
A Simpler and Parallelizable 𝑂 (
√︁

log𝑛)-approximation
Algorithm for Sparsest Cut

Vladimir Kolmogorov
vnk@ist.ac.at

Institute of Science and Technology Austria (ISTA)

ABSTRACT
Currently, the best known tradeoff between approximation ratio
and complexity for the Sparsest Cut problem is achieved by the
algorithm in [Sherman, FOCS 2009]: it computes 𝑂 (

√︁
(log𝑛)/Y)-

approximation using 𝑂 (𝑛Y log𝑂 (1) 𝑛) maxflows for any Y ∈
[Θ(1/log𝑛),Θ(1)]. It works by solving the SDP relaxation of
[Arora-Rao-Vazirani, STOC 2004] using the Multiplicative Weights
Update algorithm (MW) of [Arora-Kale, JACM 2016]. To implement
one MW step, Sherman approximately solves a multicommodity
flow problem using another application of MW. Nested MW steps
are solved via a certain “chaining” algorithm that combines results
of multiple calls to the maxflow algorithm.

We present an alternative approach that avoids solving the mul-
ticommodity flow problem and instead computes “violating paths”.
This simplifies Sherman’s algorithm by removing a need for a nested
application of MW, and also allows parallelization: we show how to
compute𝑂 (

√︁
(log𝑛)/Y)-approximation via𝑂 (log𝑂 (1) 𝑛) maxflows

using 𝑂 (𝑛Y) processors.
We also revisit Sherman’s chaining algorithm, and present a

simpler version together with a new analysis.

CCS CONCEPTS
• Theory of computation → Parallel algorithms.

KEYWORDS
Sparsest Cut, approximation algorithms, parallel algorithms
ACM Reference Format:
Vladimir Kolmogorov. 2024. A Simpler and Parallelizable 𝑂 (

√︁
log𝑛)-

approximation Algorithm for Sparsest Cut. In Proceedings of the 36th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
’24), June 17–21, 2024, Nantes, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3626183.3659969

1 INTRODUCTION
Partitioning a given undirected graph𝐺 = (𝑉 , 𝐸) into two (or more)
components is a fundamental problem in computer science with
many real-world applications, ranging from data clustering and
network analysis to parallel computing and VLSI design. Usually,
desired partitions should satisfy two properties: (i) the total cost of
edges between different components should be small, and (ii) the
components should be sufficiently balanced. For partitions with

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SPAA ’24, June 17–21, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0416-1/24/06
https://doi.org/10.1145/3626183.3659969

two components (𝑆, 𝑆) this means that 𝐸 (𝑆, 𝑆) should be small and
min{|𝑆 |, |𝑆 |} should be large, where 𝐸 (𝑆, 𝑆) is the total number of
edges between 𝑆 and 𝑆 (or their total weight in the case of weighted
graphs).

One of the most widely studied versions is the Sparsest Cut
problemwhose goal is to minimize the ratio 𝐸 (𝑆,𝑆)

min{ |𝑆 |, |𝑆 | } (called edge
expansion) over partitions (𝑆, 𝑆). Another well-known variant is the
𝑐-Balanced Separator problem: minimize 𝐸 (𝑆, 𝑆) over 𝑐-balanced
partitions, i.e. partitions satisfying min{|𝑆 |, |𝑆 |} ≥ 𝑐𝑛 where 𝑛 = |𝑉 |
and 𝑐 ∈ (0, 1

2) is a given constant.
Both problems are NP-hard, which forces one to study approxi-

mation algorithms, or pseudoapproximation algorithms in the case
of Balanced Separator. (An algorithm for Balanced Separator
is said to be a _-pseudoapproximation if it computes a 𝑐′-balanced
partition (𝑆, 𝑆) whose cost 𝐸 (𝑆, 𝑆) is at most _ times the optimal
cost of the 𝑐-Balanced Partition problem, for some constants
𝑐′ ≤ 𝑐). Below we discuss known results for the Sparsest Cut
problem. They also apply to Balanced Separator: in all previous
works, whenever there is an 𝑂 (_)-approximation algorithm for
Sparsest Cut then there is an 𝑂 (_)-pseudoapproximation algo-
rithm for Balanced Separator with the same complexity.

The first nontrivial guarantee was obtained by Leighton and
Rao [17], who presented a𝑂 (log𝑛)-approximation algorithm based
on a certain LP relaxation of the problem. The approximation
factor was improved to 𝑂 (

√︁
log𝑛) in another seminal paper by

Arora, Rao and Vazirani [5] who used an SDP relaxation. Arora,
Hazan and Kale [3] showed how to (approximately) solve this SDP
in �̃� (𝑛2) time using multicommodity flows while preserving the
𝑂 (

√︁
log𝑛) approximation factor. Arora and Kale later developed

in [4] a more general method for solving SDPs that allowed dif-
ferent tradeoffs between approximation factor and complexity; in
particular, they presented an 𝑂 (log𝑛)-approximation algorithm
using 𝑂 (log𝑂 (1) 𝑛) maxflow computations, and a simpler version
of 𝑂 (

√︁
log𝑛)-approximation with �̃� (𝑛2) complexity.

The algorithms in [3, 4] were based on theMultiplicativeWeights
Update method. An alternative approach based on the so-called cut-
matching game was proposed by Khandekar, Rao and Vazirani [12];
their method computes𝑂 (log2 𝑛)-approximation for Sparsest Cut
using𝑂 (log𝑂 (1) 𝑛) maxflows. This was later improved to𝑂 (log𝑛)-
approximation by Orecchia, Schulman, Vazirani and Vishnoi [20].

The line of works above culminated in the result of Sherman [24],
who showed how to compute 𝑂 (

√︁
(log𝑛)/Y)-approximation for

Sparsest Cut using 𝑂 (𝑛Y log𝑂 (1) 𝑛) maxflows for any Y ∈
[Θ(1/log𝑛),Θ(1)]. This effectively subsumes previous results,
as taking Y = Θ(1/log𝑛) yields an 𝑂 (log𝑛) approximation us-
ing 𝑂 (log𝑂 (1) 𝑛) maxflows, while a sufficiently small constant Y
achieves an 𝑂 (

√︁
log𝑛)-approximation and improves on the �̃� (𝑛2)

403

https://doi.org/10.1145/3626183.3659969
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626183.3659969
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626183.3659969&domain=pdf&date_stamp=2024-06-17

SPAA ’24, June 17–21, 2024, Nantes, France Vladimir Kolmogorov

runtime in [3, 4]. In particular, using the recent almost linear-time
maxflow algorithm [9] yields 𝑂 (𝑛1+Y) complexity for 𝑂 (

√︁
log𝑛)-

approximation. (As usual, we assume in this paper that graph 𝐺
has 𝑚 = 𝑂 (𝑛 log𝑛) edges. This can be achieved by sparsifying
the graph using the algorithm of Benczúr and Karger [6], which
with high probability preserves the cost of all cuts up to any given
constant factor.)
Our contributions In this paper we present a new algorithm that
computes an𝑂 (

√︁
(log𝑛)/Y) approximation for Sparsest Cutw.h.p.

whose expected runtime is 𝑂 ((𝑛Y log𝑂 (1) 𝑛) · 𝑇maxflow) for given
Y ∈ [Θ(1/log𝑛),Θ(1)], where 𝑇maxflow = Ω(𝑛) is the runtime of a
maxflow algorithm on a graph with 𝑛 nodes and 𝑂 (𝑛 log𝑛) edges.
It has the following features:
(i) It simplifies Sherman’s algorithm in two different ways.
(ii) The algorithm is parallelizable: it can be implemented on 𝑂 (𝑛Y)
processors in expected parallel runtime 𝑂 ((log𝑂 (1) 𝑛) ·𝑇maxflow)
(in any version of the PRAM model), where “parallel runtime” is
defined as the maximum runtime over all processors. Note that this
is an exponential improvement over complexity 𝑂 ((𝑛Y log𝑂 (1) 𝑛) ·
𝑇maxflow) of the sequential version.
(iii) To prove algorithm’s correctness, we introduce a new technique,
which we believe may yield smaller constants in the 𝑂 (·) notation.
Note that there are numerous papers that optimize constants for
problemswith a constant factor approximation guarantee.We argue
that this direction makes just as much sense for the Sparsest Cut
problem. The question can be naturally formulated as follows: what
is the fastest algorithm to compute 𝐶

√︁
log𝑛-approximation for a

given constant𝐶? Alternatively, for maxflow-based algorithms one
may ask what is the smallest 𝐶 = 𝐶Y such that there is a 𝐶

√︁
log𝑛-

approximation algorithm that uses �̃� (𝑛Y) maxflow, for given Y > 0.
Unfortunately, it is impossible to directly compare our constant with
that of Sherman: we believe that the paper [24] contains a numerical
mistake (see the footnote in Section 3.4). An additional complication
is that optimizing the constants may not be an easy task. Due to
these considerations, we formulate our claim differently: our proof
technique should lead to smaller constants since our analysis is
more compact and avoids case analysis present in [24].

To explain details, we need to give some background on Sher-
man’s algorithm. It builds on the work of Arora and Kale [4] who
approximately solve an SDP relaxation using a (matrix) Multiplica-
tive Weights update algorithm (MW). The key subroutine is to
identify constraints that are violated by the current primal solution.
Both [4] and [24] do this by solving a multicommodity flow prob-
lem. Arora and Kale simply call Fleischer’s multicommodity flow
algorithm [10], while Sherman designs a more efficient customized
method for approximately solving this flow problem using another
application of MW. Our algorithm avoids solving the multicom-
modity flow problem, and instead searches for “violating paths”,
i.e. paths that violate triangle inequalities in the SDP relaxation.
We show that this can be done by a simple randomized procedure
that does not rely on MW. Furthermore, independent calls to this
procedure return violating paths that are mostly disjoint, which al-
lows parallelization: we can compute many such paths on different
processors and then take their union.

In order to compute violating paths, we first design procedure
Matching(𝑢) that takes vector 𝑢 ∈ R𝑑 and outputs a directed

matching on a given set 𝑆 ⊂ R𝑑 with |𝑆 | = Θ(𝑛). (It works by
calling a maxflow algorithm and then postprocessing the flow).
The problem then boils down to the following: given vector 𝑢 ran-
domly sampled from the Gaussian distribution, we need to sample
vectors 𝑢1, . . . , 𝑢𝐾 so that set Matching(𝑢1) ◦ . . . ◦ Matching(𝑢𝐾)
contains many paths (𝑥0, 𝑥1, . . . , 𝑥𝐾) with “large stretch”, i.e. with
⟨𝑥𝐾 − 𝑥0, 𝑢⟩ ≥ Ω(𝐾). (Here “◦” is the operation that “chains to-
gether” paths in a natural way). This was also a key task in [24],
where it was needed for implementing one inner MW step.

Sherman’s chaining algorithm can be viewed as an algorithmiza-
tion of the proof in the original ARV paper [5] and its subsequent
improvement by Lee [16]. We present a simpler chaining algorithm
with a very different proof; as stated before, the new proof may
yield smaller constants.
Concurrent work After finishing the first draft of the paper [13],
we learned about a very recent work by Lau-Tung-Wang [15], which
considers a generalization of Sparsest Cut to directed graphs. The
authors presented an algorithm which, in the case of undirected
graphs, also simplifies Sherman’s algorithm by computing violating
paths instead of solving amulticommodity flow problem. Unlike our
paper, [15] does not consider parallelization, and uses Sherman’s
chaining algorithm as a black box.

Another very recent paper by Agarwal-Khanna-Li-Patil-Wang-
White-Zhong [1] presented a parallel algorithm for approximate
maxflow with polylogarithmic depth and near-linear work in the
PRAM model. Using this algorithm, they presented, in particular,
an 𝑂 (log3 𝑛)-approximation sparsest cut algorithm with polyloga-
rithmic depth and near-linear work (by building on the work [19]
who showed how to replace exact maxflow computations in the
cut-matching game [12, 20] with approximate maxflows).
Other related work The problem of computing a cut of con-
ductance �̃� (

√︁
𝜙) assuming the existence of a cut of conductance

𝜙 ∈ [0, 1] (with various conditions on the balancedness) has been
considered in [14, 21, 23]. Papers [14, 23] presented distributed
algorithms for this problem (in the CONGEST model), while [22]
observed that the BalCut algorithm in [21] is parallelizable: it can
be implemented in near-linear work and polylogarithmic depth.
Note that 𝜙 can be much smaller than 1. [7] presented a distributed
CONGEST algorithm for computing an expander decomposition of
a graph.

2 BACKGROUND: ARORA-KALE
FRAMEWORK

We will describe the algorithm only for the 𝑐-Balanced Separator
problem. As shown in [4], the Sparsest Cut problem can be solved
by a very similar approach, essentially by reducing it to the 𝑐-
Balanced Separator problem for some constant 𝑐 ; we refer to [4]
for details.1

Let 𝑐𝑒 ≥ 0 be the weight of edge 𝑒 in 𝐺 . The standard SDP
relaxation of the 𝑐-Balanced Separator problem can be written

1These details are actually not included in the journal version [4], but can be found
in [11] or in https://www.cs.princeton.edu/~arora/pubs/mmw.pdf, Appendix A.

404

https://www.cs.princeton.edu/~arora/pubs/mmw.pdf

A Simpler and Parallelizable𝑂 (
√︁

log𝑛)-approximation
Algorithm for Sparsest Cut SPAA ’24, June 17–21, 2024, Nantes, France

in vector form as follows:
min

∑︁
𝑒={𝑖, 𝑗 }∈𝐸

𝑐𝑒 | |𝑣𝑖 − 𝑣 𝑗 | |2 (1a)

| |𝑣𝑖 | |2 = 1 ∀𝑖 (1b)

| |𝑣𝑖 − 𝑣 𝑗 | |2 + ||𝑣 𝑗 − 𝑣𝑘 | |2 ≥ ||𝑣𝑖 − 𝑣𝑘 | |2 ∀𝑖, 𝑗, 𝑘 (1c)∑︁
𝑖< 𝑗

| |𝑣𝑖 − 𝑣 𝑗 | |2 ≥ 4𝑐 (1 − 𝑐)𝑛2 (1d)

The optimum of this SDP divided by 4 is a lower bound on
the minimum 𝑐-Balanced Separator problem. Arora and Kale
considered a slightly different relaxation:

min
∑︁

𝑒={𝑖, 𝑗 }∈𝐸
𝑐𝑒 | |𝑣𝑖 − 𝑣 𝑗 | |2 min𝐶 • 𝑋 (2a)

| |𝑣𝑖 | |2 = 1 𝑋𝑖𝑖 = 1 ∀𝑖 (2b)
ℓ (𝑝)∑︁
𝑗=1

| |𝑣𝑝 𝑗 − 𝑣𝑝 𝑗−1 | |2 ≥ ||𝑣𝑝ℓ (𝑝) − 𝑣𝑝0 | |2 𝑇𝑝 • 𝑋 ≥ 0 ∀𝑝 (2c)∑︁
𝑖, 𝑗∈𝑆 :𝑖< 𝑗

| |𝑣𝑖 − 𝑣 𝑗 | |2 ≥ 𝑎𝑛2 𝐾𝑆 • 𝑋 ≥ 𝑎𝑛2 ∀𝑆 (2d)

𝑋 ⪰ 0 (2e)
Here 𝑝 stands for a path 𝑝 = (𝑝0, . . . , 𝑝ℓ (𝑝)) in graph 𝐺 , nota-
tion “∀𝑆” means all subsets 𝑆 ⊆ 𝑉 of size at least (1 − 𝑐/4)𝑛, and
𝑎 = 3𝑐 − 4𝑐2. Note that triangle inequalities (1c) imply path inequal-
ities (2c), while constraints (1b) and (1d) imply constraints (2d)
(see [4]). SDP (2) may be looser than (1), but its optimum divided by
4 is still a lower bound on the minimum 𝑐-Balanced Separator
problem.

The dual of (2) is as follows. It has variables 𝑦𝑖 for every node 𝑖 ,
𝑓𝑝 for every path 𝑝 , and 𝑧𝑆 for every set 𝑆 of size at least (1− 𝑐/4)𝑛.
Let diag(𝑦) be the diagonal matrix with vector 𝑦 on the diagonal:

max
∑︁
𝑖

𝑦𝑖 + 𝑎𝑛2
∑︁
𝑆

𝑧𝑆 (3a)

diag(𝑦) +
∑︁
𝑝

𝑓𝑝𝑇𝑝 +
∑︁
𝑆

𝑧𝑆𝐾𝑆 ⪯ 𝐶 (3b)

𝑓𝑝 , 𝑧𝑆 ≥ 0 ∀𝑝, 𝑆 (3c)

2.1 Matrix multiplicative weights algorithm
To solve the above SDP, [4] converts an optimization problem to
a feasibility problem by replacing the objective (2a) with the con-
straint

𝐶 • 𝑋 ≤ 𝛼 (2a′)
As shown in [3], it suffices to try 𝑂 (log𝑛) values of threshold

𝛼 if we are willing to accept the loss by a constant factor in the
approximation ratio. Let (2′) be the system consisting of constraints
(2a′) and (2b)-(2e). To check the feasibility of this system, Arora
and Kale apply the Matrix Multiplicative Weights (MW) algorithm
which we review in Appendix A. The main computational subrou-
tine is procedure Oracle that, given current matrix 𝑋 of the form
𝑋 = 𝑉𝑇𝑉 , 𝑉 ∈ R𝑛×𝑛 , should either (i) find an inequality violated
by 𝑋 , or (ii) find a Θ(1)-balanced cut of value at most ^𝛼 where
Θ(^) is the desired approximation factor. Working directly with
matrix 𝑉 would be too slow (even storing it requires Θ(𝑛2) space

and thus Ω(𝑛2) time). To reduce complexity, Arora and Kale work
instead with matrix �̃� ∈ R𝑑×𝑛 , 𝑑 ≪ 𝑛 so that 𝑋 ≈ �̃� def

= �̃�𝑇 �̃� . Let
𝑣1, . . . , 𝑣𝑛 ∈ R𝑛 and 𝑣1, . . . , 𝑣𝑛 ∈ R𝑑 be the columns of 𝑉 and �̃� ,
respectively. Below we give a formal specification of Oracle. Note
that the oracle has access only to vectors 𝑣1, . . . , 𝑣𝑛 .

Input: vectors 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛 and 𝑣1, . . . , 𝑣𝑛 ∈ R𝑑 satisfying
| |𝑣𝑖 | |2 ≤ 2 ∀𝑖 (4a)∑︁

𝑖, 𝑗∈𝑉 :𝑖< 𝑗
| |𝑣𝑖 − 𝑣 𝑗 | |2 ≥ 𝑎𝑛2

4 (4b)

| | |𝑣𝑖 | |2 − ||𝑣𝑖 | |2 | ≤ 𝛾 (| |𝑣𝑖 | |2 + 𝜏) ∀𝑖 (4c)

| | |𝑣𝑖 − 𝑣 𝑗 | |2 − ||𝑣𝑖 − 𝑣 𝑗 | |2 | ≤ 𝛾 (| |𝑣𝑖 − 𝑣 𝑗 | |2 + 𝜏) ∀𝑖, 𝑗 (4d)

for some constants 𝛾, 𝜏 > 0. Let 𝑋 = 𝑉𝑇𝑉 and �̃� = �̃�𝑇 �̃� where
𝑉 ∈ R𝑛×𝑛 and �̃� ∈ R𝑑×𝑛 are the matrices with columns {𝑣𝑖 }
and {𝑣𝑖 }, respectively.
Output: either (i) variables 𝑓𝑝 ≥ 0 and symmetric matrix 𝐹 ⪯ 𝐶
such that (∑︁

𝑝
𝑓𝑝𝑇𝑝 − 𝐹

)
• 𝑋 ≤ −𝛼 (5)

or (ii) a Θ(1)-balanced cut of value at most ^𝛼 .

The number of iterations of theMWalgorithmwill depend on the
maximum possible spectral norm of matrix 𝛼

𝑛 𝐼 +
∑
𝑝 𝑓𝑝𝑇𝑝 − 𝐹 . This

parameter is called the width of the oracle, and will be denoted as 𝜌 .
Wewill use the bound 𝜌 = | | 𝛼𝑛 𝐼+

∑
𝑝 𝑓𝑝𝑇𝑝−𝐹 | | ≤ 𝛼

𝑛 +||
∑
𝑝 𝑓𝑝𝑇𝑝−𝐹 | |.

Theorem 2.1 ([4]). If in the MW algorithm the first 𝑇 =

⌈ 4𝜌2𝑛2 ln𝑛
𝜖2 ⌉ calls to Oracle output option (i) then the optimum value

of SDP (2) is at least 𝛼 − 𝜖 .

2.2 Oracle implementation
To implement the oracle, Arora and Kale interpret values 𝑓𝑝 as a
multicommodity flow in graph 𝐺 , i.e. a flow that sends 𝑓𝑝 units of
demand between the endpoints of 𝑝 . Given this flow, introduce the
following notation. Let 𝑓𝑒 be the flow on edge 𝑒 (i.e. 𝑓𝑒 =

∑
𝑝∋𝑒 𝑓𝑝).

Let 𝑑𝑖 𝑗 be the total flow between nodes 𝑖 and 𝑗 (i.e. 𝑑𝑖 𝑗 =
∑
𝑝∈P𝑖 𝑗 𝑓𝑝

where P𝑖 𝑗 is the set of paths from 𝑖 to 𝑗). Finally, let 𝑑𝑖 be the total
flow from node 𝑖 (i.e. 𝑑𝑖 =

∑
𝑗 𝑑𝑖 𝑗). Given parameter 𝜋 > 0, a valid

𝜋-regular flow is one that satisfies capacity constraints: 𝑓𝑒 ≤ 𝑐𝑒 for
all edges 𝑒 and 𝑑𝑖 ≤ 𝜋 for all nodes 𝑖 .

The oracle in [4] computes a 𝜋-regular flow 𝑓 for some parameter
𝜋 , and sets 𝐹 to be the Laplacian of the flow graph (i.e. the weighted
graphwhere edge 𝑒 has weight 𝑓𝑒). Capacity constraints then ensure
that 𝐹 ⪯ 𝐶 (because 𝐶 − 𝐹 is the Laplacian of the weighted graph
with weights 𝑐𝑒 − 𝑓𝑒 ≥ 0 on edges 𝑒 ∈ 𝐸). Let 𝐷 be the Laplacian
of the demand graph (i.e. the complete weighted graph where edge
{𝑖, 𝑗} has weight 𝑑𝑖 𝑗). It can be checked that

∑
𝑝 𝑓𝑝𝑇𝑝 = 𝐹 −𝐷 . Thus,

the oracle needs to ensure that 𝐷 • 𝑋 ≥ 𝛼 , or equivalently∑︁
𝑖< 𝑗

𝑑𝑖 𝑗 | |𝑣𝑖 − 𝑣 𝑗 | |2 ≥ 𝛼 (6)

All degrees in the demand graph are bounded by 𝜋 , therefore | |𝐷 | | ≤
2𝜋 . Thus, the width of the oracle can be bounded as | |𝜌 | | ≤ 𝛼

𝑛 +
||𝐷 | | ≤ 𝛼

𝑛 + 2𝜋 .

405

SPAA ’24, June 17–21, 2024, Nantes, France Vladimir Kolmogorov

Belowwe summarize three known implementations of the oracle.
The first two are due to Arora and Kale [4] and the third one is due
to Sherman [24].

(1) Using𝑂 (1) expected maxflow computations, the oracle com-
putes either a 𝜋-regular flow with 𝜋 = 𝑂 (𝛼 log𝑛

𝑛) or a Θ(1)-
balanced cut of capacity at most 𝑂 (𝛼 log𝑛).

(2) Using 𝑂 (1) expected multicommodity flow computations,
the oracle computes either a 𝜋-regular flow with 𝜋 = 𝑂 (𝛼𝑛)
or a Θ(1)-balanced cut of capacity at most 𝑂 (𝛼

√︁
log𝑛).

(3) Let Y ∈ [𝑂 (1/log𝑛),Ω(1)]. Using 𝑂 (𝑛Y log𝑂 (1) 𝑛) expected
maxflow computations, the oracle either computes a 𝜋-
regular flow with 𝜋 = 𝑂 (𝛼Y𝑛), or a Θ(1)-balanced cut of

capacity at most 𝑂
(
𝛼

√︃
log𝑛
Y

)
.

By the discussion in Section 2.1, these oracles lead to algorithms

with approximation factors 𝑂 (log𝑛), 𝑂 (
√︁

log𝑛) and 𝑂
(√︃

log𝑛
Y

)
,

respectively.
To conclude this section, we discuss how to verify condition (6)

in practice. (Recall that we only have an access to approximations
𝑣𝑖 of vectors 𝑣𝑖 .)

Proposition 2.2. Suppose parameters 𝜏,𝛾 in eq. (4c)-(4d) satisfy
𝜏 ≤ 2 and 𝛾 ≤ 𝛼

20𝑛𝜋 . Then condition∑︁
𝑖< 𝑗

𝑑𝑖 𝑗 | |𝑣𝑖 − 𝑣 𝑗 | |2 ≥ 2𝛼 (7)

implies condition (6).

Proof. Denote 𝑧𝑖 𝑗 = | |𝑣𝑖 − 𝑣 𝑗 | |2 and 𝑧𝑖 𝑗 = | |𝑣𝑖 − 𝑣 𝑗 | |2. We have
| |𝑣𝑖 | |2 ≤ 2, | |𝑣 𝑗 | |2 ≤ 2 and hence 𝑧𝑖 𝑗 ≤ 8. By Theorem A.2 we then
have |𝑧𝑖 𝑗 − 𝑧𝑖 𝑗 | ≤ 𝛾 (𝑧𝑖 𝑗 + 𝜏) ≤ 10𝛾 . This implies that

∑
𝑖< 𝑗 𝑑𝑖 𝑗 |𝑧𝑖 𝑗 −

𝑧𝑖 𝑗 | ≤ 10𝛾 · ∑𝑖< 𝑗 𝑑𝑖 𝑗 ≤ 10𝛾 · 2𝑛𝜋 ≤ 𝛼 . The claim follows. □

3 OUR ALGORITHM
In this section we present our implementation of the oracle. To
simplify notation, we assume in this section that vectors 𝑣𝑖 for
𝑖 ∈ 𝑉 are unique, and rename the nodes in 𝑉 so that 𝑣𝑥 = 𝑥 for
each 𝑥 ∈ 𝑉 . Thus, we now have 𝑉 ⊆ R𝑑 . The “true” vector in R𝑛
corresponding to 𝑥 ∈ 𝑉 is still denoted as 𝑣𝑥 .

Recall that the oracles in [4, 24] do one of the following:
• output a cut;
• output multicommodity flows 𝑓𝑝 satisfying (6), and set 𝐹 to be
its flow graph.

Our oracle will use a third option described in the lemma below.

Lemma 3.1. Let 𝑀 be a set of paths on 𝑉 such that each 𝑝 ∈ 𝑀
violates the path inequality by some amount 1

2Δ > 0. In other words,
we require that 𝑇𝑝 • 𝑋 ≤ − 1

2Δ, or equivalently

ℓ (𝑝)∑︁
𝑗=1

| |𝑣𝑝 𝑗 − 𝑣𝑝 𝑗−1 | |2 ≤ ||𝑣𝑝ℓ (𝑝) − 𝑣𝑝0 | |2 − 1
2Δ (8)

Let G𝐹 and G𝐷 be respectively flow and demand graphs of the mul-
ticommodity flow defined by 𝑀 (where each path carries one unit
of flow). Set 𝑓𝑝 = 2𝛼

|𝑀 |Δ for all 𝑝 ∈ 𝑀 , 𝑓𝑝 = 0 for 𝑝 ∉ 𝑀 , and
𝐹 = 0. Then these variables give a valid output of the oracle with

width 𝜌 ≤ 𝛼
𝑛 + 4𝛼 (𝜋𝐹 +𝜋𝐷)

|𝑀 |Δ where 𝜋𝐹 , 𝜋𝐷 are the maximum degrees
of G𝐹 ,G𝐷 , respectively.

Proof. We have 𝐹 ⪯ 𝐶 and (∑𝑝 𝑇𝑝 − 𝐹) •𝑋 ≤ ∑
𝑝 𝑓𝑝 · (− 1

2Δ) =
−𝛼 , so condition (5) holds. It can be checked that

∑
𝑝 𝑓𝑝𝑇𝑝 =

2𝛼
|𝑀 |Δ (𝐹 − �̃�) where 𝐹 and �̃� are the Laplacians of respectively
G𝐹 and G𝐷 . Therefore, 𝜌 = | | 𝛼𝑛 𝐼 +

∑
𝑝 𝑓𝑝𝑇𝑝 − 𝐹 | | = | | 𝛼𝑛 𝐼 +

2𝛼
|𝑀 |Δ (𝐹 −

�̃�) | | ≤ | | 𝛼𝑛 𝐼 | | +
2𝛼

|𝑀 |Δ (| |𝐹 | | + | |�̃� | |) ≤ 𝛼
𝑛 + 2𝛼

|𝑀 |Δ (2𝜋𝐹 + 2𝜋𝐷). □

Note that we do not require paths in𝑀 to be paths in the original
graph 𝐺 . Thus, we need to use SDP relaxation (2) with all possible
paths 𝑝 (with a certain bound on the length), which is still a valid
relaxation of the problem.

The following proposition shows how to verify condition (8) for
unobserved variables 𝑣𝑥 ∈ R𝑛 using observed variables 𝑥 ∈ R𝑑 . Its
proof is very similar to that of Proposition 2.2, and is omitted.

Proposition 3.2. Suppose parameters 𝜏,𝛾 in Theorem A.2 satisfy
𝜏 ≤ 2 and 𝛾 ≤ Δ

20(𝐾+1) for some integer 𝐾 ≥ 1. Then condition

ℓ (𝑝)∑︁
𝑗=1

| |𝑝 𝑗 − 𝑝 𝑗−1 | |2 ≤ ||𝑝ℓ (𝑝) − 𝑝0 | |2 − Δ (9)

implies condition (8), assuming that ℓ (𝑝) ≤ 𝐾 .

Remark 1. Sherman [24] explicitly tries to (approximately) solve
the multicommodity flow problem: find valid flows {𝑓𝑝 } in 𝐺 with
demands {𝑑𝑥𝑦} that maximize

∑
𝑥,𝑦 𝑑𝑥𝑦 | |𝑥 − 𝑦 | |2. This is done by

an iterative scheme via the Multiplicative Weights (MW) framework.
Using the option in Lemma 3.1 has the following advantages over this
approach.

(1) We can avoid another application of MW and thus simplify
the algorithm.

(2) The oracle can be easily parallelized: we can compute different
“violating paths” on different processors and then take their
union. (Of course, we still need to make sure that these paths
are “sufficiently disjoint” so that the degrees of graphs G𝐹 ,G𝐷
and hence the oracle width remain small).
In contrast, parallelizing an MW algorithm cay be a difficult
task. (There exists some work on parallelizing algorithms in-
volving MW, e.g. [2, 8]; however, they consider very specific
problems.)

3.1 Correlated Gaussians and measure
concentration

We write 𝑢 ∼ N to indicate that 𝑢 is a random vector in R𝑑 with
Gaussian independent components 𝑢𝑖 ∼ N(0, 1). Throughout the
paper notation Pr𝑢 [·] means the probability under distribution
𝑢 ∼ N . We write (𝑢,𝑢′) ∼ N𝜔 for 𝜔 ∈ [0, 1) to indicate that (𝑢,𝑢′)
are random vectors inR𝑑×R𝑑 such that for each 𝑖 ∈ [𝑑], pair (𝑢𝑖 , 𝑢′𝑖)
is an independent 2-dimensional Gaussian with mean (0, 0)𝑇 and

covariance matrix
(
1 𝜔

𝜔 1

)
. We write 𝑢′ ∼𝜔 𝑢 to indicate that 𝑢′

is an 𝜔-correlated copy of 𝑢 [24], i.e. (𝑢,𝑢′) is generated according
to (𝑢,𝑢′) ∼ N𝜔 conditioned on fixed 𝑢. It can be checked that for
each 𝑖 ∈ [𝑑], 𝑢′

𝑖
is an independent Gaussian with mean 𝜔 · 𝑢𝑖 and

variance 1 − 𝜔2. Note, if (𝑢,𝑢′) ∼ N𝜔 then 𝑢 ∼ N and 𝑢′ ∼ N .

406

A Simpler and Parallelizable𝑂 (
√︁

log𝑛)-approximation
Algorithm for Sparsest Cut SPAA ’24, June 17–21, 2024, Nantes, France

Conversely, the process 𝑢 ∼ N , 𝑢 ∼𝜔 𝑢 generates pair (𝑢,𝑢′) with
distribution N𝜔 . The same is true for the process 𝑢′ ∼ N , 𝑢 ∼𝜔 𝑢′.

The key property for obtaining an 𝑂 (
√︁

log𝑛)-approximation
algorithm is measure concentration of the Gaussian distribution.
This property can be expressed in a number of different ways; we
will use the following version.2

Theorem 3.3 ([18]). Consider sets A ⊆ R𝑑 , B ⊆ R𝑑 with
Pr𝑢 [𝑢 ∈ A] = Pr𝑢′ [𝑢′ ∈ B] = 𝛿 . Then

Pr(𝑢,𝑢′)∼N𝜔 [(𝑢,𝑢
′) ∈ A × B] ≥ 𝛿2/(1−𝜔)

Given a sequence of numbers 𝜔1, . . . , 𝜔𝑘−1 ∈ [0, 1), we write
(𝑢1, . . . , 𝑢𝑘) ∼ N𝜔1,...,𝜔𝑘−1 to indicate the following distribution:
sample 𝑢1 ∼ N , then 𝑢2 ∼𝜔1 𝑢1, then 𝑢3 ∼𝜔2 𝑢2, . . ., then
𝑢𝑘 ∼𝜔𝑘−1 𝑢𝑘−1. If 𝜔1 = . . . =𝜔𝑘−1 =𝜔 then we write N𝑘

𝜔 instead
of N𝜔1,...,𝜔𝑘−1 for brevity. Finally, if some values of the sequence
(𝑢1, . . . , 𝑢𝑘) are fixed, e.g. (𝑢1, 𝑢𝑘), then we write (𝑢1, . . . , 𝑢𝑘) ∼
N𝜔1,...,𝜔𝑘−1 | (𝑢1, 𝑢𝑘) to indicate that (𝑢1, . . . , 𝑢𝑘) is obtained by sam-
pling from N𝜔1,...,𝜔𝑘−1 conditioned on fixed values (𝑢1, 𝑢𝑘). In that
case (𝑢2, . . . , 𝑢𝑘−1) are random variables that depend on (𝑢1, 𝑢𝑘).

3.2 Procedure Matching(𝑢)
In this section we describe a procedure that takes vector 𝑢 ∈ R𝑑
and either outputs a directed matching𝑀 on nodes𝑉 or terminates
the oracle. In this procedure we choose constants 𝑐′,Δ, 𝜎 (to be
specified later), and denote

𝜋 =
6𝛼
𝑐′𝑛Δ

(10)

Algorithm 1: Matching(𝑢).
1 compute𝑤𝑥 = ⟨𝑥,𝑢⟩ for each 𝑥 ∈ 𝑉
2 sort {𝑤𝑥 }𝑥∈𝑉 , let 𝐴, 𝐵 be subsets of 𝑉 with |𝐴| = |𝐵 | = 2𝑐′𝑛

containing nodes with the least and the greatest values of
𝑤𝑥 , respectively

3 let 𝐺 ′ be the graph obtained from 𝐺 by adding new vertices
𝑠, 𝑡 and edges {{𝑠, 𝑥} : 𝑥 ∈ 𝐴} ∪ {{𝑦, 𝑡} : 𝑦 ∈ 𝐵} of
capacity 𝜋

4 compute maximum 𝑠-𝑡 flow and the corresponding
minimum 𝑠-𝑡 cut in 𝐺 ′

5 if capacity of the cut is less than 𝑐′𝑛𝜋 = 6𝛼
Δ then return this

cut and terminate the oracle
6 use flow decomposition to compute multicommodity flows

𝑓𝑝 and demands 𝑑𝑥𝑦 (see text)
7 if flows 𝑓𝑝 satisfy condition (7) then return these flows and

terminate the oracle
8 let𝑀all = {(𝑥,𝑦) ∈ 𝐴 × 𝐵 : 𝑑𝑥𝑦 > 0,𝑤𝑦 −𝑤𝑥 ≥ 𝜎} and

𝑀short = {(𝑥,𝑦) ∈ 𝑀all : | |𝑥 − 𝑦 | |2 ≤ Δ}
9 pick maximal matching𝑀 ⊆ 𝑀short and return𝑀

Let us elaborate line 6. Given flow 𝑓 ′ in 𝐺 ′, we compute its flow
decomposition and remove flow cycles. Each path in this decompo-
sition has the form 𝑝′ = (𝑠, 𝑝, 𝑡) where 𝑝 = (𝑥, . . . , 𝑦) with 𝑥 ∈ 𝐴,
2Theorem 3.3 is formulated in [18] for the discrete cube, but the proof also works for
the Gaussian distribution. For completeness, we reproduce the proof in the full version
of this paper [13].

𝑦 ∈ 𝐵. For each such 𝑝 we set 𝑓𝑝 = 𝑓 ′
𝑝′ , and accordingly increase

demand 𝑑𝑥𝑦 by 𝑓 ′
𝑝′ . Note that we need to know only the endpoints

of 𝑝 , and not 𝑝 itself. This computation can be done in 𝑂 (𝑚 log𝑛)
time using dynamic trees [25]. (The same subroutine was used
in [24]).

For the purpose of analysis we make the following assump-
tion: if Algorithm 1 terminates at line 5 or 7 then it returns ∅ (the
empty matching). Thus, we always have Matching(𝑢) ⊆ 𝑉 ×𝑉 and
|Matching(𝑢) | ≤ |𝑉 |. The following result is proved in Appendix B.

Lemma 3.4. (a) If the algorithm terminates at line 5 then the re-
turned cut is 𝑐′-balanced.
(b) There exist positive constants 𝑐′, 𝜎, 𝛿 for which either (i)
E𝑢 |Matching(𝑢) | ≥ 𝛿𝑛, or (ii) Algorithm 1 for 𝑢 ∼ N terminates at
line 5 or 7 with probability at least Θ(1).

In the remainder of the analysis we assume that case (i) holds
in Lemma 3.4(b). (In the case of case (ii) procedures that we will
describe will terminate the oracle at line 5 or 7 with probability
Θ(1)).

We assume that procedure Matching(·) satisfies the following
skew-symmetry condition: for any 𝑢, matching Matching(−𝑢) is
obtained from Matching(𝑢) by reversing all edge orientations. (This
can be easily enforced algorithmically).

3.3 Matching covers
We say that a generalized matching is a set𝑀 of paths of the form
𝑝 = (𝑝0, . . . , 𝑝𝑘) with 𝑝0, . . . , 𝑝𝑘 ∈ 𝑉 such that each node 𝑥 ∈ 𝑉 has
at most one incoming and at most one outgoing path. We say that
path 𝑞 is violating if 𝑞 = (. . . , 𝑝, . . .) and path 𝑝 = (𝑝0, . . . , 𝑝ℓ (𝑝))
satisfies (9). We denote𝑀violating and𝑀nonviolating to be the set
of violating and nonviolating paths in generalized matching 𝑀 ,
respectively. Below we will only be interested in the endpoints of
paths 𝑝 ∈ 𝑀 and violating/nonviolating status of 𝑝 . Thus, paths
in 𝑀 will essentially be treated as edges with a Boolean flag. For
generalized matchings𝑀1, 𝑀2 we define

𝑀1 ◦𝑀2 = {(𝑝, 𝑥, 𝑞) : (𝑝, 𝑥) ∈ 𝑀1, (𝑥, 𝑞) ∈ 𝑀2}
where 𝑝, 𝑞 are paths and 𝑥 is a node. Clearly, 𝑀1 ◦ 𝑀2 is also a
generalized matching. For generalized matching 𝑀 , vector 𝑢 ∈ R𝑑
and value 𝜎 ∈ R we define
Truncate𝜎 (𝑀 ;𝑢) = 𝑀violating∪

{(𝑥, . . . , 𝑦) ∈ 𝑀nonviolating : ⟨𝑦 − 𝑥,𝑢⟩ ≥ 𝜎}
We will consider algorithms for constructing generalized match-

ings that have the following form: given vector 𝑢 ∈ R𝑑 , sample
vectors (𝑢1, . . . , 𝑢𝑘) according to some distribution that depends
on 𝑢, and return Matching(𝑢1) ◦ . . . ◦ Matching(𝑢𝑘). Any such
algorithm specifies a matching cover as defined below.

Definition 3.5. A generalized matching cover (or just matching
cover) is function M that maps vector 𝑢 ∈ R𝑑 to a distribu-
tion over generalized matchings. It is called skew-symmetric if
sampling 𝑀 ∼ M(−𝑢) and then reversing all paths in 𝑀 pro-
duces the same distribution as sampling 𝑀 ∼ M(𝑢). We define
size(M) = 1

𝑛E𝑀∼M(N) [|𝑀 |] where M(N) denotes the distri-
bution 𝑢 ∼ N , 𝑀 ∼ M(𝑢). We say that M is 𝜎-stretched (resp.
𝐿-long) if ⟨𝑦 − 𝑥,𝑢⟩ ≥ 𝜎 (resp. | |𝑦 − 𝑥 | |2 ≤ 𝐿) for any 𝑢 ∈ R𝑑 and

407

SPAA ’24, June 17–21, 2024, Nantes, France Vladimir Kolmogorov

any nonviolating (𝑥, . . . , 𝑦) ∈ supp(M(𝑢)).M is 𝑘-hop if any path
𝑝 ∈ 𝑀 ∈ supp(M(N)) has the form 𝑝 = (𝑝0, 𝑝1, . . . , 𝑝𝑘) where
| |𝑝𝑖 − 𝑝𝑖−1 | |2 ≤ Δ for all 𝑖 ∈ [𝑘]. We writeM ⊆ M′ for (coupled)
matching covers M,M′ if 𝑀 ⊆ 𝑀′ for any 𝑢 and 𝑀 ∼ M(𝑢),
𝑀′ ∼ M(𝑢′).

If M is a matching cover then we define matching cover
M[𝜎] as follows: given vector 𝑢, sample 𝑀 ∼ M(𝑢) and let
Truncate𝜎 (𝑀 ;𝑢) be the output of M[𝜎] (𝑢). Clearly, M[𝜎] is 𝜎-
stretched.

The following lemma shows how matching covers can be used.
We say that direction𝑢 ∈ R𝑑 is regular if ⟨𝑦−𝑥,𝑢⟩ <

√
6 ln𝑛 · | |𝑦−𝑥 | |

for all distinct 𝑥,𝑦 ∈ 𝑉 .

Lemma 3.6. Let M be a 𝑘-hop matching cover.
(a) M is ((𝑘 + 1)Δ)-long.
(b) IfM is

√︁
6(𝑘 + 1)Δ ln𝑛-stretched then𝑀nonviolating=∅ for any

regular 𝑢 and𝑀 ∈supp(M(𝑢)).
(c) There holds Pr𝑢 [𝑢 is regular] ≥ 1 − 1

𝑛 .

Proof. (a) By definitions, any nonviolating path 𝑝 =

(𝑝0, 𝑝1, . . . , 𝑝𝑘) ∈ 𝑀 ∈ supp(M(N)) satisfies | |𝑝𝑘 − 𝑝0 | |2 ≤
Δ + ∑𝑘

𝑖=1 | |𝑝𝑖 − 𝑝𝑖−1 | |2 ≤ Δ + ∑𝑘
𝑖=1 Δ = (𝑘 + 1)Δ.

(b) Suppose there exists nonviolating path (𝑥, . . . , 𝑦) ∈ 𝑀 ∈
supp(M(𝑢)). Elements 𝑥,𝑦 must be distinct. Part (a) gives | |𝑦 −
𝑥 | | ≤

√︁
(𝑘 + 1)Δ. Regularity of 𝑢 thus implies that ⟨𝑦 − 𝑥,𝑢⟩ <√

6 ln𝑛 ·
√︁
(𝑘 + 1)Δ - a contradiction.

(c) Consider distinct 𝑥,𝑦 ∈ 𝑉 . The quantity ⟨𝑦 − 𝑥,𝑢⟩ is normal
with zero mean and variance | |𝑦−𝑥 | |2 under𝑢 ∼ N . Thus, Pr𝑢 [⟨𝑦−
𝑥,𝑢⟩ ≥ 𝑐 | |𝑦−𝑥 | |] = Pr[N (0, | |𝑦−𝑥 | |) ≥ 𝑐 | |𝑦−𝑥 | |] = Pr[N (0, 1) ≥
𝑐] ≤ 𝑒−𝑐2/2 = 1

𝑛3 for 𝑐 =
√

6 ln𝑛. There are at most 𝑛2 distinct pairs
𝑥,𝑦 ∈ 𝑉 , so the union bound gives the claim. □

3.4 Chaining algorithms
By construction, Matching is a (deterministic) 1-hop 𝜎-stretched
skew-symmetric matching cover. Next, we discuss how to “chain
together” matchings returned by Matching(·) to obtain a matching
cover with a large stretch, as required by Lemma 3.6(b).
Sherman’s algorithm First, we review Sherman’s algorithm [24].
In addition to vector 𝑢, it takes a sequence 𝑏 = (𝑏1, . . . , 𝑏𝐾) ∈
{0, 1}𝐾 as an input.

Algorithm 2: SamplePaths𝑏 (𝑢1).
1 let 𝑘 be the number of 1’s in 𝑏 and 𝑘′ be the number of 0’s in

𝑏, so that 𝑘 + 𝑘′ = 𝐾
2 sample (𝑢1, . . . , 𝑢𝑘) ∼ N𝑘

𝜔 |𝑢1 and (𝑢′1, . . . , 𝑢
′
𝑘 ′
) ∼ N𝑘 ′

0
independently where 𝜔 = 1 − 1/𝑘

3 let (𝑢1, . . . , 𝑢𝐾) be the sequence obtained by merging
sequences (𝑢1, . . . , 𝑢𝑘) and (𝑢′1, . . . , 𝑢

′
𝑘 ′
) at positions

specified by 𝑏 in a natural way
4 return Matching(𝑢1) ◦ . . . ◦ Matching(𝑢𝐾)

Theorem 3.7. For any 𝛿 > 0 and 𝜎 > 0 there exist posi-
tive constants 𝑐1, 𝑐2, 𝑐3 with the following property. Suppose that
Matching is a 1-hop 𝜎-stretched skew-symmetric matching cover

with size(Matching) ≥ 𝛿 , and 𝐾Δ ≤ 𝑐1. Then there exists vector
𝑏 ∈ {0, 1}𝐾 for which size

(
SamplePaths𝑏[𝑐2𝐾]

)
≥ 𝑒−𝑐3𝐾2

.

In practice vector 𝑏 is not known, however it can be sampled
uniformly at random which decreases the expectation by a factor
of 2−𝐾 , which does not change the bound 𝑒−Θ(𝐾2) in Theorem 3.7.
Note that [24] does not use the notion of “violating paths”, and
accordingly Theorem 3.7 is formulated slightly differently in [24].
However, the proof in [24] can be easily adapted to yield Theo-
rem 3.7. 3

Robustness to deletions and parallelization Note that Theo-
rem 3.7 can also be applied to any matching cover Matching′ ⊆
Matching satisfying size(Matching′) ≥ 𝛿 ′ for some positive con-
stant 𝛿 ′ < 𝛿 . Thus, we can adversarially “knock out” some edges
from Matching and still get useful bounds on the size of the output.
This is a key proof technique in this paper; to our knowledge, it
has not been exploited before. Our first use of this technique is for
parallelization. We need to show that running Algorithm 2 multiple
times independently produces many disjoint paths. Roughly speak-
ing, our argument is as follows. Consider the 𝑖-th run, and assume
that |𝑀prev | is small where𝑀prev is the union of paths computed
in the first 𝑖 − 1 runs. Let us apply Theorem 3.7 to the matching
cover obtained from Matching by knocking out edges incident to
nodes in𝑀prev. It yields that the 𝑖-th run produces many paths that
are node-disjoint from 𝑀prev, as desired. We refer to Section 3.5
for further details.
New chaining algorithm Next, we discuss how a similar proof
technique (combined with additional ideas) can be used to simplify
Sherman’s chaining algorithm. We will show that Theorem 3.7
still holds if we consider vectors 𝑏 of the form 𝑏 = (1, . . . , 1). The
algorithm thus becomes as follows.

Algorithm 3: SamplePaths𝐾 (𝑢1).
1 sample (𝑢1, . . . , 𝑢𝐾) ∼ N𝐾

𝜔 |𝑢1 where 𝜔 = 1 − 1/𝐾
// equivalently, sample 𝑢2 ∼𝜔 𝑢1, 𝑢3 ∼𝜔 𝑢2, . . . , 𝑢𝐾 ∼𝜔 𝑢𝐾−1

2 return Matching(𝑢1) ◦ . . . ◦ Matching(𝑢𝐾)

Theorem 3.8. For any 𝛿 > 0 and 𝜎 > 0 there exist posi-
tive constants 𝑐1, 𝑐2, 𝑐3 with the following property. Suppose that

3We believe that [24] has a numerical mistake. Namely, consider value 𝛿 ∈ (0, 1)
and weighted graph (𝑉 , 𝐸, 𝑤) with 𝑛 = |𝑉 | nodes and non-negative weights 𝑤
such that 𝑤 (𝑥,𝐴) = 𝑤 (𝐴,𝑥) ≤ 1 for all 𝑥 ∈ 𝑉 and 𝐴 ⊆ 𝑉 (where 𝑤 (𝑋,𝑌) =∑

(𝑥,𝑦) ∈𝑋×𝑌 𝑤 (𝑥, 𝑦)). [24, proof of Lemma 4.8] essentially makes the following claim:
• For any subset 𝐵 ⊆ 𝑉 with 𝑤 (𝑉 , 𝐵) ≥ 𝛿 |𝐵 | there exists𝐴 ⊆ 𝑉 such that either

(i) |𝐴 | ≥ 𝛿 |𝐵 | and 𝑤 (𝑥, 𝐵) ≥ 𝛿3 for any 𝑥 ∈ 𝐴, or (ii) |𝐴 | ≥ 1
𝛿
|𝐵 | and

𝑤 (𝑥, 𝐵) ≥ 𝛿2
𝑛
|𝐵 | for any 𝑥 ∈ 𝐴.

A counterexample can be constructed as follows. Assume that𝛿 |𝐵 | and 1
𝛿4 are integers.

For 𝛿 |𝐵 | − 1 nodes 𝑥 set 𝑤 (𝑥, 𝐵) = 1, for 1
𝛿4 nodes 𝑥 set 𝑤 (𝑥, 𝐵) = 𝛿4 , and for

remaining nodes set𝑤 (𝑥, 𝐵) = 0. Then the claim above is false if𝛿 |𝐵 |−1+ 1
𝛿4 < 1

𝛿
|𝐵 | .

The statement can be corrected as follows:
• For any _ ≤ 𝛿 and any subset 𝐵 ⊆ 𝑉 with 𝑤 (𝑉 , 𝐵) ≥ 𝛿 |𝐵 | there exists𝐴 ⊆ 𝑉

such that either (i) |𝐴 | ≥ 𝛿
3 |𝐵 | and 𝑤 (𝑥, 𝐵) ≥ _ for any 𝑥 ∈ 𝐴, or (ii) |𝐴 | ≥

𝛿
3_ |𝐵 | and 𝑤 (𝑥, 𝐵) ≥ 𝛿

3𝑛 |𝐵 | for any 𝑥 ∈ 𝐴. (If both conditions are false then
𝑤 (𝑉 , 𝐵) < 𝛿

3 |𝐵 | · 1 + 𝛿
3_ |𝐵 | · _ + 𝑛 · 𝛿3𝑛 |𝐵 | = 𝛿 |𝐵 | , which is impossible since

𝑤 (𝑉 , 𝑦) ≥ 𝛿 for each 𝑦 ∈ 𝐵).
Then the proof in [24] still works, but with different constants.

408

A Simpler and Parallelizable𝑂 (
√︁

log𝑛)-approximation
Algorithm for Sparsest Cut SPAA ’24, June 17–21, 2024, Nantes, France

Matching is a 1-hop 𝜎-stretched skew-symmetric matching cover
with size(Matching) ≥ 𝛿 , 𝐾Δ ≤ 𝑐1, and 𝐾 = 2𝑟 for some integer 𝑟 .

Then size
(
SamplePaths𝐾[𝑐2𝐾]

)
≥ 𝑒−𝑐3𝐾2

.

We prove this theorem in Section 4. Our proof technique is very
different from [24], and relies on two key ideas:

(1) We use induction on 𝑘 = 20, 21, 22, . . . , 𝐾 to show that
SamplePaths𝑘[𝜎𝑘] has a sufficiently large size assuming that
size(Matching) ≥ 𝛿𝑘 , for some sequences 𝛿1 < 𝛿2 < 𝛿4 <

. . . < 𝛿𝐾 = 𝛿 and 𝜎1 < 𝜎2 < 𝜎4 < . . . < 𝜎𝐾 = Θ(𝐾). To
prove the claim for 2𝑘 , we show that for each node𝑥 , function
`𝑥 (𝑢) is “sufficiently spread” where `𝑥 (𝑢) is the expected
out-degree of 𝑥 in𝑀 ∼ SamplePaths𝑘[𝜎𝑘] (𝑢). In order to do
this, we “knock out” edges (𝑥,𝑦) from Matching(𝑢) for a
Θ(𝛿2𝑘 − 𝛿𝑘) fraction of vectors 𝑢 with the largest value of
`𝑥 (𝑢), and then use the induction hypothesis for the smaller
matching cover of size 𝛿𝑘 . We conclude that `𝑥 (𝑢) is suffi-
ciently large for Θ(𝛿2𝑘 − 𝛿𝑘) fraction of 𝑢’s. We then use
Theorem 3.3 and skew-symmetry to argue that chaining
SamplePaths𝑘[𝜎𝑘] with itself gives a matching cover of large
size.

(2) We work with “extended matching covers” instead of match-
ing covers. These are functions M that take a pair of vec-
tors (𝑢1, 𝑢𝑘) ∈ R𝑑 × R𝑑 as input, sample (𝑢1, . . . , 𝑢𝑘) ∼
N𝑘
𝜔 conditioned on fixed 𝑢1, 𝑢𝑘 , and return (a subset of)

Matching(𝑢1) ◦ . . . ◦ Matching(𝑢𝑘). This guarantees that if
(𝑥,𝑦) is removed from Matching(𝑢1) then 𝑥 has no outgoing
edge in M(𝑢1, 𝑢𝑘) (which is needed by argument above).

Our proof appears to be more compact than Sherman’s proof,
and also does not rely on case analysis. Accordingly, we believe that
our technique should give smaller constants in the 𝑂 (·) notation
(although neither proof explicitly optimizes these constants).

Next, we discuss implications of Theorem 3.8. Below we denote
V𝑧W = 2⌈log2 𝑧 ⌉ to be the smallest 𝐾 = 2𝑟 , 𝑟 ∈ Z≥0 satisfying 𝐾 ≥ 𝑧.

Corollary 3.9. Suppose that Matching is a 1-hop 𝜎-stretched
skew-symmetric matching cover with size(Matching) ≥ 𝛿 . Define
𝐴 = 12

𝑐2
2
, 𝐵 = 1

2𝐴√𝑐3
and Ymax =

𝑐1
2𝐴𝐵2 . Suppose that Δ = 𝐵

√︃
Y

ln𝑛
where Y ∈ (0, Ymax] and 𝐴Δ ln𝑛 ≥ 1. If 𝐾 = V𝐴Δ ln𝑛W then

E𝑀∼SamplePaths𝐾 (N) [|𝑀
violating |] ≥ 𝑛1−Y − 1

Proof. Note that 𝐾 ∈ [𝐴Δ ln𝑛, 2𝐴Δ ln𝑛], and 𝐾Δ ≤
2𝐴Δ2 ln𝑛 = 2𝐴𝐵2Y ≤ 2𝐴𝐵2Ymax = 𝑐1. Denote M =

SamplePaths𝐾[𝑐2𝐾] . Theorem 3.8 gives size(M) ≥ 𝑒−𝑐3𝐾2 ≥

𝑒−𝑐3 (2𝐴Δ ln𝑛)2
= 𝑛−Y . We also have 6(𝐾+1)Δ ln𝑛

(𝑐2𝐾)2 ≤ 12Δ ln𝑛
𝑐2

2𝐾
≤

12Δ ln𝑛
𝑐2

2𝐴Δ ln𝑛 = 1 and so the precondition of Lemma 3.6(b) holds for M.
Let 𝑥 = E𝑢∼N|𝑢 is regular,𝑀∼M(𝑢) [|𝑀 |] =

E𝑢∼N|𝑢 is regular,𝑀∼M(𝑢) [|𝑀violating |] (by Lemma 3.6(b)),
𝑦 = E𝑢∼N|𝑢 is not regular,𝑀∼M(𝑢) [|𝑀 |] ≤ 𝑛 and 𝑝 =

Pr𝑢 [𝑢 is not regular] ≤ 1
𝑛 (by Lemma 3.6(c)). We

have 𝑛1−Y ≤ E𝑀∼M(N) [|𝑀 |] = (1 − 𝑝)𝑥 + 𝑝𝑦 ≤
(1 − 𝑝)𝑥 + 1

𝑛 · 𝑛 and so (1 − 𝑝)𝑥 ≥ 𝑛1−Y − 1. Therefore,
E𝑀∼SamplePaths𝐾 (N) [|𝑀

violating |] ≥ (1 − 𝑝)𝑥 ≥ 𝑛1−Y − 1. □

3.5 Final algorithm
In the algorithm below we use the following notation: 𝑉 (𝑝) ⊆ 𝑉
is the set of nodes through which path 𝑝 passes, and 𝑉 (𝑀) =⋃
𝑝∈𝑀 𝑉 (𝑝). Furthermore, if 𝑝 is violating then 𝑝violating is a sub-

path of 𝑝 satisfying (8). Note that lines 1-3 compute sets of paths
�̃�1, . . . , �̃�𝑁 , which are then combined into a single set𝑀 ⊆ ⋃

𝑖 �̃�𝑖
using one of the two options. Option 1 will be mainly used for
the analysis, while option 2 will be used for an efficient parallel
implementation.

Algorithm 4: Computing violating paths.
1 for 𝑖 = 1, . . . , 𝑁 do
2 sample 𝑢 ∼ N , call𝑀𝑖 = SamplePaths𝐾 (𝑢)
3 let �̃�𝑖 = {𝑝violating : 𝑝 ∈ 𝑀violating

𝑖
}

4 option 1: set𝑀 :=∅, then for 𝑖 =1, . . . , 𝑁 update

𝑀 :=𝑀 ∪ {𝑝 ∈ �̃�𝑖 : 𝑉 (𝑝) ∩𝑉 (𝑀) = ∅}

5 option 2: let𝑀 be a maximal set of paths in𝑀∗ def
=

⋃𝑁
𝑖=1 �̃�𝑖

s.t. 𝑉 (𝑝)∩𝑉 (𝑞) = ∅ for 𝑝, 𝑞 ∈𝑀 , 𝑝≠𝑞
6 return𝑀

Theorem 3.10. Suppose that Matching is a 1-hop 𝜎-stretched
skew-symmetric matching cover with size(Matching) ≥ 𝛿 , and let
𝐴, 𝐵, Ymax be the constants defined on Corollary 3.9 for value 𝛿/2.
Suppose that Δ = 𝐵

√︃
Y

ln𝑛 where Y ∈ (0, Ymax] and 𝐴Δ ln𝑛 ≥ 1. If

𝐾 = V𝐴Δ ln𝑛W and 𝑁 ≥ 𝛿𝑛Y

4𝐾 (1−𝑛Y−1) then E[|𝑀 |] ≥ 𝛿𝑛
8𝐾 where𝑀 is

the output of Algorithm 4 with option 1.

Proof. Let E𝑖 be the event that set 𝑀 at the beginning of iter-
ation 𝑖 satisfies |𝑀 | ≤ 𝑎 := 𝛿𝑛

4𝐾 , and let 𝛾𝑖 = Pr[E𝑖]. Let 𝑥𝑖 be the
expected number of paths that have been added to𝑀 at iteration
𝑖 , so that E[|𝑀 |] = 𝑥1 + . . . + 𝑥𝑁 for the final set 𝑀 . Let 𝑦𝑖 be the
expected number of paths that have been added to𝑀 at iteration 𝑖
conditioned on event E𝑖 . Clearly, we have 𝑥𝑖 ≥ 𝛾𝑖𝑦𝑖 ≥ 𝛾𝑦𝑖 where
𝛾 := 𝛾𝑁 .

Next, we bound 𝑦𝑖 . Let 𝑀 be the set at the beginning of it-
eration 𝑖 , and suppose that E𝑖 holds, i.e. |𝑀 | ≤ 𝛿𝑛

4𝐾 . Denote
𝑈 = 𝑉 (𝑀), then |𝑈 | ≤ 𝐾 |𝑀 | ≤ 𝛿𝑛

4 . Let Matching′ ⊆ Matching
be the (skew-symmetric) matching cover obtained by remov-
ing from Matching(𝑢) edges (𝑥,𝑦) and (𝑦, 𝑥) with 𝑥 ∈ 𝑈 (for
all 𝑢 ∈ R𝑑). Clearly, we have size(Matching′) ≥ 𝛿 − 1

2𝛿 =
1
2𝛿 . Let SamplePaths

′𝐾 be the matching cover given by Algo-
rithm 3 where Matching is replaced by Matching′. Clearly, we
have SamplePaths′𝐾 ⊆ SamplePaths𝐾 . By Corollary 3.9 applied
to Matching′, SamplePaths′𝐾 (N) produces at least 𝑛1−Y −1 violat-
ing paths in expectation. By construction, all these paths 𝑝 satisfy
𝑉 (𝑀) ∩𝑉 (𝑝) = ∅, and therefore 𝑦𝑖 ≥ 𝑛1−Y − 1.

We showed that E[|𝑀 |] ≥ ∑𝑁
𝑖=1 𝛾 (𝑛1−Y −1) = 𝛾𝑏 for the final set

𝑀 where 𝑏 := 𝑁 (𝑛1−Y − 1). We also have E[|𝑀 |] ≥ (1 − 𝛾)𝑎, and
hence E[|𝑀 |] ≥ min𝛾 ∈[0,1] max{𝛾𝑏, (1−𝛾)𝑎} = 𝑎𝑏

𝑎+𝑏 (the minimum
is attained at 𝛾 = 𝑎/(𝑎 + 𝑏)). By assumption, we have 𝑏 ≥ 𝑎, and so
E[|𝑀 |] ≥ 1

2𝑎. □

409

SPAA ’24, June 17–21, 2024, Nantes, France Vladimir Kolmogorov

Next, we analyze Algorithm 4 with option 2. Recall that “parallel
runtime” is the maximum runtime over all processors.

Lemma 3.11. (a) Let𝑀 and𝑀′ be the outputs of Algorithm 4 with
options 1 and 2, respectively (for a given run of the loop in lines 1-3).
Then |𝑀′ | ≥ |𝑀 |/𝐾3.
(b) Algorithm 4 with option 2 can be implemented on 𝑁 processors
with parallel runtime 𝑂 (𝐾𝑇maxflow + 𝑛(𝐾𝑑 +𝐾 log2 𝑛 + log𝑁))) (in
any version of PRAM).

Proof. (a) By the construction of 𝑀 , each node 𝑣 ∈ 𝑉 (𝑀∗)
is contained in at most 𝐾 paths 𝑝 ∈ 𝑀 (all of them belong to
some �̃�𝑖 for fixed 𝑖). Therefore, |𝑉 (𝑀∗) | ≥ |𝑀 |/𝐾 . We also have
|𝑉 (𝑀′) | ≥ |𝑉 (𝑀∗) |/𝐾 and |𝑀′ | ≥ |𝑉 (𝑀′) |/𝐾 , since |𝑉 (𝑝) | ≤ 𝐾

for any 𝑝 ∈ 𝑀∗. Putting these inequalities together gives the claim.
(b) Clearly, sets �̃�𝑖 for 𝑖 ∈ [𝑁] can be computed in parallel
on 𝑁 processors in time 𝑂 (𝐾 (𝑇maxflow + 𝑛𝑑 + 𝑛 log2 𝑛))) per pro-
cessor (since computing dot products ⟨𝑥,𝑢⟩ in Algorithm 1 takes
time 𝑂 (𝐾𝑛𝑑), and flow decompositions take time 𝑂 (𝐾𝑚 log𝑛) =
𝑂 (𝐾𝑛 log2 𝑛)). We can assume that after computing �̃�𝑖 , processor
𝑖 computes a maximal set of paths �̃�′

𝑖
⊆ �̃�𝑖 that are pairwise node-

disjoint, and updates �̃�𝑖 := �̃�′
𝑖
. Clearly, this step does not affect

the output of line 5.
It remains to discuss how to implement line 5 (computing a

maximal set of paths 𝑀 in 𝑀∗ which are pairwise node-disjoint).
For𝑁 = 2 this can be easily done in𝑂 (𝑛) time: processor 1 sends �̃�1
to processor 2, and processor 2 computes the answer. The general
case can be reduced to the case above using a divide-and-conquere
strategy with a computation tree which is a binary tree whose
leaves are the 𝑁 processors. The depth of this tree is𝑂 (log𝑁), and
hence the parallel runtime of this procedure is 𝑂 (𝑛 log𝑁). □

Note in Algorithm 4 step 3 can be run in parallel on𝑁 processors;
after all of them finish, we can run the rest of algorithm on a single
machine. By putting everything together, we obtain

Theorem 3.12. There exists an algorithm for Balanced Sepa-
rator that given Y ∈ [Θ(1/log𝑛),Θ(1)], produces 𝑂 (

√︁
(log𝑛)/Y)-

pseudoapproximation w.h.p.. Its expected parallel runtime is
𝑂 ((log𝑂 (1) 𝑛)𝑇maxflow) on 𝑂 (𝑛Y) processors (in any version of
PRAM).

Proof. Let 𝛿, 𝜎 be as in Lemma 3.4. Set parameters as in Theo-
rem 3.10, and require additionally that Y ≤ 1

2 . Condition𝐴Δ ln𝑛 ≥ 1
means that this can be done for Y ∈ [Θ(1/log𝑛),Θ(1)]. By The-
orem 3.10 and Lemma 3.11, the output of Algorithm 4 satisfies
E[|𝑀 |] ≥ 𝛿𝑛

8𝐾1+ℎ where ℎ = 0 if option 1 is used, and ℎ = 3 if option
2 is used.

To implement the oracle, run Algorithm 4 until either procedure
Matching(·) (Alg. 1) terminates at lines 5 or 7, or until we find a
set 𝑀 of violating paths with |𝑀 | ≥ 𝛿𝑛

16𝐾1+ℎ . In the latter case use
Lemma 3.1 to set the variables. Since we always have |𝑀 | ≤ 𝑛, the
expected number of runs will be 𝑂 (𝑛/ 𝑛

𝐾1+ℎ) = 𝑂 (𝐾1+ℎ).
If the oracle terminates at line 5 of Alg. 1, then it returns a

𝑐′-balanced cut of cost at most 6𝛼
Δ = 𝑂

(
𝛼

√︃
log𝑛
Y

)
. Otherwise it

returns valid variables 𝑓𝑝 , 𝐹 . If the oracle terminates at line 7 then
its width is 𝜌 = 𝑂 (𝛼𝑛 + 𝜋) = 𝑂 (𝛼

𝑛Δ). Now suppose that the oracle

finds set𝑀 of violating paths with |𝑀 | ≥ 𝛿𝑛
16𝐾1+ℎ . Clearly, degrees

𝜋𝐹 , 𝜋𝐷 in Lemma 3.1 satisfy 𝜋𝐹 = 𝑂 (𝐾) and 𝜋𝐷 = 𝑂 (1), so the
oracle’s width in this case is 𝜌 = 𝑂 (𝛼𝑛 + 𝛼𝐾2+ℎ

𝑛Δ). In both cases we
have 𝜌 = 𝑂 (𝛼𝐾2+ℎ

𝑛Δ). Thus, the number of calls to Oracle for a fixed
value of 𝛼 is 𝑇 = 𝑂 (𝜌

2𝑛2 log𝑛
𝛼2) = 𝑂 (𝐾

4+2ℎ log𝑛
Δ2).

Next, we bound the complexity of computing approximations
𝑣1, . . . , 𝑣𝑛orig for fixed 𝛼 as described in Theorem A.2 in Section A.1.
(Here we assume familiarity with Appendix A). We have 𝜏 = Θ(1)
and 𝛾 = Θ{min{ 𝛼𝑛𝜋 ,

Δ
𝐾
}) = Θ(Δ

𝐾
), thus we need to use dimension

𝑑 = Θ(log𝑛
𝛾2) = Θ(𝐾

2 log𝑛
Δ2). We need to compute𝑇𝑘𝑑 matrix-vector

products of form 𝐴 · 𝑢 where 𝑘 = 𝑂 (max{(𝜌𝑛 log𝑛
𝛼)2, log𝑛}) =

𝑂 (𝐾
4 log2 𝑛
Δ2). Each matrix 𝐴 has the form

∑𝑂 (𝑇)
𝑟=1 𝑁 (𝑟) , and each

𝑁 (𝑟) can be represented as a sum of 𝑂 (𝐾) “easy” matrices (e.g.
corresponding to matchings) for which the multiplication with
a vector takes 𝑂 (𝑛) time. To summarize, the overall complex-
ity of computing approximations 𝑣1, . . . , 𝑣𝑛orig is 𝑇𝑘𝑑 · 𝑇𝐾𝑛 =

𝑂 (𝐾
15+4ℎ log5 𝑛

Δ8 𝑛), which is 𝑂 (𝑛 log𝑂 (1) 𝑛) since Δ = Θ

(√︃
Y

log𝑛

)
∈[

Θ(1
log𝑛),Θ(1√

log𝑛
)
]
and 𝐾 = Θ(Δ log𝑛) = 𝑂 (

√︁
log𝑛). These

computations can be done on a single processor; their runtime
is subsumed by the claimed 𝑂 ((log𝑂 (1) 𝑛)𝑇maxflow) bound.

We saw that 𝑑 = 𝑂 (log𝑂 (1) 𝑛). From Lemma 3.11 we can now
conclude that the algorithm’s expected parallel runtime is 𝑇 ·
𝑂 (𝐾𝑇maxflow+𝑛(𝐾𝑑 +𝐾 log2 𝑛+ log𝑁))) = 𝑂 ((log𝑂 (1) 𝑛)𝑇maxflow)
on 𝑁 = Θ(𝑛Y/𝐾) processors, assuming that option 2 is used. Note
that the output of the overall algorithm is correct w.h.p. since vec-
tors 𝑣1, . . . , 𝑣𝑛orig approximate original vectors only w.h.p. (see The-
orem A.2). □

4 PROOF OF THEOREM 3.8
We will need the following definition.

Definition 4.1. A 𝑘-hop extended matching cover is functionM
that maps vectors 𝑢,𝑢′ ∈ R𝑑 to a distribution over generalized
matchings. It is skew-symmetric if sampling𝑀 ∼ M(−𝑢′,−𝑢) and
then reversing all paths in𝑀 produces the same distribution as sam-
pling 𝑀 ∼ M(𝑢,𝑢′). We define size𝜔 (M) = 1

𝑛E𝑀∼M(N𝜔) [|𝑀 |]
where M(N𝜔) denotes the distribution (𝑢,𝑢′) ∼ N𝜔 , 𝑀 ∼
M(𝑢,𝑢′). We say that M is 𝜎-stretched (resp. 𝐿-long) if min{⟨𝑦 −
𝑥,𝑢⟩, ⟨𝑦 − 𝑥,𝑢′⟩} ≥ 𝜎 (resp. | |𝑦 − 𝑥 | |2 ≤ 𝐿) for any 𝑢,𝑢′ ∈ R𝑑 and
any nonviolating (𝑥, . . . , 𝑦) ∈ supp(M(𝑢,𝑢′)). We writeM ⊆ M̃
for (coupled) extended matching covers M, M̃ if 𝑀 ⊆ �̃� for any
𝑢,𝑢′ and𝑀 ∼ M(𝑢,𝑢′), �̃� ∼ M̃(𝑢,𝑢′).

For an extendedmatching coverM we can definematching cover
M𝜔 as follows: given vector 𝑢, sample 𝑢′ ∼𝜔 𝑢,𝑀 ∼ M(𝑢,𝑢′) and
let𝑀 be the output ofM(𝑢). Clearly, ifM is 𝜎-stretched thenM𝜔

is also 𝜎-stretched, and size𝜔 (M) = size(M𝜔).
We now proceed with the proof of Theorem 3.8. Define K =

{20, 21, 22, . . . , 𝐾}, and let ¤K = K−{𝐾}. (Recall that 𝐾 has the form
𝐾 = 2𝑟 for some integer 𝑟). Let us choose positive numbers 𝛽𝑘 for
𝑘 ∈ ¤K (to be specified later), and define numbers {𝜎𝑘 }𝑘∈K via the

410

A Simpler and Parallelizable𝑂 (
√︁

log𝑛)-approximation
Algorithm for Sparsest Cut SPAA ’24, June 17–21, 2024, Nantes, France

following recursion:
𝜎1 = 𝜎 (11a)
𝜎2𝑘 = (1 + 𝜔𝑘)𝜎𝑘 − 𝛽𝑘 ∀𝑘 ∈ ¤K (11b)

For a matching cover M ⊆ Matching and integer 𝑘 ∈ K we
define extended matching cover M𝑘 as follows:

• given vectors (𝑢1, 𝑢𝑘), sample (𝑢1, 𝑢2, . . . , 𝑢𝑘) ∼ N𝑘
𝜔 | (𝑢1, 𝑢𝑘),

compute 𝑀 = M(𝑢1) ◦ . . . ◦ M(𝑢𝑘) and let
Truncate𝜎𝑘 (𝑀 ;𝑢1) ∩ Truncate𝜎𝑘 (𝑀 ;𝑢𝑘) be the out-
put of M𝑘 (𝑢1, 𝑢𝑘).

By definition,M𝑘 is 𝜎𝑘 -stretched. It can be seen that (M𝐾)𝜔𝐾−1 ⊆
SamplePaths𝐾 for anyM ⊆ Matching. Our goal will be to analyze
size𝜔𝐾−1 (M𝐾) = size((M𝐾)𝜔𝑘−1) for M = Matching.

Theorem 4.2. Choose an increasing sequence of numbers
{𝛿𝑘 }𝑘∈K in (0, 1), and define sequence {_𝑘 }𝑘∈K via the following
recursions:

_1 = 𝛿1 (12a)

2𝑘 = \2𝑘
2
𝑘
, \2𝑘 = 1

2

(
1
2 (𝛿2𝑘 − 𝛿𝑘)

)2/(1−𝜔)
∀𝑘 ∈ ¤K (12b)

Suppose that

exp
(
−

𝛽2
𝑘

2(𝑘 + 1) (1 − 𝜔𝑘)Δ

)
≤ 1

2_2𝑘 ∀𝑘 ∈ ¤K (13)

Then for any 𝑘 ∈ K and any skew-symmetric matching cover M ⊆
Matching with size(M) ≥ 𝛿𝑘 there holds size𝜔𝑘−1 (M𝑘) ≥ _𝑘 .

By plugging appropriate sequences {𝛿𝑘 } and {𝛽𝑘 } we can derive
Theorem 3.8 as follows. (The proof of Lemma 4.3 is given in the full
version of this paper [13]).

Lemma 4.3. Define 𝛿𝑘 = (1− 1
2𝑘)𝛿 and 𝛽𝑘 = 2𝜙𝜎𝑘

√︁
1 − 𝜔𝑘 where

𝜙 = 1
𝜎

(
𝐾Δ · 5 ln 16

𝛿

)1/2
. Then (13) holds, and

_𝑘 ≥
(

16
𝛿

)−2𝐾𝑘
(14)

Furthermore, if 𝜙 ≤ 1
8 (or equivalently 𝐾Δ < 𝜎2

320 ln 16
𝛿

) then

𝜎𝐾 ≥ 1
16 𝜎 𝐾 (15)

4.1 Proof of Theorem 4.2
To prove the theorem, we use induction on 𝑘 ∈ K . For 𝑘 = 1 the
claim is trivial. In the remainder of this section we assume that the
claim holds for 𝑘 ∈ ¤K , and prove it for 2𝑘 and skew-symmetric
matching cover M ⊆ Matching with size(M) ≥ 𝛿2𝑘 . Clearly, the
skew-symmetry ofM implies thatM𝑘 is also skew-symmetric. We
introduce the following notation; letter 𝑥 below always denotes a
node in 𝑆 .

• Let `𝑥 (𝑢,𝑢′) be the expected out-degree of 𝑥 in 𝑀 ∼
M𝑘 (𝑢,𝑢′).

• Let a𝑥 (𝑢) = E𝑢′∼𝜌𝑢 [`𝑥 (𝑢,𝑢′)] where 𝜌 := 𝜔𝑘−1.
• Let A𝑥 be a subset of R𝑑 of Gaussian measure 𝛿 := 1

2 (𝛿2𝑘 −
𝛿𝑘) containing vectors 𝑢 with the largest value of a𝑥 (𝑢), i.e.
such that 𝛾𝑥 := inf{a𝑥 (𝑢) : 𝑢 ∈ A𝑥 } ≥ sup{a𝑥 (𝑢) : 𝑢 ∈
R𝑑 − A𝑥 }.

• Let ¤M ⊆ M be the matching cover obtained from M by
removing edges (𝑥,𝑦) from M(𝑢) and edges (𝑦, 𝑥) from
M(−𝑢) for each 𝑢 ∈ A𝑥 . Clearly, ¤M is a skew-symmetric
matching cover with size(¤M) ≥ 𝛿2𝑘 − 2𝛿 = 𝛿𝑘 .

• Let ¤̀𝑥 (𝑢,𝑢′) be the expected out-degree of 𝑥 in 𝑀 ∼
¤M𝑘 (𝑢,𝑢′).

• Let ¤a𝑥 (𝑢) = E𝑢′∼𝜌𝑢 [¤̀𝑥 (𝑢,𝑢′)], and let _𝑥 = | | ¤a | |1. Note that
1
𝑛

∑
𝑥∈𝑉 _𝑥 = size𝜌 (¤M𝑘) ≥ _𝑘 where the last inequality is

by the induction hypothesis.

Lemma 4.4. There holds 𝛾𝑥 ≥ _𝑥 .

Proof. By the definition of ¤M, we have ¤̀𝑥 (𝑢,𝑢′) = 0 for any
𝑢 ∈ A𝑥 and 𝑢′ ∈ R𝑑 . This implies that ¤a𝑥 (𝑢) = 0 for any 𝑢 ∈
A𝑥 . We have ¤M ⊆ M and thus ¤M𝑘 ⊆ M𝑘 . This implies that
¤a𝑥 (𝑢) ≤ a𝑥 (𝑢) ≤ 𝛾𝑥 for any 𝑢 ∈ R𝑑 − A𝑥 . We can now conclude
that _𝑥 = | | ¤a𝑥 | |1 ≤ 𝛾𝑥 · 1.

□

LetH be an extendedmatching cover whereH(𝑢′1, 𝑢
′
2) is defined

as follows:
(∗) sample (𝑢′1, 𝑢1, 𝑢2, 𝑢′2) ∼ N𝜌,𝜔,𝜌 | (𝑢′1, 𝑢

′
2), sample 𝑀1 ∼

M𝑘 (𝑢′1, 𝑢1), sample 𝑀2 ∼ M𝑘 (𝑢2, 𝑢′2), compute 𝑀 =

𝑀1 ◦ 𝑀2, output 𝑀good = Truncate𝜎2𝑘 (𝑀 ;𝑢′1) ∩
Truncate𝜎2𝑘 (𝑀 ;𝑢′2).

It can be seen thatH ⊆ M2𝑘 under a natural coupling. Consider
the following process: sample (𝑢′1, 𝑢

′
2) ∼ N𝜌𝜔𝜌 and then run proce-

dure (∗). By definitions, we have size𝜌𝜔𝜌 (H) = 1
𝑛E[|𝑀

good |].
Let 𝑀good

𝑥 be the set of paths in 𝑀 that go through node 𝑥 ,
and denote 𝜏𝑥 = E[|𝑀good

𝑥 |]. From these definitions we get that
size𝜌𝜔𝜌 (H) = 1

𝑛

∑
𝑥∈𝑉 𝜏𝑥 .

Lemma 4.5. There holds 𝜏𝑥 ≥ 𝛿2/(1−𝜔)_2
𝑥 − 2Y where Y :=

exp
(
− 𝛽2

𝑘

2(𝑘+1) (1−𝜔𝜌)Δ

)
.

Proof. Define random variable 𝑝1 and 𝑝2 as follows:
• if 𝑥 has an incoming path in 𝑀1 then let 𝑝1 be this path,
otherwise let 𝑝1 =⊥;

• if 𝑥 has an outgoing path in 𝑀1 then let 𝑝2 be this path,
otherwise let 𝑝2 =⊥.

Let Egood (𝑝1, 𝑝2) = [𝑝1 ≠⊥ ∧ 𝑝2 ≠⊥]. Let Ebad
1 (𝑝1, 𝑢′2) be

the event that 𝑝1 = (𝑦1, . . . , 𝑥) ≠⊥, 𝑝1 is nonviolating and
⟨𝑥 − 𝑦1, 𝑢′2⟩ < 𝜎 := 𝜔𝜌𝜎𝑘 − 𝛽𝑘 . Similarly, let Ebad

2 (𝑝2, 𝑢′1) be
the event that 𝑝2 = (𝑥, . . . , 𝑦2) ≠⊥, 𝑝2 is nonviolating and
⟨𝑦2 − 𝑥,𝑢′1⟩ < 𝜎 . Note, if [Egood (𝑝1, 𝑝2) ∧ ¬Ebad

1 (𝑝1, 𝑢′2)] holds
then 𝑝1 ◦ 𝑝2 = (𝑦1, . . . , 𝑥, . . . , 𝑦2) is either violating or satisfies
⟨𝑦2 −𝑦1, 𝑢′2⟩ ≥ 𝜎𝑘 +𝜎 = 𝜎2𝑘 (and similarly for Ebad

2 (𝑝2, 𝑢′1)). There-
fore, 𝜏𝑥 ≥ Pr[Egood (𝑝1, 𝑝2)] −Pr[Ebad

1 (𝑝1, 𝑢′2)] −Pr[E
bad
2 (𝑝2, 𝑢′1)].

Clearly, vectors (𝑢′1, 𝑢1, 𝑢2, 𝑢′2) are distributed according to
N𝜌,𝜔,𝜌 . Equivalently, they are obtained by the following process:
sample (𝑢1, 𝑢2) ∼ N𝜔 , sample 𝑢′1 ∼𝜌 𝑢1, sample 𝑢′2 ∼𝜌 𝑢2. De-
fine B𝑥 = {𝑢 : −𝑢 ∈ A𝑥 }. By Theorem 3.3, we will have
(𝑢1, 𝑢2) ∈ A𝑥 × B𝑥 with probability at least 𝛿2/(1−𝜔) . Condi-
tioned on the latter event, we have Pr[𝑝1 ≠⊥] ≥ 𝛾𝑥 and Pr[𝑝2 ≠⊥
] ≥ 𝛾𝑥 (independently), where the claim for 𝑝1 follows from the

411

SPAA ’24, June 17–21, 2024, Nantes, France Vladimir Kolmogorov

skew-symmetry of M𝑘 . This implies that Pr[Egood (𝑝1, 𝑝2)] ≥
𝛿2/(1−𝜔)𝛾2

𝑥 ≥ 𝛿2/(1−𝜔)_2
𝑥 .

We claim that Pr[Ebad
1 (𝑝1, 𝑢′2)] ≤ Y. Indeed, it suffices to prove

that for fixed 𝑢′1, 𝑢1, 𝑝1 we have Pr[Ebad
1 (𝑝1, 𝑢′2)] ≤ Y under 𝑢2 ∼𝜔

𝑢1, 𝑢′2 ∼𝜌 𝑢2 (or equivalently under 𝑢′2 ∼𝜔𝜌 𝑢1). Assume that 𝑝1 =

(𝑦1, . . . , 𝑥) ≠⊥ is nonviolating (otherwise the desired probability
is zero and the claim holds). Since M𝑘 is 𝜎𝑘 -stretched, we have
⟨𝑥 − 𝑦1, 𝑢1⟩ ≥ 𝜎𝑘 . We also have 𝑟 := | |𝑥 − 𝑦1 | | ≤

√︁
(𝑘 + 1)Δ by

Lemma 3.6(a). The quantity ⟨𝑥−𝑦1, 𝑢′2⟩ is normal with mean𝜔𝜌 ⟨𝑥−
𝑦1, 𝑢1⟩ ≥ 𝜔𝜌𝜎𝑘 and variance (1 − (𝜔𝜌)2)𝑟2 (since e.g. we can
assume that 𝑥 − 𝑦1 = (𝑟, 0, . . . , 0) by rotational symmetry, and
then use the definitions of correlated Gaussians for 1-dimensional
case). Therefore, Pr𝑢′2∼𝜔𝜌𝑢1

[
⟨𝑥 − 𝑦1, 𝑢′2⟩ < 𝜎

]
≤ Pr

[
N(𝜔𝜌𝜎𝑘 , (1 − (𝜔𝜌)2)1/2𝑟) < 𝜔𝜌𝜎𝑘 − 𝛽𝑘

]
= Pr

[
N(0, 1) < − 𝛽𝑘

(1 − (𝜔𝜌)2)1/2𝑟

]
< exp

(
−

𝛽2
𝑘

2(1 − (𝜔𝜌)2)𝑟2

)
≤ Y

In a similar way we prove that Pr[Ebad
2 (𝑝2, 𝑢′1)] ≤ Y. The lemma

follows.
□

We showed that

size𝜌𝜔𝜌 (H) ≥
(

1
𝑛

∑︁
𝑥∈𝑉

𝛿2/(1−𝜔)_2
𝑥

)
− 2Y

Let us minimize the bound on the RHS under constraint
1
𝑛

∑
𝑥∈𝑉 _𝑥 ≥ _𝑘 . Clearly, the minimum is obtained when _𝑥 = _𝑘

for all 𝑥 ∈ 𝑉 , in which case the bound becomes
size𝜌𝜔𝜌 (H) ≥ 𝛿2/(1−𝜔)_2

𝑘
− 2Y ≥ _2𝑘

where we used (12b) and (13).

A MATRIX MULTIPLICATIVE WEIGHTS (MW)
ALGORITHM

It this section we review the method of Arora and Kale [4] for the
checking the feasibility of system (2′) consisting of constraints (2a′)
and (2b)-(2e). The algorithm is given below.

Algorithm 5: MW algorithm.
1 for 𝑡 = 1, 2, . . . ,𝑇 do
2 compute

𝑊 (𝑡) = exp
(
[

𝑡−1∑︁
𝑟=1

𝑁 (𝑟)
)
, 𝑋 (𝑡) = 𝑛 · 𝑊 (𝑡)

Tr(𝑊 (𝑡))

3 either output Fail or find “feedback matrix” 𝑁 (𝑡) of the
form

𝑁 (𝑡) = diag(𝑦) +
∑︁
𝑝

𝑓𝑝𝑇𝑝 +
∑︁
𝑆

𝑧𝑆𝐾𝑆 − 𝐹

where 𝑓𝑝 ≥ 0, 𝑧𝑆 ≥ 0,
∑
𝑖 𝑦𝑖 + 𝑎𝑛2 ∑

𝑆 𝑧𝑆 ≥ 𝛼 , 𝐹 is a
symmetric matrix with 𝐹 ⪯ 𝐶 , and 𝑁 (𝑡) • 𝑋 (𝑡) ≤ 0.

It can be checked that 𝑁 (𝑡) • 𝑋 ≥ 0 for all feasible 𝑋 satisfying
(2′) (see [4]). Thus, matrix 𝑁 (𝑡) can be viewed as a cutting plane

that certifies that 𝑋 (𝑡) is infeasible (or lies on the boundary of the
feasible region).

The procedure at line 3 is called Oracle, and the maximum
possible spectral norm | |𝑁 (𝑡) | | of the feedback matrix is called the
width of the oracle. This width will be denoted as 𝜌 . 4

Theorem A.1 ([4]). Set [= 𝜖
2𝜌2𝑛

and 𝑇 = ⌈ 4𝜌2𝑛2 ln𝑛
𝜖2 ⌉. If Algo-

rithm 5 does not fail during the first 𝑇 iterations then the optimum
value of SDP (2) is at least 𝛼 − 𝜖 .

The oracle used in [4] has the following property: if it fails then it
returns a cut which is 𝑐

512 -balanced and has value at most^𝛼 , where
value^ depends on the implementation. One of the implementations
achieves ^ = 𝑂 (

√︁
log𝑛) and has width 𝜌 = �̃� (𝛼𝑛). (The runtime

of this oracle will be discussed later). Setting 𝜖 = 𝛼/2 yields an
𝑂 (^) = 𝑂 (

√︁
log𝑛) approximation algorithm that makes �̃� (1) calls

to the oracle.

A.1 Gram decomposition and matrix
exponentiation

Consider matrix𝑋 = 𝑋 (𝑡) computed at the 𝑡-th step of Algorithm 5.
It can be seen that 𝑋 is positive semidefinite, so we can consider its
Gram decomposition: 𝑋 = 𝑉𝑇𝑉 . Let 𝑣1, . . . , 𝑣𝑛 be the columns of
𝑉 ; clearly, they uniquely define 𝑋 . Note that computing 𝑣1, . . . , 𝑣𝑛
requires matrix exponentiation, which is a tricky operation be-
cause of accuracy issues. Furthermore, even storing these vectors
requires Θ(𝑛2) space and thus Ω(𝑛2) time, which is too slow for
our purposes. To address these issues, Arora and Kale compute ap-
proximations 𝑣1, . . . , 𝑣𝑛 to these vectors using the following result.

Theorem A.2 ([4, Lemma 7.2]). For any constant 𝑐 > 0 there
exists an algorithm that does the following: given values 𝛾 ∈ (0, 1

2),
_ > 0, 𝜏 = 𝑂 (𝑛3/2) and matrix 𝐴 ∈ R𝑛×𝑛 of spectral norm | |𝐴| | ≤ _,
it computes matrix �̃� ∈ R𝑑×𝑛 with column vectors 𝑣1, . . . , 𝑣𝑛 of
dimension 𝑑 = 𝑂 (log𝑛

𝛾2) such that matrix �̃� = �̃�𝑇 �̃� has trace 𝑛, and
with probability at least 1 − 𝑛−𝑐 , one has

| | |𝑣𝑖 | |2 − ||𝑣𝑖 | |2 | ≤ 𝛾 (| |𝑣𝑖 | |2 + 𝜏) ∀𝑖 (16a)

| | |𝑣𝑖 − 𝑣 𝑗 | |2 − ||𝑣𝑖 − 𝑣 𝑗 | |2 | ≤ 𝛾 (| |𝑣𝑖 − 𝑣 𝑗 | |2 + 𝜏) ∀𝑖, 𝑗 (16b)
where 𝑣1, . . . , 𝑣𝑛 are the columns of a Gram decomposition of 𝑋 =

𝑛 · exp(𝐴)
Tr(exp(𝐴)) . The complexity of this algorithm equals the complexity

of computing 𝑘𝑑 matrix-vector products of the form 𝐴 · 𝑢, 𝑢 ∈ R𝑛 ,
where 𝑘 = 𝑂 (max{_2, log 𝑛5/2

𝜏 }).

Note that matrices𝐴 used in Algorithm 5 have norm at most [𝜌𝑇 .
Therefore, we can set _ = Θ(𝜌𝑛 log𝑛

𝛼) when applying Theorem A.2
to Algorithm 5. Parameters 𝛾 and 𝜏 will be specified later.

From now on we make the following assumption.

Assumption 1. We have (unobserved) matrix 𝑉 ∈ R𝑛×𝑛 and
(observed) matrix �̃� ∈ R𝑑×𝑛 with 𝑋 = 𝑉𝑇𝑉 , �̃� = �̃�𝑇 �̃� and Tr(𝑋) =
Tr(�̃�) = 𝑛 satisfying conditions (16) where 𝑣1, . . . , 𝑣𝑛 are the columns
of 𝑉 and 𝑣1, . . . , 𝑣𝑛 are the columns of �̃� .
4Note that [4] formulated the algorithm in terms of the “loss matrix”𝑀 (𝑡) = − 1

𝜌
𝑁 (𝑡)

that satisfies | |𝑀 (𝑡) | | ≤ 1. Namely, it used the update𝑊 (𝑡) =exp
(
−[̄∑𝑡−1

𝑟=1 𝑀
(𝑟)

)
with [̄=𝜌[, and set [̄= Y

2𝜌𝑛 in their Theorems 4.4 and 4.6.

412

A Simpler and Parallelizable𝑂 (
√︁

log𝑛)-approximation
Algorithm for Sparsest Cut SPAA ’24, June 17–21, 2024, Nantes, France

A.2 Oracle implementation
Let us denote 𝑆 = {𝑖 ∈ 𝑉 : | |𝑣𝑖 | |2 ≤ 2}. We have

∑
𝑖∈𝑉 | |𝑣𝑖 | |2 =

Tr(�̃�𝑇 �̃�) = 𝑛 and thus |𝑆 | ≥ 𝑛/2. First, one can eliminate an easy
case.

Proposition A.3. Suppose that 𝐾𝑆 • �̃� < 𝑎𝑛2
4 . Then setting 𝑦𝑖 =

−𝛼𝑛 for all 𝑖 ∈ 𝑉 , 𝑧𝑆 = 2𝛼
𝑎𝑛2 , 𝑧𝑆 ′ = 0 for all 𝑆 ′ ≠ 𝑆 , and 𝐹 = 0 gives

a valid output of the oracle with width 𝜌 = 𝑂 (𝛼𝑛) assuming that
parameters 𝜏,𝛾 in Theorem A.2 satisfy 𝛾 ≤ 1

2 and 𝜏 ≤ 𝑎
2 .

Proof. Denote 𝑧𝑖 𝑗 = | |𝑣𝑖 − 𝑣 𝑗 | |2 and 𝑧𝑖 𝑗 = | |𝑣𝑖 − 𝑣 𝑗 | |2. We know
that 𝑍 :=

∑
𝑖 𝑗 𝑧𝑖 𝑗 = 𝐾𝑆 • �̃� < 𝑎𝑛2

4 where the sum is over 𝑖, 𝑗 ∈ 𝑆 .
Also, |𝑧𝑖 𝑗 − 𝑧𝑖 𝑗 | ≤ 𝛾 (𝑧𝑖 𝑗 + 𝜏) for all 𝑖, 𝑗 . This implies that

𝐾𝑆 • 𝑋 =
∑︁
𝑖 𝑗

𝑧𝑖 𝑗 < 𝑍 + 𝛾𝑍 + 𝑛2
2 𝛾𝜏 ≤ (1 + 𝛾) 𝑎𝑛2

4 + 𝑛2
2 𝛾𝜏 ≤ 𝑎𝑛2

2

Note that 𝑁 (𝑡) = −𝛼𝑛 𝐼 +
2𝛼
𝑎𝑛2𝐾𝑆 . We have

∑
𝑖 𝑦𝑖 + 𝑎𝑛2 ∑

𝑆 𝑧𝑆 =

𝑛 · (−𝛼𝑛) + 𝑎𝑛
2 · 2𝛼

𝑎𝑛2 = 𝛼 and 𝑁 (𝑡) •𝑋 = −𝛼𝑛 𝐼 •𝑋 + 2𝛼
𝑎𝑛2 (𝐾𝑆 •𝑋) ≤

−𝛼𝑛 · 𝑛 + 2𝛼
𝑎𝑛2 · 𝑎𝑛2

2 = 0, as desired. Also, | |𝑁 (𝑡) | | ≤ | | − 𝛼
𝑛 𝐼 | | +

| | 2𝛼
𝑎𝑛2𝐾𝑆 | | = 𝑂 (𝛼𝑛). □

Now suppose that
∑
𝑖, 𝑗∈𝑆 | |𝑣𝑖 − 𝑣 𝑗 | |2 = 𝐾𝑆 • �̃� ≥ 𝑎𝑛2

4 . We will
set 𝑁 (𝑡)

𝑖 𝑗
= 0 for all (𝑖, 𝑗) ∉ 𝑆 × 𝑆 . When describing how to set the

remaining entries of 𝑁 (𝑡) , it will be convenient to treat 𝑁 (𝑡) , 𝑋 , �̃�
etc. as matrices of size |𝑆 | × |𝑆 | rather than 𝑛 × 𝑛, and 𝑦 as a vector
of size |𝑆 |. (Note that 𝑋 and �̃� are the submatrices of the original
matrices, and Tr(𝑋) ≤ 𝑛). With some abuse of terminology we
will redefine 𝑉 = 𝑆 and 𝑛 = |𝑆 |, and refer to the original variables
as 𝑉orig and 𝑛orig ∈ [𝑛, 2𝑛]. Thus, from now on we make the
following assumption.

Assumption 2. | |𝑣𝑖 | |2 ≤ 2 for all 𝑖 ∈ 𝑉 and
∑
𝑖, 𝑗∈𝑉 :𝑖< 𝑗 | |𝑣𝑖 −

𝑣 𝑗 | |2 ≥
𝑎𝑛2

orig

4 ≥ 𝑎𝑛2
4 .

Let us set 𝑦𝑖 = 𝛼
𝑛 for all 𝑖 ∈ 𝑉 and 𝑧𝑆 = 0 for all 𝑆 , then

∑
𝑖 𝑦𝑖 +

𝑎𝑛2
orig

∑
𝑆 𝑧𝑆 = 𝛼 . Note that𝑁 (𝑡) = 𝛼

𝑛 𝐼+
∑
𝑝 𝑓𝑝𝑇𝑝−𝐹 and 𝛼𝑛 𝐼•𝑋 ≤ 𝛼 ,

so condition (∑𝑝 𝑓𝑝𝑇𝑝 −𝐹) •𝑋 ≤ −𝛼 would imply that 𝑁 (𝑡) •𝑋 ≤ 0.
Our goal thus becomes as follows.

Find variables 𝑓𝑝 ≥ 0 and symmetric matrix 𝐹 ⪯ 𝐶 such that
(∑𝑝 𝑓𝑝𝑇𝑝 − 𝐹) • 𝑋 ≤ −𝛼 .

We arrive at the specification of Oracle given in Section 2.1.

B PROOF OF LEMMA 3.4
(a) We repeat the argument from [4]. Since the total flow is at most
𝜋𝑐′𝑛, at least 𝑐′𝑛 newly added source edges are not saturated by
the flow, and hence their endpoints are on the side of the source
node in the cut obtained, which implies that that side has at least
𝑐′𝑛 nodes. Similarly, the other side of the cut also has at least 𝑐′𝑛
nodes, and thus the cut is 𝑐′-balanced.
(b) Assume that condition (ii) is false. By a standard argument,
Assumption 2 implies the following: there exist constants 𝑐′ ∈ (0, 𝑐),
𝛽 > 0 and 𝜎 > 0 such that with probability at least 𝛽 Algorithm 1
reaches line 9 and we have 𝑤𝑦 − 𝑤𝑥 ≥ 𝜎 for all 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵

(see [11, Lemma 14]). Suppose that this event happens. We claim

that in this case |𝑀 | ≥ 1
3𝑐

′𝑛. Indeed, suppose this is false. Let
𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 be the sets of nodes involved in 𝑀 (with
|𝐴′ | = |𝐵′ | = |𝑀 | = 𝑘). The total value of flow from𝐴 to 𝐵 is at least
𝑐′𝜋𝑛 (otherwise we would have terminated at line 5). The value of
flow leaving 𝐴′ is at most |𝐴′ | · 𝜋 ≤ 1

3𝑐
′𝜋𝑛. Similarly, the value of

flow entering 𝐵′ is at most |𝐵′ | · 𝜋 ≤ 1
3𝑐

′𝜋𝑛. Therefore, the value
of flow from 𝐴 −𝐴′ to 𝐵 − 𝐵′ is at least 𝑐′𝜋𝑛 − 2 · 1

3𝑐
′𝜋𝑛 = 1

3𝑐
′𝜋𝑛.

For each edge (𝑥,𝑦) ∈ 𝑀all with 𝑥 ∈ 𝐴 −𝐴′, 𝑦 ∈ 𝐵 − 𝐵′ we have
| |𝑥 − 𝑦 | |2 > Δ (otherwise𝑀 would not be a maximal matching in
𝑀short). Therefore,∑︁
𝑝 :𝑝=(𝑥,...,𝑦)

𝑓𝑝 | |𝑥 −𝑦 | |2 ≥
∑︁

𝑝 :𝑝=(𝑥,...,𝑦)
𝑥∈𝐴−𝐴′,𝐵∈𝐵−𝐵′

𝑓𝑝 | |𝑥 −𝑦 | |2 ≥ 1
3𝑐

′𝜋𝑛 ·Δ = 2𝛼

But then the algorithm should have terminated at line 7 - a contra-
diction.

REFERENCES
[1] Arpit Agarwal, Sanjeev Khanna, Huan Li, Prathamesh Patil, Chen Wang, Nathan

White, and Peilin Zhong. 2024. Parallel Approximate Maximum Flows in Near-
Linear Work and Polylogarithmic Depth. In SODA.

[2] Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2020. Parallel approximate
undirected shortest paths via low hop emulators. In STOC.

[3] S. Arora, E. Hazan, and S. Kale. 2010. 𝑂 (
√︁

log𝑛) approximation to SPARSEST
CUT in �̃� (𝑛2) time. SIAM J. Comput. 39(5) (2010), 1748–1771.

[4] S. Arora and S. Kale. 2016. A Combinatorial, Primal-Dual Approach to Semidefi-
nite Programs. J. ACM 63(2) (2016), 1–35.

[5] S. Arora, S. Rao, and U. V. Vazirani. 2009. Expander flows, geometric embeddings
and graph partitioning. J. ACM 56(2) (2009), 1–37.

[6] András A. Benczúr and David R. Karger. 1996. Approximating 𝑠-𝑡 minimum cuts
in𝑂 (𝑛2) time. In STOC. 47–55.

[7] Yi-Jun Chang and Thatchaphol Saranurak. 2019. Improved Distributed Expander
Decomposition and Nearly Optimal Triangle Enumeration. In PODC.

[8] Chandra Chekuri and Kent Quanrud. 2019. Submodular function maximization
in parallel via the multilinear relaxation. In SODA.

[9] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. 2022. Maximum Flow and Minimum-Cost Flow in Almost-
Linear Time. In FOCS.

[10] L. Fleischer. 2000. Approximating fractional multicommodity flow independent
of the number of commodities. SIAM Journal on Discrete Mathematics 13(4) (2000),
505–520.

[11] S. Kale. 2007. Efficient Algorithms Using the Multiplicative Weights Update Method.
Ph. D. Dissertation. Princeton University, Princeton, NJ. Technical Report TR-
804-07.

[12] R. Khandekar, S. Rao, and U. Vazirani. 2006. Graph partitioning using single
commodity flows. In STOC. 385–390.

[13] Vladimir Kolmogorov. 2023. A simpler and parallelizable 𝑂 (
√︁

log𝑛)-
approximation algorithm for Sparsest Cut. arXiv:2307.00115 (June 2023).

[14] Fabian Kuhn and Anisur Rahaman Molla. 2015. Distributed Sparse Cut Approx-
imation. In 19th International Conference on Principles of Distributed Systems
(OPODIS). 10:1–10:14.

[15] Lap Chi Lau, Kam Chuen Tung, and Robert Wang. 2024. Fast Algorithms for
Directed Graph Partitioning Using Flows and Reweighted Eigenvalues. In SODA.
arXiv:2306.09128 (June 2023).

[16] James R. Lee. 2005. On distance scales, embeddings, and efficient relaxations of
the cut cone. In SODA. 92–101.

[17] T. Leighton and S. Rao. 1999. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. J. ACM 46(6) (1999), 787–832.

[18] Elchanan Mossel, Ryan O’Donnell, Oded Regev, Jeffrey E. Steif, and Benny Su-
dakov. 2006. Non-interactive correlation distillation, inhomogeneous Markov
chains, and the reverse Bonami-Beckner inequality. Israel Journal of Mathematics
154 (2006), 299–336.

[19] Danupon Nanongkai and Thatchaphol Saranurak. 2017. Dynamic spanning forest
with worst-case update time: adaptive, Las Vegas, and𝑂 (𝑛1/2−Y)-time. In STOC.
1122–1129.

[20] L. Orecchia, L. J. Schulman, U. V. Vazirani, and N. K. Vishnoi. 2008. On partitioning
graphs via single commodity flows. In STOC. 461–470.

[21] Lorenzo Orecchia and Nisheeth K. Vishnoi. 2011. Towards an SDP-based Ap-
proach to Spectral Methods: A Nearly-Linear-Time Algorithm for Graph Parti-
tioning and Decomposition. In SODA.

413

SPAA ’24, June 17–21, 2024, Nantes, France Vladimir Kolmogorov

[22] Richard Peng and Daniel A. Spielman. 2014. An efficient parallel solver for SDD
linear systems. In STOC.

[23] Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan. 2015. Dis-
tributed Computation of Sparse Cuts via Random Walks. In Proceedings of the
16th International Conference on Distributed Computing and Networking (ICDCN).

1–10.
[24] J. Sherman. 2009. Breaking the multicommodity flow barrier for 𝑂 (

√︁
log𝑛)-

approximations to sparsest cut. In FOCS. 363–372.
[25] Daniel D. Sleator and Robert Endre Tarjan. 1983. A data structure for dynamic

trees. J. of Computer and System Sciences 26(3) (1983), 362–391.

414

	Abstract
	1 Introduction
	2 Background: Arora-Kale framework
	2.1 Matrix multiplicative weights algorithm
	2.2 Oracle implementation

	3 Our algorithm
	3.1 Correlated Gaussians and measure concentration
	3.2 Procedure Matching(u)
	3.3 Matching covers
	3.4 Chaining algorithms
	3.5 Final algorithm

	4 Proof of Theorem 3.8
	4.1 Proof of Theorem 4.2

	A Matrix multiplicative weights (MW) algorithm
	A.1 Gram decomposition and matrix exponentiation
	A.2 Oracle implementation

	B Proof of Lemma 3.4
	References

