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We introduce a multi-material non-manifold mesh-based surface tracking

algorithm that converts self-intersections into topological changes. Our algo-

rithm generalizes prior work on manifold surface tracking with topological

changes: it preserves surface features like mesh-based methods, and it ro-

bustly handles topological changes like level set methods. Our method also

offers improved efficiency and robustness over the state of the art. We demon-

strate the effectiveness of the approach on a range of examples, including

complex soap film simulations with thousands of interacting bubbles, and

boolean unions of non-manifold meshes consisting of millions of triangles.
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1 Introduction
Non-manifold surfaces and volumes made of multiple materials are

commonplace in the fields of biology (multi-cellular organization),

material science (foams), digital fabrication (multi-material 3D print-

ing), and physics animation (multi-phase fluids). This paper focuses

on the problem of non-manifold surface tracking with topological
changes, with demonstrated applications in physics simulation and

the solid modeling of shapes consisting of multiple materials. Ex-

isting methods for solving this problem either rely exclusively on

implicit surfaces [Losasso et al. 2006], or on combinations of colli-

sion resolution and mesh surgery [Da et al. 2014]. Implicit methods
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Fig. 1. Our mesh-based surface tracker efficiently computes topological
changes at huge scales, like this soap film simulation of 1000 bubbles.

robustly handle topological changes, but they degrade geometric

features over time with constant re-sampling. The existing mesh-

based method preserves features but has difficulty with scaling to

large problem sizes robustly and efficiently. We present a hybrid

algorithm which combines the benefits of both approaches: simulta-

neously preserving geometric features while quickly and robustly

producing output meshes even in challenging cases.

Ourmethod is inspired bywork onmanifold topology changes [Wo-

jtan et al. 2009]: it preserves surface details by representing geometry

as an explicit mesh, and it computes topological changes using a

local implicit surface. This approach enjoys increased reliability

compared to explicit mesh surgery, because it only requires robust

geometric operations on the boundary of a small well-defined and
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predictable region (instead of requiring robustness for all possible

mesh self-intersections). We offer the following contributions:

• The generalization of hybridmesh-grid topology changes [Wo-

jtan et al. 2009] to non-manifold surface meshes.

• A novel algorithm for constructing an intersection-free im-

plicit surface from a region of self-intersecting meshes.

• Robustness improvements over prior work: our algorithm be-

haves reliably even with degenerate inputs, and it is guaran-

teed to terminate in finite time. We also introduce a statistical

robustness benchmark for surface tracking algorithms.

• Our algorithm’s optimized data structures and increased sta-

bility translate into efficient performance on large problems.

2 Related work

2.1 Surface Tracking
Implicit methods like the level set method [Osher and Fedkiw 2001]

evolve an implicit surface, usually on a background grid, and handle

topological changes automatically when the feature size drops below

the grid resolution. The idea has been extended to represent multiple

materials for the purposes of simulating liquids [Kim 2010; Losasso

et al. 2006] and clusters of bubbles [Kim et al. 2007; Zheng et al.

2009]. Level set methods can also model the topology-changing

evolution of co-dimensional structures like curves [Burchard et al.

2001] and vortex filaments [Ishida et al. 2022]. Semi-Lagrangian

Contouring methods [Bargteil et al. 2006; Li et al. 2016] represent

surfaces as a signed distance field (SDF) and reconstruct an explicit

mesh at each step to improve the accuracy of SDF advection. While

handling topological changes with ease, all thesemethods frequently

re-sample the interface and cause it to degrade over time.

Explicit triangle meshes are a good alternative, because they have

specific control over the re-sampling of the interface. Mesh deforma-

tion tools like The Surface Evolver [Brakke 1992] and Front Tracking
methods [Glimm et al. 2000; She et al. 2016] are especially useful for

preserving detailed surface features, but handling self-intersections

and topological changes is comparatively more challenging. Brochu

and Bridson [2009] explicitly resolve mesh collisions and impose

topological changes with local mesh surgery. Others [Misztal and

Bærentzen 2012; Pons and Boissonnat 2007] evolve entire volu-

metric meshes in order to handle changes at the surface. A hybrid

approach [Du et al. 2006; Müller 2009; Wojtan et al. 2009; Yang et al.

2019] combines manifold explicit surface meshes with implicit level-

set-style topology changes. These ideas were extended to eliminate

the use of a background grid [Bo et al. 2011; Chentanez et al. 2016]

and to preserve thin structures [Wojtan et al. 2010].

Despite their utility in evolving manifold surfaces, few mesh-

based surface tracking algorithms are able to cope with multiple

materials. The Deformable Simplicial Complex method [Misztal and

Bærentzen 2012] tracks multiple materials at the expense of evolving

an entire volume. Los Topos [Da et al. 2014] extends mesh tracking

with collision-based topological changes to handle multiple mate-

rials, and they also provide guarantees that a mesh will always be

intersection-free. However, they do not guarantee that the algo-

rithm will terminate, and indeed it fails to terminate for large and

complicated problems.

A hybrid approach by [Yang et al. 2019] represents surfaces as

a set of closed manifold meshes. The algorithm handles topology

changes implicitly by selective conversion of complicated mesh

geometry to regional level sets. This method requires both mainte-

nance of triangle meshes and accurate advection of regional level

sets, leading it to differ from our method in a number of ways. The

duplicated mesh and level set data set operations lead to substan-

tially higher memory cost and implementation complexity. The

method also requires a global velocity field defined throughout the

volume and cannot handle generic mesh displacements as input.

This technique also avoids using non-manifold triangle meshes and

instead approximates them with manifolds that lie exactly on top

of each other, requiring redundant computations and potentially

causing numerical errors when surfaces inevitably self-intersect

due to numerical noise. It is inapplicable to settings where truly

non-manifold meshes play a crucial role, such as surface-tension-

dominated scenarios.

As noted by Da et al. [2014], a multi-material extension of explicit

mesh tracking with implicit topology changes [Wojtan et al. 2009]

is non-trivial; ours is the first to do so for generic non-manifold

meshes.

2.2 Non-Manifold Mesh Processing
Outside of the surface-tracking application, several researchers

studied the problem of generating [Shimada and Gossard 1995],

manipulating [Hubeli and Gross 2000; Ying and Zorin 2001], and

repairing [Wagner et al. 2003] non-manifold geometry. Surprisingly,

non-manifold discrete Laplacian operators did not emerge until re-

cently, for the simulation of surface tension [Da et al. 2015] and soap

film evolution [Ishida et al. 2020, 2017], followed by the development

of a non-manifold Laplacian for meshes and point clouds based on

intrinsic Delaunay triangulation [Sharp and Crane 2020]. Geometry

sculpting tools with topological changes [Bernstein and Wojtan

2013] are also rare, partly because of the difficulty in defining the

correct behavior when meshes intersect.

2.3 Embedding and Immersing Meshes in R3

To decide whether a mesh exhibits topological problems, our work

uses the idea of a volume being embedded in R3
. Winding num-

bers [Barill et al. 2018; Jacobson et al. 2013] can be used to classify

inside-out and overlapping surfaces in the two-material (manifold

surface) case, though we are unaware of an extension to multi-

ple materials. Other techniques generate an immersion in R3
from

self-intersecting surfaces [Gagniere et al. 2022; Li and Barbič 2018],

which is related to our problem of finding and fixing overlapping ge-

ometry. Again, we are unaware of anymulti-material (non-manifold)

surface variants of these works.

2.4 Mesh Repair, Cut Cells, and Solid Modeling
The “implicit topology change” idea replaces a portion of a mesh by

clipping it to a grid, discarding part of themesh, and replacing it with

new triangles. This process shares a great deal of algorithmic overlap

with existing techniques for generating cut-cell meshes [Fang et al.

2022; Tao et al. 2019] and repairing flawed meshes [Bischoff and

Kobbelt 2005]. Algorithms for robust solid modeling [Sellán et al.
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2019; Trettner et al. 2022; Zhou et al. 2016] also solve many of the

same problems we do, especially the problem of computing the

approximate Boolean intersection and union of meshes [Pavić et al.

2010; Wang 2010]. Recent algorithms even perform solid geometry

processing with non-manifold meshes [Diazzi and Attene 2021].

3 Algorithm Overview
Our algorithm takes as input a non-manifold triangle mesh with-

out boundary, that is, a mesh in which every triangle edge is ad-

jacent to at least two triangles. The mesh represents a deformed

multi-material configuration with defects such as self-intersections,

overlaps, inversions, and their combinations (see Figure 3 for exam-

ples). Such defects frequently occur in simulation and correspond

to physically impossible configurations.

As an output, our algorithm returns a

fixed, non-manifold triangle mesh, that

is a union of closed volumes, each asso-

ciated with a unique material. Addition-

ally, our algorithm performs topological

operations that are necessary in many

simulation scenarios, such as merging to-

gether portions of the mesh that come in

very close proximity, forming interfaces

between volumes corresponding to dif-

ferent materials, and splitting portions

of the mesh apart at very thin junctions.

Furthermore, we only change the mesh

in the regions with defects, and in re-

gions where topological changes occur, leaving the rest of the mesh

untouched. This minimal mesh surgery is generally useful for pre-

serving surface features and avoiding information loss over repeated

operations.

Our notion of amaterial is based on the idea that when real-world
objects made of different materials collide, they form an interface.

These materials can be physically distinct, such as air, oil, and water,

as illustrated in the inset, or volumes that do not mix, such as

individual soap bubbles or biological cells.

Each triangle in the mesh forms a part of an interface between

two volumes of different materials. For example, a surface might

represent the interface between a solid object and the air around

it or between different non-mixing liquids. We therefore assume

that each triangle is associated with two different material labels,

one for each side, i.e. each normal of the triangle. Furthermore, we

assume that triangle labeling is consistent—labels on neighboring

triangles whose normals point into the same closed volume are the

same. The input surface thus represents a segmentation of space

into a number of volumes, whose spatial arrangement might include

the aforementioned defects.

Meshes with clean divisions between inside/outside (two-material

case) or between multiple different materials, such as in the inset

figure, allow us to associate closed volumes directly with materials,

and are therefore useful for applications like physics simulation,

constructive solid geometry, and 3D printing, but only if they are
properly embedded in space. If the mesh overlaps itself or twists

inside-out, then the materials of volumetric regions inside the mesh

are poorly defined, and the applications will fail. Our algorithm

thus provides a mesh-fixing tool that can be executed in between

simulation steps, in order to guarantee mesh quality.

This problem has already been addressed by two approaches:

• Explicit approaches (exemplified by the Los Topos algorithm
of Da et al. [2014]) operate directly on the triangle mesh and

detect improper embeddings when they first appear through

collision detection. They remove these self-intersections with

collision avoidance and mesh surgery. This custom mesh

surgery is difficult to make computationally efficient and ro-

bust, but the mesh is flawlessly preserved away from surgery

locations.

• Implicit approaches (exemplified by regional level set meth-

ods like [Zheng et al. 2009]) work directly within the em-

bedded space, classifying which portions of the volume be-

long to which material and then reconstructing an implicit

surface from these volumetric material classifications. Topo-

logical changes happen implicitly by construction, because

each point in the volume can only belong to a single material.

This strategy is efficient and robust, but it degrades the input

surface due to constant re-sampling.

Our strategy is to use the implicit approach locally where we

know topological changes must occur, and to preserve the explicit

surface everywhere else. Our algorithm thus inherits the efficiency

and robustness of level set methods without degrading the surface

mesh. We use a sparse background grid data structure to compute

implicit topology changes, so our method guarantees topological

correctness only up to the resolving ability of this background grid

(unlike explicit approaches, which guarantee topological correctness

on the level of precise mesh intersections). However, we find this

decision to be a remarkably useful practical trade-off due to the

robustness and efficiency benefits.

The rest of this paper explains our approach in detail. First, we

explain the input non-manifold mesh and background grid data

structures in Section 4. Then, we detail our algorithm as follows

(also illustrated in Figure 2):

• Material Assignment (Section 5) Classify material proper-

ties of each vertex on the background grid.

• Topological FlawDetection (Section 6) Usingmaterial prop-

erties and mesh/grid intersections, decide which regions of

the mesh require remeshing.

• Mesh Cutting (Section 7) Remove flawed portions of the

surface by clipping mesh triangles to grid cell boundaries.

• Mesh Replacement (Section 8) Replace removed surfaces

with triangles from a topologically clean implicit surface.

• Mesh Improvement (Section 8.5) Locally re-mesh the newly

changed surface to improve triangle quality.

After explaining the algorithm,we discuss our results and limitations

in Sections 9 and 10.

4 Data Structures
As discussed in Section 3, the input mesh represents interfaces be-

tween different materials. We assign each material a unique integer

label, and each triangle stores exactly two of these material labels.
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(a) Overlapping input (b) Flaw detection (c) Mesh cutting (d) Mesh replacement (e) Mesh improvement

Fig. 2. Our algorithm takes an input mesh with topological flaws (e.g. self-intersections, overlaps, and inside-out regions) and outputs a new mesh that is
topologically clean based on its sampling on a background grid.

Fig. 3. Input mesh defects. Shaded regions highlight typical defects found
in the input mesh. Arrows point in the outward normal direction.

N
D

P
O

Fig. 4. Mesh corner connectivity. Each mesh corner has pointers to four
other corners: next (N), previous (P), dual (D), and opposite (O).

The first label of the pair represents the material in the triangle’s nor-

mal direction with respect to the given consistent orientation, and

the second label represents the material in the opposite direction.

This way a triangle with a material label pair (𝑚1,𝑚2) represents
an element of the interface between materials𝑚1 and𝑚2.

We store the non-manifold triangle mesh using a custom data

structure similar to the corner table [Rossignac 2001]: Each triangle

has two sides, and each side has three corners, giving us 6 corners

per triangle. Each corner has pointers to four other corners in the

same mesh. Two of those corners are neighbors within the same

side. Another one, a “dual” corner, lies on the other side of the same

triangle at the same vertex. The final “opposite” corner is located on

the adjacent triangle across the edge opposite the original corner

(see Figure 4).

Each vertex also stores pointers to all corners at this vertex in

the adjacent triangles. Our data structure allows us to store meshes

with non-manifold edges and vertices, and allows us to perform

local neighborhood operations (like access, insertion, and deletion

of elements) in constant time based purely on mesh connectivity,

rather than geometric queries.

(a) Embedded (b) Overlapping

Fig. 5. Material vector assignment. Our algorithm introduces material
vectors to distinguish between properly embedded meshes and meshes with
topological problems. Properly embedded regions have one-hot encoded
vectors; material vectors in violating regions have negative components.

We also make use of a background grid for performing topological

tests and mesh surgery. The grid is created using a bounding box of

the input mesh with a random small perturbation and filled with

cubical grid cells with edge lengths equal to a user-provided topo-

logical length scale 𝓁 (our experiments set 𝓁 equal to the average

edge length in the triangle mesh). Because we only perform grid op-

erations in regions that overlap the mesh, we use a sparse grid data

structure to only store information for grid cells that intersect the

triangle mesh. Specifically, we allocate a grid cell only if it overlaps a

mesh triangle’s bounding box, producing a narrow band of allocated

grid cells around the mesh surface. For a general surface with 𝑛

mesh triangles of similar sizes, the number of allocated cells is O(𝑛).
Each grid cell stores pointers to the overlapped triangles. Each grid

vertex stores a sparsely encoded material vector (discussed in the

next section) and bookkeeping information for local topological

tests (Section 6) and for mesh surgery (Sections 7 and 8).

5 Assigning Grid Materials
The first step of our algorithm is to test whether the input triangle

mesh (and the volumes enclosed by it) is properly embedded into

space. For a correctly embedded mesh, every point in space will

belong to exactly one material; it will lie inside of exactly one closed

volume of the triangle mesh exactly once, and it will lie outside

of all others. This corresponds to a physically valid configuration.

However, a mesh that is not properly embedded can exhibit strange

features like a region of space belonging to multiple materials, or
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010 001

Fig. 6. Material switch. A ray travels from left to right and intersects a
triangle. At the intersection, a material vector initially equal to (0 1 0)𝑇 is
updated to (0 0 1)𝑇 , based on the triangle’s material labels and the ray’s
relative orientation with the triangle normal.

a region of space that lies inside the same material multiple times.

Figure 3 shows an example of such configurations.

To identify the material for a given point in space, and to allow for

all possible bizarre combinations of nested materials at this phase

in the algorithm, we introduce a material vector 𝑉 : a sparse vector
of length𝑚 (for𝑚 different materials). If a point in space lies once

inside material 𝑖 and zero times inside other materials, then𝑉 should

have a 1 in its 𝑖th entry and 0 everywhere else. Assume we start

drawing a line at a point in space that has material vector 𝑉 . Each

triangle in the mesh represents part of an interface between two

different materials. Therefore, when our line intersects a triangle,

we adjust 𝑉 , based on the material labels of the intersected triangle.

Let 𝑖 be the label associated with the triangle normal pointing into

the volume our line is leaving, and 𝑗 be the label associated with

the triangle normal pointing into the volume our line is entering.

We adjust 𝑉 by subtracting 1 from the 𝑖th entry and adding 1 to the

𝑗 th entry (see Figure 6).

We use the idea that regions correctly embedded in space cor-

respond to material vectors in a one-hot configuration—we call

such material vectors physical. Note that a physical material vec-

tor directly corresponds to a single material label. Similarly, er-

roneously embedded regions correspond to material vectors with

values greater than 1 or less than 0 (but all entries will have inte-

ger values, and all entries sum to 1)—we call such material vectors

non-physical. See Figure 5b for an example of such a configuration.

In order to find these erroneously embedded regions of space,

we assign material labels to each vertex in our sparse grid data

structure. We start far outside the mesh with a physical material

vector indicating the “outside” material, e.g., with a value of 1 in the

first entry, and zeros everywhere else. We then cast axis-aligned

rays along grid edges, updating𝑉 with each triangle intersection in

order. The rays are cast in three principal directions, thus covering

all grid edges, and allowing us to additionally compute and store all

intersection points between grid edges and mesh triangles, which

we will use in the subsequent steps.

We reduce the amount of necessary computation by acknowl-

edging that material vectors cannot change on grid edges with no

triangle intersections. It is therefore sufficient to compute material

vectors only on edges that are adjacent to allocated grid cells, fitting

with our sparse data structure. Additionally, we only store a material

vector on a grid vertex if the previous grid vertex along a ray has

a different material vector. If we then query a grid vertex for its

material vector, it either has a material vector stored, or it returns

Fig. 7. Complex grid primitives. From left to right: a complex edge, a
complex face, a complex cell.

the material vector of the nearest earlier grid vertex along a ray. We

store material vectors sparsely by only saving the non-zero entries.

As mentioned in Section 4, we allocate a narrow band of grid

cells around the mesh surface. As long as most grid vertices lie

inside a small number of materials, sparse material vectors will use

constant memory even in the presence of an overall large number

of materials. This shows that our algorithm scales linearly with

the number of input triangles. The stored material vector data is

sufficient for the implicit surface reconstruction in Section 8.

As the density of the ray sampling is determined by the grid edge

length, it is possible that rays will miss improperly embedded thin

features of size smaller than the specified resolution 𝓁. Although

this prevents our algorithm from guaranteeing an output which

is properly embedded at all scales, we find it a good trade-off for

gaining robustness and efficiency in practical scenarios (Section 9).

This algorithm is similar to the strategies for determining in-

side/outside labels for manifold triangle meshes [Müller 2009; Woj-

tan et al. 2009, 2010], but extended to the multi-material case. Ro-

bustness in this step is crucial for precise topological changes, so

we take additional steps to ensure that the triangle-ray intersec-

tion operations do not produce nonsense in the case of degenerate

configurations (like rays exactly hitting triangle edges or vertices).

First, we follow Müller [2009] and trace rays along all three axes,

marking any inconsistent findings as topological flaws (Section 6).

Most importantly, we employ symbolic perturbations (Simulation of

Simplicity [Edelsbrunner and Mücke 1990]) to consistently resolve

degenerate orientation tests, reducing the need for special-case code

and enhancing robustness.

6 Detecting Topological Flaws
Our next step is to locate regions of space where the mesh needs

to be re-sampled. It is self-explanatory that we should eliminate

non-physical regions such as overlaps and inversions, and it is also

important in many simulation applications to merge surfaces to-

gether when they come within a certain minimum distance, and to

split them, when they become very thin. Thus, unlike algorithms

dedicated to resolving mesh CSG operations, surface tracking al-

gorithms [Brochu and Bridson 2009; Da et al. 2014; Du et al. 2006;

Losasso et al. 2006; Wojtan et al. 2009] tend to force topological

changes when surfaces come within a user-defined topological res-

olution 𝓁. At the same time, we employ techniques to avoid unnec-

essary resampling whenever possible, in order to maintain as much

of the input surface as we can.
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In the rest of this section we describe how we partition all grid

cells into two groups: flawed cells, in which we will remove all of

the existing mesh and replace it with a new mesh; and intact cells,
in which we will preserve the input mesh. We call the collection

of flawed cells the flawed region, the collection of intact cells the

intact region, and the collection of grid faces separating the flawed

region from the intact region the flawed boundary.

6.1 Non-Physical Cells
First we find all grid cells with defects such as overlaps and in-

versions. We recall that such defects correspond to non-physical

material vectors. As such, for each grid vertex with a non-physical

material vector, we mark its eight adjacent cells as non-physical.
Additionally, we investigate how the material vector changes as

we traverse along grid edges. If the material vector becomes non-

physical after crossing an intersection on a grid edge, we mark the

four adjacent grid cells as non-physical. We skip grid edges with no

intersections, since the material vector cannot change along them.

In order to obtain a mesh with well-defined materials everywhere,

we must remesh all non-physical cells, and so we add them into the

flawed region.

6.2 Complex Cells
In this step, we determine all grid cells in which we will merge

and split surfaces. We generalize the manifold/two-material ideas

of Wojtan et al. [2009] and seek out cells where the topology of the

non-manifold surface mesh disagrees with the topology implied by a

multi-material implicit surface sampled on the background grid. We

do this by examining the intersections of grid primitives with the

triangle mesh. We call grid primitives that indicate a disagreement

between the implicit and explicit surfaces topologically complex;
we list the cases in order of increasing dimension, with illustrations

shown in Figure 7.

• A complex edge is a grid edge that intersects more than one

mesh triangle.

• A complex face is a grid face whose intersection with the

mesh forms a cycle, or a face adjacent to a complex edge.

• A complex cell is a grid cell whose intersection with the

mesh contains a closed volume, or a grid cell that is adjacent

to a complex face.

6.3 Deep Cells
As explained in [Wojtan et al. 2009], remeshing all complex cells

would lead to an overzealous re-sampling of the surface. For example,

the tiniest convex surface bump can intersect a grid edge twice

(Figure 9). The “Deep Cell” test, employed by [Wojtan et al. 2009],

avoids remeshing small surface details, but it only works for two

materials. It uses the idea that a surface should only be remeshed in

areas where the explicit and the implicit surfaces differ significantly.
We generalize the deep cell test to the multi-material setting. Our

goal is to allow complex features to persist if they have the same

material labels as nearby grid vertices. To achieve this, we inspect all

complex edges that are not adjacent to non-physical cells. For each

such edge, we check if all the material labels found along the edge

can be found on grid vertices that have physical material vectors

Fig. 8. In a geometrically non-degenerate configuration, a triangle intersects
a grid face in one of the three possible ways. In each case, the number of
triangle edge-grid face intersections is equal to two. If we find any deviation,
indicating a numerical instability or a geometrically degenerate configura-
tion, we mark the grid face as complex.

and lie within Manhattan distance 2𝓁 of the edge. If true, it means

that the explicit surface (represented by grid edge-mesh triangle

intersections) and the implicit surface (represented by labels on

grid vertices) are similar to each other in the neighborhood of the

complex edge andwe call the edge shallow. Complex cells for which

all adjacent complex edges are shallow contain a mesh that likely

represents surface features, therefore we opt to avoid remeshing

them. Conversely, if a material label on a complex edge cannot
be found on a nearby grid vertex as described above, it means the

implicit and explicit surfaces differ significantly in the neighborhood

of the edge. We call such an edge deep, as it is located deeply inside

a volume, away from material interfaces. We refer to a complex cell

with at least one deep edge as a deep cell, and we add all deep

cells to the flawed region for remeshing. Our strategy allows small

surface textures to persist while preventing the emergence of long

thin structures.

6.4 Flawed Region
So far we added non-physical and deep cells to the flawed region.

Next, we add grid cells in which numerical inconsistencies are de-

tected in the grid vertices and grid edges. Flawed vertices occur when
the ray casting along the three different coordinate axes produce

different material vectors (Section 5), and flawed edges occur during

geometric intersection with triangles (see Figure 8). These events

are rare and lead to very little additional re-meshing in practice.

For the mesh reconstruction step, it is important that there are

no complex edges or faces in the flawed boundary. We iterate over

all grid edges and faces in the flawed boundary, and if any of them

is complex, we add its adjacent cells to the flawed region and repeat

until the flawed boundary is free of complex edges and faces.

7 Local Mesh Cutting
Next, we surgically cut away the mesh in the regions with topologi-

cal flaws by deleting the geometric intersection of the triangle mesh

and the flawed region. Prior authors [Bischoff and Kobbelt 2005;

Du et al. 2006; Wojtan et al. 2009, 2010] do this by first subdividing

the mesh where it intersects the grid edges, then subdividing again

where mesh edges intersect grid faces. Unfortunately, this sequen-

tial subdivision strategy can create zero-area triangles and degrade

overall robustness (Figure 11), so we follow Pavić et al. [2010] by
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(a) (b)

Fig. 9. If we are not careful, high frequency details on the surface are (a)
detected as complex edges and (b) subsequently resampled.

computing a constrained Delaunay triangulation for each triangle,

using Triangle [Shewchuk 1996] to force the resulting mesh to

have edges wherever a triangle intersects a grid face. We also add

additional checks to guarantee numerical robustness as described

in Appendix A.

After this step, the mesh triangles are separated into two groups:

those that lie completely inside the intact region, and those that lie

completely inside the flawed region. We delete all triangles inside

the flawed region in preparation for the next step.

8 Local Mesh Replacement
Our next step is to fill the now-empty flawed region with a clean

mesh extracted from the background grid. However, we know that

the non-physical vertices (Section 6.1) will have non-physical mate-

rial vectors, and the geometry of the discarded mesh in the flawed

region is arbitrary and untrustworthy. We create new surface ge-

ometry using the following strategy:

(1) Determine a material label for each grid vertex.

(2) Generate new triangles based on multi-material marching

cubes and connect them to the original mesh.

(3) Optimize the positions of the new mesh vertices.

(4) Transfer properties to the new mesh.

(5) Improve mesh quality.

Note that we first determine the topology of the new surface in

steps 1 and 2, and then pin down its geometry in step 3. We also

note how this strategy differs from the two-material approach of

Wojtan et al. [2009], which determines grid labels by projecting the

winding number (a process that only works for two-materials), and

determines mesh vertex locations based on distances to the original

(untrustworthy and discarded) triangle mesh.

8.1 Correcting Material Vectors
In this step we want to assign unique material labels to all grid ver-

tices. Physical material vectors map one-to-one to unique material

labels, so we only have to focus on grid vertices with non-physical
material vectors here. In order to estimate a suitable material label

for each of these vertices, we look for the nearest point on the grid

where the material vector is physical. We reuse grid-mesh intersec-

tions from Section 5 to identify the exact points along grid edges,

where material vectors first transition from physical to non-physical,

which we call breaking points. A breaking point is therefore the

last point with a well-defined material label, before entering a re-

gion with an ill-defined material label. For each grid vertex with

a non-physical material vector, we find its closest breaking point

using a fast marching method [Sethian 1999]. We then overwrite

the non-physical material vector with the unique material label of

the closest breaking point. Figure 10 illustrates the process in 2D.

8.2 Creating and Connecting New Triangles
In this step, we describe how we generate new triangles to cleanly

replace the deleted mesh. We generate each new triangle such that

exactly one of its edges lies fully within a single grid face. We there-

fore think of each new triangle as belonging to a specific grid face.

Note that there are two types of grid faces in the flawed region. A

boundary face lies in the flawed boundary, and is therefore adja-

cent to one flawed cell, and one intact cell. Conversely, an internal
face does not lie in the flawed boundary, and is therefore adjacent

to two flawed cells.

We first focus on generating triangles that belong to an internal

face. Given that we have a uniquematerial label assigned to each grid

vertex, we adjust the multi-material iso-surface extractor method

of [Reitinger et al. 2005]. Their approach splits the grid cell into eight

octants, each corresponding to one grid vertex, and therefore to

one material label. Then it generates triangles that separate octants

corresponding to differingmaterial labels. Each triangle is defined by

three special vertices: the point at the center of the grid cell, a point

at the center of a grid face, and a point at the center of a grid edge;

thus exactly one of this triangle’s edges is fully contained within a

grid face (Figure 12a). Given an internal face, we generate the subset

of triangles generated by [Reitinger et al. 2005] that belong to this

face. By design, the triangles belonging to an internal face connect

perfectly to triangles belonging to adjacent internal faces.

Next we address how to generate triangles belonging to a bound-

ary face. The generated triangles must connect to the clipped tri-

angles in the intact region across the boundary face. Each of the

clipped triangles has exactly one mesh edge lying exactly in the

boundary face. We generate a new triangle for each such mesh edge

by connecting the endpoints of the mesh edge with the center of

the flawed cell, and then copying material labels to the new trian-

gle from the clipped triangle (See Figure 12b). By construction, the

newly generated triangles connect perfectly to the clipped mesh in

the intact region.

Lastly, we have to ensure that whenever a boundary face is ad-

jacent to an internal face, the triangles we generate inside them

connect perfectly. Consider a grid edge 𝑒 that forms the intersec-

tion of a boundary face 𝑏 and an internal face 𝑖 . In Section 6.4, we

made sure that there are no complex edges in the flawed boundary.

Consequently, there are only two possibilities for the triangles with

a vertex on edge 𝑒: In the first case, there is exactly one triangle

belonging to 𝑏 and one triangle belonging to 𝑖 , both of which have

an edge connecting 𝑒 to the cell center. These triangles have match-

ing labels by construction. In order to seamlessly connect them, we

slide the vertex of the triangle belonging to 𝑖 along 𝑒 , and match

it with the vertex of the triangle belonging to 𝑏 that lies on 𝑒 . In

the alternative case, there are no triangles belonging to 𝑏 and 𝑖 that

need to be connected, and so there is nothing to be done.

With these steps completed, we conclude that the newly gener-

ated triangles seamlessly connect to each other and to the clipped

mesh everywhere, while maintaining label consistency.
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Labeled grid in complex region Samples for label correction Corrected material vectorsBreaking points on grid edges Reconstructed non-manifold mesh

Fig. 10. Correcting material vectors. Starting in the complex region with invalid material vectors, our algorithm samples breaking points on the grid edges,
finds the closest one to each complex vertex (indicated by black arrows), and reassigns valid material vectors to complex vertices from the found samples. The
new material vector assignment allows us to reconstruct a properly embedded surface.

Fig. 11. Comparison of subdivision strategies on the complex boundary.
[Wojtan et al. 2009] produces a T-junction with a 0-area triangle; constrained
triangulation [Pavić et al. 2010] avoids these degeneracies.

(a) Internal face (b) Boundary face

Fig. 12. Reconstruction of geometry in a grid cell. Material labels on new
triangles are inferred from either the material labels on grid vertices (a) or
from the clipped triangles in the intact region (b). Highlighted edges lie
within the front facing grid face.

8.3 Determining Vertex Positions
Having ensured the desired connectivity of the newly generated

mesh, we now adjust its geometry. We focus on regions that are

remeshed on account of being non-physical, as it is in these regions

where we might need to reconstruct complicated geometry from

scratch. We recall that all newly generated mesh vertices lie either

on grid edges, in grid faces, or at grid cell centers, and note that we

are free to shift these vertices along their grid edges, within their

grid faces, and within their grid cells respectively, without changing

the mesh connectivity.

To determine the location of mesh vertices along grid edges, we

use a familiar isosurface extraction strategy of finding the optimal

transition point from one material to another. We already computed

breaking points (the closest physically valid points to each non-

physical grid vertex) in Section 8.1. For a grid edge with a newly

generated mesh vertex, if it is adjacent to one physical and one

non-physical grid vertex, then it has exactly one breaking point,

and we slide the mesh vertex to this point. For a grid edge with

two adjacent non-physical grid vertices, we find the point along

the edge that is equidistant to the breaking points stored at its two

adjacent grid vertices. The two grid vertices by construction have

different material labels, so the new position of the mesh vertex is

our best guess of the transition point from one material to another.

We experimented with computing similar optimizations for newly

generated vertices on grid faces and cell centers, but in the end we

found it sufficient to heuristically set these vertex positions to the

geometric average of mesh vertices on adjacent grid edges, as this

approach results in a smooth surface within each grid cell.

We note that our strategy for placing new vertices is preliminary;

the generic problem may even be ill-posed, since the notion of opti-

mal placement and which data is trustworthy will strongly depend

on application-specific information. For our visual applications, we

found it useful to smooth non-manifold curves in the mesh: for each

new vertex adjacent to a non-manifold triangle edge, we execute 10

steps of curve smoothing by iteratively setting its position as the

average of its non-manifold neighbors.

8.4 Transfer Mesh Properties to New Elements
Common applications store properties (e.g. texture coordinates or

simulation variables like velocity) on mesh vertices, edges, or tri-

angles, so we transfer these properties from the input mesh to the

recomputed one in this step. Before proceeding, we note that an

“optimal” transfer of properties is application-specific, and some con-

servative or higher-order reconstruction may be more appropriate

in some cases. Furthermore, it is unclear whether it is even possible

to define a generic application-independent optimization problem

for the transfer of data between surfaces of differing topology.

We follow a simple particle-in-cell (PIC) [Harlow 1964] strategy

for passing information from the old mesh to the new one via an

intermediate grid data structure. We discuss how to do this for data
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stored at mesh vertices; data stored at triangles and edges can be

treated similarly by storing data at their barycenter, or they might

need special treatment. The PIC algorithm proceeds as follows:

(1) Transfer data from the input mesh to the grid: each grid

vertex in the flawed region stores the average data from mesh

vertices located in its adjacent flawed cells.

(2) Propagate this data to the grid vertices with no associated

data in the complex region: flood fill via breadth-first search

(BFS), starting from the grid vertices that received data in step

(1). If a grid vertex receives data from more than one source

in the same BFS step, store the averaged data. This process

ensures that triangles generated in grid cells that contained

no input triangles will receive data from the nearest input

mesh.

(3) Transfer data to the newly generatedmesh: newmesh vertices

receive data via tri-linear interpolation from the grid.

8.5 Local Mesh Improvement
The last step of our algorithm is to perform local mesh improvement.

Given that the main focus of explicit surface tracking algorithms

is to achieve the correct mesh topology of evolving surfaces, the

reconstructed mesh might not be directly suitable for simulation.

Mesh improvement is a practical tool commonly used to remedy

this by improving mesh quality. We follow [Da et al. 2014] by per-

forming vertex separation, edge splits, edge flips, edge collapses, and

vertex smoothing. The resulting triangles are acceptable for efficient

physics simulation, though we believe our implementation of mesh

improvement has substantial room for further optimization, both

theoretically (in terms of the range of allowed non-manifold local

operations) and practically (with a more efficient implementation).

9 Results, comparisons, and discussion
We performed a number of simulations and stress tests by alternat-

ing one step of mesh deformation for one step of our topological

change algorithm.

9.1 Parameters
Our topology-changing algorithm has a single parameter: the topo-

logical resolution 𝓁 which determines the size of the background

grid cells. Our mesh improvement step (Section 8.5) features the

expected suite of parameters for minimum/maximum edge length

and criteria for flipping edges. For all examples, we set the topo-

logical resolution 𝓁 equal to the average triangle edge length, and

keep the local mesh improvement parameters such that the final

triangle edge lengths arewithin

0.5–1.5 times the topological

resolution 𝓁. For comparisons

with Los Topos [Da et al. 2014],

we keep their “merge ratio”

equal to 0.02 times the av-

erage triangle edge length—a

comparatively more conserva-

tive choice of merging distance

used in the Los Topos reposi-

tory. In our limited experience,

increasing the merge ratio in Los Topos seems to sew triangles

together more often but increases the chance of the algorithm be-

ing stuck in an infinite loop. On the other hand, decreasing the

Los Topos merge ratio makes surfaces repel each other instead of

merging, leading to long, snake-like bubbles like the inset figure.

9.2 Computational Efficiency
Our method’s computational cost is weakly dependent on the com-

plexity of the input problem. The cost is mostly proportional to the

number of intersections between the triangle mesh and the back-

ground grid. A spacious mesh and denser background grid (smaller

𝓁) results in more ray-triangle intersection tests and more tests for

non-physical vertices and edges, which make up the majority of

our algorithm’s cost. In contrast, although mesh surgery is more

computationally arduous, it is performed relatively rarely.

The computational cost of our method does not depend on the

topological complexity of the mesh (number of self-intersections

or overlaps) in any obvious way. Our method uses a sparse grid to

gain efficiency over previous grid-based solvers; we can expect the

solver to gain efficiency as we increase the ratio of volume to surface

area in the input mesh. We note that this sparse grid speedup is not
showcased by our examples and stress tests, which overwhelmingly

consist of a space-filling volumetric mess of triangles. Our naïve

implementation of local mesh improvement (Section 8.5) is the

current bottleneck in our code, taking up roughly 80% of the total

run-time.

Like Wojtan et al. [2009; 2010], our method has a built-in safety

net; if it ever encounters an internally inconsistent state (perhaps

due to catastrophic numerical degeneracy), it marks the affected

region for remeshing, aborts the current computation, and re-starts

the algorithm with a guarantee that the offending geometry will

be replaced with a clean mesh. Our implementation never actually

executed this safety-net algorithm in any of our tests, so we sus-

pect that our other robustness improvements made this procedure

obsolete.

Directly comparing computational cost between our method and

Los Topos is not straightforward. We can confidently conclude that

our method can take larger time steps, which is reflected both in

our performance statistics and the strongly differing algorithmic

designs (Los Topos takes incremental adaptive steps while ours

jumps right to the final deformed state). However, the computational

cost per time step is strongly dependent on the scenario: our method

performs a comparatively larger number of operations regardless

of input complexity, while Los Topos can range from almost no

computation per step (if no collisions are detected) to a significant

loop of computation (for complex intersections requiring adaptive

time steps).

9.3 Verification and Stress Tests
The rotating notched disk was designed by Zalesak [1979] to high-

light spurious surface deformations in a surface tracker. We use a

multi-material version of the test introduced by Da et al. [2014] in

Figure 13 and our supplementary video. Like most other Lagrangian

surface tracking techniques, our method completes the test without

any re-sampling or spurious topology changes.
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Fig. 13. Zalesak disk. Amulti-material test disk rotating around an exterior
point without resampling. The disk consists of 108 triangles and fits a 9×9×3
grid region. The whole test runs on a 253 grid.

Fig. 14. Curl noise. Four spheres of different materials stretching out in a
procedural divergence-free flow.

Fig. 15. Inversion test. (Left) Initial mesh of two spheres with a blue outside
material and orange and green internal ones. (Center left) Surface mesh
deformed with strong Perlin noise. Mesh inversions are shown as orange and
green colors. (Center right) Fixed mesh with our algorithm. (Right) Cut-away
view of the result.

Figure 15 tests our method’s ability to identify and resolve topo-

logical problems in extremely deformed and inverted shapes. The

test applies strong vector-valued Perlin noise to the surface of a

double bubble consisting of two different materials. The noise then

instantly deforms the original shape into a highly contorted and self-

intersecting blob. Our method resolves these topological problems

in a single step, returning a new shape just as visually unpleasant as

the input, but without any self-intersections, and with the interior

cleanly separated into different volumes.

Figure 14 repeats a test by Da et al. [2014] featuring four spheres

of different materials passively advected through a divergence-free

flow. The initially bulbous spheres quickly stretch out into thin

wisps, stressing a surface tracker’s ability to resolve thin features.

It also brings surfaces close together, causing topological merges if

surfaces come within the distance threshold 𝓁. Our method dutifully

merges these surfaces when they come close, though it does erode

some small features when they become thinner than the distance

threshold 𝓁. Increasing the grid resolution (lowering 𝓁) delays this

effect, similar to other implicit surface techniques. In the original

experiment, Los Topos sets the merge distance threshold 1000-times

lower than the average triangle edge length in the simulation. This

1:1000 ratio highlights the differences in the way our algorithms

implement this parameter: in Los Topos, it essentially tells the

algorithm to wait until the last possible moment before colliding,

Fig. 16. Dr. Krabunkle. A detailed crab mesh (left) is cloned and rotated
around its center of mass 5 times to generate a shape with 5.3 million
triangles and 72 materials. Our algorithm resolves all overlaps on a 5703 grid
in 8minutes producing a mesh with 3.6million triangles (center). Cut-away
view (right) shows that internal materials are correctly separated.

(a) Ours (b) GR (c) PR (d) PR (73× grid)

Fig. 17. Rolling stones. Two decorated spheres roll into each other, merge
and roll away, tracked by (a) our algorithm, (b) a modified algorithm with
global resampling (GR), and (c)–(d) particle-based methods (PR). (a)–(c) use
the same grid resolution, while (d) requires a 73× denser voxel grid.

and then snaps vertices together without creating small triangles.

In contrast, such a large ratio causes our method to allocate a large

grid, and, in the event of a topological change, it subdivides triangles

into excessively tiny bits before collapsing them all together again

during a particularly busy follow-up re-meshing step. To reflect

the difference in our methods while still retaining the spirit of the

original idea, we set the grid resolution 𝓁 in this experiment to be

10 times lower than the mesh resolution.

9.4 Comparison with Particle-Based Methods
To highlight the importance of only re-sampling surfaces where

absolutely necessary, we track themotion of two ornamental spheres

(each consisting of 37937 vertices and 75870 triangles) rolling and

merging together. We compare the performance of four different

surface tracking algorithms in Figure 17 and our video. Figure 17a

uses our algorithm and perfectly preserves the original surface

details. Figure 17b uses a modified version of our algorithm which

naïvely reconstructs the surface everywhere on the grid at every

step (instead of limiting the flawed region to aminimial size), leading

to degradation of surface details after repeated re-sampling.

We also consider an alternative meshless method for tracking

the surface which densely samples the original surfaces with 200k

particles once at the start, then moves the particles at every time

step and extracts a new surface each frame using VDB [Museth

2013] implemented in the Houdini software package. This idealized

alternative never re-samples the surface particles and experiences

no degradation over time, but it requires a large number of particle

samples and a dense grid to reconstruct a detailed and temporally

coherent surface. Figure 17c uses the same grid resolution as our
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Fig. 18. Double bubble. Two spheres expand in the normal direction at a
constant speed, then merge, reverse direction and separate.

Fig. 19. Normal flow of 1000 spheres.One thousand spheres, each bound-
ing its own unique material region, are expanding in the normal flow direc-
tion at a constant speed, creating many topological events.

method, while Figure 17d uses a grid with voxels that are 7× smaller

in each dimension. The particle-based method is unable to recon-

struct the fine surface details without this extraordinarily dense

grid, leading to higher computational overheads in computational

time, memory, and triangle count (1.4 million).

9.5 Multi-Material Solid Geometry
Instead of slowly deforming a surface from one shape into another,

our method allows arbitrarily large deformations/time steps. This

allows us to essentially teleport shapes into non-embedded spatial

configurations and resolve all topological problems at once. We

show an extreme example of this in Figure 16, where we instantly

overlap six detailed crab meshes from the Three D Scans reposi-

tory [Laric 2012], each consisting of 12 overlapping materials and

878617 triangles. Our method resolves the overlapping materials by

approximating a multi-material boolean union of these shapes. The

method works robustly despite the high resolution and degenerate

input triangles.

9.6 Normal Flow and Robustness
We demonstrate another stress test consisting of numerous multi-

material overlaps and non-manifold surface geometry in Figures

18 and 19 by evolving a set of spheres outward in their normal

direction at a constant speed. Figure 18 recreates the basic scenario

of Da et al. [2014], in which two spheres expand until they merge

into a double bubble
™
, then reverse the flow, causing the structure

to separate and dwindle to deletion.

Using many more spheres creates a significantly more stressful

surface tracking scenario. Figure 19 illustrates how our method

copes with 100 and 1000 expanding spheres to create a complex

foam with myriads of materials. Furthermore, we can randomize

the initial placement of spheres (ensuring that they start from a non-

intersecting initial state) and re-run the same experiment multiple

times to create a statistical benchmark for surface tracker robustness.

We find these statistical tests useful for comparing the robustness

of different surface tracking algorithms, because theoretical failure

analysis of all competing approaches is difficult and incomplete.

Fig. 20. Symmetry breaking. Four soap bubbles colliding with each other
and choosing one preferred direction for area minimization.

We define success in this scenario if our algorithm completes the

task without crashing, running out of memory, or failing to finish

within ten hours. In this scenario with 100 spheres, our method suc-

ceeded in 100 out of 100 tests (a 100% success rate) with an average

run-time of 6.1 minutes, while using naïve numerical evaluation of

vertex normals to compute the flow direction. In comparison, the

state of the art surface tracker Los Topos [Da et al. 2014], succeeded

in 85 out of 100 tests (85%) with an average run-time of 84.5 min-

utes. Using Face Offsetting [Jiao 2007] for a more stable normal flow

keeps Los Topos’s success rate at 83 out of 100 (83%, 81.1 minutes

run-time). Increasing the complexity by flowing 1000 spheres leads

to a success rate of 50 out of 50 (100%, 44.6 minutes run-time) for

our method, 13 out of 50 (26%, 30.6 minutes run-time) for Los Topos

with Face Offsetting and 0 out of 50 (0%) for Los Topos with naïve

normal flow. Unexpectedly, Los Topos performs faster on the larger

test. This discrepancy is explained by survivor bias related to the

algorithm’s intersection avoidance procedure: Los Topos repeatedly

halves the time step and retries all computations until a state with

no intersections is reached. This strategy allows the 100 sphere

simulations to make progress during frames with many intersection

events but at a cost of 3 time-step reductions (and restarts) per frame

on average. For the 1000 sphere test, this recovery strategy always

fails, but the successful runs avoided restarts altogether and finished

more quickly.

We note a number of caveats with our proposed robustness bench-

mark which make it difficult to directly draw conclusions: first, al-

though we found it useful for probing a large number of unexpected

configurations, it is not exhaustive and may not fairly sample the

space of mesh configurations. Furthermore, normal flow may not be

representative for other applications, especially those with substan-

tial tangential motion. We also did not optimize parameter settings

for either algorithm, so it is likely that changing grid size or the Los

Topos merge ratio will influence these results. Finally, the two tested

methods have different constraints on the solution; Los Topos guar-

antees that the final mesh will be free of self-intersections, while

ours only guarantees this for intersections larger than some constant

proportional to 𝓁.

9.7 Soap Bubble Simulation
We couple our method to the soap film evolution method of Ishida

et al. [2017]. We took authors’ original code and replaced the Los

Topos surface tracker with our method. Figure 20 shows four bub-

bles spontaneously breaking symmetry to minimize surface area.
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Fig. 21. Soap foam. Our mesher robustly handles the complexity of soap films, allowing us to simulate them in such detail at a never-before-seen scale.
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Fig. 22. Running time for 1000 soap bubbles test. A comparison of
per-frame running times for two different surface trackers on the same 1000-
soap-bubble animation. Timings exclude the cost of physics calculations
(i.e., surface tracker only). × indicates failure of the surface tracker.

Figure 21 simulates 1000 interacting bubbles undergoing volume-

preserving surface tension flow, merging together, bursting, rippling,

and rearranging. To the best of our knowledge, this is the largest and

most complex foam simulation of its kind ever computed. Figure 22

lists performance statistics for this example: with roughly 625000

triangles, our method demonstrated an average run-time per time

step of 36.5 seconds on an Intel
®
Core

™
i7-7820X with 64 GB of

RAM. Compared to Los Topos, our method allowed a 10 times larger

time step size and computed 7.5 times faster overall.

9.8 Further Discussion
To meet expectations for peer review, we found it necessary to di-

rectly compare our algorithm with the state of the art multi-material

surface tracking algorithm, Los Topos. However, we believe that

each algorithm excels in different scenarios. Our implementation ro-

bustly handles larger deformations more efficiently, but Los Topos

runs faster in less complicated scenarios and provides guarantees

that our method does not. Regardless, we do not believe our di-

rect comparisons are definitive, as they are based on two research

implementations that may have inefficiencies and bugs.

10 Limitations and Future Work
Our method has room for improvement on the implementation and

algorithmic levels. As mentioned in Section 9, our implementation

will benefit from a more sophisticated strategy for mesh improve-

ment, which would make our method more efficient by removing

the computational bottleneck, and even more widely applicable by

improving element quality for PDE solvers. Our strategy for creat-

ing a smooth non-manifold surface from large overlaps relies on

grid-related heuristics and post-hoc mesh fairing; it should be pos-

sible to phrase this problem more elegantly and find a more direct

solution.

Our algorithm for computing topological changes depends on

how the mesh intersects the grid, and our implementation generally

avoids testing for complex faces and cells everywhere, so it could

miss very small topological defects. In the future we would like to

reinforce our approach with a hard guarantee that we fix topolog-

ical flaws at all scales, in addition to the ones larger than 𝓁. Our

algorithm does not attempt to preserve volume exactly, because it

is a general-purpose surface tracker meant to handle all possible

deformations. For small time steps, our local re-meshing strategy

will change volumes proportional to the grid edge length 𝓁 and

the surface area of the mesh regions which merge together or split

apart. This is consistent with Los Topos and other mesh-based sur-

face trackers that change the volume by merging surfaces which lie

closer than the user-defined merge threshold.

In the future, we would also like to consider extending our multi-

material approach with techniques that proved useful in the two-

material case, like support for thin sheets [Wojtan et al. 2010], grid-

free triangulation [Bo et al. 2011; Chentanez et al. 2015], and GPU

acceleration [Chentanez et al. 2016].

In conclusion, we introduced a surface tracking algorithm for

non-manifold surface meshes that generalizes the manifold surface

tracker of Wojtan et al. [2009]. Our method works efficiently and

reliably, and is capable of state-of-the-art performance on large prac-

tical problems in physics animation and solid geometry processing.
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A Robust mesh clipping
To clip a triangle mesh to the flawed boundary, we find which

mesh edges need to be added for each triangle, similar to the work

of [Pavić et al. 2010], and call the Triangle library to perform

constrained Delaunay triangulation. For the new triangulation, we

need to determine which triangles lie inside the flawed region, and

should therefore be deleted. In order to avoid additional numerical

tests, we reuse the grid face-mesh edge intersections, and mark

triangles for deletion by a flood-filling algorithm.

For similar reasons, we use integer grid coordinates for storing

the positions of newly generated triangulation vertices, instead of

relying on the floating point representation. Vertices on triangle

edges also lie in grid faces, we sort them on each triangle edge

using integer grid face coordinates, similar to Mandoline [Tao et al.

2019]. Vertices inside triangle faces also lie on grid edges, we use

integer grid edge coordinates to move them in a way that maximizes

mutual distance, and minimizes degeneracy. We speculate that the

robustness of this algorithm can be increased even further in the

future by reformulating the problem as an integer-based Planar

Straight-Line Drawing.
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