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We extend the free convolution of Brown measures of R-diagonal elements introduced by Kösters
and Tikhomirov [28] to fractional powers. We then show how this fractional free convolution arises
naturally when studying the roots of random polynomials with independent coefficients under
repeated differentiation. When the proportion of derivatives to the degree approaches one, we establish
central limit theorem-type behavior and discuss stable distributions.

1 Introduction
The definition of the free convolution μ � ν of two compactly supported probability measures μ, ν on
the real line is due to Voiculescu [49]. One can define μ � ν to be the asymptotic limit of the empirical
spectral measure of An+Bn as n → ∞, where An and Bn are independent n×n random Hermitian matrices,
invariant under unitary conjugation, whose individual empirical spectral measures converge to μ and
ν, respectively. Alternatively, one can define the free convolution using the R-transform (see (2.1), below,
for the definition). Any compactly supported probability measure μ on the real line is uniquely defined
by its R-transform Rμ(z) for sufficiently small values of the complex argument z. Heuristically, the R-
transform can be viewed as the free probability analogue of the cumulant generating function from
classical probability theory.

In fact, the free convolution μ�ν is the unique compactly supported probability measure on the real
line whose R-transform Rμ�ν satisfies

Rμ�ν (z) = Rμ(z) + Rν (z)

for all sufficiently small values of z. It follows that for an integer k ≥ 1, μ�k, the free convolution of μ

with itself k times, can be characterized by the identity

Rμ�k (z) = kRμ(z) (1.1)
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for all sufficiently small z. In fact, using (1.1), one can define the fractional free convolution μ�k for any
real k ≥ 1. This was first shown for k sufficiently large by Bercovici and Voiculescu [7] and then for all
real k ≥ 1 by Nica and Speicher [33].

Amazingly, as the following theorem shows, the free convolution can also be characterized in terms
of random polynomials and the roots of their derivatives [2, 24, 46]. We define the empirical root
distribution of a polynomial P of degree d and roots x1, . . . , xd (counted with multiplicity) to be the
probability measure

1
d

d∑
i=1

δxi ,

where δx is the point mass at x.

Theorem 1.0.1 (Hoskins–Kabluchko, Steinerberger, Arizmendi–Garza-Vargas–Perales). Let μ be a
compactly supported probability measure on the real line, and let Pn be the random polynomial

Pn(x) :=
n∏

i=1

(x − Xi),

where X1, X2, . . . are independent and identically distributed (iid) random variables with
distribution μ. For any fixed t ∈ (0, 1), the empirical root distribution of the �tn�th derivative of
Pn((1 − t)x) converges weakly almost surely to μ�1/(1−t) as n → ∞.

In other words, for a random polynomial with iid real roots, the fractional free convolution μ�1/(1−t)

describes the roots of its derivatives. The factor of 1− t in Pn((1− t)x) simply scales the roots by (1− t)−1.
We refer the reader to section 3 of [2] for a short proof of a more general version of Theorem 1.0.1.

One of the goals of this paper is to investigate similar results for a class of random polynomials with
complex roots. In particular, we extend the notion of the free convolution of Brown measures (defined
in (2.7)) that was introduced in [28] to fractional powers and show how these fractional convolution
powers can be used to describe a similar relationship as in Theorem 1.0.1 for random polynomials
with independent coefficients. For a rotationally invariant measure μ in the complex plane, our result
requires acting on μ by a bijection Sq, where (Sq μ)(Dr) := μ(D√

r) for r > 0 and Dr := {z ∈ C : |z| < r}.
An example of how Sq is used to connect the Brown measure with the roots of random polynomials is
given in Theorem 1.0.2, below. In fact, this theorem is a special case of our main result, Theorem 4.2.3.
We discuss this example more in Section 5.1.2.

Theorem 1.0.2. Let

Pn(z) :=
n∑

k=0

ξkzk (1.2)

be a random polynomial such that ξ0, ξ1, . . . are iid standard complex Gaussian random
variables. Then the empirical root measure of Pn is known to converge in probability to the
uniform probability measure, μ, on the unit circle. For any fixed t ∈ (0, 1), the empirical
root distribution of the �tn�th derivative of Pn((1 − t)2x) converges weakly in probability to
Sq((Sq−1

μ)⊕1/(1−t)) as n → ∞, where the operation ·⊕1/(1−t) is a fractional power of a convolution
⊕ on rotationally invariant probability measures, defined in Section 4.1.

Here it is worth noting Sq−1
μ = μ; however, we chose to include Sq−1 in the statement of Theorem 1.0.2

to match the more general result, Theorem 4.2.3. It may be helpful to interpret the rescaling of
(1 − t)−2 for the roots of the �tn�th derivative of the polynomial as (1 − t)−1(1 − t)−1, where one
factor of (1 − t)−1 is to account for the natural collapse of the roots under differentiation given
by the Gauss–Lucas theorem and the other (1 − t)−1 factor is to match the diffusion under the
convolution.
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Convolution Powers and Differentiation | 10191

Fig. 1. Numerical simulations illustrating Theorem 1.0.2 and Proposition 1.0.3. The figure on the left shows the
radial CDF for the eigenvalues of the sum of two independent, Haar distributed unitary random matrices. The
figure on the right is constructed using the random polynomial Pn given in (1.2) when n = 1000. The figure depicts
the radial CDF of the empirical root measure of the n/2th derivative of Pn, after applying the push-forward map
Sq−1.

The definition of ⊕ can be technical for those unfamiliar with free probability theory, so we illustrate
the connection in Theorem 1.0.2 to sums of random matrices, with an example first proved in [4]. The
analogous notion of the empirical root measure for an n × n random matrix M is the empirical spectral
measure μM given by

μM := 1
n

n∑
k=1

δλk(M),

where λ1(M), . . . , λn(M) ∈ C are the eigenvalues of M (counted with algebraic multiplicity).

Proposition 1.0.3 (Basak–Dembo). Fix an integer k ≥ 1, and let U(1)
n , . . . , U(k)

n be independent n × n
Haar distributed unitary random matrices. Then the empirical spectral measure of U(1)

n + · · · +
U(k)

n converges almost surely as n → ∞ to μ⊕k, where μ is the uniform probability measure on
the unit circle.

The convolution power in Theorem 1.0.2 does not need to be an integer, the statement is valid for
any power larger than 1, whereas Proposition 1.0.3 requires integer values. Non-integer powers can
be constructed by considering limits of truncations of random matrices (see Sections 2.2 and 4). To
illustrate this point, we consider limits of the well studied truncations of Haar distributed unitary
random matrices, first computed in [40, 54]

Proposition 1.0.4 (Życzkowski–Sommers, Dénes–Réffy). Fix a λ ∈ (0, 1) and let m := mn be such
that m

n → λ as n → ∞. Let Un be an n×n Haar distributed unitary random matrix, and let Pm
n be

an n × n self-adjoint projection, onto an m-dimensional subspace. Then the empirical spectral
measure of n

m Pm
n UnPm

n converges almost surely as n → ∞ to μ⊕1/λ, where as in Theorem 1.0.2, μ

is the uniform probability measure on the unit circle.

Numerical simulations of Theorem 1.0.2 and Proposition 1.0.3 are given in Figure 1. See Section 5.1.2
for further details on μ⊕k.

The paper is organized as follows. In Sections 2 and 3, we will give some necessary background,
known results, and notation concerning free probability theory and random polynomials, respectively.
In Section 4.1, we extend the notion of the free convolution of Brown measures (see Section 2.1) of
R-diagonal elements (see Section 2.4), which was introduced in [28] to fractional powers. Then in
Section 4.2, we will describe how this fractional free convolution is related to roots of derivatives of
random polynomials with independent coefficients. In Section 5, we give several consequences of this
theory and state some examples, giving particular attention to the distributions that are stable under ⊕
and their relationship to the roots of derivatives of random polynomials. Finally, in Section 6, we study
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the dynamics of repeated differentiation using partial differential equations (PDEs), and we relate the
PDE limits to our main results. The appendix contains some auxiliary results.

2 Free probability theory background
The large n limit of the empirical spectral measure of n × n random matrices can often be computed
using free probability. In this section, we will introduce the necessary background; we refer the reader
to the texts, surveys, and research articles cited in this section for additional details.

2.1 Free probability theory background and notation
We work on the non-commutative probability space (M , τ), where M is a von Neumann algebra with
normal faithful tracial state τ . When working with unbounded elements we consider the von Neumann
algebra that they are affiliated with; see Remarks 2.1.2 and 2.4.4 below. An element u ∈ M is called Haar
unitary if u∗u = uu∗ = 1 and τ(un) = 0 for all n ∈ N, where N = {1, 2, 3, . . .} is the set of natural numbers.
Here, and in the future, we use 1 to denote the identity operator in M . When h is a self-adjoint element
in M , the spectral measure, μh, is the unique compactly supported probability measure on R such that

τ(hn) =
∫
R

tn dμh(t), n ∈ N.

We now introduce the free probability transform that we will use to characterize measures. The
moment generating function Mμ of a probability measure, μ, on the real line is given by

Mμ(z) :=
∫
R

zt
1 − zt

dμ(t)

for z ∈ C \ supp(μ). Note that if μ is compactly supported, then for sufficiently small z, we have the
power series expansion for Mμ(z):

Mμ(z) =
∞∑

k=1

zkτ(hk) =
∞∑

k=1

zk
∫
R

tk dμ(t).

We then define the R-transform (We note that in the free probability literature, there are two different
commonly-used R-transforms, which differ by a factor of z.) Rμ of μ to be the function that satisfies

Rμ(z(1 + Mμ(z))) = Mμ(z), (2.1)

for z in a neighborhood of the origin with z �= 0. In what follows, we will identify the various transforms
of measures with the corresponding transform of the operator for which the measure was generated,
for example Rh := Rμh .

If
∫
R

t dμ(t) �= 0, we can define the S-transform, Sμ, of μ as in [34, 50], by the identity

Sμ(z) := 1
z

R〈−1〉
μ (z) (2.2)

for z in neighborhood of 0. Here (·)〈−1〉 denotes inversion with respect to composition.

Remark 2.1.1. The primary utility of the S-transform is that it linearizes multiplication: if a and
b are self-adjoint and freely independent (see (2.4) below) such that μa and μb are supported
on R+, then Sab(z) = Sa(z)Sb(z). In what follows it is useful to note that the S-transform of the
delta mass δc(x) is Sδc (z) = c−1 and that the S-transform of μaa∗ can be analytically continued
to the open interval (−1 + μa(0), 0) and maps this interval monotonically into R+ (see, e.g. [19],
Theorem 4.4). The S-transform can alternatively be defined as

Sμ(z) = 1 + z
z

M〈−1〉
μ (z),

where the equivalence of these definitions is shown in [34], Remarks 16.18 and 18.16.
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When considering a family of (not necessarily self-adjoint) elements a1, . . . , as ∈ M , we
consider their joint ∗-distribution, given by linear functionals from non-commutative polynomials,
Q(X1, X∗

1, . . . , Xs, X∗
s ), in indeterminants X1, X∗

1, . . . , Xs, X∗
s to C:

τ(Q(a1, a∗
1 . . . , as, a∗

s )).

When s = 1, we call this the ∗-distribution of a1.
As in the single variable case, the joint ∗-distribution is encoded in the multivariable R-transform,

R := Ra1,...,as (z1, . . . , zs), which we define to be the power series that satisfies the natural generalization
of (2.1):

M = R(z1(1 + M), . . . , zn(1 + M)),

where

M := Ma1,...,ak (z1, . . . , zk) :=
∞∑

n=1

k∑
i1,...,in=1

τ(ai1 · · · ain )zi1 · · · zin ,

is the multivariate moment generating function and z1, . . . , zk are non-commuting indeterminants. The
coefficients of the R-transform are called the free cumulants, and the nth free cumulant is denoted by
κn(ai1 , . . . , ain ):

R(z1, . . . , zk) =
∞∑

n=1

k∑
i1,...,in=1

κn(ai1 , · · · , ain )zi1 . . . zin . (2.3)

The free cumulants are multi-linear functions. We refer the reader to [34], section 16, where the free
cumulants are instead first defined through a moment-cumulant relation, and then Theorem 16.15
and Corollary 16.16 show that this is an equivalent definition. In particular, the free cumulants can be
recovered from the joint moments and vice versa.

We now use the R-transform to define free independence of non-commutative random variables.
Once again, we will give an analytic definition and refer the reader to section 16 of [34] for a
combinatorial definition in terms of the free cumulants, in particular Theorem 16.6 and Remark 16.7,
where the equivalence of the two definitions is shown.

We say that a collection a1, . . . , ak of elements in M are ∗-freely independent if

Ra1,a∗
1 ...,ak ,a∗

k
(z1, z2 . . . , z2k−1, z2k) = Ra1,a∗

1
(z1, z2) + · · · + Rak ,a∗

k
(z2k−1, z2k), (2.4)

as formal power series. In particular, the mixed cumulants vanish.

Remark 2.1.2. When considering an unbounded element a, one must instead treat a as an
element affiliated to W∗(a), the von Neumann algebra generated by the spectral projections of
|a|. We then say unbounded elements are freely independent if all elements of their respective
affiliated algebras are free. We refer the reader to [20], section 3, for details.

2.2 The fractional free convolution for self-adjoint operators
Nica and Speicher [33] give the fractional convolution powers from (1.1) an additional free probability
interpretation, for which we must first introduce additional background. Let p ∈ M be a self-adjoint
projection (meaning that p2 = p) with τ(p) = λ for some λ ∈ (0, 1], and then consider the new
non-commutative probability space (Mp, τp) given by (The brackets [] are a formal symbol, which we
introduce in order to distinguish (Mp) from M.)

Mp := {[pap] : a ∈ M}

with

τp([pap]) = λ−1τ(pap)
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for any a ∈ M. We then consider the map πλ : M → Mp by πλ(a) := [pap], which we will call the free
compression of a. When λ is fixed, we will omit it from the notation. Note that in Mp, we have that
π(a∗) = π(a)∗, π(a) + π(b) = π(a + b), and π(a)π(b) = π(apb) = π(papbp).

Remark 2.2.1. In Corollary 1.14 from [33], it is shown that if a is a self-adjoint element in M with
law μ, that is freely independent of p, with τ(p) = 1/k, for k ∈ N, then kπ(a) has the law μ�k.
In Definition 4.1.1, we will give similar convolution semigroup for a class of measures on the
complex plane, which from [33] can also be related to the sum of freely independent elements
or the free compression of a single element.

2.3 The Brown measure
If a ∈ M is not self-adjoint, then its distribution is not determined by its moments. Nevertheless, there
is a distinguished measure associated to a, called its Brown measure, which we now introduce. We let
	 denote the Fuglede–Kadison determinant on (M , τ) (see [14]), and let L denote log 	. It follows that,
for a ∈ M ,

L(a) = L(a∗a)/2 = L(a∗) =
∫
R

log t dμ|a|(t) ∈ [−∞, ∞).

The function λ �→ 1
2π

L(a − λ1) is sub-harmonic on C, and by the Riesz representation theorem can be
identified with a regular probability measure, which is called the Brown measure for a (see [9]) and is
denoted as μa. The measure μa is defined as

μa := 1
2π

∇2L(a − λ1)

where ∇2 denotes the Laplacian, interpreted in the distributional sense. Note that the notation μa agrees
with the previously introduced notation for self-adjoint elements of M . The Brown measure has a
number of important properties [19]:

• μa is the unique compactly supported measure that fulfills

L(a − λ1) =
∫
C

log |z − λ| dμa(z)

• for Lebesgue almost all complex numbers λ.
• The support of μa is contained in the spectrum of a, and for any natural number n

τ(an) =
∫
C

zn dμa(z).

• For any arbitrary a, b ∈ M , μab = μba.
• The Brown measure for a Haar unitary element is the Haar measure on the unit circle.
• The Brown measure of a is determined by its ∗-distribution, but it is not continuous with respect to

convergence of ∗-moments (see, e.g. [32] section 11).

2.4 R-diagonal elements
In general, the Brown measure is difficult to compute, but there is a class of elements, which we now
introduce, for which the Brown measure can be computed. Let a be an element of M . Then a is said
to be R-diagonal if a has polar decomposition a = uh, where u is a Haar unitary free from the radial
part h = |a|. See section 15 of [34] and sections 2.3 and 2.4 of [8] for further details about R-diagonal
elements. Alternatively, an element a is R-diagonal if all cumulants except the even cumulants which
alternate between a and a∗ vanish. We will call such cumulants the diagonal terms of the R-transform.
In the tracial setting (meaning the τ(ab) = τ(ba) for all a, b ∈ M ), the vanishing of the non-diagonal
cumulants implies that the R-transform of (a, a∗) is of the form

Ra,a∗ (z1, z2) =
∞∑

n=1

αn(z1z2)
n + αn(z2z1)

n,
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where

αn := κ2n(a, a∗, . . . , a, a∗) = κ2n(a∗, a, . . . , a∗, a);

see [34], Example 16.9.

Remark 2.4.1. Classes of bi-unitarily invariant random matrices converge in ∗-distribution to R-
diagonal elements. Although convergence in ∗-distribution is not strong enough to guarantee
convergence of the empirical spectral measure, it was shown in [18] that the empirical spectral
measure does converge to the Brown measure of an R-diagonal element.

The following theorem, from [19] (see also [51]) shows that the Brown measure of R-diagonal elements
can be explicitly computed.

Theorem 2.4.2 (Haagerup–Larsen, Zhong). Let a be an R-diagonal element, and define

λ1 :=
(∫ ∞

0
x−2dμ|a|(x)

)−1/2

, λ2 :=
(∫ ∞

0
x2dμ|a|(x)

)1/2

, (2.5)

with the convention that λ1 = 0 if
∫ ∞

0 x−2dμ|a|(x) = ∞. Then the Brown measure of a is radially
symmetric and its radial cumulative distribution function (CDF) is given by

Fa(r) := μa(Dr) =

⎧⎪⎪⎨⎪⎪⎩
0 if r ∈ [0, λ1)

1 + S 〈−1〉
a∗a (r−2) if r ∈ [λ1, λ2)

1 if r ≥ λ2

, (2.6)

where Dr is the closure of the open disk Dr = {z ∈ C : |z| < r}.

Remark 2.4.3. Note that the Brown measure is always supported on a (possibly degenerate) ring,
centered at the origin. Furthermore, by Remark 2.1.1, μa has density when a is not a Haar
unitary and 0 is in its support if Sa∗a(z) is unbounded, with its singularity occurring at z =
μa({0}) − 1.

Remark 2.4.4. If a is unbounded, it is said to be R-diagonal if there exists a von Neumann algebra
N , with a faithful, normal, tracial state, and ∗-free elements u and h affiliated with N , such
that u is Haar unitary, h is positive, and a has the same ∗-distribution as uh. Once again, we
refer the reader to [20], section 3. The Brown measure of an unbounded operator might not be
compactly supported, but formula (2.6) still holds.

Products and sums of freely independent R-diagonal elements are also R-diagonal [19], making the
Brown measure of sums of freely independent R-diagonal elements a natural object to consider. From
(2.6), we see there is a bijection between the set of Brown measures of R-diagonal elements and measures
on R+ such that

∫
R+

log+ |t|dνa < ∞,

given by the correspondence: μa ↔ νa := μaa∗ . Furthermore, there is a bijection between symmetric
probability measures on R and measures on R+, given by the mapping x → x2. We denote by ν̃a, the
inverse image of νa under this map. By composing these two bijections we get a bijection, H, mapping
a class of symmetric probability measures on R to the Brown measures of R-diagonal elements. In [28],
building on the work of [19], Kösters and Tikhomirov show that if a and b are ∗-freely independent
R-diagonal elements, then the Brown measure of a + b is given by

μa+b = μa ⊕ μb := H(H−1(μa) � H−1(μb)), (2.7)
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where � is the additive free convolution discussed at the beginning of Section 1. Note that H(̃νa � ν̃b) =
H(̃νa) ⊕ H(̃νb). The convolution ⊕ is used in [28] to compute the limiting spectrum of a certain class of
polynomials of random matrices with iid entries. The authors also characterize the Brown measures
that are stable under the ⊕ operation; see Proposition 2.4.5, below.

The Brown measure of an R-diagonal element is called α-⊕ stable if for any m ∈ N

μ⊕m = Dm1/α μ,

where, for c ∈ (0, ∞),Dc is the scaling operator that maps a probability measure to the measure induced
by the mapping x → cx. We also note that in [6, 52, 53], a related convolution, denoted �RD, which acts
on measures on R+, was studied.

Proposition 2.4.5 (Kösters–Tikhomirov). The Brown measure of a is α-⊕ stable if and only if

Saa∗ (z) = θ
(−z)

2
α

−1

1 + z
(2.8)

for some θ > 0.

Here, and throughout this paper, we use the principal branch of the complex function zc with branch
cut along the negative real axis. We discuss this proposition further and give an alternative proof in
Section 5.5.

3 Random polynomial theory background
In this section, we review some results concerning zeros of random polynomials and their derivatives.
We focus on works which are closely related with the results in this paper.

Let Pn be a (random) polynomial with complex coefficients of degree n in a single complex variable.
A natural question is to describe the distribution of the roots of P(k)

n , the kth derivative of Pn, in terms
of the distribution of roots of Pn. In general, the roots of Pn and P(k)

n are related by the Gauss–Lucas
theorem, which guarantees the zeros of P(k)

n lie in the convex hull of the roots of Pn. However, the example
Pn(z) = zn − 1 shows that the roots of Pn and P(k)

n need not have similar distributions, even when k = 1.
However, for many models of random polynomials, the roots of Pn and P(k)

n are similar when n tends to
infinity and k is fixed (or grows slowly with n) [10, 11, 21–23, 25, 31, 35, 37–39, 41, 47]. In this section, we
describe some known results for the case when k is proportional to the degree n.

3.1 Random polynomials with independent coefficients
Theorem 1.0.1 deals with polynomials with independent roots. A different and more widely studied
model involves polynomials with independent coefficients. The limiting root measure for these polyno-
mials was described in [27]. Let

Pn(z) :=
n∑

k=0

ξkPk,nzk (3.1)

be a random polynomial with general coefficients, where Pk,n are deterministic complex coefficients
and ξk are non-degenerate iid complex-valued random variables. It will be convenient to assume that

P(ξ0 = 0) = 0 and E log(1 + |ξ0|) < ∞. (3.2)

The coefficients Pk,n are assumed to satisfy the following assumption.

Assumption 3.1.1. There exists a function P : [0, ∞) → [0, ∞) so that

1) P(t) > 0 for t ∈ [0, 1) and P(t) = 0 for t > 1;
2) P is continuous on [0, 1) and left continuous at 1; and

3) limn→∞ sup0≤k≤n

∣∣∣|Pk,n|1/n − P( k
n )

∣∣∣ = 0.
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Let Pn be the random polynomial from (3.1). Heuristically, Assumption 3.1.1 implies that the
coefficients Pk,n are roughly en log P(k/n) for some continuous function P. In order to study the roots, we
define the random measure

μn := 1
n

∑
z∈C:Pn(z)=0

δz,

where δz is a Dirac point mass at z and we agree the roots are counted with multiplicities. Recall that
for any r > 0, Dr = {z ∈ C : |z| < r} is the open disk of radius r centered at the origin. In [27], Kabluchko
and Zaporozhets establish several results describing the asymptotic behavior of the zeros of random
analytic functions. In the special case when the random analytic function is Pn, their results reduce to
the following.

Theorem 3.1.2 (Kabluchko–Zaporozhets [27]). Let Pn be the random polynomial given in (3.1),
where Pk,n are deterministic coefficients satisfying Assumption 3.1.1 for some function P(t) and
ξ0, ξ1, . . . are iid non-degenerate complex-valued random variables that satisfy E log(1 + |ξ0|) <

∞. Let I : R → R ∪ {+∞} be the Legendre–Fenchel transform of u(t) = − log P(t), where we use
the convention that log 0 = −∞. That is,

I(s) := sup
t≥0

(st − u(t)) = sup
t≥0

(st + log P(t)).

Then μn converges in probability to the deterministic, rotationally invariant measure, μ, which is
characterized by

μ(Dr) := I′(log r), r > 0.

Here, as a convention, I′ is the left derivative of I. Since I is convex, the left derivative exists everywhere.
In [27], Kabluchko and Zaporozhets also characterize a set of rotationally invariant measures on C

that arise when one studies the asymptotic behavior of zeros of random analytic functions. We will need
a related class of rotationally invariant probability measures on C. To this end, we denote by RP(C) the
set of rotationally invariant probability measures on C and define the set

RPp(C) :=
{
μ ∈ RP(C)

∫ 1

0
μ (Dr) r−1 dr < ∞

}
.

We note that the upper bound of 1 in the integral is not particularly important, and could be replaced
by any positive constant for an equivalent definition. In particular, a measure μ ∈ RPp(C) cannot have
an atom at the origin. Here, the subscript “p” refers to polynomials since RPp(C) represents the set of
probability measures that can arise as the limit of empirical root measures of random polynomials with
independent coefficients as explained in Remark 3.1.3 below.

Remark 3.1.3. Every measure μ ∈ RPp(C) can arise as the limiting empirical root measure of
a random polynomial with independent coefficients. This follows from the arguments given
by Kabluchko and Zaporozhets in [27], Theorem 2.9. Although Theorem 2.9 from [27] is stated
for random analytic functions, the proof can be specialized to random polynomials when μ

is a probability measure; we now outline the argument. Let μ ∈ RPp(C), and define I(s) =∫ s
−∞ μ(Der )dr. Additionally define the Legendre–Fenchel transform of I:

u(t) := sup
s∈R

(st − I(s)).

Then the random polynomials Pn(z) = ∑n
k=0 ξkPk,nzk with Pk,n = e−nu(k/n) satisfy Assumption 3.1.1

with P = e−u. This follows exactly as in [27] with the observation that for any finite measure μ,
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such that I(s) < ∞ for all s ∈ R, one has

lim sup
t→∞

I(t)
t

= μ(C),

and hence for a probability measure μ, u(t) = +∞ for t > 1. Thus, P(t) = 0 for any t > 1.

Let Pn be the random polynomial from (3.1). We are interested in the Nnth derivative P(Nn)
n of Pn, which

will be of degree Dn := n − Nn. In order to study its zeros, we slightly abuse notation and define the
random measure

μDn := 1
Dn

∑
z∈C:P(Nn )

n (z)=0

δz,

where δz is a Dirac point mass at z, and we again agree the roots are counted with multiplicities.
Building on the work of Kabluchko and Zaporozhets [27], Feng and Yao [13] establish the following

result for the zeros of P(Nn)
n .

Theorem 3.1.4 (Feng–Yao [13]). Let Pn be the random polynomial given in (3.1), where Pk,n are
deterministic coefficients satisfying Assumption 3.1.1 for some function P(t) and ξ0, ξ1, . . . are
iid non-degenerate complex-valued random variables that satisfy (3.2):

1) If limn→∞ Nn/n = 0, let I : R → R ∪ {+∞} be the Legendre–Fenchel transform of u(x) = − log P(x),
then μDn converges in probability to a rotationally invariant measure μ in the complex plane given
by μ(Dr) := I′(log r) for all r > 0. In particular, μDn has the same limit as μn.

2) If limn→∞ Nn/n = t ∈ (0, 1), let ut(x) = − log p(x + t) − (x + t) log(x + t) + x log x − (1 − t) log(1 − t)
if 0 ≤ x ≤ 1 − t and −∞ if x > 1 − t. Let It : R → R ∪ {+∞} be the Legendre–Fenchel transform of
ut, then μDn converges in probability to a rotationally invariant measure μt in the complex plane
given by μt(Dr) := 1

1−t I′t(log r) for all r > 0.

Here, as a convention, I′ and I′t are the left derivatives of I and It, respectively. The main idea behind
Theorem 3.1.4 is that if the coefficients of Pn satisfy Assumption 3.1.1, then the coefficients of the Nnth
derivative of Pn satisfy essentially the same assumption with a (possibly) different exponential profile.

In [13], Feng and Yao also consider certain special cases, such as the Kac and elliptic models, where
they compute the limiting behavior of the zeros when limn→∞ Nn/n = 1. We will discuss these cases and
some generalizations in Sections 5.4 and 5.6. In particular, Proposition 5.6.1 gives a partial answer to
questions posed by Feng and Yao on the limiting root distributions when limn→∞ Nn/n = 1, illustrating
the importance of the tail of the original root measure to the potential limits.

3.2 PDEs describing the behavior of roots under repeated differentiation
Another approach to studying the distribution of zeros of Pn (or its large n limit) and its �tn�th derivative
for some 0 < t < 1 is to relate them by a PDE; in this case, we will often think of t as time, with t = 0
corresponding to the empirical distribution of roots of Pn (or its large n limit).

Suppose Pn is a polynomial of degree n having all its roots on the real line with density f (0, x). In [45],
Steinerberger introduced the following PDE for the density f (t, x) of the zeros of P(�tn�)

n :

ft + 1
π

(
arctan

(
Hf
f

))
x

= 0, (3.3)

where the equation holds on the support supp f and Hf is the Hilbert transform of f .
A similar result has been introduced when the roots of Pn are rotationally invariant in the complex

plane. Indeed, given the initial radial density ψ(x, 0) of the zeros at t = 0, the PDE from [36] describes
the radial density ψ(x, t) at time 0 ≤ t < 1. The equation is

∂ψ(x, t)
∂t

= ∂

∂x

(
ψ(x, t)

1
x

∫ x
0 ψ(y, t)dy

)
x ≥ 0, 0 ≤ t < 1. (3.4)
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Here, we use the convention that x ≥ 0 either denotes x ∈ [0, C] (for some finite positive constant C)
or x ∈ [0, ∞), depending on whether the density is compactly supported or not. In the former case, by
rescaling, we will often assume without loss of generality that C = 1.

In [24], Hoskins and Kabluchko relate the radial (part of the) distribution function

�t(x) := �(x, t) :=
∫ x

0
ψ(y, t)dy

at time t to the initial distribution

�0(x) := �(x, 0) =
∫ x

0
ψ(y, 0)dy.

They show that �t(x) satisfies the equation

�
〈−1〉
t (x)

x
= �

〈−1〉
0 (x + t)

x + t
(3.5)

for 0 < x < 1 − t and 0 ≤ t < 1.
In [15], Galligo derives a system of two coupled equations to model the motion of real and complex

roots for real polynomials under repeated differentiation.
We explore (3.4) and some related PDEs more in Section 6.
The functions �t considered in (3.5) are radial CDFs of sub-probability measures, however a simple

normalization results in a similar identity for radial CDFs of probability measures. The function �t also
need not have a true inverse for (3.5) to provide meaningful information on polynomial roots under
differentiation. Instead, (3.5) can be interpreted as an identity on the generalized left-continuous inverse
of the CDF, or quantile function of the distribution. In Appendix A, we review some basic results on
quantile functions which will be used in the proofs of our main results in Sections 4 and 5.4.

3.3 Connections to free probability theory
The PDE in (3.3) also appeared in [44] to describe the fractional free convolution. In the case of
a polynomial with real roots, Steinerberger [46] proposed an interpretation of the density of zeros
of repeated derivatives in terms of free probability theory. This interpretation has been further
explored in [2, 24], culminating in generalized versions of Theorem 1.0.1. In particular, the work [2]
establishes a connection between the real case and finite free probability theory, a subject developed in
[29, 30].

In a similar spirit, Kabluchko [26] showed that the zeros of real-rooted trigonometric polynomials
under repeated differentiation in the asymptotic limit can be described in terms of a free multiplicative
convolution involving the free unitary Poisson distribution.

While the above works provide connections between differentiation and free probability, and hence
random matrices, in the large degree limit, these connections can also be seen at finite degree. The
following result of Gorin and Marcus [17] provides such a connection.

Theorem 3.3.1 ([17] Theorem 1.1). Let Pn be a degree n monic polynomial with real roots and let Dn

be a n × n diagonal matrix whose entries are the roots of Pn. Let Un be a n × n Haar distributed
random unitary matrix and Ak,n the top left k × k corner of UDU∗. If Qn is the characteristic
polynomial of Ak,n, then

EQn(z) = 1
n(n − 1) · · · (k + 1)

(
∂

∂z

)n−k

Pn(z).

Taking the k × k corner of UDU∗ can be seen as the finite n version of the free compression described
in Section 2.2, which is, in turn, related to free addition. The full result of [17] is much more general
than what is stated here. They consider several random matrix models and operations with natural
free probabilistic limits and how they relate to polynomial operations. Similar themes were developed
by Gorin and Kleptsyn [16].

In this paper, we further explore connections between zeros of random polynomials and free
probability theory in the case when the polynomials have roots in the complex plane.
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4 The fractional free convolution for R-diagonal elements
In this section, we use the relationship given in [33] between the distribution of a and π(a) to extend the
⊕ operation to fractional powers. We then give an alternative expression for the Brown measure of the
sum of k identically distributed, freely independent R-diagonal elements. Our expression is more direct,
as it does not require using the bijection H, given in (2.7), and computing the free convolution powers
of symmetric probability measures.

4.1 Fractional free convolution powers of the Brown measure
Definition 4.1.1 (R-diagonal fractional free convolution). Let a be an R-diagonal element with

Brown measure μa. For k > 1 a real number, we define μ⊕k
a to be the radially symmetric

probability measure with radial CDF given by

μ⊕k
a (Dr) :=

⎧⎨⎩1 + S 〈−1〉
k (r−2) if r ∈ (0, λ(k)

2 )

1 if r ≥ λ
(k)

2

(4.1)

for r > 0, where for z ∈ C, in a neighborhood of [−1, 0], we define

Sk(z) := 1 + z/k
k(1 + z)

Saa∗ (z/k), (4.2)

λ
(k)

2 := √
kλ2, and λ2 is given by (2.5).

The following proposition gives elementary properties of the probability measure μ⊕k
a . Then we will

give a proposition that shows the fractional free convolution agrees with the previous definition of ⊕
for integer values of k.

Proposition 4.1.2. Let k > 1 be a real number, and let μa be the Brown measure of an R-diagonal
element a. Let R ∈ [0, ∞] be the smallest radius of the closed disk that μa is supported on. Then

1) μ⊕k
a ({0}) = max{0, 1 − k(1 − μa({0}))};

2) onC\{0}, μ⊕k
a has density, which is supported and positive on the closed disk of radius

√
kR, centered

at the origin.

Proposition 4.1.3. Let k ≥ 1 be an integer and a1, . . . , ak be freely independent copies of an R-
diagonal element a. Then the Brown measure of a1 + · · · + ak is μ⊕k

a (as defined in Definition
4.1.1). Furthermore, μ

⊕j
a forms a convolution semigroup:

(
μ

⊕j
a

)⊕l = μ
⊕jl
a (4.3)

for all real j, l ≥ 1.

Proof of Proposition 4.1.2. Let ν be the spectral measure of aa∗ and Sk be as in (4.2). Throughout the
proof, we will use that Sν is a decreasing function on (−1 + ν({0}), 0) with range (λ−2

2 , λ−2
1 ).

To prove 1, we first note that if μa({0}) = 0 then Sν and hence Sk is finite on (−1, 0) and thus
μ⊕k({0}) ∼=∼ 0. If μa(0) �= 0 then Sν is singular at −1 + μa({0}), and thus by (4.2), Sk is singular at
k(−1 + μa({0})), giving an atom at zero with weight 1 − k(1 − μa({0})) if this quantity is positive and no
atom otherwise.

To prove 2, we use that the prefactor, 1+z/k
k(1+z) , and hence the entire term in (4.2) is strictly monotonic

on [−1, 0]. Thus, when combined with (2.6), we find that μ⊕k
a has positive density (by Corollary 4.5

of [19], the density of the Brown measure is positive on its support). Then showing that the inner
radius of μ⊕k

a is 0 is equivalent to showing that the S-transform is singular at −1 ∼ + ∼ μ⊕k
a ({0}).

If μ⊕k
a ({0}) > 0, from 1 we see that this happens. On the other hand, if μ⊕k

a ({0}) ∼=∼ 0, then from
(4.2), we have that for all k > 1, the prefactor is singular at −1. To compute the outer radius, we
note that Sk(0) = 1

k Saa∗ (0) = 1
kR2 , and conclude that μ⊕k

a is supported on the disk of radius
√

kR,
as desired. �
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Before we prove Proposition 4.1.3, we will show that the ∗-distributions of kπk−1 (a) and a1 +· · ·+ak are
the same, and hence both elements have the same Brown measure. Proposition 4.1.3 will then follow by
computing the Brown measure of π(a). As mentioned in Section 2.2, [33] provides a natural connection
between πk−1 (a) and

∑k
i=1 ai. In fact, in [33], it is shown that this relationship holds for not just for a

single a but for the joint distribution of the family (a1, . . . , ak). The following lemma follows from their
results (see also [33] sections 14 and 15), we include it for completeness.

Lemma 4.1.4. Let a, a1, . . . , ak be as in Proposition 4.1.3. The ∗-distributions of kπk−1 (a) and a1 +
· · · + ak are equal. Furthermore, they are both R-diagonal elements.

Proof. We begin by relating the free cumulants of (πλ(a), πλ(a)∗) to those of (a, a∗). We then specialize to
λ = 1/k. We will now omit the subscript λ from πλ.

By Theorem 14.10 of [34] the free cumulants of (π(a), π(a)∗) are a rescaling of the free cumulants
(a, a∗) by λ−1:

κ
Mp
n (π(aε1 ), . . . , π(aεn )) = λ−1κn(λaε1 , . . . , λaεn ) (4.4)

with εi ∈ {1, ∗}. Here we have introduced the superscript Mp to make it clear that all relevant quantities
are computed with respect to τp. In particular, because a is R-diagonal, the non-diagonal cumulants
vanish, meaning π(λ−1a) is also R-diagonal, and its diagonal cumulants are

κ
Mp
n (π(λ−1a), π(λ−1a∗) . . . , π(λ−1a), π(λ−1a∗)) = λ−1κn(a, a∗, . . . , a, a∗).

On the other hand, if a1, . . . , ak are ∗-freely independent, non-commutative random variables with the
same ∗-distribution as a, then x(k) := a1 + · · · + ak is also R-diagonal with

κn(x(k), x(k)∗, . . . , x(k), x(k)∗) =
k∑

i=1

κn(ai, a∗
i , . . . , ai, a∗

i ) = k κn(a, a∗, . . . , a, a∗),

where we have used that, by freeness, the mixed cumulants vanish.
Setting λ = k−1, we see that x(k) and kπ(a) have the same ∗-distribution, as desired. �

To compute the Brown measure of a1 + · · · + ak in Proposition 4.1.3, it now suffices to compute the
S-transform of πk−1 (a)πk−1 (a)∗; we will use the following lemma to compute this S-transform. We remark
that similar computations were done in [1] to study the Brown measure of products of truncations of
∗-freely independent Haar unitary elements.

Lemma 4.1.5. Let p ∈ M be a projection with τ(p) = λ ∈ (0, 1], a ∈ M , an R-diagonal element,
(We thank Martin Auer and an anonymous referee for pointing out an error in our previous
assumptions to this lemma.) and x ∈ M be self-adjoint, such that p is free from a and x. Then
we have for z in a neighborhood of the origin that

1) Sp(z) = 1+z
λ+z

2) Spapa∗p(z) = ( 1+z
λ+z

)2
Saa∗ (z)

3) Sπ(x)(z) = λ(z+1)

λz+1 Spxp(λz)

Proof. To prove 1, we begin by computing the moment generating function for p:

Mp(z) =
∞∑

k=1

τ(pk)zk =
∞∑

k=1

λzk = λz
1 − z

.

We then compute its inverse and get its S-transform:

M〈−1〉(z) = z
λ + z

and thusSp(z) = 1 + z
z

M〈−1〉(z) = 1 + z
λ + z

.
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To prove 2, we use that τ is tracial so the S-transform of papa∗p equals the S-transform of p2apa∗

and hence papa∗. Then, because a is R-diagonal, p and a are free, and hence p is free from apa∗, the
S-transform of papa∗ factorizes as

Spapa∗p(z) = Sp(z)Sapa∗ (z) = Sp(z)2Saa∗ (z).

The desired result follows by applying 1.
To prove 3, we use that the moments of π(x) equal the corresponding moments of pxp, rescaled by

λ, so

λMπ(x)(z) = Mpxp(z).

Then the S-transform is

Sπ(x)(z) = z + 1
z

M〈−1〉
π(x) (z) = z + 1

z
M〈−1〉

pxp (λz) = λ(z + 1)

λz + 1
Spxp(λz),

as desired. �

We now apply the above lemma to compute the S-transform of π(a)π(a)∗ = π(a)π(a∗) = π(papa∗p) =
π(apa∗).

Proof of Proposition 4.1.3. We begin by applying 3 from Lemma 4.1.5 to papa∗p and then 2 to the result:

Sπ(papa∗p)(z) = λ(z + 1)

λz + 1
Spapa∗p(λz) = λ(z + 1)

λz + 1
(1 + λz)2

(λ + λz)2
Saa∗ (λz) = 1 + λz

λ(1 + z)
Saa∗ (λz).

Then using that Sλ−2π(a)π(a)∗ = λ2Sπ(a)π(a)∗ gives

Sλ−2π(a)π(a)∗ (z) = λ(1 + λz)
1 + z

Saa∗ (λz). (4.5)

Setting λ = 1/k shows that the Brown measure of kπ(a) and hence, by Lemma 4.1.4, a1 + · · · + ak is μ⊕k
a ,

as (4.5) is the S-transform given in (4.2).
We see that μ

⊕j
a forms a semigroup by using (4.2) to compute the S-transforms of each side of (4.3):

1 + z/l
l(1 + z)

1 + (z/l)/j
j(1 + z/l)

Saa∗

(
z/l
j

)
= 1 + z/(lj)

lj(1 + z)
Saa∗

(
z
lj

)
. �

4.2 Connection between Brown measures and derivatives of random
polynomials
We now relate the fractional free convolution to the roots of the derivatives of random polynomials.

Given that the measures in RPp arise as the limiting root distribution for polynomials with random
coefficients, it makes sense to define RPp as the domain of the differentiation flow. Additionally, we let
�t(r) := 1

1−t �t(r), be a rescaling of �t in (3.5), in order to keep the total mass constant. It is easy to see
that �t satisfies the following definition. Throughout we will use �〈−1〉 to denote the quantile function
of a radial CDF �; see Appendix A.

Definition 4.2.1. Let μ ∈ RPp with radial CDF �0. The differentiation flow starting from μ is the
subset {μt}0≤t<1 of RPp such that μt is the probability measure with radial CDF �t, and quantile
functions satisfying

�
〈−1〉
t (x) = x(1 − t)�〈−1〉

0 ((1 − t)x + t)
x(1 − t) + t

, (4.6)

for x ∈ (0, 1), where �
〈−1〉
t is the quantile function of �t and the existence of such measures

follows from Lemma A.0.2 and the fact that the functions defined by (4.6) are left-continuous
and non-decreasing.
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Fig. 2. This diagram represents the relationship between the free compression of R-diagonal elements and
repeated differentiation of random polynomials. The map Sq on radially symmetric measures is defined before
Theorem 1.0.2. Note that when comparing repeated differentiation directly to free compressions, there is no need
to include any rescaling of the roots, unlike when comparing to the convolution ⊕.

Remark 4.2.2. Equation (4.6) is a rescaled version of (3.5) to ensure the total mass of the associated
measure is 1. Hence, if μ is the measure arising in part 1 of Theorem 3.1.4, then for any t ∈ (0, 1)

μt is exactly the limiting measure in part 2 of Theorem 3.1.4.

We now connect the differentiation flow to the fractional free convolution of Brown measures,
which can be seen in Figure 2. For a rotationally invariant measure μ in the complex plane, recall that
Sq μ(Dr) := μ(D√

r) for r > 0, where Dr := {z ∈ C : |z| < r}, and Sq−1
μ(Dr) = μ(Dr2 ) is the inverse map.

For a degree n random polynomial Pn, we will be interested in the roots of the �tn�-th derivative of Pn,
where t ∈ (0, 1). It is often convenient to view t as time, with t = 0 corresponding to the initial distribution
of roots.

Theorem 4.2.3. Let

Pn(z) =
n∑

k=0

ξkPk,nzk

be a random polynomial, with Pk,n satisfying Assumption 3.1.1 and ξk being iid random variables
satisfying (3.2), such that μ is the limiting empirical root distribution of Pn. Additionally, assume
there exists an R-diagonal element a affiliated to some non-commutative probability space
(M, τ) with Brown measure Sq−1

μ. For any fixed t ∈ (0, 1), let μt be the limiting empirical root
distribution of the �tn�th derivative of Pn((1 − t)2x) as n → ∞ (whose existence is guaranteed
by Theorem 3.1.4), then

μt = Sq[(Sq−1
μ)⊕1/(1−t)].

Proof. Let a be an R-diagonal element with Brown measure Sq−1
μ. We then let Fa(r) be the radial CDF

of the Brown measure of a. From (2.6), we have that Fa(r) = 1+S 〈−1〉
a∗a (r−2), for r ∈ [λ1, λ2]. Solving for F〈−1〉

a

gives

F〈−1〉
a (x) = 1√

Sa∗a(x − 1)
,

for x ∈ (0, 1).
Let λ = 1 − t and Fλ be the radial CDF of the measure (Sq−1

μ)⊕1/λ, recalling the definition of Sk in
(4.2) and setting k = λ−1, we have from (4.1) that

F〈−1〉
λ (x) = 1√

Sλ−1 (x − 1)
,

for x ∈ (0, 1).
Evaluating (4.2) at z = x − 1 and k = λ−1 gives

Sλ−1 (x − 1) = λ

x
(λ(x − 1) + 1)Sa∗a(λ(x − 1)).

which, in terms of F〈−1〉
λ and F〈−1〉

a (x), is

F〈−1〉
λ (x) =

√
x

λ(1 + λ(x − 1))
F〈−1〉

a ((x − 1)λ + 1). (4.7)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/13/10189/7640105 by Institute of Science and Technology Austria user on 22 July 2024



10204 | A. Campbell et al.

We let Gλ be the radial CDF of Sq(Sq−1
μ)⊕1/λ and Ga the radial CDF of μ. We see from (4.7) that

G〈−1〉
λ (x) = x

λ(1 + λ(x − 1))
G〈−1〉

a ((x − 1)λ + 1). (4.8)

After comparing (4.8) to (4.6) with t = 1 − λ and initial condition �0 = Ga, we see that

G〈−1〉
λ (x) = 1

λ2
�

〈−1〉
1−λ (x)

for all x ∈ (0, 1). As discussed in Remark 4.2.2, �1−λ is the limiting radial CDF of the �(1−λ)n�-th derivative
of Pn(x). Hence, Gλ is the limiting radial CDF of the �(1 − λ)n�th derivative of Pn(λ

2x). �

We conclude this section by translating properties of the fractional free convolution of Brown
measures to the differentiation flow.

Proposition 4.2.4. Let μ ∈ RPp(C). Then

1) For any t ∈ (0, 1), 0 is in the support of μt.
2) For any t ∈ (0, 1), μt has density on C. In particular μt({z : |z| = r}) = 0 for any r > 0.

Proof. This follows in a completely analogous way to the proof of Proposition 4.1.2 with (4.6) replacing
(4.2). �

5 Consequences of the theory and examples
In this section, we consider some examples and consequences of Theorem 4.2.3. Section 5.1 consid-
ers specific examples with explicit distributions, while Sections 5.2 and 5.3 consider more general
comparisons between random polynomials and algebraic operators of R-diagonal elements. Finally,
as Theorem 4.2.3 relates differentiation to addition of R-diagonal elements Sections 5.4, 5.5, and 5.6
consider limit theorems for repeated differentiation as the number of derivatives approaches the degree
and stable laws.

5.1 Examples
In this section we consider specific examples to compare the sum of R-diagonal elements to repeated
differentiation of random polynomials in Theorem 4.2.3.

5.1.1 Circular law and random Taylor polynomials
We call an element c ∈ M a standard circular element if its R-transform (recall (2.3)) is

Rc,c∗ (z1, z2) = z1z2 + z2z1,

We call

Pn(z) =
n∑

k=0

ξknk

k!
zk, (5.1)

where ξ0, ξ1, . . . are iid random variables satisfying (3.2), the random Taylor polynomial. (The name
“random Taylor polynomial” for this model comes from [36].) In this section, we will show that

Sq(μπλ(c)) = μt

when λ = 1 − t.
The Brown measure of a standard circular element is the uniform measure on the unit disk. A

standard computation (see, e.g. [19] Example 5.1) shows that the S-transform of cc∗ is

Scc∗ (z) = 1
1 + z

.
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From (4.5), we have that

Sλ−2πλ(c)πλ(c)∗ (z) = λ(1 + λz)
1 + z

1
1 + λz

= λ

1 + z
,

which recovers the result from [19] that the free compression of a standard circular element by πλ is
just λ1/2 times a standard circular element. Furthermore, setting λ = k−1 verifies the well known fact
that if c1, . . . , ck are ∗-freely independent standard circular elements, then k−1/2 ∑k

i=1 ci is also a standard
circular element. To match this Brown measure with the roots of a random polynomial, we remove the
λ−2 factor to obtain

Sπλ(c)πλ(c)∗ (z) = 1
λ(1 + z)

,

which, from Theorem 2.4.2, gives that the radial CDF of μπ(c) is

Fπλ(c)(r) = r2

λ

for r ∈ [0,
√

λ].
The limiting root distribution the polynomials (5.1) has density 1

2π |z| and radial CDF �(r) = r for
r ∈ [0, 1]. It is then a simple calculation to see from (4.6) that μt has radial CDF �t(r) = r

1−t for r ∈ [0, 1−t],
and is just a rescaling of �, by (1 − t)−1. Choosing t = 1 − λ, we have that Fπλ(c)(r) = �1−λ(r2), as expected
from Theorem 4.2.3.

5.1.2 Haar unitaries
We now discuss the example in Theorem 1.0.2 in more detail. We begin by giving examples from [19] of
sums of freely independent Haar unitary elements and of the product of a free projection and a Haar
unitary, whose Brown were computed by less direct methods than using (4.2). We then discuss the Kac
random polynomial.

In [19], Haagerup and Larsen consider

u(k) := u1 + u2 + · · · + uk

where u1, u2, . . . , uk are ∗-freely independent, Haar unitary elements and show that the S-transform of
u(k)u(k)∗ is

Su(k)u(k)∗ (z) = z + k
k2(z + 1)

, (5.2)

and hence the Brown measure has radial CDF

Fμu(k)
(r) = (k − 1)

r2

k2 − r2
(5.3)

for r ∈ [0,
√

k].
On the other hand (5.2) is exactly the multiplicative factor in (4.2), so (5.2) is also the S-transform

of up(up)∗, where u is a Haar unitary element and p is a ∗-freely independent projection with trace
τ(p) = k−1.

The Brown measure of up was also considered in [19]. After removing the atom of the Brown measure
at 0 it follows from their result that πλ(u) has radial CDF

Fπ(u)(r) =
⎧⎨⎩ 1−λ

λ
r2

1−r2 , 0 ≤ r ≤ √
λ

1, r ≥ √
λ

. (5.4)

Setting k = λ−1, this expression, as expected, is a dilation of (5.3) by k.
The Brown measure of u is the uniform probability measure on the unit circle in C. Hence, even after

applying Sq, the natural random polynomial to compare to is the Kac polynomial

Pn(z) =
n∑

k=1

ξkzk, (5.5)
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where ξ0, ξ1, . . . , are iid random variables satisfying (3.2). The empirical root measure of Kac polynomials
converges, see for example Theorem 3.1.2, in probability to the uniform probability measure on the unit
circle.

Let t = 1−λ ∈ (0, 1). Feng and Yao [13] established that the empirical root measure of P�(tn)�
n converges

(see Theorem 3.1.4) in probability to the measure with radial CDF

�t(r) =
⎧⎨⎩ t

1−t
r

1−r , 0 ≤ r < 1 − t

1, r ≥ 1 − t
. (5.6)

Then �t is the push-forward of Fπ(u) under Sq, as given in Figure 2.

5.2 Products of R-diagonal elements and random polynomials
In this section, we give an operation on random polynomials, namely coefficient-wise multiplication,
which also describes products of free R-diagonal elements. Products of free R-diagonal elements are
simpler than sums, so we are also able to consider elements that are free but not necessarily identically
distributed.

Proposition 5.2.1. Let

Pn(z) :=
n∑

k=0

ξkPk,nzk,

and

Qn(z) :=
n∑

k=0

ξkQk,nzk,

be random polynomials where Pk,n and Qk,n are deterministic coefficients satisfying Assumption
3.1.1 for some functions P(z) and Q(z), respectively, and ξ0, ξ1, . . . are iid non-degenerate
complex-valued random variables that satisfy E log(1 + |ξ0|) < ∞. Let μP and μQ be the limits
(as given by Theorem 3.1.2) of the empirical root measures of Pn and Qn, respectively. Define
the random polynomial

Sn(z) :=
n∑

k=0

Pk,nQk,nξkzk.

Then Pk,nQk,n satisfy Assumption 3.1.1 with function S(z) := P(z)Q(z), and the radial quantile
function, �

〈−1〉
S , of the (again as given by Theorem 3.1.2) limiting empirical root measure, μS,

is given by

�
〈−1〉
S (x) = �

〈−1〉
P (x)�

〈−1〉
Q (x), (5.7)

where �
〈−1〉
P and �

〈−1〉
Q are the radial quantile functions of μP and μQ , respectively. Moreover, if x and

y are ∗-free R-diagonal elements such that μx = Sq−1
μP and μy = Sq−1

μQ , then μxy = Sq−1
μS.

Proof. It is immediate to see S satisfies points 1 and 2 of Assumption 3.1.1. For 3, note

lim
n→∞ sup

0≤k≤n

∣∣∣∣|Pk,nQk,n|1/n − P
(

k
n

)
Q

(
k
n

)∣∣∣∣
≤ lim

n→∞ sup
0≤k≤n

[ ∣∣∣∣|Pk,nQk,n|1/n − P
(

k
n

)
|Qk,n|1/n

∣∣∣∣
+

∣∣∣∣P (
k
n

)
|Qk,n|1/n − P

(
k
n

)
Q

(
k
n

)∣∣∣∣ ]
= 0,

where the last equality follows from the continuity, and hence boundedness, of P and Q. It
remains to show the quantile function �

〈−1〉
S factors as the radial quantile functions �

〈−1〉
P and �

〈−1〉
Q .
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Let I : R → R ∪ {+∞} be the Legendre–Fenchel transform of u(x) = − log S(x), then

�S(r) = I′(log r), r > 0. (5.8)

We will assume u, − log P, and − log Q are convex functions. Otherwise, we can take the Legendre–

Fenchel transformation twice to get new functions ũ, −̃ log P, and −̃ log Q that are convex. As the
Legendre–Fenchel transform is an involution on convex functions, this change has no affect on �S, �P,
or �Q . To consider quantile functions, we note from general properties of Legendre–Fenchel transforms
that [I′]〈−1〉 = u′ (see, e.g. [43], specifically Corollary 23.5.1). Taking (generalized) inverses in (5.8)

�
〈−1〉
S (x) = exp

(
[I′]−1(x)

) = exp
(
u′(x)

) = exp
(

− d
dx

log P(x) − d
dx

log Q(x)

)
= �

〈−1〉
P (x)�

〈−1〉
Q (x).

To compute the Brown measure of xy we use the relationship Sxyy∗x∗ = Sxx∗Syy∗ for any ∗-free R-
diagonal elements, this relationship follows by taking the S-transform of Proposition 3.6(ii) in [19]. Hence,
from (2.6), the radial quantile function of μxy is F〈−1〉

xy = F〈−1〉
x F〈−1〉

y . This completes the proof of the final
statement by noting �

〈−1〉
P = [F〈−1〉

x ]2 and �
〈−1〉
Q = [F〈−1〉

y ]2. �

5.3 Commutator of R-diagonal elements
In this section, we combine the last section with Proposition 4.1.3 and consider the (anti-)commutator
of two free R-diagonal elements x, y. At the end of the section, we specialize to the case that x and y are
both circular elements.

Proposition 5.3.1. Let x and y be free R-diagonal elements. Let λx
2, λy

2 be as in Theorem 2.4.2, for x
and y, respectively, and let λ2 = √

2λx
2λ

y
2 and

Scomm(z) = 2 + z
4(1 + z)

Sx∗x(z/2)Sy∗y(z/2).

Then the Brown measure of xy ± yx is given by

μxy±yx(Dr) =
⎧⎨⎩1 + S 〈−1〉

comm(r−2) if 0 < r < λ2

1 if r ≥ λ2

.

Proof. We prove the statement for the commutator, the anti-commutator is completely analogous. Our
main goal in this proof, is to rewrite xy − yx as the sum of two ∗-free, identically distributed R-diagonal
elements, we will do this through a series of reductions. We begin with a standard trick when working
with R-diagonal elements and introduce a new Haar unitary u, that is ∗-freely independent from x and
y. Then, because x and y are R-diagonal, we have that (ux, yu∗) has the same ∗-distribution as (x, y), and
thus we can instead consider the Brown measure of

uxyu∗ − yu∗ux = uxyu∗ − yx.

Furthermore, uxyu∗ and yx are ∗-freely independent (see, e.g. Exercise 5.24 [34]), so we can introduce two
more R-diagonal elements a, b such that (a, b) has the same ∗-distribution as (x, y), and then compute
the Brown measure of ab−yx Then, because yx and −yx have the same ∗-distributions, we can consider
the Brown measure of ab+yx. The Brown measure of yx, and thus ab, as ab and yx have the same Brown
measure, was given in Proposition 5.2.1. Then since the ∗-distribution of yx and ab are the same, we can
apply Proposition 4.1.3 with k = 2 to complete the proof. �

Before specializing to commutators of circular elements, we give a polynomial interpretation of the
commutator of general R-diagonal elements. Let Pn, Qn, x, and y be exactly as in Proposition 5.2.1. Define
the random polynomial

Cn(z) =
�n/2�∑
j=0

ξj+�n/2�Pj+�n/2�,nQj+�n/2�,n
(j + �n/2�)!
�n/2�! 4j

zj.
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One can check using Theorem 4.2.3, Proposition 5.2.1, and the proof of Proposition 5.3.1 that μxy±yx =
Sq−1

μC.
We now consider the Brown measure of the commutator of two ∗-free circular elements. We note

that this model was considered in [12], where it is shown that the empirical spectral distribution of any
quadratic polynomial in independent Ginibre random matrices converges to the Brown measure of the
corresponding polynomial in ∗-free circular elements, but the Brown measure was not computed.

Since Sxx∗ (z) = Syy∗ (z) = 1
1+z , we have that

Scomm(z) = 2 + z
4(1 + z)

4
(2 + z)2

= 1
(1 + z)(2 + z)

.

Proposition 5.3.1 then gives that the radial CDF of the Brown measure of xy − yx is

μxy−yx(Dr) = 1 + −3 + √
1 + 4r2

2
= −1 + √

1 + 4r2

2

for r ∈ (0,
√

2).

5.4 The limit of the differentiation flow
In this section we consider the limiting behavior of polynomial roots as the proportion of derivatives
to the degree approaches one. With Theorem 4.2.3 connecting repeated differentiation of random
polynomials to sums of free random variables, it is natural to consider distributions which are stable
under the differentiation flow defined by (4.6) and serve as central limits for the convolution. For
α ∈ (0, 2], let μα ∈ RPp(C) be the measure with radial CDF �0,α such that �

〈−1〉
0,α (x) = x

(1−x)
2
α −1

. It is

then easy to check (recall (4.6)) that

�
〈−1〉
t,α (x) = (1 − t)2− 2

α �
〈−1〉
0,α (x),

for all x, t ∈ (0, 1). Hence, μt
α is μα , up to a t-dependent rescaling of the support, and we refer to μα as

stable under the differentiation flow. Of course, scalar dilations of stable laws are also stable. So we
provide the following general definition of differentiation stable.

Definition 5.4.1. Let μ be a rotationally invariant probability measure with invertible radial CDF
�. μ is said to be α-differentiation stable for α ∈ (0, 2] if there exists some θ > 0 such that

�〈−1〉(x) = θ
x

(1 − x)
2
α
−1

, (5.9)

for all x ∈ [0, 1).

As the following proposition demonstrates this definition of α-differentiation stable is consistent with
the already existing notion of α-⊕ stable and Theorem 4.2.3.

Proposition 5.4.2. A radially symmetric probability measure μ is α-differentiation stable if and
only if Sq−1

μ is α-⊕ stable.

Proof. The proof is an immediate consequence of Theorem 2.4.2 and Proposition 2.4.5. �

For simplicity of presentation, we consider initial root distributions with power-law tail decay
and compact support/super-polynomial tail decay separately in Theorem 5.4.3 and Corollary 5.4.4,
respectively. The proofs however are nearly identical, with the power-law decay requiring only a short
extra initial discussion on regularly varying functions. (See, for example, [42] for background on regularly
varying and slowly varying functions.)

Theorem 5.4.3 (Limit of repeated differentiation). Let μ ∈ RPp(C) with unbounded support and
radial CDF �0 such that

lim
r→∞

1 − �0(r)

L(r)r− α
2−α

= 1, (5.10)
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for some α ∈ (0, 2) and some positive slowly varying function L. Let {�t}t∈[0,1) be the fam-
ily defined by (4.6). Then, there exists a positive slowly varying function g : [1, ∞) →
[1, ∞) such that the radially symmetric probability measures μ̃t with radial CDF �̃t(x) =
�t

(
g((1 − t)−1)(1 − t)2− 2

α x
)

converges weakly to the probability measure μα with radial quantile

function �
〈−1〉
0,α (x) = x

(1−x)
2
α −1

as t → 1−.

To understand the rescaling in Theorem 5.4.3, it is helpful to rewrite (1 − t)2− 2
α as (1 − t)(1 − t)−( 2

α
−1).

The (1 − t)−( 2
α
−1) term is to manage the tail decay of the measure, as described by (5.10). The (1 − t)

term corrects for the natural flow inward of polynomial roots under differentiation, as described by the
Gauss–Lucas theorem.

Before the proof of Theorem 5.4.3, we give a brief discussion of how it may be interpreted as some type
of central limit theorem. For simplicity assume g is the constant function g(x) = 1 First, let x1, x2, . . .
be some sequence of freely independent identically distributed R-diagonal elements such that μx1 =
Sq−1

μ. If t = 1 − 1
k for some natural number k, then from Theorem 4.2.3, we see that Sq−1

μ̃t is the
Brown measure of

x1 + · · · + xk

k
1
α

.

Thus, taking the t → 1− limit of μ̃t is essentially the same as taking the k → ∞ limit of x1+···+xk

k
1
α

. In this

way, Theorem 5.4.3 is essentially a generalized central limit theorem for R-diagonal elements translated,
through Theorem 4.2.3, to the language of repeated differentiation of random polynomials.

Proof of Theorem 5.4.3. From (5.10), we have that 1
1−�0

is α
2−α

-varying. Thus, see Resnick [42] Proposition

0.8, the function y �→ �
〈−1〉
0

(
1 − 1

y

)
is 2−α

α
-varying in y. Thus, there exists a positive slowly varying

function g : [1, ∞) → (0, ∞) such that �
〈−1〉
0

(
1 − 1

y

)
∼ g(y)y

2−α
α as y → ∞. Defining the function

f (t) = g
( 1

1−t

)−1
, it is then straightforward to check that

lim
x→1−

f (x)(1 − x)
2
α

−1�
〈−1〉
0 = 1, and lim

t→1−
f (t)

f ((1 − t)x + t)
= 1 (5.11)

for every x ∈ (0, 1).
Fix x ∈ (0, 1). We have

lim
t→1−

�̃
〈−1〉
t (x) = lim

t→1−
f (t)(1 − t)−(2− 2

α
)�

〈−1〉
t (x)

= lim
t→1−

x
(1 − t)x + t

f (t)(1 − t)
2
α
−1�

〈−1〉
0 ((1 − t)x + t)

= lim
t→1−

x
(1 − t)x + t

· f (t)(1 − t)
2
α
−1

f ((1 − t)x + t)(1 − ((1 − t)x + t))
2
α

−1

= x

(1 − x)
2
α

−1
,

where the third equality follows from (5.11). Hence, �̃
〈−1〉
t converges to �

〈−1〉
0,α pointwise on (0, 1). It then

follows from Lemma A.0.3 that �̃t converges to �0,α pointwise on (0, ∞) as t → 1−. This completes the
proof. �

The following is stated as a corollary of Theorem 5.4.3 with α = 2, i.e. measures with compact support
or super-polynomial tail decay. In these cases (5.10) is ill-defined; however, looking at the proof it is still

true that y �→ �
〈−1〉
0

(
1 − 1

y

)
is 0-varying in y. Hence, the proof of Corollary 5.4.4 is identical to the proof

of Theorem 5.4.3 beginning from the second line. For simplicity we state it only for measures with
compact support. It is worth noting the limit is Sq applied to the uniform distribution on the unit disk
in the complex plane, i.e. the Circular Law, one of the most important measures in non-Hermitian free
probability theory.
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Corollary 5.4.4. Let μ be a probability measure in RPp(C) with radial cumulative distributed
function �0 such that inf{x ≥ 0 : �0(x) = 1} = 1. Then

lim
t→1−

�t((1 − t)r) = r, (5.12)

for any fixed r ∈ (0, 1), where �t is the radial CDF of μt.

5.5 Stable laws
In [28], the Brown measures that are stable under the ⊕ operation are characterized. One way
to establish this characterization is via the bijection H, so it suffices to determine the symmetric
probability measures that are stable under �, and then determine their S-transforms. This was done in
[3], building upon the work of [5], where it is shown that the S-transform of any symmetric free stable
distribution is of the form

Sα(z) = θei(2−α) π
2α z

1
α
−1 = θ i(−z)1/α−1

for 0 < α ≤ 2, and some constant θ > 0. Additionally, they prove that for ν̃, a symmetric probability
measure on R:

S 2
ν̃ (z) = 1 + z

z
Sν (z),

where ν is the probability measure on R+ induced by the map x → x2, as given before (2.7). So we see
that if ν̃ is a symmetric free stable distribution then the S-transform of ν is

Sν (z) = θ
(−z)

2
α
−1

1 + z
(5.13)

for some (possibly different) constant θ > 0. This is exactly the expression in (2.8). We now give an
alternative, more direct, proof of Proposition 2.4.5 that the Brown measure of a is α-⊕ stable when the
S-transform of μaa∗ is of the form (5.13), without relying on the characterization of stable laws on R.

Proof of Proposition 2.4.5. We will show that the S-transforms in (2.8), which we remind the reader is
just (5.13) with ν replaced by aa∗, are exactly the class of functions that are invariant under applying π

and rescaling as in (4.5).

If Saa∗ (z) = (−z)
2
α −1

1+z then a simple rescaling of the argument gives

Saa∗ (z) = λ−2/αλ(1 + λz)
1 + z

Saa∗ (λz).

Additionally, these are exactly the class of functions that are invariant after rescaling by λ and then
multiplying by c λ(1+λz)

1+z , for some constant c. But from (4.5), we have that the right-hand side is equal
to the S-transform of λ2/α−2πλ(a)πλ(a). In other words, the Brown measure is invariant under the map
a → λ1/α−1πλ(a), which, by Proposition 4.1.3, has the same law as

a1 + · · · + ak

k1/α

when λ = k−1. �

The case α = 2 corresponds to the circular element, considered in Section 5.1.1. More generally, in [28],
it is shown that if l = 2

α
− 1 is an integer, then the Brown measure of x0x−1

1 · · · x−1
l , where the xis are

∗-freely independent circular elements, is α-⊕ stable.
In the remainder of this section, we use Proposition 5.2.1 to directly relate the measures μα appearing

in Theorem 5.4.3 to random polynomials with independent coefficients. In principle, random polyno-
mials with independent coefficients whose empirical root measures converge to μα could be reverse
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engineered from the radial quantile function and Theorem 3.1.2. We will instead use Proposition 5.2.1
and already known results on α-⊕ stable laws to construct simple coefficients for these polynomials
that transform quite nicely under differentiation.

For l = 2
α

− 1, an integer, we let x0, x1, . . . , xl be free circular elements. We have already seen in
Section 5.1.1 that the random polynomial

Cn(z) =
n∑

k=0

nk

k!
ξkzk,

have limiting root measure Sq μx0 . One can verify through the S-transform and and radial quantile
function that the random polynomial

Dn(z) =
n∑

k=0

k!
nk

(
n
k

)
ξkzk

has limiting root measure Sq μx−1
1

. Applying Proposition 5.2.1, we see that the random polynomial

Sn(z) =
n∑

k=0

(
k!
nk

)l−1 (
n
k

)l

ξkzk, (5.14)

has limiting root measure Sq μx0x−1
1 ···x−1

l
, and hence is differentiation stable. Of course, (5.14) makes sense

for any l ≥ 0. The stability of Sn can also be seen directly by a straightforward computation

S′
n(z) =

n∑
k=1

k
(

k!
nk

)l−1 (
n
k

)l

ξkzk−1 =
n∑

k=1

(
k − 1!

(n − 1)k−1

)l−1

n
(

1 − 1
n

)(k−1)(l−1) (
n − 1
k − 1

)l

ξkzk−1

d= nSn−1

((
1 − 1

n

)l−1

z

)
.

5.6 Limits of elliptic polynomials and some questions of Feng and Yao
Theorem 5.4.3 considers root behavior as the ratio of derivatives to the degree, t, tends to 1 after the
degree is sent to infinity. The limiting root measure when t tends to 1 simultaneously with the degree
tending to infinity may not always converge to one of the measures in Theorem 5.4.3. See the discussion
after Theorem 5 in [13]. In this section we consider some examples of this simultaneous limit and
remark on some questions posed in [13]. Specifically, we consider coefficients

Pk,n =
(

n
k

)w

, (5.15)

for w ≥ 0. Kabluchko and Zaporozhets [27] refer these as elliptic polynomials. In [13], Theorem 6, Feng
and Yao computed the limiting root distribution for elliptic polynomials with w = 1

2 , as the proportion
of derivatives tends to one with the degree. The limit, after rescaling, in their work is the measure μ1/2

from Theorem 5.4.3. Feng and Yao [13] additionally consider the limiting root distribution for derivatives
of random Kac polynomials (introduced in Section (5.1.2)), which can be viewed as w = 0 elliptic
polynomials, as the proportion of derivatives tend to one as the degree tends to infinity. The limit, again
after rescaling, matches that of Corollary 5.4.4. Without rescaling, the limiting empirical root measure
of both models would be a point mass at 0. Feng and Yao pose the following questions for a general
random polynomial as defined in (3.1):

1) If Nn = n − Dn where Dn = o(n) and Dn → ∞ with n, then when is δ0 the limiting root distribution of
P(�Nn�)

n ?
2) If the limiting root distribution of P(�Nn�)

n is δ0, does there exist a rescaling of the roots giving a
non-degenerate limit? If so, what is the scaling?

Theorem 5.4.3 suggests that the answer to both questions should depend largely on the tail of the
limiting root measure. However, to fully answer both questions, some additional regularity on the
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coefficients would need to be considered (again, see the discussion following Theorem 5 in [13]). In
the following proposition, we partially answer these questions.

Proposition 5.6.1. For α ∈ (0, 2], let Pn be the general random polynomial defined in (3.1) such
that ξ1, ξ2, . . . satisfy (3.2) and

Pk,n =
(

n
k

) 2
α
−1

. (5.16)

Let Nn = n − Dn where Dn is such that Dn = o(n) and Dn → ∞ as n → ∞, and let Rn =
(

n
Dn

)2− 2
α

.

Let P̃n be the random polynomial defined by P̃n(z) = Pn(z/Rn). Then the empirical root measure
of P̃(�Nn�)

n converges in probability as n → ∞ to the probability measure μα defined in Theorem
5.4.3.

Moreover, if

μDn = 1
Dn

∑
z∈C:P(�Nn�)

n (z)=0

δz,

then weakly, in probability,

lim
n→∞ μDn =

⎧⎪⎪⎨⎪⎪⎩
0, 0 < α < 1

μ1, α = 1

δ0, 1 < α ≤ 2

, (5.17)

where δ0 is a point mass at the origin, 0 is the zero measure, and μ1 is defined in Theorem 5.4.3.

Letting t = Nn
n , and noting n

Dn
= (1 − t)−1 we see that the scaling in Proposition 5.6.1 matches that of

Theorem 5.4.3. We expect this phenomenon holds in more generality, i.e. under sufficient regularity
conditions on the coefficients of Pn the scaling should depend only on the tail of the limiting root
measure and the limiting empirical measure for the rescaled roots should be μα .

Proof of Proposition 5.6.1. To simplify notation, let β = 2
α

− 1. Proposition 5.6.1 is a straightforward

generalization of Theorem 6 in [13]. We sketch the necessary changes. The
(

n
Dn

)−β

term in the rescaling

is used to control the coefficients Pk,n, Nn ≤ k ≤ n of Pn, while the additional
(

n
Dn

)
term is used to control

how the coefficients evolve under differentiation. We can then conclude that if P̃k,n are the coefficients
of P̃n, then

lim
n→∞ sup

0≤k≤Dn

∣∣∣∣ 1
Dn

log P̃k,n − log P̃β

(
k

Dn

)∣∣∣∣ = 0, (5.18)

where

log Pβ(x) = −x log x − β(1 − x) log(1 − x) + (1 − β)x + β − 1 (5.19)

for 0 ≤ x ≤ 1 and log Pβ(x) = −∞ for x > 1. The conclusion then follows from (5.18), (5.19), Theorem
3.1.4, and the observation in [27] that the limiting empirical root measure is given by the push-forward

of the Lebesgue measure under the map x �→ exp
(
− d

dx log Pβ(x)
)
. �

6 PDEs describing the limiting behavior of the roots
In this section, we focus on PDEs describing the dynamics of the limiting radial probability density
functions and radial CDFs under repeated differentiation.

Given the initial radial density ψ(x, 0) of the zeros at t = 0, the PDE in (3.4) describes the radial density
ψ(x, t) at time 0 ≤ t < 1. As shown in [36], there is a constant loss of mass for the solution:

d
dt

∫ ∞

0
ψ(x, t) dx = −1.
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In other words, if ψ(x, 0) is the radial part of a PDF, then ψ(x, t) has mass 1−t. One can renormalize so that
ψ(x, t) has total mass 1, but this new function will not satisfy (3.4). In this section, we informally derive
new PDEs for this PDF and its corresponding CDF. We will also derive a PDE for the Brown measure.
Although the derivations are informal, the purposes of this section is to show how our results and
examples from the previous sections are consistent with the PDE approach [36, 45] to studying repeated
differentiation of random polynomials.

6.1 Derivation of PDE for the PDF and CDF
We define the PDF as

ϕ(x, t) := ψ(x, t)
1 − t

, x ≥ 0, 0 ≤ t < 1,

where ψ(x, t) is a solution to (3.4). Recall that we use the convention that x ≥ 0 either denotes x ∈
[0, C] (for some finite positive constant C) or x ∈ [0, ∞), depending on whether the density is compactly
supported or not. The function ϕ(x, t) will then satisfy the equation

(1 − t)
∂ϕ(x, t)

∂t
= ∂

∂x

(
ϕ(x, t)

1
x

∫ x
0 ϕ(y, t)dy

)
+ ϕ(x, t), x ≥ 0, 0 ≤ t < 1. (6.1)

Indeed, from (3.4), we derive

∂ϕ(x, t)
∂t

= 1
1 − t

∂ψ(x, t)
∂t

+ 1
(1 − t)2

ψ(x, t)

= 1
1 − t

∂

∂x

(
ψ(x, t)

1
x

∫ x
0 ψ(y, t)dy

)
+ 1

1 − t
ϕ(x, t)

= 1
1 − t

∂

∂x

(
ϕ(x, t)

1
x

∫ x
0 ϕ(y, t)dy

)
+ 1

1 − t
ϕ(x, t).

Thus, by rearranging, we obtain (6.1).
It is easy to check that if

∫ ∞
0 ϕ(x, 0) dx = 1, then the solution to (6.1) satisfies

∫ ∞
0 ϕ(x, t) dx = 1 for all

0 ≤ t < 1. In fact, from (6.1), we have

(1 − t)
∂

∂t

∫ ∞

0
ϕ(x, t) dx =

∫ ∞

0
(1 − t)

∂ϕ(x, t)
∂t

dx

=
∫ ∞

0

∂

∂x

(
ϕ(x, t)

1
x

∫ x
0 ϕ(y, t)dy

)
dx +

∫ ∞

0
ϕ(x, t) dx

= − lim
ε→0

ϕ(ε, t)
1
ε

∫ ε

0 ϕ(y, t) dy
+

∫ ∞

0
ϕ(x, t) dx

= −1 +
∫ ∞

0
ϕ(x, t) dx,

where we used the regularity of the solution, and we assumed x �→ ϕ(x, 0) is compactly supported,
which by the Gauss–Lucas theorem hints that the support of x �→ ϕ(x, t) is contained in the support of
x �→ ϕ(x, 0) for all 0 ≤ t < 1. Thus, if y(t) = ∫ ∞

0 ϕ(x, t) dx, we obtain the linear ODE:

(1 − t)y′ = y − 1,

which admits the solution

y(t) = C
1 − t

+ t
t − 1
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for a constant C depending on the initial value. In fact, if y(0) = 1, then C = 1, and we find the constant
solution y(t) = 1 for all 0 ≤ t < 1, as desired.

Define the CDF of the solution ϕ(x, t) of (6.1) as

�(x, t) =
∫ x

0
ϕ(y, t)dy.

Then, using (6.1), we obtain

(1 − t)
∂�(x, t)

∂t
=

∫ x

0
(1 − t)

∂ϕ(y, t)
∂t

dy

=
∫ x

0

∂

∂y

(
ϕ(y, t)

1
y

∫ y
0 ϕ(z, t)dz

)
dy +

∫ x

0
ϕ(y, t)dy

=
∫ x

0

∂

∂y

⎛⎝y
∂�(y,t)

∂y∫ y
0 ϕ(z, t)dz

⎞⎠ dy + �(x, t)

= x ∂�(x,t)
∂x

�(x, t)
− 1 + �(x, t).

We conclude that �(x, t) satisfies the following PDE:

(1 − t)
∂�(x, t)

∂t
= x ∂�(x,t)

∂x

�(x, t)
− 1 + �(x, t), x ≥ 0, 0 ≤ t < 1. (6.2)

Equation (6.2) is similar to the PDE derived in section 2.3 of [24], where the CDF is not normalized to have
total mass 1. Now that we have a PDE for the CDF, we can compare (6.2) to the examples in the previous
sections. For instance, it is easy to check that �(x, t) = �0,1(x) = x

1+x from Section 5.4 satisfies (6.2).

6.2 Rescaling the x coordinate
If �(x, 0) at t = 0 is supported on x ∈ [0, 1], we expect that �(x, t) is supported on x ∈ [0, 1−t] for 0 ≤ t < 1.
If we define �̃(x, t) = �((1− t)x, t), then �̃(x, t) is supported on x ∈ [0, 1] for all 0 ≤ t < 1 but will no longer
satisfy (6.2). One can easily derive the PDE that �̃(x, t) does satisfy using (6.2). Indeed, by the chain rule,
we have

∂�̃(x, t)
∂t

= −x
∂�((1 − t)x, t)

∂x
+ ∂�((1 − t)x, t)

∂t
,

�̃(x, t)
∂x

= (1 − t)
∂�((1 − t)x, t)

∂x
.

In particular, this implies that

(1 − t)
∂�̃(x, t)

∂t
= −x

∂�̃(x, t)
∂x

+ (1 − t)
∂�((1 − t)x, t)

∂t
.

Thus, from (6.2), we obtain the following PDE for �̃(x, t):

(1 − t)
�̃(x, t)

∂t
= −x

∂�̃(x, t)
∂x

+ x ∂�̃(x,t)
∂x

�̃(x, t)
− 1 + �̃(x, t), x ≥ 0, 0 ≤ t < 1. (6.3)

One can now take the t → 1− limit in (6.3). Indeed, if �̃(x) = limt→1− �̃(x, t) and limt→1− ∂�̃(x,t)
∂x = �̃′(x),

then one arrives at the following ODE for �̃(x):

x�̃′(x) = x�̃′(x)

�̃(x)
− 1 + �̃(x), x ≥ 0. (6.4)

It is straightforward to check that the example �̃(x) = x from Theorem 5.4.4 solves (6.4).
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In a similar fashion, using (6.1), one can also derive a PDE for the rescaled PDF ϕ̃(x, t) = (1 − t)ϕ((1 −
t)x, t) and take the limit t → 1−.

6.3 CDF for the Brown measure
Using the connection between random polynomials and the Brown measure discussed in Section 4.2,
we can similarly derive PDEs for the radial parts of the PDF and CDF for the Brown measure. Let

F(x, t) = �(x2, t), x ≥ 0, 0 ≤ t < 1

be the CDF of the radial part of the Brown measure, where �(x, t) is the radial part of the CDF, defined
in Section 6.1 above. Using (6.2), we find

(1 − t)
∂F(x, t)

∂t
= (1 − t)

∂�(x2, t)
∂t

= x2 ∂�(x2,t)
∂x

�(x2, t)
− 1 + �(x2, t).

Thus, since

∂F(x, t)
∂x

= 2x
∂�(x2, t)

∂x
,

we conclude with the following PDE for F(x, t):

(1 − t)
∂F(x, t)

∂t
= x ∂F(x,t)

∂x

2F(x, t)
− 1 + F(x, t), x ≥ 0, 0 ≤ t < 1.

Similarly, using (6.1), one can also derive a PDE for the PDF of the radial part of the Brown measure
given by f (x, t) = 2xϕ(x2, t); we omit the details.
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A Quantile functions
In this section, we review some basic facts used throughout the paper concerning quantile functions of
real-valued random variables.

Definition A.0.1. Let F be the CDF of a real valued random variable. The quantile function Q :
[0, 1) → R of F is the function defined by

Q(p) := inf{x ∈ R : F(x) ≥ p}. (A.1)

The following lemma contains some essential results on quantile functions:
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Lemma A.0.2. Let F be a CDF with quantile function Q:

1) For every x ∈ R and p ∈ [0, 1), F(x) ≥ p if and only if Q(p) ≤ x.
2) Q is left-continuous and non-decreasing.
3) If F is invertible, then Q = F−1.

Moreover, the quantile function uniquely determines F and any left-continuous non-decreasing
function on [0, 1) is the quantile function of a unique distribution.

Proof. See [48] Lemma 21.1 for a proof of the first three statements. For the final statements, let Q be a
left-continuous non-decreasing function on [0, 1). Define the function F : R → [0, 1] by

F(x) = max
(
sup{p ∈ [0, 1) : Q(p) ≤ x}, 0

)
, (A.2)

with the convention that sup ∅ = −∞. It is straightforward to check F is non-decreasing,

lim
x→−∞ F(x) = 0, and lim

x→∞ F(x) = 1.

Fix x ∈ R, and assume for the sake of contradiction that F is not right-continuous at x. Then there exists
δ > 0 such that for any ε > 0, F(x + ε) − F(x) > δ. Let ε > 0, then

F(x + ε) > F(x) + δ. (A.3)

From (A.2), (A.3), and the monotonicity of Q, we have that

Q(F(x) + δ) ≤ x + ε. (A.4)

As ε > 0 was arbitrary, we have that

Q(F(x) + δ) ≤ x,

a contradiction of (A.2). Thus, F defined by (A.2) is right-continuous on R.
Let F1 and F2 both be the CDF of distinct distributions both with quantile function Q. Let x ∈ R be

such that F1(x) > F2(x). Let p ∈ (F2(x), F1(x)), then from Lemma A.0.2 1,

F1(x) ≥ p ⇔ Q(p) ≤ x ⇔ F2(x) ≥ p,

a contradiction. Hence, F defined by (A.2) is unique. �

The following lemma describes convergence in distribution in terms of quantile functions.

Lemma A.0.3 (See van der Vaart [48] Lemma 21.2). Let X1, X2, . . . , and X∞ be real valued random
variables with quantile functions Q1, Q2, . . . , and Q∞, respectively. Then Xn converges in distri-
bution to X∞ if and only if Qn(p) converges to Q∞(p) for every continuity point p ∈ [0, 1) of Q∞.
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