
Game Dynamics and Equilibrium Computation in the Population
Protocol Model

Dan Alistarh

IST Austria

Austria

dan.alistarh@ist.ac.at

Krishnendu Chatterjee

IST Austria

Austria

krishnendu.chatterjee@ist.ac.at

Mehrdad Karrabi

IST Austria

Austria

mehrdad.karrabi@ist.ac.at

John Lazarsfeld

Yale University

United States of America

john.lazarsfeld@yale.edu

ABSTRACT
We initiate the study of game dynamics in the population protocol
model: 𝑛 agents each maintain a current local strategy and interact

in pairs uniformly at random. Upon each interaction, the agents

play a two-person game and receive a payoff from an underlying

utility function, and they can subsequently update their strategies

according to a fixed local algorithm. In this setting, we ask how the

distribution over agent strategies evolves over a sequence of inter-

actions, and we introduce a new distributional equilibrium concept

to quantify the quality of such distributions. As an initial exam-

ple, we study a class of repeated prisoner’s dilemma games, and we

consider a family of simple local update algorithms that yield non-

trivial dynamics over the distribution of agent strategies. We show

that these dynamics are related to a new class of high-dimensional
Ehrenfest random walks, and we derive exact characterizations of

their stationary distributions, bounds on their mixing times, and

prove their convergence to approximate distributional equilibria.

Our results highlight trade-offs between the local state space of

each agent, and the convergence rate and approximation factor of

the underlying dynamics. Our approach opens the door towards

the further characterization of equilibrium computation for other

classes of games and dynamics in the population setting.

CCS CONCEPTS
• Theory of computation → Solution concepts in game theory;
Distributed algorithms.
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1 INTRODUCTION
The emergence of complex global behavior from the interactions of

simple, computationally-limited agents is a key topic of interest in

distributed computing. A standard setting is the population protocol
model, in which a set of 𝑛 agents, modeled as simple, anonymous

statemachines, interact randomly in pairs with the goal of joint com-

putation over the system’s state. Since its introduction by Angluin

et al. [9], this model has been used to characterize the evolution of

several families of dynamics for solving fundamental tasks such as

majority [2, 5, 19, 36, 38, 45, 70] and leader election [4, 20, 37, 43, 44].
A key feature of this model is allowing to characterize fine-grained

notions of protocol convergence with respect to population size, to-

tal number of pairwise interactions (time), and available per-agent

memory (space), leading to interesting trade-offs between the space

and time complexity of simple local dynamics and their complex

global convergence behavior [1, 20, 36, 37].

In this paper, we study population protocol dynamics in a

model where, upon each randomly scheduled pairwise interaction,

the two agents play a game, receive a payoff, and may subsequently

update their strategies. Various multi-agent game settings have

been studied over the past decades, notably in they game theory

and evolutionary games literature, leading to work on proving fast

convergence guarantees, hardness results, and different notions of

global equilibrium for the system [26, 28, 30, 31, 47, 51, 64, 66, 73].

Yet, most prior multi-agent game settings assume a sequence of

synchronous rounds, where the utility received by each individual

agent depends on the actions of all other agents in the population in

the most recent round [24, 26]. In many real-world settings, inter-

actions are pair-wise, so an agent’s utility may be local and depend

only on its most recent interaction with a single other agent [23].

These types of settings are well-captured by the population protocol

model, where agents interact randomly in pairs. However, studying

the time and space complexity of computing a global equilibrium

in this model has yet to be considered.

We initiate such a study of equilibrium computation in pop-

ulation protocols: we introduce a new distributional equilibrium
(DE) concept that captures a notion of stability encoded by the

distribution of individual agent’s pure strategies in the population.

For a class of repeated prisoner’s dilemma games, we then present a

simple family of local update dynamics that we prove converges to

a stationary distribution corresponding to an approximate DE. In

particular, these convergence results quantify the non-trivial time,
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space, and approximation tradeoffs that can arise in this multi-agent

equilibrium computation setting. For concreteness, we begin by

introducing the general problem setting in more detail.

1.1 Problem Setting
1.1.1 Multi-Agent Distributional Games. We consider populations

of 𝑛 agents, each of which maintains a (pure) strategy S from a

common finite set S. At each time step 𝑡 , two agents 𝑎 and 𝑏 are

sampled from the population uniformly at random to interact and

play a two-person game. Letting S1 ∈ S and S2 ∈ S denote the

current strategies of 𝑎 and 𝑏, respectively, agent 𝑎 receives a payoff

of 𝑢1 (S1, S2), and agent 𝑏 receives a payoff of 𝑢2 (S1, S2), where 𝑢1
and 𝑢2 are fixed utility functions for the underlying two-player

game.

In this setting, a dynamics P is a local update rule applied

by agents 𝑎 and 𝑏 (following an interaction) to determine their

(possibly) new strategies, and this update rule may depend on each

agent’s previous strategy and the payoffs received from the interac-

tion. Under the randomness of the agent interactions, the dynamics

induces a sequence of distributions {𝝁𝑡 }, where the coordinates of
𝝁𝑡 ∈ Δ(S) specify the fraction of agents1 maintaining each strategy

after the 𝑡 ’th total interaction.

Given the set of utility functions and a dynamics P, it is natural

to ask whether (a) the distributions {𝝁𝑡 } induced by P converge
(for some appropriate notion of convergence) to some distribution

𝝁 ∈ Δ(S) (and how quickly?), and (b) if so, whether 𝝁 can be

characterized as some global equilibrium (with respect to the utility

functions 𝑢1 and 𝑢2). For this, we define the following distributional
equilibrium concept for a distribution 𝝁 ∈ Δ(S):

Definition 1.1. Let 𝝁 be a distribution over S. Then for 𝜖 > 0, 𝝁
is an 𝜖-approximate distributional equilibrium (DE) if it satisfies the
following:

E
S1∼𝝁, S2∼𝝁

[
𝑢1 (S1, S2)

]
≥ max

𝑆 ′∈S
E

S2∼𝝁

[
𝑢1 (S′, S2)

]
− 𝜖 (1)

and E
S1∼𝝁, S2∼𝝁

[
𝑢2 (S1, S2)

]
≥ max

𝑆 ′∈S
E

S1∼𝝁

[
𝑢2 (S1, S′)

]
− 𝜖 . (2)

An 𝜖-approximate DE can be viewed as an approximate (sym-

metric) mixed Nash equilibrium (i.e., from classical game the-

ory [64]), but where the “mixed strategy” 𝝁 ∈ Δ(S) is induced
by the fraction of agents in the population maintaining each pure

strategy S ∈ S. In this view, the quantities ES1∼𝝁, S2∼𝝁 [𝑢1 (S1, S2)]
and ES1∼𝝁, S2∼𝝁 [𝑢2 (S1, S2)] are the expected payoffs of two agents

selected uniformly at random (and whose current strategies are

random variables drawn independently from 𝝁), and thus represent
the agent payoffs from the “average interaction” in the population.

Then if 𝝁 is an 𝜖-approximate DE, the inequalities (1) and (2) imply

that for either agent, a unilateral deviation to any strategy S′ ∈ S
(while the other agent is still selected uniformly at random with

strategy S ∼ 𝝁) can improve its expected payoff by at most 𝜖 .

While the problem setting and distributional equilibrium con-

cept described above can be stated for any general set of strategies

S and utilities 𝑢1 and 𝑢2, as a starting point, we investigate this

concept for the special class of repeated prisoner’s dilemma games,

and in particular, the subclass of repeated donation games. Repeated

1
We write Δ(S) to denote the probability simplex over the finite set S.

games have been studied for decades in a variety of settings [69],

leading to both well-known “folk theorems” [68], as well as to the

study of evolutionary game dynamics for simple strategies [66].

Moreover, repeated prisoner’s dilemma is among the most classic

repeated games, and it is frequently studied to model the evolution

of cooperation in populations [13, 71]. Thus to initiate the study

of equilibrium computation in this population setting, we restrict

our focus to this class of games, which we proceed to introduce in

more detail:

1.1.2 Repeated Prisoner Dilemma Games and Population Structure.
We consider repeated donation (RD) games (an important subclass of

repeated prisoner’s dilemma games) and populations where agents

have one of three strategy types. In particular, we introduce the

game’s reward structure and strategy types as follows:

• Reward Structure: In RD games, two players begin by playing

a single round of prisoner’s dilemma (PD). At the end of each

round, an additional round may be played with (independent)

probability 𝛿 ; otherwise, the game terminates. We call 𝛿 the con-
tinuation or restart probability. In a single round of PD, each

player simultaneously chooses to cooperate (𝐶) or defect (𝐷), and

the eponymous dilemma is that each player’s payoff-maximizing

decision is to defect, despite the fact that mutual cooperation

leads to a higher payoff. In particular, we consider payoffs whose

reward structure are donation games, which are the most impor-

tant class of PD rewards [49, 59, 75]. These rewards are captured

via a reward vector 𝒗 := [𝑏 − 𝑐,−𝑐, 𝑏, 0]⊤ over the four game

states A := {𝐶𝐶,𝐶𝐷, 𝐷𝐶, 𝐷𝐷}, which are are defined by the or-

dered actions of the first and second players. Here, the entries

in 𝒗 satisfy 𝑏 > 𝑐 ≥ 0 and specify the reward of the first player.

Each player’s total reward is then the sum of its payoffs over the

individual rounds of the game.

• Strategy Types and (𝛼, 𝛽,𝛾) Populations: We assume that

each of the 𝑛 agents in the population belongs to one of three

subpopulations that correspond to distinct RD strategy types: an

𝛼 fraction have strategy typeAC (Always-Cooperate), a 𝛽 fraction

have strategy type AD (Always-Defect), and a 𝛾 fraction have

strategy type GTFT (Generous-Tit-For-Tat), where 𝛼 + 𝛽 + 𝛾 = 1

(and thus we refer to such populations as (𝛼, 𝛽,𝛾) populations).
An agent’s strategy determines its action (𝐶 or 𝐷) in each round

of the repeated game and may depend on its opponent’s actions

from prior rounds. Specifically:

- AC strategy: play 𝐶 at each round.

- AD strategy: play 𝐷 at each round.

- GTFT strategy: given a generosity parameter 𝑔 ∈ [0, 1], play
𝐶 with initial cooperation probability 𝑠1 ∈ [0, 1], and 𝐷 with

probability (w.p.) 1 − 𝑠1. In round 𝑟 + 1, play the opponent’s

action from round 𝑟 w.p. (1 − 𝑔), and play 𝐶 w.p. 𝑔.

Moreover, we assume the strategy of AC and AD agents always
remains fixed, and thus we consider update dynamics P that are

only followed by agents with strategy GTFT. In particular, we

assume each GTFT agent maintains a strategy from the set G =

{𝑔1, . . . , 𝑔𝑘 } of 𝑘 ≥ 2 generosity parameter values, each of which

are defined as follows: given a maximum generosity parameter2

2
Assuming such bounds on the generosity probability in the GTFT strategy are stan-

dard in RPD settings [66].
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𝑔 ≤ 1, for each 𝑖 ∈ [𝑘] (and by a slight abuse of notation),

the strategy 𝑔𝑖 is the GTFT strategy with generosity parameter

𝑔𝑖 := 𝑔 ·
(
𝑖−1
𝑘−1

)
. Here, G can be viewed as a discretization of the

continuous space [0, 𝑔] into 𝑘 equidistant generosity parameter

values.

• Expected Payoff Functions: Given the single RD game re-

ward structure and the strategy types of the (𝛼, 𝛽,𝛾) population,
we can define an agent’s utility function in the context of the

more general multi-agent distributional game setting from Sec-

tion 1.1.1. Specifically, we assume that when agents 𝑎 and 𝑏 inter-

act, each agent’s utility is its expected payoff in an RD game (over

the randomness in each agent’s strategy and the repeated rounds).

For a pair of strategies S1, S2 ∈ S := {AC,AD, 𝑔1, . . . , 𝑔𝑘 }, we let
𝑓 (S1, S2) denote this expected payoff for an agent with strategy

S1 against an opponent with strategy S2. By the symmetry of the

single-round RD rewards, it follows that 𝑓 (S2, S1) is the expected
payoff for the agent with strategy S2.

Discussion. We remark that the focus on the three strategy

types above is two-fold: first, a classical strategy in RPD is tit-

for-tat (TFT) [13], which always repeats the opponent’s previous

action in the next round. It can be shown that the TFT strategy

leads to the emergence of cooperation under suitable parameter

values [13, 66], however its main drawback is lack of robustness:

even in the two-player sequential setting, in the presence of noise

or errors where a cooperative action may be replaced by defec-

tion, a single error makes two TFT players alternate between𝐶 and

𝐷 , and after two errors both players will choose to defect forever.

The key mechanism to deal with such errors is the introduction

of generosity [60, 62, 67, 75], which motivates the GTFT class of

strategies defined above and is the focus of this paper. While the

analysis of other reactive strategies in RD games extends beyond

GTFT [66], it is natural to begin the study of equilibrium compu-

tation with the simpler strategy sets described above. Moreover,

several recent works on population protocols have considered pop-

ulations containing a subset of agents whose states always remain

fixed [1, 6, 8, 18, 39]. An (𝛼, 𝛽,𝛾) population can be viewed as an

example of this setting, where the 𝛼 and 𝛽 fractions of AC and AD
agents remain invariant under any update dynamics.

To that end, given the RD and (𝛼, 𝛽,𝛾) population structure

described here, we can now more precisely describe the distribu-

tional equilibrium concept and the main algorithmic questions of

interests for this setting.

1.1.3 Distributional Equilibrium in RD games for (𝛼, 𝛽,𝛾) Popula-
tions. In this setting, we consider update dynamics for agents with

GTFT strategies, and we are interested in the resulting distributions

{𝝁𝑡 } over G that specify the fraction of GTFT agents with strategy

parameter 𝑔𝑖 for each 𝑖 ∈ [𝑘].
For a fixed 𝑘 ≥ 2 and some distribution 𝝁 ∈ Δ(G), and given

the (𝛼, 𝛽,𝛾) population parameters, 𝝁 also induces the (𝑘 + 2)-
part distribution 𝝁̂ ∈ Δ(S) over the full strategy set S, where
S := {AC,AD, 𝑔1, . . . , 𝑔𝑘 }. Specifically, given 𝝁, define:

𝝁̂ (AC) = 𝛼, 𝝁̂ (AD) = 𝛽, and 𝝁̂ (𝑖) = 𝛾 · 𝝁 (𝑖) for 𝑖 ∈ [𝑘] . (3)

Then the 𝜖-approximate distributional equilibrium concept of Def-

inition 1.1 extends to the (𝛼, 𝛽,𝛾) population setting as follows:

Definition 1.2. In the RD setting with an (𝛼, 𝛽,𝛾) population,
and for 𝜖 > 0, we call (𝝅 , 𝝅) ∈ Δ(G) × Δ(S) an 𝜖-approximate
distributional equilibrium (DE) if it satisfies the following property:

E
𝑔∼𝝅 , S∼𝝅

[
𝑓 (𝑔, S)

]
≥ max

𝑔′∈G
E

S∼𝝅

[
𝑓 (𝑔′, S)

]
− 𝜖 . (4)

Given the one-to-one correspondence between 𝝅 and 𝝅 , if expres-
sion (4) holds, we will simply say that 𝝅 is an 𝜖-approximate distri-

butional equilibrium.

Here, the equilibrium definition can be viewed as being re-

stricted to agent interactions where at least one agent has a GTFT
strategy (this is motivated by the fact that AD and AC agents never

change their strategies). In other words, E𝑔∼𝝅 , S∼𝝅 [𝑓 (𝑔, S)] is the
expected RD game payoff of a randomly selected GTFT agent (un-

der the distribution 𝝁 over G) playing against a randomly selected

opponent with any strategy (under the distribution 𝝁̂ over S that is

induced by 𝝁) If 𝝁 satisfies expression (4), then the first randomly

selected GTFT agent can improve its expected payoff by no more

than 𝜖 when unilaterally deviating to a different GTFT strategy pa-

rameter (while still playing against an opponent whose strategy is

drawn from 𝝁̂). By symmetry of the expected RD payoff functions

𝑓 , expression (4) also captures this same property if the second

agent in the interaction is conditioned to be a GTFT agent.

With this 𝜖-approximate DE definition in hand, we can more

precisely state two natural questions of interest in this setting:

- (Q1): Is there a local dynamics P for updating GTFT agents’
strategies that converges to a distribution 𝝁 ∈ Δ(G) that is an
𝜖-approximate DE, and for what approximation parameter 𝜖?

- (Q2): If so, how many interactions are needed for P to converge
to 𝝁?

1.2 Our Contributions
We introduce a family of update dynamics for the setting above

that converges to an approximate DE, and we obtain quantitative

bounds on its convergence rate and approximation factor:

• 𝑘-IGT Dynamics (Definition 2.1): We define a family of nat-

ural incremental generosity tuning (IGT) dynamics for updat-

ing the generosity parameters of GTFT agents among the set

G = {𝑔1, . . . , 𝑔𝑘 } for each 𝑘 ≥ 2. In each instantiation, after a

GTFT agent interacts with a second agent from the population,

it increments or decrements its generosity parameter to the next

highest or smallest parameter value in G, depending on the strat-

egy type of its opponent. We show this update rule can be viewed

as an introspection dynamics with local search from evolutionary

games [66], and we abbreviate the 𝑘-th dynamics by 𝑘-IGT.

• Stationary properties of 𝑘-IGT (Theorem 2.7): We derive ex-

act characterizations of the stationary distribution of the 𝑘-IGT

dynamics over the set of generosity parameters G, and we derive

bounds on its mixing time:

(i) the stationary distribution of the 𝑘-IGT dynamics is multi-
nomial with parameters 𝛾 · 𝑛 and (𝑝1, . . . , 𝑝𝑘 ), where each
𝑝 𝑗 ∝ (1/𝛽 − 1) 𝑗−1.

42



PODC ’24, June 17–21, 2024, Nantes, France D. Alistarh et al.

(ii) when 𝛽 ≠ 1/2, the mixing time of the dynamics is at most

𝑂 (𝑘𝑛 log𝑛) total interactions, and when 𝛽 = 1/2, the de-
pendence on 𝑘 changes to 𝑘2. Moreover, the mixing time is

lower bounded by at least Ω(𝑘𝑛) total interactions.
• Convergence to an 𝜖-approximate DE (Theorem 2.9): We

prove that under suitable population and game setting regimes

(when the maximum generosity parameter 𝑔 is bounded with

respect to 𝑏, 𝑐, 𝛿 and the population parameters (𝛼, 𝛽,𝛾)), the
mean of the stationary distribution 𝝁 for the 𝑘-IGT dynamics is

an 𝜖-approximate DE (Definition 1.2) for 𝜖 = 𝑂 (1/𝑘).

Our results highlight interesting tradeoffs in the multi-agent

computation of an 𝜖-approximate DE in this setting: for increas-

ing 𝑘 , meaning larger generosity parameter spaces G and larger

local state requirements for each GTFT agent, the time (number

of total interactions) to converge to the stationary distribution of

the 𝑘-IGT dynamics grows linearly with 𝑘 , but it results in a better

equilibrium approximation factor 𝜖 decaying at a rate of 1/𝑘 . In gen-
eral, these are the first such results that quantify the convergence

properties (both in mixing time, and in equilibrium approximation)

of game dynamics in multi-agent settings with random pairwise

interactions.

The main technical tool to achieve these results is to relate

the evolution of the 𝑘-IGT dynamics to a new family of high-
dimensional, weighted Ehrenfest random walks, which generalize the

classic two-dimensional Ehrenfest urn process [41]. The stationary

and mixing results we prove for these new Ehrenfest processes

may be of independent interest. Our results also leave open the

more general question of designing dynamics for other classes of

games, and to quantify their resulting convergence properties to

approximate distributional equilibria.

Structure of Paper. The remainder of the paper is structured as

follows: in Section 1.3, we discuss several lines of related work in

more detail. In Section 2, we introduce some additional preliminar-

ies and provide a technical overview of our families of dynamics

and convergence results. The proofs of most results can be found

in the full version of the paper [3].

1.3 Related Work
Population protocol dynamics. The population model was orig-

inally introduced by Angluin et al. [9] to model computation in

populations of passively mobile agents (such as sensor networks

or animal populations), and has since found several other applica-

tions, from chemical reaction networks [25, 27, 35] to computing

via synthetic DNA strands [29]. On the theoretical side, an im-

pressive amount of effort has been invested in understanding the

computational power of the model, e.g. [9, 11], on analyzing funda-

mental dynamics such as rumor spreading and averaging [15, 46],

and on the complexity of core algorithmic tasks such as major-

ity (consensus) [2, 5, 16, 17, 19, 36, 38, 45, 70] and leader elec-

tion [4, 20, 37, 43, 44] in this model. The latter direction has re-

cently lead to tight bounds on the space and task complexity of

these tasks [2, 20, 36]. In this context, our contributions are to de-

sign and analyze a novel class of repeated game dynamics that lead

to interesting time and space tradeoffs.

Evolutionary game dynamics. There is a huge literature on

evolutionary game dynamics, and we briefly mention some key

results and the relationship to our work. The first approach is to

consider evolutionary dynamics in an infinite population with the

aid of differential equations (aka, the replicator dynamics) [66, 74],

and the goal is to study the existence and stability of equilibrium

points. The second approach is to consider evolutionary dynamics

in finite populations with a specific class of strategies e.g., reactive

strategies or memory-1 strategies. In these approaches, the class

of strategies is uncountable and simulation results suggest which

strategies successfully evolve in the simulation of evolutionary

dynamics [65, 67]. The third approach is to consider evolution-

ary dynamics on networks but with only two strategy types (AC
and AD) [7, 57]. In contrast to the present paper, none of these

works focus on quantitative aspects related to the mixing time (or

convergence time) to the stationary behavior.

Complexity of equilibrium computation. Additionally, in both

classical and evolutionary game settings, much attention has been

given to understanding the computational complexity of comput-

ing an equilibrium: for example, it is known in general that com-

puting a Nash equilibrium in a general-sum two-player game is

PPAD-hard [28, 30]. Moreover, even determining the existence of

evolutionary stable strategies in two-player strategic form games is

NP-hard [42], and computing the fixation probability in evolution-

ary games with two strategies on graphs is PSPACE-complete [52].

In light of this, much progress has also been made on designing

dynamics that provably converge for either (a) special subclasses

of games (such as zero-sum games [63]) or (b) to approximate or

weaker equilibrium concepts (such as correlated or coarse corre-

lated equilibria [12, 47, 72]).

Other multi-player game settings. As mentioned earlier in the

introduction, there is a large body of literature on other multi-player

game settings. In the most basic, multi-agent normal-form game

setting [26, 64], 𝑛 players simultaneously choose actions at each

round, and each receives a payoff according to a reward function

that depends on the actions of all other players. In this setting and

its closely related variants, extensive work has been devoted to

designing local strategies that provably converge to an equilibrium,

and to determine their corresponding rates of convergence (e.g., [24,

31, 47, 51, 58]). This is in contrast to the setting of the present work,

where only a single random pair of agents interacts at each step,

and thus these results are not directly comparable.

An orthogonal line of work to ours previously investigated

game theoretic aspects of population protocols [21, 22], but the

focus in these works is on understanding the computational power of
interaction rules that correspond to symmetric games. Additionally,

some prior work [40] studied certain random walk processes that

model the evolution of cooperation in repeated prisoner’s dilemma

games in populations of interacting agents. However, the focus in

that work is restricted to bounding the stabilization time of the

process, and not on its characterization within the framework of

equilibrium computation.
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2 TECHNICAL OVERVIEW
2.1 Preliminaries

Notation. We use the shorthand notation [𝑘] = {1, . . . , 𝑘} for
any 𝑘 ≥ 0, and we define the set Δ𝑚

𝑘
:=

{
(𝑥1, . . . , 𝑥𝑘 ) ∈ N𝑘 :∑

𝑗∈[𝑘 ] 𝑥 𝑗 = 𝑚
}
. For non-negative integers 𝑥 , 𝑎, and 𝑏, we write

[𝑥]𝑏𝑎 to denote [𝑥] truncated to the range [𝑎, 𝑏]. For readability,
when 𝑎 and 𝑏 are clear from context, we will (by slight abuse of

notation) simply write [𝑥].

Markov chains. We consider discrete-time Markov chains {𝒙𝑡 }
over a discrete space Ω, with transition matrix 𝑷 : Ω × Ω → [0, 1].
Recall that 𝝅 : Ω → [0, 1] is a stationary distribution of {𝒙𝑡 } if
𝝅𝑷 = 𝝅 (where we interpret the probability mass function (PMF) of

𝝅 as a row vector). Recall also that any distribution 𝝂 : Ω → [0, 1]
satisfying the detailed balance equations 𝝂 (𝒙)𝑷 (𝒙,𝒚) = 𝝂 (𝒚)𝑷 (𝒚, 𝒙)
for all 𝒙,𝒚 ∈ Ω is a stationary distribution for the process. Start-

ing from 𝒙1 := 𝒙 for any 𝒙 ∈ Ω, we let 𝑷𝑡 (𝒙) denote the the

distribution of 𝒙𝑡 (i.e., of the process after 𝑡 steps), and we write

𝑑 (𝑡) := max𝒙∈Ω ∥𝑷𝑡 (𝒙) − 𝝅 ∥TV to denote the distance to stationar-
ity (in total variation) of the process after 𝑡 steps, maximized over

all initial states. Then we define the mixing time 𝑡mix of {𝒙𝑡 } as
𝑡mix := min{𝑡 ≥ 0 : 𝑑 (𝑡) ≤ 1/4}. We refer the reader to the text

of Levin and Peres [56] for more background and preliminaries on

Markov chains and mixing times.

Multinomial distributions. We recall basic facts about multino-

mial distributions. For𝑚 ≥ 1, 𝑘 ≥ 2, and a sequence (𝑝1, . . . , 𝑝𝑘 )
such that 𝑝1 + · · · + 𝑝𝑘 = 1, a distribution 𝝂 is multinomial with
parameters𝑚 and (𝑝1, . . . 𝑝𝑘 ) if the PMF of 𝝂 is given by 𝝂 (𝒙) =

𝑝
𝑥1
1

· 𝑝𝑥2
2

. . . 𝑝
𝑥𝑘
𝑘

·
( 𝑚
𝑥1,...,𝑥𝑘

)
for all 𝒙 = (𝑥1, . . . , 𝑥𝑘 ) ∈ Δ𝑚

𝑘
, where

the multinomial coefficient is defined as

( 𝑚
𝑥1,...,𝑥𝑘

)
= 𝑚!

𝑥1!·𝑥2!...𝑥𝑘 !
. Writing 𝝂 = (𝜈1, . . . , 𝜈𝑘 ), it is known that E[𝜈 𝑗 ] = 𝑚 · 𝑝 𝑗 for all
𝑗 ∈ [𝑘]. When 𝑘 = 2, then 𝝂 is a binomial distribution, and we can

simply say that 𝝂 is binomial with parameters𝑚 and 𝑝1.

2.2 𝑘-IGT Dynamics
We begin by formally introducing our family of local update dynam-

ics for the problem setting described in Section 1.1. Fixing 𝑘 ≥ 2,

recall that we assume each GTFT agent maintains a generosity

parameter 𝑔 ∈ G = {𝑔1, . . . , 𝑔𝑘 } at each time step. The 𝑘-IGT dy-

namics then follows two transition types: (a) after a GTFT agent 𝑢

interacts with an AC agent or a second GTFT agent, 𝑢 increases its

generosity parameter to the next largest value in G, and (b) after a

GTFT agent𝑢 interacts with an AD agent,𝑢 decreases its generosity

parameter to the next smallest value in G. Defined formally:

Definition 2.1 (Incremental-Generosity-Tuning (IGT) Dynamics).
Consider an (𝛼, 𝛽,𝛾) population and an RD game setting with max-

imum generosity parameter 𝑔. For any 𝑘 ≥ 2, define the set of 𝑘

generosity parameters G = {𝑔1, . . . , 𝑔𝑘 } where each 𝑔 𝑗 = 𝑔 ·
( 𝑗−1
𝑘−1

)
.

Randomly initialize the parameter of every GTFT agent to some

𝑔 ∈ G. Then the 𝑘-IGT dynamics is the population protocol that

evolves for all 𝑗 ∈ {1, . . . , 𝑘} according to the following transitions

over the strategy types of interacting nodes:

(i) 𝑔 𝑗 + AC −→ Inc(𝑔 𝑗 ) + AC

(ii) 𝑔 𝑗 + 𝑔𝑖 −→ Inc(𝑔 𝑗 ) + 𝑔𝑖 , for all 𝑖 ∈ [𝑘]
(iii) 𝑔 𝑗 + AD −→ Dec(𝑔 𝑗 ) + AD ,

where Inc(𝑔 𝑗 ) := 𝑔
min{ 𝑗+1,𝑘 } and Dec(𝑔 𝑗 ) := 𝑔

max{ 𝑗−1,1} .

Figure 1 shows an example of how the parameter value of

a GTFT agent is updated depending on the strategy type of its

interaction partner.
3
Note that while the transition rules of the

k-IGT dynamics are defined with respect to the strategies of the
two agents, these transitions could alternatively be defined with

respect to the observed game actions. We remark that for sufficiently

large 𝛿 the resulting transition rules will be essentially the same as

in Definition 2.1, as in this case each agent can infer the strategy

type of its opponent with high probability. It follows that the re-

sulting dynamics will be essentially the same as to those induced

by Definition 2.1, up to some small approximation error. Thus for

simplicity, the transitions of the 𝑘-IGT dynamics are defined with

respect to the strategy types of the interacting agents.

Bridging 𝑘-IGT and introspection dynamics. Under mild con-

straints on the reward vector 𝒗 and maximum generosity parameter

𝑔, we show that the transition rules of the 𝑘-IGT dynamics are lo-
cally optimal in the following sense: under any transition rule of

Definition 2.1, the expected payoff 𝑓 (𝑔, S) will never decrease had
the GTFT agent used the updated generosity parameter value (spec-

ified by the transition rules) against its previous opponent with

strategy S. In particular, this bridges the relationship between the

𝑘-IGT dynamics and the classic concept of introspection dynamics
with local search from evolutionary games [50], where an agent

explores the local neighborhood of its strategy space to adopt a new

strategy that would have performed better. Formally, in Appendix B

of the full version, we prove the following proposition, which relies

on (i) deriving exact expressions for the expected payoffs 𝑓 (𝑔, ·),
and (ii) differentiating these payoff functions with respect to 𝑔:

Proposition 2.2. Consider an RD game setting consisting of (a) an
initial cooperation probability 𝑠1 ∈ [0, 1) (b) a restart probability
𝛿 > 𝑐

𝑏
and (c) a maximum generosity parameter 𝑔 < 1 − 𝑐

𝛿𝑏
. Then

for all 𝑔,𝑔′ ∈ [0, 𝑔] such that 𝑔 < 𝑔′, the following three statements
hold:

(i) 𝑓 (𝑔,𝑔′′) < 𝑓 (𝑔′, 𝑔′′) for all 𝑔′′ ∈ [0, 𝑔]
(ii) 𝑓 (𝑔,AC) ≤ 𝑓 (𝑔′,AC)
(iii) 𝑓 (𝑔,AD) > 𝑓 (𝑔′,AD).

2.2.1 Analysis setup. Given these 𝑘-IGT dynamics, our first main

result (Theorem 2.7) characterizes the stationary and mixing prop-

erties of the distribution over GTFT strategies induced by the dy-

namics. For this, let𝑚 := 𝛾 ·𝑛 denote the number of GTFT nodes in

the population, and fix 𝑘 ≥ 2. We define 𝒛𝑡 := (𝑧𝑡
1
, . . . , 𝑧𝑡

𝑘
) ∈ Δ𝑚

𝑘
as

the count vector specifying the number of agents with strategy 𝑔𝑖
after the 𝑡 ’th step, and we study the Markov chain {𝒛𝑡 }. To this end,
we begin by specifying how the transitions of the 𝑘-IGT dynamics

3
We refer to the first agent in such interactions as the initiator, and in this setting

we assume only that the initiator ever updates its strategy following an interaction.

This type of one-way protocol is a standard modeling assumption in the population

protocol literature, e.g. [9–11, 16, 17].
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g1 g6g5g4g3g2 g5g4g3g2g1 g6g6g5g4g3g2g1

1-ββ 1-β 1-ββ β

Figure 1:When 𝑘 = 6, three examples showing how the parameter value of a GTFT agent is probabilistically updated under the 𝑘-IGT dynamics.
Note that conditioned on a GTFT agent 𝑢 being sampled as the first agent, 𝑢 increments its parameter value with probability (1 − 𝛽 ) and
decrements its parameter value with probability 𝛽 (where in both cases, the values are truncated to the range [0, 𝑔]).

map to the transitions 𝒛𝑡 → 𝒛𝑡+1: recall from Definition 2.1 that fol-

lowing any (non-null) interaction, exactly one GTFT agent updates

its parameter. Then conditioned on an interaction at step 𝑡 whose

initiator has strategy 𝑔 𝑗 for some 𝑗 ∈ [𝑘], then the coordinates of

𝒛𝑡+1 can be specified by one of the following cases, depending on

the strategy of the sampled interaction partner:

(a) If the second agent has strategy AC or GTFT, then for

each 𝑗 ∈ [𝑘]:

𝑧𝑡+1𝑖 =


𝑧𝑡
𝑖
− 1 if 𝑖 = 𝑗 and 𝑗 < 𝑘

𝑧𝑡
𝑖
+ 1 if 𝑖 = 𝑗 + 1 and 𝑗 < 𝑘

𝑧𝑡
𝑖

otherwise.

(b) If the second agent has strategy AD, then for each coor-

dinate 𝑖 ∈ [𝑘]:

𝑧𝑡+1𝑖 =


𝑧𝑡
𝑖
− 1 if 𝑖 = 𝑗 and 𝑗 > 1

𝑧𝑡
𝑖
+ 1 if 𝑖 = 𝑗 − 1 and 𝑗 > 1

𝑧𝑡
𝑖

otherwise.

Given that the pair of interacting agents are sampled uniformly at

random at each time step, this implies that the update in (a) occurs

with (unconditional) probability (𝑧𝑡
𝑗
/𝑛) · (1 − 𝛽), and the update

in (b) occurs with probability (𝑧𝑡
𝑗
/𝑛) · 𝛽 . Then given 𝒛𝑡 , we can

summarize all transitions 𝒛𝑡 → 𝒛𝑡+1 (for 𝒛𝑡+1 ≠ 𝒛𝑡 ) that occur with
non-zero probability as follows: for all 𝑗 ∈ [𝑘 − 1],

𝒛𝑡+1 = (𝑧𝑡
1
, . . . , 𝑧𝑡𝑗 − 1, 𝑧𝑡𝑗+1 + 1, . . . , 𝑧𝑡

𝑘
)

w.p.

𝑧𝑡
𝑗

𝑚 · (1 − 𝛼 − 𝛽) (1 − 𝛽), and
𝒛𝑡+1 = (𝑧𝑡

1
, . . . , 𝑧𝑡𝑗 + 1, 𝑧𝑡𝑗+1 − 1, . . . , 𝑧𝑡

𝑘
)

w.p.

𝑧𝑡
𝑗+1
𝑚 · (1 − 𝛼 − 𝛽)𝛽 .

(5)

Observe that transition probabilities in (5) are normalized by 𝑚

(using the definition𝑛 =𝑚/(1−𝛼−𝛽)), and that the coefficients (1−
𝛼 − 𝛽) (1− 𝛽) and (1−𝛼 − 𝛽) (𝛽) are absolute constants with respect

to the coordinates of 𝒛𝑡 . Thus we can view the process as a special

case of a more general class of Markov chains {𝒙𝑡 } over Δ𝑚
𝑘
, whose

transition probabilities (up to the absolute constant coefficients)

are of the form in expression (5). We proceed to define and analyze

this more general set of processes, from which characterizing the

stationary and mixing properties of {𝒛𝑡 } will follow.

2.3 High-Dimensional, Weighted Ehrenfest
Processes

We introduce and analyze a more general class of random walks

on Δ𝑚
𝑘
, which we refer to as high-dimensional, weighted Ehrenfest

processes. Defined formally:

Definition 2.3 ((𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest Process). Fix 𝑘 ≥ 2, and

𝑎, 𝑏 > 0 such that 𝑎 + 𝑏 ≤ 1. Let {𝒙𝑡 } be the Markov chain on Δ𝑚
𝑘

with transition matrix 𝑷 : Δ𝑚
𝑘

→ Δ𝑚
𝑘
, where for all 𝑗 ∈ [𝑘 − 1] and

𝒙 = (𝑥1, . . . , 𝑥𝑘 ) ∈ Δ𝑚
𝑘
:

𝑷
(
𝒙, (𝑥1, . . . , 𝑥 𝑗 − 1, 𝑥 𝑗+1 + 1, . . . , 𝑥𝑘 )

)
= 𝑝

𝑗, 𝑗+1
𝒙 := 𝑎 ·

𝑥 𝑗

𝑚

𝑷
(
𝒙, (𝑥1, . . . , 𝑥 𝑗 + 1, 𝑥 𝑗+1 − 1, . . . , 𝑥𝑘 )

)
= 𝑝

𝑗+1, 𝑗
𝒙 := 𝑏 ·

𝑥 𝑗+1
𝑚

𝑷 (𝒙, 𝒙) = 𝑝⊥𝒙 := 1 −
(∑𝑘−1

𝑗=1 𝑝
𝑗, 𝑗+1
𝒙 + 𝑝

𝑗+1, 𝑗
𝒙

)
,

and 𝑷 (𝒙,𝒚) = 0 for all other 𝒚 ∈ Δ𝑚
𝑘
. Then we call {𝒙𝑡 } the

(𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest process.

Relationship to the two-urn Ehrenfest Process. When 𝑘 = 2 and

𝑎 = 𝑏 = 1

2
, the process reduces to the classical Ehrenfest Urn Process

[41, 48, 76] from statistical physics. Here,𝑚 balls are distributed in

two urns. At each step, an urn is sampled proportionally to its load,

and with probability half, a ball from the sampled urn is placed

into the other urn. The (𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest process generalizes
this original setting to a weighted, high-dimensional regime: we

consider𝑚 balls distributed over a sequence of 𝑘 urns, and after

sampling the 𝑗 ’th urn proportionally to its load, a ball from urn 𝑗 is

placed into urn [ 𝑗 + 1] with probability 𝑎, and into urn [ 𝑗 − 1] with
probability 𝑏. While the stationary and mixing behavior of two-

urn process (including several weighted variants) is well-studied

[32, 33, 53–55, 61], we give the first such analyses for the weighted,

high-dimensional analogs from Definition 2.3.

2.3.1 Deriving the stationary distributions. We exactly character-

ize the stationary distributions of (𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest processes:
we show these distributions are multinomial with parameters

(𝑝1, . . . , 𝑝𝑘 ), and 𝑚, where each 𝑝 𝑗 ∝ (𝑎/𝑏) 𝑗−1. For 𝑘 = 2 and

3, this is obtained by viewing the process as a weighted random

walk on a graph with vertex set Δ𝑚
𝑘
, and by solving the recurrences

stemming from the detailed balance equations (these calculations

are derived formally in Appendix A of the full version).

For higher dimensions (i.e., general 𝑘), we use the form of the

stationary PMFs for 𝑘 = 2 and 3 as an Ansatz for the specifying and

verifying (via the detailed balance equations) the stationary PMF.

Stated formally, we prove the following result, the proof of which

is given in Appendix A of the full version.

Theorem 2.4. Fix 𝑎, 𝑏 > 0 with 𝑎 + 𝑏 ≤ 1, and let 𝜆 := 𝑎/𝑏. For
any 𝑘,𝑚 ≥ 2, let {𝒙𝑡 } be the (𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest process, and let
𝝅 : Δ𝑚

𝑘
→ [0, 1] be its stationary distribution. Then 𝝅 is multinomial

with parameters 𝑚 and (𝑝1, . . . , 𝑝𝑘 ), where 𝑝 𝑗 := 𝜆 𝑗−1∑𝑘
𝑖=1 𝜆

𝑖−1 for all

𝑗 ∈ [𝑘].
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2.3.2 Bounds on mixing times. Let 𝑡mix and 𝑑 (𝑡) denote the mixing

time and distance to stationarity (as defined in Section 2.1) of the

(𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest process. We prove the following upper and

lower bounds on 𝑡mix:

Theorem 2.5. Fix 𝑎, 𝑏 > 0 with 𝑎 + 𝑏 ≤ 1, and 𝑘,𝑚 ≥ 2. Let
𝑡mix be the mixing time of the (𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest process. Then

𝑡mix =

{
𝑂
(
min{ 𝑘

|𝑎−𝑏 | , 𝑘
2} ·𝑚 log𝑚

)
when 𝑎 ≠ 𝑏

𝑂
(
𝑘2 ·𝑚 log𝑚

)
when 𝑎 = 𝑏

.

Moreover, 𝑡mix = Ω(𝑘𝑚).

Here, observe that the case distinction in the upper bound

quantifies the impact of more biased 𝑎 and 𝑏 parameters in speeding

up convergence to the stationary distribution, while the lower

bound establishes a linear dependence on 𝑘 that is uniform over all

𝑎 and 𝑏. The full proof of the theorem is developed in Appendix A

of the full version, but we provide a high-level proof sketch here:

Proof sketch of Theorem 2.5. To derive an upper bound on 𝑡mix,

we introduce the following coupling: first, let {𝑋𝑡 } and {𝑌𝑡 } be
random walks over Ω = {1, . . . , 𝑘}𝑚 . At time 𝑡 , we sample a coordi-

nate 𝑖 ∈ [𝑚] uniformly at random, and simultaneously increment

or decrement the 𝑖’th coordinate of both 𝑋𝑡 and 𝑌𝑡 (with values

truncated to [𝑘]) with probability 𝑎 and 𝑏, respectively.

It is straightforward to see that the vector of counts of each
value 𝑗 ∈ [𝑘] in both 𝑋𝑡 and 𝑌𝑡 evolve as (𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest pro-
cesses. Then using the standard relationship between the coupling
time of {(𝑋𝑡 , 𝑌𝑡 )} (the first 𝑡 when 𝑋𝑡 = 𝑌𝑡 ) and mixing times [56],

it suffices to probabilistically upper bound the coupling time of

the joint process. We achieve this by estimating the time to coa-

lesce each of the𝑚 coordinates of the process, and this reduces to

bounding the expected absorption times of𝑚 independent (possi-

bly) biased random walks on {−𝑘, . . . , 𝑘} (which necessitates the

case distinction between 𝑎 ≠ 𝑏 and 𝑎 = 𝑏).

For the Ω(𝑘𝑚) lower bound on 𝑡mix, we use a standard diame-

ter lower bound approach [56], which says that 𝑡mix ≥ Ω(𝐷), where
𝐷 is the diameter of the graph induced by the probability transition

matrix of the process. For this, we can derive an straightforward

estimate of 𝐷 ≥ Ω(𝑘𝑚) using the structure of the transition proba-

bilities from Definition 2.3.

Remark 2.6. The results we establish for the (𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest
process are general and may be of independent and broader interest.

Moreover, our mixing time bounds of Theorem 2.5 open up several

interesting questions. First, notice that our lower bounds on 𝑡mix

leave open at least a 𝑂 (log𝑚) gap relative to the upper bound.

On the other hand, Ω(𝑚 log𝑚) is a known lower bound on 𝑡mix

for the original, unweighted 𝑘 = 2 process [34, 56], and thus we

conjecture that our upper bounds on 𝑡mix for the general (𝑘, 𝑎, 𝑏,𝑚)
process are asymptotically optimal. We leave establishing lower

bounds for 𝑡mix of this same order as future work. Additionally, the

original two-urn process is known to exhibit a cut-off phenomenon

[14], in which the distance to stationarity of the process sharply

decays precisely at around
1

2
·𝑚 log𝑚 steps [56]. Investigating this

phenomenon for the general (𝑘, 𝑎, 𝑏,𝑚) process (and obtaining such
exact cutoff constants in terms of 𝑎 and 𝑏) is an interesting line of

future work.

2.4 Stationary Properties of 𝑘-IGT Dynamics
By combining the arguments of Sections 2.2.1 and 2.3, we can

use the stationary and mixing time analysis of the 𝑘-dimensional,

weighted Ehrenfest process to analyze the evolution of the 𝑘-IGT

dynamics and formally state our main results. Specifically, based on

the transition probabilities in (5), for any 𝑘 ≥ 2, the sequence {𝒛𝑡 }
induced by the 𝑘-IGT dynamics is exactly a (𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest
process, where 𝑎 := 𝛾 (1− 𝛽), 𝑏 := 𝛾𝛽 , and𝑚 = 𝛾𝑛. Thus the station-

ary distribution and mixing time bounds developed in Theorems 2.4

and 2.5 exactly apply to the sequence {𝒛𝑡 } induced by the 𝑘-IGT

dynamics.

Before stating this main result, for convenience and readability,

we first summarize in Table 1 our core notation and the components

of RD games in the (𝛼, 𝛽,𝛾) populations:

Symbol Definition

𝑏, 𝑐 donation game reward parameters

𝛼 fraction of AC agents

𝛿 continuation probability

𝛽 fraction of AD agents

𝑠1 initial cooperation probability

𝛾 fraction of GTFT agents

𝑔 maximum generosity parameter

𝑘 number of GTFT parameter values

Table 1: Summary of Notation in RD Games and (𝛼, 𝛽,𝛾) pop-
ulations

Then the stationary and convergence properties of the 𝑘-IGT

dynamics are as follows:

Theorem 2.7. Fix𝑘 ≥ 2, and consider the sequence {𝒛𝑡 } induced
by the 𝑘-IGT dynamics on an (𝛼, 𝛽,𝛾) population and an 𝑅𝐷 game
setting with maximum generosity parameter 𝑔. Then {𝒛𝑡 } converges
to a multinomial stationary distribution 𝝅 with parameters𝑚 and

(𝑝1, . . . , 𝑝𝑘 ), where each 𝑝 𝑗 =
(1/𝛽−1) ( 𝑗−1)∑𝑘
𝑖=1 (1/𝛽−1) (𝑖−1)

for 𝑗 ∈ [𝑘]. Moreover,

letting 𝑡mix denote the mixing time of {𝒛𝑡 } to 𝝅 :

𝑡mix ≤
{
𝑂
(
min{ 𝑘

|1−2𝛽 | , 𝑘
2} · 𝑛 log𝑛

)
when 𝛽 ≠ 1

2

𝑂
(
𝑘2 · 𝑛 log𝑛

)
when 𝛽 = 1

2

,

and 𝑡mix ≥ Ω(𝑘𝑛).

Observe that the mixing time of the process speeds up in

regimes where 𝛽 is bounded away from half (i.e., the number of AD
agents is sufficiently small or sufficiently large). Similarly, the mean

of the stationary distribution E[𝝅] = (E[𝜋1], . . . , E[𝜋𝑘 ]) grows
increasingly less uniform over G in this regime of 𝛽 . In particular,

given that 𝝅 is a multinomial distribution, it follows that E[𝜋 𝑗 ] =
𝑚 · 𝑝 𝑗 = 𝛾𝑛 · 𝑝 𝑗 for each 𝑗 ∈ [𝑘]. Thus for 𝛽 < 1/2, we expect the
largest generosity parameter 𝑔𝑘 ∈ G to have the greatest adoption

among GTFT agents after 𝑡mix many steps, and this mass increases

as 𝛽 grows smaller, and as the size 𝑘 of the parameter space G
increases.
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Average stationary generosity. Given the set of generosity val-

ues G = {𝑔1, . . . , 𝑔𝑘 } and any 𝒛 = (𝑧1, . . . , 𝑧𝑘 ) ∈ Δ𝑚
𝑘
, we define the

average generosity value specified by 𝒛 as 1

𝑚

∑
𝑗∈[𝑘 ] 𝑔 𝑗 ·𝑧 𝑗 . Then the

stationary distribution 𝝅 from Theorem 2.7 allows us to derive an

average stationary generosity value 𝑔 for the 𝑘-IGT dynamics, which

we define as the average generosity value with respect to E[𝝅]. We

derive this value for all 𝑘 ≥ 2 in the following proposition:

Proposition 2.8. Fix 𝑘 ≥ 2, and let 𝝅 = (𝜋1, . . . , 𝜋𝑘 ) denote the
stationary distribution of the 𝑘-IGT dynamics from Theorem 2.7 on
an (𝛼, 𝛽,𝛾) population with maximum generosity parameter 𝑔. Let
G = {𝑔1, . . . , 𝑔𝑘 } be the set of generosity parameter values from Defi-
nition 2.1. Let 𝑔 be the average stationary generosity of the dynamics,
where 𝑔𝑘 := 1

𝑚

∑𝑘
𝑗=1 𝑔 𝑗 · E[𝜋 𝑗 ], and let 𝜆 := (1 − 𝛽)/𝛽 . Then

𝑔 = 𝑔 ·
(

𝜆𝑘

𝜆𝑘 − 1

−
(

1

𝑘 − 1

) ( 𝜆

𝜆 − 1

) (𝜆𝑘−1 − 1

𝜆𝑘 − 1

))
for 𝛽 ≠ 1/2 ,

and 𝑔 = 𝑔/2 for 𝛽 = 1/2.

Roughly speaking, Proposition 2.8 shows that for the 𝑘-IGT

dynamics, 𝑔 ≈ 𝑔 ·
(
1 − 𝛽

(1−2𝛽 )𝑘
)
when 𝛽 is bounded below 1/2, and

𝑔 ≈ 𝑔 ·
(

1−𝛽
(2𝛽−1)𝑘

)
when 𝛽 is bounded above 1/2. Thus when the

fraction of AD agents is sufficiently small, the average stationary

generosity approaches the maximum generosity parameter 𝑔 at a

rate of𝑂 (1/𝑘), and it approaches 0 at this same rate otherwise. This

again highlights the tradeoffs between the size 𝑘 of the parameter

space, and the resulting levels of generosity induced by the dynam-

ics. The proof of the proposition is given in Appendix C of the full

version.

2.5 Convergence of 𝑘-IGT Dynamics to an
𝜖-Approximate Distributional Equilibrium

Theorem 2.7 shows that the 𝑘-IGT converges to a stationary dis-

tribution 𝝅 and gives a bound on its mixing time. Our next main

result shows that this stationary distribution corresponds to an

𝜖-approximate distributional equilibrium. Specifically, we show

under suitable regimes of the RD game parameters that the (nor-

malized) mean of the stationary distribution 𝝁 = 1

𝑚 · E[𝝅] of the
𝑘-IGT dynamics is an 𝜖-DE for 𝜖 = 𝑂 (1/𝑘). Formally, we show the

following:

Theorem 2.9. Let 𝝅 be the stationary distribution and 𝝁 :=
1

𝑚 · E[𝝅] be the normalized mean stationary distribution of the 𝑘-

IGT dynamics for 𝜆 :=
1−𝛽
𝛽

≥ 2. Consider RD game settings with

𝑠1 ∈ [0, 1), 𝑏𝑐 > 1+ 𝛽𝑐

𝛾 (1−𝑠1 ) and 𝛿 <

√︂
1 − 𝛽𝑐

𝛾 (𝑏−𝑐 ) (1−𝑠1 ) , and assume

𝑔 < 1 − 1

𝛿

(
𝛽𝑐

𝛾 (𝑏−𝑐 ) (1−𝛿 ) (1−𝑠1 ) − 1

)
. Then 𝝁 is an 𝜖-approximate

distributional equilibrium (Definition 1.2) for 𝜖 = 𝑂 (1/𝑘).

Combined with Theorem 2.7, the result of Theorem 2.9 gives

formal, quantitative answers to the main algorithmic questions (Q1)
and (Q2) stated in Section 1.1.3. Specifically, for the setting where

𝜆 = (1 − 𝛽)/𝛽 ≥ 2, and under suitable game parameter regimes:

- Theorem 2.9 gives a formal answer to (Q1) by showing that

the mean stationary distribution 𝝁 of the 𝑘-IGT dynamics is

an 𝜖-approximate Distributional Equilibrium, for 𝜖 = 𝑂 (1/𝑘).

- Theorem 2.7 gives a formal answer to (Q2) by showing that

the 𝑘-IGT dynamics converges to its stationary distribution

(and thus this 𝜖-DE) within 𝑂 (𝑘𝑛 log𝑛) total interactions.

Thus as 𝑘 increases, the 𝑘-IGT dynamics converges to an approxi-

mate DE with a tighter approximation factor, but at the expense of

(i) a linear increase in the convergence rate and (ii) a linear growth

in the local memory required by each GTFT agent (which is needed

to store the set of 𝑘 generosity parameter values G = {𝑔1, . . . , 𝑔𝑘 }).
Additionally, note in Theorem 2.9 that the constraints on the

game setting parameters require the reward ratio 𝑏/𝑐 be sufficiently

large, and that the restart probability 𝛿 and maximum generosity

parameter 𝑔 both be bounded away from 1. Moreover, the result

is stated only for 𝜆 := (1 − 𝛽)/𝛽 ≥ 2. We remark that a similar

statement to Theorem 2.9 can be shown for values of 𝜆 less than 1

(e.g., 𝜆 < 1/2) that rely on assuming an upper bound on the ratio

𝑏/𝑐 , and a lower bound on 𝛿 and 𝑔, but for simplicity we focus on

the case when (1 − 𝛽)/𝛽 is greater than 1.
4

The full proof of Theorem 2.9 is developed in Appendix D of

the full version, but we provide a high-level sketch of the proof

here:

Proof Sketch of Theorem 2.9. To prove that 𝝁 is an 𝜖-

approximate DE, we use the following high-level strategy: first,

recall from the Definition 1.2 that 𝝁 must satisfy

E
𝑔∼𝝁, S∼𝝁̂

[
𝑓 (𝑔, S)

]
≥ max

𝑔′∈G
E

S∼𝝁̂

[
𝑓 (𝑔′, S)

]
− 𝜖 , (6)

where 𝝁̂ ∈ Δ(S) is the distribution induced by 𝝁 ∈ Δ(G) in the

(𝛼, 𝛽,𝛾) population. Given that G = {𝑔1, . . . , 𝑔𝑘 } and |G| = 𝑘 , the

condition in expression (6) can be equivalently written as

E
𝑔∼𝝁, S∼𝝁̂

[
𝑓 (𝑔, S)

]
≥ max

𝑖∈[𝑘 ]
E

S∼𝝁̂

[
𝑓 (𝑔𝑖 , S)

]
− 𝜖 . (7)

Rearranging terms, the distribution 𝝁 must satisfy

max

𝑖∈[𝑘 ]
E

S∼𝝁̂

[
𝑓 (𝑔𝑖 , S)

]
− E

𝑔∼𝝁, S∼𝝁̂

[
𝑓 (𝑔, S)

]
≤ 𝜖 . (8)

For convenience, let Ψ denote the left hand side of expression (8),

meaning our goal in proving Theorem 2.9 is to show that Ψ ≤
𝑂 (1/𝑘). For this, we show via a first-order Taylor approximation

argument that, so long as the magnitude of the second derivatives

of 𝑓 (𝑔, S) (with respect to 𝑔) are uniformly bounded by a constant

𝐿 > 0:

E
𝑔∼𝝁, S∼𝝁̂

[
𝑓 (𝑔, S)

]
≥ E

S∼𝝁̂

[
𝑓 (𝑔, S)

]
− 𝐿 · Var

𝑔∼𝝁
[𝑔] , (9)

4
Observe that the result of Theorem 2.9 does not necessarily hold for 1/2 ≤ 𝜆 ≤ 2. For

such 𝜆 (multiplicatively) close to 1, the fraction 𝛽 of ALLD agents in the population

is close to 1/2. Thus in this regime of 𝜆 (and depending on the game parameter

settings), the mean of the stationary distribution of the corresponding Ehrenfest

random walk may be far from the 𝑔′ ∈ G that maximizes ES∼𝝁 [ 𝑓 (𝑔′, S) ], and
therefore the convergence to a DEmay not hold. In this sense, the result of Theorem 2.9

requires enough “signal” from 𝜆 (i.e., needing this ratio to be bounded away from 1) in

order to hold.
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where 𝑔 := E𝑔∼𝝁 [𝑔] is the average stationary generosity value from
Proposition 2.8. Then it follows that we can further write

Ψ := max

𝑖∈[𝑘 ]
E

S∼𝝁̂

[
𝑓 (𝑔𝑖 , S)

]
− E

𝑔∼𝝁, S∼𝝁̂

[
𝑓 (𝑔, S)

]
≤ max

𝑖∈[𝑘 ]
E

S∼𝝁̂

[
𝑓 (𝑔𝑖 , S)

]
− E

S∼𝝁̂

[
𝑓 (𝑔, S)

]
+ 𝐿 · Var

𝑔∼𝝁
[𝑔]

= max

𝑖∈[𝑘 ]
E

S∼𝝁̂

[
𝑓 (𝑔𝑖 , S) − 𝑓 (𝑔, S)

]
+ 𝐿 · Var

𝑔∼𝝁
[𝑔] . (10)

Under the parameter assumptions in the statement of the theorem,

we can then bound the two terms in expression (10) separately as

follows:

Propositions D.2 and D.3 : 𝐿 · Var
𝑔∼𝝁

[𝑔] = 𝑂 (1/𝑘2)

Proposition D.4 : max

𝑖∈[𝑘 ]
E

S∼𝝁̂

[
𝑓 (𝑔𝑖 , S) − 𝑓 (𝑔, S)

]
= 𝑂 (1/𝑘) .

The proof of the theorem then follows by combining these two

results (i.e., into expression (10)), and we develop the full proof in

Appendix D of the full version.

3 DISCUSSION
In this work, we initiated the study of game dynamics and equilib-

rium computation in the population protocol model. We introduced

a simple family of 𝑘-IGT dynamics for a class of repeated prisoner’s

dilemma games, and we quantified the convergence of these dy-

namics to an approximate distributional equilibrium. In particular,

by linking the 𝑘-IGT dynamics to a new class of high-dimensional

Ehrenfest processes, we obtain convergence results that highlight

the time, space, and approximation factor tradeoffs for comput-

ing such global equilibria in this setting. Our work also opens the

door for several future directions: first, at a broad level, it would

be interesting to study game dynamics in this population setting

for other classes of games (both from classical game theory and

evolutionary games). In particular, it remains open to quantify the

tradeoffs involved in computing a distributional equilibrium (from

Definition 1.1) in this setting more generally. At a more techni-

cal level, our work also leads to several interesting questions on

(𝑘, 𝑎, 𝑏,𝑚)-Ehrenfest processes that are discussed in Remark 2.6,

and these directions are left for future work.
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