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Almost Optimal Upper Bound for the
Ground State Energy of a Dilute Fermi Gas
via Cluster Expansion

Asbjørn Bækgaard Lauritsen

Abstract. We prove an upper bound on the energy density of the dilute
spin- 1

2
Fermi gas capturing the leading correction to the kinetic energy

8πaρ↑ρ↓ with an error of size smaller than aρ2(a3ρ)1/3−ε for any ε > 0,
where a denotes the scattering length of the interaction. The result is valid
for a large class of interactions including interactions with a hard core. A
central ingredient in the proof is a rigorous version of a fermionic cluster
expansion adapted from the formal expansion of Gaudin et al. (Nucl Phys
A 176(2):237–260, 1971. https://doi.org/10.1016/0375-9474(71)90267-3).

1. Introduction and Main Results

We consider an interacting Fermi gas of N particles interacting via a two-body
interaction v which we assume to be non-negative, radial and of compact sup-
port. In units where � = 1 and the particle mass is m = 1/2 the Hamiltonian
is given by

HN =
N∑

j=1

−Δj +
∑

i<j

v(xi − xj),

where Δj denotes the Laplacian on the j’th coordinate. For spin-1
2 fermions

in some domain Λ = ΛL = [−L/2, L/2]3 one realizes the Hamiltonian on the
space L2

a(ΛN , C2) =
∧N

L2(Λ, C2). Since the Hamiltonian is spin-independent
we can specify definite values for the number of particles with each spin, i.e. Nσ

particles of spin σ ∈ {↑, ↓} and N↑ + N↓ = N . In this setting the Hamiltonian
is realized on the space HN↑,N↓ = L2

a(ΛN↑) ⊗ L2
a(ΛN↓). The ground state

energy on the space L2
a(ΛN , C2) is then given by minimizing in Nσ (satisfying

N↑ + N↓ = N) the ground state energies on the spaces HN↑,N↓ .
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This system was previously studied in [2,5,12] where it is shown that for
a dilute system in the thermodynamic limit

e(ρ↑, ρ↓) = lim
L→∞

Nσ/L3→ρσ

inf
ψ∈HN↑,N↓
‖ψ‖L2=1

〈
ψ
∣∣∣HN

∣∣∣ψ
〉

L3

=
3
5
(6π2)2/3(ρ5/3

↑ + ρ
5/3
↓ ) + 8πaρ↑ρ↓ + aρ2ε(a3ρ),

where ρ = ρ↑ + ρ↓, a is the ( s-wave) scattering length of the interaction v
and ε(a3ρ) = o(1) in the limit a3ρ � 1. The existence of the thermodynamic
limit follows from [17]. Moreover, the limit does not depend on the boundary
conditions.

The leading term 3
5 (6π2)2/3(ρ5/3

↑ + ρ
5/3
↓ ) is the kinetic energy of a free

Fermi gas. The next term 8πaρ↑ρ↓ is the leading correction coming from the
interaction. This term may be understood as coming from the energy of a
pair of opposite-spin fermions times the number of such pairs. The energy
correction arising from interactions between fermions of the same spin is of
order a3

pρ
8/3, where ap denotes the p-wave scattering length (see [11]) and so

much smaller.
The first proof of this result was given by Lieb, Seiringer and Solovej

[12]. Their proof gives the explicit error bounds −C(a3ρ)1/39 ≤ ε(a3ρ) ≤
C(a3ρ)2/27 for some constant C > 0. These error bounds were later improved
in [2] and very recently in [5], where in particular the “optimal” upper bound
ε(a3ρ) ≤ C(a3ρ)1/3 is shown. The works [2,5], however, deal with more regular
potentials than the quite general setting studied in [12], where it is assumed
that the interaction is non-negative, radial and compactly supported. In [2,5]
the interaction is additionally assumed to be smooth. In particular, interactions
with a hard core are not treated in [2,5].

The upper bound of order aρ1/3 is optimal in the sense that this is the
order of the conjectured next term in the expansion. Namely the Huang–Yang
term [8], see [5,6].

Our main theorem is the “almost optimal” upper bound ε(a3ρ) ≤
Cδ(a3ρ)1/3−δ for any δ > 0 for some δ-dependent constant Cδ > 0 under
the same assumptions as in [12], i.e. weaker than that of [2,5]. In particular we
allow for v to have a hard core. A central ingredient in the proof is to prove
a rigorous version of a fermionic cluster expansion adapted from [4]. This is
analogous to what is done in [11] for spin-polarized fermions. (See also [10] for
the application to spin-polarized fermions at positive-temperature.)

1.1. Precise Statements of Results

To give the statement of our main theorem, we first define the scattering
length(s) of the interaction v.
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Definition 1.1 ([13, Appendix A] [18, Section 4]). The s- and p-wave scattering
lengths a and ap are defined by

4πa = inf
{∫ (

|∇f |2 +
1
2
v|f |2

)
dx : f(x) → 1 for |x| → ∞

}
,

12πa3
p = inf

{∫ (
|∇f |2 +

1
2
v|f |2

)
|x|2 dx : f(x) → 1 for |x| → ∞

}
.

The minimizing f ’s are the s- and p-wave scattering functions. They are de-
noted fs0 and fp0, respectively.

The minimizing functions fs0 and fp0 are real-valued. We collect properties of
them in Lemma 2.5.

With this we may then state our main theorem.

Theorem 1.2. Let 0 ≤ v ≤ +∞ be radial and of compact support. Then for
any δ > 0 and for sufficiently small a3ρ we have

e(ρ↑, ρ↓) ≤ 3
5
(6π2)2/3(ρ5/3

↑ + ρ
5/3
↓ ) + 8πaρ↑ρ↓ + Oδ

(
aρ2(a3ρ)1/3−δ

)
.

The subscript δ in Oδ denotes that the implicit constant depends on δ. Fur-
ther, the v-dependence of the error-term Oδ

(
aρ2(a3ρ)1/3−δ

)
is only via the

scattering lengths a and ap (meaning that the implicit constant depends on
the ratio ap/a but otherwise not on v). In particular we note that v is allowed
to have a hard core, meaning v(x) = +∞ for |x| ≤ r0 for some r0 > 0.

The essential steps of the proof are
(1) Show the absolute convergence of a fermionic cluster expansion adapted

from the formal calculations of [4]. For this we need the “Fermi polyhe-
dron”, a polyhedral approximation to the Fermi ball, described in [11,
Section 2.2]. The calculation of the fermionic cluster expansion is given
in Sect. 3 and the absolute convergence in shown in Sect. 4.

(2) Bound the energy of a Jastrow-type trial state. For this step, the central
part is computing the values of all diagrams of a certain type exactly
and using these exact values up to some arbitrary high order. This is
somewhat similar to the approach in [1] for the dilute Bose gas. This
calculation is part of the proof of Lemma 5.1.

Remark 1.3 (Higher spin). With not much difficulty one can extend the result
to higher spin and with a spin-dependent interaction vσσ′ = vσ′σ. The result
for S ≥ 2 spin values {1, . . . , S} is

e (ρ1, . . . , ρS) ≤ 3
5
(6π2)2/3

S∑

σ=1

ρ5/3
σ + 8π

∑

1≤σ<σ′≤S

aσσ′ρσρσ′

+Oδ

(
aρ2(a3ρ)1/3−δ

)
,

where aσσ′ is the s-wave scattering length of the spin σ-spin σ′ interaction
vσσ′ and a = supσ<σ′ aσσ′ . For conciseness of the proof we will only give it for
S = 2, i.e. for spin-1

2 fermions. We will, however, give comments on how to
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adapt the individual (non-trivial) steps of the proof to the higher spin setting.
These comments are given in Remarks 3.3, 4.2, 5.4 and 5.6.

Remark 1.4 (Comparison with [2,5,12]). The trial state we consider, ψN↑,N↓
(defined in Eq. (2.5)), is in spirit the same as that considered in [12]. They
differ only in technical aspects (discussed in Remark 2.1). The reason we are
able to improve on the bound in [12] is that we treat the cancellations between〈
ψ
∣∣∣HN

∣∣∣ψ
〉

and
〈
ψ
∣∣∣ψ
〉

more precisely (for the [non-normalized] trial state ψ

being defined as ψN↑,N↓ in Eq. (2.5) only without the normalization constant
CN↑,N↓).

In [2,5] a completely different method is employed. There the system is
studied using a method inspired by Bogoliubov theory for dilute Bose gases.
(The “bosons” appearing here as pairs of opposite-spin fermions.)

The paper is structured as follows. In Sect. 2, we give some preliminary com-
putations and recall some properties of the scattering functions and Fermi
polyhedron from [11,13]. Next, in Sect. 3 we give the calculation of a fermionic
cluster expansion adapted from [4]. Subsequently, in Sect. 4 we find condi-
tions for the absolute convergence of the cluster expansion formulas of Sect. 3.
Finally, in Sect. 5 we use the formulas of Sect. 3 to bound the energy of a
Jastrow-type trial state.

2. Preliminary Computations

We first give a few preliminary computations. We will construct a trial state us-
ing a box method of glueing trial states in smaller boxes together in Sect. 5.4. In
the smaller boxes, we will need to use Dirichlet boundary conditions; however,
in Sect. 5.4 we will construct trial states with Dirichlet boundary conditions
out of trial states with periodic boundary conditions. (See also [11].) Thus, we
will use periodic boundary conditions in the box Λ = ΛL = [−L/2, L/2]3.

First, we establish some notation.

2.1. Notation

• We write xi and yj for the spatial coordinates of particle i of spin ↑,
respectively, particle j of spin ↓.
We write zi to mean either xi or yi if the spin is not important.
We write additionally z(i,↑) = xi and z(i,↓) = yi.

• We write [n,m] = {n, n + 1, . . . ,m} for integers n ≤ m. If n > m then
[n,m] = ∅.

• For a set A we write ZA = (za)a∈A for the coordinates of the vertices
with labels in A. (Similarly for XA and YA).
In particular we write Z[n,m] = (zn, . . . , zm) for the coordinates of parti-
cles n, n + 1, . . . ,m.
If n = 1 we simply write Zm = Z[1,m] = (z1, . . . , zm).

• We write C for a generic (positive) constant, whose value may change
line by line. If we want to emphasize the dependence on some parameter
A we will denote this by CA.



Vol. 26 (2025) Dilute Fermi Gas via Cluster Expansion 207

We consider the indices of the coordinates as vertices μ = (i, σ) ∈ V∞,∞ :=
N × {↑, ↓}. Here σ ∈ {↑, ↓} labels the spin of the particle. Then, we define

Vn,m := V ↑
n ∪ V ↓

m, V σ
p := {(1, σ), . . . , (p, σ)} ⊂ V∞,∞, σ ∈ {↑, ↓},

p ∈ N ∪ {∞}.

(We mean V σ
∞ = N × {σ} for p = ∞.) On the vertices V∞,∞ we define the

ordering < as follows.

μ = (i, σ) < (j, σ′) = ν
def⇐⇒ (σ =↑ and σ′ =↓) or (σ = σ′ and i < j) .

Define the rescaled and cut-off scattering functions fs and fp as

fs(x) =

{
1

1−a/bfs0(|x|) |x| ≤ b,

1 |x| ≥ b,
fp(x) =

{
1

1−a3
p/b3 fp0(|x|) |x| ≤ b,

1 |x| ≥ b,

(2.1)

where | · | := infn∈Z3 | ·−nL|R3 (with | · |R3 denoting the norm on R
3), b = ρ−1/3

and the scattering function fs0 and fp0 are defined in Definition 1.1. (They
are radial functions, see Lemma 2.5, so fs and fp are well-defined.) We prefer
to write b instead of its value ρ−1/3 to keep apparent dependences on b. For
b = ρ−1/3 we have b > R0, the range of v, for sufficiently small a3ρ. Hence,
fs and fp are continuous for sufficiently small a3ρ. (Note that the metric on
the torus Λ is given by d(x, y) = |x − y|. We will abuse notation slightly and
denote by | · | also the absolute value of some number or the norm on R

3.)
To simplify notation, we write for μ, ν ∈ V∞,∞

fμν :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fp(xi − xj) μ = (i, ↑), ν = (j, ↑),
fs(xi − yj) μ = (i, ↑), ν = (j, ↓),
fs(yi − xj) μ = (i, ↓), ν = (j, ↑),
fp(yi − yj) μ = (i, ↓), ν = (j, ↓),

(2.2)

and similar for all quantities derived from fs and fp. In particular ∇fμν =
∇fs/p(zμ − zν) with s/p meaning s if the spins of μ and ν are different and p
if they are the same.

Next, we introduce the (non-normalized) Slater determinants DN↑ and
DN↓ as

DNσ
(ZNσ

) = det [uk(zi)] k∈P σ
F

i=1,...,Nσ

, Nσ = #P σ
F , uk(z) = L−3/2eikz,

where P σ
F is the “Fermi polyhedron”, a polyhedral approximation to the Fermi

ball described in Sect. 2.3, see also [11, Section 2.2], and #P σ
F denotes the

number of points in P σ
F .
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Further, we denote for μ, ν ∈ V∞,∞

γμν :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ
(1)
N↑ (xi;xj) μ = (i, ↑), ν = (j, ↑),

0 μ = (i, ↑), ν = (j, ↓),
0 μ = (i, ↓), ν = (j, ↑),
γ

(1)
N↓ (yi; yj) μ = (i, ↓), ν = (j, ↓),

(2.3)

where γ
(1)
Nσ

are the one-particle density matrices of 1√
N↑!

DN↑ and 1√
N↓!

DN↓ .

Finally, for any (normalized) state ψ ∈ L2
a(ΛN↑) ⊗ L2

a(ΛN↓) we will nor-
malize reduced densities as follows (for n + m ≥ 1).

ρ
(n,m)
ψ = N↑(N↑ − 1) · · · (N↑ − n + 1)N↓(N↓ − 1) · · · (N↓ − m + 1)

×
∫

· · ·
∫

|ψ|2 dX[n+1,N↑] dY[m+1,N↓]. (2.4)

For a (normalized) Slater determinant ψ = ψ(XN↑ , YN↓) = 1√
N↑!N↓!

DN↑(XN↑)

DN↓(YN↓) we write ρ(n,m) = ρ
(n,m)
ψ and for the trial state ψN↑,N↓ we write

ρ
(n,m)
Jas = ρ

(n,m)
ψN↑,N↓

.

We will fix the Fermi momenta kσ
F such that the ratio k↑

F /k↓
F is rational,

see Remark 2.3. This is a restriction on which densities ρσ can arise from the
trial state ψN↑,N↓ , see Remark 2.4. We extend to all densities in Sect. 5.4. The
dilute limit will be realized as (k↑

F + k↓
F )a → 0.

2.2. Computation of the Energy

We consider the trial state

ψN↑,N↓(XN↑ , YN↓) =
1√

CN↑,N↓

⎡

⎢⎢⎣
∏

μ,ν∈VN↑,N↓
μ<ν

fμν

⎤

⎥⎥⎦DN↑(XN↑)DN↓(YN↓)

=
1√

CN↑,N↓

⎡

⎢⎢⎣
∏

1≤i≤N↑
1≤j≤N↓

fs(xi−yj)
∏

1≤i<j≤N↑

fp(xi − xj)
∏

1≤i<j≤N↓

fp(yi − yj)

⎤

⎥⎥⎦

×DN↑(XN↑)DN↓(YN↓),
(2.5)

where CN↑,N↓ is a normalization constant such that
∫ ∣∣ψN↑,N↓

∣∣2 dXN↑ dYN↓ =
1.

Remark 2.1 (Comparison to [12]). As mentioned in Remark 1.4 the trial state
ψN↑,N↓ is mostly the same as that of [12]. They differ in two technical aspects:

1. The choice of function implementing the correlations between particles
of the same spin.
The exact function used is not particularly important since the same-spin
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interactions give rise to a much smaller energy correction (than that of
different-spin interactions). The function fp is a natural choice.

2. The choice of Slater determinant.
Our choice of Slater determinants with momenta in the Fermi polyhedron
(as opposed to the Fermi ball, which is what is used in [12]) is a technical
necessity as we discuss in Sect. 2.3.

We compute the energy of the trial state ψN↑,N↓

〈
ψN↑,N↓

∣∣∣HN

∣∣∣ψN↑,N↓

〉
=
∫

· · ·
∫

⎡

⎢⎢⎣
∑

μ∈VN↑,N↓

∣∣∇zμ
ψN↑,N↓

∣∣2

+
∑

μ,ν∈VN↑,N↓
μ<ν

v(zμ − zν)
∣∣ψN↑,N↓

∣∣2

⎤

⎥⎥⎦dXN↑ dYN↓ .

Note that for (real-valued) functions F,G we have
∫

|∇(FG)|2 = −
∫

GΔG|F |2 +
∫

|G|2 |∇F |2 . (2.6)

By symmetries of the Fermi polyhedron, see Definition 2.2, we have that DN↑
and DN↓ are real-valued. Thus, using Eq. (2.6) for F =

∏
μ<ν fμν and G =

DN↑DN↓ for each of the derivatives ∇xi
, ∇yj

we get (recall that ∇fμν =
∇fs/p(zμ − zν))

∑

μ∈VN↑,N↓

∫
· · ·

∫ ∣∣∇zμ
ψN↑,N↓

∣∣2 dXN↑ dYN↓

= E↑
0 + E↓

0 +
∫

· · ·
∫

dXN↑ dYN↓

∣∣ψN↑,N↓

∣∣2
⎡

⎢⎣2
∑

μ∈V ↑
N↑

∑

ν∈V ↓
N↓

∣∣∣∣
∇fμν

fμν

∣∣∣∣
2

+ 2
∑

σ∈{↑,↓}

∑

μ,ν∈V σ
Nσ

μ<ν

∣∣∣∣
∇fμν

fμν

∣∣∣∣
2

+
∑

σ∈{↑,↓}

∑

μ∈V σ
Nσ

∑

ν,λ∈V −σ
N−σ

ν 
=λ

∇fμν∇fμλ

fμνfμλ

+
∑

σ∈{↑,↓}

∑

μ,ν∈V σ
Nσ

μ
=ν

∑

λ∈V −σ
N−σ

∇fμν∇fμλ

fμνfμλ
−

∑

σ∈{↑,↓}

∑

μ,ν,λ∈V σ
Nσ

μ,ν,λ distinct

∇fμν∇fνλ

fμνfνλ

⎤

⎥⎥⎦ ,

where Eσ
0 =

∑
k∈P σ

F
|k|2 is the kinetic energy of the Slater determinants

1√
Nσ !

DNσ
and −σ is the “other spin”, i.e. − ↑=↓ and − ↓=↑. (The factor

2 in the term 2
∑

μ∈V ↑
N↑

∑
ν∈V ↓

N↓

∣∣∣∇fμν

fμν

∣∣∣
2

arises as 2 =
∑

σ∈{↑,↓} 1.) The terms
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are grouped according to how many s-wave f ’s appear. In terms of the reduced
densities we thus get

〈
ψN↑,N↓

∣∣∣HN

∣∣∣ψN↑,N↓

〉

= E↑
0 + E↓

0 + 2
∫∫

ρ
(1,1)
Jas

[∣∣∣∣
∇fs(x1 − y1)
fs(x1 − y1)

∣∣∣∣
2

+
1
2
v(x1 − y1)

]
dx1 dy1

+
∫∫

ρ
(2,0)
Jas

[∣∣∣∣
∇fp(x1 − x2)
fp(x1 − x2)

∣∣∣∣
2

+
1
2
v(x1 − x2)

]
dx1 dx2

+
∫∫∫

ρ
(2,1)
Jas

[
∇fs(x1 − y1)∇fs(x2 − y1)

fs(x1 − y1)fs(x2 − y1)

+
∇fs(x1 − y1)∇fp(x1 − x2)

fs(x1 − y1)fp(x1 − x2)

]
dx1 dx2 dy1

−
∫∫∫

ρ
(3,0)
Jas

∇fp(x1 − x2)∇fp(x2 − x3)
fp(x1 − x2)fp(x2 − x3)

dx1 dx2 dx3

+ terms with ρ
(0,2)
Jas , ρ

(1,2)
Jas , ρ

(0,3)
Jas .

(2.7)

We find formulas for the reduced densities in Sect. 3. Before doing so, we
first recall some properties on the “Fermi polyhedron” P σ

F and the scattering
functions fs, fp.

2.3. Properties of the “Fermi Polyhedron” and the Scattering Functions

In this section we recall a few properties of the “Fermi polyhedron” from [11,
Section 2.2 and Lemma 4.9] and scattering functions from [13, Appendix A].

The reason for introducing the “Fermi polyhedron” is that for the analysis
of the absolute convergence of the Gaudin–Gillespie–Ripka expansion we need
good control over

∫

Λ

∣∣∣γ(1)
Nσ

(x; 0)
∣∣∣ dx =

∫

Λ

∣∣∣∣∣∣
1
L3

∑

k∈P σ
F

eikx

∣∣∣∣∣∣
dx.

By Eq. (2.9a) (coming from [11, Lemma 2.12] and [9]) this is bounded by
s(log N)3. If we had instead chosen the Slater determinants in the trial state
ψN↑,N↓ to have momenta in the Fermi ball Bσ

F = {k ∈ 2π
L Z

3 : |k| ≤ kσ
F }, we

would have [3,14]

∫

Λ

∣∣∣γ(1)
Nσ

(x; 0)
∣∣∣ dx =

∫

Λ

∣∣∣∣∣∣
1
L3

∑

k∈Bσ
F

eikx

∣∣∣∣∣∣
dx ∼ N1/3.

This N -dependence would prevent us from achieving that both the Gaudin–
Gillespie–Ripka expansion converges absolutely and that the finite-size error
from the kinetic energy is negligible. See also Remark 3.4 and [11, Remark
3.5].



Vol. 26 (2025) Dilute Fermi Gas via Cluster Expansion 211

The “Fermi polyhedron” is defined in [11, Definition 2.7]. We give here
only a sketch of the definition and state a few properties needed for our pur-
poses. For a full discussion with proofs we refer to [11, Section 2.2 and Appen-
dix B].

Definition 2.2 (Sketch, see [11, Definition 2.7]). For each spin σ ∈ {↑, ↓} define
the (convex) polyhedron P σ with sσ “corners” (extremal points) as follows.

All “corners” κσ
1 , . . . , κσ

sσ
are chosen of the form κσ

j = ζσ( p1
j

Qσ
1
,

p2
j

Qσ
2
,

p3
j

Qσ
3
), where

ζσ ∈ R, pi
j ∈ Z for i = 1, 2, 3, j = 1, . . . , sσ and Qσ

1 , Qσ
2 , Qσ

3 are large distinct
primes. Then, P σ is the convex hull of these “corners” and ζσ is chosen such
that Vol P σ = 4π

3 .
The polyhedron P σ approximates the unit ball in the sense that any

point on the surface ∂P σ has radial coordinate 1 + O(s−1
σ ). The polyhedron

P σ is moreover symmetric under the maps (k1, k2, k3) �→ (±k1,±k2,±k3) and
“almost symmetric” under the maps (k1, k2, k3) �→ (ka, kb, kc) for (a, b, c) �=
(1, 2, 3), see [11, Lemma 2.11].

The Fermi polyhedron P σ
F is then defined as P σ

F := kσ
F P σ ∩ 2π

L Z
3.

Moreover, L is chosen large such that kσ
F L
2π is rational and large for σ ∈

{↑, ↓}.

Remark 2.3. We choose kσ
F such that k↑

F /k↓
F is rational since we need L with

kσ
F L
2π rational for both values of σ ∈ {↑, ↓}.

Remark 2.4. The free parameters are the Fermi momenta kσ
F , the length of

the box L and the number of corners of the polyhedra sσ. The particle num-
bers are then Nσ = #P σ

F and the particle densities are ρσ = Nσ/L3 =
1

6π2 (kσ
F )3

(
1 + O(N−1/3

σ )
)
. Not all densities ρσ0 arise this way. We need some

argument to consider general densities ρσ0. This is discussed in Sect. 5.4. Es-
sentially by continuity and density of the rationals in the reals, we can extend
results for the densities arising as ρσ = Nσ/L3 to general densities ρσ0.

We will later choose L, sσ depending on a3ρ, meaning more precisely on
(k↑

F + k↓
F )a, such that L, sσ → ∞ as a3ρ → 0. Concretely we will choose

sσ ∼ (a3ρ)−1/3+ε for some small ε > 0.

Next, we recall some properties of the Fermi polyhedron from [11]. For the
kinetic energy (density) of the Slater determinants we have by [11, Lemma
2.13]

1
L3

∑

k∈P σ
F

|k|2 =
3
5
(6π2)2/3ρ5/3

σ (1 + O(s−2
σ ) + O(N−1/3

σ )). (2.8)

Here the sσ-dependent error is only negligible if we take sσ large enough—we
need that the Fermi polyhedron approximates the Fermi ball well in order for
the kinetic energies (of the associated Slater determinants) to be close. (Recall
that the Slater determinant with momenta in the Fermi ball is the ground
state of the non-interacting system.)
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Moreover, for Nσ = #P σ
F sufficiently large, the Fermi polyhedron satisfies

the following bounds by [11, Lemmas 2.12 and 4.9] (see also [9]).

∫

Λ

∣∣∣∣∣∣
1
L3

∑

k∈P σ
F

eikx

∣∣∣∣∣∣
dx ≤ Csσ(log Nσ)3 ≤ Cs(log N)3, (2.9a)

∫

Λ

∣∣∣∣∣∣
1
L3

∑

k∈P σ
F

kjeikx

∣∣∣∣∣∣
dx ≤ Csσρ1/3

σ (log Nσ)3 ≤ Csρ1/3(log N)3, (2.9b)

∫

Λ

∣∣∣∣∣∣
1
L3

∑

k∈P σ
F

kjkj′
eikx

∣∣∣∣∣∣
dx ≤ Csσρ2/3

σ (log Nσ)4 ≤ Csρ2/3(log N)4, (2.9c)

for any j, j′ = 1, 2, 3 where s = max{s↑, s↓}, ρ = ρ↑ + ρ↓, N = N↑ + N↓ and
kj denotes the j’th component of the vector k = (k1, k2, k3).

The first bound, Eq. (2.9a), is needed to prove the absolute convergence of
the Gaudin–Gillespie–Ripka expansion discussed in Sects. 3 and 4. The second
two bounds, Eqs. (2.9b) and (2.9c), are needed to bound the terms with ρ

(2,0)
Jas

and ρ
(0,2)
Jas in Eq. (2.7). More precisely they are used in the proof of Lemma 5.5,

but only then.
Finally, we recall that the scattering functions satisfy the scattering equa-

tions (Euler–Lagrange equations of the defining minimization problems in Def-
inition 1.1)

− 2Δfs0 + vfs0 = 0, −4x · ∇fp0 − 2|x|2Δfp0 + |x|2vfp0 = 0. (2.10)

Moreover

Lemma 2.5 ([13, Appendix A], see also [11, Lemma 2.2]). The functions fs0

and fp0 are real-valued and radial. Moreover
[
1 − a

|x|

]

+

≤ fs0(x) ≤ 1,

[
1 −

a3
p

|x|3

]

+

≤ fp0(x) ≤ 1.

For |x| ≥ R0, the range of v, the left-hand-sides are equalities.

3. Gaudin–Gillespie–Ripka Expansion

In this section, we calculate reduced densities of the trial state ψN↑,N↓ . The
ideas behind this calculation are mostly contained in (the formal calculations
of) [4]. The calculation we give here is a slight generalization thereof includ-
ing the spin. Additionally, we give conditions for the final formulas (given in
Theorem 3.2) to hold, i.e. we give conditions for their absolute convergence.
The argument here is in spirit the same as that of [11, Section 3]. Here it is
slightly more involved as we have to take into account the different spins. In
[11, Section 3] there is only one value of the spin.
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In the calculations below, one may replace the functions fs, fp and the
one-particle density matrices γ

(1)
Nσ

by more general functions. We discuss this
in Remark 3.5.

3.1. Calculation of the Normalization Constant

We first compute the normalization constant CN↑,N↓ . Recall the definition of
the trial state ψN↑,N↓ in Eq. (2.5). Write f2

μν = 1 + gμν for all the f -factors
and factor out the product

∏
μ<ν f2

μν =
∏

μ<ν(1 + gμν). We are then led to
define the set Gp,q as the set of all graphs on p black and q white vertices
such that each vertex has degree at least 1, i.e. has an incident edge. We
label the black vertices as V ↑

p = {(1, ↑), . . . , (p, ↑)} and the white vertices as
V ↓

q = {(1, ↓), . . . , (q, ↓)}. For an edge e = (μ, ν) we write ge = gμν and define

Wp,q = Wp,q(Xp, Yq) =
∑

G∈Gp,q

∏

e∈G

ge.

Then,

CN↑,N↓

=

∫
· · ·

∫ ∏

μ<ν

(1 + gμν)|DN↑ |2|DN↓ |2 dXN↑ dYN↓

=

∫
· · ·

∫

⎡

⎢⎢⎢⎢⎢⎣
1 +

∑

0≤p≤N↑
0≤q≤N↓
p+q≥2

N↑(N↑ − 1) · · · (N↑ − p + 1)N↓(N↓ − 1) · · · (N↓ − q + 1)

p!q!
Wp,q

⎤

⎥⎥⎥⎥⎥⎦

× |DN↑ |2|DN↓ |2 dXN↑ dYN↓

= N↑!N↓!

⎡

⎢⎢⎢⎢⎢⎣
1 +

∑

0≤p≤N↑
0≤q≤N↓
p+q≥2

1

p!q!

∫
· · ·

∫
Wp,qρ(p,q) dXp dYq

⎤

⎥⎥⎥⎥⎥⎦
.

(Recall the definition of ρ(p,q) in Eq. (2.4).) A simple calculation using the
Wick rule then shows (recall the definition of γμν in Eq. (2.3))

ρ(p,q)(Xp, Yq) = det [γμν ]μ,ν∈Vp,q
= det[γ

(1)
N↑(xi; yj)]1≤i,j≤p det[γ

(1)
N↓(yi; yj)]1≤i,j≤q

Taking this determinantal expression as the definition we have ρ(p,q) = 0 for
p > N↑ or q > N↓ since the matrices [γ(i,↑),(j,↑)]i,j∈N and [γ(i,↓),(j,↓)]i,j∈N

have ranks N↑ and N↓, respectively. Thus we may extend the p- and q-sums
to ∞. Now, expanding the determinant ρ(p,q) and the Wp,q we group the
permutations and the graph together in a diagram. We will for the calculation
of the reduced densities need a slightly more general definition, which we now
give.

Definition 3.1. The set Gn,m
p,q is the set of all graphs with p internal black

vertices, n external black vertices, q internal white vertices and m external
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white vertices, such that there are no edges between external vertices, and such
that all internal vertices has degree at least 1. That is, all internal vertices are
incident to at least one edge and external vertices may have degree 0. As above
we label the black vertices as V ↑

p+n = {(1, ↑), . . . , (p + n, ↑)} where the first
n are the external vertices. The white vertices are labelled V ↓

q+m ={(1,↓), . . . ,
(q + m, ↓)}, where the first m are the external vertices. In case n = m = 0 we
recover G0,0

p,q = Gp,q.
If we need the vertices to have certain labels we will write GB∗,W ∗

B,W (or
similar with only some of p, q, n,m replaced by sets) for the set of all graphs
with internal black vertices B, external black vertices B∗, internal white ver-
tices W and external white vertices W ∗, where B,B∗ ⊂ V ↑

∞ and W,W ∗ ⊂ V ↓
∞

are all pairwise disjoint.
The set Dn,m

p,q is the set of all diagrams on p internal black vertices, n
external black vertices, q internal white vertices and m external white vertices.
Such a diagram is a tuple D = (π, τ,G) where π ∈ Sp+n, τ ∈ Sq+m (viewed as
directed graphs on the black and white vertices, respectively) and G ∈ Gn,m

p,q

(Fig. 1).
We will refer to the edges in G as g-edges and the graph G as a g-graph.

Moreover, we refer to the edges in both π and τ as γ-edges.
The value of the diagram D = (π, τ,G) ∈ Dn,m

p,q is the function

Γn,m
D (Xn, Ym) = (−1)π(−1)τ

∫
· · ·

∫
dX[n+1,n+p] dY[m+1,m+q]

×
∏

e∈G

ge

p+n∏

i=1

γ
(1)
N (xi;xπ(i))

q+m∏

j=1

γ
(1)
N↓ (yj ; yτ(j)).

If p = 0 and/or q = 0, there are no integrations in the xi and/or yj variables.
A diagram D = (π, τ,G) is said to be linked if the graph G̃ with union all

edges of π, τ and G is connected. The set of linked diagrams is denoted Ln,m
p,q .

In case m = n = 0 we write D0,0
p,q = Dp,q,L0,0

p,q = Lp,q and Γ0,0
D = ΓD (i.e.

without a superscript).

In terms of diagrams, we have

CN↑,N↓ = N↑!N↓!

⎡

⎢⎢⎣1 +
∑

p,q≥0
p+q≥2

1
p!q!

∑

D∈Dp,q

ΓD

⎤

⎥⎥⎦ . (3.1)

We may decompose any diagram D = (π, τ,G) into its linked components. For
this, note that its value ΓD factors over its linked components. Moreover, each
linked component has at least 2 vertices, since they have degree at least one.
Thus,
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∗
∗

∗

Figure 1. Example of a diagram (π, τ,G) with 3 linked com-
ponents. Vertices denoted by • are the black vertices, i.e. of
spin ↑, and vertices denoted by ◦ are the white vertices, i.e.
of spin ↓. Moreover, vertices with label ∗ are external, dashed
lines denote g-edges and arrows (μ, ν) = ((i, σ), (j, σ′)) de-
note γ-edges, i.e. that π(i) = j if σ = σ′ =↑ or τ(i) = j if
σ = σ′ =↓. Note that there are no γ-edges between vertices
of different colours (i.e. with different spin)

1
p!q!

∑

D∈Dp,q

ΓD =
∞∑

k=1︸︷︷︸
#lnk. cps.

1
k!

∑

p1,q1≥0
p1+q1≥2

· · ·
∑

pk,qk≥0
pk+qk≥2︸ ︷︷ ︸

sizes linked components

χ(
∑

p�=p)χ(
∑

q�=q)

×
∑

D1∈Lp1,q1

· · ·
∑

Dk∈Lpk,qk︸ ︷︷ ︸
linked components

ΓD1

p1!q1!
· · · ΓDk

pk!qk!
.

Here, the factor 1
k! comes from counting the possible ways to label the k linked

components and the factors 1
p�!q�!

come from counting the possible ways of la-
belling the vertices in the different linked components (and using the factor 1

p!q!

already present). If we assume that the sum
∑

p,q:p+q≥2
1

p!q!

∑
D∈Lp,q

ΓD is ab-
solutely convergent, (more precisely we assume that

∑
p,q:p+q≥2

1
p!q!∣∣∣

∑
D∈Lp,q

ΓD

∣∣∣ < ∞,) then we may interchange the p, q-sum with the p�, q�-
sums. The absolute convergence is proven in Theorem 3.2. Thus, under the
conditions of Theorem 3.2, we have
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CN↑,N↓ = N↑!N↓!

⎡

⎣1 +
∞∑

k=1

1
k!

∑

p1,q1≥0p1+q1≥2

· · ·
∑

pk,qk≥0pk+qk≥2

∑

D1∈Lp1,q1

· · ·
∑

Dk∈Lpk,qk

ΓD1

p1!q1!
· · · ΓDk

pk!qk!

⎤

⎦

= N↑!N↓!

⎡

⎢⎢⎣1 +
∞∑

k=1

1
k!

⎛

⎜⎜⎝
∑

p,q≥0
p+q≥2

1
p!q!

∑

D∈Lp,q

ΓD

⎞

⎟⎟⎠

k⎤

⎥⎥⎦

= N↑!N↓! exp

⎡

⎢⎢⎣
∑

p,q≥0
p+q≥2

1
p!q!

∑

D∈Lp,q

ΓD

⎤

⎥⎥⎦ . (3.2)

3.2. Calculation of the Reduced Densities

For the calculation of the reduced densities, we need to keep track of also the
external vertices. First, we have the formula (for n + m ≥ 1)

ρ
(n,m)
Jas = N↑(N↑ − 1) · · · (N↑n + 1)N↓(N↓ − 1) · · · (N↓ − m + 1)

×
∫

· · ·
∫

|ψN↑,N↓ (XN↑ , YN↓ )|2 dX[n+1,N↑] dY[m+1,N↓]

=
N↑(N↑ − 1) · · · (N↑n + 1)N↓(N↓ − 1) · · · (N↓ − m + 1)

CN↑,N↓

∏

μ<ν
μ,ν∈Vn,m

f2
μν

×
∫

· · ·
∫ ∏

μ∈Vn,m,ν /∈Vn,m

(1 + gμν)
∏

μ<ν
μ,ν /∈Vn,m

(1 + gμν)DN↑ (XN↑ )DN↓ (YN↓ )

× dX[n+1,N↑] dY[m+1,N↓]

=
N↑!N↓!

CN↑,N↓

∏

μ<ν
μ,ν∈Vn,m

f2
μν

×
⎡

⎣
∑

p,q≥0

1

p!q!

∫
· · ·

∫
ρ(n+p,m+q)

∑

G∈Gn,m
p,q

∏

e∈G

ge dX[n+1,n+p] dY[m+1,m+q]

⎤

⎦

=
N↑!N↓!

CN↑,N↓

∏

μ<ν
μ,ν∈Vn,m

f2
μν

⎡

⎢⎢⎣ρ(n,m) +
∑

p,q≥0
p+q≥1

1

p!q!

∑

D∈Dn,m
p,q

Γn,m
D

⎤

⎥⎥⎦

(3.3)

where we extended the p, q-sums to ∞ as in Sect. 3.1 and used that the p =
q = 0 term gives

∑

D∈Dn,m
0,0

Γn,m
D = ρ(n,m).

Note here that the p, q-sum does not require p + q ≥ 2, since the internal
vertices may connect to external ones. As for the normalization constant in
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Sect. 3.1 we decompose each diagram D into its linked components. Here, we
have to keep track of which linked components contain which external vertices.
To do this we introduce the set

Πn,m
κ :=

⎧
⎪⎨

⎪⎩
(B∗,W∗) :

B∗ = (B∗
1 , . . . , B∗

κ) partition of {1, . . . , n},

W∗ = (W ∗
1 , . . . ,W ∗

κ ) partition of {1, . . . , m},

For all λ : B∗
λ �= ∅ and/or W ∗

λ �= ∅.

⎫
⎪⎬

⎪⎭
.

(3.4)

The set Πn,m
κ parametrizes all possible ways for the diagram D ∈ Dn,m

p,q to have
exactly κ many linked components containing at least 1 external vertex each.
Note that for κ > n + m we have Πn,m

κ = ∅, since we require that for all λ we
have B∗

λ �= ∅ or W ∗
λ �= ∅. Denoting then k the number of linked components

with only internal vertices, we get the following.

1
p!q!

∑

D∈Dn,m
p,q

Γn,m
D

=
∞∑

k=0

1
k!

n+m∑

κ=1

1
κ!

∑

(B∗,W∗)∈Πn,m
κ

∑

p∗
1 ,q∗

1≥0

· · ·
∑

p∗
κ,q∗

κ≥0

∑

p1,q1≥0
p1+q1≥2

· · ·
∑

pk,qk≥0
pk+qk≥2

× χ(
∑

λ p∗
λ+

∑
� p�=p)χ(

∑
λ q∗

λ+
∑

� q�=q)

×
∑

D∗
1∈L#B∗

1 ,#W ∗
1

p∗
1 ,q∗

1

· · ·
∑

D∗
κ∈L#B∗

κ,#W ∗
κ

p∗
κ,q∗

κ

Γ#B∗
1 ,#W ∗

1
D∗

1
(XB∗

1
, YW ∗

1
)

p∗
1!q

∗
1 !

· · ·
Γ#B∗

κ,#W ∗
κ

D∗
κ

(XB∗
κ
, YW ∗

κ
)

p∗
κ!q∗

κ!

×
∑

D1∈Lp1,q1

· · ·
∑

Dk∈Lpk,qk

ΓD1

p1!q1!
· · · ΓDk

pk!qk!
.

(3.5)

(Note that the linked components with external vertices may have 0 or 1
internal vertices, i.e. the p∗

λ, q∗
λ-sums do not require p∗

λ + q∗
λ ≥ 2.) The factorial

factors come from counting the different labellings: The factors 1
k! and 1

κ! from
the labellings of the clusters and the factors 1

p∗
λ! ,

1
q∗

λ! ,
1

p�!
, 1

q�!
from labelling the

internal vertices of the different clusters exactly as in Sect. 3.1.

If we assume absolute convergence of all the Γn′,m′
-sums with n′ ≤ n

and m′ ≤ m (i.e. that
∑

p,q≥0
1

p!q!

∣∣∣
∑

D∈Ln′,m′
p,q

Γn′,m′
D

∣∣∣ < ∞), then we may
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interchange the p, q-sum with the p∗
λ, q∗

λ- and p�, q�-sums. We then get
∑

p,q≥0

1
p!q!

∑

D∈Dn,m
p,q

Γn,m
D

=
∞∑

k=0

1
k!

⎛

⎜⎜⎝
∑

p,q≥0
p+q≥2

1
p!q!

∑

D∈Lp,q

ΓD

⎞

⎟⎟⎠

k

n+m∑

κ=1

1
κ!

∑

(B∗,W∗)∈Πn,m
κ

κ∏

λ=1

×

⎡

⎢⎣
∑

pλ,qλ≥0

1
pλ!qλ!

∑

Dλ∈L#B∗
λ

,#W ∗
λ

pλ,qλ

Γ#B∗
λ,#W ∗

λ

Dλ
(XB∗

λ
, YW ∗

λ
)

⎤

⎥⎦ .

(3.6)

Thus, by Eqs. (3.2) and (3.3) we conclude the formula

ρ
(n,m)
Jas (Xn, Ym) =

⎡

⎢⎢⎣
∏

μ,ν∈Vn,m
μ<ν

f2
μν

⎤

⎥⎥⎦
n+m∑

κ=1

1
κ!

∑

(B∗,W∗)∈Πn,m
κ

×
κ∏

λ=1

⎡

⎢⎣
∑

pλ,qλ≥0

1
pλ!qλ!

∑

Dλ∈L#B∗
λ

,#W ∗
λ

pλ,qλ

Γ#B∗
λ,#W ∗

λ

Dλ
(XB∗

λ
, YW ∗

λ
)

⎤

⎥⎦

under the assumption of absolute convergence.

3.3. Summary of Results

With the calculation above, we may then state the following theorem.

Theorem 3.2. For integers n0,m0 ≥ 0 there exist constants cn0,m0 , Cn0,m0 > 0
(small and large, respectively) such that if sab2ρ(log N)3 < cn0,m0 then

∑

p,q≥0
p+q≥2

1
p!q!

∣∣∣∣∣∣

∑

D∈Lp,q

ΓD

∣∣∣∣∣∣
< ∞,

∑

p,q≥0

1
p!q!

∣∣∣∣∣∣

∑

D∈Ln,m
p,q

Γn,m
D

∣∣∣∣∣∣
≤ Cn0,m0ρ

n+m < ∞

(3.7)

for any n ≤ n0 and m ≤ m0 with n + m ≥ 1. In particular, then

ρ
(n,m)
Jas (Xn, Ym) =

⎡

⎢⎢⎣
∏

μ,ν∈Vn,m
μ<ν

f2
μν

⎤

⎥⎥⎦
n+m∑

κ=1

1
κ!

∑

(B∗,W∗)∈Πn,m
κ

×
κ∏

λ=1

⎡

⎢⎣
∑

pλ,qλ≥0

1
pλ!qλ!

∑

Dλ∈L#B∗
λ

,#W ∗
λ

pλ,qλ

Γ#B∗
λ,#W ∗

λ

Dλ
(XB∗

λ
, YW ∗

λ
)

⎤

⎥⎦ ,

(3.8)
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where Πn,m
κ is defined in Eq. (3.4).

As particular cases we note that for n+m = 1 we have by translation invariance
that

ρ↑ = ρ
(1,0)
Jas =

∑

p,q≥0

1
p!q!

∑

D∈L1,0
p,q

Γ1,0
D , ρ↓ = ρ

(0,1)
Jas =

∑

p,q≥0

1
p!q!

∑

D∈L0,1
p,q

Γ0,1
D .

(3.9)

We give the proof of Theorem 3.2.

Remark 3.3 (Higher spin). One may readily generalize the computation above
to a general number of spins S. For this one introduces vertices of more colours
and diagrams with such, i.e. the sets of graphs and diagrams Gn1,...,nS

p1,...,pS
,Dn1,...,nS

p1,...,pS
,

Ln1,...,nS
p1,...,pS

and the values Γn1,...,nS

D . The condition of absolute convergence is
completely analogous.

Remark 3.4. The condition for the absolute convergence is not uniform in the
volume, hence the need for a box method as given in Sect. 5.4. The condition
of absolute convergence is additionally the reason for introducing the Fermi
polyhedron. This is discussed in [11, Remark 3.5]. If one did not introduce the
Fermi polyhedron and instead used the Fermi ball the factor s(log N)3 in the
assumption of Theorem 3.2 should be replaced by N1/3.

Remark 3.5 (General f and γ). In the computation above, we may replace the
specific functions fs, fp by more general functions fσσ′ = fσ′σ ≥ 0. (One then
introduces ge = f2

σσ′(zi − zj) − 1 for e = ((i, σ), (j, σ′)).)
Moreover, for the absolute convergence we may additionally replace the

one-particle densities γ
(1)
Nσ

by general functions γσ(zi − zj). (One then de-
fines γμν as in Eq. (2.3).) In the computation above we crucially used that
[det γμν ]μ,ν∈Vp,q

= 0 for appropriately large p, q in order to extend the p, q-
sums to ∞. If for the general γσ this is not valid, this step of the computation
above is not valid. The rest of the calculation starting from what one gets out
of this step is, however, still valid. That is, the calculation in Sect. 3.1 is valid
starting from Eq. (3.1) and the calculations in Eqs. (3.5) and (3.6) in Sect. 3.2
are valid.

The statement of the absolute convergence in this more general setting
reads

Lemma 3.6. Suppose there exists a constant CTG ≥ 1 such that

sup
σ,σ′

sup
z1,...,zq

∏

1≤i<j≤q

fσσ′(zi − zj)2 ≤ (CTG)q for any q ∈ N. (3.10)

Then for integers n1,0, . . . , nS,0 there exists constants cn1,0,...,nS,0 , Cn1,0,...,nS,0 >
0 such that if

sup
σ

∑

k∈ 2π
L Z3

|γ̂σ(k)| × sup
σ,σ′

∫

Λ

∣∣f2
σσ′ − 1

∣∣×
[
1 + sup

σ

∫

Λ

|γσ|
]

< cn1,0,...,nS,0 ,

(3.11)
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where γ̂σ(k) = 1
L3

∫
Λ

γσ(x)e−ikx dx denotes the Fourier transform, then

∑

p1,...,pS≥0∑
σ pσ≥2

1
p1! · · · pS !

∣∣∣∣∣∣

∑

D∈Lp1,...,pS

ΓD

∣∣∣∣∣∣
< ∞,

∑

p1,...,pS≥0

1
p1! · · · pS !

∣∣∣∣∣∣

∑

D∈Ln1,...,nS
p1,...,pS

Γn1,...,nS

D

∣∣∣∣∣∣

≤ Cn1,0,...,nS,0

⎡

⎣sup
σ

∑

k∈ 2π
L Z3

|γ̂σ(k)|

⎤

⎦

∑
σ nσ

< ∞

(3.12)

for all nσ ≤ nσ,0 with
∑

σ nσ ≥ 1. In particular, then

Z := 1 +
∑

p1,...,pS≥0∑
σ pσ≥2

1
p1! · · · pS !

∑

D∈Dp1,...,pS

ΓD

= exp

⎡

⎢⎢⎣
∑

p1,...,pS≥0∑
σ pσ≥2

1
p1! · · · pS !

∑

D∈Lp1,...,pS

ΓD

⎤

⎥⎥⎦

and

1

Z
∑

p1,...,pS≥0

1∏
σ pσ!

∑

D∈Dn1,...,nS
p1,...,pS

Γn1,...,nS

D ((Xσ
nσ

)σ=1,...,S)

=

∑
σ nσ∑

κ=1

1

κ!

∑

(V∗1,...,V∗S)∈Π
n1,...,nS
κ

×
κ∏

λ=1

⎡

⎢⎢⎢⎣
∑

p1
λ,...,pS

λ≥0

1∏
σ pσ

λ!

∑

Dλ∈L#V ∗1
λ

,...,#V ∗S
λ

p1
λ

,...,pS
λ

Γ
#V ∗1

λ ,...,#V ∗S
λ

Dλ
((Xσ

V ∗σ
λ

)σ=1,...,S)

⎤

⎥⎥⎥⎦ ,

where

Πn1,...,nS
κ :=

{
(V∗1, . . . ,V∗S) :

V∗σ = (V ∗σ
1 , . . . , V ∗σ

κ ) partition of {1, . . . , nσ}
For all λ : V ∗σ

λ �= ∅ for some σ

}

parametrizes the ways for the external vertices to lie in κ different linked com-
ponents, the coordinates of each spin σ are labelled xσ

j , j ∈ N, and we denote
by Xσ

A = (xσ
j )j∈A the coordinates with labels in the set A.

The condition in Eq. (3.10) is the “stability condition” of the tree-graph bound
[16,19, Proposition 6.1].
We give the proof of Lemma 3.6 in Sect. 4 for the case S = 2. The proof for gen-
eral S is a straightforward modification, but notationally more cumbersome.
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The case S = 1 is treated in [11, Section 3.1]. Theorem 3.2 is an immediate
corollary.

Proof of Theorem 3.2. Note that fs, fp ≤ 1 and γ̂Nσ
(k) := L−3

∫
Λ

γ
(1)
Nσ

(x; 0)
e−ikx dx = L−3χ(k∈P σ

F ) so
∑

k∈ 2π
L Z3 |γ̂Nσ

(k)| = ρσ ≤ ρ. Moreover, we have the
bounds

∫
|gs| ≤ Cab2,

∫
|gp| ≤ Ca3

p log(b/ap) ≤ Cab2, (3.13)

which follow by a simple computation using Lemma 2.5. Recalling also Eq. (2.9)
then Lemma 3.6 proves the desired. �

4. Absolute Convergence of the Gaudin–Gillespie–Ripka
Expansion

In this section, we give the proof of Lemma 3.6 for the case S = 2. The proof
is similar to that of [11, Theorem 3.4]. We need to prove (for all n,m and
uniformly in Xn, Ym) Eq. (3.12) if Eqs. (3.10) and (3.11) are satisfied. To
simplify notation we define

γ∞ := sup
σ

∑

k∈ 2π
L Z3

|γ̂σ(k)| , Ig := sup
σ,σ′

∫

Λ

∣∣f2
σσ′ − 1

∣∣ = sup
e

∫

Λ

|ge|,

Iγ := sup
σ

∫

Λ

|γσ| ,

where as above γ̂σ(k) = L−3
∫
Λ

γσ(x)e−ikx dx. Eq. (3.11) then reads that
γ∞Ig(1 + Iγ) is sufficiently small.

We give the proof in two steps. First we consider the case n = m = 0.

4.1. Absolute Convergence of the Γ-sum

In this section we show that

∑

p,q≥0
p+q≥2

1
p!q!

∣∣∣∣∣∣

∑

D∈Lp,q

ΓD

∣∣∣∣∣∣
< ∞

under the relevant conditions. Defining clusters as connected components of
G we split the sum into clusters as in [11, Section 3.1]. Denoting the sizes of
the clusters by (n�,m�), � = 1, . . . , k (meaning that the cluster � has n� black



222 A. B. Lauritsen Ann. Henri Poincaré

vertices and m� white vertices) we get
1

p!q!

∑

D∈Lp,q

ΓD

=
∞∑

k=1

1

k!

∑

n1,...,nk≥0
m1,...,mk≥0

For each �:n�+m�≥2

χ(
∑

� n�=p)χ(
∑

� m�=q)

× 1
∏k

�=1 n�!m�!

∑

G�∈Cn�,m�

∫
· · ·

∫
dXp dYq

⎡

⎣
k∏

�=1

∏

e∈G�

ge

⎤

⎦

×

⎡

⎢⎢⎣
∑

π∈Sp

τ∈Sq

(−1)π(−1)τχ((π,τ,∪�G�) linked)

p∏

i=1

γ↑(xi−xπ(i))

q∏

j=1

γ↓(yj − yτ(j))

⎤

⎥⎥⎦ ,

(4.1)

where Cp,q ⊂ Gp,q denotes the subset of connected graphs. The factorial factors
arise from counting the possible labellings exactly as in Sect. 3.

The last line of Eq. (4.1) is what we will call the truncated correlation.
We give a slightly more general definition for later use.

Definition 4.1. Let B1, . . . , Bk and W1, . . . ,Wk be sets of distinct black and
white vertices, respectively, such that for each � = 1, . . . , k we have B� �= ∅

and/or W� �= ∅. Then the truncated correlation.1 is defined as follows.

ρ
((B1,W1),...,(Bk,Wk))
t =

∑

π∈S∪�B�
τ∈S∪�W�

(−1)π(−1)τχ((π,τ,∪�G�) linked)

×
∏

i∈∪�B�

γ↑(xi − xπ(i))
∏

j∈∪�W�

γ↓(yj − yτ(j)) (4.2)

for any connected graphs G� ∈ CB�,W�
. The definition does not depend on the

choice of the graphs G�.
If the underlying sets B1, . . . , Bk,W1, . . . ,Wk are clear we will also use

the notation

ρ
((#B1,#W1),...,(#Bk,#Wk))
t = ρ

((B1,W1),...,(Bk,Wk))
t .

The truncated correlations are studied in [7, Appendix D]. To better compare
to the definition in [7], we note the following.

In Eq. (4.2), we may view (π, τ) together as a permutation of all the
vertices (both black and white). Moreover, if we instead sum over all permuta-
tions π′ ∈ S∪�B�∪∪�W�

we have that any π′ not coming from two permutations
π, τ on the black (respectively, white) vertices contributes 0, since any γ-factor
between vertices of different spins is 0. That is,

ρ
((B1,W1),...,(Bk,Wk))
t =

∑

π′∈S∪�B�∪∪�W�

(−1)πχ(π′,∪G�) linked)

∏

μ∈∪�B�∪∪�W�

γμ,π′(μ).

1The truncated correlation is also sometimes referred to as the connected correlation In
particular, this is the terminology used in [7].
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In [7, Equation (D.53)] is shown the formula for the truncated correlation

ρ
((B1,W1),...,(Bk,Wk))
t =

∑

A∈A((B1,W1),...,(Bk,Wk))

∏

(μ,ν)∈A

γμν

∫
dμA(r) det R(r),

(4.3)

where A denotes the set of anchored trees, μA is a probability measure and
R(r) is an explicit matrix. The set A((B1,W1),...,(Bk,Wk)) of anchored trees is
the set of all directed graphs on the vertices ∪�B�∪∪�W� such that each vertex
has at most one incoming and at most one outgoing edge, and such that upon
identifying all vertices inside each cluster the resulting graph is a (directed)
tree. The matrix R(r) satisfies the bound

|det R(r)| ≤ γ
∑

�(#B�+#W�)−(k−1)
∞ . (4.4)

This follows from [7, Equation (D.57)]. We give a sketch of the argument here,
see also [7, Lemma D.2] and [11, Lemma 3.10].
Proof (sketch) of Eq. ( 4.4)
Write γσ(zμ − zν) =

〈
αμ

∣∣∣βν

〉

�2( 2π
L Z3)

, where for k ∈ 2π
L Z

3

αμ(k) = e−ikzμ |γ̂σ(k)|1/2 γ̂σ(k)
|γ̂σ(k)| , βν(k) = e−ikzν |γ̂σ(k)|1/2

,

with γ̂σ(k) = L−3
∫
Λ

γσ(x)e−ikx dx the Fourier coefficients. Then by the Gram-
Hadamard inequality [7, Lemma D.1]

∣∣∣det[γσ(zμ − zν)]μ,ν∈V σ
p

∣∣∣ ≤
∏

μ∈V σ
p

‖αμ‖�2( 2π
L Z3) ‖βμ‖�2( 2π

L Z3) ≤

⎡

⎣
∑

k∈ 2π
L Z3

|γ̂(k)|

⎤

⎦
p

.

It is then explained in the proof of [7, Lemma D.6] how to adapt this argument
to bound detR(r).
Combining Eqs. (4.4) and (4.3) we conclude the bound
∣∣∣ρ((B1,W1),...,(Bk,Wk))

t

∣∣∣≤γ
∑

�(#B�+#W�)−(k−1)
∞

∑

A∈A((B1,W1),...,(Bk,Wk))

∏

(μ,ν)∈A

|γμν | .

(4.5)

With the truncated correlation we may write the last line of Eq. (4.1) as
ρ
(N ,M)
t , where

N =(n1, . . . , nk), M=(m1, . . . ,mk), (N ,M)=((n1,m1), . . . , (nk,mk)).

That is,

1
p!q!

∑

D∈Lp,q

ΓD =
∞∑

k=1

1
k!

∑

n1,...,nk≥0
m1,...,mk≥0

For each �:n�+m�≥2

χ(
∑

� n�=p)χ(
∑

� m�=q)
1

∏k
�=1 n�!m�!

×
∫

· · ·
∫

dXp dYq

⎡

⎣
k∏

�=1

∑

G�∈Cn�,m�

∏

e∈G�

ge

⎤

⎦ ρ
(N ,M)
t .
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To bound this we use the tree-graph bound [19], see also [16, Proposition 6.1].
By assumption Eq. (3.10) is satisfied and thus [19]

∣∣∣∣∣∣

∑

G∈Cp,q

∏

e∈G

ge

∣∣∣∣∣∣
≤ Cp+q

TG

∑

T∈Tp,q

∏

e∈T

|ge|, (4.6)

where Tp,q ⊂ Gp,q denotes the subset of trees. (To see this note that Cp,q

(respectively, Tp,q) is the set of connected graphs (respectively, trees) on p + q
vertices with the colours of the vertices just serving as a handy reminder of the
edge-weights ge.) By moreover using the bound on the truncated correlation
in Eq. (4.5) we conclude that

∑

p,q≥0
p+q≥2

1

p!q!

∣∣∣∣∣∣

∑

D∈Lp,q

ΓD

∣∣∣∣∣∣

≤
∞∑

k=1

1

k!

∑

n1,...,nk≥0
m1,...,mk≥0

For each �: n�+m�≥2

1
∏k

�=1 n�!m�!
(CTGγ∞)

∑
�(n�+m�)−(k−1)Ck−1

TG

×
∑

T1,...,Tk
T�∈Tn�,m�

∑

A∈A((n1,m1),...,(nk,mk))

∫
· · ·

∫
dXp dYq

[
k∏

�=1

∏

e∈T�

|ge|
]

∏

(μ,ν)∈A

|γμν | .

(4.7)

To do the integrations, we note that the graph T with edges the union of (g-
)edges in T1, . . . , Tk and (γ-)edges in A is a tree on all the

∑
� n�+

∑
� m� many

vertices. One then integrates the coordinates one leaf at a time (meaning that
the index of the corresponding coordinate is a leaf of the graph T ) and removes
a vertex from the graph after integrating over its corresponding coordinate.

To be more precise suppose that ν0 is a leaf of T . Then the variable
zν0 appears exactly once in the integrand. Either in a factor gμν0 (in which
case the zν0-integral gives

∫
|g| ≤ Ig by the translation invariance) or in a

factor γμν0 (in which case the zν0-integral gives
∫

|γ| ≤ Iγ by the translation
invariance). The final integral gives L3 by the translation invariance. There
are k − 1 factors of γ and

∑
�(n� + m� − 1) = p + q − k factors of g. Thus, we

get

∑

p,q≥0
p+q≥2

1
p!q!

∣∣∣∣∣∣

∑

D∈Lp,q

ΓD

∣∣∣∣∣∣

≤
∞∑

k=1

1
k!

∑

n1,...,nk≥0
m1,...,mk≥0

For each �: n�+m�≥2

1
∏k

�=1 n�!m�!

[
k∏

�=1

#Tn�,m�

]

× #A((n1,m1),...,(nk,mk))(CTGIgγ∞)
∑

�(n�+m�)−k(CTGIγ)k−1CTGγ∞L3.
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In [7, Appendix D.5], it is shown that

#A((n1,m1),...,(nk,mk)) ≤ k!C
∑

�(n�+m�).

Moreover, Tn,m = (n+m)n+m−2 ≤ Cn+m(n+m)! by Cayley’s formula. Finally,
we may bound the binomial coefficients (n+m)!

n!m! ≤ 2n+m. Thus

∑

p,q≥0
p+q≥2

1

p!q!

∣∣∣∣∣∣

∑

D∈Lp,q

ΓD

∣∣∣∣∣∣

≤ CL3γ∞

∞∑

k=1

⎡

⎢⎢⎣
∑

n,m≥0
n+m≥2

(n + m)!

n!m!
(CIgγ∞)n+m−1

⎤

⎥⎥⎦

k

(CIγ)k−1

≤ CL3γ∞

∞∑

k=1

[ ∞∑

�=2

�(CIgγ∞)�−1

]k

(CIγ)k−1

≤ CL3γ2
∞Ig < ∞

for γ∞Ig and γ∞IgIγ small enough. This shows that
∑

p,q:p+q≥2
1

p!q!

∑
D∈Lp,q

ΓD

is absolutely convergent under this assumption. Next, we bound the Γn,m-sum
for n + m ≥ 1.

4.2. Absolute Convergence of the Γn,m -sum

In this section, we prove that (for n + m ≥ 1 and uniformly in Xn, Ym)

∑

p,q≥0

1
p!q!

∣∣∣∣∣∣

∑

D∈Ln,m
p,q

Γn,m
D

∣∣∣∣∣∣
≤ Cn,mγn+m

∞ < ∞

if Eq. (3.10) is satisfied and γ∞Ig(1 + Iγ) is sufficiently small.
We do the same splitting into clusters (connected components of G) as in

Sect. 4.1. There is, however, a slight complication: One needs to keep track of in
which clusters the external vertices lie. This is exactly parametrized by the set
Πn,m

κ (defined in Eq. (3.4)). Denoting the sizes (number of internal vertices) of
the clusters containing external vertices by (n∗

λ,m∗
λ) and the sizes of clusters

only containing internal vertices by (n�,m�) and introducing Cn,m
p,q ⊂ Gn,m

p,q

as the subset of connected graphs (and similarly CB∗,W ∗
B,W ⊂ GB∗,W ∗

B,W , recall
Definition 3.1) we get

1

p!q!

∑

D∈Ln,m
p,q

Γn,m
D

=
∞∑

k=0

1

k!

n+m∑

κ=1

1

κ!

∑

(B∗,W∗)∈Πn,m
κ

∑

n∗
1 ,...,n∗

κ≥0
m∗

1 ,...,m∗
κ≥0

∑

n1,...,nk≥0
m1,...,mk≥0

For each �: n�+m�≥2

× χ(
∑

� n�+
∑

λ n∗
λ=p)χ(

∑
� m�+

∑
λ m∗

λ=q)
1∏κ

λ=1 n∗
λ!m∗

λ!

1
∏k

�=1 n�!m�!
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×
∑

G∗
λ∈CB∗

λ
,W ∗

λ
n∗

λ
,m∗

λ

∑

G�∈Cn�,m�

∫
· · ·

∫
dX[n+1,n+p] dY[m+1,m+q]

×
⎡

⎣
κ∏

λ=1

∏

e∈G∗
λ

ge

⎤

⎦×
[

k∏

�=1

∏

e∈G�

ge

]
×
[

∑

π∈Sn+p

τ∈Sm+q

(−1)π(−1)τχ((π,τ,∪λG∗
λ∪∪�G�) linked)

×
n+p∏

i=1

γ↑(xi − xπ(i))

m+q∏

j=1

γ↓(yj − yτ(j))

]
. (4.8)

For k = 0 the n1,m1, . . . , nk,mk-sum should be interpreted as an empty prod-
uct, i.e. as a factor 1. Similarly for p = 0 and/or q = 0 the empty product of
integrals should be interpreted as a factor 1.

The last line in Eq. (4.8) is the truncated correlation

ρ
(B∗+N ∗,W∗+M∗)⊕(N ,M)
t ,

where

N ∗ = (n∗
1, . . . , n

∗
κ), N = (n1, . . . , nk), M∗ = (m∗

1, . . . ,m
∗
κ),

M = (m1, . . . ,mk)

and ⊕ means concatenation of vectors, i.e.

(B∗ + N ∗,W∗ + M∗) ⊕ (N ,M)
= ((B∗

1 + n∗
1,W

∗
1 + m∗

1), . . . , (B
∗
κ + n∗

κ,W ∗
κ + m∗

κ), (n1,m1), . . . , (nk,mk)),

where we abused notation slightly and wrote B∗
1 + n∗

1 for the union of the
vertices B∗

1 and the n∗
1 internal black vertices of the graph G∗

1 (similarly for
the other terms.)

We use as in Sect. 4.1 the tree-graph bound and the bound on the trun-
cated correlation in Eq. (4.5). For the clusters with external vertices, we add
0-weights to the disallowed edges as in [11, Section 3.1.3], i.e. for G ∈ Cn,m

p,q

define

g̃e =

{
0 e = (i, j) with i, j external vertices
ge otherwise.

Then, we may readily apply the tree-graph bound [19] with edge-weights g̃e:
∣∣∣∣∣∣

∑

G∈Cn,m
p,q

∏

e∈G

ge

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

G∈Cp+n,q+m

∏

e∈G

g̃e

∣∣∣∣∣∣
≤ Cp+q+n+m

TG

∑

T∈Tp+n,q+m

∏

e∈T

|g̃e|

= Cp+q+n+m
TG

∑

T∈T n,m
p,q

∏

e∈T

|ge| ,
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where Tp,q ⊂ Gp,q and T n,m
p,q ⊂ Cn,m

p,q denotes the subsets of trees. Thus

∑

p,q≥0

1
p!q!

∣∣∣∣∣∣

∑

D∈Ln,m
p,q

Γn,m
D

∣∣∣∣∣∣

≤
∞∑

k=0

1
k!

n+m∑

κ=1

1
κ!

∑

(B∗,W∗)∈Πn,m
κ

∑

n∗
1 ,...,n∗

κ≥0
m∗

1 ,...,m∗
κ≥0

∑

n1,...,nk≥0
m1,...,mk≥0

For each �:n�+m�≥2

× 1
∏�

i=1 n∗
i !m

∗
i !

1
∏k

�=1 n�!m�!

×
∑

A∈A(B∗+N∗,W∗+M∗)⊕(N ,M)

∑

T ∗
1 ,...,T ∗

κ

T ∗
λ ∈T B∗

λ,W ∗
λ

n∗
λ

,m∗
λ

∑

T1,...,Tk
T�∈Tn�,m�

×
∫

· · ·
∫

dX[n+1,n+
∑

λ n∗
λ+

∑
� n�] dY[m+1,m+

∑
λ m∗

λ+
∑

� m�]

×
[

κ∏

λ=1

∏

e∈T ∗
λ

|ge|
k∏

�=1

∏

e∈T�

|ge|
∏

(μ,ν)∈A

|γμν |
]

× (CTGγ∞)
∑

λ(n∗
λ+m∗

λ)+
∑

�(n�+m�)+n+m−(k+κ−1)Ck+κ−1
TG .

(4.9)

To do the integrations, we bound some g- and γ-factors pointwise. Recall first
that there are κ clusters with external vertices. We split the anchored tree into
pieces according to these clusters as follows.

We may view the anchored tree A as a tree on the set of clusters. If κ = 1
set A1 = A. Otherwise iteratively pick a γ-edge on the path in A between any
two clusters with external vertices and bound it by

|γσ(z)| =

∣∣∣∣∣∣

∑

k∈ 2π
L Z3

γ̂σ(k)eikz

∣∣∣∣∣∣
≤ γ∞

and remove it from A. This cuts the anchored tree A into pieces. Doing this
κ − 1 many times we get κ anchored trees A1, . . . , Aκ with each exactly one
cluster with external vertices. That is,

∏

(μ,ν)∈A

|γμν | ≤ γκ−1
∞

κ∏

λ=1

∏

(μ,ν)∈Aλ

|γμν |.

Next, in each cluster with external vertices, say with label λ0, we do a similar
procedure of splitting the cluster into pieces according to the external vertices.

In the cluster λ0 there are #B∗
λ0

+#W ∗
λ0

≥ 1 external vertices. If #B∗
λ0

+
#W ∗

λ0
= 1 set T ∗

λ0,1 = T ∗
λ0

. Otherwise iteratively pick a g-edge on the path in
T ∗

λ0
between any two external vertices and bound it by

|ge| =
∣∣f2

e − 1
∣∣ ≤ max{f2

e , 1} ≤ C2
TG
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using Eq. (3.10) for q = 2. Remove the edge e from T ∗
λ0

. This cuts the tree T ∗
λ0

into pieces. Doing this #B∗
λ0

+ #W ∗
λ0

− 1 many times we get #B∗
λ0

+ #W ∗
λ0

trees T ∗
λ0,1, . . . , T

∗
λ0,#B∗

λ0
+#W ∗

λ0
with each exactly one external vertex. That is,

∏

e∈T ∗
λ0

|ge| ≤ C
2(#B∗

λ0
+#W ∗

λ0
−1)

TG

#B∗
λ0

+#W ∗
λ0∏

ν=1

∏

e∈T ∗
λ0,ν

|ge|.

We do this procedure for all the κ many clusters with external vertices. Then,
the graph T with edges the union of all (g- or γ-)edges in T ∗

λ,ν , T�, Aλ (for
λ ∈ {1, . . . , κ}, � ∈ {1, . . . , k} and ν ∈ {1, . . . ,#B∗

λ + #W ∗
λ − 1}) is a forest

(disjoint union of trees) on the set of vertices Vn+
∑

λ n∗
λ+

∑
� n�,m+

∑
λ m∗

λ+
∑

� m�

with each connected component (tree) having exactly one external vertex.
Moreover, we have the bound

∫
· · ·

∫
dX[n+1,n+

∑
λ n∗

λ+
∑

� n�] dY[m+1,m+
∑

λ m∗
λ+

∑
� m�]

×
[

κ∏

λ=1

∏

e∈T ∗
λ

|ge|
k∏

�=1

∏

e∈T�

|ge|
∏

(μ,ν)∈A

|γμν |
]

≤ C
2(n+m−κ)
TG γκ−1

∞

⎡

⎣
κ∏

λ=1

#B∗
λ+#W ∗

λ∏

ν=1

∫
· · ·

∫ ∏

e∈T ∗
λ,ν

|ge|

×
∏

(μ,ν)∈Aλ

|γμν |
∏

�:T�∼Aλ

∏

e∈T�

|ge|

⎤

⎦ ,

(4.10)

where T� ∼ Aλ means that T� and Aλ share a vertex. (Equivalently they are
part of the same connected component of T .)

Since each connected component of T is a tree we may do the integrations
one leaf at a time exactly as for the Γ-sum in Sect. 4.1. To bound the value,
we count the number of γ- and g-factors that are left.

The number of γ-integrations is exactly the number of γ-factors. There
are k + κ many clusters, so A has k + κ − 1 many edges. In constructing
A1, . . . , Aκ we cut κ − 1 many edges, thus there is k many γ-factors left and
so there are k many γ-integrations in Eq. (4.10). The remaining

∑
λ(n∗

λ +
m∗

λ) +
∑

�(n� + m�) − k integrations are of g-factors. The integrals may be
bounded by

∫
|γ| ≤ Iγ and

∫
|g| ≤ Ig as in Sect. 4.1. Moreover, since each

connected component of T has one external vertex, which is not integrated
over, there are no volume factors from the last integrations in any of the
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connected components of T . That is,
∫

· · ·
∫

dX[n+1,n+
∑

λ n∗
λ+

∑
� n�] dY[m+1,m+

∑
λ m∗

λ+
∑

� m�]

×
[

κ∏

λ=1

∏

e∈T ∗
λ

|ge|
k∏

�=1

∏

e∈T�

|ge|
∏

(μ,ν)∈A

|γμν |
]

≤ C
2(n+m−κ)
TG γκ−1

∞ I
∑

λ(n∗
λ+m∗

λ)+
∑

�(n�+m�)−k
g Ik

γ .

We use this to bound the integrations in Eq. (4.9). Additionally, we need to
bound the number of (anchored) trees. In [7, Appendix D.5], it is shown that

#A(B∗+N ∗,W∗+M∗)⊕(N ,M) ≤ (k + κ)!Cn+m+
∑

λ(n∗
λ+m∗

λ)+
∑

�(n�+m�),

since we have k + κ many clusters and n + m +
∑

λ(n∗
λ + m∗

λ) +
∑

�(n� +
m�) many vertices in total. Moreover, #T n,m

p,q ≤ #Tp+n,q+m = (p + q + n +
m)p+q+n+m−2 ≤ (p+q+n+m)!Cp+q+n+m by Cayley’s formula as in Sect. 4.1.
These bounds together with Eq. (4.9) then gives

∑

p,q≥0

1
p!q!

∣∣∣∣∣∣

∑

D∈Ln,m
p,q

Γn,m
D

∣∣∣∣∣∣

≤ (Cγ∞)n+m
∞∑

k=0

n+m∑

κ=1

(k + κ)!
k!κ!

∑

(B∗,W∗)∈Πn,m
κ

∑

n∗
1 ,...,n∗

κ≥0
m∗

1 ,...,m∗
κ≥0

∑

n1,...,nk≥0
m1,...,mk≥0

For each �:n�+m�≥2

×
[

κ∏

λ=1

(n∗
λ + #B∗

λ + m∗
λ + #W ∗

λ )!
n∗

λ!m∗
λ!

][
k∏

�=1

(n� + m�)!
n�!m�!

]

× (CIgγ∞)
∑

λ(n∗
λ+m∗

λ)+
∑

�(n�+m�−1)(CIγ)k.

(4.11)

Multinomial coefficients may be bounded as (p1+...+pk)!
p1!···pk! ≤ kp1+...+pk . More-

over, #B∗
λ ≤ n and #W ∗

λ ≤ m. Thus, we may bound

(n∗
λ + #Bλ + m∗

λ + #Wλ)! ≤ (n∗
λ + m∗

λ + n + m)! ≤ 4n∗
λ+m∗

λ+n+mn!m!n∗
λ!m∗

λ!.

We conclude the bound

∑

p,q≥0

1
p!q!

∣∣∣∣∣∣

∑

D∈Ln,m
p,q

Γn,m
D

∣∣∣∣∣∣

≤ (Cγ∞)n+m
∞∑

k=0

n+m∑

κ=1

2k+κ

⎡

⎣
∑

n∗
0 ,m∗

0≥0

Cn,m(CIgγ∞)n∗
0+m∗

0

⎤

⎦
κ

×

⎡

⎢⎢⎣CIγ

∑

n0,m0≥0
n0+m0≥2

(CIgγ∞)n0+m0−1

⎤

⎥⎥⎦

k

. (4.12)
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For some cn,m > 0 we have that if γ∞Ig(1+Iγ) < cn,m the sums are convergent
and we get

∑

p,q≥0

1
p!q!

∣∣∣∣∣∣

∑

D∈Ln,m
p,q

Γn,m
D

∣∣∣∣∣∣
≤ Cn,mγn+m

∞ < ∞.

This shows the desired. We conclude the proof of Lemma 3.6 for the case
S = 2.

Remark 4.2 (Higher spin). For the case of higher spin S ≥ 3, the computations
are essentially the same.

For later use, we define for all diagrams some values characterizing their sizes.

Definition 4.3. Let D ∈ Ln,m
p,q . Define the number k = k(D) as the number of

clusters entirely within internal vertices (i.e. the same k as in the computations
above) and κ = κ(D) as the number of clusters containing at least one external
vertex (i.e. the same κ as in the computations above). Define then ν∗ = ν∗(D)
and ν = ν(D) as

ν∗ =
κ∑

λ=1

(n∗
λ + m∗

λ), ν =
k∑

�=1

(n� + m�) − 2k,

where n∗
λ,m∗

λ, n�,m� are the sizes of the different clusters exactly as in the
computations above. (Then ν + ν∗ + 2k = p + q.)

For a diagram D the number ν + ν∗ is the “number of added vertices” in the
following sense. A diagram with n+m external vertices and k clusters entirely
within internal vertices has at least n+m+2k many vertices, since each cluster
(with only internal vertices) has at least 2 vertices. Then, ν +ν∗ is the number
of vertices a diagram has more than this minimal number.

Note that in the special case of consideration with the scattering functions
fs, fp and the one-particle density matrices γ

(1)
Nσ

we have

γ∞ ≤ ρ, Ig ≤ Cab2, Iγ ≤ Cs(log N)3

by Eqs. (3.13) and (2.9), see also the proof of Theorem 3.2. Then, by following
the arguments above (see in particular Eqs. (4.12) and (4.11)), we have (for
p + q = 2k0 + ν0)

1
p!q!

∣∣∣∣∣∣∣∣∣∣∣

∑

D∈Ln,m
p,q

k(D)=k0
ν(D)+ν∗(D)=ν0

Γn,m
D

∣∣∣∣∣∣∣∣∣∣∣

≤ Cn,mρn+m(Cab2ρ)ν0+k0(Cs(log N)3)k0

(4.13)

for any n,m with n + m ≥ 1. We think of s as s ∼ (a3ρ)−1/3+ε for some small
ε > 0. Thus increasing ν0 by 1 we decrease the size of the diagram by (a3ρ)1/3,
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and increasing k0 by 1 we decrease the size of the diagram by (a3ρ)ε. (Recall
that b = ρ−1/3.)

5. Energy of the Trial State

In this section, we use the formulas in Eq. (3.8) to calculate the energy in
Eq. (2.7). We will refer to a term in Eq. (2.7) where ρ

(n,m)
Jas appears as a

(n,m)-type term.

5.1. 2-Body Terms

In this section, we consider the terms in Eq. (2.7) where a two-particle density
(ρ(n,m)

Jas with n + m = 2) appears. We consider first the term with m = n = 1.

5.1.1. (1, 1)-Type Terms. We consider the term

2
∫∫

ρ
(1,1)
Jas

[
|∇fs(x1 − y1)|2

fs(x1 − y1)2
+

1
2
v(x1 − y1)

]
dx1 dy1. (5.1)

The formula in Eq. (3.8) reads for ρ
(1,1)
Jas as follows.

ρ
(1,1)
Jas (x1, y1) = fs(x1 − y1)2

⎡

⎣ρ
(1,0)
Jas ρ

(0,1)
Jas +

∑

p,q≥0

1
p!q!

∑

D∈L1,1
p,q

Γ1,1
D

⎤

⎦

= fs(x1 − y1)2

⎡

⎢⎢⎣ρ↑ρ↓ +
∑

p,q≥0
p+q≥1

1
p!q!

∑

D∈L1,1
p,q

Γ1,1
D

⎤

⎥⎥⎦

(5.2)

since L1,1
p,q = ∅ for p = q = 0. The second summand is an error term. We

bound it as follows.

Lemma 5.1. There exists a constant c > 0 such that if sab2ρ(log N)3 < c, then
for any integer K there exists a constant CK > 0 such that

∑

p,q≥0
p+q≥1

1
p!q!

∣∣∣∣∣∣

∑

D∈L1,1
p,q

Γ1,1
D

∣∣∣∣∣∣
≤ CKab2ρ3 + Cρ2(Csab2ρ(log N)3)K+1

+Csa3ρ3 log(b/a)(log N)3.

We give the proof at the end of this section.
Using Eq. (5.2) and Lemma (5.1), we get for any integer K

(5.1) = 2L3

∫ (
|∇fs|2 +

1
2
vf2

s

)
dx

×
[
ρ↑ρ↓ + OK

(
ab2ρ3

)
+ OK

(
ρ2(sab2ρ(log N)3)K+1

)

+ O
(
sa3 log(b/a)(log N)3

) ]
.
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By Definition 1.1, we have
∫ (

|∇fs|2 +
1
2
vf2

s

)
dx

≤ 1
(1 − a/b)2

∫ (
|∇fs0|2 +

1
2
vf2

s0

)
dx =

4πa

(1 − a/b)2
= 4πa + O(a2/b).

We conclude that

(5.1) ≤ L38πaρ↑ρ↓ + O(L3a2b−1ρ2) + OK(L3a2b2ρ3)

+ OK

(
L3aρ2(sab2ρ(log N)3)K+1

)

+ O(L3sa3ρ3 log(b/a)(log N)3).

(5.3)

Finally, we give the

Proof of Lemma 5.1. We split the diagrams into three groups using the num-
bers ν∗, ν and k from Definition 4.3:

(A) Diagrams with ν + ν∗ ≥ 1,
(B) Diagrams with ν + ν∗ = 0,

(B1) at least one p-wave g-factor.
(B2) only s-wave g-factors.

Remark 5.2. The diagrams of types (A) and (B1) are those for which the
bound in Eq. (4.13) is good enough to show that these diagrams give contri-
butions to the energy density ≤ Ca2ρ7/3. Naively using the bound in Eq. (4.13)
for the diagrams of type (B2) we only get that these are bounded by ρ2(a3ρ)ε

with b = ρ−1/3 and s chosen as described immediately after Eq. (4.13). We
will calculate the value of all the (infinitely many) diagrams of type (B2) be-
low and use this exact calculation for all diagrams up to some arbitrary high
order. This is an essential step in proving the “almost optimal” error bound
in Theorem 1.2. It is similar to the approach in [1] for the dilute Bose gas.

The contribution of all diagrams of type (A) (with ν + ν∗ ≥ 1) is ≤ Cab2ρ3

by Eq. (4.13) if sab2(log N)3 is sufficiently small (recall Theorem 3.2). For
diagrams of type (B) note that we have k ≥ 1, since any summand p, q has
p+q ≥ 1. Moreover, for diagrams of type (B1), at least one factor

∫
|gs| ≤ Cab2

should be replaced by
∫

|gp| ≤ Ca3 log b/a (recall the bounds in Eq. (3.13)).
Thus, again by Eq. (4.13), we may bound the size of all diagrams of type (B1)
by Csa3ρ3 log(b/a)(log N)3. More precisely, we have

∑

p,q≥0
p+q≥1

1
p!q!

∣∣∣∣∣∣∣∣∣

∑

D∈L1,1
p,q

D of type (A)

Γ1,1
D

∣∣∣∣∣∣∣∣∣

≤ Cab2ρ3,
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(1, ↑)

(1, ↓)
(a) Diagram Dsmall of smallest size

(1, ↑)

(1, ↓)
k

(b) Graph G of general diagram, k ≥ 1.

Figure 2. Diagrams of type (B2). In b only the g-graph G
is drawn. The relevant diagrams (π, τ,G) have π, τ such that
the diagrams are linked

∑

p,q≥0
p+q≥1

1
p!q!

∣∣∣∣∣∣∣∣∣

∑

D∈L1,1
p,q

D of type (B1)

Γ1,1
D

∣∣∣∣∣∣∣∣∣

≤ Csa3ρ3 log(b/a)(log N)3

if sab2ρ(log N)3 is sufficiently small. It remains to consider the diagrams of
type (B2), where ν +ν∗ = 0 and only s-wave g-factors appear. These diagrams
have g-graph as in Fig. 2b. Note that in particular p = q = k(D) for any such
diagram.

We now evaluate all these diagrams. We give an example calculation of
the (unique) diagram of smallest size, and then do the computation in full
generality. The diagram of smallest size is the diagram in Fig. 2a. Its value is

Γ1,1
Dsmall

=
∫∫

γ
(1)
N↑ (x1;x2)γ

(1)
N↑ (x2;x1)γ

(1)
N↓ (y1; y2)γ

(1)
N↓ (y1; y2)gs(x2 − y2) dx2 dy2

=
1

L12

∑

k↑
1 ,k↑

2∈P ↑
F

∑

k↓
1 ,k↓

2∈P ↓
F

∫∫
eik↑

1 (x1−x2)eik↑
2 (x2−x1)eik↓

1 (y1−y2)

×eik↓
2 (y2−y1)gs(x2 − y2) dx2 dy2

=
1

L12

∑

k↑
1 ,k↑

2∈P ↑
F

∑

k↓
1 ,k↓

2∈P ↓
F

ei(k↑
1−k↑

2 )x1ei(k↓
1−k↓

2 )y1

×
∫

dx2

[
ei(k↑

2−k↑
1+k↓

2−k↓
1 )x2

∫
dy2

(
gs(x2 − y2)e−i(k↓

2−k↓
1 )(x2−y2)

)]

=
1

L12

∑

k↑
1 ,k↑

2∈P ↑
F

∑

k↓
1 ,k↓

2∈P ↓
F

ei(k↑
1−k↑

2 )x1ei(k↓
1−k↓

2 )y1L3χ(k↑
2−k↑

1=k↓
1−k↓

2 )

×L3ĝs(k
↓
2 − k↓

1)

where ĝs(k) = L−3
∫

gs(x)e−ikx dx denotes the Fourier transform and we used
the translation invariance to evaluate the gs-integral. We have the bound (re-
call Eq. (3.13))

L3 |ĝs(k)| ≤
∫

|g(x)|dx ≤ Cab2.
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The characteristic function χ(k↑
2−k↑

1=k↓
1−k↓

2 ) effectively kills one of the four kσ
j -

sums. The remaining kσ
j -sums have at most Nσ ≤ N many summands. We

conclude the bound (uniformly in x1, y1)

∣∣∣Γ1,1
Dsmall

∣∣∣ ≤ Cab2ρ3.

For the general diagram in Fig. 2b, we may use the same method. We then
have

Γ1,1
D =

1
L6+6k

∑

k↑
1 ,...,k↑

k+1∈P ↑
F

∑

k↓
1 ,...,k↓

k+1∈P ↓
F

∫
· · ·

∫
dX[2,k+1] dY[2,k+1]

×

⎡

⎣
k+1∏

j=1

eik↑
j (xj−xπ(j))eik↓

j (yj−yτ(j))

⎤

⎦

⎡

⎣
k+1∏

j=2

gs(xj − yj)

⎤

⎦

=
1

L6+6k

∑

k↑
1 ,...,k↑

k+1∈P ↑
F

∑

k↓
1 ,...,k↓

k+1∈P ↓
F

e
i
(
k↑
1−k↑

π−1(1)

)
x1e

i
(
k↓
1−k↓

τ−1(1)

)
y1

×
k+1∏

j=2

∫
dxj

[
e
i
(
k↑

j −k↑
π−1(j)

+k↓
j −k↓

τ−1(j)

)
xj

×
∫

dyj

(
gs(xj − yj)e

−i
(
k↓

j −k↓
τ−1(j)

)
(xj−yj)

)]

=
1

L6+6k

∑

k↑
1 ,...,k↑

k+1∈P ↑
F

∑

k↓
1 ,...,k↓

k+1∈P ↓
F

e
i
(
k↑
1−k↑

π−1(1)

)
x1e

i
(
k↓
1−k↓

τ−1(1)

)
y1

×

⎡

⎣
k+1∏

j=2

L3χ(
k↑

j −k↑
π−1(j)

=k↓
τ−1(j)

−k↓
j

)L3ĝs

(
k↓

j − k↓
τ−1(j)

)
⎤

⎦ .

Again, each factor L3ĝs we may bound by Cab2. Moreover, since the diagram
is linked we have for each j that π−1(j) �= j and/or τ−1(j) �= j. (Otherwise
the vertices {(j, ↑), (j, ↓)} would be disconnected from the rest.) Thus, each
characteristic function is non-trivial, and hence effectively kills one of the kσ

j -
sums. Each surviving kσ

j -sum has at most Nσ ≤ N many summands. Thus
(uniformly in x1, y1)

∣∣∣Γ1,1
D

∣∣∣ ≤ ρ2(Cab2ρ)k

for any diagram D of type (B2) with k clusters of internal vertices, i.e. with
g-graph as in Fig. 2b. For any integer K we have some finite K-dependent
number of diagrams with k ≤ K. Concretely let Mk0 < ∞ be the number of
type (B2) diagrams with k = k0. Thus, using Eq. (4.13) for diagrams with
k > K, we get
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∑

p,q≥0
p+q≥1

1
p!q!

∣∣∣∣∣∣∣∣∣

∑

D∈L1,1
p,q

D of type (B2)

Γ1,1
D

∣∣∣∣∣∣∣∣∣

≤
K∑

k=1

1
k!2

∑

D∈L1,1
k,k

D of type (B2)

∣∣∣Γ1,1
D

∣∣∣

+
∞∑

k=K+1

1
k!2

∣∣∣∣∣∣∣∣∣

∑

D∈L1,1
k,k

D of type (B2)

Γ1,1
D

∣∣∣∣∣∣∣∣∣

≤
K∑

k=1

Mk

k!2
ρ2(Cab2ρ)k+Cρ2(Csab2ρ(log N)3)K+1

≤CKab2ρ3+Cρ2(Csab2ρ(log N)3)K+1

(5.4)

for some constant CK > 0 if sab2ρ(log N)3 is sufficiently small. �

Remark 5.3 (Upper bound on number of diagrams—why we can’t pick K =
∞) For an upper bound on the number of diagrams we first find an upper
bound on the number of graphs. All the underlying graphs look like Fig. 2b,
but the labelling of the internal vertices may be different. We are free to choose
which white (internal) vertex connects to (2, ↑) and so on. In total, there are
thus q! = k! many possible graphs.

Next, to bound the number of diagrams with any given g-graph we may
forget the constraint that the diagram has to be linked and consider all choices
of π ∈ Sk+1 and τ ∈ Sk+1 instead of just those, for which the diagram is linked.
For both π and τ there are then (k + 1)! many choices. Thus for each graph
G there is at most (k + 1)!2 many linked diagrams of type (B2) with g-graph
G. Thus, there are at most k!(k + 1)!2 diagrams of type (B2) with k clusters
of internal vertices. With this bound the sum

∑

k

1
k!2

∑

D∈L1,1
k,k of type (B2)

∣∣∣Γ1,1
D

∣∣∣ ≤
∑

k

k!(k + 1)2(Cab2ρ)k

is not convergent. This prevents us from taking K = ∞ in Eq. (5.4) and using
the exact calculations for all (infinitely many) diagrams of type (B2).

Remark 5.4 (Higher spin). For S ≥ 3 values of the spin, the evaluation of the
diagrams is the same, but the combinatorics of counting how many diagrams
there are for each given size is more complicated. Still, there is only some finite
K-dependent number of diagrams with k(D) ≤ K and thus (the appropriately
modified version of) Eq. (5.4) is valid if sab2ρ(log N)3 < cS for some constant
cS > 0.

5.1.2. (2, 0)- and (0, 2)-Type Terms. We bound the term
∫∫

ρ
(2,0)
Jas

[∣∣∣∣
∇fp(x1 − x2)
fp(x1 − x2)

∣∣∣∣
2

+
1
2
v(x1 − x2)

]
dx1 dx2. (5.5)
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The term with ρ
(0,2)
Jas is completely analogous. We may bound the 2-particle

density as follows.

Lemma 5.5. There exist constants c, C > 0 such that if N↑ = #P ↑
F > C and

sab2ρ(log N)3 < c, then
∣∣∣ρ(2,0)

Jas

∣∣∣ ≤ Cfp(x1 − x2)2ρ2
[
ab2ρ + ρ2/3|x1 − x2|2

[
1 + sab2ρ(log N)4

]]
.

This is essentially (a slightly modified version of) [11, Lemma 4.1]. We give
the proof at the end of this section.

Using now Lemma 5.5 we get

(5.5) ≤ CNρ

∫ [
|∇fp|2 +

1
2
f2

p v

] [
ab2ρ + ρ2/3|x|2

[
1 + sab2ρ(log N)4

]]
dx

≤ CNa2b2ρ + CNρ5/3a3
[
1 + sab2ρ(log N)4

]

(5.6)

where we used that
∫ [

|∇fp|2 +
1

2
f2

p v

]
|x|2 dx ≤ Ca3

p ≤ Ca3,

∫ [
|∇fp|2 +

1

2
f2

p v

]
dx ≤ Cap ≤ Ca.

The first inequality follows directly from the definition of the scattering length,
Definition 1.1. The second inequality is a simple computation following from
Lemma 2.5 and Eq. (2.10): Using integration by parts and fp0(x) ≥ 1−a3

p/|x|3
with equality outside the support of v we have, denoting the derivative in the
radial direction by ∂r,
∫ (

|∇fp|2 +
1
2
vf2

p

)
dx = 4π

∫ b

0

(
|∂rfp|2 r2 + fp∂

2
rfpr

2 + 4fp∂rfpr
)

dr

=
12πa3

p/b2

1 − a3
p/b3

+ 4π

[
b − 2

∫ b

0

f2
p dr

]
≤ Cap.

Finally, we give the

Proof of Lemma 5.5. Equation (3.8) reads for n = 2,m = 0 (recall Eq. (3.9))

ρ
(2,0)
Jas = fp(x1 − x2)2

⎡

⎣ρ2
↑ +

∑

p,q≥0

1
p!q!

∑

D∈L2,0
p,q

Γ2,0
D

⎤

⎦ .

We split the diagrams into two types, according to whether ν∗ = 0 or ν∗ ≥ 1
(ν and ν∗ are defined in Definition 4.3). We write

ρ2
↑ +

∑

p,q≥0

1
p!q!

∑

D∈L2,0
p,q

Γ2,0
D = ξ0 + ξ≥1,

where

ξ0 = ρ2
↑ +

∑

p,q≥0

1
p!q!

∑

D∈L2,0
p,q

ν∗(D)=0

Γ2,0
D , ξ≥1 =

∑

p,q≥0

1
p!q!

∑

D∈L2,0
p,q

ν∗(D)≥1

Γ2,0
D .
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We will do a Taylor expansion of ξ0 but not of ξ≥1. This is completely analogous
to what is done in [11, Proof of Lemma 4.1]. Consider first ξ≥1. By Theorem 3.2
and Eq. (4.13) we have ξ≥1 ≤ Cab2ρ3 uniformly in x1, x2 if sab2ρ(log N)3 < c.

Consider next ξ0. We do a Taylor expansion to second order around
the diagonal. For the zeroth order, we have ξ0(x1 = x2) + ξ≥1(x1 = x2) =
0 since ρ

(2,0)
Jas (x1, x2) vanishes for x1 = x2. The first order vanishes by the

symmetry in x1 and x2. Finally, we may bound the second derivatives ∂i
x1

∂j
x1

ξ0

by following the same procedure as in [11, Proof of Lemma 4.1, Equations
(4.15) to (4.20)]. This crucially uses the bounds in Eq. (2.9). We give this
argument for completeness.

Write (recalling Eq. (4.8) and using that the k = 0 term together with
ρ2

↑ give the two-particle density ρ(2,0) by Wick’s rule)

ξ0 = ρ(2,0) +
∞∑

k=1

1
k!

∑

n1,...,nk≥0
m1,...,mk≥0

For each �:n�+m�≥2

1∏
� n�!m�!

∑

G�∈Cn�,m�

×
∫

· · ·
∫

dX[3,2+
∑

� n�] dY∑
� m�

[
k∏

�=1

∏

e∈G�

ge

]

×

⎡

⎢⎢⎢⎣
∑

π∈S2+
∑

� n�
τ∈S∑

� m�

(−1)π(−1)τχ((π,τ,{(1,↑)}∪{(2,↑)}∪∪�G�) linked)

×
2+

∑
� n�∏

i=1

γ
(1)
N↑ (xi;xπ(i))

∑
� m�∏

j=1

γ
(1)
N↓ (yj ; yτ(j))

⎤

⎥⎥⎥⎦ .

The only dependence on x1 is in the γ-factors in [· · · ]. Computing the second
derivatives ∂i

x1
∂j

x1
ξ0 we see that they are sums of terms where one or two of

the γ-factors gain the derivatives ∂i
x1

and ∂j
x1

. The term [· · · ] above is the
truncated correlation. So is its derivative ∂i

x1
∂j

x1
[· · · ] now only some of the

γ-factors carry derivatives. To bound this term, we do as in Sect. 4 and use the
(appropriately modified) formula in Eq. (4.3). The γ-factors with derivative
can either end up in the anchored tree, or in the matrix R(r). Following the
argument in Sect. 4.2 to bound ∂i

x1
∂j

x1
ξ0 we see that we need bounds on the

determinants of the matrix R(r), modified with the γ-factors with derivatives,
and/or of the integrals of γ-factors with derivatives.

If the γ-factors with derivatives end up in the matrix R(r) we gain a
factor Cρ1/3 in the bound of its determinant, Eq. (4.4). This follows from a
slight modification of Eq. (4.4) and is explained around [7, Equation (D.9)]:
One changes the definition of some of the functions αμ in the proof of Eq. (4.4)
by including factors iki and/or ikj . If the γ-factors with derivatives end up in
the anchored tree we either have to bound them pointwise, in which case we
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gain a factor Cρ1/3, or we have to bound their integrals, in which case we use
Eq. (2.9).

Following the argument in Sect. (4.2), we thus get a bound similar to
Eq. (4.12) with the following modifications: One or two factors

∫
Λ

∣∣∣γ(1)
N↑

∣∣∣ is

replaced with factors with derivatives
∫
Λ

∣∣∣∂1γ
(1)
N↑

∣∣∣ ,
∫
Λ

∣∣∣∂2γ
(1)
N↑

∣∣∣, where ∂1, ∂2 ∈
{1, ∂i

x1
, ∂j

x1
, ∂i

x1
∂j

x1
} are the derivatives hitting γ-factors in the anchored tree

that we do not bound pointwise. For diagrams with only one internal clus-
ter (i.e. with k = 1) there is only one such γ-factor. Moreover we gain a
factor Cρ(2−#∂1−#∂2)/3 where #∂j denotes the number of derivatives in ∂j ,
i.e. #1 = 0,#∂i

x1
= 1 and #∂i

x1
∂j

x1
= 2. This factor arises from the matrix

R(r), modified to include the derivatives, and the γ-factors with derivatives
we bound pointwise. The derivatives in either (the modification of) R(r) or
on γ-factors we bound pointwise are exactly those not in ∂1 or ∂2. That is,
∣∣∂i

x1
∂j

x1
ξ0
∣∣ ≤

∣∣∣∂i
x1

∂j
x1

ρ(2,0)
∣∣∣

+ Cρ2

[
∑

∂∈{1,∂i
x1

,∂
j
x1 ,∂i

x1
∂

j
x1}

ρ(2−#∂)/3

∫

Λ

∣∣∣∂γ
(1)
N↑

∣∣∣
∑

n0,m0≥0
n0+m0≥2

(Cab2ρ)n0+m0−1

+
∑

∂1,∂2∈{1,∂i
x1

,∂j
x1

,∂i
x1

∂j
x1

}
∂1∂2∈{1,∂i

x1
,∂j

x1
,∂i

x1
∂j

x1
}

ρ(2−#∂1−#∂2)/3

∫

Λ

∣∣∣∂1γ
(1)
N↑

∣∣∣
∫

Λ

∣∣∣∂2γ
(1)
N↑

∣∣∣

×
∞∑

k=2

[
Cs(log N)3

]k−1

⎡

⎢⎢⎣
∑

n0,m0≥0
n0+m0≥2

(Cab2ρ)n0+m0−1

⎤

⎥⎥⎦

k ]
.

Noting that
∣∣∂i

x1
∂j

x1
ρ(2,0)

∣∣ ≤ Cρ8/3 by a simple computation using the Wick
rule and using Eq. (2.9) to bound the integrals we conclude that

∣∣∂i
x1

∂j
x1

ξ0

∣∣ ≤ Cρ8/3
[
1 + sab2ρ(log N)4

]

if N↑ is sufficiently large and sab2ρ(log N)3 is sufficiently small. By Taylor’s
theorem we conclude the desired. �

5.2. 3-Body Terms

In this section, we bound the 3-body terms of Eq. (2.7).

5.2.1. (2, 1)- and (1, 2)-Type Terms. We bound the term
∫∫∫

ρ
(2,1)
Jas

[∣∣∣∣
∇fs(x1 − y1)∇fp(x1 − x2)

fs(x1 − y1)fp(x1 − x2)

∣∣∣∣

+
∣∣∣∣
∇fs(x1 − y1)∇fs(x2 − y1)

fs(x1 − y1)fs(x2 − y1

∣∣∣∣

]
dx1 dx2 dy1. (5.7)

The (1, 2)-type term is bounded analogously.
By Theorem 3.2, we have the bound

ρ
(2,1)
Jas ≤ Cρ3fs(x1 − y1)2fs(x2 − y1)2fp(x1 − x2)2
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if sab2ρ(log N)3 is sufficiently small. In the first summand in Eq. (5.7) we
moreover bound fs(x2−y1) ≤ 1 and in the second summand we bound fp(x1−
x2) ≤ 1. Then, by the translation invariance we have

(5.7) ≤ CNρ2

[(∫
fs|∇fs|

)(∫
fp|∇fp|

)
+
(∫

fs|∇fs|
)2

]
.

By radiality and Lemma 2.5 we have

1
4π

∫
fs|∇fs| =

∫ b

0

r2fs∂rfs dr =
1
2
[r2f2

s ]b0 − 1
2

∫ b

0

2rf2
s dr

≤ 1
2
b2 − 1

(1 − a/b)2

∫ b

a

r
(
1 − a

r

)2

dr ≤ Cab,

where ∂r denotes the radial derivative. Similarly by Lemma 2.5

1
4π

∫
fp|∇fp| =

∫ b

0

r2fp∂rfp dr =
1
2
[r2f2

p ]b0 − 1
2

∫ b

0

2rf2
p dr

≤ 1
2
b2 − 1

(1 − a3
p/b3)2

∫ b

a

r

(
1 −

a3
p

r3

)2

dr ≤ Ca2
p.

We conclude that (for sufficiently small sab2ρ(log N)3)

(5.7) ≤ CNρ2a2b2. (5.8)

5.2.2. (3, 0)- and (0, 3)-Type Terms. We may bound
∫∫∫

ρ
(3,0)
Jas

∣∣∣∣
∇fp(x1 − x2)∇fp(x1 − x3)

fp(x1 − x2)fp(x1 − x3)

∣∣∣∣ dx1 dx2 dx3 ≤ CNρ2a4 (5.9)

using the same method as for the (2, 1)-type terms. The (0, 3)-type terms may
be bounded analogously.

Remark 5.6 (Higher spin). For higher spin we also have terms of type (1, 1, 1).
These may be bounded exactly as the (2, 1)-type terms with two s-wave factors.

5.3. Putting the Bounds Together

Combining Eqs. (2.7), (5.6), (5.8), (5.9), (5.3) and (2.8) we immediately get
for any integer K
〈
ψN↑,N↓

∣∣∣HN

∣∣∣ψN↑,N↓

〉

L3

=
3
5
(6π2)2/3

(
ρ
5/3
↑ +ρ

5/3
↓

)
+8πaρ↑ρ↓+O((s−2

↑ + s−2
↓ )ρ5/3) + O(N−1/3ρ5/3)

+ O(a2b−1ρ2) + OK(a2b2ρ3) + OK(aρ2(sab2ρ(log N)3)K+1)

+ O(sa3ρ3 log(b/a)(log N)3)

+ O(a2b2ρ3) + O
(
ρ8/3a3

[
1 + sab2ρ(log N)4

])

(5.10)
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for sab2ρ(log N)3 sufficiently small and Nσ = #P σ
F sufficiently large. As in [11,

Section 4] we will choose Nσ some large negative power of a3ρ. By choosing,
say, L ∼ a(a3ρ)−10 (still requiring that kσ

F L
2π is rational) we have N ∼ (a3ρ)−29.

(More precisely, one chooses L ∼ a((k↑
F + k↓

F )a)−30, see Remark 2.4.) Addi-
tionally, we choose

sσ ∼ (a3ρ)−1/3+ε,

where ε > 0 is chosen as ε = 1
K for K > 6. Recall moreover that b = ρ−1/3.

Thus, for any fixed integer K > 6 we have
〈
ψN↑,N↓

∣∣∣HN

∣∣∣ψN↑,N↓

〉

L3
=

3
5
(6π2)2/3

(
ρ
5/3
↑ + ρ

5/3
↓

)

+8πaρ↑ρ↓ + OK

(
aρ2(a3ρ)1/3−2/K

)
. (5.11)

5.4. Box Method

We extend to the thermodynamic limit using a box method exactly as in
[11, Section 4.1]. We sketch the details here. Using a bound of Robinson [17,
Lemmas 2.1.12, 2.1.13] (more specifically the form in [15, Section C], see also
[11, Lemma 4.3]) we have an isometry U such that UψN↑,N↓ has Dirichlet
boundary conditions in the box ΛL+2d = [−L/2 − d, L/2 + d]3 and

〈
UψN↑,N↓

∣∣∣HD
N,L+2d

∣∣∣UψN↑,N↓

〉
≤
〈
ψN↑,N↓

∣∣∣Hper
N,L

∣∣∣ψN↑,N↓

〉
+

6N

d2
,

where HD
N,L+2d denotes the Hamiltonian on a box of sides L+2d with Dirichlet

boundary conditions, and Hper
N,L denotes the Hamiltonian on a box of sides L

with periodic boundary conditions. We are free to choose the parameter d. We
will choose it some large negative power of a3ρ.

We use this to form trial states UψN↑,N↓ with Dirichlet boundary condi-
tions in a box of sides L+2d. Using then a box method of glueing copies of the
trial state UψN↑,N↓ together (as in [11, Section 4.1]) with a distance b between
them (same b as before) we get a trial state ΨM3N↑,M3N↓ of particle densities
ρ̃σ = M3Nσ

M3(L+2d+b)3 = ρσ(1 + O(b/L) + O(d/L)). The state ΨM3N↑,M3N↓ has
the energy density

〈
ΨM3N↑,M3N↓

∣∣∣HD
M3N,M3(L+2d+b)

∣∣∣ΨM3N↑,M3N↓

〉

M3(L + 2d + b)3

=

〈
UψN↑,N↓

∣∣∣HD
N,L+2d

∣∣∣UψN↑,N↓

〉

L3
(1 + O(d/L) + O(b/L))

≤

〈
ψN↑,N↓

∣∣∣Hper
N,L

∣∣∣ψN↑,N↓

〉

L3
(1 + O(d/L) + O(b/L)) + O(ρd−2).
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Choosing say d = a(a3ρ)−5 and using Eq. (5.11) we thus get

e(ρ̃↑, ρ̃↓) ≤ lim sup
M→∞

〈
ΨM3N↑,M3N↓

∣∣∣HD
M3N,M3(L+2d+b)

∣∣∣ΨM3N↑,M3N↓

〉

M3(L + 2d + b)3

≤ 3
5
(6π2)2/3(ρ5/3

↑ + ρ
5/3
↓ ) + 8πaρ↑ρ↓ + OK

(
aρ2(a3ρ)1/3−2/K

)

=
3
5
(6π2)2/3(ρ̃5/3

↑ + ρ̃
5/3
↓ ) + 8πaρ̃↑ρ̃↓ + OK

(
aρ̃2(a3ρ̃)1/3−2/K

)

since ρ̃σ = ρσ(1 + O((a3ρ)−5)). For any δ > 0 we may take K > (2δ)−1. This
concludes the proof of Theorem (1.2) for pairs of densities (ρ̃↑, ρ̃↓) arising from
the construction above. As noted in Remark 2.4 this is not all possible values
of the densities ρσ. Finally, we extend Theorem 1.2 to all pairs of (sufficiently
small) densities.

Consider any pair of densities (ρ↑0, ρ↓0) and define ρ0 = ρ↑0 + ρ↓0 and
the Fermi momenta kσ

F0 := (6π2)1/3ρ
1/3
σ0 . Let ε > 0 be some small parameter

to be chosen later and find (by density of the rationals in the reals) kσ
F with

(1 + ε)kσ
F0 ≤ kσ

F ≤ (1 + 2ε)kσ
F0 and k↑

F /k↓
F rational (recall Remark 2.3).

Following the construction above we find a trial state ψN↑,N↓ with particle
densities ρσ satisfying

(1 + 3ε + O(ε2) + O(N−1/3
σ ))ρσ0 ≤ ρσ ≤ (1 + 6ε + O(ε2) + O(N−1/3

σ ))ρσ0.

Thus, by constructing the trial states ΨM3N↑,M3N↓ of particle densities ρ̃σ as
above we find
(
1 + 3ε + O(ε2)+O((a3ρ0)−5)

)
ρσ0 ≤ ρ̃σ ≤

(
1 + 6ε+O(ε2) + O((a3ρ0)−5)

)
ρσ0.

Choosing then ε = (a3ρ0)−4 we have ρσ0 ≤ ρ̃σ and ρ̃σ = ρσ0(1+O((a3ρ0)−4))
for sufficiently small a3ρ0. Since v ≥ 0 the energy is monotone increasing in
the particle number, thus so is the energy density. Hence, for any δ > 0

e(ρ↑0, ρ↓0) ≤ e(ρ̃↑, ρ̃↓)

≤ 3
5
(6π2)2/3(ρ̃5/3

↑ + ρ̃
5/3
↓ ) + 8πaρ̃↑ρ̃↓ + Oδ(aρ2(a3ρ̃)1/3−δ)

=
3
5
(6π2)2/3(ρ5/3

↑0 + ρ
5/3
↓0 ) + 8πaρ↑0ρ↓0 + Oδ(aρ2

0(a
3ρ0)1/3−δ).

This concludes the proof of Theorem 1.2.
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