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Abstract

Magnetic fields in the stellar interiors are key candidates to explain observed core rotation rates inside solar-like
stars along their evolution. Recently, asteroseismic estimates of radial magnetic field amplitudes near the
hydrogen-burning shell (H-shell) inside about 24 red giants (RGs) have been obtained by measuring frequency
splittings from their power spectra. Using general Lorentz-stress (magnetic) kernels, we investigated the potential
for detectability of near-surface magnetism in a 1.3Me star of supersolar metallicity as it evolves from a mid
subgiant to a late subgiant into an RG. Based on these sensitivity kernels, we decompose an RG into three zones—
deep core, H-shell, and near-surface. The subgiants instead required decomposition into an inner core, an outer
core, and a near-surface layer. Additionally, we find that for a low-frequency g-dominated dipolar mode in the
presence of a typical stable magnetic field, ∼25% of the frequency shift comes from the H-shell and the remaining
from deeper layers. The ratio of the subsurface tangential field to the radial field in the H-burning shell decides if
subsurface fields may be potentially detectable. For p-dominated dipole modes close to nmax, this ratio is around
two orders of magnitude smaller in subgiant phases than the corresponding RG. Further, with the availability of
magnetic kernels, we propose lower limits of field strengths in crucial layers in our stellar model during its
evolutionary phases. The theoretical prescription outlined here provides the first formal way to devise inverse
problems for stellar magnetism and can be seamlessly employed for slow rotators.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Stellar interiors (1606); Stellar magnetic fields
(1610); Stellar oscillations (1617); Red giant stars (1372); Subgiant stars (1646); Perturbation methods (1215)

1. Introduction

Magnetic fields in stars are one of the largest sources of
uncertainty in stellar modeling, as both the amplitude and the
topology matter when accounting for their effect on the
evolution of stars. As a result of a lack of magnetic field
observation below the stellar surface, magnetic fields and their
impact on dynamical processes have been largely excluded
from stellar evolution models in the past decades. However,
there have been extensive studies discussing how such
magnetic fields can be formed and how they evolve through
the evolutionary phases and processes (e.g., Braithwaite &
Spruit 2004; Braithwaite & Nordlund 2006; Ferrario et al.
2009; Mestel & Moss 2010; Takahashi & Langer 2021, and
reviews by Donati & Landstreet 2009 and Braithwaite & Spruit
2017), starting with models of star formation from the
interstellar medium (e.g., Mestel 1966; Mestel & Strittmatter
1967) or from later convective dynamo episodes (e.g., Tobias
2021; Yan & Calkins 2022). A fraction of the magnetic flux of
primordial origin or dynamo origin (from convective-core
dynamo in intermediate-mass main-sequence stars, hereafter
MS) might be conserved during stellar core contraction (Tout
et al. 2004) and stabilized in the radiative cores of evolved stars
such as red giant (RG) stars before their envelopes are
eventually shed. About 12% of white dwarfs, descendants of
RGs, present strong large-scale magnetic fields at the surface
(with amplitudes ranging from 106− 109 G; see Ferrario &

Wickramasinghe 2005; Landstreet et al. 2012; Bagnulo &
Landstreet 2021). They might represent proof of the survival of
stable fields inside stellar radiative interiors. While spectro-
polarimetry allows us to characterize surface magnetism (e.g.,
Donati et al. 1997; Marsden et al. 2014; Aurière et al. 2015),
we need asteroseismology to unveil fields below the surface.
Study of mixed acoustic p- and gravity g-modes (hereafter

called mixed modes, Beck et al. 2011), which simultaneously
probe processes in the core and the envelope, reveal
unexpectedly slow internal rotation profiles (Deheuvels et al.
2012, 2014; Mosser et al. 2012; Mosser et al. 2017; Gehan
et al. 2018) in post-MS stars like subgiants and red giant branch
stars (hereon SG and RGB, respectively). Among other
candidates (e.g., transport by waves and modes as in Talon
& Charbonnel 2005; Belkacem et al. 2015a, 2015b; Rogers
2015; Pincon et al. 2017), Garaud & Garaud (2008) magnetic
fields might lead to such a slow rotation rate in stellar interiors
(Mestel & Weiss 1987; Spruit 2002; Mathis & Zahn 2004,
2005; Fuller et al. 2019; Eggenberger et al. 2022; Moyano et al.
2022). This scenario of magnetized radiative interiors is
supported by a significant fraction of RG showing anomalously
low amplitudes of dipolar and quadrupolar mixed modes
(García et al. 2014; Stello et al. 2016a, 2016b). Indeed,
magnetic fields in RG cores could trap energies of the g-
dominant mixed modes via processes like the magnetic
greenhouse effect or conversion to slow magnetoacoustic
waves when their strengths are beyond a threshold (Fuller et al.
2015; Lecoanet et al. 2017), thus removing (or decreasing;
Mosser et al. 2017) their contribution in the oscillation
amplitude observed at the surface. We also refer the readers
to Loi & Papaloizou (2017, 2018) and Weinberg et al. (2021)
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for other mechanisms that could also explain the observed low
amplitude dipolar mixed modes.

Studies investigating the effects of magnetic fields on mixed-
mode oscillation frequencies have therefore become funda-
mental for the understanding of stellar evolution. Unno et al.
(1989) laid a detailed groundwork for using perturbation theory
to compute alterations to oscillation frequencies and calculated
the splittings as would be seen for a pure dipolar magnetic field.
Gough & Thompson (1990) proceeded to deduce the same for
purely toroidal and purely poloidal magnetic fields with
rotation and also computed sensitivity kernels for acoustic
modes to pure toroidal fields in the Sun. Hasan et al. (2005)
neglected structural alterations in the star due to Lorentz forces
and derived an expression for splittings in g-modes. This was
later implemented by Gomes & Lopes (2020) using poloidal
topologies. Loi (2020, 2021), Bugnet et al. (2021), Mathis et al.
(2021), and Bugnet (2022) have incorporated some of these
aforementioned concepts to investigate the impact of a buried
stable mixed poloidal and toroidal configuration (Braithwaite
2008; Duez & Mathis 2010; Duez et al. 2010) on mixed-mode
frequencies. Li et al. (2022) extended the theoretical landscape
with the prescription for a general magnetic field topology
trapped inside the radiative interior. Bugnet et al. (2021) and
Mathis et al. (2021) demonstrated that the dominant
contribution of internal magnetic fields in the frequency shifts
is attributed to the radial component of the field. Li et al. (2022)
then showed that the sensitivity of the modes peaks at the
hydrogen-burning shell: observed magnetic field signatures in
Li et al. (2022), Deheuvels et al. (2023), Li et al. (2023) are
attributed to radial magnetic field amplitudes in the vicinity of
the H-burning shell. Further, Mathis and Bugnet (2023)
demonstrated degeneracies in magnetic signature asteroseismic
observations between core dipolar and quadrupole components
as well as relative inclination of the magnetic axis with respect
to the rotation axis.

However, magnetic fields in the convective envelope might
also affect mixed-mode oscillation frequencies due to the
acoustic component being sensitive to mostly the azimuthal
and latitudinal components of the field (Bugnet et al. 2021;
Mathis et al. 2021). Depending on the magnetic field
topologies in the radiative and convective zones, different
locations in the stars could be probed. We investigate the
potential for detection of magnetic fields along the SG and
RGB phases at three key radial locations in each of them—

one region among them contains the H-burning shell, and
another contains the star’s subsurface layers. Using traditional
tools of normal-mode coupling prevalent in geophysical
literature (such as the application of generalized spherical
harmonics for tensorial perturbations and splitting functions
approach for which we refer the reader to Dahlen & Tromp
1999), Das et al. (2020) laid down the framework to compute
frequency splittings due to different components of the
Lorentz stress for any chosen magnetic field topology. In
Section 2, we discuss magnetic field sensitivity kernels of
mixed modes as observed in post-MS stars by invoking the
isolated-multiplet approximation and using their self-coupling
in the presence of an axisymmetric magnetic perturbation, a
specific case of the more generalized work by Das et al.
(2020). For proof of concept, we design models for post-MS
stars with mass 1.3 Me of supersolar metallicity Z = 0.025 in
Section 3 and propose how to parameterize an inverse
problem at different evolutionary stages and investigate

the detectability of magnetic fields from the magnetic
inversion kernels. We identify the evolutionary stage and
typical modes that enable us to distinctly measure the
magnetic fields in the different regions within the star. We
conclude on the prominence of the near-surface field as
compared to the effect of core fields on the observed signal
along the evolution of the modeled star from the subgiant
phase to the RGB.

2. Self-coupling of Normal-mode Multiplets

A majority of this section is a recapitulation of the formalism
set in Das et al. (2020) and their direct implications. It has been
provided to the reader for completeness and ease of reference
for this paper.

2.1. General Formalism for an Axisymmetric Perturbation to
Wave Frequencies

For a spherically symmetric, nonrotating, nonmagnetic,
adiabatic, isotropic reference star, the wave equation over a
hydrostatic equilibrium is given by the following eigenvalue
problem for a specific mode of stellar oscillation denoted by the
subscript k (Lavely & Ritzwoller 1992; Christensen-Dalsgaard
2014; Aerts et al. 2010):

x xr w= , 1k k k0 0
2( ) ( )

where

x x x
x

r r
r

 


= - -
-
 c g r

g r. 2
k s k k

k

0 0
2

0

0

( ) ( · · ˆ)
· ( ) ˆ ( )

In these expressions, ρ0 is the equilibrium density of the
reference star, cs is the sound speed, ωk and ξk are the
eigenfrequency and eigenfunction of the mode k, the unit
vector pointed radially outward is denoted by r̂ , and g is gravity
directed radially inward. Upon solving Equation (1), the
quantization of the three-dimensional oscillations is represented
by the label k≡ (n, ℓ, m) where the eigenfunctions may be
represented in the form (Chandrasekhar & Kendall 1957):

x q j q j q j= +r U r Y r V r Y, , , , .

3
nℓm nℓ ℓm nℓ h ℓm( ) ( ) ( ) ˆ ( ) ( )

( )

(r, θ, j) are the common spherical coordinates, n is radial
order, Yℓm(θ, j) are spherical harmonics of degree ℓ and
azimuthal order m ä [− ℓ, − ℓ+ 1,...,0,...,ℓ− 1, ℓ], ∇h is the
horizontal gradient, and Unℓ(r), Vnℓ(r) are profiles of the radial
and horizontal components of the eigenfunctions as a function
of stellar radius r. By virtue of the operator 0 being hermitian,
the eigenfunctions are orthogonal by construction. The modes
of oscillations in solar-like stars are stochastically excited and
intrinsically damped, which requires one to solve for the
structure and energy equations using the quasi-adiabatic
approximation. The total displacement vector is a superposition
of all possible x xq j q j wº -r t r i t, , , , , expnlm nℓm k( ) ( ) [ ],
with ωk= ωr+ iη (where w h Î ,r ) and amplitudes related
to the excitation and damping. The contribution due to this
intrinsic damping is accounted for in η. For a reference star, the
oscillation power spectrum is 2ℓ+ 1 fold degenerate for a given
multiplet (n, ℓ). All these 2ℓ+ 1 values of m for the multiplet
have the same angular frequency ωr= ωnℓ= 2πνnℓ which for

2
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solar-like oscillators are given by the asymptotic theories (e.g.,
Christensen-Dalsgaard & Berthomieu 1991, Section 3.4.3 of
Aerts et al. 2010).

Now, we introduce a perturbation, xd ( ) to the system
which modifies the resonant angular frequency of a mode to
ωnℓ+ ò δω and the displacement vector to ξk+ ò δξk (with
ò= 1, indicating that the order of magnitude of the
perturbation d and angular frequency splitting δω are ( )
smaller than the wave generator 0 and the background angular
frequency ωnℓ respectively), yielding

x x x xr w dw d d d+ + = + +     .

4
nℓ k k k k0

2
0( ) ( ) ( )( )

( )
Using the orthogonality of ξk and retaining terms in

Equation (4) up to first order in ò, an axisymmetric perturbation
d induces the angular frequency splittings given by

ò x xdw d= 
I

r
1

d , 5nℓm
nℓ

nℓm nℓm
3 · ( ) ( )*

where òw p r= + +I r r U ℓ ℓ V2 d 4 1nℓ nℓ
R

nℓ nℓ0
2

0
2 2star [ ( ) ].

2.2. Formulation of the General Magnetic Splittings

We consider a general magnetic field B which is represented
in terms of the generalized spherical harmonics q jmY ,pq ( )
(Phinney & Burridge 1973; Dahlen & Tromp 1999) as

å å åq j q j=
m

m m
m

=

¥

=-

B r B r Y e, , , . 6
p t s

s

pq pq
0

( ) ( ) ( ) ˆ ( )

Here μ ä {− 1, 0, 1} and q j= --e i 2ˆ (ˆ ˆ ) , =e r0ˆ ˆ,
q j= - ++e i 2ˆ (ˆ ˆ ) . The configuration of the perturbing field

is specified by angular degree p and azimuthal order q ä {− p,
− p+ 1,K,p− 1, p}. When the magnetic field B is the
perturbation to the stellar model ( p» - B GM R42 2 4 1∣ ∣ ( ) , a
ratio of magnetic pressure to the gas pressure Gough &
Thompson 1990), then x xd dº B( ) ( ), as derived in
Goedbloed & Poedts (2004) and subsequently used in Das
et al. (2020), is

x x

x

p d
x

 
 
 

= ´ ´ ´ ´
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- ´ ´

 B B
B B

B B

4

. 7

B( ) { [ ( )]}
( ) [ ( )]

{ · [( ) ]} ( )

For solar-like oscillators, the eigenfunctions become
evanescent beyond the stellar surface. This renders the
oscillation frequencies of such modes insensitive to the
perturbations above the surface. Using Equations (3) and (7),
neglecting contributions due to surface boundary terms, and
considering self-coupling in an isolated multiplet (n, ℓ),
Equation (5) (refer Appendix C of Das et al. 2020) takes the
following form

ò åådw =
m s

ms ms
I

dr r r n ℓ m h r
1

; , , , 8nℓm
nℓ

R

s t
st st

0 , ,

2
star

( ) ( ) ( )

where μ, σ ä {− 1, 0, 1}, s and t are the angular degree and
azimuthal order of the Lorentz stress perturbation, Rstar is the
radius of the star, and ms r n ℓ m; , ,st ( ) are the Lorentz stress
sensitivity kernels which are dependent on Unℓ(r) and Vnℓ(r).
msh rst ( ) denote components of the Lorentz stress tensor (Das

et al. 2020) in the generalized spherical harmonics basis,
which captures the amplitude and topology of the magnetic
field

òå= Wms m s m s m s+h B B d Y Y Y . 9st
p q p q

p q p q st p q p q
, , ,1 1 2 2

1 1 2 2 1 1 2 2
( )*

Theoretical studies on the calculation of splittings, as
mentioned in the introduction, have been carried out for red
giant stars. They have been employed often to compute the
impact due to some dominant terms in the magnetic
perturbation operator (e.g., Bugnet et al. 2021; Loi 2021;
Mathis et al. 2021; Bugnet 2022; Li et al. 2022). However,
most studies have considered the effect of only the radial field
strength Br in the H-shell burning region to find frequency
splittings. The formalism in Das et al. (2020) can be put to use
for any magnetic field topology, provided the oscillation
eigenfunctions retain their form as in Equation (3) in the
presence of other perturbations (which breaks down when
traditional approximation of rotation is considered for fast
rotators) and the magnetic field amplitude remains small
enough for first order perturbations to remain valid. We use this
formalism to calculate the effects of axisymmetric magnetic
fields on frequency splittings in a nonrotating red giant and its
corresponding subgiants. For both these cases, using a
thorough calculation of kernels, we estimate threshold strengths
for the potential for detection of different field components at
different layers, which could let us constrain their
configurations.

2.3. Constructing the Lorentz Stress Tensor from a Model
Axisymmetric Magnetic Field

Duez et al. (2010) and Duez & Mathis (2010) discuss in
detail the stable magnetic field configurations that may be
present inside a radiative interior. Earlier works (e.g., Markey
& Tayler 1973; Tayler 1973; Braithwaite 2006, 2007) show
that pure toroidal or poloidal magnetic field models are
physically unstable on dynamical timescales inside a star, and
instead, a mix of the two is stable (e.g., Tayler 1980;
Braithwaite 2009). The first solution to the stable field
configuration obtained semianalytically in Appendix B of
Bugnet et al. (2021) is seen to have a strong poloidal magnetic
field component and a weak toroidal component, with the
maximum amplitude of the toroidal field being much smaller
than that of the maximum radial field amplitude. Hence, we
consider an axisymmetric solenoidal magnetic field that may be
decomposed into toroidal and poloidal components on the
spherical coordinates

⎡
⎣

⎤
⎦

q b q

b q q a qj

=

-
¶
¶

-

B r B r r

r r
r r r

, 2 cos

1
sin sin , 10

0

2

( ) ( ) ˆ

{ ( )} ˆ ( ) ˆ ( )

where B0 is the magnetic field amplitude scaling factor, and
β(r) and α(r) are functions parameterizing the radial variations
of the poloidal and toroidal counterparts, respectively.
Following the same decomposition method as employed in
Appendix D.1 of Das et al. (2020), this magnetic field B rp q0 0

( )

3
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is represented in the general spherical harmonics basis as
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The topmost component belongs to -
-Y e10

1 ˆ , the middle one to
Y e10

0
0ˆ , the bottom-most component belongs to +

+Y e10
1 ˆ . Using

Equation (9), the Lorentz stress tensor for this model magnetic
field can be expressed as

⎛
⎝

⎞
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g

m m s s

= -

- +

ms m s m s+h r B r B r

s s

3 1

1 1 1 1
0 0 0
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where g =
p
+

j
j2 1

4
, ⎛

⎝
⎞
⎠
= ℓ ℓ ℓ

m m m m m m
ℓ ℓ ℓ1 2 3

1 2 3 1 2 3
1 2 3 is a Wigner 3j

symbol (Wigner 1993) which takes a value of 0 (Appendix C
of Dahlen & Tromp 1999) when it fails to satisfy one or more
of the following selection rules:

1. mi ä {− ℓi, − ℓi+ 1,K,ℓi− 1, ℓi},
2. |ℓ1− ℓ2|� ℓ3� ℓ1+ ℓ2,
3. m1+m2+m3= 0,
4. ℓ1+ ℓ2+ ℓ3 is an even integer if m1=m2=m3= 0.

According to these selection rules, =msh 0st when s ∉ {0, 1, 2}
and t≠ 0. Also, we have m s= "msh 0 ,10 since it is
proportional to 0 0 0

1 1 1 which yields zero. For a dipolar
magnetic field, due to the selection rule imposed by Wigner
3-j in Equation (12), we are only required to compute the
sensitivity kernels for s ä {0, 2} and t= 0 for this particular
axisymmetric model of stellar magnetic field (since =msh 0st
when t≠ 0, or s≠ 0 or 2).

2.4. General Expression of the Sensitivity Kernels for
Axisymmetric Magnetic Fields (t=0)

The kernels ºms ms r n ℓ m k m; , , ,st st( ) ( ) depend on
Unℓ(r)≡Uk and Vnℓ(r)≡ Vk and their first- and second-order
radial derivatives. They describe how different oscillation
modes respond to the Lorentz stresses due to stellar internal
magnetic fields of different strength and geometric configura-
tions. For axisymmetric magnetic fields, as defined in
Section 2.3, we are only required to calculate msst for t= 0
(since =msh 0st when t≠ 0). The sensitivity kernels for self-
coupled modes in the presence of an axisymmetric magnetic
field in the star, as derived in Appendix C of Das et al. (2020),
can be expressed as

⎛
⎝

⎞
⎠

p g g= -
-

ms ms r k m ℓ s ℓ
m m

k, 4 1
0

, 13s
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ℓ s s
2
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where =ms ms k r ks s
2˜ ( ) ( ) ( ms ks ( ) has been derived in

Appendix C.1 of Das et al. 2020) and the kernel components
were found to satisfy the following identities:
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As a consequence of these symmetries and relations, we have
only four independent components

ms s
˜ to compute. Using the

expressions for ms ks ( ) derived in Appendix C.1 of Das et al.
(2020), the expressions for these independent

ms s
˜ are:
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where expressions for the ten cms ki ( ) are shown in the
Appendix A.

2.4.1. Case of an Odd Angular Degree s

We now consider the case of odd s for self-coupled
multiplets in a magnetic field that has azimuthal symmetry,
i.e., t= 0. One can directly notice that 1+ (−1)s= 0 for odd s,
which makes  ks

00˜ ( ) and
+- ks

˜ ( ) equal to 0. Wigner (1993)
shows that a Wigner 3-j symbol is multiplied by - + +1 ℓ ℓ ℓ1 2 3( ) for
odd permutations and by 1 for even permutations. Hence, we
obtain the relation

= -- + - + 1 . 21m m m m
ℓ s ℓ s

m m m m
ℓ s ℓ

1 1 3 3 3 1 3 1
( ) ( )( ) ( )

Owing to this identity, all the kernels become zero for all odd s.
This means that the odd s components of mshs0 leave behind no
signature on the frequency splittings, and only even values of s
impact the frequency shifts and splittings.

2.4.2. Case of an Even Angular Degree s

One can clearly note that the second column of all Wigner

3-j symbols in
-- ks

˜ ( ) have -
s
2( ) which is 0 for s< 2, which

results in =-- k 0s0 ( ) for s= 0. In a similar fashion
=- k 0s0

0 ( ) for s= 0. Setting m3 = −m1 = m in
Equation (21) and considering only even values of s, we note
that =- - m m

ℓ s ℓ
m m
ℓ s ℓ

0 0 . Also, since (−1)m = (−1)−m, the
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m-dependent part of µ -ms
- k m, 1s

m
m m

ℓ s ℓ
0 0( ) ( ) is same for

both m and −m. Therefore, while rotation introduces
symmetric splitting in m, an axisymmetric magnetic field
(aligned with the rotation axis) introduces an asymmetric
splitting (see Figure 7 in Bugnet et al. 2021).

2.4.3. Contribution of the Magnetic Kernels to Frequency Shifts

The m-dependent part of sensitivity kernels for s= 0 is
- -1 m

m m
ℓ ℓ

0
0( ) . This factor, according to Equation 32(a) on

page 627 of Wigner (1993), is equal to - +ℓ1 2 1ℓ( ) , which
is independent of the value of m. Hence, the ms00 add a net shift
in the unperturbed frequency νnℓ in the presence of the
perturbation. The ms20 contributes to the actual splitting among
different m in each multiplet. The construction of the magnetic
field kernels also conveys to us that for the kind of magnetic
field topologies discussed above, for any ℓ(� 2), one can
easily obtain the splittings for |m| ä {2,..,ℓ} if one can calculate
the splittings for m= 0 and |m|= 1 following steps similar
to ones shown in Appendix C.1. Also, thanks to the fact
that då - = - +=- - ℓ1 1 2 1m ℓ

ℓ m
m m

ℓ s ℓ ℓ
s0 0( ) ( ) (where

δjk≡Kronecker delta), the mean value of the total splittings
within a multiplet is equal to the net shift solely due to s= 0
terms, and independent of the splitting among the different m-
components.

A simple yet special set of kernels worth noting are those for
the ℓ= 0 pure radial modes, which contain only m= 0. Then the
Wigner 3-j symbol in Equation (13) becomes  s

0 0 0
0 0 which is

equal to 0 for s≠ 0 (criterion 2 mentioned above for the Wigner
3-j to be nonzero is violated in other cases), thus leaving us with
kernels for s= 0 to be calculated. Also from Appendix A, we note
that for ℓ= 0, Ω0ℓ= 0, which takes all value ofcms ki ( ) to 0 except
c = - +k rU U U2 2 3k k k1

00 2( ) [ ] and c = - + -+- k rU U U r U2 2 k k k k1
2 2 2( ) [ ]  .

Thus, for ℓ= 0 modes, the only two nonzero kernels are

p
= - +r k rU U U, 0

1
2 3k k k

2
00
00 2( ) [ ] and

p
=+-r k, 0

12
00 ( )

- + -rU U U r U2 k k k k
2 2 2[ ]  . Uk and Uk for being extremely small

in the core (containing g-component of mixed modes) and large
in the envelope (containing p-component), the kernels and their
resultant shift for the ℓ= 0 modes are mostly sensitive to the
envelope magnetic field instead of that inside the core.

Appendix C.1 outlines a method that enables us to calculate
splittings for all other m belonging to an ℓ once those for m= 0
and 1 are individually computed, thus saving significant
computation time.

2.5. Brief Discussion on Nonaxisymmetric Fields

The formalism of Das et al. (2020) is by construction
independent of the inherent symmetries of the internal
magnetic field topology. As discussed in Section 2.4.1 of Das
et al. (2020), the axisymmetric nature of the magnetic field
topologies simplifies our calculations by setting t= 0 for all
cases. For cases where nonzero values of t are possible, the
selection rules for the Wigner 3-j symbol render it mandatory
for us to take into consideration coupling among the different
degenerate m (say, ¢ Î - - + -m m ℓ ℓ ℓ ℓ, , 1 ,.., 0 ,.., 1,{ })
belonging to the same multiplet. This will result in a more
complicated forward model involving eigenvalue problems to
calculate the splittings. For slowly rotating stars, such
nonaxisymmetric magnetic fields could arise in cases where
there is a finite obliquity between rotational and magnetic axes.

3. Results

3.1. Modeled Stars

For the major part of this work, we focus on a model of a
typical 4.056 Gyr red giant branch star with mass M= 1.3Me,
metallicity Z = 0.025, radius Rstar= 5.383 Re. This RGB
structure model is generated using MESA (Paxton et al. 2011,
2013, 2015, 2018, 2019) We also generate two models of the
same star in its subgiant phase using MESA at ages of 3.624 Gyr
and 3.702 Gyr.4 Figure 1 and 2 shows schematic diagrams of
the stellar structure in the RG and SG phases. The star in the
former SG stage has reached a peak luminosity in the SG
evolution, beyond which luminosity starts dropping due to the
narrowing H-burning shell around the core, which includes the
latter (Iben 1967). These phases will henceforth be referred to
as the mid-subgiant phase (MSG) and the late subgiant phase
(LSG), respectively (see Figure 2 (a)). Their frequencies of
maximum power (nmax) are n m= 581.73 Hzmax,MSG and
n m= 542.99 Hzmax,LSG respectively, which are much larger

Figure 1. Scheme (not to scale) of a red giant branch star (top) and a subgiant
star (bottom). A large-scale stable magnetic field given by Equation (D2) is
represented in the cores, and dynamo action is present in the convective
envelopes. Colored areas indicate the different regions probed by mixed modes
considered in this study.

4 The data is available on Zenodo under an open-source Creative Commons
Attribution license: doi:10.5281/zenodo.10913776.
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than that of the red giant (n m= 160.928 Hzmax,RG ). The
eigenfunctions and resonant frequencies of ℓ= 0, 1, 2
are computed with GYRE (Townsend & Teitler 2013),
generated in the range of [120 μHz, 200 μHz] for the RG and
n n n n- D + D3 , 3max max[ ] for the SGs, Δν being their large
frequency separations. The three stages used in this study have
been indicated in Figure 2(a).

We then use unperturbed frequencies, displacement eigenvec-
tors, and relevant structure parameters of the model stars as input
to compute the field kernels and the splittings induced by a given
magnetic field having a topology mentioned in Section 2.3.

The Brunt–Väisälä frequency N, commonly known as
buoyancy frequency, is defined as

⎜ ⎟
⎛
⎝

⎞
⎠

r
=

G
-N r g

d P

dr

d

dr

1 ln ln
, 222

1

0 0( ) ( )

with P0 being the equilibrium pressure profile, and Γ1 being the
adiabatic exponent of the material in the stellar interior. N2 is the
square of the frequency of oscillation of a blob of plasma in the
statically stable stellar interior when it is displaced radially.
Hence, it takes negative values in convective regions and positive
values in radiative zones. From Figure 2(b), we note that N2 goes
to 0 at Rrad= 0.1364 Rstar for the RG, indicating the boundary
between the radiative core and the convective envelope.

As we have discussed in the introduction of this work, red
giant stars show the presence of mixed modes, which are
formed due to considerable coupling between the p-modes in
the convective envelope and the g-modes within the radiative
interior. These mixed modes thus have part of their inertia in
the core and part of it in the envelope. For such modes,
Deheuvels et al. (2012) and Goupil et al. (2013) defined:

ò

ò
z

r

r
=

+ +

+ +

-
dr r r U ℓ ℓ V

dr r r U ℓ ℓ V

1

1
. 23nℓ

g nℓ nℓ

R
nℓ nℓ

mode cavity
2 2 2

0
2 2 2star

( ) [ ( ) ]

( ) [ ( ) ]
( )

The g-mode cavity of the RG extends from the center to
its Rrad.

The ζnℓ (hereafter simplified as ζ for notational convenience)
is the fraction of the total mode inertia existing inside the g-
mode cavity, which usually lies within the star’s radiative
interior. For g-dominant modes, ζnℓ≈ 1 and for a p-dominated
mode, ζnℓ= 1. Hence, ζ quantifies the p/g-mode nature of a
mixed mode (e.g., Mosser et al. 2015; Vrard et al. 2016). ζnℓ for
the RG is plotted in Figure 3.
By definition, the kernel msr k m,s

2
0 ( ) corresponding to

different modes of oscillations (k,m) teach us how frequency
splittings depend on an axisymmetric Lorentz stress component
msh rs0 ( ). This identifies which BiBj (i, j ä {r, θ, j}) components

in different regions of the star dominantly contribute to the
magnetic splittings.
Table 1 summarizes which component of Lorentz stress BB is

sensed by which kernel component. By virtue of Equations (14)-
(16), we have only used the four independent kernel
components. We have also demarcated the parity in s (even or
odd) for these kernel sensitivities based on self-coupling
assumption. The interested reader is referred to the discussion
in Section. 3.2 of Das et al. (2020) where these parity-based
selection rules are extensively laid out. Restricting the analysis

Figure 2. (a) Hertzprung–Russell diagram indicating the three evolution stages of the 1.3 Me star used in this study. (b) Squared Brunt–Väisälä frequency profiles for
the three stages of the star. We notice that the H-burning shell and the outer part of the radiative zone move closer to the star’s center, indicating the deepening of the
outer convective envelope. Note: Rstar is different at each stage of evolution and is scaled accordingly.

Figure 3. Fraction of inertia of the oscillation eigenmodes in the radiative
interior of the RG model, calculated using the eigensolutions to the structure
equations of the MESA stellar model. Five oscillation modes have been chosen
and marked p0, p1, p2, g1, and g2. The red and blue symbol indicates that the
selected mode ℓ = 1 and ℓ = 2, respectively. The kernels for g-dominant modes
g1 and g2, p-dominant modes p1 and p2, and an ℓ = 0 pure p-mode marked p0 in
gray, are plotted in Figures 4, 17, 18, 19, 20, respectively.
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to ℓ= 1 dipolar modes, Sections 3.2 and 3.3 investigate the
sensitivity of the six magnetic kernels (two for s= 0 and four for
s= 2) to various locations in the modeled stars.

3.2. Study on the Red Giant Phase

3.2.1. Peak Sensitivities of Different Lorentz Stress Components as a
Function of Depth

We first study the six independent sensitivity kernels for the
modes generated for the red giant stellar model. The kernels

corresponding to modes labeled g1, p1, g2, p2, p0 in Figure 3 are
plotted in Figures 4, 17, 18, 19, 20, respectively. It is found that
the kernels take significant values in three different parts of the
star: the deep He core ( Î - -r R 10 , 10star

5 3[ ]), the vicinity of
the H-burning shell ( Î ´- -r R 10 , 2 10star

3 2[ ]), and the
subsurface layers (r/Rstar ä [0.985, 1]). In the H-shell’s
vicinity, the r s

2
0

00 components take the largest values for all
dipolar and quadrupolar modes. Hence, the shift in νnℓ (due to
the s= 0 Lorentz stress component) and the splitting among
different values of m (due to the s= 2 Lorentz stress

Figure 4. Prominent trends in the magnetic field sensitivity kernels msr s
2

0 in Hz2cm−1G−2 of the RG which contribute to the splittings in the m = 0 component for
different models of axisymmetric poloidal + toroidal magnetic field configurations. In this figure, we choose a g-dominated ℓ = 1 mode with an unperturbed frequency
of 173.191 μHz (point g1 in 3). The top two rows and bottom four rows show the s = 0 and s = 2 components of the kernels, respectively, in the deep regions of the
He core (left-most column), around the H-burning shell (middle column), and near the surface (right-most panel). The kernels r s

2
0

00, +-r s
2

0 , --r s
2

0 , and -r s
2

0
0

correspond to the sensitivities to Br
2, +q jB B2 2, BrBθ, and -q jB B2 2, respectively (refer to Table 1).

7

The Astrophysical Journal, 970:42 (28pp), 2024 July 20 Bhattacharya et al.



component) result primarily from the radial pressure of the
magnetic field (dominant in the radiative interior) on the
plasma. This is consistent with previous inversions, which
attributed splitting asymmetries on g-dominated modes to Br

2

(Bugnet et al. 2021; Mathis et al. 2021; Li et al. 2022, 2023;
Deheuvels et al. 2023). For all modes, we observe that the

+-r s
2

0 kernels take the largest values in the near-surface layers.
This implies that the tangential magnetic field pressure on the
plasma in these layers should have the largest impact on the
splittings of p-dominated modes, as demonstrated in Bugnet
et al. (2021) and Mathis et al. (2021). This is especially the case
during the subgiant phase (see Figures 21 and 22). We will
explore this phase in more detail in Section 3.3.

3.2.2. Contribution to Splittings from Fields in Various Regions of
the Star

In Appendix D.2 we verify that the contribution to the
splittings due to poloidal parts of B-fields in the core,
especially their radial component, dominate significantly over
those due to their toroidal counterparts and show an
approximate n-

nℓ
3 variation, as also found in Bugnet et al.

(2021). As an aside, we use a modification of the formula for
magnetic splittings reported by Hasan et al. (2005) to cater to
mixed modes and report that it can be safely employed for
faster computation of splittings for dipolar modes but not
suggested for calculating those for the p-dominant quad-
rupolar modes, which are often prominent in the power
spectrum of stars as obtained by telescopes like Kepler. The
computation of splittings (ref. Appendix D.2.3) for a
theoretically deduced stable mixed magnetic field profile in
the star shows that the contribution from its toroidal
component (in any part of the star) to the splittings is
negligible compared to the poloidal field in the vicinity of the
H-shell.

Having established consistencies with previous studies, we
then focus on quantifying the minimum values of different
Lorentz stress components, and therefore of minimum
magnetic field amplitudes in each of the directions required
to be detectable. Such an exercise is valuable from the point of
understanding (a) if any field components/layers other than Br

at the H-burning shell could realistically be detectable from
selected modes, and conversely (b) if one should be careful

about ignoring all other layers and field components except Br
2

at the H-shell. We carry out this analysis for the model stars
prescribed in Section 3.1.
In Figure 4, the plots of the kernels for the different modes

of the RGB model used here tell us that the radial (resp.
tangential) magnetic pressure in the radiative interior (resp.
outer envelope) dominantly impacts the splittings. Having
access to these sensitivity kernels allows us to ask (a)
whether the observed mode frequencies contain information
from the core or the envelope or both, and (b) what is
the dominant component of the magnetic field in these
regions that contributes to the perturbed eigenfrequencies. As
seen in earlier studies of RGB magnetoasteroseismology
(Bugnet et al. 2021; Mathis et al. 2021; Li et al. 2022, 2023;
Deheuvels et al. 2023), Br

2 around the H-shell region is
believed to be the component that contributes dominantly
to observed frequency splittings. In this study, we want
to investigate this further by finding the minimum strengths
of the other Lorentz stress components in different regions
of the star so as to contribute significantly to the observed
δωnℓm.

3.2.3. Sensitivity Ratios

We are looking for the minimum strengths of the various
Lorentz stress components in the He core, H-burning shell, and
envelope so as to contribute significantly to the observed δωnℓm.
The ratio of the respective Lorentz stress components in the
deep core and near the surface to those in the radiative interior
near the H-burning shell is instrumental in answering these
questions and may be estimated using the kernel peak heights
in these regions.
Let us define the absolute value of the local kernel-weighted

average (for a mode with frequency νnℓ) of a Lorentz stress
component mshs0 in a region (denoted as ,, chosen among the
three regions of interest: deep core, H-burning shell’s vicinity,
and subsurface layers) as

ò
ò

ò
dw

á ñ =

=

ms

ms ms

ms

ms

ms











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
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, 24
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nℓm s
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2
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2
0

0,

1 2
0

nℓ

( )

( )

( )

( )
( )

where the frequency splittings due to Lorentz stress
components á ñms

hs0, in a region , is dw ms
nℓm s0,( ) .

Following calculations as shown in Appendix C.2, we are
inspired to introduce the parameter mss0 as:

ò
ò

p

= =
á ñ

á ñ

=
á ñ

á ñ

ms

ms
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
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r

0
H

2
00
00

2
0

0, crit

00,H shell
00

0, crit

2
H shell

( )

( )

( )

¯

Here, we have used the identity from Equation (C10) in
Appendix C.2, pá ñ = á ñ- -h B2 r00,H shell

00 2
H shell¯ , where á ñ -Br

2
H shell¯

is the kernel-weighted average of the horizontally averaged
squared radial magnetic field around the H-burning shell

Table 1
Lorentz Stress Kernel and Respective Components of BB, Which They Are
Sensitive to (see Equation (32) and Equations (39)–(44) in Das et al. 2020)

Kernel Component Field Component

r s
2

0
00 (even s) Br

2

+-r s
2

0 (even s) +q jB B2 2

-r s
2

0
0 (even s) Br Bθ

-r s
2

0
0 (odd s) Br Bj

--r s
2

0 (even s) -q jB B2 2

--r s
2

0 (odd s) Bθ Bj
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region. The factor mss0 in Equation (25) enables us to calculate
the minimum absolute value of the local kernel-weighted
Lorentz stress component required for the splitting (of m= 0)
corresponding to that component in a particular region of the
star , to be equal in magnitude to the net shift in the multiplet
due to radial magnetic field pressure in the vicinity of the
H-burning shell region (denoted as H in the equations).

This inspires us to construct Lorentz stress component
contribution diagrams for typical modes. In Figure 5 we show
the mss0 ratio for each of the six kernels in the three regions,
representing the minimum value of á ñms

hs0, in the area to have a
signature equivalent to the one due to the radial field at the

H-burning shell. To facilitate the analysis, we also represent in
the right axis the corresponding minimum field amplitude
associated with á ñms

hs0, in the given region to have a signature
equivalent to the one due to a 16.8 kG radial field at the
H-burning shell. These ratios for the six sensitivity kernels are
represented in Figure 5, in the deep He core, at the H-burning
shell, and near the surface.
For Figure 5, we have chosen modes with the maximum

contrast in their g and p characters. This was done in order to
demonstrate the cases of the strongest H-shell Br

2 sensitivity as
compared to the strongest near-surface +q jB B2 2( ) sensitivity.
The choice of these modes is motivated by the analysis in

Figure 5. Minimum ratios mss0 plotted for four different modes (top left: a low-frequency g-dominated dipole mode, top right: a high-frequency p-dominated dipole
mode, bottom left: a low-frequency g-dominated ℓ = 2 mode, bottom right: a high-frequency p-dominated ℓ = 2 mode) showing the minimum local value of á ñmshs0
required to obtain the same splitting as that due to á ñh00

00 component of the field around the H-burning shell. hs0
00, +-hs0 , --hs0 , and -hs0

0 correspond to the fields Br
2,

+q jB B2 2, BrBθ, and -q jB B2 2 respectively (refer to Table 1). mss0 for the dominantly sensitive components in each zone (discussed further in the text below) are
marked with bigger symbols. The dashed/dotted connecting lines are used to guide the eye to the different mss0 obtained in each region. The “ á ñmshs0,this region ” used in
the plot is denoted as á ñms

hs0, crit in the text for conciseness.
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Appendix B where we compute a measure of the critical ratio
for detectability of near-surface tangential fields for dipolar and
quadrupolar modes. It is to be noted that Figure 10 is a
simplified version of Figure 5 since it compares the
detectability potential of only the surface tangential component
as compared to the H-shell radial field component. However,
Figure 5 conveys a more complete picture which should inspire
how magnetic field should be parameterized when carrying out
an inverse problem. For instance, Figure 5 suggests that a
maximum of three zones could be considered when discretizing
the radial dimension. Although, in practice, the number
depends on the relative critical ratios of field strengths at
different depths. This is elucidated in the following subsec-
tions 3.2.4 and 3.2.5.

3.2.4. Critical Fields in the Deep Core

In the deep He core and around the H-burning shell, the
á ñhs0,

00 are seen to have the least cutoff compared to other
Lorentz stress components, indicating that contributions to
splittings from the other Lorentz stress components (consider-
ing that they all have the same order of magnitude) in that
region are much smaller, in agreement with Bugnet et al.
(2021), Mathis et al. (2021), and Li et al. (2022). For the radial
field in the He core to have an effect similar to the field in the
H-burning shell, it would have to be at least about 20 times
larger. For the mixed-field configuration (refer to
Equation (D2)), we calculated the á ñhs0

00 in the deep core and
H-burning shell’s vicinity and found that the deep core
contributed to nearly 10% of the total splitting (for both
s= 0 and 2) due to radial magnetic fields in the star’s interior
which are verified by Figure 6. The plot also demonstrates that
the H-burning shell accounts for only ∼25% of the total shift in
the multiplet due to the radial magnetic pressure, with the
majority remaining contribution coming from layers beneath it.

3.2.5. Critical Field near the Surface

The outer layers, on the other hand, usually have smaller
cutoffs, especially for the +-hs0 Lorentz stress component,
making the total splitting more susceptible to tangential
magnetic field pressure than radial magnetic field pressure or
anisotropic Lorentz stress components, which is expected as
modes are mostly acoustic near the surface. The mss0 in the

subsurface layers are observed to have much lower values for
p-dominated modes than g-dominated modes and also have
smaller values at higher frequencies than at lower frequencies,
which is very characteristic of asymptotic acoustic modes
(Bugnet et al. 2021; Mathis et al. 2021). These panels convey
to us that for dipolar g-dominated modes at lower frequencies
to be equally sensitive to Br in the H-burning shell than the
tangential magnetic field in the envelope, the kernel-weighted
field (field calculated from the kernel-weighted Lorentz stress
component) amplitude in the envelope should be at least about
0.1 times that at the H-burning shell. Under the same
assumption, high-frequency dipolar p-dominated modes only
require the surface tangential field to be above 0.001 times the
internal radial field.
This makes high-frequency p-modes the best candidates for

the inversion of magnetic fields in the subsurface layers of the
RG star. For the effect of tangential surface magnetism to have
a significant effect, the surface field amplitude should be higher
than about 10−3× amplitude of the radial field in the
H-burning shell. In Appendix D, we have computed splittings
due to various typical magnetic field topologies. Among them,
two distinct poloidal magnetic fields dominate in the radiative
zone. In both cases, the strongest contributions to the splittings
in low-frequency modes, especially those which are g-
dominated, come from the h00

00 and h20
00 components in the

vicinity of the H-burning shell as the remaining Lorentz stress
components do not qualify their corresponding critical criteria
as given by mss0 .

3.3. Study on Subgiant Phases

Having dealt with a red giant star in Subsection 3.2, we
proceed to investigate the potential for the detection of
magnetic fields in the earlier phases of the star—the subgiant
phase. This phase is identified as the transition period between
the main-sequence and red giant stars characterized by the
deepening of the convective envelope in low and intermediate-
mass stars. In this stage, the g-mode trapped in the core starts
coupling to the p-mode in the envelope and presents us with
mixed modes for the first time in the evolution. We now
explore which zones of these stars affect splittings the most and
whether near-surface fields and core fields could be distinctly
measured using different modes in different parts of the power
spectrum.
Axisymmetric magnetic field sensitivity kernels were

constructed (e.g., as in Figures 21 and 22) using the
aforementioned theory, and three significant zones were
identified for each of them. The significant zones for the
MSG stage are the inner core with r/Rstar ä (0, 0.2] containing
the H-burning shell, the outer core with r/Rstar ä (0.2, 0.7873),
and the near-surface layers with r/Rstar ä (0.9, 1), whereas
those for the LSG stage are r/Rstar ä (0, 0.1] containing the
H-burning shell, the outer core r/Rstar ä (0.1, 0.6637), and the
near-surface layers with r/Rstar ä (0.9, 1). As done in
Section 3.2.2, we investigate Lorentz stress component
contribution diagrams similar to Figure 5 (normalization was
done with respect to the inner radiative zones of both the
subgiants, which contain the H-burning shell) for all used
modes. Lorentz stress component contribution diagrams for a
dipole mode closest to nmax at each subgiant stage are shown in
Figure 7.

Figure 6. Plot of the relative cumulative contribution of h r00
00

mixed( )∣ to the shift
obtained in the dipolar mode with frequency νnℓ = 123.068 μHz (top left of
Figure 5) due to radial magnetic pressure, where h r00

00
mixed( )∣ is calculated

using the mixed field as mentioned in Equation (D2).
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3.3.1. Critical Field near the Surface

The plots for mss0 help us identify how much local kernel-
weighted tangential magnetic field is required close to the star’s
surface to match the contribution to splittings due to the kernel-
weighted radial magnetic field in the deepest parts of the
radiative core, where the magnetic field is expected to be much
higher than the rest of the star as suggested in Bugnet et al.
(2021). As a result, the tangential subsurface magnetic
amplitude for the discussed SGs only has to be above
10−4.5× the amplitude of the radial field in the vicinity of
the H-burning shell to have a comparable effect on p-
dominated dipolar modes close to their nmax. This is a more
favorable scenario than on the RGB for the detection of shift on
p-dominated modes resulting from envelope magnetic fields.

3.3.2. Critical Field in the Outer Core

The outer core, lying beneath the base of the convective
zone, is most sensitive to the tangential magnetic pressure. The
kernel-weighted tangential field in this region has to be nearly 3
and 3.5 orders of magnitude larger for the MSG and LSG
phases, respectively, than that in the subsurface layers to
dominate over splittings due to the latter in p-dominated dipolar
modes close to nmax. Conservation of field flux in the core
during post-MS evolution dictates the core field magnitudes to
be much smaller than the red giant. The evolution of subsurface
fields would then help quantify the splittings better. Hence,
depending on the exact model of the internal magnetic field
topology, any of the three regions in the SG stages could
contribute to the majority of the splittings in their spectrum.

3.4. Detectability of Magnetic Splittings in Red Giant and
Subgiant Phases from Observations

Perturbations to the stellar reference model induce frequency
splittings. These splittings are detectable in the data obtained

from a telescope only when certain criteria are satisfied. For the
different cases discussed in this work (also see Appendix D),
we calculate dn= ´y B Bnℓm nℓm 0,ref 0

2( ) , B0,ref being a
reference value for field strength B0 that induces a splitting
of ynℓm. A necessary criterion to be satisfied is dn n>nℓm min,
where nmin is some measure of minimum separation in
frequency. This implies that for detectability, the inequality

>B B0 0,min, needs to be satisfied. Here = ´B B0,min 0,ref

n ynℓmmin . The bare minimum and simplest of all such
criteria is that the distance between the peaks on the power
spectrum should be separated by at least 1 unit of the frequency
resolution nres, i.e., n n=min res, which is typically the reciprocal
of the total observation time for the star. While calculating the
value of B0,min, one has to verify that p < <-B GM R4 12 2 4 1∣ ∣ ( )
and that it is below its corresponding critical field, as
mentioned in Fuller et al. (2015). Since these splitting
measurements are key to inferring the perturbations, in this
subsection, we investigate the detectability of splittings in
dipolar mixed modes closest to nmax during the three
evolutionary stages of the star in consideration.
The configuration of the fields used for the calculation of the

magnetic splittings is of the form given in Equation (10), where
for a poloidal field in the core (H-burning shell region in RG
and inner core in SG), we have α(r)= 0 and

⎜ ⎟
⎡

⎣
⎢

⎧
⎨⎩

⎛
⎝

⎞
⎠

⎫
⎬⎭

⎤

⎦
⎥b b b= - -r

r

R

1

4
1 tanh , 261

star
2( ) ( )

and for a toroidal field in the envelope we have β(r)= 0 and

⎜ ⎟
⎡

⎣
⎢

⎧
⎨⎩

⎛
⎝

⎞
⎠

⎫
⎬⎭

⎤

⎦
⎥a a a= + -r

r

R

1

4
1 tanh , 271

star
2( ) ( )

for a toroidal field in the envelope (refer to Appendix D.1 for
details on the choice of such toy topologies and B0), where the
coefficients β1, β2, α1, α2 and B0 (check Table 2) were chosen

Figure 7. Plot of mss0 measured for the two p-dominant dipole mixed modes (whose kernels are plotted in Figures 21 and 22) closest to their corresponding nmax in the
(a) MSG and (b) LSG stages. The kernels r s

2
0

00, +-r s
2

0 , --r s
2

0 , and -r s
2

0
0 correspond to the sensitivities to Br

2, +q jB B2 2, BrBθ, and -q jB B2 2, respectively (refer to
Table 1).
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keeping the structure of the star in mind. The poloidal magnetic
fields in the core have magnitudes ∼B0 close to the center and
∼0 in the envelope, whereas the toroidal fields in the envelope
have magnitudes ∼B0/2 close to the surface and ∼0 in
the core.

Figure 8 demonstrates the detectability of magnetic splittings
for the most visible dipolar mixed modes (closest to nmax) in
our 1.3 Me star during its MSG, LSG, and RGB phases. In
Figure 5 we already noted that specific field components at the
H-burning shell and the near-surface envelope dominantly
affect the splittings. Similarly, Figure 7 shows that in the MSG
and LSG phases, magnetic splittings are primarily influenced
by field components in the inner core H-burning shell, the outer
core, and the near-surface envelope. To have a consistent
model of the magnetic field across the different evolutionary
phases of the star, we use inner poloidal and outer toroidal
fields as per Equations (26) and (27) with values of α1, α2, β1,
β2 specified in Table 2. We already showed that for the MSG
and LSG phases, there are three zones of potential magnetic
detectability. Therefore, the two-zone model of the magnetic
field does not provide explicit control over the outer-core field.
Nevertheless, it is easy to see that we could estimate the limit of
detectability of field strength of the outer core by using a three-
zone model instead of a two-zone model.

For the RG, where we have clearly distinguishable g and p-
dominated modes, we have two vertical lines showing the
detectability for the inner poloidal field (to which the g-
dominated modes are sensitive) and the outer toroidal field (to
which the p-dominated modes are sensitive). This is not the
case for MSG and LSG, and hence all the cases of splitting are
plotted along one vertical line.
A minimum splitting of 7.9 nHz and 10.6 nHz is needed to

be detectable by 4 yr of Kepler and 3 yr of PLATO. Treating
these as the nres and using B0

2 proportionality to splitting
strength, we calculate the threshold values for detectability of
field strengths of different topologies at different layers of the
star. For Kepler observations for our choice of RG and the
model magnetic field, we find a threshold of B0= 32 kG
poloidal field in the H-burning shell and 190 G toroidal field in
the near-surface envelope to be detectable. Similarly,
H-burning shell threshold of B0 = 2.1 MG and 1.7 MG for
MSG and LSG, respectively, and near-surface threshold of
toroidal B0 around 114 G and 119 G for MSG and LSG,
respectively, are required for these splittings to be detectable.
We want to emphasize that these limits are specific to our

choice of stellar model and magnetic field model. But the
procedure of constructing Lorentz stress diagrams, as in
Figures 5 and 7, is general and can be followed in a similar
fashion for the choice of star at hand to obtain estimates of
magnetic field detectability thresholds for a given satellite
measurement.

4. Discussions and Conclusions

Deciphering magnetic field topology inside stars constitutes
an outstanding challenge, which is crucial to addressing the
angular momentum transport problem in stellar interiors.
Recent breakthrough studies have measured Br

2 magnitudes in
the vicinity of the H-shell region in RGB stars (Li et al. 2022;
Deheuvels et al. 2023; Li et al. 2023). However, insights on
field topology at different depths in the star would provide
invaluable constraints for simulating stellar evolution. Borrow-
ing Lorentz stress sensitivity kernels in their full glory from
helioseismology (Das et al. 2020), our study (a) evaluates
component-wise detectability of Lorentz stress in red giant
stars, (b) proposes simplified minimum ratios mss0 to quantify
potential contributions of different field configurations from
sensitive layers, (c) demonstrates that near-surface detectability
in the subgiant phase is more favorable than its red giant phase,
(d) highlights that caution needs to be adopted when attributing
field contributions to be coming from purely the H-shell
vicinity, and (e) most importantly, given a stellar model, lays
out a formal method to assess how to parameterize an inverse
problem by constructing minimum ratio mss0 plots. Figure 1
shows a schematic diagram for the various zones in a red giant
and subgiant star we identified as important for the magnetic
field inversion.
By using the formalism provided in Das et al. (2020) for

calculating the splittings when magnetic fields are incorporated
in a model star, we can obtain thorough information about how
different components of Lorentz stress BB impact these
observables. A prerequisite for this is the knowledge of
sensitivity kernels. For ease of reference, we provide the reader
with Table 1, connecting kernels to the corresponding Lorentz
stress components. However, not all components contribute to
the total observed frequency splittings to the same extent. We
demonstrate this by laying out the specific kernels for each

Table 2
Different Values of Parameters Used for Constructing Field Configurations
According to Equations (26) and (27) to Analyze Detectability in RGB and

LSG/MSG

Phase β1 β2 α1 α2 B0[G] C.#

RGB 50 0.05 0 0 2 × 104 1a

5 × 104 1b

105 1 c

0 0 50 0.15 102 1d

2 × 102 1e

103 1f

SG 20 0.1 0 0 106 2a

5 × 106 2b

107 2 c

0 0 50 0.85 102 2d

2 × 102 2e

103 2f

Note. Since the same parameters are used for both MSG and LSG, we have
referred to it as SG. Column C. # is the configuration ID that is used to
calculate the splittings in Figure 8.
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component and drawing attention to the most sensitive
components for a 1.3Me red giant (in Figure 4) and its
corresponding mid and late subgiant phases (in Figures 21
and 22).

Since different modes can potentially sense different layers
in the star, having access to these kernels for stellar magnetism
allowed us to investigate which are the radial layers where
magnetic fields dominantly contribute to the observed
splittings. This is equivalent to asking the question—for a
given star, which are the layers and field components that are
detectable? Quantifying detectability is not straightforward
since it depends on multiple factors such as (1) the kernel
sensitivity, (2) the strength of the corresponding field
component, and (3) the data resolution of the satellite. It is
known from previous studies that for red giants the Br

2 in the
vicinity of the H-shell has a dominant contribution. Therefore,
in order to assess the potential detectability of a field
component at a given depth, we assess its contribution to total
splitting with respect to Br

2 in the vicinity of the H-shell. We
quantify this as a critical ratio msRs0 for Lorentz stress
components denoted by μ and σ at zones where kernels are
significant. The lower the value of msRs0 , the higher is the
detectability potential of that component at that depth.

We first provide a detailed analysis for an RGB star
considering magnetic fields act as a small perturbation to the
background stellar model. In order to investigate component-
wise contribution from internal layers, we construct plots for

mss0 as in Figure 5. We report that there are broadly three
important regions of consideration in our red giant—deep core,
H-shell vicinity, and near-surface. Br

2 dominates in the deep
core and the vicinity of the H-shell while the tangential field

+q jB B2 2( ) dominates in the near-surface. However, the near-
surface tangential field would have to be at least a thousandth
of the H-shell radial field in order to have a comparable
contribution to the high-frequency dipolar p-dominated modes’
splitting. The detectability potential for the near-surface

tangential field is slightly less for high-frequency quadrupolar
p-dominated modes and nearly impossible using g-dominated
modes (which require impractically strong fields in the near-
surface).
Having independently established that Br

2 is indeed the
dominant contributor for our red giant, we assess the relative
contributions from the deep core, the H-shell, and the region in
between. Using the same field as in Duez & Mathis (2010),
which was also used in Bugnet et al. (2021), in Figure 6 we
demonstrate that around 25% of the total splitting comes from
the H-shell, 10% from the deep core and the rest from the
intermediate region between the deep core and H-shell. As a
result, the asteroseismic signature cannot directly be attributed
to the field in the H-burning shell but rather to a weighted
average inside the radiative interior.
Similar analyses are performed for two subgiant stages of the

same star. The kernel plots in Figures 21 and 22 suggest three
important zones—the inner core (which contains the H-shell),
the outer core, and the near-surface region. We construct the
corresponding mss0 plots in Figure 7 and find that the near-
surface tangential field has to be only about 10−4× the inner
core Br to contribute significantly to splittings in p-dominated
dipolar modes. This allows for the potential detectability of a
weaker field near the surface as compared to the RGB phase.
However, to definitively quantify the detectability of near-
surface fields, more comprehensive models of magnetic fields
in the near-surface regions of the star are necessary. This is also
why we have consistently adopted caution in quantifying
potential detectability in the form of ratio msRs0 instead of the
absolute value of field strengths. To address concerns about the
detection of these different components from telescope data, we
have also evaluated the splittings for poloidal fields in the
(inner) core and toroidal fields in the subsurface layers. This led
us to determine minimum values of B0 for these topologies in
the different stages of evolution of our 1.3 Me stellar model.

Figure 8. Plot of the splittings in the m = ± 1 of dipolar mixed modes closest to the nmax for all three stages of the star. The black-unfilled diamonds indicate toroidal
fields in the envelope, and the blue-filled circles indicate the effect of core poloidal fields. The configuration of the field used is indicated beside the points using C.#
from Table 2. The Kepler 4 yr and upcoming PLATO’s 3 yr frequency resolutions have been plotted as a reference for detectability.
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From Figure 9, we observe that for eigenmodes close to nmax
it is easier to detect the effect of the near-surface field over that
at the H-burning shell in the earlier stages. This gets
increasingly harder as the star ages from the main sequence
to the RG phase. Figure 9 also leads us to identify that the ratio
of subsurface tangential magnetic field pressure and the radial
field pressure in the H-burning shell in the RG phase has to be
nearly 104 times larger than in the SG phases for the splitting
contribution from the respective subsurface and core fields to
be equivalent. Upon considering that no convective-core
dynamo episodes occur beyond the terminal age main-sequence
phase, fossil field flux conservation in the core suggests that the
core field amplitude should scale as 0.030 and 0.042 to that in
the RG phase for the MSG and LSG stages, respectively. If the
order of magnitude of the near-surface field does not alter
dramatically over the three discussed phases, then for the MSG
and LSG, the contribution from the inner core will be
negligible compared to contributions from tangential fields in
the outer core and especially the subsurface layers.

Finally, we believe that the method of constructing the
critical ratio mss0 plots should inspire future efforts in inferring
stellar magnetism. In the same way, as has been done in the last
few years to inverse rotation rates inside solar-type pulsators,
magnetic fields might be probed through asteroseismic data
inversion. Given a stellar model, an inversion effort is usually
preceded by parameterization of the unknown model (in this
case, the Lorentz stress tensor). This requires knowing how

many zones we should discretize the star into and which
components we should include in the inverse problem at each
sensitive zone. As a first step, the kernels may be plotted to
obtain an initial guess about the number of important zones and
the radial extent of each zone. In the second step, using the
knowledge of the zones, mss0 plots may be constructed to
obtain the most sensitive component for each zone (the one
with the lowest value of mss0 ). Based on the number of
available modes with reliable splitting measurements, relative
contributions of different model parameters can be used as a
guiding tool to decide which ones to reject from the magnetic
inverse problem setup.
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Appendix A
Calculating the Lorentz Stress Sensitivity Kernels

The ten cms ki ( ) are written as:
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Figure 9. Plot of the log of +-s0 in the subsurface layers for p- and g-
dominated dipolar and quadrupolar mixed modes closest to the nmax for all
three stages of the star. The square marker indicates a g-dominant mode,
whereas diamonds indicate p-dominant modes. The colors blue and black
indicate dipolar and quadrupolar modes, respectively. Big hollow symbols are
used for s = 0, and small filled symbols are used for s = 2 terms of the same
modes.
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Appendix B
A First Core-to-envelope Sensitivity Ratio

Here, we present a simplified analysis of sensitivity
comparison between H-shell Br

2 and near-surface +q jB B2 2( )
for a range of dipolar and quadrupolar modes for the RG
discussed in Section 3.2. For simplicity of notation, we
henceforth define kernels as = +-K rt s,env

2
0 in the envelope

and = K rr s,core
2

0
00 in the radiative interior. Therefore, Kt,env is

sensitive to the tangential magnetic field pressure in the
envelope Bt,env

2 , and Kr,core is sensitive to the radial magnetic
field pressure Br,core

2 around the H-shell burning region.
The H-burning shell has a thickness of the same order the

magnitude as the most sensitive zone close to the surface.
Hence, for the splittings due to Br,core to dominate over those
due to Bt,env, the following inequality needs to hold

K B s K B smax max , B1r r t t,core ,core
2

,env ,env
2[∣ ∣] ( ) ⪆ [∣ ∣] ( ) ( )

which leads to the definition of a critical field ratio
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A larger value of this critical ratio indicates that a weaker
envelope Bt,env could potentially contribute to δωnℓm at the same
order as the Br

2 in the radiative zone. Figure 10 gives us an
order of magnitude estimate for this critical ratio. The higher
the critical field ratios of the modes (which are the ordinates of
the plotted points), the easier it is to detect the presence of near-
surface tangential fields compared to internal radial fields.

Figure 10. Variation of the square root of ratios of the peak kernel values in the radiative interior and the envelope with 1 − ζ at different unperturbed normal-mode
frequencies, where ζ, is defined in Equation (23). The modes marked with black circles in these four panels have been used for further analysis in Section 3.2.2 and the
following results are presented in Figure 5.
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Modes with lower critical field ratios are dominated by the
H-shell radial magnetic field.

These left panels convey to us that for dipolar g-dominated
modes to be equally sensitive to Br in the H-burning shell than

= +q jB B Bt
2 2 in the envelope, the amplitude in the envelope

should be at least about 0.1 times the amplitude at the
H-burning shell. Dipolar (and quadrupolar, see right panels) p-
dominated modes require the surface field to be about 0.01
times the internal field. For quadrupolar modes represented on
the right panels, the surface field amplitude has to be equivalent
to the internal field amplitude for its effect to be of the same
order of magnitude on the g-dominated frequencies. From this
first attempt to compare surface and core contributions,
measuring surface magnetic fields from mixed-mode frequen-
cies in red giant stars appears to be challenging.

From further inspection, we can also infer that low-
frequency g-dominant modes in this model red giant star are
more sensitive to the Br,core, especially for ℓ= 2, whereas high-
frequency p-dominant mode splittings are impacted more by
the Bt,env. Quadrupolar p-modes have turning points closer to
the surface of the star; they are less coupled to their g-mode
counterparts (Ong et al. 2021), because of which the g-
dominant counterparts are often not visible in the power
spectral density profiles. It is important to note that, currently,
all studies have used only dipolar modes to constrain magnetic
fields. According to the selection rules mentioned in

Section 2.3, only the s = 0, 2 Lorentz stress components are
constrained using dipolar modes. Using quadrupolar modes, as
and when detectable magnetic asymmetries are available,
would enable us to constrain s= 0, 2, 4 components of Lorentz
stress. Since a dipolar magnetic field s0= 1 can only induce
s = 0, 2 Lorentz stress components (see Appendix D.2 of Das
et al. 2020), having access to perturbations in quadrupolar
modes could lend insight into whether pure dipolar models are
sufficient to explain observed asymmetries.

Appendix C
Supplementary Calculations

C.1. Showing That for ℓ= 2, the Splitting between m= 0 and 2
Components is Always 4 Times That of the Splitting between

m= 0 and 1 for Poloidal + Toroidal Magnetic Fields

For slow rotators with rotation axis aligned along the
magnetic field symmetry axis, the splittings, as discussed
above, originate only from s= 2 terms of the sensitivity
kernels. Let us consider the m-independent part of the μ, σ part
of the kernel for a multiplet (n, 2) is ms2 . Then,

 = -
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ms ms r n m
m m

, 2, 1 2 2 2
0
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20 2( )( ) ( ) ( )

Therefore:

 - = ´  - = ´ms ms ms ms ms ms     r n r n r n r n, 2, 1 , 2, 0
1

70
, , 2, 2 , 2, 0

4

70
. C22

20
2

20 2
2

20
2

20 2( ) ( ) ( ) ( ) ( )

The expression for the corresponding “split” in the angular frequencies are (s= 0 terms in both frequencies are the same, and hence
their difference goes to 0, so we only deal with s= 2):
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Thus, the ratio in the angular frequency splittings is,
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This has been shown to hold for g and p-dominant modes separately in Mathis et al. (2021). Still, we explicitly show that this is
true for any model with an axisymmetric magnetic field where terms only up to s= 2 exist, e.g., a combined poloidal and
toroidal field.

Similarly, we can also say that if one can calculate δωn,ℓ,0 and δωn,ℓ,±1 for the type of magnetic field topology being discussed here,
they can precisely estimate the value of δωn,ℓ,m for all m ä {− ℓ, − ℓ+ 1,...,ℓ− 1, ℓ} and |m|> 1 by using the prescription mentioned
above, which requires the calculation of certain Wigner 3-j symbols only. This can save a significant amount of computation time.
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C.2. Determining the Critical Value of Lorentz Stress Generalized Spherical Harmonics Components from Kernel-weighted
Averages

For á ñms
hs0, to contribute to the measured mode frequencies at a comparable amount as á ñ-h00,H shell

00 requires

ò òá ñ á ñms ms
-

-
 


h

I
dr r r n ℓ m h

I
dr r r n ℓ m

1
; , ,

1
; , , , C6s

nℓ
s

nℓ
0,

2
0 00,H shell

00

H shell

2
00
00( ) ( ) ( )

ò

ò

ò

ò


á ñ

á ñ
= Y

ms

ms ms
-

- -









 

h

h

dr r r n ℓ m

dr r r n ℓ m

dr r r n ℓ

dr r r n ℓ

; , ,

; , ,

; , , 0

; , , 0
C7s

s s

snℓm
0,

00,H shell
00

H shell
2

00
00

2
0

H shell
2

00
00

2
0

( )

( )

( )

( )
( )

where ⎛
⎝

⎞
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Y =
-

ℓ s ℓ ℓ s ℓ
m m0 0 0 0snℓm , which is either 1 or 2 (of order unity) for the different possible m belonging to ℓ ä {1,

2}. Since we are concerned more with the order of magnitudes of the splittings, we looked only at the m= 0 component of each
multiplet, for which ψnℓm= 1, and have hence defined á ñms

hs0, crit as the minimum value of á ñms
hs0, which solves the in Equation (C7).

Since the Br
2 component is a more tangible form of magnetism as compared to ms

-hs0,H shell we have defined the critical ratio mss0 in

Section 3.2.3 with respect to the kernel-weighted average of the horizontally averaged squared radial magnetic field in the H-burning
shell region á ñ -Br

2
H shell¯ . In order to relate -h00,H shell

00 to á ñ -Br
2

H shell¯ , we can obtain the following mathematical steps (refer to
Equation (C17)):
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C.3. Showing That the Asymmetry Parameter Defined in Li et al. 2022 Matches with Das et al. 2020 for Dipolar + Toroidal Field in
a Nonrotating Star

From Equation (12), we have:
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This yields a relation between h00
00 and h20
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The asymmetry parameter a as defined in Equation (49) of the Supplementary Information of Li et al. (2022) is:
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where K(r) is the approximate sensitivity kernel computed for splittings to q q j
p

B d dsinr
1

4
2∬ and P2 is the second-order Legendre

polynomial. Now for the poloidal + toroidal mixed field, according to Equation 39 of Das et al. (2020):
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Therefore we obtain:
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Similarly,

ò òq q q j p q q q p q q q= ´ ´ + ´ ´
p p

C18B P d d h r Y P d h r Y P dcos sin 2 cos sin 2 cos sin ,r
2

2 00
00

0
00
0

2 20
00

0
20
0

2∬ ( )( ) ( ) ( ) ( ) ( )

q q q j p
p

 = ´ ´B P d d h rcos sin 2
1

5
. C19r

2
2 20

00∬ ( ) ( ) ( )

Expressions C17 and C19 lead us to the expression for a, where writing h20
00 in terms of h00

00 using Equation (C13) yields:
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This matches the value of a as obtained by Li et al. (2022)

Appendix D
Frequency Splittings for Different Magnetic Field Configurations

D.1. Choice of a Model of the Magnetic Field in the Stellar Interior

In this work, we have chosen a few particularly simple toy topologies and one mixed stable topology for the magnetic field
(following Duez et al. 2010; Bugnet et al. 2021) and studied their corresponding effect on the spectra of red giant branch stars. The
magnetic field taken for the first case is purely toroidal: q j= -B B b r sintor 0 ( ) ˆ , where:

⎜ ⎟
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1

4
1 tanh 50 0.05 . D1

star
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As may be noted from the plot of b(r) in Figure 11, the toroidal magnetic field near the H-shell burning region is almost constant
(with 0.494 B0 field along the equator), gradually dropping to nearly zero as it reaches the boundary between the radiative and the
convective zones.

The magnetic field taken for the second case is purely poloidal: ⎡⎣ ⎤⎦q q q= - ¶
¶

B B b r r r b r2 cos sin
r rpol 0
1 2( ) ˆ { ( )} ˆ , where again b(r)

is given by Equation (D1), same as for the toroidal field discussed above. In this case, the maximum radial magnetic field obtained at
points lying on the magnetic axis inside the core and in the vicinity of the H-burning is 0.988 B0, which is almost ≈B0. These two toy
models help enable us to study how different magnitudes of magnetic fields in the core and the envelope influence the power
spectrum one can observe for such a star. It was not practical to use a step function because the large derivative of b(r) would result in
the formation of very high magnetic fields along θ and the perturbative approach would not be a feasible one.

The third topology we use in our study is a semianalytical approximation of the relaxed stable poloidal + toroidal magnetic fields,
as deduced by Mathis & Zahn (2005). The same topology was also used by Bugnet et al. (2021) and Mathis et al. (2021) for
calculating splittings due to magnetic fields using approximations of Unℓ(r) and Vnℓ(r) in the asymptotic p- and g-modes limits of
mixed modes. Note that the formalism used here allows us to calculate the magnetic field splittings for our stellar model using the full
kernels without resorting to asymptotics. The expression for this model of the magnetic field inside the radiative zone is:

⎡
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0 1 rad
3( )/ , j1 and y1 are the first order spherical Bessel functions of the first and second kind

respectively. The magnetic field in the convective zone is set to 0 in this topology. Our whole analysis is restricted to those values of
B0 and B0|Mixed where the perturbative approach up to the first order in Lorentz stress remains valid, and the eigenfunctions in the
presence of the magnetic field do not alter significantly.
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D.2. Nature of the Frequency Splittings in the Red Giant Star

We now show our results for ℓ= 1, 2 mixed-mode frequency
splittings (calculated using Equation (8)) for the same red giant
star’s model (with n m= 160.928 Hzmax ) using custom-
designed pure toroidal and pure poloidal fields dominant in
the core, followed by a stable mixed (poloidal+toroidal)
magnetic field topology derived in the Appendix of Bugnet
et al. (2021), and two fields dominating in the convective
envelope.

From Equations (8), (11), and (12), we find that the scaling
relation between the frequency splitting δνnℓm and field
amplitude scale B0 is: dn µ Bnℓm 0

2.

D.2.1. Splittings due to Toroidal Field in the Core

We first study how a pure toroidal magnetic field dominantly
trapped in the radiative interior, as constructed in Section D.1,
affects the degenerate mode splittings for the mixed modes of
this star. We find that the splittings (as shown in Figure 12) for
mixed modes with high ζ tend to follow an approximately
n1 nℓ

1.5 trend. The values of frequency splittings as obtained for
B0= 105 G are on the order of 10−7∼ 10−5μHz. We infer from
these values that the toroidal field in the core has to be very

high to be detectable by Kepler (dipolar g-dominated mode
closest to nmax requires B0 107 G), as also expected from
Mathis et al. (2021).

D.2.2. Splittings due to Poloidal Field in the Core

Next, we study how a pure divergenceless poloidal magnetic
field dominating the core affects the degenerate mode
splittings. We see from Figure 13 that the mixed modes with
high ζnℓ tend to follow the n1 nℓ

3 trend, as demonstrated in
Bugnet et al. (2021) and Mathis et al. (2021). Also, the values
of frequency splittings as obtained for B0= 105 G are of the
order of 10−2∼ 10−1μHz, which are detectable for mixed
modes close to nmax from the power spectral density profile for
red giants with 4 yr observational windows of Kepler (g-
dominated dipole mode closest to nmax requires B0 32 kG to
be detectable, as obtained in Section 3.4). This is in agreement
with past theoretical studies on the detectability of internal
magnetic fields (e.g., Bugnet et al. 2021; Li et al. 2022).
Comparing splittings due to pure toroidal and poloidal fields

in the core, we find that the toroidal counterpart of a similar
magnitude shows splittings, which are orders of magnitudes
smaller than the other's.

Figure 11. Plot of b(r) (refer to Equation (D1)), which we choose for this study. We note that the radial profiles of Btor and Bpol constructed using b(r) are almost
constant at and beneath the H-burning shell.

Figure 12. Frequency splittings obtained for the (a) ℓ = 1 and (b) ℓ = 2 mixed modes of the used star due to a pure toroidal magnetic field with field amplitude scaling
factor B0. When power spectra of solar-like stars are plotted, the region with the most prominent peaks is usually fitted with a Gaussian envelope whose maximum
occurs at the frequency nmax, indicating that normal modes in the vicinity of this frequency have large mode amplitudes, and also signal-to-noise ratios high enough to
perform precise asteroseismic analysis.
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Figure 13. Frequency splittings obtained for (a) ℓ = 1 and (b) ℓ = 2 mixed modes due to a pure poloidal magnetic field with field amplitude scaling factor B0. The
splittings calculated using a modification of the formula constructed by Hasan et al. (2005), which is given by Equation (D5), are indicated by Approx mentioned in
the legends.

Figure 14. Relative difference between the approximate asymptotic magnetic splittings dnnℓm Approx.( ) in Equation (D5) and their values δνnℓm from the expression as in
Equation (8) for different components of (a) dipolar and (b) quadrupolar modes, respectively, in the presence of the poloidal magnetic field.

Figure 15. Frequency splittings obtained for (a) ℓ = 1 and (b) ℓ = 2 mixed modes due to the magnetic field configuration as prescribed by Bugnet et al. (2021) with
field amplitude scaling factor B0|Mixed.
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Hasan et al. (2005) have shown that for higher order g-
modes, the approximate magnetic frequency splittings are:
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For mixed modes, we approximate that the frequency
splittings (which are computed and marked Approx. in
Figures 13a and 13b) are given as

dw z dw» . D5nℓm nℓ nℓm gApprox.( ) ( ) ( )

We find that for cases where ζnℓ→ 1, splitting values, upon
calculating with Equations (8) and (D5) and comparing them,
are extremely close for both ℓ= 1 (up to ∼2% relative
deviation) and 2 (up to ∼2% relative deviation), as is evident
from Figure 14. For unperturbed frequencies with small ζnℓ,
Figure 14 demonstrates that there are noticeable deviations
(relative deviation of up to ∼2% for ℓ= 1 and up to ∼30% for
ℓ= 2) of the approximated splittings from the splittings
calculated using the formulae provided by Das et al. (2020).

D.2.3. Splittings due to Mixed Stable Magnetic Field in the Core

Next, we present in Figure 15 the splittings expected due to
the stable magnetic field configuration inside the radiative core
of an RGB star as described in Section D.1 above.
We have also computed the splittings considering only the

poloidal part of this field and found that there is no noticeable
difference between the two. This again verifies the fact that the

Figure 16. Splittings for Case (C.2.4.1).

Table 3
The Magnetic Field Used in Two Cases

Case B-field Dominating in Envelope (0 � r � 1)

(C.2.4.1) Toroidal α(r): ´ + -B r R1 tanh 50 0.150
1

4 star[ { ( )}]
(C.2.4.2) Poloidal β(r): ´ + -B r R1 tanh 50 0.150

1

4 star[ { ( )}]
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toroidal part has no significant contribution to the observable.
The g-dominant modes still have a very prominent n-

nℓ
3 trend. If

the RG model was observed by Kepler for 4 yr
(n » 7.9 nHzres ) and this mixed-field topology was used, then
the splittings for the g-dominated dipole mode closest to nmax
would be detectable for B0 0.2 MG.

Mathis et al. (2021) have demonstrated in their work the
dependence of the frequency splittings for g-dominated and p-
dominated mixed modes on the different magnetic field
components. Upon inclusion of the approximation that the
horizontal motions of the g-dominant modes and radial motions
of the p-dominant modes are much larger in comparison to their
complements, they also found that g-dominated modes are
impacted significantly by the radial magnetic field within the
core, whereas the p-dominated modes are affected by the
horizontal (tangential) components of the magnetic field in the
envelope.

D.2.4. More Magnetic Field Topologies

Finally, we calculate the splittings in the normal modes as
would be observed for two magnetic field configurations where

the fields dominate in the envelope of the star. The two
topologies taken into consideration are shown in Table 3.

1. Case (C.2.4.1): The splittings are almost 0 for g-dominant
modes but bigger for the p-dominant modes due to the
presence of Bj near the surface, as shown in Figure 16.
The splittings are found to be approximately proportional
to (1− ζnℓ)ν

2.5. The detectability of this topology has
been discussed in Section 3.4.

2. Case (C.2.4.2): Here, we again find that the splittings are
almost 0 for g-dominant modes, as there is no radial
magnetic field pressure within the core. The Bθ

component of the poloidal B-field in the envelope
impacts the p-dominant modes, and the splittings are
nearly 4 times that of the values in case C.2.4.1 for the
same value of B0, and follow the same approximate
relation as well. Both of these show that the high-
frequency p-dominated modes can be indeed used to
probe the near-surface tangential magnetic fields, where
effects due to the radial magnetic field in the core are also
significantly smaller.
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Appendix E
Kernels for the Red Giant Phase

Figures 17, 18, 19, and 20 show the Lorentz stress
sensitivity kernels of the RG stellar model's modes marked p1,
g2, p2, and p0, respectively, in Figure 3.

Figure 17. Same as Figure 4, but for p-dominated ℓ = 1 mode with an unperturbed frequency of 179.598 μHz (point p1 in Figure 3).

23

The Astrophysical Journal, 970:42 (28pp), 2024 July 20 Bhattacharya et al.



Figure 18. Same as Figure 4, but for g-dominated ℓ = 2 mode with an unperturbed frequency of 168.247 μHz (point g2 in Figure 3).
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Figure 19. Same as Figure 4, but for p-dominated ℓ = 2 mode with an unperturbed frequency of 171.729 μHz (point p2 in Figure 3).
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Appendix F
Kernels for the Subgiant Phases

Figures 21 and 22 show the Lorentz stress sensitivity
kernels for the most p-dominated mixed modes close to their
corresponding nmax in the MSG and LSG stages.

Figure 20. Same as Figure 4, but an ℓ = 0 mode with an unperturbed frequency of 173.203 μHz (point p0 in Figure 3). We do not plot the kernels for s = 2 as we have
already proven that they are always 0 for ℓ = 0. The splittings are much more sensitive to the subsurface magnetic fields than those inside the core.

Figure 21. Prominent trends in the magnetic field sensitivity kernels r s
2

0
00 and +-r s

2
0 in Hz2cm−1G−2 for the MSG phase. In this figure, we choose p-dominated

ℓ = 1 mode with an unperturbed frequency νnℓ of 588.108 μHz. The top two rows and bottom two rows show the s = 0 and s = 2 components of the kernels,
respectively, in the deep regions of the radiative core, which contains the inner core with the H-burning shell (left-most column), outer radiative core (middle column)
and near the surface (right-most column).
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