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Abstract

Can current quantum computers provide a speedup over their classical counterparts for some
kinds of problems? In this thesis, with a focus on ground state search/preparation, we address
some of the challenges that both quantum annealing and variational quantum algorithms suffer
from, hindering any possible practical speedup in comparison to the best classical counterparts.
In the first part of the thesis, we study the performance of quantum annealing for solving a
particular combinatorial optimization problem called 3-XOR satisfability (3-XORSAT). The
classical problem is mapped into a ground state search of a 3-local classical Hamiltonian
HC . We consider how modifying the initial problem, by adding more interaction terms to the
corresponding Hamiltonian, leads to the emergence of a first-order phase transition during
the annealing process. This phenomenon causes the total annealing duration, T , required to
prepare the ground state of HC with a high probability to increase exponentially with the size
of the problem. Our findings indicate that with the growing complexity of problem instances,
the likelihood of encountering first-order phase transitions also increases, making quantum
annealing an impractical solution for these types of combinatorial optimization problems.
In the second part, we focus on the problem of barren plateaus in generic variational quantum
algorithms. Barren plateaus correspond to flat regions in the parameter space where the gradient
of the cost function is zero in expectation, and with the variance decaying exponentially with
the system size, thus obstructing an efficient parameter optimization. We propose an algorithm
to circumvent Barren Plateaus by monitoring the entanglement entropy of k-local reduced
density matrices, alongside a method for estimating entanglement entropy via classical shadow
tomography. We illustrate the approach with the paradigmatic example of the variational
quantum eigensolver, and show that our algorithm effectively avoids barren plateaus in the
initialization as well as during the optimization stage.
Lastly, in the last two Chapters of this thesis, we focus on the quantum approximate optimization
algorithm (QAOA), originally introduced as an algorithm for solving generic combinatorial
optimization problems in near-term quantum devices. Specifically, we focus on how to develop
rigorous initialization strategies with guarantee improvement. Our motivation for this study
lies in that for random initialization, the optimization typically leads to local minima with
poor performance. Our main result corresponds to the analytical construction of index-1
saddle points or transition states, stationary points with a single direction of descent, as a tool
for systematically exploring the QAOA optimization landscape. This leads us to propose a
novel greedy parameter initialization strategy that guarantees for the energy to decrease with
an increasing number of circuit layers. Furthermore, with precise estimates for the negative
Hessian eigenvalue and its eigenvector, we establish a lower bound for energy improvement
following a QAOA iteration.
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CHAPTER 1
Introduction

1.1 Quantum mechanics and a new form of computing
Richard Feynman famously stated, “Nature isn’t classical, dammit, and if you want to make a
simulation of nature, you’d better make it quantum mechanical...” This highlights a crucial
insight: everything, at its core, is built from atoms—nuclei and electrons operating under
quantum mechanics. While the peculiarities of the quantum realm may not be immediately
evident, a deeper examination uncovers that the influence of quantum mechanics is pervasive
in our everyday technology. Particularly, without our quantum understanding of the solid
state physics and band theory of metals, insulators, and semiconductors, the semiconductor
industry, with its foundational transistors and integrated circuits, would not have blossomed.
Likewise, the vast fields of quantum optics and lasers underpin industries ranging from optical
communications to the digital arts, showcasing their basis in quantum technologies.
Given that quantum mechanics underlies all, it is logical to imagine information storage on
individual atoms, electrons, or photons, urging us to rethink information beyond the traditional
binary system. We should instead contemplate the consequences of media’s quantum nature
on information storage and processing. The emerging field of quantum information theory is
teeming with ongoing explorations, marked by numerous breakthroughs and advances each
year.
In this introduction, we provide a brief overview of the field of quantum computing with a focus
on variational algorithms for the goal of optimization and simulation of physical systems. We
first review the early days of quantum computing, emphasizing known quantum algorithms with
provable speedup over their classical counterparts. We next discuss the present capabilities of
existing devices and focus on recent efforts on variational quantum algorithms for optimization,
machine learning, and simulation of physical systems. We finish with an overview of the thesis
and a discussion on relevant challenges and open questions.

1.1.1 The past: Early developments in quantum algorithms
Quantum computation (QC) originated with Benioff’s proposals for quantum Turing ma-
chines [Ben80, Ben82], and Feynman’s ideas for circumventing the difficulty of simulating
quantum mechanics by classical computers [Fey82]. This led to Deutsch’s proposal for uni-
versal QC in terms of what has become the “standard” model: the circuit, or gate model of
QC [DP89].
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Quantum algorithms then emerged for solving oracle problems, such as Deutsch’s algorithm
in 1985 [DP85], the Bernstein–Vazirani algorithm in 1993 [BV93], and Simon’s algorithm
in 1994 [Sim94]. Even though these algorithms did not solve practical problems, they
demonstrated mathematically that one could gain more information by querying a black box
with a quantum state in superposition, sometimes referred to as quantum parallelism. Arguably,
the drive for quantum computing took off in 1994 when Peter Shor, building on these previous
results, provided an efficient quantum algorithm for finding prime factors of composite integers,
rendering most classical cryptographic protocols unsafe [Sho94, Sho97].

Shortly after, in 1996, Grover’s algorithm established a quadratic quantum speedup O(
√
N)

for the widely applicable unstructured search problem [Gro96], which typically require O(N)
time, with N the size of the problem. Although this quantum algorithm does not change the
complexity class it still provides significant speed-up for large N . That same year, Seth Lloyd
proved that quantum computers could simulate quantum systems without the exponential
overhead present in classical simulations [Llo96], validating Feynman’s 1982 conjecture.

Since then, the study of quantum algorithms has matured as a sub-field of quantum computing
with applications in search and optimization, machine learning, simulation of quantum systems,
and cryptography. For a more detailed overview, see [Mon16, DMB+23].

1.1.2 The present: NISQ era and the search for a quantum
advantage

It took roughly 40 years after Feynman’s groundbreaking idea, to be in a state where the
current quantum devices can provide useful solutions to hard quantum problems. The reason
behind this lies in that the implementation of quantum algorithms requires that the minimal
quantum information units, qubits, are as reliable as classical bits. Qubits need to be protected
from environmental noise that induces decoherence but, at the same time, their states have
to be controlled by external agents. This control includes the interaction that generates
entanglement between qubits and the measurement operation that extracts the output of the
quantum computation.

Eventually, we expect to be able to protect quantum systems and scale up quantum computers
using the principle of quantum error correction (QEC) [Got09]. Unfortunately, the overhead of
QEC in terms of the number of qubits is, at the present day, still far from current experimental
capabilities. To achieve the goal of fault-tolerant quantum computation, the challenge is to
scale up the number of qubits with sufficiently high qubit quality and fidelity in operations
such as quantum gate implementation and measurement.

Most of the originally proposed quantum algorithms require millions of physical qubits to
incorporate these QEC techniques successfully. Existing quantum devices nowadays contain on
the order of 100 physical qubits and they are sometimes denoted as “noisy intermediate-scale
quantum (NISQ)" devices [Pre18], meaning their qubits and quantum operations are not
quantum error corrected and, therefore, imperfect. For example, on these devices, two-qubit
gates have an error rate of ∼ 1%, while the errors for single-qubit gates are ∼ 0.1%. This in
turn, severely limits the number of gates that we can coherently apply to current quantum
hardware.

One of the goals in the NISQ era is to extract the maximum quantum computational power
from current devices while developing techniques that may also be suited for the long-term goal
of fault-tolerant quantum computation. In the next two sections, we will revise the paradigm
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of adiabatic quantum computing (AQC), and variational quantum algorithms using the gate
model of quantum computing, with a focus on optimization.
On this note, it is important to comment that it is not expected that quantum computers will
be able to solve efficiently worst-case instances of nondeterministic-polynomial-time (NP) hard
problems [MM09] like combinatorial optimization problems. However, it is conceivable (though
not proven so far) that quantum devices will be able to find better approximate solutions or
find such approximate solutions parametrically faster.

1.2 Adiabatic Quantum Computing
In adiabatic quantum computing (AQC) the computation proceeds from an initial Hamiltonian
whose ground state is known and easy to prepare, to a final Hamiltonian whose ground state
encodes the solution to the computational problem. The adiabatic theorem guarantees that the
system will track the instantaneous ground state provided the Hamiltonian varies sufficiently
slowly. It turns out that this approach to QC has deep connections to condensed matter
physics, computational complexity theory, and heuristic algorithms. It is important to remark
that even though AQC is based on an idea that is quite distinct from the circuit or gate-based
model since in the latter a computation may in principle evolve in the entire Hilbert space and
is encoded into a series of unitary quantum logic gates, it has been shown that both paradigms
are equivalent [AvDK+07]. In other words, AQC and all other models for universal quantum
computation can simulate one another with at most polynomial resource overhead. For more
details on the topic, see reviews [AL18, LMSS15, HKL+20].
Focusing on combinatorial optimization, there the classical problem is embedded in a “cost
Hamiltonian” HC which is diagonal in the computational basis

HC =
∑︂
n

En |n⟩ ⟨n| . (1.1)

Being diagonal in the computational basis the problem Hamiltonian can be written in terms of
the action of σz and I operators only. Thus we can expand:

HC = hI +
∑︂
i

hiσ
z
i +

∑︂
ij

hijσ
z
i σ

z
j +

∑︂
ijk

hijkσ
z
i σ

z
jσ

z
k + . . . (1.2)

One then considers a time-dependent Hamiltonian which extrapolates between an “initial
Hamiltonian” HB (also called “driver/mixing Hamiltonian”) and the cost Hamiltonian according
to a predetermined schedule

H(t) = f(t)HB + g(t)HC , (1.3)

where f(0) = g(T ) = 1 and f(T ) = g(0) = 0 and T is the duration of computation. The
adiabatic algorithm works as follows [FGGS00]: the initial state is prepared to be the ground
state of HB. If the duration of computation T is long enough, the adiabatic theorem guarantees
that the system will stay arbitrarily close to the instantaneous ground state at all times. The
ground state of the final Hamiltonian encodes the solution of the optimization problem and
can be read via measurements on the computational basis.
The runtime T of an adiabatic algorithm scales at worst as 1/∆3, where ∆ is the minimum
eigenvalue gap between the ground state and the first excited state of the Hamiltonian H(t).
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Figure 1.1: Illustration of a generic VQA. The Quantum Processing Unit (QPU) is used to
implement the parameterized quantum state |ψ(θ⃗)⟩ = U(θ⃗)|0⟩ and to measure the qubits in
the computational basis. The output from the QPU is fed back to the Classical Processing
Unit (CPU) to compute the value of the cost function as well as the gradient of the parameters.
The arrows indicate the iterative nature of this process.

If the Hamiltonian is varied sufficiently smoothly, the runtime can be improved to O(1/∆2)
up to a polylogarithmic factor in ∆ [EH12]. Because of the dependence of the run time
on the gap, the performance of quantum adiabatic algorithms is strongly influenced by the
type of quantum phase transition the same system would undergo in the thermodynamic
limit [vDMV01, FGGN05, LO04]. In Chapter. 2, we present the progress we made on this
issue, applied to the particular case of the 3-XOR satisfiability problem [Sch78] with a focus
on instances with a highly degenerate ground state manifold.

1.3 Variational Quantum Algorithms

Most of the current NISQ algorithms harness the power of quantum computers in a hybrid
quantum-classical arrangement. Such algorithms delegate the classically difficult part of a
computation to the quantum computer and perform the other on a sufficiently powerful classical
device. These algorithms variationally update the variables of a parameterized quantum circuit
and hence are referred to as variational quantum algorithms (VQA) [CRO+19, CAB+21,
BCLK+22], see Fig. 1.1 for high-level illustration of a generic VQA. This approach has the
added advantage of keeping the quantum circuit depth shallow and hence mitigating noise, in
contrast to quantum algorithms developed for the fault-tolerant era.

The first proposals of VQA were the variational quantum eigensolver (VQE) [PMS+14,
MRBAG16], originally proposed to solve quantum chemistry problems, and the quantum
approximate optimization algorithm (QAOA) [FGG14], proposed to solve combinatorial opti-
mization problems. The variational hybrid approach has seen a wide range of proof of concept
applications on NISQ devices ranging from quantum chemistry [KMT+17, Aru20] to quantum
optimization [Har21a, LHA+20] and quantum machine learning [HCT+19, JDM+21]. In this
work, however, we will only focus on finding ground states of chemistry Hamiltonians using
the VQE, and solving classical combinatorial optimization problems using the QAOA, both of
which we introduce below.
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Figure 1.2: Illustration of a Hardware Efficient Ansatz circuit. Single qubit gates correspond
to rotation gates around the X, Y , and Z axis, while CZ are used as entangling gates

1.3.1 Variational Quantum Eigensolver
The aim of the VQE, initially introduced by [PMS+14], is to estimate the ground state energy
E0 of a molecule. The interactions of the system are encoded in a Hamiltonian H, usually
expressed as a linear combination of simple operators hk with coefficients ck. Taking the
Hamiltonian H as input, here one defines the cost function E(θ) = ⟨ψ0|U †(θ)HU(θ)|ψ0⟩,
where |ψ0⟩ is the initial state that is typically assumed to be a product state. According to
the Rayleigh-Ritz variational principle, the cost is meaningful and faithful as E(θ) > E0, with
the equality holding if |ψ(θ)⟩ is the ground state |E0⟩ of H.

Employing problem-inspired ansatzes for the ground state search in quantum chemistry
systems has proven to be a promising approach due to their capability to ensure rapid
convergence towards an optimal solution. This is exemplified by the unitary coupled cluster
(UCC) method [TB06], which refines the Hartree-Fock approximation by accounting for
quantum correlations. Nonetheless, despite their theoretical appeal, these ansatzes pose a
challenge for current quantum devices, primarily due to the requisite deep circuits for their
implementation [MBB+18]. Consequently, hardware-efficient ansatzes [KMT+17] have gained
prominence as a more practical solution for near-term quantum devices, balancing between
implementational feasibility and the ability to capture essential quantum characteristics of the
system.

The quantum circuit of a hardware-efficient ansatz with p layers is usually given by a unitary
circuit U(θ) [KMT+17]

U(θ) =
p∏︂
l=1

Wl

(︄
N∏︂
i=1

Ri
l(θil)

)︄
, (1.4)

where θil ∈ [−π, π) are pN variational angles, concisely denoted as θ. In this expression, the
product goes over the spatial dimension i = 1, . . . , N that labels individual qubits and the
“time dimension”, l = 1, . . . , p, with p specifying the number of layers, see Fig. 1.2. We choose
the single-qubit gates to be rotations Ri

l(θil) = exp
(︂
− i

2θ
i
lGl,i

)︂
with random directions given

by Gl,i ∈ {σx, σy, σz}. Wl is an entangling layer that usually consists of two-qubit entangling
gates represented by nearest-neighbor controlled-Z (CZ) or controlled-NOT (CNOT) gates
(see Fig. 1.2), depending on the type of hardware used and the corresponding set of native
gates.

The VQE has been the subject of extensive theoretical and experimental scrutiny, with numerous
adaptations and enhancements proposed in the literature [PMS+14, KMvB+19]. A critical
point to consider is that, despite its promising experimental realizations, VQE has not yet
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surpassed the performance of the best classical algorithms available. Moreover, unlike the
quantum approximate optimization algorithm (QAOA)—which we will discuss in the following
section—VQE does not provide analytical performance guarantees, even under ideal conditions.
In real-world applications, both QAOA and VQE are confronted with trainability challenges, a
topic that will be central to the discussions in this work.

1.3.2 Quantum Approximate Optimization Algorithm
The QAOA was first introduced by Farhi et al. [FGG14] as a near-term algorithm for approx-
imately solving classical combinatorial optimization problems. The first application of the
algorithm was for solving the maximum-cut MaxCut problem. MaxCut is an important
combinatorial optimization problem with applications in diverse fields such as theoretical
physics and circuit design. MaxCut seeks to partition a given (un)weighted graph G into
two groups such that the number of edges nE(G) (or the sum of their weights, for weighted
problems) that connect vertices from different groups are maximized, see Fig. 1.3(a) for an
example. Finding the MaxCut for a graph with N vertices is equivalent to finding a ground
state for the N -qubit classical Hamiltonian

HC =
∑︂

⟨i,j⟩∈E
Jijσ

z
i σ

z
j , (1.5)

with the sum running over a set of graph edges E with weights Jij and σzi being the Pauli-z
matrix acting on the i-th qubit. The full spectrum of HC consists of all product states
ordered according to their energies and will be used in what follows as a complete basis,
|E0⟩ , |E1⟩ , . . . , |E2N −1⟩.
The depth-p QAOA algorithm [FGG14], denoted in what follows as QAOAp, minimizes the
expectation value of the classical Hamiltonian over the variational state |Γp⟩ where Γp = (β,γ)
encodes variational angles β = (β1, . . . , βp) and γ = (γ1, . . . , γp) shown in Fig. 1.3:

|Γp⟩ =
p∏︂
i=1

e−βiHBe−γiHC |+⟩ (1.6)

Here
HB = −

N∑︂
i=1

σxi , (1.7)

is the mixing Hamiltonian, and the circuit depth p controls the number of applications of the
classical and mixing Hamiltonian. The initial product state |+⟩ = ⊗Ni=1 |+⟩i, where all qubits
point in the x-direction is an equal superposition of all possible graph partitions which is also
the ground state of HB.
Finding the minimum of

E(Γp) = ⟨Γp|HC |Γp⟩ (1.8)
over angles (β1, . . . , βp) and (γ1, . . . , γp) that form a set of 2p variational parameters, Γp =
(β,γ), yields a desired approximation to the ground state of HC , equivalent to an approximate
a solution of MaxCut. The scalar function E(Γp) thus defines a 2p-dimensional energy
landscape where the global minimum yields the best set of QAOA parameters. The performance
of the QAOA is typically reported in terms of how close is the approximation ratio to one,

1− r(Γp) = E0 − E(Γp)
E0

, (1.9)
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Figure 1.3: (a) Example of a maximum-cut solution for a 3-regular graph composed of 3
vertices. (b) Illustration of the QAOA circuit with p layers. Each layer is composed of a
unitary rotation UC(γi) = e−iγiHC with the cost Hamiltonian HC , followed by another unitary
operator UB(βi) = e−iβiHC with the mixing Hamiltonian HB.

where E0 is the ground state of the classical Ising Hamiltonian (1.5) assumed to be unique for
simplicity. From here we see that a decrease in 1− r implies that the expectation value of the
cost function is approaching the ground state energy of classical Hamiltonian.

In this work, we restrict our attention to MaxCut on 3-regular graphs, where every vertex
is connected to exactly 3 other vertices. In this regard, it is known to be NP-hard to design
an algorithm that guarantees a minimum approximation ratio of r⋆ ≥ 16/17 on MaxCut
for all graphs [H0̊1], or r⋆ ≥ 331/332 when restricted to unweighted 3-regular graphs [BK99].
The best classical algorithms to date give the approximation ratio of r⋆ ≈ 0.8786 for general
graphs [GW95], and r⋆ = 0.9326 for unweighted 3-regular graphs [HLZ04] using semidefinite
programming. While QAOA for p = 1, with an approximation ratio of 0.692 for unweighted
3-regular graphs, does not outperform its classical counterparts for the MaxCut problem,
QAOA has been found to surpass the Goemans-Williamson bound for larger values of p [Cro18].
This result is however purely heuristic and it remains to be shown if it holds beyond the system
sizes that can be simulated classically.

In summary, both heuristic [Cro18, ZWC+20, SS21a, SMKS23] and experimental results [Har21a,
WVG+22, WSW24, E+22] give hope that the QAOA might be a promising algorithm for achiev-
ing a quantum advantage on real quantum hardware in the near future.

1.4 Challenges for Variational Quantum Algorithms
The progress of variational quantum algorithms (VQAs) also reveals significant challenges.
Addressing these is vital to reach quantum advantage with scalable devices. A deep under-
standing of VQA limits is key to creating improved algorithms, ensuring reliable performance,
and advancing quantum hardware design.

As for any variational approach, the success of a variational quantum algorithm (VQA) depends
on the efficiency and reliability of the ansatz and the optimization method used. The choice
of ansatz determines what kind of quantum states the parameterized quantum circuit can
effectively prepare. Thus, given the shallow-depth nature of present devices, it is important
to design smart ansatze that take advantage of the specific details (for example, presence
of symmetries) of the problem of interest. When investigating the VQE, we will use the
hardware-efficient ansatz, which is known to be universal. This means that for any arbitrary
state |ψ⟩, there exists a finite-depth p circuit that can prepare it exactly, with p possibly scaling
exponentially with the Hilbert space dimension.
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Classical optimization in VQAs is complex, as it tends to be NP-hard due to the presence
of many local minima in the cost function “landscape” [SJAG19]. Additionally, training
VQAs faces the stochastic nature of quantum measurements, hardware noise, and barren
plateaus—regions in parameter space where gradients are near zero and hinder optimization.
These challenges, coupled with the exponential increase of local minima with parameter count,
are critical to addressing for VQAs to be successful. In this work, we present the progress
that we made on these issues and discuss the impact of our results, leading to a better
understanding of the capabilities and limitations of VQAs.

1.5 Overview of the thesis

1.5.1 Contents of Chapter 2

In Chapter 2, we evaluate the effectiveness of adiabatic quantum computing on the 3-XOR
satisfiability problem when new interactions are systematically introduced. Through a duality
transformation, we analyze both analytically and numerically how phase transitions arise with
increasing problem complexity. Moreover, the discussed duality transformation enables the
exploration of problem instances with a highly degenerate ground state manifold. Our findings
indicate that first-order phase transitions can occur, potentially causing the annealing time to
scale exponentially with system size and thus making quantum annealing impractical for these
optimization tasks. The content of this Chapter is based on the published work [MS21].

1.5.2 Contents of Chapter 3

Chapter 3 investigates the emergence of barren plateaus (BPs) in generic variational quantum
algorithms and introduces a strategy to mitigate this issue by monitoring local entanglement
during classical optimization. We employ classical shadow tomography, a method efficient in
estimating local observable expectations, to detect and navigate around regions with negligible
gradients. This enhances the optimization trajectory of VQAs. Additionally, our findings
emphasize the importance of tailored initialization strategies that exploit problem-specific
features. The content of this Chapter is based on the published work [SMM+22].

1.5.3 Contents of Chapter 4

In Chapter 4 we focus on the quantum approximate optimization algorithm. We introduce
a greedy initialization of QAOA which guarantees improving performance with an increasing
number of layers. Our main result is an analytic construction of 2p+ 1 transition states —
saddle points with a unique negative curvature direction — for QAOA with p+ 1 layers that
use the local minimum of QAOA with p layers. Transition states connect to new local minima,
which are guaranteed to lower the energy compared to the minimum found for p layers. We use
the Greedy procedure to navigate the exponentially increasing with p number of local minima
resulting from the recursive application of our analytic construction. The performance of the
Greedy procedure matches available initialization strategies while providing a guarantee for
the minimal energy to decrease with an increasing number of layers p. The content of this
Chapter is based on the published work [SMKS23].
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1.5.4 Contents of Chapter 5
In Chapter 5 building on the results from Chapter 4 we obtain insights into the large-depth
regime of the QAOA using an analytic expansion of the cost function around the so-called
transition states. We construct an analytic estimate of the negative Hessian eigenvalue and
corresponding eigenvector at each transition state, which enables us to obtain an analytical
lower bound on the improvement of the cost function, and to reduce the cost of optimization
by bypassing the need to construct and diagonalize the Hessian matrix. Finally, we numerically
verify the accuracy of our estimates. Although the obtained energy lower bound underestimates
the improvement of the cost function, we find it shows an exponential decrease with the
number of layers p, similar to the heuristically observed behavior. The content of this Chapter
is based on the preprint [MS24].
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CHAPTER 2
Duality approach to quantum annealing

of the 3-XORSAT problem

In this Chapter, we investigate the performance of quantum annealing on two specific instances
of the 3-XOR satisfiability problem. We investigate how the performance of the algorithm, as
captured by the presence of first/second order quantum phase transitions, is affected as the
number of interaction terms in the classical Hamiltonian is increased. This Chapter is based
on the paper:

Raimel Medina and Maksym Serbyn. Duality approach to quantum annealing of the 3-variable
exclusive-or satisfiability problem (3-XORSAT). Phys. Rev. A, 104:062423, Dec 2021

2.1 Introduction
The quantum adiabatic algorithm [FGGS00], which can be viewed as a generalization of
quantum annealing [ACdF89, FGS+94, KN98, BBRA99, ST06], was considered as a perspective
quantum algorithm since early days of quantum computing. In this algorithm, the solution of
a classically hard combinatorial optimization problem [MM09] is mapped onto a problem of
finding a ground state of a classical spin Hamiltonian. Such ground state is in turn obtained
by initializing a quantum spin system in a ground state of a simple quantum Hamiltonian and
then adiabatically interpolating between the quantum and classical Hamiltonians. The success
of this algorithm, which is quantified by the overlap between the final state after the evolution
and the ground state, is guaranteed, provided the spectrum features a finite gap throughout
the adiabatic evolution, see Refs. [BFK+13, LMSS15, AL18, HKL+20] for recent reviews.

The performance of the algorithm was studied theoretically for several optimization prob-
lems [JKSZ10, FGH+12]. Remarkably, in many cases the gap was shown to vanish polynomially
or even exponentially in the problem size [JKSZ10, FGH+12], giving evidence of the phase
transition encountered in the annealing process. The majority of models studied to date
featured a unique ground state. While such problems are convenient for numerical studies, in
many interesting combinatorial problems one often encounters a degenerate space of solutions.
Classical problems with many possible solutions, where some are similar to each other, while
others are globally different, are said to be in a “clustering phase” [MRZ02]. Classical opti-
mization problems in the clustering phase correspond to the spin Hamiltonians with degenerate
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2. Duality approach to quantum annealing of the 3-XORSAT problem

Figure 2.1: (a) Matrix A that specifies 3-XORSAT problem with N = 7 variables and M = 5
conditions, and corresponding hypergraph where vertices shown by green dots denote spins and
black squares are the edges that correspond to three-spin interaction terms. (b) Illustration of
leaf removal algorithm that can find the solution to the classical problem. Starting from the
original hypergraph in (a) at each step one removes spins that enter in just one interaction
(equivalently, are included only in one edge). In the first step, one removes spins 4 and 7.
Then we can remove either spins 2, 3 or spins 5, 6. In the last step, all three remaining spins
can be removed. (c) A simultaneous flip of spins 2, 3, 4, 7 (white-filled circles) does not change
the energy of the system. Such degeneracy corresponds to the operator O that commutes
with the classical Hamiltonian.

ground state manifold, a situation often explicitly ruled out in quantum adiabatic algorithm
performance studies.

In this work, we specifically focus on classical optimization problems with degenerate space
of solutions. To this end, we use the “exclusive-or” satisfiability (XORSAT) problem [Sch78,
CDD01] for studies of quantum algorithm performance in the clustering phase. XORSAT is
equivalent to a boolean linear algebra problem, hence it is easily verifiable and solvable in
satisfiable cases. Restricting to the case where each exclusive or condition involves exactly
3 variables, we obtain the so-called 3-XORSAT problem, which maps onto a classical spin
Hamiltonian with three-spin interactions specified by a certain hypergraph. This spin model
was studied in the literature, where the existence of clustering phase was established for
random hypergraphs ensembles [MRZ02, CDD01].

We focus on particular instances of the 3-XORSAT problem, which provide an example of
classically solvable instances, yet feature a large degeneracy in the solutions space. We show
that such degeneracy in the solution space can be recast into the emergence of a set of Z2
conserved charges that persists in the quantum model. To restrict the problem to a particular
sector, we generalize the duality introduced in Ref. [FGH+12]. Applying the duality to the
spin model on a tree hypergraph results in an Ising-type model, facilitating numerical and
analytical understanding. In particular, we establish that the 3-XORSAT model on a tree
hypergraph does not feature a phase transition, guaranteeing the success of the quantum
adiabatic algorithm. On the other hand, the closure of the tree hypergraph leads to an
emergence of the second-order phase transition encountered throughout adiabatic evolution.

The structure of this paper is organized as follows. In Sec. 2.2 we briefly review the 3-XORSAT
problem as well as the quantum adiabatic algorithm. In Sec. 2.3 we illustrate the duality
mapping using specific instances of the 3-XORSAT problem. For each of these instances, we
find the dual Hamiltonian, as well as discuss its energy spectrum and minimal gap dependence
with system size. We conclude in Sec. 2.4 with a brief discussion of our results and a summary
of interesting directions for future work.
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2.2 Classical and quantum 3-XORSAT model
In this section, we introduce the classical 3-XORSAT model and associated spin Hamiltonian.
We briefly review the application of the so-called “leaf removal algorithm” [MRZ02] to find
the solution of a classical problem and highlight the emergent degeneracy of the classical
energy landscape. Finally, we discuss the application of the quantum adiabatic algorithm for
finding the ground state of the classical 3-XORSAT model. We show that even though the
degeneracy of the classical energy landscape is lifted in the presence of a transverse field, a
set of commuting integrals of motion remains.

2.2.1 Classical 3-XORSAT
Classical 3-XORSAT problem [Sch78] consists in finding the arrangements of binary variables
x1, . . . xN that satisfy the set of M distinct “exclusive-or” (XOR) clauses with only three
variables participating in each condition. Using equivalence between XOR operator and
binary addition, we can rewrite the XOR clause x1 ⊕ x2 ⊕ x3 = b where b = 0, 1 as
x1 + x2 + x3 = bmod 2. This allows us to map a 3-XORSAT problem onto a system of linear
equations:

A · x = y (mod 2), (2.1)
where A is a M ×N matrix and y is a M−component vector with binary entries, Aai ∈ {0, 1},
ya ∈ {0, 1}. Since we are restricted to clauses with only three variables, each row of the matrix
A contains exactly three ones with all other entries being zero, see example in Fig. 2.1(a).
Determining whether the Boolean system of equations (2.1) admits an assignment of the
Boolean variables satisfying all the equations constitutes the decision version of the 3-XORSAT
problem. In general, one is also interested in the set of solutions and its size. Throughout
this work, our focus will be on quantum annealing approach to finding the solution of the
XORSAT problem.
The 3-XORSAT problem defined by means of a linear system of equations with N variables and
M equations can be naturally mapped to the problem of energy minimization for an ensemble
of N classical spins, σzi , with M three-spin interactions [MM09]. Defining σzi = (−1)xi and
Ja = (−1)ya one can demonstrate that solution of Eq. (2.1) corresponds to a zero-energy
ground state of the following classical Hamiltonian:

Hc =
M∑︂
α=1

(1− Jασziασ
z
jασ

z
kα

). (2.2)

In case when the system of equations (2.1) does not admit a solution that satisfies all conditions
(it is said to be UNSAT), the ground state of the Hc corresponds to a bit assignment that
violates the minimal possible number of conditions.
The 3-XORSAT problem and corresponding classical Hamiltonian are fully fixed by the pair of
(A, y), or, equivalently the choice of three-spin interactions and a value of couplings, Jα = ±1.
Interactions between spins can be conveniently visualized using the hypergraph, where vertices
correspond to spins, and edges (which now join three spins, hence these are in fact hyperedges)
correspond to interactions. A particular instance of the 3-XORSAT problem and corresponding
hypergraph is illustrated in Fig. 2.1(a).
The hypergraph representation provides a visual way to find the solution to the 3-XORSAT
problem. The so-called leaf removal algorithm [PSW96] is illustrated in Fig 2.1(b) and consists
of removing the spins that enter only in a single interaction. The insight is that if a given spin,
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2. Duality approach to quantum annealing of the 3-XORSAT problem

say σz7 , appears in the Hamiltonian only once, e.g. in the term σz2σ
z
6σ

z
7 for the chosen example,

we can always satisfy the corresponding interaction term by adjusting the value of σz7. Thus
we are allowed to erase this spin and the corresponding interaction term. Iterating such search
and removal of spins that enter a single interaction term (so-called leaves) on the hypergraph
is the essence of the leaf removal procedure. This procedure halts if one removes all vertices
and edges as is shown in Fig. 2.1(b). This case corresponds to an instance of the 3-XORSAT
problem that is completely solvable by the leaf removal algorithm. Another alternative is when
in the process of iterating the leaf removal procedure one fails to find any leaves. The leaf
removal algorithm halts at such an instance and the remaining hypergraph is typically dubbed
a “glassy core” [MRZ02], see an example of such hypergraph in Fig. 2.4(a).
During the iterative process of the leaf removal algorithm, one may encounter instances when
more than two spins participating in a given interaction term are simultaneously removed, see
Fig 2.1(b). When such interaction edge and two associated spins are removed a degeneracy
emerges. In the example in Fig. 2.1(b) we remove simultaneously σz2 and σz3, hence flipping
these spins simultaneously does not affect the energy of the given interaction edge. At the
level of the full Hamiltonian, such instances lead to an emergence of global degeneracies: in
the example that we show the total energy does not change if one flips spins 2, 3, 4, and 7.
Depending on the geometry of the problem, one may encounter many such degeneracies with
their number being a finite fraction of the total number of spins — this is characteristic of the
so-called clustering phase [MRZ02, CDD01]. Some of this degeneracy though originates from
the structure of the glassy core, which typically does not have a unique solution (UNSAT) but
instead has multiple degenerate ground states.

2.2.2 Solving 3-XORSAT with quantum adiabatic algorithm
One approach to finding the ground state of the classical Hamiltonian (2.2) or, equivalently, to
finding the bit assignment that violates the smallest possible number of equations in (2.1) is
provided by quantum adiabatic algorithm [FGGS00]. Supposing that classical Hamiltonian (2.2)
can be implemented on a quantum simulator, we initialize the system in the ground state of a
quantum paramagnet Hamiltonian

Hq = −
N∑︂
i=1

σxi , (2.3)

and evolve this state under the following time-dependent Hamiltonian:

HT (t) = (1− t

T
)Hq + t

T
Hc, (2.4)

from time t = 0 to T . According to the adiabatic theorem, if T is sufficiently large and Hq
and Hc do not commute with each other, the quantum simulator will remain with high fidelity
in the ground state for all times, resulting in the preparation of the ground state of Hc at time
T .
The running time T , depends on the energy spectrum of HT (t). In particular, the time required
for preparing the ground state with high fidelity is bounded from below by the inverse square of
the minimum gap encountered throughout the time evolution, T ≫ maxt |V10(t)|/[mint ∆(t)]2.
Here the gap is defined as a difference between the energy of the ground state and the first
excited state, ∆(t) = E1 − E0, and V10 = ⟨0|∂tH(t)|1⟩ is the matrix element of the time-
dependent part of the Hamiltonian between ground state |0⟩ and first excited state |1⟩. Due
to this bound, many theoretical studies of the efficiency of the quantum adiabatic algorithm
focus on the behavior of the minimum gap of HT (t) [vDMV01, FGGN05].
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2.2.3 Behavior of gap and degeneracies
The behavior of the gap for the so-called 3-regular 3-XORSAT Hamiltonian, where each spin
enters in exactly three interaction terms, was considered previously [JKSZ10, FGH+12]. It
was found that the system goes through a first-order quantum phase transition, displaying an
exponential decrease of the gap with system size. However, these studies were restricted to the
instances of the classical 3-XORSAT problem that do not have any degeneracy in the ground
state. These instances are said to have unique satisfying assignment, and their consideration
simplifies the study of the gap behavior [JKSZ10, FGH+12]. For the 3-XORSAT problem
defined on a 3-regular ensemble of random hypergraphs in the N →∞ these instances form a
non-zero fraction (∼ 0.285) of the set of all instances [JKSZ10]. Yet, the behavior of instances
that have degenerate ground state manifold was not studied.
In this work we (to the best of our knowledge) provide the first results relative to systems
with degenerate ground states. We consider instances where degeneracy of the ground state
originates from the existence of simultaneous spin flips that do not change the energy of the
classical Hamiltonian (see discussion in Section 2.2.1). We note, that the ground state may
have additional degeneracy due to the problem being UNSAT, which is not considered here. If
simultaneous flipping of spins σzi1 → −σzi1 ,. . . , σzik → −σzik does not change the energy of the
system, the following operator

O = σxi1σ
x
i2 . . . σ

x
ik
, (2.5)

commutes with classical Hamiltonian, [O,Hc] = 0. Since the quantum Hamiltonian, Hq,
contains only σx terms, any such operator also commutes with the full HT (t),

[O,HT (t)] = 0,

for any t, thus corresponding to an Abelian Z2 symmetry present in the system. Moreover,
as we mentioned above, many typical instances of the 3-XORSAT problem may contain a
possibly extensive number of distinct operators {Ol}, l = 1, . . . q that commute not only with
the Hamiltonian but also among themselves.
The presence of q distinct Abelian symmetries leads to spectral degeneracy only for the classical
Hamiltonian, i.e. only for HT (t) at t = T . However, although these symmetries do not give
rise to spectral degeneracy when t < T , their presence fragments the 2N -dimensional Hilbert
space of model (2.4) into 2q distinct sectors, each labeled by ±1 eigenvalues of corresponding
Ol operator. The full Hamiltonian assumes block-diagonal form when written in the basis that
diagonalizes operators {Ol},

HT (t) =
2q⨁︂
α=1

Hα(t), (2.6)

where α runs over all 2q blocks.
The unitary evolution preserves the symmetries of the Hamiltonian. This implies that the
search for the minimum gap is performed inside the block Hα(t), which contains the initial
state, |ψ(0)⟩. Due to the reduced dimensionality of Hα, we can perform exact numerical
calculations for a wide range of system sizes.
One of the main results of this work is the duality transformation which allows us to explicitly
obtain the form of the Hamiltonian Hα(t) restricted to a given sector. In the next section, we
introduce this duality transformation using specific examples. This duality allows us to readily
study the behavior of the gap even in the presence of extensive degeneracies in the system
and understand the fate of the quantum adiabatic algorithm.
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Figure 2.2: (a) Example of the Hushimi tree at the level g = 2. A convenient choice of
the set of independent conserved quantities is shown by colored lines with different lines
corresponding to individual conserved quantities, for instance, O1 = σx1σ

x
3σ

x
8σ

x
9 . (b) Dual

degrees of freedom live on the tree hypergraph with g − 1 generations. (c) The evolution
of the low-lying spectrum as a function of parameter s = t/T reveals many crossings and
large degeneracy in the spectrum of classical Hamiltonian at s = 1. (d) Spectrum of dual
Hamiltonian in the sector where all charges Ol = 1 has only avoided crossings demonstrating
that application of duality resolves all symmetries. (e) The spectrum of the dual Hamiltonian
in the sector Ol = −1, where the dual model has an additional emergent Z2 symmetry, that is
manifested in the degeneracy of ground state manifold of the dual model for small values of s.

2.3 Duality approach to quantum 3-XORSAT model
As discussed above, the duality provides a natural approach to the quantum 3-XORSAT
Hamiltonian in the presence of conserved quantities. In this section, we illustrate duality
using specific instances of 3-XORSAT model, whereas in the Appendix A.1 we formulate the
duality using the language of linear algebra which allows us to apply such transformation to
the 3-XORSAT problem on arbitrary graphs in an efficient manner.

2.3.1 Duality for tree hypergraph
The structure of degeneracies in the 3-XORSAT model is determined by its connectivity. While
often the 3-XORSAT model is considered on random graphs [JKSZ10, FGH+12], below we
consider an instance of the 3-XORSAT problem that is fully solvable by the leaf removal
algorithm. In particular, we consider a tree hypergraph that may be thought of as a toy
example of the structure of the leaves of the generic 3-XORSAT instances. We find that the
dual Hamiltonian is an Ising model and obtain that the energy gap remains constant in the
thermodynamic limit.

Degeneracies and conserved charges

We consider the 3-XORSAT problem on the tree hypergraphs with connectivity 2 and a varying
number of generations. An example of a tree hypergraph shown in Fig 2.2(a) has g = 2
generations of spins and contains N = 3(2g − 1) = 9 vertices and M = 4 edges. Any such
tree hypergraph corresponds to a trivial solvable instance of 3-XORSAT: application of leaf
removal algorithm completely removes all vertices and results in a solution.
In the process of a leaf removal iteration, one always encounters pairs of spins that belong
to the same edge and are removed simultaneously. As explained in Sec. 2.2.1, this leads to
degeneracies. The tree hypergraph with g generations is characterized by q = 3 · 2g−1 − 1
independent Z2 charges (by independent Z2 charges we refer to a minimal set of independent
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2.3. Duality approach to quantum 3-XORSAT model

operators Ol such that any other string of σx that commutes with the Hamiltonian can
be expressed as a product of some of Ol from this set.). For the particular hypergraph in
Fig. 2.2(a) this formula yields q = 5 charges, which are shown by different colors in Fig. 2.2.
A given symmetry sector can be fixed by specifying the eigenvalues of all these charges.
In particular, the ground state of the quantum part of the annealing Hamiltonian, Hq in
Eq. (2.3), |ψ(0)⟩ = |→ . . .→⟩ corresponds to the values of all charges Ol = 1. We are
interested in performing a duality transformation that restricts the Hamiltonian to a particular
symmetry sector. Taking into account that the ratio between the number of independent
charges and the number of spins q/N tends to the value of 1/2 in the thermodynamic limit
g,N →∞, the duality is capable of drastically reducing the Hilbert space dimension from 2N
to approximately 2N/2.

Dual Hamiltonian

We explicitly construct the duality, by defining spins τ that live at the edges of the hypergraph,
see Fig. 2.2(b). The τx operators are expressed via original spins as:

τx(ijk) = σzi σ
z
jσ

z
k, (2.7)

where τx(ijk) is the dual-spin located at the edge that was connecting spins (i, j, k). To simplify
notations, we label the edges and dual spin operators τα by greek indices as in Fig. 2.2(b); for
instance, τxα=1 = τx(123) = σz1σ

z
2σ

z
3. This mapping converts the classical Hamiltonian, Hc in

Eq. (2.2) into the simple sum of τxi operators,

Hc˜ = −
∑︂
α∈V

Jατ
x
α , (2.8)

where we omitted a constant term from Eq. (2.2). Tilde emphasizes that this Hamiltonian acts
in the Hilbert space of τ -spins and index α runs over all vertices of the dual graph, Fig. 2.2(b),
denoted as V .
Similar to duality applied to discrete Abelian gauge theories [Fra13], the relation between the
τ z and σx is non-local. The τ z operators are defined via product of σx operators on the path
from a certain “root vertex”,

τ zα =
∏︂

m∈path to α
σxm. (2.9)

This root vertex is chosen as i = 9 in Fig. 2.2(a). Then for the graph in Fig. 2.2(b) we have:
τ zα=4 = τ z(149) = σx9 , τ z1 = σx9σ

x
1 , τ z2 = σx9σ

x
1σ

x
3 , and τ z3 = σx9σ

x
1σ

x
2 . This construction will result

in the simple expression for original spins, σx1 = τ z1 τ
z
4 , unless they are located at the boundary

of the graph. Thus, for the bulk spins the dual Hq˜ of Hq coincides with an Ising model on a
tree
However, the situation is different for the boundary spins. To obtain the expression for σxi at
the boundary, one must use the existence of the conserved charges. For example, the spin σx4
cannot be expressed via the product of any of the four τ zα operators. However, we observe
that σx4 = (σx4σx9 )σx9 = O1σ

x
9 = O1τ

z
4 . Remaining boundary spins σxi with i = 5, . . . 8 can be

constructed in a similar way. Dual spin operators τx,zα defined in such way obey the standard
Pauli commutation relations, {τ zα, τxα} = 0 and [τ zα, τxβ ] = 0 for α ̸= β.
Collecting all terms together and denoting s = t/T we obtain the dual of the full Hamiltonian,
Eq. (2.4) as:

H̃T (s) = −s
∑︂
α∈V

Jατ
x
α − (1− s)

∑︂
⟨αβ⟩∈V

τ zατ
z
β − (1− s)

∑︂
α∈∂V

hzα[O]τ zα. (2.10)
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The first two terms here correspond to the Ising model on a Cayley tree, see Fig. 2.2(b). The
last term encodes the dependence of duality on the values of conserved charges and involves
only τ -spins at the boundary of the Cayley tree ∂V (τ z2,3,4 in the present example). The
effective symmetry-breaking field coupled to boundary spins reads:

hzα[O] = (1 +Omα)
∏︂

m∈path from root
Om. (2.11)

Here Omα is the charge that involves only two spins, including α, and the product is overall
charges encountered on the path from the root. For instance, h4[O] = 1 + O5, h2[O] =
(1 +O3)O1 in notation of Fig. 2.2.
Remarkably, the first line in the dual Hamiltonian Eq. (2.10) is the Ising model on the Cayley
tree with connectivity equal to three. This part of the dual Hamiltonian has global Z2 symmetry
τ z → −τ z and does not depend on the values of conserved charges (signs of Jα can be
removed by the relabeling τx → −τx in the present case). However, in addition, we also have
the second line in Eq. (2.10) that imposes a Z2-symmetry breaking effective field on the dual
degrees of freedom at the boundary. The strength of these symmetry-breaking fields depends
on the sector of conserved charges as we discuss below.

Energy spectrum and minimal gap of dual Hamiltonian

To illustrate the advantage of describing the system with the dual Hamiltonian, we show
the spectrum of the original Hamiltonian Eq. (2.4) as a function of s in Fig. 2.2(c). The
low-lying energy levels become highly degenerate at s = 1, corresponding to the degeneracy
of the ground state manifold of the classical problem. Moreover, we observe multiple level
crossings between eigenstates that belong to different symmetry sectors. The level crossings
and degeneracy complicate the determination of the minimal gap encountered throughout the
adiabatic algorithm.
In comparison, Fig. 2.2(d-e) demonstrates the spectrum of the dual Hamiltonian (2.10)
for particular values of conserved charges (also referred to as “sector”) has much lower
complexity. These energy levels are a subset of energy levels shown in Fig. 2.2(c). The
sector of conserved charges is a property of initial state. The ground state of the quantum
paramagnet | →→ . . . →⟩, is an eigenstate of all Om operators with eigenvalue Om = 1.
Thus, from Eq. (2.11) we obtain a uniform magnetic field hzα[O] = 2 for all α at the boundary
of the tree. The presence of this magnetic field leads to a strong breaking of Z2 symmetry that
would be otherwise present in the dual Hamiltonian. Hence, it helps to avoid the second-order
phase transition in an Ising model, and Fig. 2.2(d) shows that the finite gap of order one is
present for all values of s.
The duality facilitates the determination of the gap on several levels. First, it decreases
the number of degrees of freedom and allows us to study the problem in a smaller Hilbert
space. Second, it removes the degeneracies and explicitly resolves all symmetries present in
the problem, making the extraction of the energy gap more straightforward. As a result, the
duality allows us to study the finite-size scaling of the gap for the family of tree hypergraphs
with up to g = 6 generations with N = 189 spins. We use the density-matrix renormalization-
group (DMRG) algorithm to obtain the ground state and energy gap as a function of the
parameter s. Previous works have studied the transverse field Ising model on the Cayley
tree [NFG+08, LvDX12, LSS08] with a global symmetry breaking field. In our study, we
apply the DMRG algorithm to an Ising model with symmetry-breaking fields at the boundary,
corresponding to the energy spectrum encountered in the adiabatic algorithm launched from
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the paramagnetic ground state. The resulting behavior of the gap for different system sizes,
N = 3(2g − 1) is shown in Fig. 2.3. Note that we do not include data points corresponding to
generations g = 1, 2 (N = 3, 9 spins) due to the presence of strong finite-size effects for such
small system sizes. In the dual picture, the first case corresponds to a trivial system with a
single degree of freedom. In the second case, the number of dual spins is 4, however, three
dual degrees of freedom are located at the boundary of the tree.

The finite-size scaling of the gap, shown in the inset of Fig. 2.3 reveals that the gap approaches
a constant value with corrections that decay logarithmically in the number of spins N . This is
consistent with expectations that a finite magnetic field applied to all boundary spins (these
in the case of the Cayley tree constitute the finite fraction of all spins) destroys the phase
transition. The presence of a gap in the thermodynamic limit allows us to conclude that the
quantum adiabatic algorithm can efficiently find the ground state of the 3-XORSAT model on
the considered hypergraph.

Due to the degeneracy present in this model, one can arrive at the ground state starting
from a different initial state which has values of O3,4,5 = −1 so that the symmetry-breaking
field vanishes. In the initial spin basis, this corresponds to choosing an initial state where the
pairs of out-most spins on the boundary triangles have different spin values, i.e., σxi = −1 for
i = 4, 6, 8 while σxi = 1 for all remaining value of i. In this case, however, we encounter a
second-order phase transition as a function of parameter s, see Fig. 2.2(e). This result is in
agreement with previous findings [NFG+08] of a second-order phase transition at sc ≈ 0.5733
which is characterized by a critical correlation length, ξ = 1/ ln 2. This peculiar behavior is
due to the tree geometry of the lattice, and it is not observed for systems on local lattices,
where the correlation length is known to diverge at the critical point.

Figure 2.3: The behavior of energy gap as a function of s for open hypergraphs with different
numbers of generations in the sector Ol = 1 demonstrates that the gap has minimal value
around s ≈ 0.7. The finite size scaling in the inset shows that the gap approaches constant
value in the thermodynamic limit with corrections decaying as 1/ lnN . Data is obtained with
DMRG algorithm implemented in iTensor [FWS20] with truncation error 10−16, maximum
bond dimension χ = 45, and number of sweeps nsweeps = 30.

19



2. Duality approach to quantum annealing of the 3-XORSAT problem

Figure 2.4: (a) Closure of the tree hypergraph at level g = 2 removes the boundary and
leads to a 3-XORSAT instance where no spins can be decimated by leaf removal algorithm.
The conserved charges labeled by O1,...6 correspond to internal loops of the lattice. (b) Dual
degrees of freedom live on the closure of the tree hypergraph. The central τ -spin shown by
the gray square is redundant. (c) The dependence of the minimal gap on the system size is
extracted from DRMG algorithm.

2.3.2 Duality for closure of tree hypergraph
We continue the illustration of the duality by applying it to a hypergraph without a boundary
shown in Fig. 2.4(a). This hypergraph can be thought of as the closure of the tree hypergraph
considered above. It corresponds to an instance of the 3-XORSAT problem that does not admit
a solution by the leaf removal algorithm. Indeed, all spins enter into at least two interaction
edges, thus the leaf removal algorithm cannot remove any leaves at all. This second example
may be considered as an example of the “glassy core” [MRZ02], and the presence of non-trivial
loops leads to the appearance of non-local terms in the dual Hamiltonian. Using the duality
we will argue that the minimal gap vanishes polynomially in the inverse problem size.

Degeneracies and conserved charges

The closure of the tree hypergraph with g generations has q = 3 · 2g−1 independent conserved
quantities. The choice of Ol in Fig. 2.4(a) for the graph with g = 2 results in six conserved
charges that are in one-to-one relation with the spins on the boundary. For example, O1 =
σx1σ

x
3σ

x
8σ

x
9σ

x
14 includes only one boundary spin σ14. Given that the total number of spins is

N = 3(3·2g−1−1) in the general case, we expect that the dual Hamiltonian has Nτ = 3(2g−1)
spins. For the particular instance of the graph in Fig. 2.4(a) this gives N = 15 and Nτ = 9.

In comparison with Section 2.3.1 here the structure of the ground state manifold is more
complicated. In particular, before we ignored the presence of couplings Jα since their value
could be always made positive. In the present case, this is not possible anymore. Instead, we
find that for any set of the coupling constants Jα = ±1 it is possible to relabel operators
σz → −σz, so that either (i) all couplings Jα = 1, or (ii) only one coupling is negative,
JM = −1, and all remaining couplings are positive. The relabeling procedure does not
influence an overall parity, so option (i) is realized if ∏︁M

α=1 Jα = 1, while (ii) holds when∏︁M
α=1 Jα = −1. Below we focus on case (i), where the system has a ground state with energy

E0 = −M , where M is the number of interaction edges, or the classical system of equations
has an assignment that satisfies all conditions. On the other hand, in case (ii) the system
is UNSAT and the ground state energy is E0 = M − 2. Furthermore, for the UNSAT case,
the ground state has an additional M -fold degeneracy compared to the case (i). We reserve
consideration of the UNSAT case for future studies.
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Dual Hamiltonian

To perform the duality transformation, we associate the τ -spins with interaction edges, see
Fig. 2.4(b). However, the number of interaction edges is larger than the number of dual spins:
this is related to the fact that each σ spin enters into 2 interaction edges. Thus, the product
overall interaction edges, ∏︁M

α=1 σ
z
iασ

z
jασ

z
kα

= 1, results in an identity operator. We use the
same relation Eq. (2.7) to define τxα operator via the product of σzi spins in the corresponding
interaction edge. The presence of a constraint for the product of all interaction edges allows
expressing one of the τ spins via the remaining operators,

M∏︂
α=1

τxα = 1, τxM =
M−1∏︂
α=1

τxα . (2.12)

While there is freedom in choosing the ‘redundant’ τ -spin, we fix it to be the central spin,
see the shaded square in Fig. 2.4(b). In what follows we do not explicitly express τM spin via
remaining spins to keep the notation compact.
To define τ zi operators we use the central site of the dual lattice as a “root”. In particular, we
define

τ zi = σxi , for i = 1, 2, 3. (2.13)
Then, the remaining τ z can be written as the product of σxs∈Pi

, where P corresponds to a path
in the lattice starting from the site i = 1, 2, 3. To write the quantum part of Hamiltonian in
the dual basis, we express σxi operators via spins τ zα. It is straightforward to see that σxi = τ zατ

z
β

where edges α and β both share the spin i = 1, . . . , 9 (basically all spins except the outer
layer). For the spins at the outer layer of the graph we again rely on the presence of conserved
charges, finding that σxi = Oliτ

z
ατ

z
β where Oli is the charge that contains spin i. For instance,

σx15 = O5τ
z
6 τ

z
7 in notations of Fig. 2.4.

With the above relations, we can finally write the expression for the dual Hamiltonian

H̃T (s) = −s
M∑︂
α=1

Jατ
x
α − (1− s)

∑︂
⟨αβ⟩

ηαβτ
z
ατ

z
β − (1− s)

3∑︂
α=1

τ zα, (2.14)

where effective couplings between dual spins α, β depend on the location of the spin as well
as on the value of conserved charges:

ηαβ =
{︄

1 if {α, β} /∈ ∂V,
Oli if {α, β} ∈ ∂V, τ zα ∩ τ zβ = σxi .

Energy spectrum and minimal gap of dual Hamiltonian

As in the previous case, the value of all conserved charges is fixed by the initial state on the
physical basis. The ground state of quantum Hamiltonian leads to all Ol having eigenvalue 1.
The dual Hamiltonian in this sector corresponds to Eq. (2.14) with all ηαβ = 1 supplemented
by the expression for τxM via remaining spins, Eq. (2.12). It is interesting to compare Eq. (2.14)
with Eq. (2.10). One difference is the appearance of a non-local term in Eq. (2.14) that is
implicitly encoded in τxM operator. More importantly, in the case of the tree hypergraph, one
could obtain a strong symmetry-breaking magnetic field on the boundary by an appropriate
choice of conserved charges. This boundary field allowed to eliminate the second-order phase
transition, resulting in a finite value of gap even in the thermodynamic limit. In the case of
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2. Duality approach to quantum annealing of the 3-XORSAT problem

Figure 2.5: The finite size scaling shows that the gap vanishes as a power-law in system size
with a coefficient c = 0.77. Data is obtained with DMRG implemented in iTensor [FWS20]
with truncation error 10−16, maximum bond dimension χ = 279, and number of sweeps
n sweeps = 40.

closure of tree hypergraph, the symmetry breaking field is only present for a vanishing fraction
of spins (more precisely, three spins in the center for the present gauge choice), resulting in a
very different physics as we discuss below.

In Appendix A.2 we demonstrate that Eq. (2.14) with all ηαβ = 1 is equivalent to the transverse
field Ising model on the closed lattice [see Fig. 2.4(b)] in an enlarged Hilbert space that also
includes spin τM as a physical degree of freedom,

H̃T (s) = −s
M∑︂
α=1

Jατ
x
α − (1− s)

∑︂
⟨αβ⟩

τ zατ
z
β . (2.15)

The behavior of the transverse field Ising model on the closure of the tree hypergraph was
not studied before to the best of our knowledge. Due to the presence of loops, the analytical
methods applied in the case of the tree hypergraph cannot be used in the present case.
Therefore, we resort to numerical simulations, using the same DMRG method as in Sec. 2.3.1.

We compute numerically the ground state energy and the gap to the next excited state as a
function of s, see Fig. 2.4(c). Note, that naïvely such gap vanishes in the Hamiltonian (2.15)
for values of s close to zero since the model is in symmetry-broken phase. However, as we
discuss in Appendix A.2, the success of the quantum adiabatic algorithm depends on the
gap restricted to the even Z2-symmetry sector. The finite-size scaling of the gap performed
for systems with up to N = 69 spins (corresponding to M = 45 dual spins) in Fig. 2.5
shows the gap vanishes as a power-law with system size. This gives strong evidence of a
second-order phase transition encountered at s ≈ 0.65, which can be expected due to the
presence of Z2 symmetry in dual Hamiltonian. We note that the fit of the numerical data to a
slow exponential decay is noticeably worse, as reflected by the Bayesian information criterion
(BIC), which for the power-law fit equals BIC = −25.4 while for the exponential fit equals
BIC = 1.99.
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2.4 Discussion
Motivated by the fact that many interesting classical problems have degeneracy in solution
space, in this paper we studied the performance of quantum adiabatic algorithms applied to
such problems. To this end, we introduced duality as a generic tool that allows us to efficiently
target such problems and formulated it using the language of linear algebra in Appendix A.1.
In the main text, we demonstrated the application of duality to two different instances of the
3-XORSAT problem.
First, we applied the general duality to the 3-XORSAT problem on a tree hypergraph, which
may be thought of as imitating the structure of the leaves of a generic 3-XORSAT instance.
Such an instance of the 3-XORSAT problem can be efficiently solved by a classical algorithm in
a polynomial time. In Sec. 2.3.1 we found that the dual Hamiltonian corresponds to the Ising
model with longitudinal magnetic fields at the boundary of the graph. Thus, when starting
the annealing process from the paramagnet state the gap saturates to a constant value in the
thermodynamic limit with corrections decaying as 1/ lnN . This implies that the application
of the quantum adiabatic algorithm could yield a solution in a finite amount of time, even in
the thermodynamic limit.
As a more general example, we considered a 3-XORSAT problem on the closure of the tree
hypergraph, which may be considered as a cartoon picture of a “glassy core". Despite being
non-amenable to the leaf removal algorithm, this instance of the 3-XORSAT problem is still
solvable in a polynomial time by a classical algorithm. The presence of non-trivial loops in this
geometry translates into the appearance of non-local terms in the dual quantum Hamiltonian.
We found that the minimal gap of the annealing Hamiltonian vanishes as a power-law with
the problem size, implying the quantum adiabatic algorithm would now require a time that is
polynomial in the problem size.
Despite considering only two toy examples of the 3-XORSAT with extensive degeneracy of
classical solution space, the application of duality revealed an interesting connection between
the behavior of the minimum gap and the structure of the lattice. In particular, we observed
that by closing the boundary of the tree hypergraph the minimum gap changes from being
constant in the thermodynamic limit to decaying as a power law in system size. This suggests
that in the most complex case, a first-order phase transition may emerge, similarly to other
instances of 3-XORSAT with unique ground state considered previously [JKSZ10, FGH+12]. In
addition, duality may be used to obtain useful analytical results for the entanglement spectrum.
In particular, we expect the entanglement spectrum of a given subregion to contain information
about conserved charges that are supported within the subregion.
More generally, the two considered examples of the tree hypergraph and its closure can
be viewed as a basis of perturbation theory, as more typical hypergraphs can be obtained
by “decorating” the tree hypergraph with additional interactions. In particular, changes to
the hypergraph geometry that add additional interaction terms typically break the formerly
conserved charges. This would correspond to the introduction of additional non-local degrees
of freedom into the dual Hamiltonian. Such an approach can be potentially used to target more
complex instances of the 3-XORSAT and possibly relate the problem with classical clustering
in the ground state manifold to instances of quantum clustering, that was recently considered
in the literature [MHS+17]. Additionally, these considerations suggest that frustration that is
brought by additional interaction terms naturally corresponds to non-local interactions in the
dual language.
Finally, throughout this work, we focused on the ground state and low-lying excitations of
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2. Duality approach to quantum annealing of the 3-XORSAT problem

the Hamiltonian used in the quantum adiabatic algorithm to solve the classical 3-XORSAT
problem. The study of highly excited states of such Hamiltonians remains an interesting
problem, where duality obtained in our work can bring useful insights. In particular, it would
be interesting to investigate if these models could allow for a non-ergodic phase similar to the
one found in [BLPS17].
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CHAPTER 3
Avoiding Barren Plateaus Using

Classical Shadows

In this Chapter, we investigate the issue of barren plateaus – flat regions in the cost function
landscape – in variational quantum algorithms. We introduce a weaker version of barren
plateaus, called weak barren plateaus in terms of the entropies of local reduced density
matrices. The presence of WBPs can be efficiently quantified using recently introduced shadow
tomography of the quantum state with a classical computer. We demonstrate that avoidance
of WBPs suffices to ensure sizable gradients in the initialization. In addition, we demonstrate
that decreasing the gradient step size, guided by the entropies allows us to avoid WBPs during
the optimization process. This Section is based on the paper:
Stefan H. Sack, Raimel A. Medina, Alexios A. Michailidis, Richard Kueng, and Maksym Serbyn.
Avoiding barren plateaus using classical shadows. PRX Quantum, 3:020365, Jun 2022

3.1 Introduction
In recent years the field of quantum computation has seen rapid growth fueled by the arrival of
the first generation of quantum computers, dubbed noisy intermediate-scale quantum devices
(NISQ) [Pre18]. The NISQ era is characterized by quantum computers with a small number of
qubits and limited control. The number of coherent operations that can be performed is small
and the implementation of famous algorithms with proven quantum speedups, such as Shor’s
algorithm [Sho95], remains out of reach. To make use of the current generation of quantum
computers, the so-called variational hybrid approach [BCK+21] was proposed. The idea is to
use the quantum computer in a feedback loop with a classical computer, where it implements a
variational wave function that is measured to compute the value of the so-called cost function.
This information is then fed into a classical computer where it is processed and the variational
wave function is subsequently updated aiming to find a minimum of the cost function, which
provides an (approximate) solution to the computationally hard problem. The variational hybrid
approach has seen a wide range of proof of concept applications on NISQ devices ranging
from quantum chemistry [KMT+17, Aru20] to quantum optimization [Har21a, LHA+20] and
quantum machine learning [HCT+19, JDM+21].
Despite the large number of suggested applications, the variational approach encountered
also several obstacles, that have to be overcome for the future success of the method. In
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3. Avoiding Barren Plateaus Using Classical Shadows

particular, the infamous emergence of barren plateaus (BPs) implies that expressive variational
ansätze tend to be exponentially hard to optimize [MBS+18]. The main obstacle on the
way to optimization lies in the fact that gradients of the cost function are on average zero
and deviations vanish exponentially in system size, thus precluding any potential quantum
advantage. Moreover, it has been shown that the classical optimization problem is generally
NP-hard and plagued with many local minima [BK21].
The problem of BPs attracted significant attention, and numerous approaches were proposed
in the literature. In particular, the early research focused on avoidance of BP at the initial-
ization stage of variational algorithms [GWOB19, SMM+20, DBW+21, HSCC21, LCS+21].
In a different direction, the relation between the occurrence of BPs and the structure of
the cost function was studied [CSV+21, UB20]. Also, notions of so-called entanglement-
induced [OKW20] and noise-induced [WFC+20] BPs were introduced. The relation between
BPs and entanglement has led to various proposals that suggest controlling entanglement
to mitigate BPs [KO21a, KO21b, PNGY21, WZCK21]. However, measuring entanglement is
hard, therefore making these approaches impractical on a real quantum device.
In this work, we introduce the notion of weak barren plateaus (WBPs), to diagnose and avoid
BPs in variational quantum optimization. WBPs emerge when the entanglement of a local
subsystem exceeds a certain threshold identified by the entanglement of a fully scrambled state.
In contrast to BPs, WBPs can be efficiently diagnosed using the few-body density matrices
and we show that their absence is a sufficient condition for avoiding BPs. Based on the
notion of WBPs, we propose an algorithm that can be readily implemented on available NISQ
devices. The algorithm employs classical shadow estimation [HKP20] during the optimization
process to efficiently estimate the expectation value of the cost function, its gradients, and
the second Rényi entropy of small subsystems. The tracking of the second Rényi entropy
enabled by the classical shadows protocol allows for an efficient diagnosis of the WBP both at
the initialization step and during the optimization process of variational parameters. If the
algorithm encounters a WBP, as witnessed by a certain subregion having a sufficiently large
Rényi entropy, the algorithm restarts the optimization process with a decreased value of the
update step (controlled by the so-called learning rate). We support the proposed procedure
with rigorous results and numerical simulations. The structure of the paper is as follows:
In Sec. 3.2 we introduce the theoretical framework and present our main results. In Sec. 3.2.1
we introduce the framework of variational quantum eigensolvers (VQEs). Sec. 3.2.2 introduces
the phenomenon of BPs which dramatically hinders the performance of VQEs. In Sec. 3.2.3
we demonstrate WBPs to be a precursor to BPs. We explain why and how WBPs can be
efficiently diagnosed in experiments and contrast this with the much harder task of detecting
BPs. Finally, we propose a modification to the VQE algorithms which allows to prevent the
occurrence of BPs by avoiding WBPs.
In Sec. 3.3 we present a bound for the expectation value of the second Rényi entropy in
quantum circuits drawn from a unitary ensemble forming a 2-design. This bound allows us to
use the second Rényi entropy, which is much easier to estimate, instead of the entanglement
entropy. In Sec. 3.3.1 we provide a formal definition of WBPs according to the value of the
second Rényi entropy of the subsystem and prove that the occurrence of a BP implies the
occurrence of a WBP. From this argument, it follows that the absence of a WBP precludes
the occurrence of a BP. In addition, we provide an upper bound (whose proof is found in
Appendix B.1) for the measurement budget required to estimate a WBP using classical shadows.
Finally, in Sec. 3.3.2 we demonstrate numerically how the avoidance of WBPs precludes the
presence of a BP using the popular BP-free small-angle initialization [HSCC21, HBK21].
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In Sec. 3.4, we explore how BPs/WBPs emerge at different stages in the VQE optimization
and perform a systematic performance analysis. Next, in Sec. 3.4.1 we explore the relation
of the learning rate and entropy growth for a single update of the VQE algorithm. We
analytically and numerically illustrate how a large learning rate leads to an uncontrolled growth
in subsystem entropies, essentially driving optimization to a WBP region. In Sec. 3.4.2
we explore the performance of the WBP-free VQE algorithm in different settings for the
Heisenberg model on a chain. Finally, in Sec. 3.4.3, we show that our approach allows for the
efficient convergence to both, area- and volume-law entangled ground states and compare it
to layerwise optimization [SMM+20] which is a popular heuristic for BP avoidance. This is
illustrated using the Heisenberg model on a random 3-regular graph, additional results for the
Sachdev-Ye-Kitaev (SYK) model can be found in the Appendix B.5 which exhibits a nearly
maximally entangled ground state.

Finally, in Sec. 3.5 we summarize our results, discuss their implications, and outline open
questions.

3.2 Avoiding barren plateaus in variational quantum
optimization

In this section, we first introduce the framework of VQEs, i.e. the unitary ensemble, the cost
functions, and the optimization algorithm, and discuss the BP problem. After this, we present
our main result – a specific modification of the variational quantum eigensolver (VQE) that
avoids the issue of BPs.

3.2.1 Variational quantum eigensolver
The aim of the VQE, initially introduced by [PMS+14], is to approximate the ground state |GS⟩
of a Hamiltonian H with a variational wave function |ψ(θ)⟩. A quantum computer is used to
prepare the variational function via the action of a set of unitary gates, |ψ(θ)⟩ = U(θ) |ψ0⟩,
where |ψ0⟩ is the initial state that is typically assumed to be a product state. The variational
parameters are then iteratively updated to minimize the expectation value of the Hamiltonian,
also called cost function E(θ) = ⟨ψ(θ)|H |ψ(θ)⟩.

We consider a unitary circuit U(θ) of the form of the so-called “hardware-efficient" ansatz
[KMT+17]

U(θ) =
p∏︂
l=1

Wl

(︄
N∏︂
i=1

Ri
l(θil)

)︄
, (3.1)

where θil ∈ [−π, π] are pN variational angles, concisely denoted as θ. In this expression the
product goes over spatial dimension i = 1, . . . , N that labels individual qubits and “time
dimension”, l = 1, . . . , p with p specifying the number of layers, see Fig. 4.1 (a). We choose
the single qubit gates to be rotations Ri

l(θil) = exp
(︂
−2θ

i
lGl,i

)︂
with random directions given

by Gl,i ∈ {σx, σy, σy}. Wl is an entangling layer that consists of two-qubit entangling gates
represented by nearest-neighbor controlled-Z (CZ) gates with periodic boundary conditions,
see Fig. 4.1 (a) for an illustration.

We focus our study on k-local Hamiltonians H, defined as the sum of terms each containing
at most k Pauli matrices. We take k to be finite and fixed, while the number of qubits N ≫ k.
A particular example of 2-local Hamiltonian from the many-body physics is provided by the
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Figure 3.1: (a) Illustration of the variational quantum circuit U(θ) |0⟩ that is considered in
the main text followed by the shadow tomography scheme [HKP20]. The variational circuit
consists of alternating layers of single qubit rotations represented as boxes and entangling
CZ gates shown by lines. The measurements at the end are used to estimate values of the
cost function, its gradients, and other quantities. (b) The original hybrid variational quantum
algorithm shown by solid boxes can be modified without incurring significant overhead as is
shown by the dashed lines and boxes. The modified algorithm tracks the entanglement of
small subregions and restarts the algorithm if it exceeds the fraction of the Page value that is
set by parameter α. The full algorithm is efficient, rigorous sample complexity bounds are
provided in Appendix B.1.

Heisenberg (XXX) model subject to a magnetic field

HXXX =
∑︂
i,j∈VG

J
(︂
σzi σ

z
j + σyi σ

y
j + σxi σ

x
j

)︂
+ hz

N∑︂
i=1

σzi , (3.2)

where VG refers to the vertex set of the graph G and, couplings are fixed J = hz = 1. In
our simulations, we consider two different graphs: a ring corresponding to a 1D chain with
periodic boundary conditions, and a random 3-regular graph. The U(1) symmetry related to
the conservation of the z-component of the spin under the action of H, as well as translational
invariance present for chains with periodic boundary conditions, can be explored to decrease
the space of parameters by using a suitable gate set respecting this symmetry. However, for
the sake of generality, we focus on the hardware-efficient unitary ansatz defined in Eq. (3.1).
Obtaining the energy expectation value E(θ) = ⟨ψ(θ)|H |ψ(θ)⟩ requires measuring a subset
or all qubits in the circuit as we schematically show in Fig. 4.1 (a). For our example of
2-local Hamiltonian on the 1D chain, the required measurements include the value of σz
operator on all sites along with the σai σai+1 expectation values of all i = 1, . . . N (periodic
boundary condition is assumed, so that bits 1 and N + 1 are identified) and a = x, y, z.
Finding the optimal parameters θ⋆ requires minimization of the Hamiltonian expectation value
E(θ⋆) = minθ E(θ) performed by a classical computer.
There is a plethora of sophisticated classical optimization algorithms that were applied to
this minimization problem [OGB21, SIKC20, KB14, GZCW21]. We use the plain gradient
descent (GD) algorithm due to its simplicity which makes analytical considerations easier. A
GD update step is given by

θt+1 = θt − η∇θE(θ), (3.3)
where η is the learning rate which controls the update magnitude. This update step is repeated
until convergence of E(θ) which results from finding a (local) minimum of E(θ).
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The resulting VQE algorithm is shown schematically in Fig. 4.1 (b) by solid lines. Following the
initialization of the variational angles θ, which may be chosen to be real random numbers, the
quantum computer is used to prepare the variational state and provide quantum measurement
results. The classical computer uses the measurements to estimate the value of the cost
function and its gradient and performs an update of the variational parameters controlled by
the learning rate η.

3.2.2 Barren plateaus and entanglement
Whilst the VQE described above is a promising framework for near-term quantum computing
due to its modest hardware requirements, its performance may be ruined by the issue of
barren plateaus [MBS+18, CSV+21, HSCC21]. Specifically, the BPs are defined as regions
in the space of variational parameters where the variance of the cost function gradient (and
consequently its typical value) vanishes exponentially in the number of qubits [MBS+18]:

Var[∂i,lE(θ)] ∼ O
(︃ 1

22N

)︃
. (3.4)

[MBS+18] were among the first to theoretically investigate BPs. They showed that the
appearance of a BP can be related to the circuit matching the Haar random distribution up to
the second moment. More precisely, they showed that BPs are a consequence of the unitary
ensemble E ∼ {U(θ)}θ forming a so-called 2-design [MBS+18] (see Appendix B.2 for details
and the definition of a t-design). To understand the different circuit depths at which BPs are
encountered, the authors in Ref. [CSV+21] introduced the concept of cost function-dependent
BPs. In particular, they argued that the emergence of BP occurs at different circuit depths,
depending on the nature of the cost function.
In contrast, for a so-called global cost function, exemplified by the fidelity, Ref. [CSV+21]
found that BPs already occur at very modest circuit depths p ∼ O(1). The emergence of BP
for fidelity is naturally related to “orthogonality catastrophe" in many-body physics: even a
small global unitary rotation applied to the many-body wave function results in it becoming
nearly orthogonal to itself. In terms of fidelity, this implies that it vanishes exponentially in
the number of qubits. Moreover, most global state features – such as expectation values
of general operators, fidelities with general states and global purities – cannot be efficiently
accessed on NISQ devices, and are therefore not practical from an algorithmic point of
view [FL11, HKP20, HBC+21, CCHL21]. Therefore, in what follows we do not consider the
global cost functions and corresponding BPs.
Local cost functions, which are the focus of the present work are characterized by a later onset
of BPs. Specifically, for a k-local cost function where k is fixed, the BPs will occur for circuit
depth p ∼ O(poly(N)) that increases polynomially in system size [MBS+18, CSV+21]. In
other words, for a large enough p the VQE algorithm will also suffer from a BP already at the
very first step of the GD optimization, provided random choice of variational angles θ. We
also note that gradient-free optimization strategies do not circumvent the BP problem since
the optimization landscape is inherently flat [ACC+21].
The potential emergence of BPs at the initialization stage of the VQE and other algorithms
spurred the investigation of different initialization strategies that avoid BPs. Until now,
several BP-free initializations have been considered in the literature. Ref. [GWOB19] suggests
initializing the circuit with blocks of identities, Ref. [SMM+20] suggests to optimize the ansatz
layer by layer, and Ref. [DBW+21] suggests to use a matrix product state ansatz that is
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optimized by a separate algorithm [CPSV20] and map that to a quantum circuit. In this work,
we will focus on small single qubit rotation as suggested in Ref. [HSCC21].
More recently, it was observed that the entanglement entropy defined as a trace of the reduced
density matrix, S = − tr ρA ln ρA (where ρA = trB ρ is the reduced density matrix where A
is the subset of qubits that are measured and B is the rest of the system) is another source
for the occurrence of BPs [OKW20]. The community has subsequently dubbed this kind of
BP, entanglement induced BP [OKW20, KO21a, WZCK21, PNGY21]. In this work, we will
however show that entanglement-induced BPs and BPs for local cost functions are the same.
Avoiding entanglement-induced BPs is equivalent to avoiding BPs for local cost functions, the
details are presented in Sec. 3.3.
Experimentally probing a BP is a hard task. The estimation of the exponentially small gradient
in Eq. (3.4) requires a number of measurements that is exponential in the number of qubits,
and therefore invalidates any potential quantum speedup. Moreover, small values of gradient
encountered in BP have to be distinguished from the case when the gradient vanishes due
to convergence to a local minimum. Experimentally diagnosing BPs via entanglement is also
impractical. For example, quantum circuits that implement 2-design and thus lead to BPs for
local cost functions are characterized by typical volume-law entanglement that approaches
nearly maximal values. Checking volume-law entanglement scaling on any device is a formidable
challenge.
In the process of variational quantum optimization, the majority of approaches to mitigate BPs
apply to the initialization stage [GWOB19, VBM+19, VC21] and not during the optimization.
In Sec. 3.4, we illustrate the importance of BP mitigation during the optimization. This
motivates the need to devise a BP mitigation strategy for the initialization and during the
optimization procedure that is efficient. This procedure will be discussed in the algorithm
proposed below.

3.2.3 Weak barren plateaus and improved algorithm
To devise an efficient algorithm for BP-free initialization and optimization of the VQE we
introduce the notion of WBPs. Specifically, for a Hamiltonian that is k-local, we define the
WBP as the point where the second Rényi entropy S2 = − ln tr ρ2

A of any subregion of k-qubits
satisfies S2 ≥ αSPage(k,N), where the Page entropy in the limit k ≪ N corresponds to the
(nearly) maximal possible entanglement of subregion A,

SPage(k,N) ≃ k ln 2− 1
2N−2k+1 , (3.5)

where we explicitly used the Hilbert space dimensions of regions A is 2k and its complement
B has Hilbert space dimension 2N−k. The naive choice for the parameter α is α = 1. Given
some a priori knowledge of the entanglement structure of the target state |GS⟩, the choice
can, however, be more informed to help avoid large entanglement local minima, see Sec. 3.3.
The notion of WBP is practical since it is defined by k-body density matrices, being much
easier to access on a real NISQ device. The fact that the prevention of a WBP is sufficient for
avoiding the BP may be understood by the intuition from quantum many-body dynamics and
the process of thermalization or scrambling of quantum information. In the thermalization
process, the small subsystems are first to become strongly entangled, as is witnessed by the
proximity of their density matrix to the infinite temperature density matrix. This intuition
suggests that it is enough to keep in check the density matrices of small subsets of qubits. If
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their entanglement or other properties are far away from thermal, the system overall is still far
away from the BP.
Practically, the WBP can be diagnosed using the shadow tomography scheme [HKP20]. This
scheme enables an efficient way of representing a classical snapshot of a quantum wave
function on a classical computer. In essence, shadow tomography replaces the measurements
performed in the computational basis with more general measurements, that turn out to be
sufficient for reconstructing linear and non-linear functions of the state, such as expectation
values of few-body observables and second Rényi entropy of few-body reduced density matrices
respectively.
Relying on the shadow tomography, we propose the following modification of the VQE
shown by dashed lines in Figure 4.1 (b). In essence, we suggest using the tomography to
simultaneously measure the cost function value and the k-body second Rényi entropy. For the
derivative we require an additional 2pN tomographies (two for each parameter) to compute
the gradient exactly using the parameter shift rule [MNKF18, SBG+19], a detailed derivation
of the computational cost for each operation is presented in Appendix B.1. Access to the
second Rényi entropy allows to prevent the appearance of WBPs not only at the initialization
step but throughout the optimization cycle. The explicit algorithm works as follows:

Algorithm 1 WBP free optimization with shadows

1: Choose α, default is α = 1 ▷ see Sec. 3.3.1 for details
2: Choose θ such that S2 < αSPage(k,N)
3: Choose learning rate η
4: repeat ▷ see Appendix B.1 for details
5: Obtain classical shadows ρ̂(t)(θ)
6: Use them to compute E(θ), ∇θE(θ) and S2(θ)
7: if S2 < αSPage(k,N) then
8: θ ← θ − η∇θE(θ)
9: else

10: Start again with smaller η ← η′

11: end if
12: until convergence of E(θ)

If a WBP is diagnosed at the initialization, one may have to take a different initial value of
the variational angles or change the initialization ensemble. These aspects are discussed in
detail in Sec. 3.3. In addition, the WBP can occur in the optimization loop. This can be
mitigated by keeping track of the second Rényi entropies in the optimization process. If the
WBP condition is fulfilled, one must restart the algorithm with a smaller learning rate. In the
Section 3.4 we discuss the optimization process in greater detail. In particular, we will show
how the learning rate is related to the potential change in entanglement entropy which implies
that a smaller learning rate is generally better at avoiding WBPs.

3.3 Weak barren plateaus and initialization of VQE
3.3.1 Definition and relation to barren plateaus
As mentioned above, BPs for local cost functions are a consequence of the unitary ensemble
E ∼ {U(θ)}θ forming a 2-design [MBS+18, CSV+21] which leads to an exponentially vanishing
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gradient variance, i.e. a BP. What is important to note is that the exponential decay is simply
a witness of the emergence of a 2-design. Another equivalent witness is the second Rényi
entropy, where we have:

Theorem 1. (2-design and Rényi entropy) If the unitary ensemble E ∼ {U(θ)} forms a
2-design, then for typical instances the second Rényi of the state ρA concentrates around the
Page value

SPage(k,N)− 1
2N−2k+1 ≤ EE

[︂
S2(ρA)

]︂
≤ SPage(k,N),

for all subregions A of size k ≪ N .

These results are known in the literature, and in the context of random quantum circuits,
can be found in Refs. [PSW06, ODP07, DOP07]. However, for completeness, we also provide
proof in Appendix B.3.

The Theorem above implies that a large amount of entanglement naturally follows from the
similarity between the considered circuit and a random unitary (2-design). Such similarity
also gives rise to the vanishing variance of local cost function gradients that define BPs.
Therefore, so-called entanglement-induced BPs [OKW20] and BPs for local cost functions
are the same. Entanglement provides an intuitive picture of the emergence of BPs and their
circuit depth dependence. Every entangling layer in the circuit typically increases entanglement
of the resulting wave function, until it saturates to its maximal value for any subregion of
k-qubits at a circuit depth p ∼ O(poly(N)). If the second Rényi entropy for half of the
subsystem k = N/2 has saturated, it has saturated for all smaller subsystem sizes and is thus
a sufficient check for a BP. Computing the second Rényi is however typically exponentially
hard in subsystem size on NISQ devices (for single-copy access this was recently proven in
Ref. [CCHL21, HBC+21]). It is therefore only practical to check a small subregion where k is
small and independent of system size.

The above considerations naturally lead us to introduce the notion of WBPs as a modification
of the BP that is computationally efficient to diagnose on NISQ devices. More formally we
have that:

Definition 2. (Weak barren plateaus) Let H be an N -qubit Hamiltonian, and A is a region
containing k qubits. We define a weak barren plateau by the second Rényi entropy of the
reduced density matrix ρA satisfying S2 ≥ αSPage(k,N) with α ∈ [0, 1).

This definition works for any k, however, it is reasonable to use k that corresponds to the
number of spins involved in interaction terms in the Hamiltonian H since it provides a natural
length scale. Moreover, in such a case, the reduced density matrix of the subregion with
k spins contains all the necessary information needed to extract the expectation values of
Hamiltonian terms localized inside this region.

While a WBP is a necessary condition for a BP, it is however not sufficient (which motivates
the term weak). From a practical perspective, we are only interested in avoiding a BP. For
this, WBPs provide a powerful tool, since:

Corollary 2.1. If we find a particular subregion A such that ρA does not satisfy the weak
barren plateau condition, i.e. Definition 2, it is on average also not in a barren plateau where
the variance is exponentially small.
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Proof. This assertion immediately follows from negating Theorem 1.

The Corollary above formalizes the intuition behind the dynamics of entanglement in a circuit:
If the state restricted to the smaller subsystem has not scrambled, then neither has the state
restricted to a larger subregion. In practice, using classical shadows we can efficiently check
one subregion of size k with a total measurement budget

T ≥ 4k+1 tr ρ2
A

ϵ2δ
, (3.6)

where ϵ is the desired accuracy and δ is a failure probability (over the randomized measurement
process). Parameters ϵ and δ do not depend on the number of qubits, whereas the factor
tr ρ2

A is upper bounded by one for weakly entangled states and can be as small as 2−k when
entanglement is large. Moreover, checking all size k subregions incurs an additional overhead of
only k lnN . A derivation of this result is presented in Appendix B.1, see Eq. (B.7). Provided
that k is small and does not scale with system size, N , this can be efficiently implemented on
NISQ devices.
If any of these subregions avoids the WBP condition, we are guaranteed to also avoid an
actual BP. For simplicity, in the numerical results below we check for the WBP condition for a
particular region containing the first k qubits, i.e. A = {1, · · · , k}.
This argument is also intuitive to see by considering a causal cone (blue region) that indicates
the extent of the so-called scrambled region (i.e. extent of a subregion with entropy close to
the maximal value) in the circuit, see Fig. 4.2 (a). Such scrambled region grows with every
consecutive entangling layer Wl (see Eq. (3.1)). When this region extends beyond k qubits,
the WBP is reached (left orange dashed line). Later, when the “scrambling lightcone” has
extended to the full system, the BP is reached (right orange dashed line). Once the BP is
reached all smaller regions are also fully entangled and will satisfy the WBP condition on
average.
Fig. 4.2 provides a numerical illustration for the Corollary 2.1 stated above. We use the
hardware-efficient circuit, presented in Eq. (3.1), and compute the gradient variance and
second Rényi entropy as a function of circuit depth p for different system sizes N . We fix
|ψ0⟩ = |0⟩ as the initial state, which is simply all qubits in the zero state. Panel (b) shows the
exponential decay of the gradient variance that is usually used to diagnose a BP. Panel (c)
shows the corresponding bipartite second Rényi entropy. We see that it indeed approaches the
Page value (gray dashed line). The Page value is not fully reached since we are considering
the second Rényi instead of the von Neumann entanglement entropy, this difference however
becomes negligible once the subsystem size is decreased. This numerically illustrates that
when the 2-design is reached both the gradient variance and bipartite second Rényi entropy
have converged. In panel (d) we consider a smaller region of two qubits and see that the
second Rényi for this region saturates to its maximal value at a significantly lower circuit
depth. This illustrates the emergence of the WBP that precedes the onset of the BP after a
few more entangling layers. Before the WBP is reached, gradients are well-behaved and do
not decrease exponentially with the system size.
Finally, we address the effects of the control parameter α, that enters in Definition 2 of the
WBP. The naive choice is α = 1 which means that a WBP is reached if the subregion is
maximally entangled with the rest of the system. However, in the case when some a priori
knowledge about the entanglement properties of the target state |GS⟩ is available, it can be
used to set a smaller value of α. If, for instance, the ground state is only weakly entangled,
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Figure 3.2: (a) Sketch of the circuit, where the blue color shows the scrambling lightcone.
The lightcone first extends over k qubits, where the WBP occurs, and for larger circuit depths
extends to the full system size where the BP occurs. (b) The saturation of the gradient
variance Var[∂1,1E] and (c) saturation of the bipartite second Rényi entropy S2(ρA) of the
region A consisting of qubits 1, . . . , N/2 nearly to the Page value happen at the similar circuit
depths p, that increases with the system size N . (d) In contrast, the saturation of the second
Rényi for two qubits (A′ = {1, 2}) is system size-independent, illustrating that WBP precedes
the onset of a BP. Data was averaged over 100 random initializations. Gradient variance is
computed for the local term σz1σ

z
2 , typically used in BP illustrations. Gradient variance for the

full Heisenberg Hamiltonian, Eq. (3.2), looks similar.

a choice of α≪ 1 may be appropriate. In this way Algorithm 1 in Sec. 3.2.3 can also help
in avoiding convergence to highly entangled local minima. We discuss this in more detail in
Sec. 3.4.2.

3.3.2 Illustration of WBP-free initialization
In order to illustrate the notion of WBP in a more specific setting we apply it to the initialization
process of the VQE. Specifically, we focus on the family of initializations that was proposed
earlier in order to avoid the issue of BPs [HSCC21, HBK21]. The one-parametric family of
initializations restricts the single qubit rotation angles from ansatz Eq. (3.1) as θil ∈ ϵθ[−π, π),
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Figure 3.3: (a) Decreasing parameter ϵθ from 1 slows down the growth of the second Rényi
entropy with the circuit depth p. The chosen region contains two qubits. (b) The encounter
of BP in the variance of the gradient of the cost function is visible only for the case ϵθ = 1,
and it is preceded by the onset of a WBP. We use a system size of N = 16 for (a) and
N = 8, · · · , 16 for (b), color intensity corresponds to system size, same as in Fig. 4.2. Data is
averaged over 100 random instances, variance is for the local term σz1σ

z
2.

where ϵθ ∈ [0, 1) is the control parameter. This strategy allows to delay of the onset of BP to
arbitrary circuit depths by tuning ϵθ accordingly.

Similarly, it allows for a delay in the onset of WBPs. Depending on the parameter ϵθ one
can afford a deeper circuit without encountering a WPB in the initialization when compared
to the full parameter range (ϵθ = 1). It is straightforward to see that for ϵθ = 0, the ansatz
is WBP-free for all circuit depths. Indeed, in the absence of the single qubit rotations, the
entangling gates in Wl do not create any entanglement (since the CZ gates used in Eq. (3.1)
are diagonal in the computational basis), leaving |0⟩ invariant. Note that, for example, the
identity block initialization, proposed by [GWOB19] works similarly in that the unitary is
constructed such that it also implements the identity and one is equally left with the zero
states.

In Fig. 4.3 we numerically illustrate the influence of ϵθ on the growth of entanglement and
its relation to the gradient variance. Panel (a) illustrates the growth of the second Rényi
entropy in the circuit for three different small angle parameters ϵθ and panel (b) shows the
corresponding gradient variance. Outside of the WBP the gradient variance vanishes at most
polynomially in system size N . This illustrates that the avoidance of a WBP is sufficient for
avoiding a BP and thus allows for a simple strategy for constructing BP-free initializations.
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3.4 Entanglement control during optimization
3.4.1 Bounding entanglement increase at a single optimization step
In Sec. 3.2 we presented how the general VQE can be extended with minimal overhead to
avoid WBPs in the optimization procedure. The learning rate, as presented in Algorithm 1,
hereby plays a crucial role. A smaller learning rate, as observed in Fig. 4.1 (c)-(e) is more likely
to avoid a WBP. To understand this phenomenological observation on more rigorous grounds,
let us consider a sufficiently deep circuit (with a polynomial number of layers in system size),
so that the optimization landscape is dominated by WBPs. Careful selection of the parameters
allows for an initialization outside of a WBP. However, to remain in the WBP-free region, the
optimization has to be performed in a controlled manner, such that the optimizer does not
leave the region of low entanglement due to large learning rate and does not end in a WBP.
Since WBPs are defined in terms of the second Rényi entropy S2, we need to bound the
change in S2 between iteration steps t and t+ 1. For practical purposes, we instead use the
purity (tr ρ2

A = e−S2). The change in purity is upper bounded by [CMNF16]
⃓⃓⃓
tr ρ2

A(t+ 1)− tr ρ2
A(t)

⃓⃓⃓
≤ 1− (1− TA(t))2 − T 2

A(t)
2k − 1 , (3.7)

where TA(t) ≡ T (ρA(t), ρA(t+ 1)) is the trace distance between the reduced density matrices
at iteration steps t and t+ 1, and we assume that region A has k qubits.
Assuming that the states at consecutive update steps of gradient descent are perturbatively
close (see Appendix B.4 for details), as measured by the trace distance, one can show that

T (ρA(t+ 1), ρA(t)) ≲
√︄
η2

4 (∇θE)TF(θ)∇θE, (3.8)

where Fi,j(θ) = 4 Re[⟨∂iψ|∂jψ⟩ − ⟨∂iψ|ψ⟩⟨ψ|∂jψ⟩] is the quantum Fisher information matrix
(QFIM) [Mey21] and η is the learning rate. Inequalities (3.7)-(3.8) imply that the learning rate
η can be used to limit the maximal possible change of the purity.1 Provided that the change in
purity is sufficiently small, the Taylor expansion can be used to argue that the corresponding
change in the second Rényi entropy S2, related to the purity as e−S2 = tr ρ2

A, also remains
controlled. Therefore, the choice of an appropriately small learning rate can guarantee the
avoidance of a WBP at t+ 1, provided the absence of one at t.
To illustrate the bound numerically, we prepare an initialization outside of the WBP using a
small angle parameter ϵθ and compute the change in the purity tr ρ2

A after one GD update
step for different learning rates η. The results of this procedure for four different learning
rates are shown in Fig. 4.4. We see that larger learning rates correspond to a bigger change in
purity and are thus more prone to encounter a WBP. At the same time, all data points are
below the theoretical bound. While up to the best of our knowledge the bound Eq. (3.7) is
not proven to be tight, we observe that points corresponding to the extreme learning rates
closely approach the theoretical line.
Using Eq. (3.8), the bound can be efficiently approximated on NISQ hardware: the QFIM can
be estimated efficiently on a quantum device using techniques suggested in Ref. [GZCW21] or
Ref. [RBMV21] using classical shadows. For the computation of the gradient, one can use the

1A similar continuity bound that does not require the QFIM can be found in terms of the maximum
operator norm of the gate generators. We acknowledge Johannes Jakob Meyer for this remark.
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Figure 3.4: We numerically illustrate the continuity bound Eq. (3.7) and its relation to the
learning rate η for t = 0, i.e. at the beginning of the optimization schedule. This shows that
one should be careful with the choice of the learning rate since a large learning rate leads to a
big change in the trace distance and a change in purity. We use a system size of N = 10 and
a random circuit with circuit depth p = 100 and small qubit rotations (ϵθ = 0.05) to generate
a BP-free initialization. Data was averaged over 500 random instances.

parameter shift rule [MNKF18, SBG+19] also with shadow tomography. The expression can
thus be efficiently evaluated on a real device and used together with the continuity bound to
estimate a suitable learning rate η. However, in practice, this might not be needed and simply
following Algorithm 1 could be more efficient and easier to implement.

3.4.2 Optimization performance with learning rate
Finally, we illustrate Algorithm 1 in practice. To this end, we first prepare a WBP-free initial
state using small qubit rotation angles and compare the performance of GD optimization with
different learning rates. If we start with a large learning rate, η = 1, corresponding to red lines
in Fig. 3.5 (a)-(c), we see that the energy expectation value in Fig. 3.5 (a) rapidly (within one
or two update steps) converges to a value far away from the target ground state energy EGS.
At the same time, panel (b) reveals that this can be attributed to an onset of a WBP, as the
second Rényi entropy spikes up to the Page value. Finally, panel (c) shows that the gradient
norm also is convergent, though at a non-zero value. We attribute this to the fact that the
system gets trapped in the WBP region.
As suggested by Algorithm 1, we thus decrease the learning rate to η = 0.1 and start again.
This time a WBP is avoided, the algorithm however gets stuck in a local minimum with large
entanglement entropy. In this instance a choice of parameter α that defines an onset of a
WBP in Def. 2 being smaller than one may be beneficial. For instance, setting α = 0.5 could
help avoid the suboptimal local minima characterized by large entanglement, see the grey
dashed line in Fig. 3.5 (b). Note that the large gradient persistent after many iterations for
the blue line in Fig. 3.5 (c) may also indicate that the learning rate is chosen too large for the
width of the local minima.
Provided that our algorithm uses α = 0.5, the system would satisfy a WBP condition even for
learning rate η = 0.1, forcing us to restart the algorithm with an even smaller learning rate.
Setting η = 0.01, we see that the algorithm is now able to converge very close to the true
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Figure 3.5: (a-c) The application of the proposed Algorithm to the problem of finding the
ground state of the Heisenberg model. For large learning rates η = 1 and 0.1 (red and blue
lines) the optimization gets into a large entanglement region as is shown in panel (b), indicated
by colored stars, forcing the restart of the optimization with a smaller value of η. For η = 0.01
the algorithm avoids large entanglement regions and gets a good approximation for the ground
state. Finally, setting even smaller learning rate (green lines) degrades the performance. The
normalized second Rényi entropy of the true ground state is S2/S

Page(k,N) ≈ 0.246. (c)
Shows the corresponding gradient norm. A small gradient norm equally corresponds to the BP
and the good local minima found with η = 0.01 and 0.001. We use a system size of N = 10,
subsystem size k = 2 and a random circuit (see Eq. (3.1)) with circuit depth p = 100 and
small qubit rotations (ϵθ = 0.05) to generate a BP-free initialization. Here we choose α = 0.5
indicated by the grey dashed line, see the last paragraph of Sec. 3.3.1 for a discussion on the
choice of α. Data was averaged over 100 random instances.

ground state energy (violet line in Fig. 3.5 (a)-(c)). In particular, the norm of the gradient
assumes the smallest value among all learning rates. We note, that the further decrease of
the learning rate (i.e. to η = 0.001) degrades the performance of GD. While WBPs are not
encountered during the optimization process, the GD optimization converges slower and within
the given iterations to a larger energy expectation value. This highlights the fact that it is
best to choose the highest possible learning rate, that still avoids a WBP. We speculate, that
an optimization strategy that adapts the learning rate at each optimization step would give
the best performance, though testing this assumption is beyond the scope of the present work.
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3.4.3 Classical simulatability and performance comparison

Now that we have illustrated the procedure outlined in Algorithm 1 in detail, let us comment
on the restrictions that our Algorithm imposes, its relation to classical simulatability and finally
compare our method with other common means for mitigating BPs.

To avoid WBPs and thus BPs we require that the second Rényi entropy of a small subregion is
less than a fraction α of the Page value, where α ∈ (0, 1] and the default choice is α = 1. This
definition does restrict the amount of entanglement generated by the circuit and thus does
imply the classical simulatability of the circuit. Indeed, it is the scaling of the entanglement
entropy with system size that is important for classical simulatability of a quantum system.
Only in the special case when the entanglement entropy of the quantum state scales poly-
logarithmically with the number of qubits, we can simulate the states on a classical computer
in polynomial time [Vid03, VdNDVB07, BH13]. In contrast, the criteria for WBP, Def. 2 is
generally consistent with volume-law entanglement as we illustrate below, thus allowing our
algorithm to be applied to systems that cannot be efficiently simulated on a classical computer.

Here we focus on two types of systems: namely systems where the ground state satisfies
area-law, which implies that the entanglement entropy of an arbitary bipartition of the state
scales with the size of the boundary S(ρA) ∼ |∂A|, as well as volume-law, which implies that
it scales with the volume, S(ρA) ∼ |A| (see Ref. [ECP10] for a review on these concepts).
For area-law states in 1D, the entanglement entropy is constant and therefore allows for an
efficient classical representation using techniques such as matrix product states [Sch11]. The
1D Heisenberg model, considered in the previous subsection, is an example of such a system.

The Heisenberg model, however, can be made hard to simulate classically by considering
a random graph geometry illustrated in Fig. 3.6 (a), instead of a 1D chain. This leads to
non-local interactions and a volume-law entanglement scaling for a typical bipartite cut. Due
to the non-local nature of the model we choose α = 1 since we have no prior knowledge
on the entanglement properties of the ground state. We again use the small-angle initializa-
tion [HSCC21, HBK21] to generate a BP-free initial state. We compare this with layerwise
optimization [SMM+20] which is another common heuristic for avoiding BPs. There the circuit
is initialized with a single layer which is optimized, the circuit is then grown by one layer at a
time and optimized while keeping the parameters in the previous layers constant.

Fig. 3.6 (b)-(c) reveals that for the Heisenberg model on a graph, layerwise optimization
ends up in a WBP during the optimization for both learning rates that we considered. The
small-angle initialization successfully avoids the WBP for both learning rates, however, good
convergence is only achieved with η = 0.01. This is similar to the situation encountered in the
Heisenberg model in 1D, see Fig. 3.6, where a too-large learning rate prevents convergence to
the basin of attraction of the local minimum. Likewise, to the case of 1D Heisenberg model,
the fact that the learning rate η = 0.1 does not lead to convergence to a minimum can be
revealed through the norm of the gradient which stays large even after 500 iterations.

In addition to the Heisenberg model on the random graph, we also considered the Sachdev–Ye–Kitaev
(SYK) model [Kit15] that features a volume-law entangled ground state [HG19]. In Ap-
pendix B.5 we illustrate that our method is also successful in preventing the BP occurrence
and results in finding the SYK ground state.
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Figure 3.6: The application of our Algorithm to the problem of finding the ground state for
the Heisenberg model on a 3-regular random graph depicted in (a). Panel (b) shows the
energy as a function of GD iterations t and panel (c) illustrates the second Rényi entropy of
two-spin region A with k = 2 shown in panel (a). Since the interactions are now non-local
and we do not have any prior knowledge on the entanglement properties of the target state
we set α = 1 (gray dashed line). For the initialization, we use the small-angle initialization
(SA) with ϵθ = 0.1 and compare it to layerwise optimization (LW). LW encounters a WBP
for both learning rates that we considered (green star). In contrast, SA avoids the WBP for
both learning rates. Good performance and further convergence in the local minimum is only
achieved trough a smaller learning rate of η = 0.01. We use a system size of N = 10 and a
random circuit from Eq. (3.1) with circuit depth p = 100. Data is averaged over 100 random
instances.

3.5 Summary and Discussion
The main result of this work is the introduction of the concept of WBPs, which in essence provide
an efficiently detectable version of BPs. In particular, we propose to use the classical shadows
protocol to estimate the second Rényi entropy of a small subregions that are independent of
system size. If these subregions avoid nearly maximal entanglement – a condition sufficient for
avoiding WBPs – the system also avoids conventional BPs. Building on this definition of the
WBP, we proposed an algorithm that is capable of avoiding BPs on NISQ devices without
requiring a computational overhead that scales exponentially in system size.
To illustrate the notion of WBPs and the proposed algorithm, we studied a particular BP-
free initialization of the variational quantum eigensolver. Furthermore, we considered an
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optimization procedure that uses gradient descent. Phenomenologically, we observed that
the encounter of a BP during the optimization crucially depends on the learning rate, which
controls the parameter update magnitude between consecutive optimization steps. A smaller
learning rate is less likely to lead to the encounter of a BP during the optimization. However,
choosing the learning rate to be very small degrades the performance of GD. These results
support the feasibility of the proposed algorithm for efficiently avoiding BPs on NISQ devices.
While our results and numerical simulations are focused on variational quantum eigensolvers
(VQE), they readily extend to other variational hybrid algorithms, such as quantum machine
learning [BLSF19a, HCT+19, SBSW20], quantum optimization [FGG14, SS21b, Har21a] or
variational time evolution [BVC21, LDG+21].
Although the issue of avoiding BPs at the circuit initialization is a subject of active re-
search [GWOB19, DBW+21, SMM+20, HSCC21, LCS+21], the influence and role of BPs in
the optimization process has received much less attention [LJGM+21]. Our results indicate
that entanglement, in addition to playing a crucial role in circumventing BPs at the launch
of the VQE, is also important for achieving a good optimization performance. In addition,
our heuristic results in Sec. 3.4 suggest that post-selection based on the entanglement of
small subregions may help to avoid low-quality local minima that are characterized by higher
entanglement. Algorithm 1 allows for such post-selection by appropriately tuning the value of
α. Doing so, however, requires some prior knowledge about the entanglement structure of the
target state. This may be inferred from the structure of the Hamiltonian (for instance, for a
Hamiltonian that is diagonal in the computational basis, the eigenstates are product states
with no entanglement), or by targeting small instances of the computational problem using
exact diagonalization.
Beyond that, one could imagine an algorithm where the learning rate is not only adapted when
a WBP is encountered but dynamically adjusted at every step of the optimization process.
This may allow for efficiently maneuvering complicated optimization landscapes by staying
clear of highly entangled local minima. VQE, for instance, is known to have many local
minima [BK21], but a systematic study of their entanglement structure, required for devising
such dynamic entanglement post-selection procedure, has yet to be done.
Another important question concerns the effect of noise, which has been suggested to be an
additional source for the emergence of BPs [WFC+20]. Noise cannot be avoided on NISQ
machines and has a profound impact on any near-term quantum algorithm which is difficult to
analyze analytically. Fortunately, none of the tools we propose are especially susceptible to
noise corruption. In fact, both the classical shadow protocol and the estimation of observables
and purities are stable with respect to the addition of a small but finite amount of noise, and
there have even been some proposals for noise mitigation techniques [CYZF21, EG20].
Finally, we comment on the possibility of testing Algorithm 1 on a real NISQ device. While
the shadows protocol can readily be implemented on near-term devices to diagnose WBPs,
whether a variational circuit with enough entangling layers that lead to a BP can be realized on
an NISQ device is not entirely clear at this stage. Nevertheless recent results of Ref. [Mi 21]
observed convergence of the out-of-time correlators to zero, indicating that a 2-design might
already have been reached. This implies that large entanglement, as present in a BP, could
be realizable on available NISQ devices, and opens the door to experimental studies of the
effect of entanglement on the optimization performance of current NISQ machines using the
proposed shadows protocol.
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CHAPTER 4
Recursive greedy initialization of the

QAOA with guaranteed improvement

In this chapter, we investigate the quantum approximate optimization algorithm (QAOA),
focusing on how the choice of parameter initialization and optimization strategy affects the
algorithm’s performance. We begin by analytically constructing index-1 saddle points at circuit
depth p+ 1, starting from a local minimum at circuit depth p. These index-1 saddle points
maintain the same energy as the initial local minimum. Moreover, the presence of a unique
local descent direction in parameter space ensures a decrease in the cost function, thereby
providing a guaranteed improvement at each circuit depth. This section is based on the paper:

Stefan H. Sack, Raimel A. Medina, Richard Kueng, and Maksym Serbyn. Recursive greedy
initialization of the quantum approximate optimization algorithm with guaranteed improvement.
Phys. Rev. A, 107:062404, Jun 2023

4.1 Introduction
The Quantum Approximate Optimization Algorithm (QAOA) [FGG14] is a prospective near-
term quantum algorithm for solving hard combinatorial optimization problems on Noisy
Intermediate-Scale Quantum (NISQ) [Pre18] devices. In this algorithm, the quantum computer
is used to prepare a variational wave function that is updated in an iterative feedback loop
with a classical computer to minimize a cost function (the energy expectation value), which
encodes the computational problem. A common bottleneck of the QAOA is the convergence
of the optimization procedure to one of the many low-quality local minima, whose number
increases exponentially with the QAOA circuit depth p [ZWC+20, SS21a].

Much effort has been devoted to finding good initialization strategies to prevent convergence
to such low-quality local minima. Researchers have proposed to: first solve a relaxed classical
optimization problem and to use that as an initial guess [EMW21], to use machine learning
to infer patterns in the optimal parameters [JCKK21], interpolating optimal parameters
between different circuit depths [ZWC+20], or to use the parallels between the QAOA and
quantum annealing [SS21a]. Recently the success of the interpolation strategies that appeal to
annealing was attributed to the ability of the QAOA to effectively speed up adiabatic evolution
via the so-called counterdiabatic mechanism [WL22]. This result was used to explain cost
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4. Recursive greedy initialization of the QAOA with guaranteed improvement

function concentration for typical instances [BBF+18] and parameter concentration [ARCB21]
of optimal, typically smoothly varying, parameters.

Despite this progress, all proposed initialization strategies remain heuristic or physically
motivated at best, and our understanding of the QAOA optimization remains limited. One of
the main puzzles is the exponential improvement of the QAOA performance with circuit depth
p, observed numerically [ZWC+20, Cro18]. Here we propose an analytic approach that relates
QAOA properties at circuit depths p and p+ 1. The recursive application of our result leads
to a QAOA initialization scheme that guarantees improvement of performance with p.

Our analytic approach relies on the consideration of stationary points of QAOA cost function
beyond local minima. Inspired by the theory of energy landscapes [Wal04], we focus on
stationary configurations with a unique unstable direction, known as transition states (TS). We
show that 2p+ 1 distinct TS can be constructed analytically for a QAOA at circuit depth p+ 1
(denoted as QAOAp+1) from minima at circuit depth p. All these TS for QAOAp+1 exhibit the
same energy as the QAOAp-minimum from which they are constructed, thus providing a good
initialization for QAOAp+1. Descending in the negative curvature direction connects each of
the 2p+ 1 TS to two local minima of QAOAp+1, which are thus guaranteed to exhibit lower
energy than the initial minima of QAOAp. Iterating this procedure leads to an exponentially
increasing (in p) number of local minima which are guaranteed to have a lower energy at
circuit depth p+1 than at p [Not]. We visualize this hierarchy of minima and their connections
in a graph and propose a Greedy approach to explore its structure. We numerically show
that optimal parameters at every circuit depth p are smooth (i.e. the variational parameters
change only slowly between circuit layers) and directly connect to a smooth parameter solution
at p + 1 through the TS. Our results explain existing QAOA initializations and establish a
recursive analytic approach to study QAOA.

The rest of the paper is organized as follows. In Section 4.2 we review the QAOA, present
newly found symmetries, and introduce the analytical construction of TS. In Section 4.3 we
show how TS can be used as an initialization to systematically explore the QAOA optimization
landscape. From this, we introduce a new heuristic method, dubbed Greedy for exploring the
landscape and provide a comparison to popular optimization strategies. Finally, in Section 4.4
we discuss our results and potential future extensions of our work. Appendices C.1-C.6 present
detailed proofs of our analytical results, as well as supporting numerical simulations.

4.2 QAOA optimization landscape

4.2.1 MaxCut problem on random regular graphs
The QAOA was originally proposed for a graph partitioning problem, known as finding the
maximal cut (MaxCut) [FGG14] and has also been applied to a variety of other optimization
problems [SYS+21, FGG20a, MH21]. MaxCut seeks for a partition of the given undirected
graph G into two groups such that the number of edges E that connect vertices from different
groups are maximized. Finding the solution of MaxCut for a graph with n vertices is
equivalent to finding a ground state for the n-qubit classical Hamiltonian HC = ∑︁

⟨i,j⟩ϵE σ
z
i σ

z
j ,

with the sum running over a set of graph edges E and σzi being the Pauli-Z matrix acting on
the i-th qubit.

The depth-p QAOA algorithm [FGG14] minimizes the expectation value of the classical
Hamiltonian over the variational state |β,γ⟩ with angles β = (β1, . . . , βp) and γ = (γ1, . . . , γp)
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a b

Figure 4.1: (a) Circuit diagram that implements the QAOA ansatz state with circuit depth p,
see Eq. (5.2). Gray boxes indicate the identity gates that are inserted when constructing a
TS, as indicated in Theorem 3. (b) Local minima Γp

min of QAOAp generate a TS Γp+1
TS for

QAOAp+1 that connects to two new local minima, Γp+1
min1,2 with lower energy.

shown in Fig. 4.1(a):

|β,γ⟩ =
p∏︂
i=1

e−βiHBe−γiHC |+⟩⊗n . (4.1)

Here HB = −∑︁n
i σ

x
i is the mixing Hamiltonian and the circuit depth p controls the number of

applications of the classical and mixing Hamiltonian. The initial product state |+⟩⊗n, where
all qubits point in the x-direction is an equal superposition of all possible graph partitions
which is also the ground state of HB.
Finding the minimum of E(β,γ) = ⟨β,γ|HC |β,γ⟩ over angles (β1, . . . , βp) and (γ1, . . . , γp)
that form a set of 2p variational parameters, (β,γ), yields a desired approximation to the
ground state of HC , equivalent to an approximate a solution of MaxCut. The scalar
function E(β,γ) thus defines a 2p-dimensional energy landscape where the QAOA seeks
to find the best minimum. The performance of the QAOA is typically reported in terms
of the approximation ratio rβ,γ = E(β,γ)/Cmin, where Cmin is the cost function value for
the MaxCut. Symmetries of the QAOA ansatz when restricted to graphs with only odd
connectivity, such as random 3-regular graphs (RRG3) used in this work, restrict the parameter
range to the following fundamental region:

βi ∈ [−π4 ,
π

4 ]; γ1 ∈ (0, π4 ), γj ∈ [−π4 ,
π

4 ], (4.2)

with i ∈ [1, p] and j ∈ [2, p]. Note that the fundamental region presented above is smaller
than what has been previously reported [ZWC+20, WHJR18], see the Appendix C.1 for details.

4.2.2 Energy minima and transition states
Previous studies of the QAOA landscape were restricted to local minima of the cost function
E(β,γ), since they can be directly obtained using standard gradient-based or gradient-free
optimization routines. Local minima are stationary points of the energy landscape (defined
as ∂iE(β,γ) = 0 for derivative running over all i = 1, . . . , 2p variational angles), where
all eigenvalues of the Hessian matrix Hij = ∂i∂jE(β,γ) are positive, that is the Hessian
at the local minimum is positive-definite. However, the study of energy landscapes [Wal04]
of chemical reactions and molecular dynamics has shown that TS, which corresponds to
stationary points with a single negative eigenvalue of the Hessian matrix (index-1), also
plays an important role 1. There, TS are particularly relevant as they correspond to the

1Note, that on physical grounds we do not consider singular Hessians that have one or more vanishing
eigenvalues, see Appendix C.2.
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4. Recursive greedy initialization of the QAOA with guaranteed improvement

highest-energy configurations along a reaction pathway. They often serve as bottlenecks in
the reaction process and thus are crucial for understanding reaction rates, designing catalysts,
and predicting chemical behavior. By studying the role of transition states in the QAOA
landscape, we aim to uncover insights that could lead to improved optimization strategies
or better convergence properties of the algorithm. This motivates the construction of TS
achieved below.

4.2.3 Analytic construction of transition states
The structure of the QAOA variational ansatz allows us to analytically construct the TS of
QAOAp+1 using any local minima of QAOAp:

Theorem 3 (TS construction, simplified version). Assume that we found a local minimum
of QAOAp denoted as Γp

min = (β⋆,γ⋆) = (β⋆1 , . . . , β⋆p , γ⋆1 , . . . , γ⋆p). Padding the vector of
variational angles with zeros at positions i and j, results in

Γp+1
TS (i, j) = (β⋆1 , ..., β⋆j−1,0, β⋆j , ..., β⋆p ,

γ⋆1 , ..., γ
⋆
i−1,0, γ⋆i , ..., γ⋆p)

(4.3)

being a TS for QAOAp+1 when j = i or j = i+ 1 and ∀i ∈ [1, p], and also for i = j = p+ 1.

Proof. The argument consists of two steps. First, by relating the first derivative over newly
introduced parameters to derivatives over existing angles we show that Eq. (4.3) is a stationary
point of QAOAp+1. More specifically, we observe that the gradient components where the
zero insertion is made satisfy the following relations

∂βl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l)

= ∂βl−1|β,γ⟩⃓⃓⃓Γp
min

,

∂βl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l+1)

= ∂βl
|β,γ⟩⃓⃓⃓

Γp
min

,

∂γl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l)

= ∂γl
|β,γ⟩⃓⃓⃓

Γp
min

,

∂γl+1|β,γ⟩⃓⃓⃓Γp+1
TS (l,l+1)

= ∂γl
|β,γ⟩⃓⃓⃓

Γp
min

.

(4.4)

Since ∇E(β,γ)⃓⃓⃓
Γp

min

= 0, it directly follows that the TS constructed using Theorem 3 are

also stationary points. In the second step, we show that the Hessian at the TS has a single
negative eigenvalue. To this end in the Appendix C.2 we show that we can always write the
Hessian at the TS in the following form

H(Γp+1
TS (l, k)) =

(︄
H(Γp

min) v(l, k)
vT (l, k) h(l, k)

)︄
, (4.5)

where H(Γp
min) ∈ R2p×2p, v(l, k) ∈ R2p×2 and, h(l, k) ∈ R2×2. Here, the largest block H(Γp

min)
corresponds to the old Hessian at the stationary point. The matrix h(l, k) corresponds to
the second derivatives of the energy with respect to new parameters that are initially set to
zero, whereas matrix v(l, k) represents the “mixing” terms, with one derivative taken over the
old parameters and the second derivative corresponds to one of the new parameters, which
are initialized at zero. By employing this representation of the Hessian at the TS, we utilize
the Eigenvalue Interlacing theorem ([Ref. [Bel97], Theorem 4 on page 117] summarized in
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Figure 4.2: Initialization graph for the QAOA for MaxCut problem on a particular instance of
RRG3 with n = 10 vertices (inset). For each local minima of QAOAp we generate p+ 1 TS for
QAOAp+1, find corresponding minima as in Fig. 4.1(b), and show them on the plot connected
by an edge to the original minima of QAOAp+1. Position along the vertical axis quantifies the
performance of QAOA via the approximation ratio, points are displaced on the horizontal axis
for clarity. Color encodes the depth of the QAOA circuit, and large symbols along with the
red dashed line indicate the path that is taken by the Greedy procedure that keeps the best
minima for any given p resulting in an exponential improvement of the performance with p.
The Greedy minimum coincides with an estimate of the global minimum for p = 6 (dashed
line) obtained by choosing the best minima from 2p initializations on a regular grid.

Theorem 8) to establish that H(Γp+1
TS (l, k)) has at most two negative eigenvalues. Subsequently,

we prove that the determinant of H(Γp+1
TS (l, k)) is negative for each of the 2p+ 1 transition

states, which implies the presence of only one negative eigenvalue (i.e., the index-1 direction).
It is important to note that this result is independent of the choice of classical Hamiltonian,
which is fixed to encode MaxCut in this work.

The simplified theorem above ignores the possibility of vanishing eigenvalues of the Hessian,
which can be ruled out only on physical grounds. This issue and complete proof of the theorem
are discussed in Appendix C.2.

4.3 From transition states to QAOA intialization

4.3.1 Initialization graph
For each local minimum of QAOAp, Theorem 3 provides p+ 1 symmetric TS where zeros are
padded at the same position, i = j, like in Fig. 4.1(a), and additionally p non-symmetric TS
with j = i+ 1, where zeros are padded in adjacent layers of the QAOA circuit. Fig. 4.1(b)
shows how one can descend from a given TS along the positive and negative index-1 direction,
finding two new local minima of QAOAp+1 with lower energy. Thus Theorem 3 provides us
with a powerful tool to systematically explore the local minima in the QAOA in a recursive
fashion.
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4. Recursive greedy initialization of the QAOA with guaranteed improvement

Such exploration of the QAOA initializations for a particular graph with n = 10 vertices
is summarized in Fig. 4.2. We find a unique minimum for QAOA1 using grid search (see
Appendix C.5) in the fundamental region defined in Eq. C.52 from which we construct two
symmetric TS according to Eq. (4.3), descend from these TS in index-1 directions with the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) [Bro70, Fle70, Gol70, Sha70] algorithm, finding
two new local minima of QAOA2. These minima are connected to the minima of QAOA1,
since it was used to construct a TS. Repeating this procedure recursively for each of the
p+ 1 symmetric TS 2 we obtain the tree in Fig. 4.2. Assuming that all minima found in this
way from symmetric TS are unique, their number would increase as 2p−1p!. Numerically, we
observe that the number of unique minima is much smaller compared to the naïve counting,
increasing approximately exponentially with p.

4.3.2 Greedy maneuvering through the graph
The exponential growth of the number of minima in QAOA depth pmakes the naïve construction
and exploration of the full graph a challenging task. To deal with the rapidly growing number
of minima we introduce:

Corollary 3.1 (Greedy recursive strategy). Using the lowest energy minimum that is found
for QAOA depth p, we generate 2p+ 1 transition states (TS) for QAOAp+1. Each transition
state corresponds to the same state in the Hilbert space as the initial local minimum, so the
energy of all the transition states is the same and equal to the energy of the initial local
minimum. We then optimize the QAOA parameters starting from each of these transition
states and select the best new local minimum of QAOAp+1 to iterate this procedure. This
Greedy recursive strategy is guaranteed to lower energy at every step.

Proof. Let the initial local minimum at QAOA depth p have energy Ep. Since all the 2p+ 1
transition states are generated from this minimum and have the same energy Ep, when we
optimize the QAOA parameters for QAOAp+1 starting from these transition states, all the
converged local minima will have energy less than or equal to Ep. As a result, the energy can
either decrease or stay the same (provided that curvature vanishes, which we do not expect on
physical grounds, see Appendix C.2), but it cannot increase. Therefore, the Greedy recursive
strategy is guaranteed to lower or maintain the energy at every step.

The Greedy path that is taken by this strategy in the initialization graph is shown in Fig. 4.2
as a red dashed line. We can see that this heuristic allows to very effectively maneuver the
increasingly complex graph with its numerous local minima and find the global minimum for
circuit depths up to p = 7. A detailed description of the algorithm is presented in Appendix C.5.

To systematically explore how Greedy maneuvers the initialization graph, we compare it to two
initialization strategies proposed in the literature: The so-called Interp approach [ZWC+20]
interpolates the optimal parameters found for circuit depth p to p + 1 and uses it as a
subsequent initialization. This procedure creates a smooth parameter pattern that mimics an
annealing schedule. Numerical studies demonstrated that Interp has the same performance
as the best out of 2p random initializations. The second method that we use for comparison
is the Trotterized Quantum Annealing (TQA) method [SS21a], that initializes QAOAp using

2Note, that we restrict only to symmetric TS since we numerically find no performance gain from including
the non-symmetric TS in the initialization procedure.
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γj = (1 − j
p
)∆t and βj = j

p
∆t. The step size ∆t is a free parameter determined in a

pre-optimization step. The TQA has similar performance to Interp at moderate circuit
depths, notably having lower computational cost. Obtaining an initialization for QAOAp within
the Interp framework requires running the optimization for all p′ = 1, . . . , p− 1, while in
the TQA the search for an optimal ∆t is performed directly for a given p.

Fig. 4.3 reveals that the Greedy approach yields similar performance to existing methods.
Moreover, the performance of TQA slightly degrades at higher p, however, Greedy is fully
on par with Interp initialization. The comparable performance between Greedy and earlier
heuristic approaches is surprising. Indeed, the Greedy method for QAOAp explores p+ 1
symmetric TSs and chooses the best out of the resulting up to 2(p+ 1) minima (if none are
equivalent), in contrast to Interp, which uses a single smooth initialization pattern at every
p and thus at a smaller computational cost.

4.3.3 Smooth pattern of variational angles and heuristic
initializations

We find that having a smooth dependence of the variational angles on p (referred to as a
“smooth pattern”) is an important characteristic for efficiently maneuvering the initialization
graph. A smooth pattern means that the variational angles change gradually and continuously
as the QAOA depth p increases, without abrupt jumps or discontinuities. This smoothness
property can be visually inspected by plotting the variational angles as a function of p and
observing whether the curve appears continuous and smooth. Assuming we found a smooth
pattern of QAOAp, Theorem 3 produces a TS of QAOAp+1 by padding it with zeros, effectively
introducing a discontinuity (bump). Optimization from the TS with such a bump can proceed
by rolling down either side of the saddle, see Fig. 4.4(a), finding two new minima. Remarkably,
the eigenvector corresponding to the index-1 direction of the Hessian has dominant weight

2 4 6 8 10 12 14 16 18 20
Circuit depth p
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10−2

10−1

1
−
r β
,γ

Greedy

Tqa

Interp

Greedy for graph in Fig. 2

Global

Figure 4.3: Performance comparison between different QAOA initialization strategies used
for avoiding low-quality local minima. Greedy approach proposed in this work yields the
same performance as Interp [ZWC+20] and slightly outperforms TQA [SS21a] at large p.
Global refers to the best minima found out of 2p initializations on a regular grid. Data is
averaged over 19 non-isomorphic RRG3 with n = 10, shading indicates standard deviation.
System size scaling for up to n = 16 and performance comparison for different graph ensembles
can be found in the Appendix C.6.
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on the variational angles with initially zero value, see C.4 for details. Thus descending along
the index-1 direction, we can either enhance or heal the resulting discontinuity in the pattern
of variational angles. As a result, among two new local minima of QAOAp+1 one typically
exhibits a smooth parameter pattern where the bump was removed, while the other minimum
has an enhanced discontinuity, see Fig. 4.4(b) for an example. Utilizing these observations in
a numerical study, we find that minima exhibiting a non-smooth parameter pattern exhibit
usually a worse or the same performance as smooth minima. In fact, in the Greedy procedure
we find that in most cases, in particular at the beginning of the protocol, smooth minima are
selected. However, there are cases where a non-smooth minimum is selected if it exhibits the
same energy as the smooth one. Greedy then branches off in the optimization graph into a
sub-graph involving only non-smooth minima. Usually, this process of branching off is followed
by a smaller gain in performance from increasing p.

The preferred smoothness of QAOA optimization parameters has been explored in the litera-
ture [ZWC+20, MBS+22, WL22] and is believed to be linked to quantum annealing [BBB+21]
(QA). In QA the ground state of the Hamiltonian HC is obtained by preparing the ground state
of HB and smoothly evolving the system to HC such that the system remains in the ground
state during the evolution. A fast change, as generated by a bump in the protocol, leads to leak-
age into excited energy levels and thus decreased overlap with the target ground state of HC .
Since the QAOA can be understood as a Trotterized version of QA [FGG14, SS21a, ZWC+20],
for large p, we believe that a similar process is present in the QAOA and thus makes a smooth
parameter pattern preferable.

We find that smooth Greedy minima coincide with Interp minima as shown in Fig. 4.4(b).
The Interp naturally creates a smooth parameter pattern since the minima found at p is
interpolated to a QAOAp+1 initialization. The optimizer only slightly alters the parameters from
its initial value, as can be seen in Fig. 4.4(b). Geometrically, the Interp initialization can be
obtained from the symmetric TS constructed by Theorem 3 as Γp+1

Interp = 1
p

∑︁p+1
i=1 Γp+1

TS (i, i). In
other words, Γp+1

Interp is the rescaled center of mass point of all symmetric TS, with the rescaling
factor (p+1)/p being physically motivated. Considering the center of mass of all TS smoothens
out discontinuities present in individual TS. The re-scaling is related to the notion of “total time”
of the QAOA, given by the sum of all variational angles, T = ∑︁

j |γj|+ |βj| [ZWC+20, LLL20],
that resembles the total annealing time in the limit p→∞. This parameter has been shown
to scale as T ∼ p [SS21a], naturally explaining the role of factor (p + 1)/p in yielding the
correct increased total time of QAOAp+1. In other words, the Interp strategy seems to
essentially execute a Greedy search without optimizing in the index-1 direction from the
TS. This insight lends credence to the success of Interp. However, only Greedy offers a
guarantee for performance improvement with increasing p, while for Interp this behavior is
supported only by numerical simulations.

4.4 Discussion
In this work, we analytically demonstrated that minima of QAOAp can be used to obtain
transition states (TS) for QAOAp+1 which are stationary points with a unique negative
eigenvalue in the Hessian. These TS provide an excellent initialization for QAOAp+1, because
they connect to two new local minima with lower energy. This construction allows us to visualize
how local minima emerge at different energies for increasing circuit depth using an initialization
graph. Categorizing the local minima on this graph by their smooth (discontinuous) patterns
of variational parameters, we find that the smooth minima achieve the best performance.
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a b

Figure 4.4: (a) Cartoon of descent from two different TS at of QAOAp+1 generated from a
QAOAp minimum with a smooth pattern leads to the same new smooth pattern minima of
QAOAp+1, also reached from the Interp [ZWC+20] initialization. Two additional non-smooth
local minima typically have higher energy. (b) shows the corresponding initial and convergent
parameter patterns for the RRG3 graph shown in Fig. 4.2 for p = 10.

Incorporating the smooth nature of minima allows us to establish a relation between the
Greedy approach for the exploration of the initialization graph and the best available
initialization strategy [ZWC+20].
The use of TS and their analytic construction for the study of QAOA provide the first
steps towards an in-depth understanding of the full optimization landscape of the QAOA.
The constructed TS are guaranteed to provide an initialization that improves the QAOA
performance, suggesting that our construction may be useful for establishing analytic QAOA
performance guarantees [FGG14, WL21, FGG20a] for large p in a recursive fashion. Of
particular interest is here an analytical understanding of the numerically observed exponential
performance improvement with circuit depth. On a practical side, the established relation
between heuristic initializations [ZWC+20] and Greedy exploration of TS suggests that our
construction of TS may be useful as a starting point for constructing simple initialization
strategies in a broader class of quantum variational algorithms, such as the variational quantum
eigensolver [KMT+17, PMS+14] and quantum machine learning [BLSF19b].
In addition, our results invite a more complete characterization of the QAOA landscape using
the energy landscapes perspective [Wal04]. What fraction of minima does our procedure find
out of the complete set of QAOA local minima? Are there more TS and are our analytically
constructed TS typical? How is the Hessian spectrum distributed at these minima and TS?
How do these properties depend on the choice of the QAOA classical Hamiltonian, in particular
for classical problems with intrinsically hard landscapes [CLSS21]? Answering these and related
questions will most likely lead to practical ways of further speeding up the QAOA by reducing
the overhead of the classical optimization [WVG+22].
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CHAPTER 5
A Recursive Lower Bound on the Energy

Improvement of the Quantum
Approximate Optimization Algorithm

In this Chapter, building on previous results [SMKS23], we provide a lower bound on the
energy improvement of the quantum approximate optimization algorithm (QAOA) between
consecutive circuit depths p and p+ 1. We first discuss the construction of transition states
which are stationary points of the QAOA with a unique negative curvature direction. We
then construct an analytic estimate of the negative Hessian eigenvalue and corresponding
eigenvector at each transition state, which enables us to obtain an analytical lower bound on
the improvement of the cost function, and to reduce the cost of optimization by bypassing
the need to construct and diagonalize the Hessian matrix. Finally, we numerically verify the
accuracy of our estimates. Although the obtained energy lower bound underestimates the
improvement of the cost function, we find it shows an exponential decrease with the number
of layers p. This section is based on the preprint:
Raimel A. Medina and Maksym Serbyn. A Recursive Lower Bound on the Energy Improvement
of the Quantum Approximate Optimization Algorithm. arXiv, 2405.10125, May 2024

5.1 Introduction
Variational quantum algorithms [CAB+21, BCLK+22] have emerged as a promising approach
to leveraging the capabilities of noisy intermediate-scale quantum (NISQ) devices [Pre18].
Among these algorithms, the Quantum Approximate Optimization Algorithm (QAOA) [FGG14]
and the Variational Quantum Eigensolver (VQE) [PMS+14] stand out due to their potential for
solving optimization problems and quantum chemistry simulations, respectively. The idea is to
use the quantum computer in a feedback loop with a classical computer, where it implements a
variational wave function that is measured to compute the value of the so-called cost function.
This information is then fed into a classical computer where it is processed and the variational
wave function is subsequently updated aiming to find a minimum of the cost function, which
provides an (approximate) solution to the computationally hard problem.
In the QAOA, the state is prepared by a p-level circuit specified by 2p variational parameters.
It was shown that even at the lowest circuit depth p = 1, QAOA has non-trivial provable
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performance guarantees [FGG14, FGG15]. The existence of known analytical performance
guarantees makes the QAOA — in contrast to the VQE — a reference algorithm to explore
quantum speedups on NISQ devices. In particular, the QAOA has been the subject of both
analytical studies [FGG20b, BM21, BM22, BBF+18, WL21, ZBM24, BGMZ22, BFM+22,
SHS+24, YBL20, ZTB+22] and practical implementations [Har21b, WVG+22, WSW24, E+22]
for small values of the circuit depth, p. These studies suggest that significant gains can be
expected as p increases, particularly when p ≥ lnN , with N representing the number of
qubits involved. However, the behavior of QAOA in this high-depth limit remains largely
unexplored. Heuristic numerical studies indicate that while the optimization landscape of
QAOA becomes increasingly complex [Cro18, ZWC+20], a robust initialization strategy can
lead to rapid convergence. Unfortunately, most existing strategies for initialization rely on
heuristic approaches [SS21a, ZWC+20, JCKK21], lacking a rigorous analytical foundation.
Addressing this gap, the recent work [SMKS23] by present authors and collaborators introduced
a recursive QAOA initialization strategy based on the concept of transition states. Assuming
convergence of QAOA at depth p to a local minimum, Ref. [SMKS23] analytically constructed
2p+ 1 transition states for QAOA at depth p+ 1. These transition states, characterized by a
single negative curvature direction, ensure a reduction in the cost function value when used
as initialization points. Drawing upon this analytical foundation, Ref. [SMKS23] proposed a
Greedy strategy for sequential QAOA initializations that systematically improve the cost
function value with increasing p. Such a recursive approach is practical even in the limit of
large p, providing an analytical basis for the QAOA initialization. While the Greedy strategy
comes with guarantees of improvement, it requires computing and diagonalizing the Hessian
of the cost function at each transition state, thus increasing the cost of optimization.
In this work, we focus on obtaining analytical insights into deep QAOA using transition
states. To this end, we construct an analytical estimate of the minimum Hessian eigenvalue
and corresponding eigenvector at each transition state. These results simplify the Greedy
initialization strategy [SMKS23] by effectively eliminating the need to construct or estimate
the Hessian of the cost function. Furthermore, we provide a physical intuition behind the
expression for the minimal Hessian eigenvalue at the transition state and relate it to the energy
variance of the state prepared by the QAOA circuit.
The analytical approximation of the Hessian eigenvalue and eigenvector, enables us to expand
the QAOA cost function to the fourth order around the transition state. A similar expansion
was formulated in Ref. [DBW+19], where it was performed to the third order and applied
to the optimal quantum control problem. Our expansion results in a non-trivial local energy
minimum located in the vicinity of the transition state, thereby giving a recursive lower
bound on the cost function improvement achievable through optimization. We check our
approximations and bound using numerical simulations of the QAOA on instances of 3-regular
unweighted/weighted MaxCut instances with N = 10 to 22 vertices, and find the analytic
estimates of the Hessian properties to be accurate within a percent. The analytically obtained
lower bound on the cost function improvement scales correctly with the number of qubits N .
However, our bound decays exponentially with p at a faster rate compared to the numerically
obtained cost function improvement.
Our results suggest that although the immediate vicinity of analytic transition states does not
contain the true cost function minimum of QAOA at depth p + 1, it qualitatively captures
the “flattening” of the QAOA landscape with p. We speculate that our analytic results on the
energy expansion around the transition states may be expanded into an analytic performance
guarantee for the QAOA performance at large circuit depths. Specifically, our work establishes
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a lower bound on the energy gain expressed via the fidelity of the prepared QAOA state and
the true ground state of the cost Hamiltonian. Provided that one manages to bound the
increase in fidelity, or potentially, the decrease in the energy variance, this may lead to the
desired performance guarantee.

The rest of the paper is structured as follows. In Sec. 5.2, we review the QAOA and the
transition states construction introduced in previous work. In Sec. 5.3 we present and verify
our estimates for the minimum negative Hessian eigenvalue and the corresponding eigenvector.
Furthermore, we discuss numerical results that show a connection between the minimum
Hessian eigenvalue and the energy dispersion of the QAOA state. Next, in Sec. 5.4 we present
a lower bound on the energy improvement between local minima of the QAOA at circuit
depths p and p+ 1. We also test the tightness of the presented bound and discuss its wide
implications for the performance of the QAOA. Finally, in Sec. 5.5 we discuss our results and
potential future extensions of our work. Appendices D.1-D.3 present detailed proofs of our
analytical results, as well as supporting numerical simulations.

5.2 QAOA and transition states
In this section, we start with defining the QAOA algorithm as applied to the MaxCut problem
and review the analytic construction of transition states from Ref. [SMKS23].

5.2.1 QAOA and the MaxCut
The QAOA [FGG14] was first introduced as a near-term algorithm for approximately solving
classical combinatorial optimization problems. Here, we focus on the particular case of the
maximum cut MaxCut problem. MaxCut seeks to partition a given (un)weighted graph G
with nE(G) edges into two groups such that the number of edges (or the sum of their weights,
for weighted problems) that connect vertices from different groups are maximized. Finding the
MaxCut for a graph with N vertices is equivalent to finding a ground state for the N -qubit
classical Hamiltonian

HC =
∑︂

⟨i,j⟩∈E
Jijσ

z
i σ

z
j , (5.1)

with the sum running over a set of graph edges E with weights Jij and σzi being the Pauli-z
matrix acting on the i-th qubit. We assume that this problem has a unique ground state,
denoted as |E0⟩ (this state is unique in the proper sector of global Z2 symmetry, which we
use to improve the efficiency of the numerical simulations). The full spectrum of HC consists
of all product states ordered according to their energies and will be used in what follows as a
complete basis, |E0⟩ , |E1⟩ , . . . , |E2N −1⟩.

The depth-p QAOA algorithm [FGG14], denoted in what follows as QAOAp, minimizes the
expectation value of the classical Hamiltonian over the variational state |Γp⟩ where Γp = (β,γ)
encodes variational angles β = (β1, . . . , βp) and γ = (γ1, . . . , γp) shown in Fig. 5.1(a):

|Γp⟩ = U(Γp)|+⟩ =
p∏︂

k=1
e−βkHBe−γkHC |+⟩ . (5.2)

Here
HB = −

N∑︂
i=1

σxi , (5.3)
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is the mixing Hamiltonian and the circuit depth p controls the number of applications of the
classical and mixing Hamiltonian. The initial product state |+⟩ = ⊗Ni=1 |+⟩i, where all qubits
point in the x-direction is an equal superposition of all possible graph partitions which is also
the ground state of HB. Finding the minimum of

E(Γp) = ⟨Γp|HC |Γp⟩ (5.4)

over angles (β1, . . . , βp) and (γ1, . . . , γp) that form a set of 2p variational parameters, Γp =
(β,γ), yields a desired approximation to the ground state of HC , equivalent to an approximate
a solution of MaxCut. The scalar function E(Γp) thus defines a 2p-dimensional energy
landscape where the global minimum yields the best set of QAOA parameters. The performance
of the QAOA is typically reported in terms of how close is the approximation ratio to one,

1− r(Γp) = E0 − E(Γp)
E0

, (5.5)

where E0 is the ground state of the classical Hamiltonian (5.1). From here we see that a
decrease in 1− r implies that the expectation value of the cost function is approaching the
ground state energy of the classical Hamiltonian.
Here, we restrict our attention to MaxCut on 3-regular graphs, where every vertex is
connected to exactly 3 other vertices. In the main text, we focus on unweighted 3-regular
graphs, while we delegate the results for weighted 3-regular graphs, with weights Jij chosen
uniformly at random from the interval [0, 1], for the Appendix D.1. It is important to note
that the results presented here are fully general (up to algebraic details), meaning that they
hold for generic non-commuting Hamiltonians, HC and HB, provided that the initial state
|ψ0⟩ (or |+⟩ in this work) is an eigenstate of HB.

5.2.2 Analytical transition states

Figure 5.1: (a) Analytic construction of the particular transition state obtained from inserting
two identity gates into QAOAp circuit. (b) We inspect the energy alongside the unique descent
direction associated with each of the transition states. The minimum along the unique descent
direction (gray star marker) does not correspond to a stationary state of the energy. However,
it lower bounds the energy of the minimum obtained by running optimization. (c) Sketch of
the projected dependence of the cost function, with ∆E(ε∗) putting a rigorous lower bound
on the energy improvement at this iteration.

Most studies of the QAOA optimization landscape to date were restricted to local minima
of the cost function E(β,γ) since they can be directly obtained using standard gradient-
based or some gradient-free optimization routines. Local minima are stationary points of the
energy landscape, defined as ∂iE(β,γ) = 0, with the index i ranging over all 2p variational
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parameters, where all eigenvalues of the Hessian matrix Hij = ∂i∂jE(β,γ) are positive, that
is the Hessian at the local minimum is positive-definite. The other stationary points with
0 < k < 2p negative Hessian eigenvalues are known as index-k saddle points.

Work [SMKS23] analytically constructed index-1 saddle points dubbed transition states (TS)
hereafter, of the QAOAp+1 using a given local minimum of the QAOAp, Γpmin. This construction
is illustrated in Fig. 5.1(a), and it consists of the insertion of a pair of identity gates, viewed as
additional variational parameters initialized at a value equal to zero. Such insertion is allowed
at 2p+ 1 possible positions, giving rise to 2p+ 1 distinct stationary points of the QAOAp+1,
Γp+1

TS with a unique negative eigenvalue of the Hessian. We note that while showing that Γp+1
TS

constructed as above are stationary points is relatively straightforward, demonstrating that
their Hessian has a single negative eigenvalue is less trivial, with a detailed proof available in
Ref. [SMKS23].

Given that, by construction, all the 2p+1 TS have the same energy as the initial local minimum
Γpmin, one can use the direction associated with the negative eigenvalue of the Hessian (hereafter
referred to as index-1 direction) to further decrease the energy, see Fig. 5.1(b) for an example.
In this way, the TS construction can be used as an initialization scheme that guarantees
improvement of the QAOA performance with the circuit depth p [SMKS23]. In this work,
using the properties of the QAOA energy landscape in the vicinity of the transition states,
we quantify the performance improvement of the QAOA by providing a lower bound for the
energy improvement after an iteration of the QAOA.

5.3 Curvature of energy landscape near transition state
In this section, we explore the curvature which is the first nontrivial local property of the
QAOA energy landscape around the TS constructed out of a local minima Γpmin of the QAOAp.
Using the structure of the Hessian at the TS, we develop an approximation to its unique
negative eigenvalue and its corresponding eigenvector. We also uncover connections between
the negative curvature of the Hessian at the TS and the excited state population of the
prepared QAOA state as a function of the circuit depth p.

5.3.1 Minimum Hessian eigenvalue and eigenvector
In this work, our analysis is specifically tailored to the scenario where additional identity
gates are incorporated at the initial layer of the pre-existing QAOAp circuit, as illustrated in
Fig. 5.1(a). This particular scenario corresponds to the transition state denoted as Γp+1

TS (1, 1)
in Ref. [SMKS23]. To maintain clarity and avoid unnecessary complexity in notation, we refer
to this state more simply throughout our discussion when the context permits. We denote the
transition state configuration as:

Γp+1
TS = (0, β⋆1 , . . . , β⋆p ; 0, γ⋆1 , . . . , γ⋆p). (5.6)

The primary reason for focusing on this specific transition state is that it significantly simplifies
the analytical manipulations required for deriving the worst-case energy improvement achievable
through optimizing QAOAp+1, starting from a local minimum obtained by QAOAp. Additionally,
Appendix D.1 presents numerical analyses that benchmark the effectiveness of this approach
against the Greedy optimization strategy introduced on [SMKS23], which exploits all 2p+ 1
transition states derived from Γpmin.
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In Appendix D.2, we first establish rigorous lower and upper bounds for the minimum Hessian
eigenvalue. However, these bounds do not include an estimate for the corresponding Hessian
eigenvector. To obtain this estimate, we construct a similarity transformation that transforms
the Hessian at the transition state Γp+1

TS into an almost block-diagonal form. By taking
advantage of the Hessian structure, we derive a vector that refines the previously introduced
upper bound for the minimum Hessian eigenvalue, which we then use as our estimate

δTS =

⎛⎜⎝−1
2 ,

1
2 , 0, . . .⏞ ⏟⏟ ⏞

p−1 zeros

;−sign(b)√
2

, 0, . . .⏞ ⏟⏟ ⏞
p zeros

⎞⎟⎠ , (5.7)

where the parameter b is the second derivative of the cost function b = ∂γ1∂β1E(Γp+1
TS ), which

can be expressed as a nested commutator of the following three operators:

b = ⟨+|[HC , [HB, U
†(Γpmin)HCU(Γpmin)]]|+⟩. (5.8)

The approximate form of the eigenvector (5.7) shows that when initialized from the former
minima of QAOAp, the classical optimization procedure changes values of angles β1, γ1 that
were initialized at zero initially, as well as the value of β2 = β⋆1 initialized at the value set
by the local minimum at depth p. All remaining parameters are left intact at the start of
gradient descent. The expression for b above can be further simplified relying on the specific
expressions for HC and HB, using Eq. (5.1) and Eq. (5.3) respectively

b = 8⟨+|HCU
†(Γpmin)HCU(Γpmin)|+⟩. (5.9)

Finally, we approximate the minimum Hessian eigenvalue λTS by the expectation value of the
Hessian on the approximate eigenvector δTS, obtaining that it is proportional to the second
derivative b = ∂γ1∂β1E(Γp+1

TS ) defined above:

λTS = − |b|√
2

= −4
√

2|⟨+|HCU
†(Γpmin)HCU(Γpmin)|+⟩|. (5.10)

We refer the discussion of the physical intuition behind this expression to the Sec. 5.3.3, where
we show that λTS vanishes in the case when QAOA unitary circuit rotates the |+⟩ state into
an exact eigenstate of HC . It is critical to note that our estimation of the minimum Hessian
eigenvalue is potentially computable on a NISQ device. From the form of the transition state
specified by Eq. (5.6), we deduce that the value of b in Eq. (5.9) can be estimated on a NISQ
device using additionally O(nE(G)) more circuit executions. Here, nE(G) denotes the number
of edges (interaction terms) in the problem graph G that determines the cost Hamiltonian
Eq. (5.1).
Although in this Section we focused on the transition state obtained by padding with zeros
the first layer of the QAOA, in the Appendix D.2, we show that a similar approach allows
us to obtain estimates of eigenvectors and eigenvalues for all the 2p + 1 TS. For a generic
transition state Γp+1

TS (i, j), the approximate Hessian eigenvector has non-zero components
corresponding to adjacent gates, that is βi, βi+1, γj, and γj−1. Moreover, the approximate
eigenvalue is given by a particular matrix element of the Hessian when the zeros insertion is
at the first or last layer, or by a difference of two particular matrix elements in the Hessian
matrix for all remaining transition states. In all the cases, our approximation to the eigenvalue
is a measurable quantity, which can be estimated analogously to the procedure described after
Eq. (5.10).
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5.3.2 Quality of the curvature approximation
To assess the accuracy of our estimates for the true minimum Hessian eigenvalue and its
corresponding eigenvector, we examine a collection of non-isomorphic random instances of
3-regular unweighted graphs with N = 10, . . . , 16 vertices—18, 34, 55, and 40 instances
respectively—executing the QAOA for circuit depths within the range p ∈ [1, 30]. For each
local minimum obtained at a given circuit depth p, we construct the 2p+ 1 transition states
and compute their exact numerical Hessians. After determining the Hessian spectrum, we
calculate the relative error of our minimum eigenvalue estimate and the deviation of the
absolute overlap between the approximate and exact Hessian eigenvector from 1.
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Figure 5.2: Accuracy of curvature and descent direction estimates shown by violin plots for
QAOA transition states across graph instances with 10 to 16 vertices and circuit depths ranging
from 1 to 30. (Top) Relative error in the negative Hessian eigenvalue estimation; the median
error is indicated by the horizontal line. (Bottom) Deviation from unity in the absolute overlap
between the estimated and exact eigenvectors associated with the negative eigenvalue. The
shaded regions capture the probability density of the data, reflecting that the accuracy of our
eigenvector estimate is consistent across different system sizes.

We consolidate our findings in Fig. 5.2, which is composed of “violin plots” that illustrate the
distribution of the obtained numerical data. The width of each violin indicates the frequency
of data points at different error or overlap values, providing insight into the variability of the
measures. Typically, the median of the data—indicated by the horizontal line within each
violin—reveals that the relative error in the minimum Hessian eigenvalue is on the order of
O(10−2), while the deviation from 1 of the absolute value of the overlap between the exact
and approximate eigenstates is on the order of O(10−3). More critically, the shape and extent
of the violins suggest that the accuracy of our estimates remains consistent across all system
sizes and instances examined. This visual analysis underlines the reliability of the estimates
provided by our method, with the precision of our estimate appearing stable upon increasing
the number of qubits N .

59



5. A Recursive Lower Bound on the Energy Improvement of the Quantum
Approximate Optimization Algorithm

5.3.3 Evolution of the curvature with the depth of QAOA
In this section, we focus on the behavior of the curvature with the circuit depth p. First, we
demonstrate that λTS is vanishing when QAOAp prepares an eigenstate of the cost Hamiltonian
HC , thereby being proportional to the square root of the infidelity of the eigenstate preparation.
Moreover, we build a physical intuition for the value of curvature by relating it to the action
of QAOA circuit on the excited states of the mixing Hamiltonian. Next, we suggest the
parallel in the behavior of the curvature and the energy variance of the state prepared in
the QAOA circuit with respect to the cost Hamiltonian. Finally, we test our arguments
numerically, demonstrating that similarly to the 1− r, where r is the QAOA approximation
ratio, vanishing exponentially with the circuit depth p, the curvature and energy variance also
decrease exponentially.

To provide the physical intuition for the value of λTS in Eq. (5.10), we write quantum states
U(Γpmin)|+⟩ and U(Γpmin)HC |+⟩ in the following form

U(Γpmin)|+⟩ = α0|E0⟩+ α0
⊥|ψ0⟩,

U(Γpmin)HC |+⟩ = nCκ
0|E0⟩+ nCκ

0
⊥|ϕ0⟩,

(5.11)

where we have selected out the ground state of the classical Hamiltonian, |El=0⟩ (this can be
any eigenstate of HC , not necessarily the ground state, as we will discuss later), and remaining
states |ψ0⟩ and |ϕ0⟩ in this expansion are normalized superposition of all other eigenstates
of HC , thus being orthogonal to |E0⟩ by construction1. The constant nC = ∑︁

⟨ij⟩ J
2
ij comes

from the norm of HC |+⟩ and it is added such that |κ0|2 + |κ0
⊥|2 = 1.

Notations introduced in Eq. (5.11) allow us to rewrite the expression for the curvature,
Eq. (5.10), as

|λTS| = 4
√

2nCα0
⊥κ

0
⊥|⟨ϕ0|HC − E0|ψ0⟩|, (5.12)

where without loss of generality we assume that factors in this expression, α0
⊥ and κ0

⊥, are real
positive numbers. In notations of Eq. (5.11) α0 corresponds to the square root of the fidelity
of the QAOA prepared state U(Γpmin)|+⟩ to the ground state |E0⟩ of HC with eigenvalue E0,
and α0

⊥ =
√︂

1− |α0|2 is the infidelity. Crucially, the second line of Eq. (5.11) defines κ0 as
square root of the fidelity between states |E0⟩ and U(Γpmin)HC |+⟩, where the latter state
physically corresponds to the QAOA circuit applied to an excited eigenstate of the mixing
Hamiltonian with eigenvalue −N + 4 (for more general forms of HC and HB, we expect this
state to be a combination of low-lying excited eigenstates of HB). Since the curvature λTS is
proportional to the product of α0

⊥ and κ0
⊥, it implies that it is sensitive not only to the infidelity

resulting from the QAOA circuit preparing the desired ground state of the cost Hamiltonian,
but also to the behavior of the low-lying excited state of the mixing Hamiltonian as it is acted
upon by the QAOA circuit.

From expression (5.12), we realize that a non-zero curvature around the transition state Γp+1
TS

comes from the fact that the QAOA circuit prepares a superposition of energy eigenstates
as quantified by α0

⊥ ≠ 0 and κ0
⊥ ≠ 0. Furthermore, to determine the curvature we need

information on what superposition of eigenstates of the classical Hamiltonian the QAOA unitary
creates when acting on the superposition of states σzi σzj |+⟩, with ⟨i, j⟩ ∈ EG corresponding to
an edge in the problem graph G, that are the superposition of second excited states (two spin
flips in x basis) of the mixing Hamiltonian.

1The terms in Eq. (5.11) are not completely independent. Using the fact that states HC |+⟩ and |+⟩ are
orthogonal, we can show that following relation holds α0(κ0)∗ + α0

⊥κ
0
⊥⟨ϕ0|ψ0⟩ = 0.
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Finally, we did not discuss the role of the expectation value, ⟨ϕ0|HC − E0|ψ0⟩ in Eq. (5.12).
On the one hand, this matrix element is expected to be extensive, i.e. increasing proportionally
to number of degrees of freedom, N , as is also confirmed by our numerical simulations, see
Figs. 5.3 and D.4. On the other hand, estimating the scaling of this matrix element with p
remains an open challenge. The contributions to this expectation value primarily arise from
eigenstates of HC where both |ϕ0⟩ and |ψ0⟩ have significant weight. Developing a framework
to accurately assess these contributions and their scaling with p based on physically motivated
assumptions remains an intriguing open problem.
Another physical quantity that quantifies the deviation of the state |Γpmin⟩ from an eigenstate
of the cost Hamiltonian HC is the energy variance. Using the notation of Eq. (5.11) we express
the energy variance as

var|Γp
min⟩[HC ] = ⟨Γpmin|H2

C |Γ
p
min⟩ − ⟨Γ

p
min|HC |Γpmin⟩2,

= |α0
⊥|2var|ψ0⟩[HC ] + |α0

⊥|2|α0|2(⟨ψ0|HC |ψ0⟩ − E0)2. (5.13)

From this expression, it is apparent that the energy variance is proportional to the same
infidelity of the state U(Γpmin)|+⟩ to the ground state.
Comparing expressions (5.12)-(5.13), we expect both |λTS| and energy variance to display
similar qualitative behavior with the circuit depth p. Thus, we establish a connection between
two seemingly unrelated properties: the energy variance of the quantum state prepared by the
QAOAp circuit and the curvature of the cost function of the QAOAp+1 at the transition state.
Since so far we focused on the ground state |E0⟩ of HC , and previous literature [ZWC+20,
Cro18] heuristically demonstrated that for the MaxCut problem on unweighted 3-regular
graphs, the approximation ratio r(Γ) tends towards 1 exponentially with increasing circuit
depth p, we anticipate that infidelity α0

⊥ also tends to zero exponentially, thus leading to an
exponential decrease in both curvature and energy variance to zero.
To validate our expectations, we first reproduced the numerically observed exponential con-
vergence of QAOA. We then calculated the average absolute value of λTS across various
unweighted MaxCut instances with N ranging from 12 to 22 vertices. The obtained results
are displayed in Fig. 5.3 together with the average of the approximation ratio for circuit depths
ranging in the interval p ∈ [1, 30]. The top panel of this figure reproduces the exponential
decrease of 1− r with circuit depth p [Cro18, ZWC+20]. The bottom panel shows the sur-
prisingly close quantitative agreement between the averaged energy variance and the absolute
value of the negative curvature |λTS|. This signals that these quantities can be related in a
tighter way than what we discussed above, in particular, the constants α0

⊥ and κ0
⊥ may be

proportional to each other.
Finally, we want to highlight some possible implications of the above observations for the
performance of the QAOA at finite but deep circuit depth. First, our results above imply that
if the QAOA prepares an eigenstate |El⟩ that is different from the ground state, l > 0, of
the cost Hamiltonian HC the optimization strategy that uses transition states as initialization
will halt since there are no descent directions around any of the transition states. Assuming
that the ground state is challenging to prepare for whatever reason, it may be feasible for
the QAOA to instead prepare a low-lying eigenstate |El⟩ with l > 0 but not too large, with
high fidelity (|αl| ∼ 1). As a consequence, the local negative curvature around each TS will
become small and as a result, we expect the optimization to slow down. In Appendix D.1, we
illustrate this scenario in an instance of a weighted 3-regular graph that was originally studied
in [ZWC+20].
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Figure 5.3: (Top) Circuit depth dependence of the approximation ratio r(Γpmin), which approach
zero exponentially with p. These results were initially observed in [Cro18, ZWC+20]. (Bottom)
Relation between the magnitude of the negative curvature around the transition state Γp+1

TS ,
and the energy variance varΓp

min
[HC ] as functions of the circuit depth p. The numerical data

reveals a notable quantitative alignment between the curvature and the energy variance for
varying system sizes N .

Thus, our results that relate the landscape curvature at the TS, the energy variance of the
QAOA state, and infidelity, suggest that using the Greedy strategy (or similarly using the
TS Γp+1

TS (1, 1)) the QAOA may effectively converge to a (low) energy manifold of the cost
Hamiltonian HC in the regime of deep circuit. Quantifying how this convergence happens
remains an open problem, but in the next section we make the first steps in this direction by
expanding the cost function to higher order around the transition state.

5.4 Higher order expansion of energy along index-1
direction

In this section we use the approximate index-1 direction given by Eq. (5.7) to expand the
QAOAp+1 cost function up to the fourth order along the descent direction. This results in
lower bound on the improvement of the QAOA cost function resulting from increasing the
number of parameters from 2p to 2p+ 2.

5.4.1 Taylor expansion
Using the explicit knowledge of the index-1 descent direction, we estimate how much the
energy can be improved using the Taylor series expansion around the point Γp+1

TS . Specifically,
Appendix D.3 details our computation of the cost function’s expansion, E(Γp+1

TS + εδTS), to
the fourth order in ε. In what follows, we neglect the cubic term in the energy expansion,
delegating the details of such step to the Appendix D.3, and obtain a simple expression:

E(Γp+1
TS + εδTS) ≈ E(Γpmin) + λTS

2 ε2 + ∂2
γ1E(Γp+1

TS )ε4, (5.14)

62



5.4. Higher order expansion of energy along index-1 direction

−0.10 −0.05 0.00 0.05 0.10
ε

−7.338

−7.337

−7.336

−7.335

−7.334

E
(Γ

6 T
S

+
εδ

T
S
)

Exact numerics

Taylor expansion without ε3

Taylor expansion with ε3

Local minima

Figure 5.4: Taylor approximation of the energy at a transition state obtained from a local
minima of QAOA5 when perturbed in the index-1 direction. We inspect the impact of the cubic
term in the perturbation parameter ε in the energy expansion around the index-1 direction.
The instance studied corresponds to that of Appendix D.1.

where ∂2
γ1E(Γp+1

TS ) is expressed as a combination of two expectation values:

∂2
γ1E(Γp+1

TS ) = 2⟨+|HCU(Γpmin)†HCU(Γpmin)HC |+⟩ − 2 Re
{︂
⟨+|U(Γpmin)†HCU(Γpmin)H2

C |+⟩
}︂
.

(5.15)
The fact that the fourth order expansion term of energy is proportional to the second derivative,
∂2
γ1E(Γp+1

TS ) can be understood from the specific form of the descent direction vector, Eq. (5.6).
Using the explicit form of the descent vector, in Appendix D.3 we show that the first non-trivial
expansion term in ε of the state U(Γp+1

TS + εδTS) |+⟩ is proportional to ε2HC |+⟩. Combining
two of such terms, we precisely get the contribution in the first line of Eq. (5.15) above, which
is thus coming with an order of ε4.

In Fig. 5.4, we assess the Taylor approximation’s accuracy (which incorporates a cubic term in ε)
against exact numerical data obtained by computing the Hessian at Γp+1

TS and determining the
energy along the exact index-1 direction. Additionally, we examine the impact of omitting the
cubic term from the expansion. While the omission of the cubic term leads to underestimation
of the energy improvement, it significantly streamlines the energy expansion analysis and still
faithfully replicates the qualitative behavior of exact energy dependence on the slice.

5.4.2 Comparing estimated and true energy gains
Using the expression for the energy Eq. (5.14) along the index-1 direction we compute the
value of the perturbation parameter ε that minimizes the energy in this univariate optimization
problem. The solution then reads

∆E(ε∗) = E(Γp+1
TS + ε∗δTS)− E(Γpmin) = − λ2

TS

16∂2
γ1E(Γp+1

TS )
, (5.16)

with the distance from the transition state to the local minimum on the slice corresponding to
ε2

∗ = −λTS/4∂2
γ1E(Γp+1

TS ). We note that although from the expansion of the cost function,
we get the local energy minimum, this is the artifact of considering only one out of 2p+ 2
directions in the energy landscape. When viewed without projection, we do not expect the
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Figure 5.5: Averaged circuit depth behavior of ∂2
γ1E(Γp+1

TS ) and its approximation Eq. (5.17)
for different system sizes agree for p ≥ 5.

point Γp+1
TS + ε∗δTS to be a local minimum or even a saddle point of the cost function, see

Fig. 5.1(b).
Using the expression for λTS obtained in the previous section in Eq. (5.12) we see that the
numerator in Eq. (5.16) is proportional to the square root of the infidelity α0

⊥ to the ground
state |E0⟩. Furthermore, we expect that ∂2

γ1E(Γp+1
TS ) in the denominator remains finite and

extensive in the deep QAOA limit. In particular, in Appendix D.3 we discuss that ∂2
γ1E(Γp+1

TS )
can be approximated as follows:

∂2
γ1E(Γp+1

TS ) ≈ 2n2
C⟨+|

HC

nC
U †(Γpmin)HCU(Γpmin)HC

nC
|+⟩ − 2n2

CE(Γpmin). (5.17)

where for clarity we explicitly singled out the common factor of nC that highlights the scaling
of the quartic expansion coefficient. From Eq. (5.17) the quartic coefficient in the expansion of
energy, ∂2

γ1E(Γp+1
TS ), can be understood as the energy difference between states U(Γpmin)HC |+⟩

and U(Γpmin)|+⟩, multiplied by the extensive constant n2
C ∼ N . It is natural to expect that

QAOA circuit, when applied to the excited eigenstate of the mixing Hamiltonian, HC |+⟩,
yields the final state that has higher energy compared to the state U(Γpmin)|+⟩, that QAOA
circuit by design aims to rotate into the ground state of classical Hamiltonian. This physical
reasoning implies that the quartic expansion coefficient, ∂2

γ1E(Γp+1
TS ), is positive, as is also

confirmed in numerical simulations. As the algorithm converges at large enough circuit depths
p, we expect ∂2

γ1E(Γp+1
TS ) to plateau at an extensive value. Finally, it is important to note that

the n2
C factor in the denominator of Eq. (5.16) cancels out with the same factor coming from

|λTS| ∝ nC , see Eq. (5.12).
We use numerical simulations to verify the validity of the approximation given by Eq. (5.17),
on random instances of unweighted 3-regular graphs with N = [12, 22] vertices. From Fig. 5.5,
we observe a clear extensive behavior of ∂2

γ1E(Γp+1
TS ). Interestingly, we see that even though the

data for different system sizes does not perfectly collapse onto a single curve, its dependence
on the system size at all circuit depths is relatively weak. For example, at p = 30 the values
for different systems sizes lie in the interval [11, 13].
Using the intuition that the quartic term that represents the denominator in the expression for
energy gain, Eq. (5.16) is saturating to the finite value for large p, we conclude that the lower
bound on the energy gain is proportional to the curvature around the transition state, and thus
is expected to decrease exponentially with the circuit depth p, as supported by the analysis
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Figure 5.6: (Top) Average energy improvement between local minima of QAOAp and QAOAp+1
as a function of the circuit depth p for an unweighted 3-regular graph with N = 16 vertices.
The lower bound Eq. (5.16), which relies on local information about the cost function landscape
around index-1 saddle points overestimates the results obtained by numerically optimizing
using the Greedy strategy of [SMKS23]. (Bottom) Averaged quality of the lower bound on
the energy improvement, as given by ∆E(ε∗)/∆Eoptim, for systems sizes ranging from 12 to
22 vertices.

in the previous section. We numerically check the tightness of the lower bound provided by
Eq. (5.16).
To this end, in Fig. 5.6 we first take random instances of unweighted 3-regular graphs
with N = 16 vertices and compare Eq. (5.16) to the energy improvement coming from
performing numerical optimization, using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-
gorithm [Bro70, Fle70, Gol70, Sha70], following the Greedy strategy introduced in [SMKS23].
We also show the best improvement selected from improvements obtained from moving along
the index-1 direction of 2p+ 1 distinct TS obtained from the initial local minima Γpmin, labeled
as maxTS[∆E(ε∗)] = max(i,j)

[︂
E(Γpmin)− E(Γp+1

TS (i, j) + εδTS)
]︂
.

Figure 5.6 reveals that the true energy improvement, and our lower bound Eq. (5.16) both
decrease exponentially with p, although with different slopes. In particular, the energy
improvement from moving alongside the index-1 direction underestimates the improvement
obtained from numerical optimization. This allows us to conclude that although the BFGS
optimization algorithm using a large number of iterations can find better local minima by
moving far away from the transition state, the entire cost function landscape is getting more
“flat” with p. Thus, while our lower bound, which is conceptually similar to one step of local
optimization, is underestimating the magnitude of the energy improvement, it has the same
functional dependence on p. It remains to be understood if one can establish a (heuristic)
relation between our bound and the true energy decrease, thus allowing us to predict the
QAOA performance quantitatively from Eq. (5.16).
Finally, we discuss the scaling of energy improvement with system size, as shown in the
bottom panel of Fig. 5.6. Similar scaling is also evident in instances of MaxCut on 3-regular
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weighted graphs, as illustrated in Fig. D.5 in Appendix D.1. The numerical results show
that at a fixed circuit depth our bound on energy improvement is proportional to the system
size N . Indeed, we show that the ratio between the numerical energy improvement and our
estimate tends to be a constant value with increasing system size, and numerical energy
improvement is known to be proportional to N . Analytically, this behavior arises from the
expectation value |⟨ϕ0|HC − E0|ψ0⟩| in the expression for the approximate negative Hessian
eigenvalue in Eq. (5.12) which is extensive in N . In summary, the scaling of our bound on
energy improvement with N implies that the improvement in approximation ratio does not
scale with N , which is consistent with the gains from numerical optimization.

5.5 Discussion
In this work, we perform an analytic study of transition states of the QAOA cost function, that
were constructed in Ref. [SMKS23]. These transition states are characterized by the vanishing
gradient of the cost function and a unique negative eigenvalue of Hessian. In the present work,
we provide an accurate analytic estimate of the minimum eigenvalue of the Hessian and its
corresponding eigenvector for each of the 2p+ 1 TS. Moreover, we relate the curvature in the
vicinity of transition states to physical observables such as the infidelity of the ground state
preparation of the QAOA circuit, and construct the higher-order expansion of the QAOA cost
function along the negative curvature direction, which allows us to put a lower bound on the
QAOA cost function improvement.

Crucially, the results obtained in this paper are recursive. Assuming that QAOA at depth
p found a local minimum, we provide a lower bound on the cost function improvement of
the QAOA at depth p + 1. Thus, our approach is applicable to QAOA in the regime of
large p and we envision that it may be potentially used to obtain a QAOA performance
guarantee [FGG14, WL21, FGG20b]. Indeed, the only missing link in such performance
guarantee remains to be the bound on the improvement in infidelity, which determines the
landscape curvature and lower-bounds energy improvement as shown by our work.

Beyond being a potential step towards performance guarantee, the significance of these
estimates is twofold: first, they substantially reduce the computational effort required to
implement the Greedy optimization strategy outlined by [SMKS23], as they circumvent the
need to construct and diagonalize the Hessian of the cost function at each TS. Second, our
results establish the analytical framework that reveals properties of the QAOA cost function
at arbitrarily large p.

In particular, we show that for unweighted 3-regular graphs, the negative curvature of the
landscape at the TS is intimately connected to the energy variance of the QAOA state.
This not only offers a physical interpretation of the negative curvature at the TS but also
raises questions about the QAOA performance in the limit of large circuit depth. While it is
anticipated that the QAOA will prepare the ground state as p → ∞ [FGG14], our findings
suggest that the QAOA may effectively converge to a (low) energy manifold of the cost
Hamiltonian HC in the deep circuit regime.

Furthermore, our numerical analyses indicate that the lower bound on the energy improvement
has the same qualitative dependence on the QAOA depth as the true energy improvement.
At the same time, our lower bound parametrically underestimates the actual improvements
achieved through numerical optimization. This observation suggests that the local vicinity of
the transition state that we can explore analytically may be non-trivially related to the global
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properties of the QAOA cost function. Establishing such a relation even heuristically may be
useful for accurately forecasting the performance of the QAOA, and may provide a useful step
towards a more complete understanding of the QAOA.
Finally, given the broad applicability of the transition states-based approach, it becomes
intriguing to consider its extension to problems beyond the MaxCut. Exploring the impact
of different cost and mixer Hamiltonians on the QAOA cost function landscape presents a
promising avenue for future research. Additionally, applying the transition state (TS) strategy
to other variational algorithms offers an exciting opportunity. By leveraging the unique
characteristics of both the circuit and the problem structure, it may be possible to provide
similar initialization strategies and devise analytic estimates for the improvement of the cost
function from the optimization process.
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APPENDIX A
Appendices to Chapter 2

A.1 Generic formulation of duality
In the main text, we describe the duality procedure for two particular instances of the 3-
XORSAT problem. However, it is desirable to formulate the general procedure of deriving
the dual Hamiltonian for general (possibly random) instances of classical 3-XORSAT. In this
section, we introduce a general description of the duality transformation that uses the language
of linear algebra.

A.1.1 Algorithmic description of duality
The matrix A from Eq. (2.1) is the starting point of our procedure. This formulation, can be
seen as an extension of the duality mapping used in [FGH+12] for non-invertible A matrices.
Since {σai } and {τ bj } operators, with a, b ∈ {x, y, z} and i, j ∈ [1, N ], belong to different
Hilbert spaces, in what follows we will use the symbol “ ≡ ” to refer to equivalences between
then.

Introducing linear algebra notations

In contrast to the particular case of duality in [FGH+12], which required matrix A to be
invertible, here we generally deal with the matrix A that is not square and thus is not a
full-rank matrix. First, let us denote by r the rank (mod 2) of the matrix A, rank2(A) = r.
We further define matrices SA and S ′

A, which will be used to find τx operators. The matrix
SA contains all linearly independent rows of A,

SA = (v1, . . . , vr)T . (A.1)

The matrix S ′
A contains the remaining rows of A which by construction can be obtained from

those in SA. Hence, this matrix can be written as a linear superposition of the vectors vj ∈ SA,

S ′
A = FSA, (A.2)

encoded by the (M − r)× r matrix F .
In order to find the τ z operators we use a matrix Z

Z = (zi, . . . , zr)T , (A.3)
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that contains an orthonormal set of vectors zi, such that zj · vi = δij. In practice these
vectors can be obtained by finding the left-inverse of transposed matrix SA from Eq. (A.1),
Z · STA = Ir×r.
Finally, the conserved charges are associated with the vectors spanning the kernel (mod 2) of
A. Since the basis of any linear space is not uniquely defined, we use the following choice of
these kernel basis vectors

O = ((STA · Z)r+1 + êr+1, . . . (STA · Z)N + êN)T , (A.4)

where êi is the unit vector of length N in the i-th direction. This choice leads to a particularly
simple expression for the dual version of quantum terms σxi .

Finding τx operators

To construct the τxα operators we use a set of linearly independent rows of A matrix contained
in matrix SA, see Eq. (A.1). Each row of A and SA contains exactly three entries that are
equal to one since we are dealing with the 3-XORSAT problem. Therefore, we identify

τxα ≡
N⨂︂
l=1

(σzl )(SA)α,l = σziασ
z
jασ

z
kα
, ∀α ∈ [1, r], (A.5)

where (iα, jα, kα) are indices of non-zero entries of row α of matrix SA. The remaining M − r
rows are then expressed as a linear combination of the vectors in SA as in Eq. (A.2). This
implies that a product of σz operators encoded by those vectors can be obtained from τx

operators defined above. Specifically, the product of σz’s corresponding to a given row (S ′
A)l,

where (S ′
A)l = ∑︁r

k=1 Fl,k(SA)k, reads:
r∏︂

k=1
(τxk )Fα,k ≡ σziασ

z
jασ

z
kα
, (A.6)

where we imply that (τxk )Fα,k = τxk if Fα,k = 1 and (τxk )Fα,k = 1 if Fα,k = 0.
Finally, using equations (A.5)-(A.6) we can express classical Hamiltonian HC via dual operators
as:

H̃C =
r∑︂

α=1
Jατ

x
α +

M∑︂
α=r+1

Jα
r∏︂

β=1
(τxβ )Fα,β . (A.7)

Finding τ z operators

Operators τ zβ can be constructed using matrix Z defined in Eq. (A.3) in a way similar to how
operators τx were constructed above. Specifically, we set

τ zα ≡
N⨂︂
l=1

(σxl )Zα,l , ∀α ∈ [1, r]. (A.8)

The important difference is that vectors zα contained in matrix Z may contain a different
number of non-zero entries. The commutation and anti-commutation properties of the {τ zα, τxβ }
operators follows directly from the orthogonality properties between zα and vβ vectors

zα · vβ = δαβ ⇒
{︄
{τ zα, τxα} = 0,
[τ zα, τxβ ] = 0 for α ̸= β ∈ [1, r].
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To find the dual operator of HX = ∑︁
i σ

x
i we have to invert Eq. (A.8) and find an expression

for σx operators via τ z. This inversion procedure is straightforward for first r spins that
correspond to the invertible submatrix of SA. Thus operators σxi for i ∈ [1, r] read:

σxi ≡
N∏︂
l=1

(τ zl )(SA)l,i , ∀i ∈ [1, r]. (A.9)

To obtain an expression for remaining σxr+i with i ∈ [1, N − r] we use the knowledge of
conserved charges from Eq. (A.4) and find that

σxr+i ≡ Oi

N∏︂
l=1

(τ zl )(SA)l,r+i , (A.10)

where the particular choice of conserved charges is used as dictated by definition of O matrix
in Eq. (A.4):

Ol =
∏︂
i

(σxi )Ol,i . (A.11)

Dual Hamiltonian

Finally, joining Eq. (A.7), (A.9) and (A.10), we obtain the expression for the dual Hamiltonian

H̃T (s) = −s
(︃ r∑︂
α=1

Jατ
x
α +

M∑︂
α=r+1

Jα
r∏︂

β=1
(τxβ )Fα,β

)︃

− (1− s)
(︃ r∑︂
i=1

N∏︂
l=1

(τ zl )(SA)l,i +
N−r∑︂
i=1

Oi

N∏︂
l=1

(τ zl )(SA)l,r+i

)︃
. (A.12)

A.1.2 Example
Let us now illustrate the abstract procedure defined above using a specific example. We start
from the matrix A corresponding to an instance of the 2-regular 3-XORSAT model with N = 6
and M = 4. The example considered here is a particular instance of the closure of the tree
hypergraph Fig. 2.4(a) with g = 1, corresponding to the following A matrix:

A =

⎛⎜⎜⎜⎝
1 1 1 0 0 0
1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1

⎞⎟⎟⎟⎠ .
Similar to the main text we restrict to the case with all couplings Jα = 1.
For this particular case, it is easy to check that the rank mod 2 of A is r = 3. To see this, for
example, we could realize that the first row is the sum (mod 2) of all the other rows. We then
pick a submatrix of A containing all linearly independent rows as:

SA = (v2, v3, v4)T =

⎛⎜⎝ 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1

⎞⎟⎠ .
Using Eq. (A.5) we then obtain:

τx1 ≡ σz1σ
z
4σ

z
6, τx2 ≡ σz2σ

z
4σ

z
5, τx3 ≡ σz3σ

z
5σ

z
6.
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The F matrix in this case corresponds to a row vector with all r components being equal to
one, F = (1, 1, 1). Using Eq. (A.6) we obtain

3∏︂
i=1

τxi = σz1σ
z
2σ

z
3.

Hence, we can write the dual form of the classical Hamiltonian HC which reads

H̃X = τx1 + τx2 + τx2 + τx1 τ
x
2 τ

x
3 .

We now focus on defining the τ zα operators. For this particular case, it is easy to check that

Z =

⎛⎜⎝ 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎠ .
Using Eq. (A.8), we get

τ zα ≡ σxα, ∀α = 1, 2, 3.
From the above point, we can already read the expression for the σxi operators in terms of the
τ zi operators for i = 1, 2, 3. Furthermore, to find the expression of the remaining σxi operators
(i = 4, 5, 6) we need to find the conserved charges of the theory.
Computing the kernel (mod 2) of SA we obtain:

O =

⎛⎜⎝ 1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1

⎞⎟⎠ ,
which in the spin language from Eq. (A.11) corresponds to

O1 = σx1σ
x
2σ

x
4 , O2 = σx2σ

x
3σ

x
5 , O3 = σx1σ

x
3σ

x
6 . (A.13)

Thus, it only remains to find the set of clauses in which the spins i = 4, 5, 6 participate. From
that and using Eq. (A.13), we find the dual expressions for the remaining σx operators:

σx4 ≡ O4τ
z
1 τ

z
2 , σx5 ≡ O5τ

z
2 τ

z
3 , σx6 ≡ O6τ

z
1 τ

z
3 .

The dual Hamiltonian follows directly from all the above results

HT (s) = −s
(︃ 3∑︂
α=1

τxα + τx1 τ
x
2 τ

x
3

)︃

− (1− s)
(︃ 3∑︂
α=1

τ zα +O4τ
z
1 τ

z
2 +O5τ

z
2 τ

z
3 +O6τ

z
1 τ

z
3

)︃
. (A.14)

A.2 Ising on the closure of the tree hypergraph
In this appendix, we provide details on the procedure that allows removing the non-local term
τxM in the dual Hamiltonian (2.14). The approach we present here is inspired by the one
carried out in Ref. [SJ16]. We engineer a Hamiltonian K̃T with an Abelian Z2 symmetry,
which is equivalent to H̃T in a given symmetry sector (which we denote as physical subspace).
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In addition, we request that in K̃T the non-local term becomes equivalent to a single spin
operator. For this, we define the following projector P0 = ∑︁

v∈{0,1}M−1 | v+⟩⟨v+ |, where

| v+⟩ = 1√
2

(︂
| v, 0⟩+ | v, 1⟩

)︂
.

As a result, it is easy to check the following relations holds:

P0
(︂
τxα ⊗ 1

)︂
P0 = Xα, α ∈ [1,M − 1],

P0
(︂M−1∏︂
α=1

τxα ⊗ 1
)︂
P0 = XM .

(A.15)

Eq. (A.15) indicates that when restricted to the physical subspace the action of the Xi

operators for i ∈ [1,M − 1] is identical to that of the τxi operators. On the other hand, the
non-local term ∏︁M−1

i=1 τxi is now encoded in the XM operator associated with a new degree of
freedom. We then have all the information needed to construct the Hamiltonian K̃T .
We note that Eq. (A.15) directly implies that ∏︁M

i=1 Xi = 1, which completely specifies the
physical subspace. Furthermore, the form that the remaining terms of H̃T take can be obtained
from their (anti)commutation relations with the non-local term ∏︁M−1

i=1 τxi . More specifically,
we note that for operators Oc commuting with the non-local operator the following holds

P0
(︂
[Oc,

M−1∏︂
i=1

τxi ]⊗ 1
)︂
P0 = [P0

(︂
Oc ⊗ 1

)︂
P0, XM ] = 0. (A.16)

Hence, it implies that P0
(︂
Oc ⊗ 1

)︂
P0 contains either the XM operator or acts as the identity

on the spin M . However, using the definition of P0 we see that only the identity on spin M is
permitted. In the same spirit, we see that for operators Oac anticommuting with the non-local
term it holds that

P0
(︂
{Oac,

M−1∏︂
i=1

τxi } ⊗ 1
)︂
P0 = {P0

(︂
Oac ⊗ 1

)︂
P0, XM} = 0, (A.17)

which in turns implies that P0
(︂
Oac ⊗ 1

)︂
P0 has to contain either the ZM operator or the YM

operator. Using again the definition of P0 we see that only the ZM operator is permitted. In
this way, K̃T takes a form of transverse-field Ising model on the closed lattice, Fig. 2.4:

K̃T (s) = −s
M∑︂
α=1

JαXα − (1− s)
∑︂

⟨α,β⟩
ZαZβ. (A.18)

As a consistency check, we note that the subspace specified by the constraint ∏︁M
α=1 Xα = 1

corresponds to the positive parity sector of K̃T (s) Hamiltonian with respect to the Z2 symmetry
implemented by the operator ∏︁αXα.

73





APPENDIX B
Appendices to Chapter 2

B.1 Classical shadows and implementation details
Shadow tomography attempts to directly estimate interesting properties of an unknown
state without performing full state tomography as an intermediate step. [Aar17] and [AR19]
showcased that such a direct estimation protocol can be exponentially more efficient, both in
terms of Hilbert space dimension (2N in our case) and in the number of target properties (we
will use L to denote this cardinality). These techniques do, however, require to store copies
of the underlying quantum state in parallel within a quantum memory and performing highly
entangled gates on all copies simultaneously. This is too demanding for current and near-term
quantum devices.

[HKP20] developed a more near-term friendly variant of this general idea known as prediction
with classical shadows. Similar ideas have been independently proposed by [PK19] and [MD19],
respectively. As explained in detail below, the key idea is to sequentially generate state copies
and perform randomly selected single-qubit Pauli measurements. Such measurements can be
routinely implemented in current quantum hardware and enable the prediction of many (linear
and polynomial) properties of the underlying quantum state. Importantly, the measurement
budget (number of required measurements) still scales logarithmically in the number of target
properties L, but it may scale exponentially in the support size k of these properties. This is
not a problem for local features, like subsystem purities or terms in a quantum many-body
Hamiltonian, but does prevent us from directly estimating global state features like fidelity
estimation.

The general measurement budget that is required to simultaneously estimate L local observables
using classical shadows, necessary for the energy expectation value estimation, is provided in
Theorem 4. Typically the estimation of L observables would scale linearly in L (essentially
every term is estimated individually). This is traded with a lnL dependence instead and
an exponential dependence on the support k of the operators. The cost for estimating the
subsystem purities and thus second Rényi entanglement entropies is provided in Eq. (B.7)
and is exponential in k (this dependence was recently proven to be unavoidable [CCHL21]).
However since for the WBP check outlined in the main text k is small, this is generally an
efficient operation. Lastly, the cost for estimating the gradients is given in Eq. (B.9). The
efficiency of using classical shadows to estimate the energy expectation value and gradients is
system dependent (see Ref. [HKP20] for the application of classical shadow tomography to the
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lattice Schwinger model). For the estimation of the purities, the shadow protocol, however,
generally provides the most efficient technique currently available [EKH+20a]. One possibility
to circumvent these restrictions is to use a hybrid scheme where the energy and gradients are
estimated with either classical shadows or the usual approach dependent on the structure of
the Hamiltonian while the second Rényi entropies for the WBP check are always estimated
using classical shadows.

B.1.1 Data acquisition via classical shadows
We use randomized single-qubit measurements to extract information about a variational
N -qubit state represented by a density matrix

ρ(θ) = |ψ(θ)⟩⟨ψ(θ)| with θ ∈ Rm.

To this end, we repeat the following procedure a total of T times. For 1 ≤ t ≤ T we

1. Prepare quantum state ρ(θ) on the NISQ device.

2. Select N single-qubit Pauli observables independently and uniformly at random.

3. Perform the associated N -qubit Pauli measurement (single-shot) to obtain N classical
bits (0 if we measure ‘spin down’ and 1 if we measure ‘spin up’).

4. Store N single-qubit ‘post-measurement’ states, |s(t)
i ⟩, where an i-th qubit measurement

outcome, si, can take six possible values denoted as |0⟩, |1⟩ if qubit was measublue
in z-basis, |+⟩ and |−⟩ for x-basis, and, finally, | + i⟩ and | − i⟩ for y-basis. Here,
|±⟩ = (|0⟩ ± |1⟩) /

√
2 denote Pauli-x matrix eigenstates and | ± i⟩ = (|0⟩ ± i|1⟩) /

√
2

are two Pauli-y eigenstates. In practice, this is achieved by applying random single qubit
Clifford gates that effectively implement a change of basis such that the usual z-basis
measurement can be used, see Fig. 4.1 (a) for a visualization.

5. (Implicitly) construct the N -qubit classical shadow

ρ̂(t)(θ) =
N⨂︂
i=1

(︂
3|s(t)

i ⟩⟨s
(t)
i | − I

)︂
. (B.1)

Repeating this procedure a total of T times provides us with T classical shadows ρ(1)(θ), . . . , ρ(T )(θ).
These are random matrices that are statistically independent (because they are constructed
from independent quantum measurements). By construction, each classical shadow reproduces
the true underlying state in expectation (over both the choice of Pauli observable and the
observed spin direction):

E
[︂
ρ̂(t)(θ)

]︂
= ρ(θ) = |ψ(θ)⟩⟨ψ(θ)|, (B.2)

see e.g. Ref. [HKP20, Proposition S.2]. We can now approximate this ideal expectation value
by empirical averaging over all samples:

ρ(θ) ≈ 1
T

T∑︂
t=1

ρ̂(t)(θ).
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This approximation becomes exact in the limit T → ∞ of infinitely many measurement
repetitions. But the main results in Refs. [HKP20, PK19] highlight that convergence actually
happens much more rapidly.
This is, in particular, true for subsystem density matrices. The tensor product structure of
classical shadows (B.1) plays nicely with taking partial traces. Let A ⊆ {1, . . . , N} be a
collection of |A| = k qubits. Then,

ρ̂
(t)
A (θ) = tr¬A

(︂
ρ̂

(t)
A

)︂
(B.3)

is a k-qubit shadow that can be used to approximate the associated subsystem density matrix.
More precisely, Eq. (B.2) asserts

E
[︂
ρ

(t)
A (θ)

]︂
= tr¬A

(︂
E
[︂
ρ̂(t)(θ)

]︂)︂
= tr¬A(ρ(θ)) = ρA(θ) (B.4)

which can (and should) form the basis of empirical averaging directly for the subsystem in
question. Here is a mathematically rigorous result in this direction. In what follows, the range
(or weight) of an observable is the number of qubits on which it acts nontrivially. E.g. coupling
terms in the Heisenberg Hamiltonian (3.2) have range k = 2, while the external field terms
have range k = 1.

Theorem 4. Fix a collection of L range-k observables Ol, as well as parameters ϵ, δ > 0.
Then, with probability (at least) 1− δ, classical shadows of size

T ≥ 4k+1 ln(2L/δ)
ϵ2

suffice to jointly estimate all L expectation values up to additive accuracy ϵ. I.e.

ρ̂(θ) = 1
T

T∑︂
t=1

ρ̂(t)(θ) obeys |tr (Olρ̂(θ))− tr (Olρ(θ))| ≤ ϵ,

for all 1 ≤ l ≤ L.

We emphasize that it is not necessary to form global shadow approximations. If Ol only acts
non-trivially on subsystem Al ⊆ {1, . . . , N} (Ol = Õl ⊗ I¬Al

), then tr (Olρ̂(θ)) = tr
(︂
Ôlρ̂Al

)︂
.

Theorem 4 is slightly stronger than a related result in [? ] (it does not require median-of-
means estimation). Conceptually similar results have been established in Refs. [HKT+21] and
[EHF19, HKP21]. Notably, the authors of Ref. [ASS21] pointed out to us that they provided a
similar statement as in Theorem 4 in their work. We present a formal proof in Appendix B.1.5
below.

B.1.2 Estimating subsystem purities
Suppose we are interested of estimating a collection of multiple subsystem purities

pA(θ) = tr
(︂
ρA(θ)2

)︂
= tr (ρA(θ)ρA(θ)) , (B.5)

where A ⊆ {1, . . . , N} labels different subsystems of size |A| = k each. Then, we can use
the corresponding subsystem shadows (B.3) to approximate each pA by empirical averaging:

p̂A(θ) = 1
T (T − 1)

∑︂
t̸=t′

tr
(︂
ρ̂tAρ̂

t′

A

)︂
. (B.6)
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It is important that we restrict our averaging operation to distinct pairs of classical shadows
(t ̸= t′). This guarantees that the expectation values factorize, i.e.

E
[︂
ρ̂tAρ̂

t′

A

]︂
= E

[︂
ρ̂tA
]︂
E
[︂
ρ̂t

′

A

]︂
= ρ2

A,

where the last equality is due to Eq. (B.3). Formula (B.6) is an empirical average over all distinct
shadow pairs contained in the data set. It converges to the true average pA(θ) = E [p̂A(θ)],
and the speed of convergence is governed by the variance. As data size T increases, this
variance decays as

Var [p̂A(θ)] ≤ 2
T

(︃
2× 4kp2(θ) + 1

T − 124k
)︃
,

see e.g. Ref. [NCV+21, SM Eq. (12)]. In the large-T limit, this expression is dominated by
the first term in parentheses, 4× 2kp2(θ)/T , and Chebyshev’s inequality allows us to bound
the probability of a large approximation error. For ϵ > 0,

Pr
[︂⃓⃓⃓
p̂A(θ)− tr

(︂
ρA(θ)2

)︂⃓⃓⃓
≥ ϵ

]︂
≲

4k+1tr (ρ2
A)

Tϵ2 ,

provided that the total number of measurements T is large enough to suppress the higher-order
contribution in the variance bound (this is why we write ≲). In this regime, a measurement
budget that scales as

T ≥ 4k+1tr (ρ2
A)

ϵ2δ
(B.7)

suppresses the probability of a sizable approximation error (≥ ϵ) below δ. It is worthwhile
to point out that this bound depends on the subsystem purity under consideration. Smaller
purities are cheaper to estimate than large ones. It is also important to note that the accuracy
parameter ϵ has to be small enough in order to accurately capture the purity in the WBP
regime, which decays exponentially fast, but only with the subsystem size k.
The δ-dependence in Eq. (B.7) can be further improved to ln(1/δ) by replacing simple empirical
averaging in Eq. (B.6) by median-of-means estimation [? ]. Doing so would allow us to
estimate all possible L =

(︂
N
k

)︂
≤ Nk size-k subsystem purities with only a k lnN -overhead.

Median-of-means estimation does, however, worsen the dependence on ϵ by a constant amount.
Empirical studies conducted in Ref. [EKH+20b] showcase that such a tradeoff only becomes
viable if one wishes to approximate polynomially many subsystem purities.

B.1.3 Estimating gradients
To perform the GD update step suggested in Algorithm 1 we require the knowledge of gradient
∇θE(θ) which consists of pN derivatives ∂i,lE(θ). The derivative can naively be approximated
using finite difference, though for variational single qubit rotation gates, as used in the main
text [see Eq. (3.1)], we can use the parameter-shift rule to compute the gradients exactly (up
to finite sampling errors) [MNKF18, SBG+19]. The parameter-shift rule is given by

∂i,lE (θ) = 1
2 (E (θ + (π/2)ei,l)− E (θ − (π/2)ei,l)) ,

where i labels the qubits and l cycles through all circuit layers, and ei,l is the unit vector. In order
to approximate a single gradient, we need to estimate the difference of two energy expectation
values E(θ+) = ⟨ψ(θ+)|H|ψ(θ+)⟩ with θ+ = θ + (π/2)ei,l and E(θ−) = ⟨ψ(θ−)|H|ψ(θ−)⟩
with θ− = θ − (π/2)ei,l (we suppress i and l indices in θ± for the sake of brevity). Typically,
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the Hamiltonian itself can be decomposed into a sum of L ‘simple’ terms: H = ∑︁L
l=1 hl,

where often L can be proportional to the number of qubits, N . This allows to express the
gradient as a linear combination of 2L expectation values,

∂i,lE (θ) = 1
2

L∑︂
l=1

(⟨ψ(θ+)|hl|ψ(θ+)⟩ − ⟨ψ(θ−)|hl|ψ(θ−)⟩) , (B.8)

each of which can be estimated by performing a collection of single-qubit Pauli measurements.
If each term hl is supported on (at most) k-qubits, then Theorem 4 applies. Performing
T ≈ 4k ln(L/δ)/ϵ2 randomized Pauli measurements on state ρ(θ+) and ρ(θ−) each allows us
to ϵ-approximate all 2L simple terms in Eq. (B.8).

Unfortunately, approximation errors may accumulate when taking the sum over all 2L terms.
Suppose that we obtain ϵ-accurate estimators Êl(θ±) of contribution of the local Hamiltonian
term to the energy El(θ±) = ⟨ψ(θ±)|hl|ψ(θ±)⟩. A triangle inequality over all approximation
errors then only produces⃓⃓⃓

∂i,lE(θ)− ∂̂i,lE(θ)
⃓⃓⃓

=1
2

⃓⃓⃓⃓
⃓
L∑︂
l=1

(︂
Êl(θ+)− El(θ+)− Êl(θ−) + El(θ−

)︂⃓⃓⃓⃓⃓
≤1

2

L∑︂
l=1

⃓⃓⃓
Êl(θ+)− El(θ+)

⃓⃓⃓
+ 1

2

L∑︂
l=1

⃓⃓⃓
Êl(θ−)− El(θ−)

⃓⃓⃓
= Lϵ.

This upper bound only equals ϵ if we rescale the accuracy of original approximation to ϵ/L.
Inserting this rescaled accuracy into Theorem 4 produces an overall measurement cost of

T ≥ 4k+1L2 ln(2L/δ)
ϵ2 . (B.9)

The number L of terms in the Hamiltonian typically scales (at least) linearly in the number
of qubits N . This implies that the measurement budget (B.9) requiblue to (conservatively)
estimate gradients scales quadratically in the system size and thus is parametrically larger
than the (conservative) cost of estimating purities of size-k subsystems (B.7). To obtain the
full gradient ∇θE(θ) the procedure has to be repeated pN times since the parameters-shift
rule has to implemented for every variational parameter. It should be noted though, that in
principle this can be computed in parallel, provided large enough (quantum) computational
resources. For example, different NISQ computers could be used to estimate different gradient
components at the same time.

B.1.4 Example of error accumulation in an Ising model
The extra scaling with L2 in Eq. (B.9) is a consequence of error accumulation. If we use the
same measurement data to jointly estimate many Hamiltonian terms, then all these estimators
become highly correlated. And the effect of outlier corruption – which occurs naturally in
empirical estimation – becomes amplified.

Here, we illustrate this subtlety by means of a simple example. Let H = −J∑︁N−1
i=1 σzi σ

z
i+1 be

the Ising Hamiltonian on a 1-D chain comprised of N qubits (L = N − 1). Let us also assume
that N is even. This Hamiltonian is diagonal in the Z-basis |i1, . . . , iN⟩ = |i1⟩ ⊗ · · · ⊗ |iN⟩
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with i1, . . . , iN ∈ {0, 1}. So, in order to estimate H, it suffices to perform measurements
solely in this basis. Born’s rule asserts, that we observe bitstring ŝ1, . . . , ŝN with probability

Pr [ŝ1, . . . , ŝN ] = ⟨ŝ1, . . . , ŝN |ρ|ŝ1, . . . , ŝN⟩,

where ρ denotes the underlying N -qubit state. And, we can use these outcomes to directly
estimate the total energy. It is easy to check that

Ê =⟨ŝ1, . . . , ŝN |H|ŝ1, . . . , ŝN⟩

=− J
N∑︂
i=1
⟨ŝi|σzi |ŝi⟩⟨ŝi+1|σzi+1|ŝi+1⟩

obeys E
[︂
Ê
]︂

= tr (Hρ), regardless of the quantum state ρ in question. Also, estimating
individual terms in this sum is both cheap and easy. Convergence of the sum, however, does
depend on the underlying quantum state and the correlations within. To illustrate this, we
choose λ ∈ (0, 1) and set

ρ(λ) = (1− λ)|ψ⟩⟨ψ|+ λ|ϕ⟩⟨ϕ|,

where |ψ⟩ = |00 · · · 00⟩ is the Ising ground state and |ϕ⟩ = |01 · · · 01⟩ is a Néel state. These
states obey ⟨ψ|H|ψ⟩ = −J(N − 1) (ground state) and ⟨ϕ|H|ϕ⟩ = +J(N − 1) (highest
excited state), so

tr(Hρ(λ)) = −J(n− 1) (1− 2λ) .

The task is to approximate this expectation value based on computational basis measurements.
For each measurement, we either obtain outcome 0 · · · 0 (with probability 1− p) or outcome
01 · · · 01 (with probability p). This dichotomy extends to our estimator

Ê =

⎧⎨⎩⟨ψ|H|ψ⟩ = −J(N − 1) with prob. 1− λ,
⟨ϕ|H|ϕ⟩ = +J(N − 1) with prob. λ.

and we are effectively faced with estimating the (re-scaled) expectation value of a biased coin.
The associated variance of such a coin toss can be easily computed and amounts to

Var
[︂
Ê
]︂

=E
[︃
Ê

2
]︃
−
(︂
E
[︂
Ê
]︂)︂2

= 4J2(N − 1)2λ(1− λ).

Unless λ ≠ 0, 1 (where the variance vanishes), this variance it is proportional to L2 = (N −1)2

and controls the rate of convergence. Asymptotically, a total number of

T ≥ Var
[︂
Ê
]︂
/ϵ2 = 4J2L2λ(1− λ)/ϵ2 = Ω(L2/ϵ2)

independent coin tosses are necessary (and sufficient) to ϵ-approximate the true expectation
value E

[︂
Ê
]︂

= tr (ρ(λ)H). This is a consequence of the central limit theorem and showcases
that a measurement budget scaling with the number L of Hamiltonian terms is unavoidable in
general.
We emphasize that this is a contrived worst-case argument that showcases how correlated
measurements can affect the approximation quality of a sum of many simple terms, while
each term individually is cheap and easy to evaluate. A generalization to the Heisenberg
Hamiltonian consideblue in the main text, see Eq. (3.2), is straightforward.
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B.1.5 Proof of Theorem 4
Theorem 4 is a consequence of the following concentration inequality. Let ∥O∥∞ denote the
operator/spectral norm of an observable. We will also use ∥ · ∥1 to denote the trace norm.

Theorem 5. Fix a collection of L range-k observables Ol with ∥Ol∥∞ ≤ 1, a quantum state
ρ and let ρ̂ = 1

T

∑︁T
t=1 ρ̂

(t) be a classical shadow estimate thereof. Then, for ϵ ∈ (0, 1),

Pr
[︃

max
1≤l≤L

|tr (Olρ̂))− tr (Olρ)| ≥ ϵ
]︃
≤ 2L exp

(︄
− ϵ

2T

4k+1

)︄
.

This large deviation bound is a consequence of another well-known tail bound, see e.g.
Ref. [FR13, Theorem 7.30].

Theorem 6 (Bernstein inequality). LetX(1), . . . , X(T ) be independent, centeblue (i.e. E [Xt] =
0) random variables that obey |X(t)| ≤ R almost surely. Then, for ϵ > 0

Pr
[︄⃓⃓⃓⃓
⃓ 1T

T∑︂
t=1

X(t)
⃓⃓⃓⃓
⃓ ≥ ϵ

]︄
≤ 2 exp

(︄
− ϵ2T 2/2
σ2 +RTϵ

)︄
,

where σ2 = ∑︁T
t=1 E

[︃(︂
X(t)

)︂2
]︃
.

Proof of Theorem 5. Fix an observable O = Ol with 1 ≤ l ≤ L and define X(t) = tr
(︂
Oρ̂(t)

)︂
−

tr (Oρ). Then, by construction of classical shadows, each X(t) is an independent random
variable that also obeys E

[︂
X(t)

]︂
= 0, courtesy of Eq. (B.2). Next, let A ⊆ {1, . . . , N} with

|A| = k be the subsystem on which the range-k observable acts nontrivially, i.e. O = OA⊗I¬A
and ∥O∥∞ = ∥OA∥∞ ≤ 1. Then, Hoelder’s inequality (|tr (OAρA)| ≤ ∥OA∥∞∥ρA∥1) asserts⃓⃓⃓

X(t)
⃓⃓⃓
=
⃓⃓⃓
tr
(︂
OAρ̂

(t)
A

)︂
− tr (OAρA)

⃓⃓⃓
≤∥OA∥∞

(︂
∥ρA∥1 +

⃦⃦⃦
ρ̂

(t)
A

⃦⃦⃦
1

)︂
= ∥OA∥∞

(︄
1 +

∏︂
a∈A

⃦⃦⃦
3|s(t)

a ⟩⟨s(t)
a | − I

⃦⃦⃦
1

)︄

≤
(︂
1 + 2|A|

)︂
= 1 + 2k = R,

where we have also used ∥ρA∥1 = tr(ρA) = 1 and the specific form of subsystem classical
shadows (B.3) that factorizes nicely into tensor products. Estimating the variance is more
difficult by comparison. However, Ref. [? , Proposition S3] asserts

E
[︃(︂
X(t)

)︂2
]︃
≤ ∥O∥2

shadow ≤ 4k∥O∥∞ = 4k.

In turn, σ2 ≤ T4k and we conclude
Pr [|tr (Oρ̂)− tr (Oρ)| ≥ ϵ]

=Pr
[︄⃓⃓⃓⃓
⃓ 1T

T∑︂
t=1

X(t)
⃓⃓⃓⃓
⃓ ≥ ϵ

]︄

≤2 exp
(︄
− ϵ2T 2/2
T4k + (1 + 2k)Tϵ

)︄

≤2 exp
(︄
− ϵ

2T

4k+1

)︄
,
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where the last line is a rough simplification of the exponent. Such a tail bound is valid for
any O = Ol and the advertised statement follows from taking a union bound (also known as
Boole’s inequality) over all possible deviations:

Pr
[︃

max
1≤l≤L

|tr (Olρ̂))− tr (Olρ)| ≥ ϵ
]︃

≤
L∑︂
l=1

Pr [|tr (Olρ̂))− tr (Olρ)| ≥ ϵ]

≤2L exp
(︄
− ϵ

2T

4k+1

)︄
.

B.2 Unitary t-designs
Here, we briefly review the notion of unitary t-designs. The Haar measure is the unique
left/right invariant measure on the unitary group U(d), where d here stands for the dimension
of the full Hilbert space, d = 2N . Unitary t-designs are ensembles of unitaries that approximate
moments of the Haar measure. More precisely, let E be an ensemble of unitaries, i.e. a subset
of U(d) equipped with a probability measure. For an operator O acting on the t-fold Hilbert
space H⊗t, the t-fold channel with respect to E is defined as

Φt
E(O) =

∫︂
E

dUU⊗t(O)U †⊗t. (B.10)

Essentially, we are asking when the average of an operator O over the ensemble E equals an
average over the full unitary group. A unitary t-design [DCEL09a, GAE07] is an ensemble E
for which the t-fold channels are equal for all operators O,

Φt
E(O) = Φt

Haar(O).

Being a t-design means we exactly capture the first t moments of the Haar measure with larger
t better approximating the full unitary group. There are known constructions of t-designs for
t = 2 and t = 3 [DCEL09b, CLLW16, KG15, Web15, Zhu17]. For t = 1, it is known that any
basis for the algebra of operators of H, including the Pauli group, is a 1-design. In practice,
one is more interested in when the ensemble of unitaries is close to forming a t-design. With
this, given a tolerance ϵt > 0 one refers to the ensemble E as being an approximate t-design if⃦⃦⃦

Φt
E − Φt

Haar

⃦⃦⃦
⋄
≤ ϵt,

where ∥·∥⋄ is the diamond norm – a worst-case distance measure that is very popular in
quantum information theory, see e.g. [Wat18]. In the quantum machine learning literature
the distance between the two t-fold channels is known as the expressibility of the ensemble
E [HSCC21], the smaller the distance the more expressive the ensemble is.

B.3 Entanglement and unitary 2-designs
Random unitary operators have often been used to approximate late-time quantum dynamics.
In the crudest approximation, it is assumed that the unitary matrix is directly drawn from the
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Haar measure. Although flawed – energy, for instance, is not conserved – this model has led to
new insights into black hole physics [Pag93, HP07, SS08] and produced computable models of
information spreading and entanglement dynamics [NRVH17, NVH18, HQRY16, vKRPS18].

In what follows, we consider a weaker situation where the random unitary operator is drawn
from an ensemble E forming a 2-design, and focus on the entanglement properties of N -qubits
random pure states

|ψ⟩ = U |ψ0⟩, (B.11)
with U ∼ E . These results have been previously obtained, see for example [PSW06, ODP07,
DOP07] and references therein.

Given a bipartition (A,¬A) of the system, we begin by studying the distance of the blueuced
density matrix ρA to the maximally entangled state ρ∞

A = IA/dA, where dA is the dimension
of the Hilbert space HA associated with region A. The full Hilbert space dimension is denoted
by d = 2N .

B.3.1 Bounding the expected trace distance
Let us recall the following inequality relating the 1-norm (trace distance) ∥M∥1 = tr

√
M †M ,

and the 2-norm (Frobenius norm) ∥M∥2 =
√︂

tr(M †M)

∥M∥2 ≤ ∥M∥1 ≤
√
d∥M∥2. (B.12)

We are interested in bounding EE
(︂
∥ρA − IA/dA∥1

)︂2
. To do so we first use Jensen’s inequality

and afterwards employ the inequality (B.12),

EE
(︂
∥ρA − IA/dA∥1

)︂2
≤ EE

(︂
∥ρA − IA/dA∥2

1

)︂
≤ dAEE(∥ρA − IA/dA∥2

2).
(B.13)

The last term on the right hand side is related to the purity:

EE(∥ρA − IA/dA∥2
2) = EE(tr ρ2

A)− 1/dA. (B.14)

As we see, the only non-trivial dependence on U comes from the purity of the blueuced
density matrix. Let {|I⟩ = |iA, j¬A⟩}i,j be the computational basis for the Hilbert space
H = HA ⊗H¬A (such that it respects the bipartition).

Let us now proceed with the calculation of the average purity. We first compute the blueuced
density matrix ρA and write it as a sum over products of matrix elements of the unitary
operator U :

ρA =
d¬A∑︂
j¬A

⟨j¬A|ρ|j¬A⟩ =
d¬A∑︂
j¬A

d∑︂
J,I

ρI,K⟨j¬A|I⟩⟨K|j¬A⟩,

=
∑︂
iA,kA

∑︂
j¬A

ρ(iA,j¬A),(kA,j¬A)|iA⟩⟨kA|,

=
∑︂
iA,kA

∑︂
j¬A

U(iA,j¬A),(0,0)U
∗
(kA,j¬A),(0,0)|iA⟩⟨kA|,

where the last line follows from Eq. (B.11).
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Afterwards, it can be easily verified that tr(ρ2
A) reads

tr
(︂
ρ2
A

)︂
=

∑︂
iA,kA

∑︂
j¬A,p¬A

U(iA,j¬A),(0,0)U(kA,p¬A),(0,0)U
∗
(kA,j¬A),(0,0)U

∗
(iA,p¬A),(0,0). (B.15)

Using the following identities for the first and second moment of the unitary group endowed
with the Haar measure∫︂

U(n)
dUHUi,jU

∗
i1,j1 = δi,i1δj,j1/d,∫︂

U(n)
dUHUi,jUl,mU

∗
i1,j1U

∗
l1,m1 =

1
d2 − 1(δi,i1δl,l1δj,j1δm,m1 + δi,l1δl,i1δj,j1δm,m1)−

1
d(d2 − 1)(δi,i1δl,l1δj,m1δm,j1 + δi,l1δl,i1δj,j1δm,m1),

(B.16)

we get that the following simple expression for the expected purity

EE(tr ρ2
A) = dA + d¬A

1 + dAd¬A
. (B.17)

Finally, substituting Eq. (B.17) into Eq. (B.14) we obtain

EE
(︂
∥ρA − IA/dA∥1

)︂
≤
√︄

d2
A − 1

dAd¬A + 1 ∼ O(
√︂
dA/d¬A) (B.18)

Note that the above result implies that when the complementary subsystem ¬A is (significantly)
larger than A, the expected deviation of ρA from the maximally mixed state is exponentially
small.

B.3.2 Bounding the expected second Rényi entropy
Let us now explore the average value of the second Rényi entropy which, as mentioned in the
main text, can be easily estimated using the classical shadows protocol by ? .
Computing the exact average value of the second Rényi is a complicated task. Hence, we
instead provide a lower and an upper bound for it. On one hand, via Jensen’s inequality, we
have that

− lnEE(tr ρ2
A) ≤ EE(S2(ρA)), (B.19)

which changes the focus of our attention to the expectation value of the purity of the blueuced
density matrix EE(tr ρ2

A). Using the result from the previous subsection Eq. (B.17) and taking
the logarithm, we get the following lower bound

− lnEE(tr ρ2
A) = − ln dA + d¬A

1 + dAd¬A
. (B.20)

Taking the large d limit and writing everything in terms of dA/d¬A we find

− lnEE(tr ρ2
A) ≈ ln dA −

dA
d¬A

+O
(︄
d2
A

d2
¬A

)︄
. (B.21)

On the other hand, we have that for any state ρA the following inequality holds

S2(ρA) ≤ S(ρA) = − ln ρA tr ρA,
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where S(ρA) is the von Neumann entropy of ρA. Taking averages doesn’t change this relation
and we conclude EE(S2(ρA)) ≤ EE(S(ρA)). The expectation value of the von Neumann
entropy is upper bounded by the Page entropy :

SPage(dA, d) = 1
ln 2

(︃
− dA − 1

2
dA
d

+
d∑︂

j=d/dA+1

1
j

)︃
. (B.22)

(author?) conjectublue that this analytical formula accurately captures the von Neumann
entropy of a Haar random state. This conjecture was subsequently proven in Ref. [FK94].
Putting everything together, we obtain

− ln dA + d¬A

1 + dAd¬A
≤ EE(S2(ρA)) ≤ SPage(dA, d). (B.23)

Considering now that the number of qubits inside region A is equal to k and assuming that
dA/d¬A = 1/2N−2k ≪ 1 we arrive at the expression in Theorem 1, that is

k ln 2− 1
2N−2k ≤ EE(S2) ≤ k ln 2− 1

2
1

2N−2k . (B.24)

We see that whenever the unitary ensemble E forms a 2-design, the expected value of the
second Rényi entropy is close to the Page entropy.

B.4 Entanglement growth and learning rate
Here we detail the derivation of Eq. (3.8). We first upper bound the trace distance via

T (ρA, σA) ≤ T (|ψ⟩ , |ϕ⟩) =
√︂

1− f(|ψ⟩ , |ϕ⟩), (B.25)

where f stands for the pure state fidelity f(|ψ(θ)⟩ , |ψ(θ + δ)⟩) = | ⟨ψ(θ)|ψ(θ + δ)⟩ |2. Taylor
expanding the pure state fidelity around θ we get

f(|ψ(θ)⟩ , |ψ(θ + δ)⟩) = 1− 1
4δTF(θ)δ +O(δ4), (B.26)

where F(θ) is the quantum Fisher information matrix (QFIM) given by

Fij(θ) = 4 Re{⟨∂iψ|∂jψ⟩ − ⟨∂iψ|ψ⟩ ⟨ψ|∂jψ⟩}. (B.27)

Assuming δ ≪ 1 we can neglect higher order terms in δ and so

T (ρA, σA) ≲
√︄

1
4δTF(θ)δ =

√︄
η2

4 (∇θE)TF(θ)∇θE, (B.28)

where in the last equality we plugged in the parameter change under GD (Eq. (3.3)), δ =
−η∇θE.

B.5 Algorithm performance for SYK model
In this section we show the numerical results for the VQE applied to the ground state
search of the Sachdev-Ye-Kitaev (SYK) model [Kit15]. The SYK model provides a canonical
example for a volume-law model where the ground state is nearly maximally entangled [HG19].
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Figure B.1: (a-b) The application of our Algorithm to the problem of finding the ground state
of the SYK model. For the initialization we consider the small-angle (SA) (ϵθ = 0.1) and
identity block (IB) initialization [GWOB19] (using one block). We can see that only through
the reset of the learning rate η, as suggested by Algorithm 1, WBPs are avoided during the
optimization. The entanglement entropy of the target state is nearly maximal (indicated by
the dotted line), we omit the WBP line for α = 1 for improved visibility. We measure energy
in units of J and use a system size of N = 10, subsystem size k = 2 and a random circuit
from Eq. (3.1) with circuit depth p = 100. Data was averaged over 100 random instances.

The non-local nature of the Hamiltonian does not allow for an efficient estimation of the
energy expectation value of this model using classical shadows. Thus, this model may be
viewed as a theoretical example that shows that application of our algorithm is not limited
to area-law entangled states. We use a small-angle initialization as well as the identity-block
initialization [GWOB19] to illustrate our method.
The SYK model is a quantum mechanical model of 2N spinless Majorana fermions χi satisfying
the following anti-commutation relations {χi, χj} = δij. The SYK model was introduced by
Kitaev [Kit15] as a simplified variant of a model introduced by Sachdev and Ye [SY93]. The
Hamiltonian of the model is

HSYK =
2N∑︂
i,j,k,l

Ji,j,lχiχjχkχl, (B.29)

where the couplings Ji,j,k,l are taken randomly from a Gaussian distribution with zero mean
and variance

var[Ji,j,k,l] = 3!
(N − 3)(N − 2)(N − 1)J

2.

We can study Majorana fermions using spin chain variables by a nonlocal change of basis
known as the Jordan-Wigner transformation:

χ2i = 1√
2
σx1 · · ·σxi−1σ

y
i , χ2i−1 = 1√

2
σx1 · · · σxi−1σ

z
i , (B.30)
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such that {χi, χj} = δi,j. With this representation, encoding 2N Majorana fermions requires
N qubits. For our studies, we set J = 1 and consider a system of N = 10 qubits.
We study performance of VQE for SYK model using two different initializations. Fig. B.1 (a)-
(b) shows that the a WBP is avoided during optimization for if the learning rate is chosen
appropriately. For a large learning rate (η = 1) both initializations encounter a WBP during
the optimization (indicated by the gray and blue star). Once the learning rate is decreased
(η = 0.1) the entanglement entropy slowly grows to the nearly maximal value associated
with the ground state of the SYK model (dotted line) instead of uncontrollably reaching
the Page value. For this model, it is important to use α = 1 (the default value) such that
the entanglement entropy can grow during the optimization. Only if there is some a priori
knowledge of the properties of the ground state, α can be chose to be smaller.
The identity block initialization [GWOB19] here leads to the best optimization performance.
We attribute this to the fact that the identity block initialization allows for a faster growth
in entanglement since the parameter values are highly fine tuned. Our results suggest that
sensitivity of the initialization ansatz to small perturbations may be beneficial for the cases
when the ground state is nearly maximally entangled. These results highlight the advantage
of using our Algorithm. The tracking of the second Rényi entanglement entropy during the
optimization reveals that the larger learning rates encounter a WBP while the smaller learning
rates successfully avoid it.
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APPENDIX C
Appendices to Chapter 3

C.1 Restricting QAOA parameter space by symmetries
In this Appendix, we find the symmetry properties of the cost function

E(β,γ) = ⟨β,γ|HC |β,γ⟩

for the QAOAp (i.e. QAOA with circuit depth p) ansatz. Here we use bold notation for
both β and γ parameters to denote a length-p vector of angles, i.e. β = (β1, . . . , βp) and
γ = (γ1, . . . , γp). The use of symmetries allows to restrict the manifold of variational
parameters, leading to a more efficient exploration of the QAOA landscape. This section
expands upon previous results by [ZWC+20].
We begin by rewriting the exponents of both classical and mixing Hamiltonian as:

e−iβlHB =
n∏︂
k=1

e−iβlσ
x
k = (cos βl − i sin βl σx)⊗n, (C.1)

e−iγlHC =
∏︂
⟨j,k⟩

e−iγlσ
z
j σ

z
k =

∏︂
⟨j,k⟩

(cos γl − i sin γlσzjσzk). (C.2)

From here it is apparent that adding π to any of the parameters, βl, γl → βl + π, γl + π
for all l ∈ [1, p] does not change the cost function value E(β,γ). Indeed, this leads to an
appearance of an overall negative sign that cancels within the expectation value of the classical
Hamiltonian. Therefore we can easily restrict the search space to (i) βl, γl ∈ [−π

2 ,
π
2 ].

For β parameters we can restrict the parameter space even further. In Ref. [ZWC+20] the
authors restrict the parameters as βl ∈ [−π

4 ,
π
4 ] due to the following considerations. Consider

adding π
2 to β, the exponent e−i(βl+ π

2 )HB = e−iβlHBe−i π
2HB leads to an additional product of

all σx operators,
e−i π

2HB = (−iσx)⊗n. (C.3)
this operator flips all spins, effectively being a generator of the Z2 symmetry of the classical
Ising Hamiltonian, HC . Therefore, such a shift of βl will have no effect on the cost function
and we restrict (ii) βl ∈ [−π

4 ,
π
4 ].

Yet another symmetry is recovered by taking the complex conjugate of the energy. As both
classical and mixing Hamiltonians are real-valued, one has

E∗(β,γ) = ⟨β,γ|HC |β,γ⟩∗ = E(−β,−γ). (C.4)
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And because the energy is also real-valued (HC is Hermitian), we recover another symmetry
of the cost function: (iii) (β,γ)→ (−β,−γ).
The symmetries (i)-(iii) introduced above were discussed in Refs. [ZWC+20, SS21a]. But we
can restrict the search space even further. In particular, we demonstrate that for the QAOA
cost function for 3-regular random graphs (RRG3) the following additional symmetry holds:

(iv) Flipping sign of any of the βl → −βl for any l ∈ [1, p] together with shifts of γl,l+1
angles, as γl,l+1 → γl,l+1 ± π

2 . Note that for l = p only the γp angle has to be shifted.

Let us prove this property for regular graphs with odd connectivity (i.e. 3-regular, 5-regular,
. . . ). In order to demonstrate the property (iv) for j < p, it is enough to show that:

e−i π
2HCeiβHBe−i π

2HC ∼ e−iβHB , (C.5)

where ∼ stands for equivalence up to a global phase. In other words, we use the property that
e−i π

2HC ∼ ∏︁i σ
z
i acts as a product of σz operators over all spins, that relies on the fact that

each vertex is connected to an odd number of edges (interaction terms). This leads to the
relation

e−i π
2HCeiβHBe−i π

2HC ∼ e−iβHB . (C.6)
Thus, the change of sign of βk can be compensated by the shifts of “adjacent” angles γk,k+1
by π/2, leading to the property (iv) when j < p. In the particular case of j = p, the property
(iv) for j = p is obtained using the following relation

ei π
2HCe−iβHBHCe

iβHBe−i π
2HC (C.7)

∼ei π
2HCe−iβHBei π

2HCHCe
−i π

2HCeiβHBe−i π
2HC (C.8)

=eiβHBHCe
−iβHB . (C.9)

Finally, let us rewrite the property (iv) by sequentially applying this symmetry for all indices j
starting from k and ending at p. Then we obtain the following property equivalent to (iv) and
dubbed (iv’):

(iv’) ∀j = [k, p] : βj → −βj, γj → γj ± π
2 .

This allows us to restrict all γ angles to the region [−π
4 ,

π
4 ]. Moreover, the sign-flip symmetry

(iii) allows us to make one of the γ angles, for instance, γ1, positive, cutting the search space
in half.
In addition, let us apply property (iv’) for k = 1 (i.e. including all layers of the unitary circuit)
and supplement it with a global sign flip, operation (iii). As a result, we obtain the following
symmetry:

γ1 → ±
π

2 − γ1, ∀j = [2, p] : γj → −γj (C.10)

This indicates that there is a p-dimensional plane in the landscape with coordinates γ =
(±π

4 ,0p−1) which acts as a mirror. This plane is characterized by a vanishing gradient of
the cost function and the Hessian having p vanishing eigenvalues. However, it is located on
the edge of our search space and it has a vanishing expectation value of the cost function,
corresponding to the approximation ratio r = 0, which is very far from the good-quality local
minima.
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In summary, collecting all symmetries discussed above, we restrict the fundamental search
region to

βl ∈
[︄
− π

4 ,
π

4

]︄
, ∀l ∈ [1, p], (C.11)

0 < γ1 <
π

4 , (C.12)

γj ∈
[︄
− π

4 ,
π

4

]︄
, ∀j ∈ [2, p]. (C.13)

C.2 Construction of transition states
In this section, we show how to use a local minimum of the QAOAp to construct a set of
2p+ 1 transition states (TS) at circuit depth p+ 1. These are stationary points with all but
one Hessian eigenvalue being positive. More precisely, we show the following statement:

Theorem 7 (TS construction, full version). Let Γp
min = (β⋆,γ⋆) = (β⋆1 , . . . , β⋆p , γ⋆1 , . . . , γ⋆p)

be a local minimum of QAOAp. Define the following 2p + 1 points by padding this vector
with zeroes at distinguished positions:

Γp+1
TS (i, j) = (β⋆1 , ..., β⋆j−1,0, β⋆j , ..., β⋆p ,

γ⋆1 , ..., γ
⋆
i−1,0, γ⋆i , ..., γ⋆p)

(C.14)

with i ∈ [1, p+ 1] and j = i or j = i + 1. Then each of these points is either (i) a TS for
QAOAp+1 or (ii) has a non-regular Hessian.

Theorem 3 in the main text is a streamlined version of this statement that does not mention
the possibility of degenerate Hessians. We expect that the Hessian matrix of a local minimum
of QAOAp is non-degenerate in the absence of symmetries and provided the circuit is not
overparametrized [LJGM+21] (if there exists some combination of variational angles, such that
its changes do not influence the quantum state, it leads to vanishing eigenvalue of Hessian).
Analogously, in the case of the Hessian at the TS of QAOAp+1, we numerically find that option
(ii) never happens. Below, we relate the two new additional eigenvalues of the Hessian at the
TS to the expectation value of a physical operator over the variational state. This expectation
value is non-zero in the absence of special symmetries or fine-tuning, providing a physical
justification for why we do not observe zero eigenvalues in the Hessian spectra of our TS.

C.2.1 Cost function gradient
Let us start by computing the energy gradient ∇E(β,γ). Derivatives of the quantum state
with respect to parameters βl, γl are given by the following expressions:

∂βl
|β,γ⟩ = −iU>lHBU≤l|+⟩,

∂γl
|β,γ⟩ = −iU≥lHCU<l|+⟩,

(C.15)

where U≥l = UB(βp)UC(γp) · · ·UB(βl)UC(γl), U≤l = UB(βl)UC(γl) · · ·UB(β1)UC(γ1) and
analogously for U<l, and U>l. For simplified notation we use write |+⟩ instead of |+⟩⊗n. We
can now deduce the components of the energy gradient ∇E(β,γ) from Eq. (C.15). They
read

∂βl
E(β,γ) = i⟨+|U †

≤l[HB, U
†
>lHCU>l]U≤l|+⟩,

∂γl
E(β,γ) = i⟨+|U †

<l[HC , U
†
≥lHCU≥l]U<l|+⟩.

(C.16)
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Our goal is to prove that given a local minimum Γp
min = (β⋆1 , . . . , β⋆p , γ⋆1 , . . . , γ⋆p) for a QAOAp

the set of 2p+ 1 points

Γp+1
TS (l, k) = (β⋆1 , ..., β⋆l−1, 0, β⋆l , ..., β⋆p ,

γ⋆1 , ..., γ
⋆
k−1, 0, γ⋆k, ..., γ⋆p),

(C.17)

with l ranging from 1 to p+ 1 and either k = l or k = l + 1 are all TSs. The first step is to
prove that they are all stationary points. That is, each such point leads to a vanishing gradient.
From the above expression, it follows that we only have to consider gradient components
where the zero insertion is made since the others are zero due to the point Γp

min being a local
minimum (i.e. derivatives are vanishing). For the derivatives over newly introduced angles
using Eq. (C.15), we see that

∂βl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l)

= ∂βl−1|β,γ⟩⃓⃓⃓Γp
min

,

∂βl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l+1)

= ∂βl
|β,γ⟩⃓⃓⃓

Γp
min

,

∂γl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l)

= ∂γl
|β,γ⟩⃓⃓⃓

Γp
min

,

∂γl+1|β,γ⟩⃓⃓⃓Γp+1
TS (l,l+1)

= ∂γl
|β,γ⟩⃓⃓⃓

Γp
min

,

(C.18)

where the index l ranges from 1 to p+ 1 for the (l, l) case and from 1 to p in the (l, l + 1)
case.
These observations reduce the derivatives over the new angles to derivatives over angles from
local minima of QAOAp. And these vanish by definition because we started in a local minimum
which is itself a stationary point, that is

∇E(β,γ)⃓⃓⃓
Γp

min

= 0. (C.19)

We emphasize that these arguments do not apply to two special cases that should be treated
separately.
In particular, Eq. (C.15) does not provide any information for: (i) the gradient component
∂β1 [·] when considering TS Γp+1

TS (1, 1) and Γp+1
TS (1, 2), and (ii) the gradient component ∂γp+1 [·]

when considering points Γp+1
TS (p+ 1, p+ 1). For case (i), we use that HB|+⟩ = n|+⟩ with n

being the number of qubits, to show that

∂β1|β,γ⟩⃓⃓⃓Γp+1
TS (1,k)

=− in|β,γ⟩⃓⃓⃓
Γp

min

(C.20)

for k = 1, 2. This in turn implies

∂β1E(β,γ)⃓⃓⃓
Γ1

TS(1,k)
=(in− in)⟨β,γ|β,γ⟩⃓⃓⃓

Γp
min

= 0, (C.21)

as desired. For case (ii) we have that

∂γp+1 |β,γ⟩⃓⃓⃓Γp+1
TS (p+1,p+1)

= −iHC |β,γ⟩⃓⃓⃓
Γp

min

, (C.22)

which handles the second special case:

∂γp+1E(β,γ)⃓⃓⃓
Γp+1

TS (p+1,p+1)
= (i− i)E(Γp

min) = 0. (C.23)
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Putting everything together implies that all energy partial derivatives vanish for every Γp+1
TS

introduced in Theorem 3:

∇E(β,γ)⃓⃓⃓
Γp+1

TS (l,l)
= ∇E(β,γ)⃓⃓⃓

Γp+1
TS (l,l+1)

= 0 (C.24)

for all l ∈ [1, p + 1] except the pair (p + 1, p + 2) which exceeds the index range. In other
words: these 2(p+ 1)− 1 = 2p+ 1 points must all be stationary points.

C.2.2 Cost function Hessian
We now proceed with the study of the Hessian for each of the stationary states in the set
Γp+1

TS (l, k) with l ranging from 1 to p+ 1 and k being l or l + 1. Using basic row and column
operations we decompose the Hessian as follows:

H[Γp+1
TS (l, k)] =

(︄
H(Γp

min) v(l, k)
vT (l, k) h(l, k)

)︄
, (C.25)

where H(Γp
min) ∈ R2p×2p, v(l, k) ∈ R2p×2 and, h(l, k) ∈ R2×2. It is important to note that

the determinant of the Hessian at the point Γp+1
TS (l, k) remains unchanged by such reordering

of rows and columns. To see this, recall that switching two rows or columns causes the
determinant to switch signs. Since we switch x rows and x columns, we realize that the overall
sign does not change after all. In terms of matrix elements, v(l, k) ∈ R2p×2 reads

v(l, k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂β1∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂β1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

... ...
∂βl−1∂βl

E(β,γ)⃓⃓⃓
Γp+1

TS

∂βl−1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

∂βl+1∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂βl+1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

... ...
∂βp+1∂βl

E(β,γ)⃓⃓⃓
Γp+1

TS

∂βp+1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

∂γ1∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂γ1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

... ...
∂γk−1∂βl

E(β,γ)⃓⃓⃓
Γp+1

TS

∂γk−1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

∂γk+1∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂γk+1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

... ...
∂γp+1∂βl

E(β,γ)⃓⃓⃓
Γp+1

TS

∂γp+1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

while h(l, k) ∈ R2×2 becomes

h(l, k) =

⎛⎜⎜⎝
∂βl
∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂βl
∂γk

E(β,γ)⃓⃓⃓
Γp+1

TS

∂βl
∂γk

E(β,γ)⃓⃓⃓
Γp+1

TS

∂γk
∂γk

E(β,γ)⃓⃓⃓
Γp+1

TS

⎞⎟⎟⎠ .
Our goal is to restrict the properties of the Hessian (C.25) using the fact that the Hessian at
circuit depth p is a positive-definite matrix, a consequence of the fact that we start at a local
minimum Γp

min. To this end, we use a powerful theorem from matrix analysis.
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Theorem 8 (Eigenvalue interlacing theorem [Bel97] (Theorem 4 on page 117)). Let A ∈ Rn×n

be a symmetric matrix and B ∈ Rm×m with m < n be a principal submatrix (obtained by
removing both the i-th column and i-th row for some values of i). Suppose A has eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn and B has eigenvalues κ1 ≤ · · · ≤ κm. Then

λk ≤ κk ≤ λk+n−m, (C.26)

for k = 1,m.

The eigenvalue interlacing theorem relates the ordered set of Hessian eigenvalues {λp+1
i } for

QAOAp+1 to the Hessian eigenvalues {λpi } of QAOAp in the following way:

λp+1
k ≤ λpk ≤ λp+1

k+2. (C.27)

Using the fact that Hp(Γp
min) has λpk > 0 for all k, we see that the Hessian of QAOAp+1 at point

Γp+1
TS (l, k) has at most two negative eigenvalues, λp+1

1 , λp+1
2 < λp1, whereas 0 < λp1 < λp+1

j for
j ≥ 3. In what follows we establish that among these two eigenvalues, exactly one is negative
and the other one is positive. This is achieved by demonstrating that the full Hessian matrix
has a negative determinant,

detH
[︂
Γp+1

TS (l, k)
]︂
< 0, (C.28)

which rules out the possibility that the remaining eigenvalues λp+1
1,2 have the same sign (which

would cancel in the determinant).
Below we first prove Relation (C.28) for the cases where the insertion of the zeros is made at
the first (i) or at the last (ii) layer of the unitary circuit. We then conclude by considering
the general case (iii), where zeros are inserted in the “bulk" of the unitary circuit. Moreover,
whenever is clear from context, we will drop the indices (l, k) for better readability. Furthermore,
for all the cases considered below, we introduce a specific short-hand notation for the following
second-order derivative

b = ∂βl
∂γk

E(β,γ)⃓⃓⃓
Γp+1

TS

. (C.29)

This matrix element will play a special role in the calculation of detH(Γp+1
TS (l, k)). It is

important to note, that while the specific expression of b differs for all the stationary points
in the set given by Eq. (C.17), it has a non-zero value, b ̸= 0. Indeed, below we express b
as an expectation value of a non-vanishing operator over the QAOA variational state, that is
non-zero in the absence of special symmetries.

Case (i): l = k = p+ 1

The first step is to compute the matrix elements of v(p+ 1, p+ 1). From now on we drop the
quantifying index and simply write v and h to reduce notational overhead. The first column
of v corresponds to vβj ,βp+1 = ∂βj

∂βp+1E(β,γ) evaluated at the TS Γp+1
TS :

∂βj
∂βp+1E(β,γ)⃓⃓⃓

Γp+1
TS

=

⟨+|U †
≤j[U

†
>j[HB, HC ]U>j, HB]U≤j|+⟩ = aj,

(C.30)

where we introduced the short-hand notation aj for better readability. Analogously, considering
matrix elements of the form vγj ,βp+1 = ∂γj

∂βp+1E(β,γ), we obtain

∂γj
∂βp+1E(β,γ)⃓⃓⃓

Γp+1
TS

= ⟨+|U †
<j[U

†
≥j[HB, HC ]U≥j, HC ]U<j|+⟩ = ap+1+j. (C.31)
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Evaluating the second derivatives on Eq. (C.30) and Eq. (C.31) at j = p+ 1 corresponds to
the first column of the 2× 2 matrix h. In particular, evaluating Eq. (C.30) at j = p+ 1 leads
to U>j = I and U≤j = U which in turn implies that

∂2
βp+1E(β,γ)⃓⃓⃓

Γp+1
TS

= ⟨Γp
min|[[HB, HC ], HB]|Γp

min⟩ = ap+1. (C.32)

Note that above we used U>p+1 = I. This is because when the derivative is taken concerning
the last layer (p+ 1) of the unitary circuit, there is no unitary to the left of it which, in the
notation introduced on Eq.(C.15) is equivalent to U>p+1 = I. Doing the same on Eq. (C.31)
gives

∂γp+1∂βp+1E(β,γ)⃓⃓⃓
Γp+1

TS

= ⟨Γp
min|[[HB, HC ], HC ]|Γp

min⟩ = b. (C.33)

Finally, let us look at the matrix elements of the form vβj ,γp+1 = ∂βj
∂γp+1E(β⃗, γ⃗) and

analogously vγj ,γp+1 , corresponding to the second column of v. Let us first inspect ∂γp+1E(β⃗, γ⃗):

∂γp+1E(β,γ) = i⟨+|U †
<p+1[HC , U

†
p+1HCUp+1]U<p+1|+⟩. (C.34)

When evaluated at point Γp+1
TS , we obtain that [HC , U

†
p+1HCUp+1] = 0 since Up+1 = I and

HC commutes with itself. Hence, we see that as long as the second derivative is taken with
respect to an element (β or γ) at index j < p+ 1 the final result will be zero. As we already
saw in Eq. (C.33), ∂γp+1∂βp+1E(β,γ) is equal to b. Using similar arguments, we show that
∂γp+1∂γp+1E(β,γ) = 0 which corresponds to the hγp+1,γp+1 matrix element of h. We are then
ready to construct the Hessian at the TS under consideration:

H(Γp+1
TS ) =

(︄
H(Γp

min) v
vT h

)︄
, (C.35)

with

vT =
(︄
a1 · · · a2p+1
0 · · · 0

)︄
and h =

(︄
ap+1 b
b 0

)︄
. (C.36)

Using the expression for the determinant of a block matrix [Bel97]

det
(︄
A B
C D

)︄
= det(A)det(D − CA−1B), (C.37)

we rewrite the determinant of the full Hessian as follows

det
[︂
H(Γp+1

TS )
]︂

= det
(︄
ap+1 b
b 0

)︄
det

[︂
H(Γpmin)− vh−1vT

]︂
= −b2det

[︂
H(Γpmin)

]︂
. (C.38)

We used that vh−1vT = 0 in the last line. We then see that as long as b ≠ 0 the determinant
of the Hessian at the TS is negative, det[H(Γp+1

TS )] < 0. The explicit expression (C.33) for
b relates it to the expectation value of the commutator [[HB, HC ], HC ] over the variational
wave function. Since this commutator is a non-vanishing operator, its expectation value is
generically non-zero, b ̸= 0. This concludes the proof of Theorem 3 for the case when zeros
are inserted at the last layer of the unitary circuit.
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Case (ii): l = k = 1

As before, we focus on computing the matrix elements of v = v(1, 1) and h = h(1, 1). Starting
from the first column of v, with matrix elements vβj ,β1 and vγj ,β1 for j ∈ [2, p+ 1] we find

∂βj
∂β1E(β,γ)⃓⃓⃓

Γp+1
TS

= ⟨+|[HB, U
†
≤j[U

†
>jHCU>j, HB]U≤j]|+⟩ = 0,

∂γj
∂β1E(β,γ)⃓⃓⃓

Γp+1
TS

= ⟨+|[HB, U
†
<j[U

†
≥jHCU≥j, HC ]U<j]|+⟩ = 0.

(C.39)

Moving onto the second column of v, with matrix elements vβj ,γ1 and vγj ,γ1 for j ∈ [2, p+ 1]
we obtain

∂γ1∂βj
E(β,γ)⃓⃓⃓

Γp+1
TS

= ⟨+|[HC , U
†
≤j[U

†
>jHCU>j, HB]U≤j]|+⟩ = cj,

∂γj
∂γ1E(β,γ)⃓⃓⃓

Γp+1
TS

= ⟨+|[Hc, U
†
<j[U

†
≥jHCU≥j, HC ]U<j]|+⟩ = cp+1+j

(C.40)

where for better readability we introduced the short-hand notation cj with j ∈ [2, p]. Finally,
evaluating the above expressions Eq. (C.39) and Eq. (C.40) at j = 1 leads to the matrix
elements of the 2× 2 matrix h. Altogether, we find

vT (1, 1) =
(︄

0 · · · 0
c1 · · · c2p+2

)︄
, h(1, 1) =

(︄
0 b
b cp+2

)︄
,

where
b = ⟨+|[HC , [U †HCU,HB]]|+⟩ (C.41)

and the value of cp+2 follows from evaluating Eq. (C.40) at j = 1.

Invoking once again the expression for the determinant of a block matrix Eq. (C.37) we get

det
[︂
H(Γp+1

TS )
]︂

= det
[︂
H(Γpmin))det(h+ vTH(Γpmin)v

)︂
= det

[︄(︄
0 b
b cp+2

)︄
+
(︄

0 0
0 const

)︄]︄
det
[︂
H(Γpmin)

]︂
= −b2det

[︂
H(Γpmin)

]︂
. (C.42)

Using that the point Γp
min is a local minimum (with the Hessian being non-singular), we see

that as long as b ̸= 0 the determinant of the Hessian at the TS is negative. The fact that the
parameter b in Eq. (C.41) is non-vanishing can be inferred from the similar argument to the
one used at the end of Appendix C.2.2

Case (iii): l, k ∈ 2, p

So far we have proven that when the zeros insertion is made at the initial (I) or last (II) layer
of the unitary circuit the corresponding points Γp+1

TS of QAOAp+1 are TS. In both cases, we
proved that the determinant of the Hessian of QAOAp+1 at the given points is negative. In
order to do this, we used that one of the columns of the 2p × 2 matrix v was zero which
greatly simplified the computation of the determinant. In what follows, we show that these
simplifications, unfortunately, do not occur when the zeros insertion is made in the bulk of the
unitary circuits. However, we instead observe that the matrix v(l, k) is constructed by taking
the l-th (βl) and p+ 1 + k-th (γk) columns of the Hessian of QAOAp at the local minimum
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Γp
min. This fact, together with the invariance of the determinant under linear operations

performed on rows or columns leads to the desired result.

We begin by explicitly computing the matrix elements of h(l, k) and v(l, k) and then relating
them to matrix elements of the Hessian H(Γp

min). For the sake of concreteness, we focus on
the particular case of symmetric TS, i.e. k = l. The other case, i.e. k = l + 1 can be covered
by an analogous chain of arguments. As before, in what follows we drop the quantifying
indices for better readability. Starting from h, we obtain

h =

⎛⎜⎜⎝
∂βl
∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂βl
∂γl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂βl
∂γl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂γl
∂γl
E(β,γ)⃓⃓⃓

Γp+1
TS

⎞⎟⎟⎠ =

⎛⎜⎜⎝
∂2
βl−1

E(β,γ)⃓⃓⃓
Γp

min

b

b ∂2
γl
E(β,γ)⃓⃓⃓

Γp
min

⎞⎟⎟⎠
=
(︄
H(Γp

min)βl−1,βl−1 b
b H(Γp

min)γl,γl

)︄
, (C.43)

where

b = ⟨+|U †
≤l−1[HC , [HB, U

†
>l−1HCU>l−1]]U≤l−1|+⟩. (C.44)

One might be tempted by looking at the properties listed in Eq. (C.18) to relate ∂βl
∂γl
E(β,γ)⃓⃓⃓

Γp+1
TS

to ∂βl−1∂γl
E(β,γ)⃓⃓⃓

Γp
min

. However, upon closer inspection, we can see that these are not the

same. More specifically, we get

∂βl−1∂γl
E(β,γ)⃓⃓⃓

Γp
min

= ⟨+|U †
≤l−1[HB, [HC , U

†
>l−1HCU>l−1]]U≤l−1|+⟩. (C.45)

Comparing the above expression with Eq. (C.44) we realize that although not equal, they are
related via the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, (C.46)

for operators A,B and C. More specifically, we obtain

b− ∂βl−1∂γl
E(β,γ)⃓⃓⃓

Γp
min

= ⟨+|U †
≤l−1[U

†
>l−1HCU>l−1, [HB, HC ]]U≤l−1|+⟩ = b̄. (C.47)
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Considering now the matrix elements of v we get

v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂β1∂βl−1E(β,γ)⃓⃓⃓
Γp

min

∂β1∂γl
E(β,γ)⃓⃓⃓

Γp
min

... ...
∂βl−1∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂βl−1∂γl
E(β,γ)⃓⃓⃓

Γp
min

∂βl
∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂βl
∂γl
E(β,γ)⃓⃓⃓

Γp
min

... ...
∂βp∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂βp∂γl
E(β,γ)⃓⃓⃓

Γp
min

∂γ1∂βl−1E(β,γ)⃓⃓⃓
Γp

min

∂γ1∂γl
E(β,γ)⃓⃓⃓

Γp
min

... ...
∂γl−1∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂γl−1∂γl
E(β,γ)⃓⃓⃓

Γp
min

∂γl
∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂γl
∂γl
E(β,γ)⃓⃓⃓

Γp
min

... ...
∂γp∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂γp∂γl
E(β,γ)⃓⃓⃓

Γp
min

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(Γp
min)β1,βl−1 H(Γp

min)β1,γl... ...
H(Γp

min)βp,βl−1 H(Γp
min)βp,γl

H(Γp
min)γ1,βl−1 H(Γp

min)γ1,γl... ...
H(Γp

min)γp,βl−1 H(Γp
min)γp,γl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(C.48)
Hence, we find that the 2p × 2 rectangular matrix v corresponds to the matrix formed by
taking columns H(Γp

min)m,βl−1 and H(Γp
min)m,γl

with m = 1, . . . , 2p of H(Γp
min). Using this

result and the fact that the determinant is invariant under linear operations performed on rows
or columns, we get that

det(H(Γp+1
TS )) = det

(︄
H(Γp

min) v(l, k)
0 h(l, l)

)︄
, (C.49)

where we subtracted rows H(Γp
min)βl−1,m and H(Γp

min)γl,m with m = 1, . . . , 2p from vT , and
introduced

h =
(︄

0 b̄

b̄ 0

)︄
, (C.50)

Using once again the expression for the determinant of a block matrix Eq. (C.37), and the
fact that det(h(l, l)) = −b̄2 is negative (b̄ ̸= 0 due to similar argument as in Appendix C.2.2)
we obtain

det
[︂
H(Γp+1

TS )
]︂

= −b̄2det
[︂
H(Γp

min)
]︂
< 0, (C.51)

concluding our proof for the general TS.

C.3 Counting of unique minima
The number of minima found in the initialization graph construction presented in the main
text, naïvely scales as Nmin(p) = 2p−1p!. This follows from our recursive construction. Each
local minimum of QAOAp is used to construct p+ 1 symmetric TS and for each TS we then
find two new minima of QAOAp+1, see Figs. 4.1 and 4.2. This factorial growth is, however,
only sustained if every TS produces two new minima that are all distinct from each other.
Numerically, we find that this is not the case and that the number of unique minima is
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significantly smaller. The increase in the number of unique minima is consistent with an
exponential dependence proportional to eκp [we find that Nmin(p) can be approximated as
Nmin(p) ≈ 0.19e0.98p]. However, the limited range of p does not allow us to completely rule
out factorial growth, see Fig. C.1. The much smaller number of unique minima, compared to
the naïve counting demonstrates that different TS often lead to similar minima, as illustrated
in Fig. 4.4.

C.4 Properties of the index-1 direction
The index-1 direction is the direction of negative curvature at a TS in a QAOAp+1 which we
use to find two new minima in QAOAp+1, as illustrated in Fig. 4.2(a). The index-1 direction
is obtained by finding the eigenvector corresponding to the unique negative eigenvalue of the
Hessian, H(Γp+1

TS ). Numerically we showed in Fig. 4.2(b) that optimization initialized along
the ± index-1 direction either heals or enhances the perturbation introduced by a creation of
the TS from the local minima of QAOAp.

Interestingly, we find that the index-1 vector has dominant components at positions where
zero angles were inserted as well as the positions of adjacent angles. In contrast, all other
components of the index-1 vector have nearly zero weight, as illustrated in Fig. C.2. The
large contribution along the component corresponding to the zero insertion can be physically
motivated by the fact that the gate with the zero parameter does initially not have any effect
for driving the initial state |+⟩⊗n towards the ground state of HC . Hence, the energy can be
lowered by ‘switching on’ the action of this gate by moving the value of the corresponding
variational angle away from zero. Interestingly, we see that the neighboring gates with non-zero
parameters are also changed along the index-1 direction. The next nearest neighboring gates
appear to be not involved in this process. We note that this numerical observation allows
to a priori guess the index-1 direction without having to diagonalize the Hessian H(Γp+1

TS ).
This may be useful for the practical implementation of our initialization on available quantum
computers.

C.5 Description of GREEDY algorithm
In the following, we provide a detailed description for the GREEDY QAOA initialization, as
well as the subroutines required to implement the algorithm. To this end, we first provide
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Figure C.1: Number of minima found in the initialization graph in Fig. 4.2 with system size
n = 10. The orange line describes a naïve counting argument (2p−1p!) while the blue line lists
the actual number of distinct minima that can be approximated as 0.19 e0.98p.
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Figure C.2: (a) Illustration of the circuit implementing the QAOA at a TS. Gray gates
correspond to the zero insertion. The index-1 direction has mainly weight at the position of
the zeros as well as the two adjacent gates. (b) Numerical example of the index-1 vector and
the QAOA parameter pattern at the TS. Arrows correspond to the magnitude and sign of the
entries in the index-1 direction. Only entries at β1, β2, γ2 and γ3 have a large magnitude, all
other entries are nearly zero.

a pseudo-code for a gradient-based QAOA parameter optimization routine. The algorithm is a
so-called variational hybrid algorithm, which implies that the quantum computer is used in
a closed feedback loop with a classical computer. There the quantum computer is used to
implement a variational state and measure observables while the classical computer is used to
keep track of the variational parameters and update them in order to minimize the energy
expectation value.

Algorithm 2 QAOA subroutine

1: Given the circuit depth p, choose initial parameters Γp
init. = (βinit.,γinit.)

2: repeat
3: Implement |β,γ⟩ on a quantum device
4: Estimate E(β,γ) = ⟨β,γ|HC |β,γ⟩
5: Estimate gradient ∇E(β,γ)
6: Update (β,γ) using gradient information
7: until E(β,γ) has converged
8: Return minimum Γp

min
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For very shallow circuit depths, such as p = 1, the optimization landscape is sufficiently low
dimensional and simple such that global optimization routines can be used to find the optimal
parameters. One of the most straightforward global optimization routines is the so-called grid
search. There, the parameters are initialized on a dense grid and a parameter optimization
routine, such as the QAOA sub-routine is carried out for each point in the grid. Then,
only the lowest energy local minimum is kept.

Algorithm 3 Grid search subroutine

1: Given a circuit depth p, construct an evenly spaced grid on the fundamental region:

βi ∈
[︄
− π

4 ,
π

4

]︄
; γ1 ∈

(︄
0, π4

)︄
, γj ∈

[︄
− π

4 ,
π

4

]︄
, (C.52)

with i ∈ [1, p] and j ∈ [2, p]
2: QAOA subroutine initialized from each point in grid
3: Return local minimum with the lowest energy Γp

min

Using the two subroutines presented above we can provide a detailed pseudo-code for
the Greedy QAOA algorithm, see Fig. C.3 for a visualization.

Algorithm 4 Greedy QAOA

1: Choose maximum circuit depth pmax
2: Choose small offset ϵ≪ 1
3: Grid search for p = 1 to find Γp=1

min ▷ See Grid search subroutine
4: repeat
5: Construct p+ 1 symmetric TS Γi,p+1

TS from Γp
min

6: Compute or approximate the index-1 unit vector v̂ for each TS
7: Construct points Γi,p+1

± = Γi,p+1
TS ± ϵv̂i for each TS

8: Run QAOA init. from Γi,p+1
± ▷ See QAOA subroutine

9: Keep local minimum with the lowest energy Γp+1
min

10: p←− p+ 1
11: until p = pmax
12: Return minimum Γp=pmax

min

The index-1 direction v̂i can either be found explicitly by diagonalizing the Hessian matrix or
using the heuristic approximation outlined in the previous section. While explicit diagonalization
incurs classical computation costs that scale polynomially with p, and thus can be done
efficiently, an approximation to index-1 direction is expected to give a similar performance of
QAOA subroutine at a lower classical computational cost.

C.6 Additional graph ensembles and system size scaling
In the main text, we numerically investigated the performance of our method on random
3-regular graphs (RRG3) with system size n = 10. In the following, we present results for
larger system sizes as well as two more graph types. Namely, weighted 3-random regular graphs
(RWRG3) where the Hamiltonian is given by HC = ∑︁

⟨i,j⟩∈E wijσ
z
i σ

z
j and wij are random
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Figure C.3: Flow diagram to visualize the Greedy QAOA initialization algorithm presented
in Algorithm 4.

weights wij ∈ [0, 1), as well as random ErdAos-Rényi graphs (RERG) with edge probability
pE = 0.5.
Fig. C.4 shows the performance comparison between Greedy, TQA, and Interp on RWRG3
and RERG. We can see that for RWRG3 the performance of the three methods is comparable,
while for RERG the TQA performs worse than the other two methods. Greedy and Interp
yield (nearly) the same performance for both graph ensembles on the system size that we
considered (n = 10).
Fig. C.5 compares the performance for RRG3 with different system sizes. Interp and
Greedy yield very similar performance for smaller system sizes (n = 8 indicated by light
color) while they yield the same performance for larger system sizes (n = 16 indicated by
dark color). TQA performs slightly worse than Greedy and Interp for all system sizes
considered. We can furthermore see that the gain in performance from every additional layer
is becoming less for bigger system sizes. This is because for the QAOA to “see" the whole
graph, a circuit depth p scaling as p ∼ log n is required [FGG20a].
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Figure C.4: Performance comparison on (a) RWRG3 and (b) RERG with system size n = 10.
Data is averaged over 19 non-isomorphic graphs.
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APPENDIX D
Appendices to Chapter 4

D.1 Numerical simulations
All the simulations performed in this work were conducted using the Julia programming
language [BEKS17] and the package QAOALandscapes.jl[Med24], which was developed
by one of the authors. This package is designed to apply the QAOA to solve general
combinatorial optimization problems by encoding the classical problem into a k-spin classical
Hamiltonian. It relies on matrix-free operations to enhance speed and reduce memory usage.
Currently, it supports only the Pauli-X mixer operator (see Eq.(5.3)); however, additional
mixers can be incorporated as is described in the documentation. The package includes support
for both CPU and GPU backends, with GPU capabilities for CUDA and Metal-based devices
through CUDA.jl [? ? ] and Metal.jl [? ] packages respectively.

Numerical optimization was performed using the Optim.jl [MR18, MWR+24] package,
and in particular using the BFGS [Bro70, Fle70, Gol70, Sha70] algorithm. For this, the
package supports fast and exact gradient calculations through the use of automatic differ-
entiation using the method introduced in [LLZW20, JG20]. Further details on how to use
QAOALandscapes.jl can be found on the Readme and documentation in [Med24].

D.1.1 Quality of optimization using only Γp+1
TS (1, 1)

The Greedy approach introduced in [SMKS23], requires one to launch optimization twice
from each of the 2p+ 1 TS constructed from a local minimum Γpmin of QAOAp. The need to
launch optimization from 2p+1 distinct transition states and moving in two potential directions
away from the saddle accounts for a 2(2p+ 1) overhead on top of heuristic initializations like
Interp and Fourier [ZWC+20] with similar performance. Even though Greedy comes
with a guarantee of improvement at each circuit depth p, it is desirable to further reduce the
optimization cost that it incurs.

We thus inspect given a local minimum Γpmin what fraction of the 2p+ 1 TS constructed from
it leads to the Greedy solution after optimization. We numerically observe in Fig. D.1 that
the number of TS that connect through optimization to the best local solution decreases with
p but remains finite at approximately 0.7 at circuit depth p = 20. In all cases, we observed
that the transition state constructed by padding with zeros the first layers, i.e. ΓpTS(1, 1) in
the notation of [SMKS23], leads to the Greedy solution as also shown in the figure, where

105



D. Appendices to Chapter 4

0.6

0.8

1.0

F
ra

ct
io

n
of

T
S

co
n

n
ec

ti
n

g
to

G
r
e
e
d
y

5 10 15 20
p

10−3

10−2

10−1

〈1
−
r(

Γ
p m

in
)〉 G

Greedy: using all TS

Using only Γp+1
TS (1, 1)

Figure D.1: (Top) Fraction of the 2p + 1 TS constructed from a local minima Γpmin that
connect to the Greedy solution. The data corresponds to instances of random 3-regular
unweighted graphs with N = 12 vertices. (Bottom) Performance of numerical optimization
using only the transition state with zeros padded at indices (β, γ) = (1, 1). The average
performance, over instances of 3-regular unweighted graphs with N = 12 vertices seems
effectively identical to that of the Greedy strategy [SMKS23] that uses the set of all 2p+ 1
TS constructed from a local minima of QAOAp.

we plot the average approximation ratio obtained from using the Greedy strategy, and the
result coming from only using ΓpTS(1, 1).
This observation motivates us to focus on the transition state ΓpTS(1, 1) as it provides a reliable
choice of an initial transition state. Fixing the transition state in such a way reduces the cost
of optimization to a simple factor of two, while still keeping the guarantee of improvement.
Furthermore, as we will show below, using ΓpTS(1, 1) enables us to obtain a lower bound on
the energy improvement of the QAOA between circuit consecutive circuit depths.

D.1.2 Converging to an excited state
Here we provide a specific example of QAOA converging to an excited state. To this end,
we use a MaxCut instance studied in Ref. [ZWC+20]. This instance was used to highlight
the performance of the Fourier and Interp strategies [ZWC+20] on “hard" instances of
MaxCut. The authors used the minimum spectral gap ∆min of the annealing Hamiltonian

HQA(s) = sHC + (1− s)HB; s ∈ [0, 1]

to distinguish between “hard" and “easy" instances for optimization. In particular, for the
instance shown in Fig. D.2 one can show that ∆min < 10−3, which translates into prohibitively
long annealing time [ZWC+20].
Both Fourier and Interp initialization strategies reuse a local minimum of the QAOA at
circuit depth p to construct an initialization at circuit depth p+1. In the case of the Fourier
initialization — which will also use here — the idea is to use a different parametrization
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Figure D.2: Instance of MaxCut with N = 14 vertices where the QAOA algorithm gets
trapped in local optima, and mostly converges to the first excited state of the cost Hamiltonian
HC .

of QAOA. Instead of using the 2p-parameters (β,γ), Ref. [ZWC+20] considers the discrete
cosine and sine transform of β and γ respectively

βi =
q∑︂

k=1
vk cos

[︂
(k − 1

2)(i− 1
2)π
p

]︂
, (D.1)

γi =
q∑︂

k=1
vk sin

[︂
(k − 1

2)(i− 1
2)π
p

]︂
. (D.2)

Through such coordinate transformation, the new parameters become the amplitudes (v,u)
of the frequency components for β and γ, respectively. The basic Fourier[∞, 0] variant
of the strategy, generates a good initial point for QAOAp+1 by adding a higher frequency
component, initialized at zero amplitude, to the optimum at level p. Last, in the improved
variant Fourier[∞, R] in addition to optimizing according to the basic strategy, we optimize
QAOAp+1 from R + 1 extra initial points, R of which are generated by adding random
perturbations to the best of all local optima (v,u) found at level p (see the Appendix B.2 in
Ref. [ZWC+20] for more details). It is crucial to note that the number of random perturbations
in Fourier space, denoted by R, serves as a hyperparameter; optimizing its value is essential
for enhanced convergence, requiring multiple runs of the optimization process with varied R
settings to determine the most effective configuration.
In Fig. D.3 we compare the performance of the QAOA under the Fourier[∞, 0], Fourier[∞, 10],
Greedy, and Γp+1

TS strategies. From the approximation ratio, we note that all strategies yield
the same performance for circuit depths p ∈ [1, 24], yet the improvement of the approximation
ratio is stalled for p ≥ 10. We attribute this behavior to the fact that QAOA prepares an
excited state of the system with progressively increased fidelity, see the middle panel of Fig. D.3.
Eventually, however, the QAOA is able to escape the local minimum that prepares an excited
state and starts converging to the ground state.
When the QAOA escapes the local minimum that prepares an excited state of the classical
Hamiltonian depends on the initialization scheme. The initialization Fourier[∞, 10] is the
first to escape local optima at p ∼ 24. Greedy follows next and only manages to escape
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Figure D.3: (Top) Behavior of the approximation ratio as a function of the circuit depth, for
different optimization strategies. (Middle) Probability of measuring the fifth lowest energy
eigenstates as a function of the circuit depth for the Greedy strategy. The ground state
population remains unchanged for a wide range of circuit depths, followed by a sudden increase
which correlates with the QAOA overcoming local minima. (Bottom) Circuit depth dependence
of the landscape curvature at the transition state defined in Eq. (5.6) following the Greedy
strategy. The curvature displays a gradual decrease, followed by a significant increase when
the QAOA overcomes local minima.

around p ∼ 46. Despite this, we observe that the final approximation is consistently better in
Greedy than in all other strategies. Interestingly, we see that using only the first transition
state as an initialization yields worse performance than Greedy and does escape the local
minima that prepares the excited state but at circuit depths p ∼ 58. Moreover, the initial
variant of the Fourier strategy fails to escape from local optima and gets stalled for all
circuit depths explored.

Following our comparative analysis, we articulate two critical observations. First, we conclude
that QAOA is capable of preparing low-lying excited states of the classical Hamiltonian. How
soon QAOA escapes from such a trap depends on the initialization scheme used, but this
phenomenon is present for all initialization routines considered here. Second, we conclude
that the landscape curvature at the initial transition state Γp+1

TS , quantified in Eq. (5.10), is a
good indicator of such QAOA behavior. Indeed, the bottom panel in Fig. D.3 demonstrates
that although the approximation ratio is stalling, the curvature keeps decreasing when QAOA
prepares the excited state with progressively higher fidelity. As soon as QAOA starts converging
to the true ground state, the curvature shows an increase and then continues to reduce.
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Figure D.4: (Top) Circuit depth dependence of the approximation ratio r(Γpmin). The scaling of
the approximation ratio with the circuit depth p matches the numerical results from [ZWC+20].
(Bottom) Relationship between the magnitude of the negative curvature around the transition
state Γp+1TS and the energy variance varΓp

min
[HC ] as functions of circuit depth p. Although

there appears to be qualitative agreement between the curvature and the energy variance
across varying system sizes N , it is not as close as for the unweighted instances.

All in all, our results suggest that there may be scenarios, particularly at large system sizes N ,
where the QAOA experiences stagnation, with negligible performance gains across a wide range
of circuit depths p. This stagnation primarily arises because the QAOA effectively converges
to a low-energy manifold of HC , characterized by a small landscape curvature. In the context
evaluated in this study Fig. D.2, this manifold principally consists of the ground state and the
first excited state Fig. D.3. Our results suggest that the curvature provides useful insights
into the QAOA behavior, complementary to the behavior of the approximation ratio.

D.1.3 Numerical results for weighted 3-regular graphs
In this section we present numerical results analogous to those shown in the main text, but for
weighted instances of MaxCut on 3-regular graphs.

We start by examining the curvature of the QAOA energy landscape at the transition state
from Eq.(5.6), alongside the variance of the cost Hamiltonian in the QAOA state. In Fig. D.4
we notice behavior similar to that for unweighted instances described in the main text, albeit
with notable differences. First, the approximation ratio decays slower with the system size,
aligning with findings from previous studies on similar MaxCut instances [ZWC+20]. Second,
while there is a close qualitative relationship between the energy variance of the QAOA state
and the landscape curvature at the transition state in Eq. (5.6), this relationship is not as
accurate as for unweighted instances, and energy variance decays slower compared to the
curvature with QAOA depth p.

Finally, we check the accuracy of the lower bound on energy improvement from Eq. (5.16).
Similar to observations with unweighted MaxCut instances, the lower bound significantly
underestimates the energy improvement achieved by QAOA between consecutive circuit depths.
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as a function of the circuit depth p. The lower bound Eq. (5.16), which relies on local
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results obtained by numerically optimizing using the Greedy strategy of [SMKS23]. (Bottom)
Averaged quality of the lower bound on the energy improvement, as given by ∆E(ε∗)/∆Eoptim,
for systems sizes ranging from 12 to 22 vertices.

At the same time, the ratio between true energy improvement and our lower bound seems to
be a universal function of p across a broad range of system sizes considered here.

D.2 Bounds on the Hessian eigenvalue and eigenvector.
In this Appendix, we first construct upper and lower bounds for the minimum Hessian eigenvalue
at the TS. In the second part of the Appendix, we introduce an approximation for the eigenvector
associated with the minimum Hessian eigenvalue and show that its expectation value provides a
tighter upper bound for the minimum Hessian eigenvalue. For clarity, throughout this Appendix
we focus on symmetric TS. That is, TS where the zero insertion is made at the same layer l
for β and γ components. We fully describe our construction for the case l ∈ [2, p+ 1] and
only provide the final expression for the remaining eigenvectors.

D.2.1 Bound on the minimum Hessian eigenvalue
Given Γpmin, a local minima of QAOAp, let Γp+1

TS (l, l) be the TS constructed by padding the
l-th layer of the QAOAp circuit with zeros. For clarity, we will omit the layer index whenever
possible.

The starting point is to apply a change of basis P that takes the Hessian at Γp+1
TS to the

following generic form:

H(Γp+1
TS ) ↦→ HP (Γp+1

TS ) = P TH(Γp+1
TS )P =

(︄
H(Γpmin) v(l, l)
vT (l, l) h(l, l)

)︄
. (D.3)
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Ref. [SMKS23] demonstrated that the 2p × 2 rectangular matrix v(l, l) is constructed by
taking the l − 1-th and the p+ l-th columns of H(Γpmin). Using this knowledge, we can apply
a composition of two elementary transformations on the rows and columns of H(Γpmin). More
specifically, let us define the following D ×D matrices:

1. RD
i,j(m) is the identity matrix that has an additional non-zero entry m in the (i, j)

position. Note that when applied on the left to a matrix A, the resulting matrix will have
[A]i,x ↦→ [A]i,x +m[A]j,x. The inverse of this matrix is simply (RD

i,j(m))−1 = RD
i,j(−m)

2. CD
i,j(m) is the identity matrix with an additional non-zero entry m in the (j, i) position.

Note that CD
i,j(m)=(RD

i,j(m))T .

Using the above definitions, we bring the Hessian at point Γp+1
TS to a block diagonal form:

Hblock = RH(Γp+1
TS )RT =

(︄
H(Γpmin) 0

0 h̄

)︄
, (D.4)

R = R
2(p+1)
2(p+1),p+l(−1)R2(p+1)

2p+1,l−1(−1), (D.5)

h̄ =
(︄

0 b̄

b̄ 0

)︄
, (D.6)

where

b̄ = ∂βl
∂γl
E(Γp+1

l,l )− ∂βl−1∂γl
E(Γpmin) = ⟨+|U †[HC , U≥l[HC , HB]U †

≥l]U |+⟩. (D.7)

The transformation defined above subtracts rows l − 1 and p+ l of H(Γpmin) to the first and
second row of vT respectively. Then, we apply the same operation but on the columns. It
is important to note that the eigenvalues of HP (Γp+1

TS ) do change under R. This is because
the transformation we applied is not a similarity transformation. To see this, note that by
definition RT ̸= R−1. However, we can use this block diagonal form to get some useful
information on the minimum eigenvalue of HP (Γp+1

TS ). Recall the definition of the minimum
eigenvalue of a squared matrix M is

λmin(M) = inf∥ψ∥=1⟨ψ|M |ψ⟩.

Using this definition on λmin(Hblock) we get

λmin(Hblock) = inf
∥ψ∥=1

⟨ψ|Hblock|ψ⟩ = inf
∥ψ∥=1

⟨ψ|RHP (Γp+1
TS )RT |ψ⟩.

Multiplying by 1 in the form of ∥RT |ψ⟩∥2
2/∥RT |ψ⟩∥2

2 and further using that

∥RT |ψ⟩∥2 ≤ ∥RT∥2∥|ψ⟩∥2 = ∥RT∥2,

we obtain
∥RT∥−2

2 λmin(Hblock) ≥ λmin(HP (Γp+1
TS )). (D.8)

Doing the same on λmin(HP (Γp+1
TS )) we get

λmin(HP (Γp+1
TS )) ≥ ∥(R−1)T∥2

2λmin(Hblock). (D.9)

In conclusion, by utilizing the fact that H(Γp+1
TS ) and HP (Γp+1

TS ) possess identical spectra, we
can establish the following bounds for the minimum eigenvalue of the Hessian at the TS

−∥(R−1)T∥2
2|b̄| ≤ λmin(H(Γp+1

TS )) ≤ −∥RT∥−2
2 |b̄|, (D.10)
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where we used that λmin(Hblock) = −|b̄|. With the above inequalities, the bound on the
minimum eigenvalue reduces to obtaining the operator norm of R. This is, in general, a
tough task but due to the simple form of the matrix R defined in Eq. (D.5) in this particular
case, we can compute it. The operator norm is the maximum singular value of R, which
equivalently corresponds to the maximum eigenvalue of RRT , which we can easily compute.
In particular, we calculate the spectrum of the matrix RRT to consist of three different
eigenvalues,

√︂
1
2(3 +

√
5),
√︂

1
2(3−

√
5) and 1, with multiplicities 2, 2 and 2p− 2 respectively.

Thus, we obtain that

|R∥2 =
√︄

1
2(3 +

√
5). (D.11)

The same is true for the inverse of R. With this, we arrive at the following bound

−3 +
√

5
2 |b̄| ≤ λmin(H(Γp+1

TS )) ≤ − 2
3 +
√

5
|b̄|. (D.12)

This provides upper and lower bounds on the magnitude of the minimum Hessian eigenvalue
at the TS. Below, we introduce an approximation for the eigenvector associated with the
minimum Hessian eigenvalue. Moreover, we show that the corresponding Rayleigh coefficient
improves the upper bound provided in Eq. (D.12).

D.2.2 Eigenvector approximation
We define an analogous matrix to R in Eq. (D.5) that acts on columns:

C = C
2(p+1)
2(p+1),p+l(−1/2)C2(p+1)

2p+1,l−1(−1/2). (D.13)

We now apply the transformation R−1C to HP (Γp+1
TS ), which gives the following expression:

H̃P (Γp+1
TS ) = C−1RHP (Γp+1

TS )R−1C =
(︄
H(Γpmin) +M 0

0 h̄/2

)︄
+
(︄

0 uT/4
u 0

)︄
. (D.14)

The matrix M features two non-zero columns at indices j = l − 1 and j = p+ l, mirroring
the structure of the Hessian matrix at the local minimum, H(Γpmin). It includes an additive
correction of b̄/2 at specific elements Ml−1,p+l and Mp+l,l−1. More specifically,

Mi,j = H(Γpmin)i,j
(︃
δj,l−1

(︂
1 + b̄

2δi,p+l
)︂

+ δj,p+l
(︂
1 + b̄

2δi,l−1
)︂)︃
. (D.15)

Finally, we have the 2× 2p matrix u with non zero entries equal to b̄ at positions {1, p+ l}
and {2, l− 1}. It is important to note that the applied transformation here, in contrast to the
one constructed in Eq. (D.5), is a similarity transformation. Thus, it preserves the spectrum
of the Hessian while the eigenvectors are transformed as v ↦→ ṽ := C−1Rv.
We then define the approximate Hessian eigenstate to be

ṽbound =

⎛⎜⎝ 02p
1/
√

2
−sign(b̄)/

√
2

⎞⎟⎠ . (D.16)

Computing the expectation value of the Hessian on ṽbound we get:

λTS = −
⃓⃓⃓
b̄
⃓⃓⃓
/2, (D.17)
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which, taking into account that 1
2 >

2
3+

√
5 , improves the previously obtained upper bound on

the minimum Hessian eigenvalue at the TS in Eq. (D.12)

−3 +
√

5
2 |b̄| ≤ λmin(H(Γp+1

TS )) ≤ λTS = −|b̄|2 . (D.18)

The last step is then to find the expression of ṽbound in the original basis δTS = P TR−1Cṽbound,
that results in the following form

[δTS]j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 if j = l − 1, l
− sign(b̄)

2 if j = p+ l + 1,
sign(b̄)

2 if j = p+ l + 2,
0 otherwise.

(D.19)

Thus, we see that the approximate Hessian eigenvector has weights at layer l as well as the
two adjacent gates. The sparse structure of δTS comes from the fact that R−1C has only four
non-zero offdiagonal matrix elements in positions (2(p+1), p+l), (2p+1, l−1), (p+l, 2(p+1)),
and (l − 1, 2p+ 1). Thus, we see that when acting ṽbound, we will get a vector with also four
non-zero elements. Since R−1C is not an orthogonal matrix, then it is needed to normalize
the resulting vector R−1Cṽbound. Finally, the action of the permutation will just reorder the
elements in the vector without changing its content.
Finally, we list without derivation eigenvector and eigenvalue approximations for the remaining
TS:

1. For l = 1 we have that:

[δTS]j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− sign(b)√
2 if j = l,

1
2 if j = p+ 1 + l,

−1
2 if j = p+ 1 + l + 1,

0 otherwise.

(D.20)

with b = ⟨+|[HC , [HB, U(Γpmin)†HCU(Γpmin)]]|+⟩. The approximate eigenvalue in this
case equals −|b|/

√
2.

2. For l = p+ 1 we have that:

[δTS]j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sign(b)
2 if j = l − 1,
− sign(b)

2 if j = l,
1√
2 if j = p+ 1 + l,

0 otherwise.

(D.21)

with b = ⟨+|U(Γpmin)†|[HC , [HB, HC ]]U(Γpmin)|+⟩. The approximate eigenvalue in this
case equals −|b|/

√
2.

We emphasize that the TS with l = 1 and l = p+ 1 where the identity gates are inserted at
the edges of the optimized QAOA circuit are special since the bound has prefactor 1/

√
2 in

contrast to the remaining TS where the bound features a prefactor 1/2. We also emphasize
this by using a constant b rather than b̄ used for the “bulk” transition states.
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In the next section, we will use the eigenvector approximation Eq. (D.20) to derive a lower
bound on the energy gain after each iteration of the QAOA algorithm. However, it is essential
that before we obtain a simplified expression for b = ⟨+|[HC , [HB, U(Γpmin)†HCU(Γpmin)]]|+⟩.
This simplification leverages the specific forms of the mixing Hamiltonian HB and the cost
Hamiltonian HC . We use the fact that both states |+⟩ and HC |+⟩ are eigenvectors of the
mixing Hamiltonian HB with eigenvalues −N and −N + 4 respectively. This allows us to
simplify the expression for b̄ and arrive at the equation:

b = 8⟨+|H̃CHC |+⟩, (D.22)

where H̃C = U(Γpmin)†HCU(Γpmin) can be thought as the cost Hamiltonian in the Heisenberg
picture. Furthermore, the condition ∂γ1E(Γp+1

TS ) = 2 Im
{︂
⟨+|H̃CHC |+⟩

}︂
= 0, which arises

from the transition state being at a stationary point, is applied. It is important to note that
the curvature in this scenario is described by λTS = −|b|/

√
2, equivalently expressed as:

λTS = −sign(b)b/
√

2 = −4
√

2|⟨+|H̃CHC |+⟩|. (D.23)

D.3 Expansion of energy alongside the index-1 direction
Given a local minimum of QAOAp, the transition states construction introduced in [SMKS23]
guarantees that the energy has to decrease alongside the index-1 direction. Thus, in this
section, we will use the approximate Hessian eigenvector introduced in Eq. (D.20) to provide
a lower bound on the energy decrease after optimization of QAOAp+1. Out of all possible
2p+ 1 transition states available for a given local minima, we focus on the transition state
constructed by inserting the zeros in the first layer of the QAOA circuit.

D.3.1 Energy
We begin by simplifying the expression for the QAOAp+1 wave function obtained once we
deviate from the transition state along the descent direction:

|Γp+1
TS + εδTS⟩ = U(Γp+1

TS + εδTS)|+⟩ =
(︃ p+1∏︂
l=1

UB(βl)UC(γl)
)︃
|+⟩ = U(Γpmin)Uε|+⟩, (D.24)

where
Uε = e−iε/2HCeisb

√
2ε/2HBeiε/2HC , (D.25)

and we introduce a short-hand notation:

sb = sign(b). (D.26)

The next step is to Taylor expand Eq. (D.25) around ε = 0. For this, we will make use of the
following identity:

eABe−A = B + [A,B] + 1
2[A, [A,B]] + · · ·+ 1

n! [A, [A, · · · [A,B] · · · ]]. (D.27)

Truncating the above expansion up to the 2nd order, and setting B = eisbε
√

2HB/2 and
A = −iεHC/2 leads to

Uε|+⟩ = e−iεϕ|+⟩ − iε2[HC , e
isbε

√
2HB/2]|+⟩ − ε2

23 [HC , [HC , e
isbε

√
2HB/2]]|+⟩, (D.28)
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where ϕ = sb
√

2N/2 and we used that HB|+⟩ = −N |+⟩.

To simplify the above expression we need to understand the action of the operator eiεsign(b)
√

2HB/2

on HC and H2
C operators. For this, it is important to note that HC |+⟩ is an eigenvector of

HB with eigenvalue (−N + 4). With this at hand, we obtain that:

eisbε
√

2HB/2HC |+⟩ = eisbε(−N+4)
√

2/2HC |+⟩ = e−iεϕeiεsb2
√

2HC |+⟩. (D.29)

The procedure is slightly more involved in the case of H2
C . This is because H2

C is a sum of
4-local, 2-local, and 0-local (constant) Hamiltonian densities. More specifically, the squared
cost function Hamiltonian is written as

H2
C = n2

CI + T2 + T4, (D.30)

where Tk with k = 2, 4 is a sum involving 4nE(G) and nE(G)(nE(G) − 5) k-local terms
respectively. This, together with the nE(G) terms contributing to n2

CI makes for a total of
nE(G)2 terms. Thus, we obtain

eisbε
√

2HB/2H2
C |+⟩ = e−iεϕ(T0I + eiεsb2

√
2T2 + eiεsb4

√
2T4)|+⟩

= e−iεϕ(H2
C + (eiεsb2

√
2 − 1)T2 + (eiεsb4

√
2 − 1)T4)|+⟩

= e−iεϕH2
C |+⟩+ e−iεϕOε|+⟩, (D.31)

where we defined
Oε = (eiεsb2

√
2 − 1)T2 + (eiεsb4

√
2 − 1)T4).

Analogously, we obtain:

[HC , [HC , e
−iεsb

√
2HB/2]]|+⟩ = 2e−iεϕ(1− eiεsb2

√
2)H2

C |+⟩+ e−iεϕOε|+⟩. (D.32)

Putting together Eq. (D.29), Eq. (D.31), and Eq. (D.32) we have a final expression for Uε|+⟩
that (up to a global phase) reads

Uε|+⟩ = |+⟩ − iε2(1− eiεsb2
√

2)HC |+⟩ −
ε2

22 (1− eiεsb2
√

2)H2
C |+⟩ −

ε2

23Oε|+⟩. (D.33)

We can then use Eq. (D.33) to obtain the expression for the energy when moving along the
index-1 direction as a function of ε:

E(Γp+1
TS + εδTS) = ⟨+|U †

εU
†(Γpmin)HCU(Γpmin)Uε|+⟩ = E(Γpmin)− ε sin

(︂
2
√

2sbε
)︂
⟨+|H̃CHC |+⟩

+ ε2

2 sin
(︂
εsb
√

2
)︂2
∂2
γ1E(Γp+1

TS )− ε2

2 sin
(︂
ε2
√

2sb
)︂

Im
{︂
⟨+|H̃CH

2
C |+⟩

}︂
− ε2

4 Re
{︂
⟨+|H̃COε|+⟩

}︂
, (D.34)

where for ease of notation we introduced Õ = U †(Γ)OU(Γ) for a generic Hermitian operator
O. The next step in the calculation is to isolate terms depending on the magnitude of their
contribution with circuit depth p (independently of the value of ε). For this, we need to further
simplify the expectation value ⟨+|H̃COε|+⟩. After performing careful algebraic manipulations,
we obtain a convoluted expression for the energy along the index-1 direction, represented as
the fourth-order polynomial in the parameter ε. For enhanced readability, we present the terms
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Figure D.6: Magnitude of the prefactors of three different quartic terms ∼ ε4 in the energy
expansion along the index-1 direction as a function of the circuit depth p. The first term in
the expansion is dominant.

of the expansion of ∆E(ε) = E(Γp+1
TS + εδTS)− E(Γpmin) separately, organized according to

the power of ε with which they are associated:

ε2 →− ε sin
(︂
2
√

2sbε
)︂
⟨+|H̃CHC |+⟩ (D.35)

ε3 →− ε2

4 sin
(︂
2
√

2sbε
)︂

Im
{︂
⟨+|H̃CT2|+⟩

}︂
− ε2

2 sin
(︂
2
√

2sbε
)︂(︃

1−
sin
(︂
4
√

2sbε
)︂

2 sin
(︂
2
√

2sbε
)︂)︃ Im

{︂
⟨+|H̃CT4|+⟩

}︂
. (D.36)

ε4 →ε2

2 sin2(εsb
√

2)∂2
γ1E(Γp+1

TS ) + ε2

4 2 sin2(εsb
√

2) Re
{︂
⟨+|H̃CT2|+⟩

}︂
+ ε2

2 sin2(2εsb
√

2) Re
{︂
⟨+|H̃CT4|+⟩

}︂
. (D.37)

From the above equations, we see that at the first non-trivial order in ε the only cubical
∼ ε3 contribution that remains is Im

{︂
⟨+|H̃CT2|+⟩

}︂
. The quartic ∼ ε4 term is however more

involved, and we resort instead to numerically verifying the order of magnitude of each term
involved as a function of circuit depth p.

In Figure D.6 we show the circuit depth dependence of three different terms, (1) ∂2
γ1E(Γp+1

TS ),
(2) Re

{︂
⟨+|H̃CT2|+⟩

}︂
and (3) Re

{︂
⟨+|H̃CT4|+⟩

}︂
for a single MaxCut instance of a 3-

regular weighted graph with N = 14 vertices (see Fig. D.2 for the details of the instance).
The numerical data reveals that the term (1) ∂2

γ1E(Γp+1
TS ) dominates over terms (2)-(3) at all

circuit depths.

Finally, we obtain a close and concise expression for the energy change along the index-1
direction:

∆E(ε) ≈ −ε sin
(︂
2
√

2sbε
)︂
⟨+|H̃CHC |+⟩ −

ε2

4 sin
(︂
2
√

2sbε
)︂

Im
{︂
⟨+|H̃CT2|+⟩

}︂
+ ε2

2 sin2(εsb
√

2)∂2
γ1E(Γp+1

TS ). (D.38)
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Figure D.7: The energy difference between the transition state and the local minima obtained
along the descent direction shows little sensitivity to the presence of the cubic term in the
expansion.

It is worth noting that in the above equation, Eq. (D.38) the quadratic term at small ε is
negative and proportional to the (approximate) minimum curvature, i.e,

ε2 → −ε22
√

2sign(b)b = ε2λTS

2 . (D.39)

The negative value of the second order term provided that the fourth order term is positive (see
discussion in Sec. 5.4.2 after Eq. (5.17)), leads to an existence of non-trivial minimum in the
expansion of the energy along the index-1 direction. Our argument as to why ∂2

γ1E(Γp+1
TS ) > 0

lies on the observation that it can be approximated as the positive energy difference (see
Eq. (5.17)) of the states 1

nC
UHC |+⟩ and U |+⟩.

As discussed in the main text, we discard the cubic ∼ ε3 term for simplicity. This approximation
is justified by the negligible effect of the cubic term in the minima of the energy along the
index-1 direction, as shown in Fig. D.7. We are then left with an expression for the energy
∆E(ε)sym which has two degenerate global minima

∆E(ε∗)sym = − λ2
TS

16∂2
γ1E(Γp+1

TS )
, (D.40)

where (ε∗)2 = −λTS/4∂2
γ1(Γp+1

TS ).
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