof of Theorem 1, we can assume that all 𝜑𝑖1 = 0 in an optimal
scheme – this option yields no value for  and could only raise the incentive to wait for .

Consider any optimal scheme 𝜑 for  . To obtain an upper bound on the utility of  , we assume that  always proposes 𝜔3
whenever it is realized.2 For 𝜔2, he evaluates whether or not it is profitable to wait for a later round. Suppose  proposes 𝜔2 in
round 𝑖. A necessary condition for this is that the expected utility from proposing 𝜔3 in subsequent rounds is smaller, i.e.,

2𝜑𝑖2 ≥ 𝛼 ⋅
𝑛∑

𝑘=𝑖+1

𝜑𝑘2

𝑛
√
𝛼

(
1 − 1

𝑛
√
𝛼

)𝑘−𝑖−1
=

√
𝛼

𝑛
⋅

𝑛∑
𝑘=𝑖+1

(
1 − 1

𝑛
√
𝛼

)𝑘−𝑖−1
𝜑𝑘2 . (1)

If this condition is fulfilled, we set Δ𝑖 = 1. Otherwise, we set Δ𝑖 = 0. Then, using a union bound, the utility of  from 𝜑 can be
upper bounded by

𝑛∑
𝑖=1
𝜑𝑖2

(
1

𝑛
√
𝛼
+Δ𝑖

(
1
𝑛
− 1
𝑛
√
𝛼

))
. (2)

Consider the first round 𝑖𝑠 in which Δ𝑖𝑠 = 1.

Combining (1) with the fact that 𝜑𝑖𝑠,2 ≤ 1, this means that

2 ≥
√
𝛼

𝑛
⋅

𝑛∑
𝑘=𝑖𝑠+1

(
1 − 1

𝑛
√
𝛼

)𝑘−𝑖𝑠−1
𝜑𝑘2 ,

which implies

𝑛∑
𝑘=𝑖𝑠+1

𝜑𝑘2 <
2𝑛√
𝛼
⋅

(
1 − 1

𝑛
√
𝛼

)−𝑛

≤
2𝑛√
𝛼
⋅

(
1 − 1√

𝛼

)−1

<
7𝑛√
𝛼
.

For the second inequality, we used Bernoulli’s inequality (1 + 𝑥)𝑛 ≥ 1 + 𝑥𝑛 for all 𝑥 ≥ −1 and all 𝑛 ∈ ℕ. Finally, (1 − 1∕
√
𝛼)−1 < 7∕2

for 𝛼 ∈ [2, 𝑛2] as its maximum is attained at 𝛼 = 2 and (1 − 1∕
√
2)−1 < (1 − 5∕7)−1 = 7∕2.

Using (2) and our assumption that 𝛼 ∈ [2, 𝑛2], the utility of  is upper bounded by

1
𝑛

𝑛∑
𝑖=1
𝜑𝑖2

(
1√
𝛼
+Δ𝑖

(
1 − 1√

𝛼

))
≤

1
𝑛

(
𝑖𝑠 − 1√
𝛼

+ 1 + 7𝑛√
𝛼

)
=𝑂

(
1√
𝛼

)
. □

For the setting of semi-oblivious proposals, we design a more elaborate algorithm. It uses one of two subroutines, depending on
the expected utility for  (for pseudocode see Algorithm 6). The resulting action scheme provides an Ω(1∕(

√
𝛼 log𝛼))-approximation

for  .

Consider all options with the same utility for  in a single round. This set of options has low agent expectation if the conditional
expected utility for  in this set of options is less than

√
𝛼. Otherwise, it has high agent expectation. For the first subroutine, we

concentrate on all options with low agent expectation. Hence, this subroutine is called AlgoLow (Algorithm 4).

Other options are considered to receive a utility of 0 for  and, thus, are excluded from consideration. The scheme 𝜑𝐿 achieves
an Ω(1∕

√
𝛼)-approximation in the instance (𝐿), where only options with low agent expectation generate value for  . Similarly, for

options with high agent expectation we describe procedure AlgoHigh (Algorithm 5).

The scheme 𝜑𝐻 achieves an Ω(1∕(
√
𝛼 log2 𝛼))-approximation in the instance (𝐻), where only options with high agent expecta-

tion generate value for  . In the end, we choose the better scheme for  , thereby forfeiting at most another factor 2 of her optimal
expected utility. Overall, our Algorithm obtains a ratio of Ω(1∕(

√
𝛼 log𝛼)).

Theorem 7. If the agent has 𝛼-bounded utilities and makes semi-oblivious proposals, there is a deterministic action scheme such that 
obtains at least an Ω(1∕(

√
𝛼 log𝛼))-approximation of the expected utility for optimal (online) search.

2 Note that due to the differences in acceptance probabilities 𝜑𝑖2 , he might actually have an incentive to wait for a later round, in which the probability that 
13

accepts is higher.

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

Algorithm 4: AlgoLow.

Input: 𝑛 distributions 1, … , 𝑛, where in every distribution individually, the set of options with the same value for  has an expectation for
 of less than

√
𝛼

Output: Action Scheme 𝜑
Set 𝑄 =𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑠(1, … , 𝑛, 1∕2).
Set 𝓁 = 1, 𝑏1 = 𝑝1 = 0, 1 = ∅
for 𝑘 = 1, … , 𝑛 do

Set 𝑝∗ =∑
(𝑘,𝑗)∈𝑄 𝑝𝑘𝑗

if 𝑝𝓁 + 𝑝∗ > 1∕
√
𝛼 then set 𝓁 = 𝓁 + 1, 𝓁 = {(𝑘, 𝑗) ∈𝑄}, 𝑝𝓁 = 𝑝∗;

else add 𝓁 = 𝓁 ∪ {(𝑘, 𝑗) ∈𝑄}
Set 𝑏′𝓁 =

∑
(𝑖,𝑗)∈𝓁′

𝑝𝑖𝑗𝑏𝑖𝑗 for all 1 ≤ 𝓁′ ≤ 𝓁.

Choose 𝓁∗ such that 𝑏𝓁∗ ≥ 𝑏𝓁′ for all 1 ≤ 𝓁′ ≤ 𝓁.

Set 𝜑𝑖𝑗 = 1 for all (𝑖, 𝑗) ∈ 𝓁∗ .

return 𝜑

Algorithm 5: AlgoHigh.

Input: 𝑛 distributions 1, … , 𝑛, where in every distribution individually, the set of options with the same value for  has an expectation for
 of at least

√
𝛼

Output: Action Scheme 𝜑
Set 𝑄 =𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑠(1, … , 𝑛, 1∕4).
for 𝑘 = 0, … , ⌊log2√𝛼⌋ − 1 do

Set 𝑘 = {(𝑖, 𝑗) ∈𝑄 ∣
∑

(𝑖,𝑗′)∈𝑄,𝑏𝑖𝑗=𝑏𝑖𝑗′
𝑝𝑖𝑗 𝑎𝑖𝑗∑

(𝑖,𝑗′)∈𝑄,𝑏𝑖𝑗=𝑏𝑖𝑗′
𝑝𝑖𝑗

∈
[√
𝛼 ⋅ 2𝑘,

√
𝛼 ⋅ 2𝑘+1

)
}

Set 𝑏𝑘 =
∑

(𝑖,𝑗)∈𝑘
𝑝𝑖𝑗𝑏𝑖𝑗 .

Set ⌊log2 √𝛼⌋ = {(𝑖, 𝑗) ∈𝑄 ∣
∑

(𝑖,𝑗′)∈𝑄,𝑏𝑖𝑗=𝑏𝑖𝑗′
𝑝𝑖𝑗 𝑎𝑖𝑗∑

(𝑖,𝑗′)∈𝑄,𝑏𝑖𝑗=𝑏𝑖𝑗′
𝑝𝑖𝑗

∈
[√
𝛼 ⋅ 2⌊log2 √𝛼⌋, 𝛼]}

Set 𝑏𝑘 =
∑

(𝑖,𝑗)∈𝑘
𝑝𝑖𝑗𝑏𝑖𝑗 .

Choose 𝑘 such that 𝑏𝑘 ≥ 𝑏𝑘′ for all 𝑘′ = 0, … , ⌊log2√𝛼⌋. Set 𝜑𝑖𝑗 = 1 for all (𝑖, 𝑗) ∈ 𝑘 .

return 𝜑

Let us give a brief intuition for AlgoLow. The algorithm leverages the low expectation for  by restricting the number of rounds
from which options are accepted. More precisely, it partitions the set 𝑄 computed by RestrictOptions with parameter 1∕2 into 𝑂(

√
𝛼)

many classes according to contiguous time intervals of rounds. The action scheme 𝜑 then accepts only options from the best class for
 . The overall probability that any acceptable option arrives turns out to be high enough (to obtain an Ω(1∕

√
𝛼)-approximation for

) and low enough (such that  wants to propose the first acceptable option rather than wait for a better one later on).

Lemma 4. If the agent has 𝛼-bounded utilities, makes semi-oblivious proposals, and all options have low agent expectation, AlgoLow (Algo-

rithm 4) constructs a deterministic action scheme such that  obtains an Ω(1∕
√
𝛼)-approximation of the expected utility for optimal (online)

search.

Proof. The set 𝑄 returned by 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑠(1, … , 𝑛, 1∕2) guarantees 4 ⋅
∑

(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗𝑏𝑖𝑗 ≥OPT by Lemma 1.

When splitting the set 𝑄 into classes in the beginning of the algorithm, it is guaranteed that no class spanning more than a single
round has a combined probability mass greater than 1∕

√
𝛼. This means that whenever a new class is opened, the mass of the previous

and the current one combined are greater than 1∕
√
𝛼. Hence, there are at most 2 ⋅

√
𝛼 many classes in total.

Now assume class  is chosen by the algorithm and some acceptable option arrives in round 𝑖. From the assumption that utilities
are 𝛼-bounded, we know that this option has an agent value of at least 1. By a union bound, the probability that any additional
acceptable option from  arrives in a future round is at most 1∕

√
𝛼 (as all classes that consist of a higher mass than 1∕

√
𝛼 only have

options from a single round). The conditional expectation for  for any acceptable option in a future round is at most
√
𝛼. Hence,

 proposes the option in round 𝑖.
Similar to Algorithm 1, the probability that an action (𝑖, 𝑗) from the chosen class is proposed is the combination of two independent

events: (1) no other option from this class was proposed in a prior round 𝑖′ < 𝑖 and (2) (𝑖, 𝑗) is realized in round 𝑖. If the chosen class
only consists of a single round, the probability for (1) is trivially 1, otherwise, we can use the same argumentation as in the proof of
Lemma 2 to see that the probability that round 𝑖 is reached is at least 1∕2. This means that  achieves an expected utility of at least
1∕2 ⋅

∑
(𝑖,𝑗)∈ 𝑝𝑖𝑗𝑏𝑖𝑗 .

As there are at most 2 ⋅
√
𝛼 many classes and the algorithm chooses the best one for  , by running AlgoLow, she will achieve an
14

expected utility of

1

2

3

4

5

6

7

8

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

Algorithm 6: Ω(1∕(
√
𝛼 log𝛼))-approximation for semi-oblivious proposals.

Input: 𝑛 distributions 1, … , 𝑛

Output: Action Scheme 𝜑
Set 𝑈 =

⋃𝑛

𝑖=1
⋃𝑠𝑖
𝑗=1{(𝑖, 𝑗)}.

Partition 𝑈 into 𝑈𝐿 = {(𝑖, 𝑗) ∈𝑈 ∣
∑𝑠𝑖

𝑘=1
𝑏𝑖𝑘=𝑏𝑖𝑗

𝑝𝑖𝑘𝑎𝑖𝑘 <
√
𝛼
∑𝑠𝑖

𝑘=1
𝑏𝑖𝑘=𝑏𝑖𝑗

𝑝𝑖𝑘} and 𝑈𝐻 =𝑈 ⧵𝑈𝐿.

for 𝑘 = 1, … , 𝑛 do


(𝐿)
𝑘

←𝑘 , (𝐻)
𝑘

←𝑘

In (𝐿)
𝑘

set utilities of every option (𝑘, 𝑗) ∈ 𝑈𝐻 to 0 for  and 1 for 
In (𝐻)

𝑘
set utilities of every option (𝑘, 𝑗) ∈ 𝑈𝐿 to 0 for  and

√
𝛼 for .

Set 𝜑𝐿 =𝐴𝑙𝑔𝑜𝐿𝑜𝑤((𝐿)
1 , … , (𝐿)

𝑛
), 𝜑𝐻 =𝐴𝑙𝑔𝑜𝐻𝑖𝑔ℎ((𝐻)

1 , … , (𝐻)
𝑛

).
return 𝜑𝐿 or 𝜑𝐻 , whichever yields better expected utility for 

1
2
⋅
∑

(𝑖,𝑗)∈
𝑝𝑖𝑗𝑏𝑖𝑗 ≥

1
4
√
𝛼
⋅

∑
(𝑖,𝑗)∈𝑄

𝑝𝑖𝑗𝑏𝑖𝑗 ≥
1

16
√
𝛼
⋅OPT =Ω

(
1√
𝛼

)
⋅OPT . □

AlgoLow classifies options only based on utility for  and time intervals. AlgoHigh instead uses an approach similar to Algo-

rithm 1, namely classifying good options for  by their utility for . Since in the semi-oblivious scenario, options from a single
round 𝑖 with the same utility for  cannot be distinguished, the algorithm classifies options by their expected utility for  such
that the expectation for  of all options in a single class differs by no more than a factor 2. Finally, the algorithm identifies the
best one of these 𝑂(log𝛼) many classes. Unlike in previous scenarios, the individual options in a single class can have very different
utility values for the agent, up to factor 𝛼. Only the expected utility is bounded by a factor 2. To show that the resulting scheme
guarantees a good approximation ratio of Ω(1∕

√
𝛼 log𝛼), we show that  proposes the first option he encounters with a sufficiently

high probability of at least Ω(1∕
√
𝛼).

Lemma 5. If the agent has 𝛼-bounded utilities, makes semi-oblivious proposals, and all options have high agent expectation, AlgoHigh
(Algorithm 5) constructs a deterministic action scheme such that  obtains an Ω(1∕(

√
𝛼 log𝛼))-approximation of the expected utility for

optimal (online) search.

Proof. Using 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑠(1, … , 𝑛, 1∕4), the algorithm first identifies the best options for  . By Lemma 1, it holds that
8 ⋅

∑
(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗𝑏𝑖𝑗 ≥OPT.

The set 𝑄 is then further partitioned into ⌊log2√𝛼⌋ +1 smaller classes depending on their conditional expectation for , namely
such that the conditional expectation for  of the elements in a class differs by at most a factor 2. Then, the class  such that ∑

(𝑖,𝑗)∈ 𝑝𝑖𝑗𝑏𝑖𝑗 ≥
∑

(𝑖,𝑗)∈′ 𝑝𝑖𝑗𝑏𝑖𝑗 for all classes ′ is chosen. This means that

(⌊log2√𝛼⌋+ 1) ⋅
∑

(𝑖,𝑗)∈
𝑝𝑖𝑗𝑏𝑖𝑗 ≥

∑
(𝑖,𝑗)∈𝑄

𝑝𝑖𝑗𝑏𝑖𝑗 ≥ 1∕8 ⋅OPT .

We denote by 𝐸 the lower bound for the expected  utility of the interval of the chosen class . Recall that all utilities for  are
in the interval [1, 𝛼]. This means that with a probability of at least 𝐸∕(2𝛼 − 𝐸) ≥ 𝐸∕(2𝛼), a random element from  has an agent
utility of at least 𝐸∕2 – otherwise, an expected utility of at least 𝐸 for  would not be possible. Since the probability that another
allowed option in a later round arrives is at most 1/4 due to the choice of 𝑚 = 1∕4 for the call to 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑠 and the expectation
conditional on arrival of an allowed option is at most 2𝐸,  always proposes the first option with a utility of at least 𝐸∕2. This in
turn means that the agent will propose the first element from  he encounters with a probability of at least 𝐸∕(2𝛼). Since 𝐸 ≥

√
𝛼,

the probability that  proposes the first allowed element is at least 1∕(2
√
𝛼).

In total, this means that  achieves an expected utility of at least

1
2
√
𝛼
⋅
∑

(𝑖,𝑗)∈
𝑝𝑖𝑗𝑏𝑖𝑗 ≥

1
2
√
𝛼
⋅

OPT
8 ⋅ (⌊log2√𝛼⌋+ 1)

= Ω

(
1√

𝛼 log2 𝛼

)
⋅OPT . □

Note that the approximation result of Theorem 7 does not generalize to the case when  has options with utility 0, and 𝛼 is the
ratio of maximum and minimum non-zero utility. We observe that in this case all algorithms must have a ratio in 𝑂(1∕𝑛), even when
all utilities for  are 𝑎𝑖𝑗 ∈ {0, 1}.

To show this, we adapt the instance from the proof of Theorem 6 as follows. We set 𝑝1 = 1 − 1∕𝑛 and (𝑏1, 𝑎1) = (0, 0), 𝑝2 =
1∕𝑛 −1∕𝑛2 and (𝑏2, 𝑎2) = (1, 0), 𝑝3 = 1∕𝑛2 and (𝑏3, 𝑎3) = (1, 1). Note that 𝛼 = 1 here, as there is only a single non-zero utility value for
.

Consider any deterministic scheme for  . Clearly,  does not want to propose any option of value 0 for him until the last round
in which options 𝑝2 and 𝑝3 are acceptable. By a union bound, the overall probability to propose an option of value 1 for  is at most
15

(𝑛 − 1) ⋅ 1∕𝑛2 + 1∕𝑛 < 2∕𝑛, so the expected utility of  is in 𝑂(1∕𝑛). By searching through the options herself,  obtains a value of

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

at least 1 − (1 − 1∕𝑛)𝑛 ≥ 1 − 1∕𝑒. Hence, every deterministic scheme is 𝑂(1∕𝑛)-approximate, even in this case with 𝛼 = 1. A similar
argument shows this result also for randomized schemes.

3.2. Number of agent utility values

In this subsection, we consider scenarios in which the number of different utility values for  is bounded by 𝛽. We only discuss
conscious proposals, because we cannot hope for more than a Θ(1∕𝑛)-approximation in the (semi-)oblivious scenarios, even for a
small constant 𝛽. The lower bound is a trivial consequence by Proposition 1. To see the upper bound, consider the instance to prove
Theorem 6 in the semi-oblivious scenario. It involves only three different options and accordingly only three different utility values
for  to show an upper bound of 𝑂(1∕

√
𝛼).

Corollary 3. If the options only have 𝛽 different utility values for the agent, there is a deterministic action scheme such that the principal
obtains an Ω(1∕𝛽)-approximation of the expected utility for optimal (online) search.

Proof. We use an approach that is very similar to Algorithm 1. The algorithm starts by identifying the best options for  and collects
them in the set 𝑄 using RestrictOptions(𝐷1, … , 𝐷𝑛, 1∕2). Then, it constructs different classes 1, … , 𝛽 from the set 𝑄, with one class
for each individual agent value. Finally, ∗ is chosen as ∗ = argmax∈{1 ,…,𝛽}

∑
(𝑖,𝑗)∈ 𝑝𝑖𝑗𝑏𝑖𝑗 , and the algorithm sets 𝜑𝑖𝑗 = 1 for all

options (𝑖, 𝑗) ∈ ∗ and 𝜑𝑖𝑗 = 0 otherwise.

By Lemma 1, we have
∑

(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗𝑏𝑖𝑗 ≥ OPT∕4. By the pigeon-hole principle, the class ∗ satisfies
∑

(𝑖,𝑗)∈∗ 𝑝𝑖𝑗𝑏𝑖𝑗 ≥ 1∕𝛽 ⋅∑
(𝑖,𝑗)∈𝑄 𝑝𝑖𝑗𝑏𝑖𝑗 ≥OPT∕(4𝛽).
By the construction of the classes, the agent is indifferent between any of the options in a single class, as all of them provide the

same value for . Consequently,  proposes the first option that is acceptable. Our arguments above (e.g., Lemma 2 or Theorem 5)
imply that the combined probability that option (𝑖, 𝑗) ∈ ∗ is realized and proposed is at least 1∕2 ⋅ 𝑝𝑖𝑗 . Hence, the expected utility of
 when using ∗ is at least 1

8𝛽 ⋅OPT and this approach guarantees an Ω(1∕𝛽)-approximation. □

Observe that the approximation ratio of this algorithm is tight in general. Consider the instances in Theorem 1 with 𝛽 = 𝑛. The
theorem shows that every scheme can obtain at most a ratio of 𝑂(1∕𝑛) = 𝑂(1∕𝛽).

4. Misalignment of principal and agent utility

In this section, we consider performance guarantees based on the amount of misalignment of principal and agent utility. For most
of the section, we assume that all utility values are strictly positive.

Consider the smallest 𝛾 ≥ 1 such that

1
𝛾
⋅
𝑎𝑖𝑗

𝑎𝑖′𝑗′
≤
𝑏𝑖𝑗

𝑏𝑖′𝑗′
≤ 𝛾 ⋅

𝑎𝑖𝑗

𝑎𝑖′𝑗′

for any two options 𝜔𝑖𝑗 and 𝜔𝑖′𝑗′ in the instance. Then the preference of  between any pair 𝜔𝑖𝑗 , 𝜔𝑖′𝑗′ of options is shared by  – up
to a factor of at most 𝛾 . We term this 𝛾 -bounded utilities.

Alternatively, it might be intuitive to consider 𝛿 ≥ 1 as a direct bound on the utility ratio

1∕𝛿 ⋅ 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗 ≤ 𝛿 ⋅ 𝑎𝑖𝑗

for every single 𝜔𝑖𝑗 . Then the utilities are 𝛿2-bounded in the sense defined above. For conscious proposals our results below yield
asymptotically the same logarithmic bounds as for 𝛾 . For semi-oblivious and oblivious proposals, we obtain bounds that are polyno-

mial in 𝛿.
For the rest of the section, we consider an instance with 𝛾 -bounded utilities. Suppose we choose an arbitrary realization 𝜔𝑖′𝑗′ .

Divide all utility values of  for all realizations by 𝑏𝑖′𝑗′ , and all utility values of  by 𝑎𝑖′𝑗′ . Note that this adjustment neither affects
the incentives of the players nor the approximation ratios of our algorithms. Considering 𝜔𝑖𝑗 with the adjusted utilities, we see that
1∕𝛾 ⋅ 𝑏𝑖𝑗∕𝑎𝑖𝑗 ≤ 1 ≤ 𝛾 ⋅ 𝑏𝑖𝑗∕𝑎𝑖𝑗 , and thus 1∕𝛾 ≤ 𝑏𝑖𝑗∕𝑎𝑖𝑗 ≤ 𝛾 for all 𝜔𝑖′𝑗′ . This condition turns out to be convenient for our analysis.

Our main idea is to use 𝑂(log 𝛾) clusters 𝑘 to group all the options that have a utility ratio between 2𝑘 and 2𝑘+1, i.e.,

𝑘 = {𝜔𝑖𝑗 ∈Ω ∣ 2𝑘 ≤ 𝑏𝑖𝑗∕𝑎𝑖𝑗 < 2𝑘+1}

for 𝑘 = ⌊log1∕𝛾⌋, … , ⌈log 𝛾⌉. Our deterministic scheme restricts the acceptable options to a single cluster 𝑘∗ . Note that here  is
assumed to see 𝑎𝑖𝑗 upon a proposal. The principal determines the cluster 𝑘∗ , such that the best response by  (i.e., his optimal
online algorithm applied with the options from that cluster) delivers the largest expected utility for  .

Theorem 8. If principal and agent have 𝛾 -bounded utilities, there is a deterministic action scheme such that  obtains an Ω(1∕ log 𝛾)-
16

approximation of the expected utility for optimal (online) search.

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

Proof. Consider any cluster 𝑘. We denote by 𝑏(, 𝑘) and 𝑎(, 𝑘) the expected utility for  and  when  uses 𝑘 to determine 𝜑.
Now consider a hypothetical algorithm for  that observes all realizations and chooses the best option from 𝑘 for  if possible. If
there is no such option, it obtains a utility of 0. Let 𝑏( , 𝑘) and 𝑎( , 𝑘) be the expected utility of the hypothetical algorithm for 
and , respectively. Clearly, 𝑏( , 𝑘) ≥ 𝑏(, 𝑘) and 𝑎(, 𝑘) ≥ 𝑎( , 𝑘), but also, by definition of 𝑘,

𝑏(, 𝑘) ≥ 𝑎(, 𝑘) ⋅ 2𝑘 ≥ 𝑎( , 𝑘) ⋅ 2𝑘 ≥ 𝑏( , 𝑘)∕2 .

Now consider the best option for  in hindsight. The best-option-algorithm for cluster 𝑘 picks the best option in hindsight if it
comes from cluster 𝑘. Otherwise, it returns a value of 0. Let 𝑏∗

𝑘
be the expected utility of this algorithm for  , and let OPT be the

expected utility of the best option in hindsight for  . Then

OPT =
⌈log 𝛾⌉∑

𝑘=⌊log1∕𝛾⌋𝑏
∗
𝑘
≤

⌈log 𝛾⌉∑
𝑘=⌊log1∕𝛾⌋𝑏( , 𝑘) ≤

⌈log 𝛾⌉∑
𝑘=⌊log1∕𝛾⌋𝑏(, 𝑘) ⋅ 2 .

Hence, since the scheme chooses the cluster 𝑘∗ that maximizes 𝑏(, 𝑘∗), we obtain an Ω(1∕ log 𝛾)-approximation. □

By treating all options of utility 0 for  in a separate class and ignoring all options of utility 0 for  , we can again adapt the
performance guarantee also to instances in which all utility pairs of  and  with strictly positive entries are 𝛾 -bounded.

Corollary 4. If principal and agent have 𝛾 -bounded utilities for the set of options with only strictly positive utilities, there is a deterministic
action scheme such that  obtains an Ω(1∕ log 𝛾)-approximation of the expected utility for optimal (online) search.

The bound in Theorem 1 for conscious proposals can be applied rather directly to this case, i.e., when treating the 0-utility options
for  in a separate class. Also the bounds for oblivious and semi-oblivious proposals in Theorems 4 and 6 apply directly, since in
these instances 𝛾 = Θ(𝛼). This implies that any algorithm has a ratio in 𝑂(log log 𝛾∕ log 𝛾) for conscious proposals, in 𝑂(1∕

√
𝛾) for

semi-oblivious proposals, and in 𝑂(1∕𝛾) for oblivious proposals. Finally, it is trivial to obtain a Ω(1∕𝛾)-approximation for  in case
of 𝛾 -bounded utilities and oblivious proposals – simply accept every option proposed by . The bound on the ratio is a simple
consequence of 𝛾 -boundedness. As such, note that  is not required to know 𝛾 to obtain the approximation.

CRediT authorship contribution statement

Pirmin Braun: Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing. Niklas Hahn:

Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing. Martin Hoefer: Formal analysis,
Funding acquisition, Investigation, Methodology, Supervision, Writing – original draft, Writing – review & editing. Conrad Schecker:

Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

Hahn gratefully acknowledges the support of GIF grant I-1419-118.4/2017. Hoefer gratefully acknowledges the support of GIF
grant I-1419-118.4/2017, DFG Research Unit ADYN (project number 411362735), and DFG grant Ho 3831/9-1 (project number
514505843).

References

[1] Ricardo Alonso, Niko Matouschek, Optimal delegation, Rev. Econ. Stud. 75 (1) (2008) 259–293.

[2] Mark Armstrong, John Vickers, A model of delegated project choice, Econometrica 78 (1) (2010) 213–244.

[3] Moshe Babaioff, Michal Feldman, Noam Nisan, Eyal Winter, Combinatorial agency, J. Econ. Theory 147 (3) (2012) 999–1034.

[4] Moshe Babaioff, Eyal Winter, Contract complexity, in: Proc. 15th Conf. Econ. Comput. (EC), 2014, p. 911.

[5] Yakov Babichenko, Siddharth Barman, Algorithmic aspects of private Bayesian persuasion, in: Proc. 8th Symp. Innov. Theoret. Comput. Sci. (ITCS), 2017,
pp. 34:1–34:16.

[6] Ashwinkumar Badanidiyuru, Kshipra Bhawalkar, Haifeng Xu, Targeting and signaling in ad auctions, in: Proc. 29th Symp. Discret. Algorithms (SODA), 2018,
pp. 2545–2563.

[7] Curtis Bechtel, Shaddin Dughmi, Delegated stochastic probing, in: James R. Lee (Ed.), Proc. 12th Symp. Innov. Theoret. Comput. Sci. (ITCS), 2021,
17

pp. 37:1–37:19.

http://refhub.elsevier.com/S0004-3702(24)00107-3/bibA66783E76B4BBD8A105A9E2B27A2F19Bs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibD9D93919BF8A2711B9A3158D5E4AFF64s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibCAC37BBB371DC8B8A221F9C128EB5690s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibDD18628D87C893684D841B42777F36A0s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib8B56BC5AA4E24D5852CF98B253B02136s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib8B56BC5AA4E24D5852CF98B253B02136s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibFC95FC78AFA60D4B9B540C0DD16CA5ACs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibFC95FC78AFA60D4B9B540C0DD16CA5ACs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibDC50AD179AC427B9E1123BB69983938As1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibDC50AD179AC427B9E1123BB69983938As1

Artificial Intelligence 334 (2024) 104171P. Braun, N. Hahn, M. Hoefer et al.

[8] Curtis Bechtel, Shaddin Dughmi, Neel Patel, Delegated Pandora’s box, in: Proc. 23rd Conf. Econ. Comput. (EC), 2022, pp. 666–693.

[9] Matteo Castiglioni, Andrea Celli, Nicola Gatti, Persuading voters: it’s easy to whisper, it’s hard to speak loud, in: Proc. 34th Conf. Artif. Intell. (AAAI), 2020,
pp. 1870–1877.

[10] Matteo Castiglioni, Andrea Celli, Alberto Marchesi, Nicola Gatti, Online Bayesian persuasion, in: Proc. 34th Conf. Adv. Neural Inf. Processing Syst. (NeurIPS),
2020.

[11] Matteo Castiglioni, Andrea Celli, Alberto Marchesi, Nicola Gatti, Signaling in Bayesian network congestion games: the subtle power of symmetry, in: Proc. 35th
Conf. Artif. Intell. (AAAI), 2021, pp. 5252–5259.

[12] Matteo Castiglioni, Nicola Gatti, Persuading voters in district-based elections, in: Proc. 35th Conf. Artif. Intell. (AAAI), 2021, pp. 5244–5251.

[13] Matteo Castiglioni, Alberto Marchesi, Andrea Celli, Nicola Gatti, Multi-receiver online Bayesian persuasion, in: Proc. 38th Int. Conf. Machine Learning (ICML),
2021, pp. 1314–1323.

[14] Matteo Castiglioni, Giulia Romano, Alberto Marchesi, Nicola Gatti, Signaling in posted price auctions, in: Proc. 36th Conf. Artif. Intell. (AAAI), 2022,
pp. 4941–4948.

[15] Shaddin Dughmi, David Kempe, Ruixin Qiang, Persuasion with limited communication, in: Proc. 17th Conf. Econ. Comput. (EC), 2016, pp. 663–680.

[16] Shaddin Dughmi, Haifeng Xu, Algorithmic persuasion with no externalities, in: Proc. 18th Conf. Econ. Comput. (EC), 2017, pp. 351–368.

[17] Shaddin Dughmi, Haifeng Xu, Algorithmic Bayesian persuasion, SIAM J. Comput. 50 (3) (2021).

[18] Paul Dütting, Tim Roughgarden, Inbal Talgam-Cohen, Simple versus optimal contracts, in: Proc. 20th Conf. Econ. Comput. (EC), 2019, pp. 369–387.

[19] Paul Dütting, Tim Roughgarden, Inbal Talgam-Cohen, The complexity of contracts, in: Proc. 31st Symp. Discret. Algorithms (SODA), 2020, pp. 2688–2707.

[20] Ronen Gradwohl, Niklas Hahn, Martin Hoefer, Rann Smorodinsky, Algorithms for persuasion with limited communication, Math. Oper. Res. 47 (3) (2022)
2520–2545.

[21] Svenja Griesbach, Martin Hoefer, Max Klimm, Tim Koglin, Public signals in network congestion games, in: Proc. 23rd Conf. Econ. Comput. (EC), 2022, p. 736.

[22] Sanford Grossman, Oliver Hart, An analysis of the principal-agent problem, Econometrica 51 (1) (1983) 7–45.

[23] Niklas Hahn, Martin Hoefer, Rann Smorodinsky, Prophet inequalities for Bayesian persuasion, in: Proc. 29th Int. Joint Conf. Artif. Intell. (IJCAI), 2020,
pp. 175–181.

[24] Niklas Hahn, Martin Hoefer, Rann Smorodinsky, The secretary recommendation problem, Games Econ. Behav. 134 (2022) 199–228.

[25] Bengt Robert Holmstrom, On Incentives and Control in Organizations, PhD thesis, Stanford University, 1977.

[26] Bengt Robert Holmstrom, On the theory of delegation, in: Marcel Boyer, Richard Kihlstrom (Eds.), Bayesian Models in Economic Theory, Elsevier, 1984,
pp. 115–141.

[27] Jon Kleinberg, Robert Kleinberg, Delegated search approximates efficient search, in: Proc. 19th Conf. Econ. Comput. (EC), 2018, pp. 287–302.

[28] Ulrich Krengel, Louis Sucheston, Semiamarts and finite values, Bull. Am. Math. Soc. 83 (1977) 745–747.

[29] Ulrich Krengel, Louis Sucheston, On semiamarts, amarts and processes with finite value, Adv. Probab. 4 (1978) 197–266.

[30] Nahum D. Melumad, Toshiyuki Shibano, Communication in settings with no transfers, Rand J. Econ. 22 (2) (1991) 173–198.

[31] Aviad Rubinstein, Honest signaling in zero-sum games is hard, and lying is even harder, in: Proc. 44th Int. Colloq. Autom. Lang. Programming (ICALP), 2017,
pp. 77:1–77:13.

[32] Haifeng Xu, On the tractability of public persuasion with no externalities, in: Proc. 31st Symp. Discret. Algorithms (SODA), 2020, pp. 2708–2727.

[33] You Zu, Krishnamurthy Iyer, Haifeng Xu, Learning to persuade on the fly: robustness against ignorance, in: Proc. 22nd Conf. Econ. Comput. (EC), 2021,
18

pp. 927–928.

http://refhub.elsevier.com/S0004-3702(24)00107-3/bib31AD6BEA002DEBBF49FC6C9517DC381Fs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib08B6A1E1CF061526A743BBF855FD580Bs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib08B6A1E1CF061526A743BBF855FD580Bs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibFD8652DFE0B067D5CEF785E19E606894s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibFD8652DFE0B067D5CEF785E19E606894s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib335C3B0B60B724CC485D7198B6C36E0Fs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib335C3B0B60B724CC485D7198B6C36E0Fs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibB871FE910DC339712E3B70E7206018B7s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibA9C6DEE4E9A386DB85C591BA5891CEE4s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibA9C6DEE4E9A386DB85C591BA5891CEE4s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibD00B40B03420D5373E000E1650FF4E22s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibD00B40B03420D5373E000E1650FF4E22s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib185FC6D8852D48C6885F186BD28E80E7s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib0B00372BE7F4911287296F2CCB1DC708s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibD0ED06FB587CE124B6C43ADA275552C2s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibEA0B0731EEB6A9E5676DBF036F85F824s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib160E9C18E25C5778D90FD11887C488D8s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib59DE9B1A2C1DA240ACEB3B5BB1CCACE0s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib59DE9B1A2C1DA240ACEB3B5BB1CCACE0s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibCA6D7F24559C6DA6191548D56FD03D1Fs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib9C1C1DD6E3CAE36E554E9F3871CE79E4s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibBBB8EA872D34FFC5E984926D4C0F04B4s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibBBB8EA872D34FFC5E984926D4C0F04B4s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib23F0911837372D4227591FCC6B913293s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibC5D9EF206F5F39FF523CD29464E2ABC5s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib124DB06C85FDE38AF892E469B16F7C22s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib124DB06C85FDE38AF892E469B16F7C22s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibCE920FA73F81C518E4551CA294D446CFs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib90F5A7B988ECB2F8163E433F2F4ED696s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibCB2BEE6CF2B6788699D997A3761BBF05s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bib1101D519E5FDF7E261F92949016196E3s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibFA1317253BEACADB5C0784B59ACAE867s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibFA1317253BEACADB5C0784B59ACAE867s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibF0EF6E381FD2A56E76459AC9C532E6E1s1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibB2B90A6BB5E8230FA12F5F304FCC02DDs1
http://refhub.elsevier.com/S0004-3702(24)00107-3/bibB2B90A6BB5E8230FA12F5F304FCC02DDs1

	Delegated online search
	1 Introduction
	1.1 Model
	1.2 Contribution and outline
	1.3 Related work

	2 Impossibility
	2.1 A tight bound
	2.2 Extensions
	2.2.1 Agent with lookahead
	2.2.2 Agent with k proposals

	3 Agent utilities
	3.1 Discrepancy of agent utilities
	3.1.1 Conscious proposals
	3.1.2 Oblivious proposals
	3.1.3 Semi-oblivious proposals

	3.2 Number of agent utility values

	4 Misalignment of principal and agent utility
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

