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We introduce a multi-material non-manifold mesh-based surface tracking
algorithm that converts self-intersections into topological changes. Our algo-
rithm generalizes prior work on manifold surface tracking with topological
changes: it preserves surface features like mesh-based methods, and it ro-
bustly handles topological changes like level set methods. Our method also
offers improved efficiency and robustness over the state of the art. We demon-
strate the effectiveness of the approach on a range of examples, including
complex soap film simulations with thousands of interacting bubbles, and
boolean unions of non-manifold meshes consisting of millions of triangles.
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1 Introduction

Non-manifold surfaces and volumes made of multiple materials are
commonplace in the fields of biology (multi-cellular organization),
material science (foams), digital fabrication (multi-material 3D print-
ing), and physics animation (multi-phase fluids). This paper focuses
on the problem of non-manifold surface tracking with topological
changes, with demonstrated applications in physics simulation and
the solid modeling of shapes consisting of multiple materials. Ex-
isting methods for solving this problem either rely exclusively on
implicit surfaces [Losasso et al. 2006], or on combinations of colli-
sion resolution and mesh surgery [Da et al. 2014]. Implicit methods
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Fig. 1. Our mesh-based surface tracker efficiently computes topological
changes at huge scales, like this soap film simulation of 1000 bubbles.

robustly handle topological changes, but they degrade geometric
features over time with constant re-sampling. The existing mesh-
based method preserves features but has difficulty with scaling to
large problem sizes robustly and efficiently. We present a hybrid
algorithm which combines the benefits of both approaches: simulta-
neously preserving geometric features while quickly and robustly
producing output meshes even in challenging cases.

Our method is inspired by work on manifold topology changes [Wo-
jtan et al. 2009]: it preserves surface details by representing geometry
as an explicit mesh, and it computes topological changes using a
local implicit surface. This approach enjoys increased reliability
compared to explicit mesh surgery, because it only requires robust
geometric operations on the boundary of a small well-defined and
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predictable region (instead of requiring robustness for all possible
mesh self-intersections). We offer the following contributions:

o The generalization of hybrid mesh-grid topology changes [Wo-
jtan et al. 2009] to non-manifold surface meshes.

e A novel algorithm for constructing an intersection-free im-
plicit surface from a region of self-intersecting meshes.

e Robustness improvements over prior work: our algorithm be-
haves reliably even with degenerate inputs, and it is guaran-
teed to terminate in finite time. We also introduce a statistical
robustness benchmark for surface tracking algorithms.

e Our algorithm’s optimized data structures and increased sta-
bility translate into efficient performance on large problems.

2 Related work
2.1 Surface Tracking

Implicit methods like the level set method [Osher and Fedkiw 2001]
evolve an implicit surface, usually on a background grid, and handle
topological changes automatically when the feature size drops below
the grid resolution. The idea has been extended to represent multiple
materials for the purposes of simulating liquids [Kim 2010; Losasso
et al. 2006] and clusters of bubbles [Kim et al. 2007; Zheng et al.
2009]. Level set methods can also model the topology-changing
evolution of co-dimensional structures like curves [Burchard et al.
2001] and vortex filaments [Ishida et al. 2022]. Semi-Lagrangian
Contouring methods [Bargteil et al. 2006; Li et al. 2016] represent
surfaces as a signed distance field (SDF) and reconstruct an explicit
mesh at each step to improve the accuracy of SDF advection. While
handling topological changes with ease, all these methods frequently
re-sample the interface and cause it to degrade over time.

Explicit triangle meshes are a good alternative, because they have
specific control over the re-sampling of the interface. Mesh deforma-
tion tools like The Surface Evolver [Brakke 1992] and Front Tracking
methods [Glimm et al. 2000; She et al. 2016] are especially useful for
preserving detailed surface features, but handling self-intersections
and topological changes is comparatively more challenging. Brochu
and Bridson [2009] explicitly resolve mesh collisions and impose
topological changes with local mesh surgery. Others [Misztal and
Beerentzen 2012; Pons and Boissonnat 2007] evolve entire volu-
metric meshes in order to handle changes at the surface. A hybrid
approach [Du et al. 2006; Miiller 2009; Wojtan et al. 2009; Yang et al.
2019] combines manifold explicit surface meshes with implicit level-
set-style topology changes. These ideas were extended to eliminate
the use of a background grid [Bo et al. 2011; Chentanez et al. 2016]
and to preserve thin structures [Wojtan et al. 2010].

Despite their utility in evolving manifold surfaces, few mesh-
based surface tracking algorithms are able to cope with multiple
materials. The Deformable Simplicial Complex method [Misztal and
Beerentzen 2012] tracks multiple materials at the expense of evolving
an entire volume. Los Topos [Da et al. 2014] extends mesh tracking
with collision-based topological changes to handle multiple mate-
rials, and they also provide guarantees that a mesh will always be
intersection-free. However, they do not guarantee that the algo-
rithm will terminate, and indeed it fails to terminate for large and
complicated problems.
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A hybrid approach by [Yang et al. 2019] represents surfaces as
a set of closed manifold meshes. The algorithm handles topology
changes implicitly by selective conversion of complicated mesh
geometry to regional level sets. This method requires both mainte-
nance of triangle meshes and accurate advection of regional level
sets, leading it to differ from our method in a number of ways. The
duplicated mesh and level set data set operations lead to substan-
tially higher memory cost and implementation complexity. The
method also requires a global velocity field defined throughout the
volume and cannot handle generic mesh displacements as input.
This technique also avoids using non-manifold triangle meshes and
instead approximates them with manifolds that lie exactly on top
of each other, requiring redundant computations and potentially
causing numerical errors when surfaces inevitably self-intersect
due to numerical noise. It is inapplicable to settings where truly
non-manifold meshes play a crucial role, such as surface-tension-
dominated scenarios.

As noted by Da et al. [2014], a multi-material extension of explicit
mesh tracking with implicit topology changes [Wojtan et al. 2009]
is non-trivial; ours is the first to do so for generic non-manifold
meshes.

2.2 Non-Manifold Mesh Processing

Outside of the surface-tracking application, several researchers
studied the problem of generating [Shimada and Gossard 1995],
manipulating [Hubeli and Gross 2000; Ying and Zorin 2001], and
repairing [Wagner et al. 2003] non-manifold geometry. Surprisingly,
non-manifold discrete Laplacian operators did not emerge until re-
cently, for the simulation of surface tension [Da et al. 2015] and soap
film evolution [Ishida et al. 2020, 2017], followed by the development
of a non-manifold Laplacian for meshes and point clouds based on
intrinsic Delaunay triangulation [Sharp and Crane 2020]. Geometry
sculpting tools with topological changes [Bernstein and Wojtan
2013] are also rare, partly because of the difficulty in defining the
correct behavior when meshes intersect.

2.3 Embedding and Immersing Meshes in R?

To decide whether a mesh exhibits topological problems, our work
uses the idea of a volume being embedded in R3. Winding num-
bers [Barill et al. 2018; Jacobson et al. 2013] can be used to classify
inside-out and overlapping surfaces in the two-material (manifold
surface) case, though we are unaware of an extension to multi-
ple materials. Other techniques generate an immersion in R* from
self-intersecting surfaces [Gagniere et al. 2022; Li and Barbi¢ 2018],
which is related to our problem of finding and fixing overlapping ge-
ometry. Again, we are unaware of any multi-material (non-manifold)
surface variants of these works.

2.4 Mesh Repair, Cut Cells, and Solid Modeling

The “implicit topology change” idea replaces a portion of a mesh by
clipping it to a grid, discarding part of the mesh, and replacing it with
new triangles. This process shares a great deal of algorithmic overlap
with existing techniques for generating cut-cell meshes [Fang et al.
2022; Tao et al. 2019] and repairing flawed meshes [Bischoff and
Kobbelt 2005]. Algorithms for robust solid modeling [Sellan et al.



2019; Trettner et al. 2022; Zhou et al. 2016] also solve many of the
same problems we do, especially the problem of computing the
approximate Boolean intersection and union of meshes [Pavi¢ et al.
2010; Wang 2010]. Recent algorithms even perform solid geometry
processing with non-manifold meshes [Diazzi and Attene 2021].

3 Algorithm Overview

Our algorithm takes as input a non-manifold triangle mesh with-
out boundary, that is, a mesh in which every triangle edge is ad-
jacent to at least two triangles. The mesh represents a deformed
multi-material configuration with defects such as self-intersections,
overlaps, inversions, and their combinations (see Figure 3 for exam-
ples). Such defects frequently occur in simulation and correspond
to physically impossible configurations.

As an output, our algorithm returns a
fixed, non-manifold triangle mesh, that .
is a union of closed volumes, each asso- alr
ciated with a unique material. Addition-
ally, our algorithm performs topological oil
operations that are necessary in many
simulation scenarios, such as merging to-
gether portions of the mesh that come in
very close proximity, forming interfaces
between volumes corresponding to dif-
ferent materials, and splitting portions
of the mesh apart at very thin junctions.

Furthermore, we only change the mesh

in the regions with defects, and in re-

gions where topological changes occur, leaving the rest of the mesh
untouched. This minimal mesh surgery is generally useful for pre-
serving surface features and avoiding information loss over repeated
operations.

Our notion of a material is based on the idea that when real-world
objects made of different materials collide, they form an interface.
These materials can be physically distinct, such as air, oil, and water,
as illustrated in the inset, or volumes that do not mix, such as
individual soap bubbles or biological cells.

Each triangle in the mesh forms a part of an interface between
two volumes of different materials. For example, a surface might
represent the interface between a solid object and the air around
it or between different non-mixing liquids. We therefore assume
that each triangle is associated with two different material labels,
one for each side, i.e. each normal of the triangle. Furthermore, we
assume that triangle labeling is consistent—labels on neighboring
triangles whose normals point into the same closed volume are the
same. The input surface thus represents a segmentation of space
into a number of volumes, whose spatial arrangement might include
the aforementioned defects.

Meshes with clean divisions between inside/outside (two-material
case) or between multiple different materials, such as in the inset
figure, allow us to associate closed volumes directly with materials,
and are therefore useful for applications like physics simulation,
constructive solid geometry, and 3D printing, but only if they are
properly embedded in space. If the mesh overlaps itself or twists
inside-out, then the materials of volumetric regions inside the mesh
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are poorly defined, and the applications will fail. Our algorithm
thus provides a mesh-fixing tool that can be executed in between
simulation steps, in order to guarantee mesh quality.

This problem has already been addressed by two approaches:

o Explicit approaches (exemplified by the Los Topos algorithm
of Da et al. [2014]) operate directly on the triangle mesh and
detect improper embeddings when they first appear through
collision detection. They remove these self-intersections with
collision avoidance and mesh surgery. This custom mesh
surgery is difficult to make computationally efficient and ro-
bust, but the mesh is flawlessly preserved away from surgery
locations.

Implicit approaches (exemplified by regional level set meth-
ods like [Zheng et al. 2009]) work directly within the em-
bedded space, classifying which portions of the volume be-
long to which material and then reconstructing an implicit
surface from these volumetric material classifications. Topo-
logical changes happen implicitly by construction, because
each point in the volume can only belong to a single material.
This strategy is efficient and robust, but it degrades the input
surface due to constant re-sampling.

Our strategy is to use the implicit approach locally where we
know topological changes must occur, and to preserve the explicit
surface everywhere else. Our algorithm thus inherits the efficiency
and robustness of level set methods without degrading the surface
mesh. We use a sparse background grid data structure to compute
implicit topology changes, so our method guarantees topological
correctness only up to the resolving ability of this background grid
(unlike explicit approaches, which guarantee topological correctness
on the level of precise mesh intersections). However, we find this
decision to be a remarkably useful practical trade-off due to the
robustness and efficiency benefits.

The rest of this paper explains our approach in detail. First, we
explain the input non-manifold mesh and background grid data
structures in Section 4. Then, we detail our algorithm as follows
(also illustrated in Figure 2):

e Material Assignment (Section 5) Classify material proper-
ties of each vertex on the background grid.

e Topological Flaw Detection (Section 6) Using material prop-
erties and mesh/grid intersections, decide which regions of
the mesh require remeshing.

e Mesh Cutting (Section 7) Remove flawed portions of the
surface by clipping mesh triangles to grid cell boundaries.

e Mesh Replacement (Section 8) Replace removed surfaces
with triangles from a topologically clean implicit surface.

e Mesh Improvement (Section 8.5) Locally re-mesh the newly
changed surface to improve triangle quality.

After explaining the algorithm, we discuss our results and limitations
in Sections 9 and 10.

4 Data Structures

As discussed in Section 3, the input mesh represents interfaces be-
tween different materials. We assign each material a unique integer
label, and each triangle stores exactly two of these material labels.
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(a) Overlapping input b) Flaw detection

(c) Mesh cutting

d) Mesh replacement (e) Mesh improvement

Fig. 2. Our algorithm takes an input mesh with topological flaws (e.g. self-intersections, overlaps, and inside-out regions) and outputs a new mesh that is

topologically clean based on its sampling on a background grid.

4 @ 9

Fig. 3. Input mesh defects. Shaded regions highlight typical defects found
in the input mesh. Arrows point in the outward normal direction.

P =
Fig. 4. Mesh corner connectivity. Each mesh corner has pointers to four
other corners: next (N), previous (P), dual (D), and opposite (O).

(5

The first label of the pair represents the material in the triangle’s nor-
mal direction with respect to the given consistent orientation, and
the second label represents the material in the opposite direction.
This way a triangle with a material label pair (m;, m,) represents
an element of the interface between materials m; and m,.

We store the non-manifold triangle mesh using a custom data
structure similar to the corner table [Rossignac 2001]: Each triangle
has two sides, and each side has three corners, giving us 6 corners
per triangle. Each corner has pointers to four other corners in the
same mesh. Two of those corners are neighbors within the same
side. Another one, a “dual” corner, lies on the other side of the same
triangle at the same vertex. The final “opposite” corner is located on
the adjacent triangle across the edge opposite the original corner
(see Figure 4).

Each vertex also stores pointers to all corners at this vertex in
the adjacent triangles. Our data structure allows us to store meshes
with non-manifold edges and vertices, and allows us to perform
local neighborhood operations (like access, insertion, and deletion
of elements) in constant time based purely on mesh connectivity,
rather than geometric queries.
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Fig. 5. Material vector assignment. Our algorithm introduces material
vectors to distinguish between properly embedded meshes and meshes with
topological problems. Properly embedded regions have one-hot encoded
vectors; material vectors in violating regions have negative components.

We also make use of a background grid for performing topological
tests and mesh surgery. The grid is created using a bounding box of
the input mesh with a random small perturbation and filled with
cubical grid cells with edge lengths equal to a user-provided topo-
logical length scale £ (our experiments set # equal to the average
edge length in the triangle mesh). Because we only perform grid op-
erations in regions that overlap the mesh, we use a sparse grid data
structure to only store information for grid cells that intersect the
triangle mesh. Specifically, we allocate a grid cell only if it overlaps a
mesh triangle’s bounding box, producing a narrow band of allocated
grid cells around the mesh surface. For a general surface with n
mesh triangles of similar sizes, the number of allocated cells is O (n).
Each grid cell stores pointers to the overlapped triangles. Each grid
vertex stores a sparsely encoded material vector (discussed in the
next section) and bookkeeping information for local topological
tests (Section 6) and for mesh surgery (Sections 7 and 8).

5 Assigning Grid Materials

The first step of our algorithm is to test whether the input triangle
mesh (and the volumes enclosed by it) is properly embedded into
space. For a correctly embedded mesh, every point in space will
belong to exactly one material; it will lie inside of exactly one closed
volume of the triangle mesh exactly once, and it will lie outside
of all others. This corresponds to a physically valid configuration.
However, a mesh that is not properly embedded can exhibit strange
features like a region of space belonging to multiple materials, or
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Fig. 6. Material switch. A ray travels from left to right and intersects a
triangle. At the intersection, a material vector initially equal to (010)7 is
updated to (00 1), based on the triangle’s material labels and the ray’s
relative orientation with the triangle normal.

a region of space that lies inside the same material multiple times.
Figure 3 shows an example of such configurations.

To identify the material for a given point in space, and to allow for
all possible bizarre combinations of nested materials at this phase
in the algorithm, we introduce a material vector V: a sparse vector
of length m (for m different materials). If a point in space lies once
inside material i and zero times inside other materials, then V should
have a 1 in its i™ entry and 0 everywhere else. Assume we start
drawing a line at a point in space that has material vector V. Each
triangle in the mesh represents part of an interface between two
different materials. Therefore, when our line intersects a triangle,
we adjust V, based on the material labels of the intersected triangle.
Let i be the label associated with the triangle normal pointing into
the volume our line is leaving, and j be the label associated with
the triangle normal pointing into the volume our line is entering.
We adjust V by subtracting 1 from the i entry and adding 1 to the
j™ entry (see Figure 6).

We use the idea that regions correctly embedded in space cor-
respond to material vectors in a one-hot configuration—we call
such material vectors physical. Note that a physical material vec-
tor directly corresponds to a single material label. Similarly, er-
roneously embedded regions correspond to material vectors with
values greater than 1 or less than 0 (but all entries will have inte-
ger values, and all entries sum to 1)—we call such material vectors
non-physical. See Figure 5b for an example of such a configuration.

In order to find these erroneously embedded regions of space,
we assign material labels to each vertex in our sparse grid data
structure. We start far outside the mesh with a physical material
vector indicating the “outside” material, e.g., with a value of 1 in the
first entry, and zeros everywhere else. We then cast axis-aligned
rays along grid edges, updating V with each triangle intersection in
order. The rays are cast in three principal directions, thus covering
all grid edges, and allowing us to additionally compute and store all
intersection points between grid edges and mesh triangles, which
we will use in the subsequent steps.

We reduce the amount of necessary computation by acknowl-
edging that material vectors cannot change on grid edges with no
triangle intersections. It is therefore sufficient to compute material
vectors only on edges that are adjacent to allocated grid cells, fitting
with our sparse data structure. Additionally, we only store a material
vector on a grid vertex if the previous grid vertex along a ray has
a different material vector. If we then query a grid vertex for its
material vector, it either has a material vector stored, or it returns

Multi-Material Mesh-Based Surface Tracking with
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Fig. 7. Complex grid primitives. From left to right: a complex edge, a
complex face, a complex cell.

the material vector of the nearest earlier grid vertex along a ray. We
store material vectors sparsely by only saving the non-zero entries.

As mentioned in Section 4, we allocate a narrow band of grid
cells around the mesh surface. As long as most grid vertices lie
inside a small number of materials, sparse material vectors will use
constant memory even in the presence of an overall large number
of materials. This shows that our algorithm scales linearly with
the number of input triangles. The stored material vector data is
sufficient for the implicit surface reconstruction in Section 8.

As the density of the ray sampling is determined by the grid edge
length, it is possible that rays will miss improperly embedded thin
features of size smaller than the specified resolution #. Although
this prevents our algorithm from guaranteeing an output which
is properly embedded at all scales, we find it a good trade-off for
gaining robustness and efficiency in practical scenarios (Section 9).

This algorithm is similar to the strategies for determining in-
side/outside labels for manifold triangle meshes [Miller 2009; Woj-
tan et al. 2009, 2010], but extended to the multi-material case. Ro-
bustness in this step is crucial for precise topological changes, so
we take additional steps to ensure that the triangle-ray intersec-
tion operations do not produce nonsense in the case of degenerate
configurations (like rays exactly hitting triangle edges or vertices).
First, we follow Miiller [2009] and trace rays along all three axes,
marking any inconsistent findings as topological flaws (Section 6).
Most importantly, we employ symbolic perturbations (Simulation of
Simplicity [Edelsbrunner and Miicke 1990]) to consistently resolve
degenerate orientation tests, reducing the need for special-case code
and enhancing robustness.

6 Detecting Topological Flaws

Our next step is to locate regions of space where the mesh needs
to be re-sampled. It is self-explanatory that we should eliminate
non-physical regions such as overlaps and inversions, and it is also
important in many simulation applications to merge surfaces to-
gether when they come within a certain minimum distance, and to
split them, when they become very thin. Thus, unlike algorithms
dedicated to resolving mesh CSG operations, surface tracking al-
gorithms [Brochu and Bridson 2009; Da et al. 2014; Du et al. 2006;
Losasso et al. 2006; Wojtan et al. 2009] tend to force topological
changes when surfaces come within a user-defined topological res-
olution #. At the same time, we employ techniques to avoid unnec-
essary resampling whenever possible, in order to maintain as much
of the input surface as we can.

ACM Trans. Graph., Vol. 43, No. 4, Article 54. Publication date: July 2024.
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In the rest of this section we describe how we partition all grid
cells into two groups: flawed cells, in which we will remove all of
the existing mesh and replace it with a new mesh; and intact cells,
in which we will preserve the input mesh. We call the collection
of flawed cells the flawed region, the collection of intact cells the
intact region, and the collection of grid faces separating the flawed
region from the intact region the flawed boundary.

6.1 Non-Physical Cells

First we find all grid cells with defects such as overlaps and in-
versions. We recall that such defects correspond to non-physical
material vectors. As such, for each grid vertex with a non-physical
material vector, we mark its eight adjacent cells as non-physical.
Additionally, we investigate how the material vector changes as
we traverse along grid edges. If the material vector becomes non-
physical after crossing an intersection on a grid edge, we mark the
four adjacent grid cells as non-physical. We skip grid edges with no
intersections, since the material vector cannot change along them.
In order to obtain a mesh with well-defined materials everywhere,
we must remesh all non-physical cells, and so we add them into the
flawed region.

6.2 Complex Cells

In this step, we determine all grid cells in which we will merge
and split surfaces. We generalize the manifold/two-material ideas
of Wojtan et al. [2009] and seek out cells where the topology of the
non-manifold surface mesh disagrees with the topology implied by a
multi-material implicit surface sampled on the background grid. We
do this by examining the intersections of grid primitives with the
triangle mesh. We call grid primitives that indicate a disagreement
between the implicit and explicit surfaces topologically complex;
we list the cases in order of increasing dimension, with illustrations
shown in Figure 7.

o A complex edge is a grid edge that intersects more than one
mesh triangle.

o A complex face is a grid face whose intersection with the
mesh forms a cycle, or a face adjacent to a complex edge.

e A complex cell is a grid cell whose intersection with the
mesh contains a closed volume, or a grid cell that is adjacent
to a complex face.

6.3 Deep Cells

As explained in [Wojtan et al. 2009], remeshing all complex cells
would lead to an overzealous re-sampling of the surface. For example,
the tiniest convex surface bump can intersect a grid edge twice
(Figure 9). The “Deep Cell” test, employed by [Wojtan et al. 2009],
avoids remeshing small surface details, but it only works for two
materials. It uses the idea that a surface should only be remeshed in
areas where the explicit and the implicit surfaces differ significantly.

We generalize the deep cell test to the multi-material setting. Our
goal is to allow complex features to persist if they have the same
material labels as nearby grid vertices. To achieve this, we inspect all
complex edges that are not adjacent to non-physical cells. For each
such edge, we check if all the material labels found along the edge
can be found on grid vertices that have physical material vectors

ACM Trans. Graph., Vol. 43, No. 4, Article 54. Publication date: July 2024.

o

Fig. 8. In a geometrically non-degenerate configuration, a triangle intersects
a grid face in one of the three possible ways. In each case, the number of
triangle edge-grid face intersections is equal to two. If we find any deviation,
indicating a numerical instability or a geometrically degenerate configura-
tion, we mark the grid face as complex.

and lie within Manhattan distance 2¢ of the edge. If true, it means
that the explicit surface (represented by grid edge-mesh triangle
intersections) and the implicit surface (represented by labels on
grid vertices) are similar to each other in the neighborhood of the
complex edge and we call the edge shallow. Complex cells for which
all adjacent complex edges are shallow contain a mesh that likely
represents surface features, therefore we opt to avoid remeshing
them. Conversely, if a material label on a complex edge cannot
be found on a nearby grid vertex as described above, it means the
implicit and explicit surfaces differ significantly in the neighborhood
of the edge. We call such an edge deep, as it is located deeply inside
a volume, away from material interfaces. We refer to a complex cell
with at least one deep edge as a deep cell, and we add all deep
cells to the flawed region for remeshing. Our strategy allows small
surface textures to persist while preventing the emergence of long
thin structures.

6.4 Flawed Region

So far we added non-physical and deep cells to the flawed region.
Next, we add grid cells in which numerical inconsistencies are de-
tected in the grid vertices and grid edges. Flawed vertices occur when
the ray casting along the three different coordinate axes produce
different material vectors (Section 5), and flawed edges occur during
geometric intersection with triangles (see Figure 8). These events
are rare and lead to very little additional re-meshing in practice.

For the mesh reconstruction step, it is important that there are
no complex edges or faces in the flawed boundary. We iterate over
all grid edges and faces in the flawed boundary, and if any of them
is complex, we add its adjacent cells to the flawed region and repeat
until the flawed boundary is free of complex edges and faces.

7 Local Mesh Cutting

Next, we surgically cut away the mesh in the regions with topologi-
cal flaws by deleting the geometric intersection of the triangle mesh
and the flawed region. Prior authors [Bischoff and Kobbelt 2005;
Du et al. 2006; Wojtan et al. 2009, 2010] do this by first subdividing
the mesh where it intersects the grid edges, then subdividing again
where mesh edges intersect grid faces. Unfortunately, this sequen-
tial subdivision strategy can create zero-area triangles and degrade
overall robustness (Figure 11), so we follow Pavi¢ et al. [2010] by
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Fig. 9. If we are not careful, high frequency details on the surface are (a)
detected as complex edges and (b) subsequently resampled.

computing a constrained Delaunay triangulation for each triangle,
using TRIANGLE [Shewchuk 1996] to force the resulting mesh to
have edges wherever a triangle intersects a grid face. We also add
additional checks to guarantee numerical robustness as described
in Appendix A.

After this step, the mesh triangles are separated into two groups:
those that lie completely inside the intact region, and those that lie
completely inside the flawed region. We delete all triangles inside
the flawed region in preparation for the next step.

8 Local Mesh Replacement

Our next step is to fill the now-empty flawed region with a clean
mesh extracted from the background grid. However, we know that
the non-physical vertices (Section 6.1) will have non-physical mate-
rial vectors, and the geometry of the discarded mesh in the flawed
region is arbitrary and untrustworthy. We create new surface ge-
ometry using the following strategy:

(1) Determine a material label for each grid vertex.
(2) Generate new triangles based on multi-material marching
cubes and connect them to the original mesh.

(3) Optimize the positions of the new mesh vertices.

(4) Transfer properties to the new mesh.

(5) Improve mesh quality.
Note that we first determine the topology of the new surface in
steps 1 and 2, and then pin down its geometry in step 3. We also
note how this strategy differs from the two-material approach of
Wojtan et al. [2009], which determines grid labels by projecting the
winding number (a process that only works for two-materials), and
determines mesh vertex locations based on distances to the original
(untrustworthy and discarded) triangle mesh.

8.1 Correcting Material Vectors

In this step we want to assign unique material labels to all grid ver-
tices. Physical material vectors map one-to-one to unique material
labels, so we only have to focus on grid vertices with non-physical
material vectors here. In order to estimate a suitable material label
for each of these vertices, we look for the nearest point on the grid
where the material vector is physical. We reuse grid-mesh intersec-
tions from Section 5 to identify the exact points along grid edges,
where material vectors first transition from physical to non-physical,
which we call breaking points. A breaking point is therefore the
last point with a well-defined material label, before entering a re-
gion with an ill-defined material label. For each grid vertex with
a non-physical material vector, we find its closest breaking point
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using a fast marching method [Sethian 1999]. We then overwrite
the non-physical material vector with the unique material label of
the closest breaking point. Figure 10 illustrates the process in 2D.

8.2 Creating and Connecting New Triangles

In this step, we describe how we generate new triangles to cleanly
replace the deleted mesh. We generate each new triangle such that
exactly one of its edges lies fully within a single grid face. We there-
fore think of each new triangle as belonging to a specific grid face.
Note that there are two types of grid faces in the flawed region. A
boundary face lies in the flawed boundary, and is therefore adja-
cent to one flawed cell, and one intact cell. Conversely, an internal
face does not lie in the flawed boundary, and is therefore adjacent
to two flawed cells.

We first focus on generating triangles that belong to an internal
face. Given that we have a unique material label assigned to each grid
vertex, we adjust the multi-material iso-surface extractor method
of [Reitinger et al. 2005]. Their approach splits the grid cell into eight
octants, each corresponding to one grid vertex, and therefore to
one material label. Then it generates triangles that separate octants
corresponding to differing material labels. Each triangle is defined by
three special vertices: the point at the center of the grid cell, a point
at the center of a grid face, and a point at the center of a grid edge;
thus exactly one of this triangle’s edges is fully contained within a
grid face (Figure 12a). Given an internal face, we generate the subset
of triangles generated by [Reitinger et al. 2005] that belong to this
face. By design, the triangles belonging to an internal face connect
perfectly to triangles belonging to adjacent internal faces.

Next we address how to generate triangles belonging to a bound-
ary face. The generated triangles must connect to the clipped tri-
angles in the intact region across the boundary face. Each of the
clipped triangles has exactly one mesh edge lying exactly in the
boundary face. We generate a new triangle for each such mesh edge
by connecting the endpoints of the mesh edge with the center of
the flawed cell, and then copying material labels to the new trian-
gle from the clipped triangle (See Figure 12b). By construction, the
newly generated triangles connect perfectly to the clipped mesh in
the intact region.

Lastly, we have to ensure that whenever a boundary face is ad-
jacent to an internal face, the triangles we generate inside them
connect perfectly. Consider a grid edge e that forms the intersec-
tion of a boundary face b and an internal face i. In Section 6.4, we
made sure that there are no complex edges in the flawed boundary.
Consequently, there are only two possibilities for the triangles with
a vertex on edge e: In the first case, there is exactly one triangle
belonging to b and one triangle belonging to i, both of which have
an edge connecting e to the cell center. These triangles have match-
ing labels by construction. In order to seamlessly connect them, we
slide the vertex of the triangle belonging to i along e, and match
it with the vertex of the triangle belonging to b that lies on e. In
the alternative case, there are no triangles belonging to b and i that
need to be connected, and so there is nothing to be done.

With these steps completed, we conclude that the newly gener-
ated triangles seamlessly connect to each other and to the clipped
mesh everywhere, while maintaining label consistency.
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1

Labeled grid in complex region Breaking points on grid edges

Samples for label correction

Corrected material vectors  Reconstructed non-manifold mesh

Fig. 10. Correcting material vectors. Starting in the complex region with invalid material vectors, our algorithm samples breaking points on the grid edges,
finds the closest one to each complex vertex (indicated by black arrows), and reassigns valid material vectors to complex vertices from the found samples. The
new material vector assignment allows us to reconstruct a properly embedded surface.

/_\

[Wojtan et al. 2009]

Ny

[Pavi¢ et al. 2010]

v

Fig. 11. Comparison of subdivision strategies on the complex boundary.

[Wojtan et al. 2009] produces a T-junction with a 0-area triangle; constrained
triangulation [Pavi¢ et al. 2010] avoids these degeneracies.

(a) Internal face

(b) Boundary face

Fig. 12. Reconstruction of geometry in a grid cell. Material labels on new
triangles are inferred from either the material labels on grid vertices (a) or
from the clipped triangles in the intact region (b). Highlighted edges lie
within the front facing grid face.

8.3 Determining Vertex Positions

Having ensured the desired connectivity of the newly generated
mesh, we now adjust its geometry. We focus on regions that are
remeshed on account of being non-physical, as it is in these regions
where we might need to reconstruct complicated geometry from
scratch. We recall that all newly generated mesh vertices lie either
on grid edges, in grid faces, or at grid cell centers, and note that we
are free to shift these vertices along their grid edges, within their
grid faces, and within their grid cells respectively, without changing
the mesh connectivity.
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To determine the location of mesh vertices along grid edges, we
use a familiar isosurface extraction strategy of finding the optimal
transition point from one material to another. We already computed
breaking points (the closest physically valid points to each non-
physical grid vertex) in Section 8.1. For a grid edge with a newly
generated mesh vertex, if it is adjacent to one physical and one
non-physical grid vertex, then it has exactly one breaking point,
and we slide the mesh vertex to this point. For a grid edge with
two adjacent non-physical grid vertices, we find the point along
the edge that is equidistant to the breaking points stored at its two
adjacent grid vertices. The two grid vertices by construction have
different material labels, so the new position of the mesh vertex is
our best guess of the transition point from one material to another.

We experimented with computing similar optimizations for newly
generated vertices on grid faces and cell centers, but in the end we
found it sufficient to heuristically set these vertex positions to the
geometric average of mesh vertices on adjacent grid edges, as this
approach results in a smooth surface within each grid cell.

We note that our strategy for placing new vertices is preliminary;
the generic problem may even be ill-posed, since the notion of opti-
mal placement and which data is trustworthy will strongly depend
on application-specific information. For our visual applications, we
found it useful to smooth non-manifold curves in the mesh: for each
new vertex adjacent to a non-manifold triangle edge, we execute 10
steps of curve smoothing by iteratively setting its position as the
average of its non-manifold neighbors.

8.4 Transfer Mesh Properties to New Elements

Common applications store properties (e.g. texture coordinates or
simulation variables like velocity) on mesh vertices, edges, or tri-
angles, so we transfer these properties from the input mesh to the
recomputed one in this step. Before proceeding, we note that an
“optimal” transfer of properties is application-specific, and some con-
servative or higher-order reconstruction may be more appropriate
in some cases. Furthermore, it is unclear whether it is even possible
to define a generic application-independent optimization problem
for the transfer of data between surfaces of differing topology.

We follow a simple particle-in-cell (PIC) [Harlow 1964] strategy
for passing information from the old mesh to the new one via an
intermediate grid data structure. We discuss how to do this for data



stored at mesh vertices; data stored at triangles and edges can be
treated similarly by storing data at their barycenter, or they might
need special treatment. The PIC algorithm proceeds as follows:

(1) Transfer data from the input mesh to the grid: each grid
vertex in the flawed region stores the average data from mesh
vertices located in its adjacent flawed cells.

Propagate this data to the grid vertices with no associated
data in the complex region: flood fill via breadth-first search
(BFS), starting from the grid vertices that received data in step
(1). If a grid vertex receives data from more than one source
in the same BFS step, store the averaged data. This process
ensures that triangles generated in grid cells that contained
no input triangles will receive data from the nearest input
mesh.

(3) Transfer data to the newly generated mesh: new mesh vertices

receive data via tri-linear interpolation from the grid.

—
Y
~

8.5 Local Mesh Improvement

The last step of our algorithm is to perform local mesh improvement.
Given that the main focus of explicit surface tracking algorithms
is to achieve the correct mesh topology of evolving surfaces, the
reconstructed mesh might not be directly suitable for simulation.
Mesh improvement is a practical tool commonly used to remedy
this by improving mesh quality. We follow [Da et al. 2014] by per-
forming vertex separation, edge splits, edge flips, edge collapses, and
vertex smoothing. The resulting triangles are acceptable for efficient
physics simulation, though we believe our implementation of mesh
improvement has substantial room for further optimization, both
theoretically (in terms of the range of allowed non-manifold local
operations) and practically (with a more efficient implementation).

9 Results, comparisons, and discussion

We performed a number of simulations and stress tests by alternat-
ing one step of mesh deformation for one step of our topological
change algorithm.

9.1 Parameters

Our topology-changing algorithm has a single parameter: the topo-
logical resolution # which determines the size of the background
grid cells. Our mesh improvement step (Section 8.5) features the
expected suite of parameters for minimum/maximum edge length
and criteria for flipping edges. For all examples, we set the topo-
logical resolution ¢ equal to the average triangle edge length, and
keep the local mesh improvement parameters such that the final
triangle edge lengths are within
0.5-1.5 times the topological
resolution #. For comparisons
with Los Toros [Da et al. 2014],
we keep their “merge ratio”
equal to 0.02 times the av-
erage triangle edge length—a
comparatively more conserva-
tive choice of merging distance
used in the Los Topos reposi-
tory. In our limited experience,
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increasing the merge ratio in Los Toros seems to sew triangles
together more often but increases the chance of the algorithm be-
ing stuck in an infinite loop. On the other hand, decreasing the
Los Toros merge ratio makes surfaces repel each other instead of
merging, leading to long, snake-like bubbles like the inset figure.

9.2 Computational Efficiency

Our method’s computational cost is weakly dependent on the com-
plexity of the input problem. The cost is mostly proportional to the
number of intersections between the triangle mesh and the back-
ground grid. A spacious mesh and denser background grid (smaller
) results in more ray-triangle intersection tests and more tests for
non-physical vertices and edges, which make up the majority of
our algorithm’s cost. In contrast, although mesh surgery is more
computationally arduous, it is performed relatively rarely.

The computational cost of our method does not depend on the
topological complexity of the mesh (number of self-intersections
or overlaps) in any obvious way. Our method uses a sparse grid to
gain efficiency over previous grid-based solvers; we can expect the
solver to gain efficiency as we increase the ratio of volume to surface
area in the input mesh. We note that this sparse grid speedup is not
showcased by our examples and stress tests, which overwhelmingly
consist of a space-filling volumetric mess of triangles. Our naive
implementation of local mesh improvement (Section 8.5) is the
current bottleneck in our code, taking up roughly 80% of the total
run-time.

Like Wojtan et al. [2009; 2010], our method has a built-in safety
net; if it ever encounters an internally inconsistent state (perhaps
due to catastrophic numerical degeneracy), it marks the affected
region for remeshing, aborts the current computation, and re-starts
the algorithm with a guarantee that the offending geometry will
be replaced with a clean mesh. Our implementation never actually
executed this safety-net algorithm in any of our tests, so we sus-
pect that our other robustness improvements made this procedure
obsolete.

Directly comparing computational cost between our method and
Los Topos is not straightforward. We can confidently conclude that
our method can take larger time steps, which is reflected both in
our performance statistics and the strongly differing algorithmic
designs (Los Topos takes incremental adaptive steps while ours
jumps right to the final deformed state). However, the computational
cost per time step is strongly dependent on the scenario: our method
performs a comparatively larger number of operations regardless
of input complexity, while Los Topos can range from almost no
computation per step (if no collisions are detected) to a significant
loop of computation (for complex intersections requiring adaptive
time steps).

9.3 Verification and Stress Tests

The rotating notched disk was designed by Zalesak [1979] to high-
light spurious surface deformations in a surface tracker. We use a
multi-material version of the test introduced by Da et al. [2014] in
Figure 13 and our supplementary video. Like most other Lagrangian
surface tracking techniques, our method completes the test without
any re-sampling or spurious topology changes.

ACM Trans. Graph., Vol. 43, No. 4, Article 54. Publication date: July 2024.
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Fig. 13. Zalesak disk. A multi-material test disk rotating around an exterior
point without resampling. The disk consists of 108 triangles and fits a 9x9x3
grid region. The whole test runs on a 25° grid.

a2 )

Fig. 14. Curl noise. Four spheres of different materials stretching out in a
procedural divergence-free flow.

@LCaAaAsse

Fig. 15. Inversion test. (Left) Initial mesh of two spheres with a blue outside
material and orange and green internal ones. (Center left) Surface mesh
deformed with strong Perlin noise. Mesh inversions are shown as orange and
green colors. (Center right) Fixed mesh with our algorithm. (Right) Cut-away
view of the result.

Figure 15 tests our method’s ability to identify and resolve topo-
logical problems in extremely deformed and inverted shapes. The
test applies strong vector-valued Perlin noise to the surface of a
double bubble consisting of two different materials. The noise then
instantly deforms the original shape into a highly contorted and self-
intersecting blob. Our method resolves these topological problems
in a single step, returning a new shape just as visually unpleasant as
the input, but without any self-intersections, and with the interior
cleanly separated into different volumes.

Figure 14 repeats a test by Da et al. [2014] featuring four spheres
of different materials passively advected through a divergence-free
flow. The initially bulbous spheres quickly stretch out into thin
wisps, stressing a surface tracker’s ability to resolve thin features.
It also brings surfaces close together, causing topological merges if
surfaces come within the distance threshold #. Our method dutifully
merges these surfaces when they come close, though it does erode
some small features when they become thinner than the distance
threshold #. Increasing the grid resolution (lowering £) delays this
effect, similar to other implicit surface techniques. In the original
experiment, Los ToPos sets the merge distance threshold 1000-times
lower than the average triangle edge length in the simulation. This
1:1000 ratio highlights the differences in the way our algorithms
implement this parameter: in Los Topos, it essentially tells the
algorithm to wait until the last possible moment before colliding,
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Fig. 16. Dr. Krabunkle. A detailed crab mesh (left) is cloned and rotated
around its center of mass 5 times to generate a shape with 5.3 million
triangles and 72 materials. Our algorithm resolves all overlaps on a 570% grid
in 8 minutes producing a mesh with 3.6 million triangles (center). Cut-away
view (right) shows that internal materials are correctly separated.

(a) Ours (b) GR (c) PR

(d) PR (73x grid)

Fig. 17. Rolling stones. Two decorated spheres roll into each other, merge
and roll away, tracked by (a) our algorithm, (b) a modified algorithm with
global resampling (GR), and (c)—(d) particle-based methods (PR). (a)-(c) use
the same grid resolution, while (d) requires a 7°x denser voxel grid.

and then snaps vertices together without creating small triangles.
In contrast, such a large ratio causes our method to allocate a large
grid, and, in the event of a topological change, it subdivides triangles
into excessively tiny bits before collapsing them all together again
during a particularly busy follow-up re-meshing step. To reflect
the difference in our methods while still retaining the spirit of the
original idea, we set the grid resolution £ in this experiment to be
10 times lower than the mesh resolution.

9.4 Comparison with Particle-Based Methods

To highlight the importance of only re-sampling surfaces where
absolutely necessary, we track the motion of two ornamental spheres
(each consisting of 37937 vertices and 75870 triangles) rolling and
merging together. We compare the performance of four different
surface tracking algorithms in Figure 17 and our video. Figure 17a
uses our algorithm and perfectly preserves the original surface
details. Figure 17b uses a modified version of our algorithm which
naively reconstructs the surface everywhere on the grid at every
step (instead of limiting the flawed region to a minimial size), leading
to degradation of surface details after repeated re-sampling.

We also consider an alternative meshless method for tracking
the surface which densely samples the original surfaces with 200k
particles once at the start, then moves the particles at every time
step and extracts a new surface each frame using VDB [Museth
2013] implemented in the HoupINT software package. This idealized
alternative never re-samples the surface particles and experiences
no degradation over time, but it requires a large number of particle
samples and a dense grid to reconstruct a detailed and temporally
coherent surface. Figure 17c uses the same grid resolution as our



Fig. 18. Double bubble. Two spheres expand in the normal direction at a
constant speed, then merge, reverse direction and separate.

Fig. 19. Normal flow of 1000 spheres. One thousand spheres, each bound-
ing its own unique material region, are expanding in the normal flow direc-
tion at a constant speed, creating many topological events.

method, while Figure 17d uses a grid with voxels that are 7x smaller
in each dimension. The particle-based method is unable to recon-
struct the fine surface details without this extraordinarily dense
grid, leading to higher computational overheads in computational
time, memory, and triangle count (1.4 million).

9.5 Multi-Material Solid Geometry

Instead of slowly deforming a surface from one shape into another,
our method allows arbitrarily large deformations/time steps. This
allows us to essentially teleport shapes into non-embedded spatial
configurations and resolve all topological problems at once. We
show an extreme example of this in Figure 16, where we instantly
overlap six detailed crab meshes from the THREE D ScANs reposi-
tory [Laric 2012], each consisting of 12 overlapping materials and
878617 triangles. Our method resolves the overlapping materials by
approximating a multi-material boolean union of these shapes. The
method works robustly despite the high resolution and degenerate
input triangles.

9.6 Normal Flow and Robustness

We demonstrate another stress test consisting of numerous multi-
material overlaps and non-manifold surface geometry in Figures
18 and 19 by evolving a set of spheres outward in their normal
direction at a constant speed. Figure 18 recreates the basic scenario
of Da et al. [2014], in which two spheres expand until they merge
into a double bubble™, then reverse the flow, causing the structure
to separate and dwindle to deletion.

Using many more spheres creates a significantly more stressful
surface tracking scenario. Figure 19 illustrates how our method
copes with 100 and 1000 expanding spheres to create a complex
foam with myriads of materials. Furthermore, we can randomize
the initial placement of spheres (ensuring that they start from a non-
intersecting initial state) and re-run the same experiment multiple
times to create a statistical benchmark for surface tracker robustness.
We find these statistical tests useful for comparing the robustness
of different surface tracking algorithms, because theoretical failure
analysis of all competing approaches is difficult and incomplete.
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Fig. 20. Symmetry breaking. Four soap bubbles colliding with each other
and choosing one preferred direction for area minimization.

We define success in this scenario if our algorithm completes the
task without crashing, running out of memory, or failing to finish
within ten hours. In this scenario with 100 spheres, our method suc-
ceeded in 100 out of 100 tests (a 100% success rate) with an average
run-time of 6.1 minutes, while using naive numerical evaluation of
vertex normals to compute the flow direction. In comparison, the
state of the art surface tracker Los Topros [Da et al. 2014], succeeded
in 85 out of 100 tests (85%) with an average run-time of 84.5 min-
utes. Using Face Offsetting [Jiao 2007] for a more stable normal flow
keeps Los Topos’s success rate at 83 out of 100 (83%, 81.1 minutes
run-time). Increasing the complexity by flowing 1000 spheres leads
to a success rate of 50 out of 50 (100%, 44.6 minutes run-time) for
our method, 13 out of 50 (26%, 30.6 minutes run-time) for Los Toros
with Face Offsetting and 0 out of 50 (0%) for Los Toros with naive
normal flow. Unexpectedly, Los Topos performs faster on the larger
test. This discrepancy is explained by survivor bias related to the
algorithm’s intersection avoidance procedure: Los Topos repeatedly
halves the time step and retries all computations until a state with
no intersections is reached. This strategy allows the 100 sphere
simulations to make progress during frames with many intersection
events but at a cost of 3 time-step reductions (and restarts) per frame
on average. For the 1000 sphere test, this recovery strategy always
fails, but the successful runs avoided restarts altogether and finished
more quickly.

We note a number of caveats with our proposed robustness bench-
mark which make it difficult to directly draw conclusions: first, al-
though we found it useful for probing a large number of unexpected
configurations, it is not exhaustive and may not fairly sample the
space of mesh configurations. Furthermore, normal flow may not be
representative for other applications, especially those with substan-
tial tangential motion. We also did not optimize parameter settings
for either algorithm, so it is likely that changing grid size or the Los
Toros merge ratio will influence these results. Finally, the two tested
methods have different constraints on the solution; Los Toros guar-
antees that the final mesh will be free of self-intersections, while
ours only guarantees this for intersections larger than some constant
proportional to .

9.7 Soap Bubble Simulation

We couple our method to the soap film evolution method of Ishida
et al. [2017]. We took authors’ original code and replaced the Los
Toros surface tracker with our method. Figure 20 shows four bub-
bles spontaneously breaking symmetry to minimize surface area.
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Fig. 21. Soap foam. Our mesher robustly handles the complexity of soap films, allowing us to simulate them in such detail at a never-before-seen scale.
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Fig. 22. Running time for 1000 soap bubbles test. A comparison of
per-frame running times for two different surface trackers on the same 1000-
soap-bubble animation. Timings exclude the cost of physics calculations
(i.e., surface tracker only). X indicates failure of the surface tracker.

Figure 21 simulates 1000 interacting bubbles undergoing volume-
preserving surface tension flow, merging together, bursting, rippling,
and rearranging. To the best of our knowledge, this is the largest and
most complex foam simulation of its kind ever computed. Figure 22
lists performance statistics for this example: with roughly 625000
triangles, our method demonstrated an average run-time per time
step of 36.5 seconds on an INTEL® Corg " i7-7820X with 64 GB of
RAM. Compared to Los Topros, our method allowed a 10 times larger
time step size and computed 7.5 times faster overall.

9.8 Further Discussion

To meet expectations for peer review, we found it necessary to di-
rectly compare our algorithm with the state of the art multi-material
surface tracking algorithm, Los Toros. However, we believe that
each algorithm excels in different scenarios. Our implementation ro-
bustly handles larger deformations more efficiently, but Los Toros
runs faster in less complicated scenarios and provides guarantees
that our method does not. Regardless, we do not believe our di-
rect comparisons are definitive, as they are based on two research
implementations that may have inefficiencies and bugs.
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10 Limitations and Future Work

Our method has room for improvement on the implementation and
algorithmic levels. As mentioned in Section 9, our implementation
will benefit from a more sophisticated strategy for mesh improve-
ment, which would make our method more efficient by removing
the computational bottleneck, and even more widely applicable by
improving element quality for PDE solvers. Our strategy for creat-
ing a smooth non-manifold surface from large overlaps relies on
grid-related heuristics and post-hoc mesh fairing; it should be pos-
sible to phrase this problem more elegantly and find a more direct
solution.

Our algorithm for computing topological changes depends on
how the mesh intersects the grid, and our implementation generally
avoids testing for complex faces and cells everywhere, so it could
miss very small topological defects. In the future we would like to
reinforce our approach with a hard guarantee that we fix topolog-
ical flaws at all scales, in addition to the ones larger than #. Our
algorithm does not attempt to preserve volume exactly, because it
is a general-purpose surface tracker meant to handle all possible
deformations. For small time steps, our local re-meshing strategy
will change volumes proportional to the grid edge length ¢ and
the surface area of the mesh regions which merge together or split
apart. This is consistent with Los Topos and other mesh-based sur-
face trackers that change the volume by merging surfaces which lie
closer than the user-defined merge threshold.

In the future, we would also like to consider extending our multi-
material approach with techniques that proved useful in the two-
material case, like support for thin sheets [Wojtan et al. 2010], grid-
free triangulation [Bo et al. 2011; Chentanez et al. 2015], and GPU
acceleration [Chentanez et al. 2016].

In conclusion, we introduced a surface tracking algorithm for
non-manifold surface meshes that generalizes the manifold surface
tracker of Wojtan et al. [2009]. Our method works efficiently and
reliably, and is capable of state-of-the-art performance on large prac-
tical problems in physics animation and solid geometry processing.
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A Robust mesh clipping

To clip a triangle mesh to the flawed boundary, we find which
mesh edges need to be added for each triangle, similar to the work
of [Pavi¢ et al. 2010], and call the TRIANGLE library to perform
constrained Delaunay triangulation. For the new triangulation, we
need to determine which triangles lie inside the flawed region, and
should therefore be deleted. In order to avoid additional numerical
tests, we reuse the grid face-mesh edge intersections, and mark
triangles for deletion by a flood-filling algorithm.

For similar reasons, we use integer grid coordinates for storing
the positions of newly generated triangulation vertices, instead of
relying on the floating point representation. Vertices on triangle
edges also lie in grid faces, we sort them on each triangle edge
using integer grid face coordinates, similar to MANDOLINE [Tao et al.
2019]. Vertices inside triangle faces also lie on grid edges, we use
integer grid edge coordinates to move them in a way that maximizes
mutual distance, and minimizes degeneracy. We speculate that the
robustness of this algorithm can be increased even further in the
future by reformulating the problem as an integer-based Planar
Straight-Line Drawing.
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