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Abstract

This thesis deals with the study of stochastic processes and their ergodicity properties. The
variety of problems encountered calls for a set of different approaches, ranging from classical to
modern ones: a special place is held by probabilistic methods based on couplings, by functional
inequalities, and by the theory of gradient flows in the space of measures.

The material is organized as follows. Chapter 1 contains the introduction to this thesis, starting
with a general presentation of some of the relevant topics. Section 1.1 is dedicated to the
theory of gradient flows in metric spaces, and introduces the first contribution of this thesis
[DSMP24], which is presented in detail in Chapter 2. Section 1.2 moves to the topic of
curvature of Markov chains, concluding with a brief description of our second contribution
[Ped23], which is included in Chapter 3. Section 1.3 discusses applications of stochastic
processes to the theory of sampling, in particular the recent framework of score-based diffusion
models, and our contribution [PMM24], which is contained in Chapter 4. Section 1.4 discusses
some related problems, concerning the regularization properties of the heat flow. It serves
as a motivation for the work [BP24], which we report in Chapter 5. Finally, Section 1.5
discusses the last contribution of this thesis, which can be found in Chapter 6. It deals with
the convergence to equilibrium of a particular stochastic model from quantitative genetics:
this is established via some functional inequalities, which we prove with probabilistic arguments
based on couplings.
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CHAPTER 1
Introduction

A general motivation for this thesis is the study of convergence properties of stochastic
processes. Needless to say, this is a vast topic with applications in several fields: a few notable
examples, relevant to this thesis, include Markov chains, diffusion processes on Rd, algorithms
for sampling, and evolutionary models from quantitative genetics. This variety of settings is
reflected in a broad range of approaches to tackle the problem, which often draw inspiration
from different areas of mathematics, creating deep and fruitful connections.

A first example of this, and a recurrent theme in this thesis, is given by the topic of functional
inequalities. It turns out that some functional inequalities play a fundamental role in the
study of convergence to equilibrium of Markov processes, by governing the rate at which
an appropriate distance to equilibrium decays to 0 with time. On the other hand, such
inequalities often describe also interesting properties of the equilibrium measure of the stochastic
process, typically related to the concentration of measure phenomenon. Roughly speaking,
this expression indicates the remarkable observation that, for many probability distributions
naturally arising in high-dimensional spaces, most of the mass lives close to each other. In
other words, there are relatively small regions that capture almost all the mass of these
probability distributions. Perhaps the most fundamental example is given by the standard
Gaussian distribution, which satisfies many functional inequalities of this type [BGL14].

Not surprisingly, by involving notions of closeness/distance, the concentration of measure
phenomenon is also intimately connected to geometric properties of the space; in particular,
a key role is played by the concept of (positive) curvature. Seminal results in this direction
are due to Lévy [L5́1], who proved the concentration of measure phenomenon for the unit
sphere in Rd, and to Gromov [MS86], who extended this observation to Riemannian manifolds
having positive Ricci curvature, in such a way that the more the space is curved, the stronger
the implied concentration phenomenon is. In these examples, the reference measure and
distance are naturally taken to be the uniform one and the geodesic one, respectively. The
celebrated work by Bakry and Émery further generalized these results, as we now recall. In the
setting of Riemannian manifolds, denote by Ric the Ricci curvature, and consider a diffusion
process (Xt)t with generator L = ∆−∇V · ∇, for a smooth potential V . The corresponding
semigroup Pt admits a reversible measure π ∝ e−V dλ, where λ denotes the uniform measure.
It was proved in [BE85] that, if ∇2V + Ric > 0, then π satisfies a log-Sobolev inequality.
This fundamental inequality is a prominent member of the aforementioned family of functional
inequalities, as it implies both strong concentration properties for the measure π, and fast
convergence in law of the diffusion process to π itself. Notice that by choosing V = 0 one
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1. Introduction

recovers the Gromov–Lévy theorem, and by choosing V (x) = |x|2/2 in the Euclidean space one
recovers the Gaussian log-Sobolev inequality. This result, however, extends the concentration
properties to a much larger class of measures defined on Riemannian manifolds, elucidating
the favourable effect of positive curvature. At the same time, this suggests also a change of
perspective, that is, to treat the quantity ∇2V +Ric as an “effective” curvature of the random
process (Xt)t. The development by Bakry–Émery of this idea gave rise to a powerful theory
of curvature for Markov processes, based on an abstract set of rules known as Γ-calculus and
the corresponding curvature-dimension condition CD(K, d) [BGL14].

The established connections between curvature and powerful functional inequalities motivated
the effort to extend these definitions and implications to even more general settings. It is
not surprising that the theory of optimal transport, lying at the intersection of probability
theory and geometry, turned out to be a key tool in this respect. It is building on this theory
that Sturm [Stu06] and Lott and Villani [LV09] independently developed a notion of curvature
lower bound for a large class of geodesic metric measure spaces (X, d,m) (here X is a set, d
a distance and m a measure). The curvature of the space is characterized in terms of geodesic
convexity properties of the relative entropy functional (with respect to the reference measure
m), in the 2-Wasserstein space, i.e. the space of probability measures with finite second
moment equipped with the 2-Wasserstein distance from optimal transport. Remarkably, this
definition is consistent with the classical notion of Ricci curvature for Riemannian manifolds,
and even in this very abstract setting positive curvature is shown to imply many functional
inequalities.

Optimal transport gives also new insights into the role played by functional inequalities both in
the concentration of measure phenomenon and in the speed of convergence of some stochastic
processes to equilibrium, and into the connections with the geometry of the space (the
curvature in particular). The key observation, starting with the seminal work [JKO98], is that
the evolution of some random processes (interpreted as curves in the space of probability
measures), can be interpreted as a deterministic gradient flow for an appropriate functional in
the 2-Wasserstein space. An important example comes from considering the relative entropy
as the driving functional, for which the associated stochastic process is the Langevin dynamics.
Recalling that in the Lott–Sturm–Villani theory positive curvature is defined in terms of
convexity of this functional, it appears now rather intuitive that this implies fast convergence
of the Langevin dynamics to equilibrium, based on the common knowledge that gradient
flows for convex functionals exhibit favourable properties. This variational perspective turns
out to be very useful for the convergence analysis of these random processes: indeed, by
transforming the original problem into the study of the convergence of a gradient flow, one
can draw inspiration from the field of optimization to come up with new results or new proofs
and interpretations of existing ones. Because of the great influence of this point of view on
this thesis, the next subsection is devoted to the theory of gradient flows in metric spaces and
their convergence properties.

1.1 Gradient flows in metric spaces
For a smooth function F : Rd → R, a gradient flow (started at a point x0 ∈ Rd) is a solution
(yt)t = (yt)t≥0 to the Cauchy problem⎧⎨⎩ y0 = x0,

y′
t = −∇F (yt).

(1.1.1)

2



1.1. Gradient flows in metric spaces

There are many different possible ways of extending this definition to the setting of abstract
metric spaces (lacking, in general, a differential structure), which differ, e.g., in the level
of generality, or in the conditions for existence and uniqueness, and that are inspired by
corresponding properties holding in the smooth Euclidean case. The reader is referred to
[AGS08] for a comprehensive study, and to [San17] for a concise overview. In this introduction,
for the sake of exposition, we restrict our attention to complete metric spaces (X, d) and
to non-negative proper lower semicontinuous functionals F : X → R≥0 ∪ {+∞}. These
assumptions are not everywhere necessary in what follows, but are anyway satisfied for the
main examples considered. We briefly describe below two possible ways of defining gradient
flows for the functional F .

Curve of maximal slope. To motivate the first definition, consider the following simple
observation in Euclidean spaces. Let F : Rd → R and (yt)t be respectively a smooth function
and a smooth curve in Rd. Then, by the Cauchy–Schwarz and Young’s inequality,

− d
dtF (yt) = −⟨∇F (yt), y′

t⟩ ≤
1
2 |∇F (yt)|2 + 1

2 |y
′
t|

2
.

Moreover, equality holds if and only if y′
t = −∇F (yt) for all t; therefore, one could take the

converse inequality
− d

dtF (yt) ≥
1
2 |∇F (yt)|2 + 1

2 |y
′
t|

2

as a definition of gradient flow. To make sense of this in the abstract setting of lower
semicontinuous functionals on (X, d), we need to define the analogue of the quantities |∇F |
and |y′

t|. For the first one, we consider the notion of descending slope

|D−F |(x) := lim sup
y→x

[F (y)− F (x)]−
d(y, x) . (1.1.2)

For the second, suppose that (yt)t ∈ AC1
loc(R>0;X), i.e. the curve (yt)t is locally absolutely

continuous. Then, we can naturally consider its metric speed, defined by

|ẏt| := lim
s→t

d(ys, yt)
|s− t|

.

With these choices, we arrive at the following first definition of gradient flow for F in (X, d),
which is known in the literature as the definition of curve of maximal slope (cf. [MS20,
Dfn. 4.1] and Chapter 2 for more details). Recall that for a function F : X → R ∪ {+∞} we
define dom(F ) = {x ∈ X | F (x) ̸= +∞} and we say that F is proper if dom(F ) ̸= ∅.

Definition 1.1.1. Let F : X → R≥0 ∪ {+∞} be proper and lower semicontinuous. We say
that (yt)t is a curve of maximal slope for F started at y0 ∈ dom(F ) if

• (yt)t ∈ AC1
loc(R>0;X) and limt→0 yt = y0;

• (F (yt))t ∈ AC1
loc(R≥0;R);

• the following Energy Dissipation Inequality holds:

− d
dtF (yt) ≥

1
2 |ẏt|

2 + 1
2 |D

−F |(yt)2 for a.e. t.

3



1. Introduction

Evolution variational inequality To motivate the second definition, suppose again to
start with that F : Rd → R is smooth, and assume in addition that F is λ-convex for some
λ ∈ R. This means that we have the uniform lower bound ∇2F ≽ λId for the Hessian of F ,
or equivalently, that for all x, y ∈ Rd and 0 ≤ t ≤ 1

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)− λt(1− t)2 |x− y|2. (1.1.3)

Then, the vector ∇F (x) can be characterized as the unique v ∈ Rd such that

F (y) ≥ F (x) + ⟨v, y − x⟩+ λ

2 |x− y|
2 for all y ∈ Rd.

For any point x ∈ Rd, an easy computation using the above shows that a classical gradient
flow (1.1.1) satisfies the inequality

d
dt

1
2 |yt − x|

2 ≤ F (x)− F (yt)−
λ

2 |yt − x|
2.

The idea is then to require the above to hold for every x as an alternative definition of gradient
flow. Before stating the corresponding definition for our functional F : X → R ∪ {+∞}, let
us discuss how to extend the notion of λ-convexity. Notice that (1.1.3) considers a linear
interpolation t → tx + (1 − t)y between the points x and y in the left-hand side, i.e. it
connects the points x and y with a straight line. This does not make sense in a general
metric space (X, d), but a natural way to mimic this construction is to make the additional
assumptions that the space (X, d) is geodesic. Recall that a curve (γt)t∈[0,1] in X is a constant
speed geodesic if and only if

d(γs, γt) = |t− s|d(γ0, γ1) for all s, t ∈ [0, 1].

The space (X, d) is said to be geodesic if for every points x, y ∈ X there exists a constant
speed geodesic (γt)t∈[0,1] connecting x and y, i.e. such that γ0 = x, γ1 = y. The following
definition is then natural.

Definition 1.1.2. Let (X, d) be a geodesic space. A functional F : X → R≥0 ∪ {+∞} is
λ-geodesically convex if and only if for all x, y ∈ X there exists a constant speed geodesic
(γt)t∈[0,1] between x and y such that for all t ∈ [0, 1]

F (γt) ≤ tF (x) + (1− t)F (y)− λ

2 t(1− t)d(x, y)2.

We can now move to the definition of gradient flow for a λ-geodesically convex functional.
Actually, in the next definition, it is not strictly necessary to assume that F is λ-geodesically
convex, but doing so is helpful to prove existence of a solution (in fact, it is also essentially
necessary to have existence from every starting point y0 ∈ dom(F ), as shown in [DS08]).

Definition 1.1.3. Let F : X → R≥0 ∪ {+∞} be proper and lower semicontinuous. We say
that a curve (yt)t is an EVIλ-gradient flow started at y0 ∈ dom(F ) if

• (yt)t ∈ AC2
loc(R>0;X) and limt→0 yt = y0;

• the following evolution variational inequality holds for all x ∈ dom(F ):

1
2

d
dtd

2(yt, x)2 ≤ F (x)− F (yt)−
λ

2 d2(yt, t) for a.e. t.

4



1.1. Gradient flows in metric spaces

It was proved by Savaré that, under our assumptions, a solution in the above sense is also a
curve of maximal slope (see also [San17, AG13]),while the converse is false [San17]. However,
EVIλ-gradient flows enjoy many useful properties, e.g. in terms of uniqueness and stability of
the solutions (see [AGS08] for a detailed study).

Gradient flows in the space of probability measures
As anticipated, the relevance to this thesis of the topic of gradient flows in metric spaces
mainly concerns the case where X is (a subset of) the space of probability measures P(Ω)
on a set Ω. Indeed, given a stochastic process (Xt)t on Ω and denoting by µt := law(Xt) its
marginal law, it turns out that in some cases we can equip P(Ω) with an appropriate distance
d and consider a functional F : P(Ω)→ R≥0 such that (µt)t becomes a gradient flow for F
in the metric space (P(Ω), d). This point of view provides useful insights for the study of the
properties of the stochastic process (Xt)t: in particular, the convergence to equilibrium in law
can be interpreted as the convergence of a gradient flow to the unique minimizer of its driving
functional F .

Langevin dynamics

The first remarkable example that we consider is given by the Langevin dynamics. Consider a po-
tential V : Rd → R, and let us assume that it is smooth and such that ∇V is globally Lipschitz
and

∫︁
exp(−V (x)) dx <∞. We can consider a probability density π ∝ exp(−V ) associated

with this potential, where the proportionality symbol ∝ means that π = 1
Z

exp(−V ) ∈ P(Rd)
for a normalizing constant Z > 0 (with abuse of notation, we often identify (probability)
densities with the corresponding (probability) measures). The Langevin dynamics is the
stochastic process obtained as a solution of the following stochastic differential equation

X0 ∼ µ0, dXt = −∇V (Xt)dt+
√

2dBt, (1.1.4)

where (Bt)t denotes the standard Brownian motion and µ0 is a regular enough probability
measure. Existence and uniqueness of the solution hold under our assumptions by the standard
theory of stochastic differential equations [KS91]. Correspondingly, we have that µt = law(Xt)
solves the Fokker–Planck equation

∂tµt −∇ · [µt∇V ]−∆µt = 0. (1.1.5)

From substituting µ0 = π, it can be checked that π is stationary, and in fact Xt converges
weakly to π under mild assumptions. A remarkable variational structure for the Langevin
dynamics was observed in [JKO98]. Denote by P2,ac

(︂
Rd
)︂

the space of probability densities in
Rd with finite second moment, and by W2 the 2-Wasserstein distance, which is defined for
µ, ν ∈ P(Rd) by

W2(µ, ν) = inf
X,Y

E
[︂
|X − Y |2

]︂
,

where the infimum runs over all Rd-valued random vectors X and Y defined on the same
probability space (Ω,F ,P) with law(X) = µ and law(Y ) = ν. Finally, we consider the
relative entropy functional (with respect to π), which is given by

DKL(ν ∥ π) =

⎧⎪⎨⎪⎩
∫︂
Rd
ρ log ρ dπ if ν ≪ π with ρ := dν

dπ ,

+∞ otherwise.
(1.1.6)

5



1. Introduction

Notice that this functional is non-negative and it is equal to 0 if and only if ν = π, so that
it can be interpreted as a measure of distance of ν from π. A fundamental contribution of
the work [JKO98] was observing that the evolution (µt)t corresponds to the gradient flow
of the relative entropy functional DKL(· ∥π) in the Wasserstein space

(︂
P2,ac

(︂
Rd
)︂
,W2

)︂
(in a

sense to be made precise, which depends on the properties of the potential V ). Additionally,
Otto [Ott01] derived also a formalism known as Otto’s calculus, which allows to formally
interpret the 2-Wasserstein space as a Riemannian manifold, correspondingly yielding yet
another description of the gradient flows in this space and of the quantities involved. Let us
also mention that, besides the Fokker–Planck equation (1.1.5), many other evolution PDEs
fall into the framework of Wasserstein gradient flows of appropriate functionals [AGS08].

Reversible Markov chains

Inspired by the theory of Wasserstein gradient flows, one is motivated to find analogous
description of other stochastic processes. The work of Maas [Maa11] constitutes an important
contribution in this direction, in a discrete setting. More precisely, let Ω be a finite space,
P an irreducible stochastic matrix on Ω and π ∈ P(Ω) a probability measure satisfying the
detailed balanced conditions π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ Ω. We can consider
the associated continuous time Markov chain with generator L = P − I and semigroup
Pt = exp(tL), which is reversible (and ergodic) with respect to π. A major contribution of
[Maa11] was the construction of a metric W on P(Ω) which plays the role of the Wasserstein
distance W2. More precisely, this metric is geodesic on P(Ω), Riemannian on the subspace
P∗(Ω) of probability measures with full support, and, most importantly, such that the evolution
(µt)t := (µPt)t becomes the gradient flow for the relative entropy functional DKL(· ∥π) in the
space (P(Ω),W ).

Convergence of gradient flows
As discussed in the previous subsection, both the Langevin dynamics and the evolution of
a reversible Markov chain can be interpreted as gradient flows in the space of probability
measures, equipped with an appropriate distance. In both cases, the driving functional is the
relative entropy DKL(· ∥π) with respect to a reference measure π, which constitutes the unique
minimizer of this functional. Therefore, the ergodicity of these processes to π is reinterpreted
as the convergence of a gradient flow to the unique minimizer of its functional. Motivated
by this observation, one is naturally led to the study of sufficient conditions for convergence
of gradient flows in metric spaces, ideally also with quantitative estimates on the speed of
convergence. This strategy turns out to be particularly effective: studying the convergence of
a deterministic curve can indeed be easier, and many existing arguments from the theory of
optimization can be often adapted to this very abstract setting. In what follows, we briefly
and informally discuss three conditions of this type.

Geodesic convexity

As usual, let us start with the smooth Eucliden setting. It is then well known that one of
the best assumptions to prove convergence of a solution of (1.1.1) to a minimizer of F is
the (strong) convexity of F . Indeed, suppose for example that ∇2F ≽ λId for some λ > 0.
Then, this automatically guarantees that F admits a unique minimizer x∗. Moreover, for two
gradient flows (yt)t, (ỹt) with different initialization, an easy computation shows that |yt − ỹt|
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decays exponentially fast with time, which in turns implies fast convergence of any gradient
flow to x∗ in a rather strong sense.
Remarkably, similar conclusions hold in abstract geodesics spaces, when the functional F is
λ-geodesically convex for positive λ and the gradient flows are intended in the EVIλ sense of
Definition 1.1.3. Because of these strong consequences, it is then natural to investigate when
geodesic convexity of the relative entropy holds for the examples discussed before.
For the Langevin dynamics, there is a simple characterization due to McCann [McC97]: the
relative entropy functional DKL(· ∥π) with respect to a probability density π ∝ exp(−V ) is
λ-geodesically convex in P2

(︂
Rd,W2

)︂
if and only if the potential V is λ-convex (in this case,

we also say that π is λ-log-concave). This result combined with the current line of reasoning
allows to elegantly establish several important consequences of the strong convexity of V , such
as the exponential decay of the relative entropy DKL(µt ∥ π) along the Langevin dynamics, or
functional inequalities for the invariant measure π.
For Markov chains, the situation is more complicated. The geodesic convexity of the relative
entropy in (P(Ω),W ) was studied in [EM12] (see also [Mie13]): inspired by the Lott–Sturm–
Villani theory, Erbar and Maas defined the (entropic) Ricci curvature of a reversible Markov
chain in terms of the geodesic convexity of this functional. Moreover, they showed that under
λ-geodesic convexity the evolution (µt)t of the Markov chain is an EVIλ-gradient flow for
the relative entropy, and that, when λ is positive, many powerful inequalities hold in analogy
with the Langevin diffusion. Equivalent characterizations of the λ-geodesic convexity are also
provided, but a simple criterion in the spirit of the log-concavity of π is missing, and in practice
computing the entropic Ricci curvature of a Markov chain can be quite challenging.

Polyak–Łojasiewicz condition

Next, we consider a simple but important criterion from optimization, known as the Polyak–
Łojasiewicz condition (PL) [Pol63]. For smooth F : Rd → R≥0, it takes the form of a gradient
domination inequality

|∇F |2 ≥ 2KF (1.1.7)
for some K > 0. It can be checked that this is weaker than the convexity lower bound
∇2F ≽ KId, but still yields powerful consequences. For example, since along a solution of
(1.1.1) we have d

dtF (yt) = −|∇F (yt)|2 ≤ −2KF (yt), by Grönwall’s lemma it follows that
F (yt) ≤ exp(−2KT )F (y0); hence, F (yt) converges to the minimum value of F exponentially
fast (recall that F is non-negative). In addition, the minimum of F is attained at some point
x∗ such that |yt − x∗| ≤

√︂
2F (yt)
K

.
The PL condition makes perfect sense also for curves of maximal slope as in Definition 1.1.1,
simply replacing the norm of the gradient with the descending slope (1.1.2), and it still implies
exponential convergence to a minimizer. For the Langevin dynamics and the case of reversible
Markov chains, the condition (1.1.7) corresponds to an important functional inequality, which
yields the exponential decay of the relative entropy along the corresponding evolution (µt)t.
In the continuous setting, this is the celebrate log-Sobolev inequality [BGL14]

2KDKL(· ∥π) ≤ I2(· ∥π), (1.1.8)

where the right hand side is the relative Fisher information, defined for an absolutely continuous
(with respect to π) probability measure dµ = ρdπ by

I2(µ ∥ π) =
∫︂
Rd
|∇ log ρ|2dµ.
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For reversible Markov chains, the inequality is called modified log-Sobolev inequality [BT06]
(to distinguish it from similar versions that are not equivalent in discrete spaces): it is defined
analogously to (1.1.8), with the difference that the Fisher information is now given by

I2(µ ∥ π) = 1
2
∑︂
x

π(x)P (x, y)(ρ(x)− ρ(y))(log ρ(x)− log ρ(y)).

Coherently with the smooth Euclidean case, the (modified) log Sobolev inequality is implied
by the strong geodesic convexity of the relative entropy. This fact specialized to the Langevin
dynamics (where the geodesic convexity is equivalent to the log-concavity of π) recovers
in particular the celebrated result by Bakry and Émery [BE85], which also gains a new
interpretation.

Local conditions

Finally, we consider a third condition. This constitutes the first contribution of this thesis,
which is based on joint work with Lorenzo Dello Schiavo and Jan Maas [DSMP24], and is
presented in full detail in Chapter 2.
The general motivation was to find weaker conditions that imply convergence of gradient
flows to minimizers with quantitative rates. In fact, while the (PL) condition is weaker than
strong convexity, it is still quite demanding, by requiring an inequality to hold globally, i.e. for
all points in the space. A remarkable local condition was recently introduced by Chatterjee
[Cha22] and Oymak and Soltanolkotabi [OS19], for a solution to the Cauchy problem (1.1.1)
and a smooth non-negative functional F . The main assumptions of these works is still a
gradient domination condition as in (1.1.7), but which is required to hold only on a big enough
ball around the starting point x0:

|∇F (x)|2 ≥ 2KF (x) for all x ∈ Br(x0). (1.1.9)

Remarkably, these authors showed that provided that r2 > 2F (x0)
K

, we automatically get the
main conclusions of the global (PL) inequality: there exists a minimizer x∗ ∈ Br(x0) such
that F (x∗) = 0 and K

2 |yt − x
∗|2 ≤ F (yt) ≤ exp(−2Kt)F (x0).

Inspired by this result, the work [DSMP24] deals with generalization of the above criterion.
Our main theorem in continuous time does so by (i) dealing with curves of maximal slope in
complete metric spaces and (ii) providing more general local Kurdyka–Łojasiewicz inequalities,
which include the (PL) inequality as a particular case. We state below one instance of the
results of [DSMP24].

Theorem 1.1.4. Let (X, d) be a complete metric space and F : Rd → R≥0∪{+∞} be lower
semicontinuous. Let also θ : R≥0 → R≥0 be continuous, continuously differentiable on R>0
and such that θ(0) = 0, θ′(t) > 0 for t > 0. Finally, suppose that for some x0 ∈ dom(F ) the
following holds:

(θ′ ◦ f)(x) · |D−f |(x) ≥ 1 for all x ∈ B(θ◦F )(x0)(x0). (1.1.10)

Then, there exists at least one minimizer x∗ ∈ B(θ◦F )(x0)(x0) such that F (x∗) = 0. Moreover,
every curve of maximal slope (yt)t started at x0 converges to a minimizer of F in B(θ◦F )(x0)(x0)
with explicit rates.

For the proof and more general and precise results we refer the reader to Chapter 2. Let
us notice that the above Theorem includes the local (PL) condition as a particular case by
choosing θ(t) =

√︂
2t
K

.
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1.2 Curvature of Markov chains
The second contibution [Ped23] of this thesis deals with curvature of Markov chains, and is
treated in detail in Chapter 3. More precisely, we consider reversible Markov chains on a finite
space Ω with generator L, transition semigroup Pt and invariant measure π. For a measure
µ ∈ P(Ω), we denote by µt = µPt the law of the Markov chain at time t which is initially
distributed accorded to µ. We often think of L = λ(P − I) for a stochastic matrix P and
some λ > 0, so that there is also a naturally associated Markov chain in discrete time. We
also consider the graph distance d on Ω obtained by drawing an edge between two points
x ̸= y if and only if L(x, y) > 0, in which case we write x ∼ y.

Because of the success of the Bakry–Émery and Lott–Sturm–Villani theories, considerable
effort has been put into developing a notion of Ricci curvature for discrete spaces. In spite of
its generality, the definition of synthetic Ricci curvature by Lott, Sturm and Villani does not
apply in this setting: in fact, as observed in [Maa11, EM12], for the 2-Wasserstein distance the
space P(Ω) is not geodesic, and moreover the curve (µt)t does not correspond to a Wasserstein
gradient flow. As anticipated, a good candidate notion is the entropic Ricci curvature of
[EM12], obtained by replacing the 2-Wasserstein distance with the modified metric W of
[Maa11] in the geodesic convexity requirement. This definition is a meaningful one: many
non-trivial Markov chains are positively curved, and at the same time positive curvature is
related to fast mixing of the Markov chain and good concentration properties of the invariant
measure π. Unfortunately, in many situations it is not easy to provide good estimates for
the entropic curvature of a Markov chains. The geodesic convexity of the relative entropy in
(P(Ω),W ), in fact, corresponds to a “Riemannian Hessian lower bound”, which requires to
establish an involved inequality uniformly over all pair (ρ, ψ) of densities and functions on Ω
[EM12, Thm. 4.5].

Besides the entropic curvature, several other notions of discrete curvature have been introduced,
by adapting different equivalent characterizations valid for Riemannian manifolds. For Markov
chains, these definitions are typically not easily comparable, one notable obstacle being the
lack of a chain rule in discrete spaces. One of the most important notions is the coarse Ricci
curvature Ricc introduced by Ollivier [Oll09], which involves the graph distance d on Ω and
the corresponding 1-Wasserstein metric on P(Ω). The coarse Ricci curvature was initially
defined for discrete time Markov chains; for a stochastic matrix P , we say that the curvature
lower bound Ricc ≥ K holds if and only if for every µ, ν ∈ P

(︂
Rd
)︂

and integers n > 0 we
have the contraction

W1(µP n, νP n) ≤ (1−K)nW1(µ, ν). (1.2.1)
In continuous time, we similarly require that for all times t ≥ 0

W1(µPt, νPt) ≤ exp(−Kt)W1(µ, ν).

It is not difficult to see that, if K > 0, the above inequalities imply upper bounds on the
mixing time of the Markov chain; moreover, some functional inequalities for the invariance
measure also follow, e.g. Poincaré inequality. Unfortunately, this does not include the more
powerful modified log-Sobolev inequality, as Münch recently showed [Mün23], disproving a
conjecture of Peres and Tetali. One reason for the popularity of this notion of curvature,
on the other hand, lies in its simplicity, which makes it easy to estimate it accurately. For
example, it suffices to check the condition (1.2.1) only for n = 1 and x ∼ y.

The requirement (1.2.1) also amounts to exhibiting a coupling between the laws of the Markov
chains with different starting points, which contracts the distance on average. The construction
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of couplings that are “contractive” in some sense has frequently appeared before and in different
forms in the study of mixing times of Markov chains; these methods are often referred to as
probabilistic approaches. Ollivier’s positive curvature corresponds in particular to the Dobrushin
criterion [Dob70, DS85]. Very recently, Conforti [Con22] introduced another variation of these
methods, based on contractive coupling rates. Remarkably, Conforti showed on several
examples that these coupling rates can be used to establish some functional inequalities for
the Markov chain (including the modified log-Sobolev inequality), thus providing an intriguing
connection between the probabilistic approach and more analytic methods based on functional
inequalities.

Since the modified log-Sobolev inequality is implied in particular by positive entropic curvature,
it is natural to wonder whether contractive coupling rates can also be used to establish such
curvature lower bounds. Moreover, because of the strict relationship between contractive
couplings and Ollivier’s work, this would also extend the probabilistic-analytic connection at
the level of discrete curvature, suggesting possible links between the coarse and the entropic
notions.

Our contribution [Ped23] is aimed at this. First, we develop a general strategy to estimate the
entropic curvature: coupling rates are used to provide an alternative expression and a simpler
lower bound for the Riemannian Hessian of the relative entropy functional; subsequently, it
is explained heuristically how contractions in the couplings further simplify this expression.
Then, we illustrate these ideas in most of the examples discussed in [Con22]: in particular, we
provide new estimates for the entropic curvature of the Ising, Curie–Weiss and the hardcore
models, and for an interactive random walk on the discrete grid Nd.

1.3 Score-based diffusion models
Stochastic processes are useful tools in applications to data science. For example, it is often
desirable to sample efficiently from a target distribution π, i.e. to generate random points
(Xi)i that are (approximately) independently and identically distributed according to π. The
third contribution of this thesis [PMM24] provides a theoretical analysis of an algorithm for
sampling which belongs to the recent framework of score-based generative modeling. This
work is in collaboration with Jan Maas and Marco Mondelli and it is included in Chapter 4

A popular way to sample from a distribution π is to design a stochastic process (Xt)t that can
be simulated efficiently and that converges in law to π, so that by running it for a long enough
time T the output XT is approximately distributed according to the desired distribution. Of
course, to understand the performance of the algorithm, one is led to the study of the speed
of convergence to equilibrium of this process.

A fundamental choice in the theory of sampling is given by the Langevin diffusion (1.1.4).
One reason for its popularity lies in the fact that the dynamics (1.1.4) only requires knowledge
of the score function −∇V = ∇ log π of the data distribution. Modeling the score function is
typically easier than modeling a probability density π ∝ exp(−V ), because the latter typically
requires to estimate the normalizing constant

∫︁
Rd exp(−V ), a notoriously difficult task in

high-dimensional spaces. Unfortunately, for complex distributions π, the Langevin dynamics
suffers from a few drawbacks. One of this is related to the speed of convergence to equilibrium,
which can be very slow in the absence of appropriate functional inequalities for π (which are
often not satisfied by the distributions encountered in practice).
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These observations about the Langevin dynamics have motivated the search for other algorithms
for sampling, which retain its advantages (i.e. being based on score functions) while solving
some of its problems, e.g. the reliance on strong functional inequalities for fast convergence.
In the last years, a remarkable success has been achieved by score-based diffusion models
[SE19, SDWMG15, HJA20, SGSE20], which we now introduce in a simplified particular form.

We are interested in the setting where the target distribution π is unknown, but we are given
a collection of samples (xi)i iid∼ p independent and distributed according to π. Let us start by
looking at the Ornstein–Uhlenbeck (OU) flow, which is just the Langevin dynamics targeting
the standard Gaussian distribution γ, initially distributed according to π:

X0 ∼ π, dXt = −Xtdt+
√

2dBt. (1.3.1)

Since the standard Gaussian density γ is 1-log-concave, this flow converges to γ exponentially
fast in various metrics (e.g. relative entropy and Wasserstein distance). An interesting fact,
dating back to Anderson [And82], is that this flow can be reversed. Fix a time horizon T1 > 0
and a number M ≥ 1, denote πt = law(Xt) and consider the process

U0 ∼ πT1 , dUt = Utdt+M∇ log πT1−t(Ut) dt+
√︂

2(M − 1) dBt. (1.3.2)

Classical choices are M = 2 or M = 1, and for the latter the process (Ut)t is deterministic
(except for its initialization). A remarkable feature of this process is that UT1 ∼ π: therefore,
we could simulate it until time T1 to generate samples from π. Two obstacles arise: first,
to initialize the process we need to sample from πT1 , which is unknown; as a solution, the
framework of score-based diffusion models suggests to take T1 big enough and sample from
γ instead, the error being small because of the ergodicity of the Ornstein–Uhlenbeck flow.
Secondly, the reverse process (1.3.2) involves the vector field∇ log πT1−t, which is also unknown:
however, since these are score functions, they can be efficiently estimated thanks to techniques
known as score-matching [SE19, SE20], producing a good estimator sθ(t, x) ≈ ∇ log πt(x) to
be plugged in (1.3.2). More precisely, common and realistic assumptions are a control on the
weighted L2-error of the score approximation, for example that the loss

Eπt

[︂
|∇ log πt − sθ(t, ·)|2

]︂
is small for all t ∈ [0, T1].

Because of the impressive empirical performance of this algorithm, several works were aimed at
providing theoretical guarantees for its success [Bor22, CCL+23b, CLL22, CDS23, BDBDD23].
Denoting by πθ the output distribution of the algorithm, the goal is to provide an upper bound
on the error in the approximation π ≈ πθ, which can be measured with different metrics e.g.
Wasserstein distance, relative entropy, total variation. Three sources of errors are given by: (i)
starting the reverse process (1.3.2) at the Gaussian distribution γ instead of πT1 ; (ii) using
an estimator sθ(T1 − t, ·) for the score functions ∇ log πT1−t; (iii) (possibly) considering a
numerical scheme to simulate the reverse process. Our paper [PMM24] belongs to this line of
work: a novelty in our approach lies in the study of a slightly modified algorithm, aimed at
addressing differently the error in the approximation πT1 ≈ γ, and which can be seen as an
instance of the popular predictor-corrector methods [SSDK+21]. In fact, reducing this source
of error normally requires to take T1 larger and larger: this is undesirable, because it brings
the need to approximate the score function on a larger time interval [0, T1] and potentially
increases the error propagation with the simulation of the reverse process. Instead, we consider
a two-stage algorithm: we first fix T1 large enough; then, we sample from πT1 by running
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an approximate Langevin dynamics (1.3.3) for some time T2 > 0. Finally, we start the usual
approximate reverse process (1.3.4) from the output of the Langevin dynamics (instead than
from a Gaussian sample): the random point YT1 constitutes the output of the algorithm.
Z0 ∼ γ, dZt = sθ(T1, Zt) dt+

√
2 dBt, 0 ≤ t ≤ T2; (1.3.3)

Y0 = ZT2 , dYt = Yt dt+Msθ(T1 − t, Yt) dt,+
√︂

2(M − 1)dBt 0 ≤ t ≤ T1. (1.3.4)
Figure 1.1 provides a schematic representation of the method.

Figure 1.1: A two-stage score-based method for sampling

The work [PMM24] contains some convergence results for this algorithm. These are in the
form of upper bounds for the error in the approximation π ≈ πθ which become arbitrarily small
provided that T1 is fixed but big enough, T2 →∞ and the error in the score approximation
and the step size in the discrete scheme vanish. We refer to Chapter 4 for details. Let
us just briefly mention two key ideas in deriving these results, regarding in particular the
initial step (1.3.3) of the algorithm. In fact, this involves a Langevin dynamics, which might
seem counterintuitive, given that one motivation for the design of the diffusion models was
to overcome its slow convergence. The crucial point here is that the Langevin dynamics is
targeting not the complex distribution π, but its perturbed version πT1 : the smoothing and
ergodicity properties of the Ornstein–Uhlenbeck flow make πT1 “more similar” to γ, so that
it inherits some of its properties, including the log-Sobolev inequality, which in turns imply
the desired exponential convergence of (1.3.3). A second obstacle arises from the fact that
(1.3.3) is using an approximation of the score function ∇ log πT1 , which we can assume to be
accurate only in L2-sense. Unfortunately, this is in general not enough to ensure that in the
limit where T2 →∞ the random variable ZT2 is approximately distributed according to πT1 .
To overcome this obstacle, we show how to convert control of the L2-error into control of
a stronger norm. This exploits again the ergodicity of the Ornstein–Uhlenbeck process, to
provide a priori estimate for the true score function ∇ log πT1 in comparison to the limiting
score ∇ log γ(x) = −x. These estimates are crucially used to correct wrong predictions from
the estimator sθ(T1, ·) that are very far from the correct value, allowing to improve its accuracy.

1.4 Log-concavity along the heat flow and Lipschitz
transport maps

In the previous section, the Ornstein–Uhlenbeck flow played a key role, both for its regularization
properties and for providing a natural interpolation between a measure π and the Gaussian
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distribution γ. Together with Giovanni Brigati, we investigated related questions in the work
[BP24], which can be found in Chapter 5.

Log-concavity along the heat flow. Consider again the Ornstein–Uhlenbeck process
(1.3.1), and recall that we denote πt = law(Xt). Crucial to the analysis of [PMM24] were the
observations that, after some big enough time T1, (i) the distribution πT1 satisfies a log-Sobolev
inequality [CCNW21], and that (ii) the score function ∇ log πT1 is reasonably close to the one
of the Gaussian distribution γ. It is natural to wonder, and useful for applications, whether
stronger conclusions holds, for example whether πT1 eventually becomes strongly log-concave,
corresponding to a control on the log-Hessian ∇2 log πt. The first result of [BP24] shows
that, in general, this is not the case. More precisely, we construct a subgaussian distribution π
(or with even thinner tails) such that the Hessian ∇2 log πt cannot be bounded from above
uniformly in space, for any time t > 0.

This raises the question of identifying a class of distributions for which a positive answer holds.
In our second result, we consider log-Lipschitz perturbations of strongly log-concave measures,
i.e. probability measures of the form π = exp(−V −H) where V is strongly convex and H is
Lipschitz. For these measures, we provide bound on ∇2 log πt for all times t > 0, which show
in particular that for t big enough the measure µt becomes strongly log-concave.

Lipschitz transport maps. The key idea of score-based diffusion models is to revert the
Ornstein–Uhlenbeck flow, so as to transform a sample from the Gaussian distribution into a
sample from a target distribution π. A similar construction has appeared before also in [OV00],
and was then exploited in [KM12] with a completely different motivation. More precisely, the
aim of [KM12] was to identify a class of distributions π for which they can construct a map
T : Rd → Rd which is Lipschitz and such that T#γ = π (this last condition means that if
X ∼ γ then T (X) ∼ π). This line of research started with the seminal work of Caffarelli
[Caf00]: one important motivation is that if T is Lipschitz and π = T#γ, then one can show
that many functional inequalities satisfied by the Gaussian distribution are satisfied also by π.
Further works along this line include [MS23, FMS24, CF21, Nee22, KP21].

Let us give a rough idea of the construction of [OV00, KM12] and its connections with the
framework of diffusion models. Consider the process (1.3.2) with M = 1, and recall that
UT1 ∼ π; moreover, by the choice of M , this evolution is deterministic, i.e. Ut is given by
solving an ordinary differential equation. Denote then by TT1(x) the solution UT1 to the
differential equation (1.3.2) with M = 1 and U0 = x. It follows that TT1#πT1 = π; but then,
by letting T1 →∞ and since πT1 → γ, one can construct a transport map T such T#γ → π.
Of course, these heuristic arguments need to be justified rigorously as in [KM12, MS23], and
we refer the reader to Chapter 5 and the references therein for more details. Interestingly, the
log-Hessian bounds of [BP24] allow to estimate the Lipschitz norm of this transport map when
π is a log-Lipschitz perturbation of a strongly log-concave measure. More precisely, suppose
that π = exp(−V −H) where V is α-convex and H is L-Lipschitz. Then, we prove in [BP24]
that there exists a map T such that T#γ = π and T is 1√

α
exp

(︂
L2

2α + 2L√
α

)︂
-Lipschitz.
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1.5 L∞-Transport-Information inequalities and
applications to Fisher’s infinitesimal model

The last included contribution [KMP24], based on joint work with Ksenia Khudiakova and
Jan Maas, is presented in Chapter 6, and is quite representative of the spirit of this thesis. In
fact, on the one hand it contains an approach based on analysing stochastic processes (again,
Langevin dynamics) to prove abstract functional inequalities; on the other hand, it crucially
exploits these new inequalities to prove convergence results for another stochastic process,
Fisher’s infinitesimal model from quantitative genetics.

To motivate the first point, recall that if the probability measure π is κ-log-concave, it satisfies
the 2-Transport-Information inequality W2(µ, π) ≤ 1

κ

√︂
I2(µ ∥ π) for all other µ ∈ P

(︂
Rd
)︂
. A

first natural question is whether the above inequality also holds for p ≠ 2, and in particular
p =∞ is relevant for the applications to the Fisher’s model. Here, for smooth densities µ, π,
the L∞-Fisher information is defined by I∞(µ ∥ π) =

⃦⃦⃦
∇ log dµ

dπ

⃦⃦⃦
∞
. A first observation we

make (see also [GTU23, CPS23]) is that the analogous inequality

W∞(µ, π) ≤ 1
κ
I∞(µ ∥ π) (1.5.1)

holds if π is κ-log-concave. One way to prove this is based on synchronous coupling of two
Langevin diffusions, targeting π and µ respectively:

X0 ∼ µ, dXt = ∇ log µ(Xt)dt+
√

2dBt,

Y0 = X0, dYt = ∇ log π(Yt)dt+
√

2dBt.

An simple arguement shows that |Xt − Yt| is a.s. uniformly bounded, so that the desired
conclusion follows by letting t → ∞. One of the main contributions of [KMP24], however,
is that the constant κ in (1.5.1) can be significantly improved in the presence of anisotropy,
both in the potential −∇ log π and in the log-relative density log dµ

dπ
. The proof is based on

the same synchronous coupling, but requires a more careful analysis to provide tighter uniform
bounds on the distance |Xt − Yt|.

As anticipated, the L∞-Transport-Information inequality, and specifically the refined anisotropic
version, finds application in the study of Fisher’s infinitesimal model. We refer the reader to
Chapter 6 and references therein for a more detailed discussion; here, we just focus on the
connection with the Transport-Information inequality. In short, the setting is as follows. We
are given a strongly log-concave equilibrium density F ∈ P

(︂
Rd
)︂
; for an initial distribution

F0 = u0F with ∥∇u0∥∞ <∞ (i.e. I∞(F0 ∥F) <∞), we consider the discrete-time dynamics
Fn = unF defined recursively by

un(x) ∝
∫︂
Rd×Rd

P (x1, x2;x)un−1(x1)un−1(x2)dx1dx2,

for an appropriate transition kernel P (· ;x) on Rd × Rd. The non-linearity of this dynamics,
which involves a backward in time integral on a higher-dimensional space, makes it difficult to
apply standard techniques from the theory of Markov processes. Instead, Calvez, Poyato and
Santambrogio discovered a remarkable duality relationship with the L∞-Fisher information,
which can be expressed as

I∞(Fn ∥F) ≤
√

2I∞(Fn−1 ∥F) · sup
x ̸=y

W∞(P (· ;x), P (· ; y))
|x− y|

. (1.5.2)
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1.5. L∞-Transport-Information inequalities and applications to Fisher’s infinitesimal model

From the above, it is clear that a uniform bound W∞(P (· ;x), P (· ; y)) <
√

2
2 K|x− y| for

some 0 < K < 1 implies by induction that I∞(Fn ∥F) ≤ KnI∞(F0 ∥F), and so the dynamics
converges exponentially fast to equilibrium in L∞-Fisher information. While the naive bound
(1.5.1) falls short of this goal, the refined anisotropic inequalities in [KMP24] serve the purpose,
providing sharp estimates in this setting.
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CHAPTER 2
Local Conditions for Global Convergence

of Gradient Flows and Proximal Point
Sequences in Metric Spaces

This chapter corresponds to the publication [DSMP24].

This paper1 deals with local criteria for the convergence to a global minimiser for gradient
flow trajectories and their discretisations. To obtain quantitative estimates on the speed of
convergence, we consider variations on the classical Kurdyka–Łojasiewicz inequality for a
large class of parameter functions. Our assumptions are given in terms of the initial data,
without any reference to an equilibrium point. The main results are convergence statements
for gradient flow curves and proximal point sequences to a global minimiser, together with
sharp quantitative estimates on the speed of convergence. These convergence results apply in
the general setting of lower semicontinuous functionals on complete metric spaces, generalising
recent results for smooth functionals on Rn. While the non-smooth setting covers very general
spaces, it is also useful for (non)-smooth functionals on Rn.

2.1 Introduction
For given x0 ∈ Rn and f ∈ C2(Rn) we consider the gradient flow equation

d
dtyt = −∇f(yt) , y0 = x0 . (2.1.1)

It is of great interest in many applications to find conditions which guarantee convergence
of gradient-flow trajectories (yt)t≥0 to a global minimizer of f as t → ∞, and to quantify
the speed of convergence. This also applies to the associated discrete-time schemes, such as
gradient descent (or forward Euler), the discrete-time scheme with step-size τ > 0 given by

yk+1 = yk − τ∇f(yk) , y0 = x0 , (2.1.2)

and the backward Euler scheme

yk+1 = yk − τ∇f(yk+1) , y0 = x0 . (2.1.3)
1First published in Transactions of the American Mathematical Society 377(6) in 2024, published by the

American Mathematical Society. © 2024 American Mathematical Society.
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2. Local conditions for global convergence

The Polyak–Łojasiewicz condition
A very simple celebrated criterion for convergence to a global minimum is the Polyak–Łojasiewicz
condition [Pol63], which requires neither the uniqueness of a minimizer nor the convexity of
the function f . The condition holds if, for some β > 0,

|∇f(x)|2 ≥ β(f(x)− f ⋆) , x ∈ Rn , (PŁ)

where f ⋆ is the global minimum of f , which is assumed to be attained. Since d
dtf(yt) =

−|∇f(yt)|2 along any solution yt to the gradient-flow equation d
dtyt = −∇f(yt), an application

of Gronwall’s inequality yields the exponential bound

f(yt)− f ⋆ ≤ e−βt
(︂
f(y0)− f ⋆

)︂
, t ≥ 0 .

Moreover, a short argument shows that yt converges to a global minimizer x⋆, with the bound

|yt − x⋆|2 ≤
4
β

(︂
f(yt)− f ⋆

)︂
, t ≥ 0 .

These inequalities together yield exponentially fast convergence to x⋆. Analogous results hold
for the associated gradient-descent scheme (2.1.2) and for certain proximal-gradient methods
[KNS16]. Interestingly, in spite of its simplicity, it has been argued in [KNS16] that the PŁ
condition «is actually weaker than the main conditions that have been explored to show linear
convergence rates without strong convexity over the last 25 years.»

The Kurdyka–Łojasiewicz condition
An important generalization of the PŁ condition is the Kurdyka–Łojasiewicz inequality (KŁ),
that was introduced by Łojasiewicz [Łoj63, Łoj93] and later generalized by Kurdyka [Kur98].

Definition 2.1.1. Let θ ∈ C([0,∞)) ∩ C1((0,∞)) satisfy θ(0) = 0 and θ′(u) > 0 for u > 0.
We say that the KŁ inequality is satisfied in a neighbourhood U of an equilibrium point
x⋆ ∈ Rn if

θ′(f(x)− f(x⋆)) · |∇f(x)| ≥ 1 for all x ∈ U ∩ {f > f(x⋆)} . (2.1.4)

In applications, θ is often of the form θ(u) := c
γ
uγ with γ ∈ (0, 1] and c > 0. In this case,

(2.1.4) reads as

c |∇f(x)| ≥
(︂
f(x)− f(x⋆)

)︂1−γ
, x ∈ U ∩ {f > f(x⋆)} .

In particular, if γ = 1
2 and c = 1/

√
β one recovers the PŁ inequality.

The KŁ condition is a powerful tool to obtain convergence properties for gradient-flow solutions
and discrete schemes. An important feature of the KŁ condition is that the inequality is only
required to hold locally, on a suitable neighbourhood U of an equilibrium point.

To obtain convergence results for gradient-flow trajectories to an equilibrium point, the KŁ
condition is often combined with additional information, typically an upper bound on the length
of the trajectory, to ensure that the solution is eventually contained in U ; cf. [Sim83, HM19]
for results of this type for gradient flows and [AB09, ABRS10, ABS13, BDLM10] for discrete
schemes.
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2.1. Introduction

Let us also remark that the KŁ condition does not in general yield convergence to a global
minimizer of f , but merely to a stationary point. To deduce convergence to a global minimizer,
it is often required to know a priori that the starting point is close enough to this minimizer
(whose existence is often part of the assumption); cf. [ABRS10, Thm. 10] and [ABS13,
Thm. 2.12] for such results for discrete schemes.

A PŁ condition around the starting point
A remarkable variant of the PŁ condition was discussed by Oymak and Soltanolkotabi [OS19]
and by Chatterjee [Cha22] for non-negative functions f ∈ C2(Rn). For fixed x0 ∈ Rn, these
authors consider the local quantity

α = α(x0, r) := inf
x∈Br(x0)
f(x)̸=0

|∇f(x)|2
f(x) ,

where Br(x0) denotes the open ball of radius r > 0 around x0.2 The criterion in [Cha22]
requires that

α(x0, r) >
4f(x0)
r2 (2.1.5)

for some x0 ∈ Rn and some r > 0. In other words, the inequality |∇f(x)|2 ≥ βf(x) is imposed
to hold for all x ∈ Br(x0), with a sufficiently large constant β, namely, β > 4f(x0)/r2.

Under (2.1.5), it is shown in [Cha22] that the unique gradient flow curve (yt)t≥0 starting at
y0 = x0 stays within Br(x0) for all times t ≥ 0, converges to a global minimizer x⋆ ∈ Br(x0),
and satisfies the exponential bounds

f(yt) ≤ e−αtf(x0) and |yt − x⋆|2 ≤ r2e−αt (2.1.6)

for t ≥ 0, where we write α = α(x0, r) for brevity.

Like the KŁ condition, (2.1.5) is a local version of the PŁ condition. However, while the
KŁ condition involves information of f in a neighbourhood of an equilibrium point (whose
location is often unknown in applications), (2.1.5) is formulated in terms of the starting point
x0 of the gradient-flow trajectory. The existence of a global minimizer and the boundedness
of the gradient-flow trajectory are not assumed; these statements are part of the conclusion.
The specific constant 4f(x0)

r2 in (2.1.5) is important, as it ensures that the gradient-flow curve
does not leave the ball Br(x0), so that local information suffices to draw conclusions on the
long-term behaviour.

Chatterjee also proves analogous bounds for the gradient descent (2.1.2) starting at y0 = x0,
namely

f(yk) ≤ (1− δ)kf(x0) and |yk − x⋆| ≤ r2(1− δ)k

for all k ∈ N and any δ < ατ , provided that the step-size τ > 0 is sufficiently small, depending
also on the size of the derivatives of f in Br(x0). Similar results for gradient descent were
obtained previously in [OS19]. Applications of (2.1.5) to neural networks can be found in
[OS19, BPVF22, Cha22, BAM22, BMR21].

2In a general metric space, the closure Br(x0) is a subset of the closed ball {x ∈ X : d(x, x0) ≤ r} and
the inclusion may be strict.
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2. Local conditions for global convergence

2.1.1 Main results
In this work we generalise some of the results of [Cha22] in the following ways. First, we
replace C2 functions on Rn with lower semicontinuous functionals on complete metric spaces.
Secondly, we replace the local PŁ-like condition with a KŁ-like assumption with a more general
parameter function θ. Thirdly, we prove convergence results for the proximal point method,
which corresponds to the backward Euler scheme in smooth settings.

Let (X, d) be a complete metric space. In this generality, the ode (2.1.1) does not have a
direct interpretation, as the velocity of a curve and the gradient of a function are not defined.
However (2.1.1) admits an equivalent variational characterisation, as a curve of maximal slope,
and this notion naturally extends to metric spaces. We refer to Section 2.2 for the definition
of the metric slope |D−f |(x) and other concepts from analysis in metric spaces relevant to
our work. Gradient flows in metric spaces are ubiquitous in applications; notable examples
are dissipative pdes in the Wasserstein space [JKO98, AGS14] and related gradient flows
on spaces of (probability) measures; see, e.g., [DNS09, Maa11, Mie11, KV18]. A systematic
treatment can be found in the monograph [AGS08]. The metric point of view can also be
useful to deal with non-differentiable functionals on Rn; see §2.4 for some toy examples.

We first define the functions appearing in the assumption and the main results.

Definition 2.1.2 (Parameter function). We say that θ ∈ C1((0,∞)) ∩ C([0,∞)) is a
parameter function if θ′(u) > 0 for u > 0, and θ(0) = 0. Furthermore, we consider the
auxiliary functions η : [0,∞)→ [−∞,∞) and Γ : [0, θ(∞))→ [−∞,∞) defined by

η(u) :=
∫︂ u

1

(︂
θ′(s)

)︂2
ds and Γ(u) := (η ◦ θ−1)(u).

The next definition contains a generalisation of (2.1.5) to the metric setting for a general
class of parameter functions; see Remark 2.4.1 below for a precise comparison.

Definition 2.1.3 (Conditions (A) and (A′)). For x0 ∈ dom(f) and r > 0, we say that
condition (A) is satisfied with parameter function θ (as in Definition 2.1.2) if

(θ◦f)(x0) ≤ r and (θ′◦f)(x)·|D−f |(x) ≥ 1 , x ∈ Br(x0)∩{0 < f ≤ f(x0)} . (2.1.7)

Similarly, we say that condition (A′) is satisfied if the first inequality in (2.1.7) is replaced by
the strict inequality (θ ◦ f)(x0) < r.

Under Condition (A), our first main result asserts that gradient-flow trajectories stay within in
a bounded set and converge to a global minimum, with quantitative bounds on the rate of
convergence.

Theorem 2.1.4 (Convergence of gradient flows). Let f : X → [0,∞] be proper and lower
semicontinuous, and suppose that x0 ∈ dom(f) and r > 0 satisfy Condition (A) for some
parameter function θ. For some T ∈ (0,∞], let (yt)t∈[0,T ) be a curve of maximal slope for f
starting at x0. Then:

(i) (confinement) yt ∈ Br(x0) for all 0 ≤ t < T . Moreover, yt ∈ Br(x0) for all 0 ≤ t < T
with f(yt) > 0.
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2.1. Introduction

(ii) (convergence) yT := limt→T yt exists and belongs to Br(x0). Moreover,

(θ ◦ f)(ys)− (θ ◦ f)(yt) ≥ d(yt, ys) (2.1.8)

for all 0 ≤ s ≤ t ≤ T . In particular, yT ∈ Br(x0) if f(yT ) > 0.

(iii) (convergence rates) Set t∗ := inf {t ∈ [0, T ) : f(yt) = 0} ∧ T . The following bounds
hold for 0 ≤ t ≤ t∗:

Γ
(︂
d(yt, yT )

)︂
≤ Γ(r)− t, (2.1.9)

(η ◦ f)(yt) ≤ (η ◦ f)(x0)− t. (2.1.10)

Moreover, if T =∞ then f(y∞) = 0.

In the special case of Remark 2.4.1, the previous theorem yields the following generalisation
of [Cha22, Thm. 2.1] to the setting of metric spaces; see also Cor. 2.3.8 below for a version
with more general parameter functions. For x0 ∈ dom(f) and r > 0 we define

α = α(x0, r) := inf
x∈Br(x0)

0<f(x)≤f(x0)

|D−f |(x)2

f(x) .

Corollary 2.1.5. Let f : X → [0,∞] be proper and lower semicontinuous, and suppose that
α(x0, r) ≥ 4f(x0)/r2 for some x0 ∈ dom(f) and r > 0. For some T ∈ (0,∞], let (yt)t∈[0,T )
be a curve of maximal slope for f starting at x0. Then yT := limt→T yt exists, yt belongs to
Br(x0) for all t ∈ [0, T ], and

d(yt, yT ) ≤ r e−αt/2 and f(yt) ≤ e−αtf(x0)

for all t ∈ [0, T ], where, conventionally, e−∞ := 0.

Various works deal with convergence of gradient-flow trajectories under a KŁ condition in
the setting of metric spaces [BB18, HM19]; see also [BDLM10, AB09, ABRS10] for related
work on proximal point sequences. Applications have been found to convergence of mean-field
birth-death processes [LMS22] and to swarm gradient dynamics [BMV22].

The main estimates in our paper are obtained by adapting known arguments from, e.g., [BB18,
HM19]. However, as in [OS19, Cha22], our point of view differs from these works, as we work
under a local condition in terms of the starting point without referring to an equilibrium point
in the assumption.

Discrete schemes

In the general setting of metric spaces, we are not aware of any way to formulate a forward
Euler scheme (2.1.2). However, the backward Euler scheme admits an equivalent metric
formulation as a minimising movement scheme (or proximal point method). This scheme was
originally introduced by Martinet [Mar70] and Rockafellar [Roc76] as a natural regularisation
method in optimisation problems:

yk+1 ∈ arg min
x∈X

{︄
f(x) + 1

2τ d(yk, x)2
}︄
, y0 = x0 .
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2. Local conditions for global convergence

Any (finite or infinite) sequence (yk)k arising in this way is called a proximal point sequence
(or τ -minimising movement sequence).
Our second main result is an analogue of Theorem 2.1.4 for the proximal point method, under
the slightly stronger assumption (A′).

Theorem 2.1.6. Let f : X → [0,∞] be proper and lower semicontinuous, and suppose
that x0 ∈ dom(f) and r > 0 satisfy Condition (A′) for some parameter function θ. Suppose
further that there exists τ̄ > 0 such that, for all x ∈ Br(x0) ∩ {f ≤ f(x0)} and τ ∈ (0, τ̄),
the functional

X ∋ y ↦−→ f(x) + 1
2τ d(x, y)2

has at least one global minimizer. Then there exists an infinite proximal point sequence starting
from x0, for any step-size τ < τ̄ . Moreover, for any such sequence (yk)∞

k=0, the following
statements hold:

(i) (confinement) yk ∈ Br(x0) for all k ≥ 0;

(ii) (convergence) y∞ := limk→∞ yk exists and belongs to Br(x0). Moreover, f(y∞) = 0;

(iii) (distance bound) For all 0 ≤ i ≤ j <∞ we have
d(yi, yj) ≤ (θ ◦ f)(yi)− (θ ◦ f)(yj) and d(yi, y∞) ≤ (θ ◦ f)(yi) . (2.1.11)

In the particular case where θ takes the form θ(u) := 2c
√
u, we obtain the following result. In

this case we also obtain an estimate for the speed of convergence of f(yk) to 0. Other special
cases of Theorem 2.1.6 are presented in Corollary 2.6.7 below.

Corollary 2.1.7 (see Cor. 2.6.7). Let f : X → [0,∞] be proper and lower semicontinuous,
and suppose that α(x0, r) > 4f(x0)/r2 for some x0 ∈ dom(f) and r > 0. Suppose further
that there exists τ̄ > 0 such that, for all x ∈ Br(x0) ∩ {f ≤ f(x0)} and τ ∈ (0, τ̄), the
functional

X ∋ y ↦−→ f(x) + 1
2τ d(x, y)2

has at least one global minimizer. Then there exists an infinite proximal point sequence starting
from x0, for any step-size τ < τ̄ . Moreover, for any such sequence, the following statements
hold:

(i) (confinement) yk ∈ Br(x0) for all k ≥ 0;

(ii) (convergence) y∞ := limk→∞ yk exists and belongs to Br(x0). Moreover, f(y∞) = 0;

(iii) (convergence rates) The following bounds hold for all k ≥ 0:

f(yk) ≤
(︂
1 + ατ

)︂−k
f(x0) and d(yk, y∞) ≤

(︂
1 + ατ

)︂−k/2
r .

Plan of the work
Preliminaries on gradient flows in metric spaces are collected in §2.2. Our main results in the
continuum case are proved in §2.3 and extended to piecewise gradient-flow curves in §2.5.
In §2.4 we discuss Condition (A) and its variants together with some examples. Our main
results in the discrete case are proved in §2.6. Auxiliary results are presented in the subsequent
sections.
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2.2 Gradient flows in metric spaces
In this section we collect some known facts about gradient flows in metric spaces. We assume
throughout that (X, d) is a complete metric space and J ⊂ R is a (not necessarily open, nor
closed) interval.

Let 1 ≤ p <∞. A measurable function m : J → R belongs to Lploc(J) if 1Km ∈ Lp(J) for
every compact set K ⊂ J . A curve (yt)t∈J is said to be locally p-absolutely continuous on J
—in short: it belongs to ACp

loc(J ;X)— if there exists m ∈ Lploc(J) so that

d(yt, ys) ≤
∫︂ t

s
m(r) dr (2.2.1)

for all s, t ∈ J with s < t. Similarly, we write (yt)t∈J ∈ ACp(J ;X) if m ∈ Lp(J).

Whenever (yt)t∈J is in AC1
loc(J ;X), the metric speed

|ẏt| := lim
s→t

d(ys, yt)
|s− t|

(2.2.2)

exists for a.e. t ∈ J . Furthermore, the metric speed coincides a.e. with the smallest function
m satisfying (2.2.1); see, e.g., [AGS08, Thm. 1.1.2].

Remark 2.2.1. Every curve in AC1
loc(J ;X) is continuous on J . Note however that if

(yt)t∈J ∈ AC1
loc(J ;X) with J = (a, b] for some a < b, then the existence of limt↓a yt does

not imply that (yt)t∈J ∈ AC1(J ;X).

The domain of a function f : X → (−∞,∞] is the set

dom(f) := {x ∈ X : f(x) <∞} .

In order to rule out trivial statements, we always assume that f is proper, i.e., dom(f) ̸= ∅.
The (descending) slope of f at x ∈ X is the quantity

|D−f |(x) := lim sup
y→x

[︂
f(y)− f(x)

]︂
−

d(y, x) ,

where a− := max {−a, 0} denotes the negative part of a ∈ R. Conventionally, |D−f |(x) := 0
when x ∈ dom(f) is isolated, and |D−f |(x) = +∞ if x /∈ dom(f).
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2. Local conditions for global convergence

2.2.1 Gradient flows in metric spaces: curves of maximal slope
The next definition provides a natural notion of gradient flow in a metric space; cf. [AGS08]
for an extensive treatment. The motivation for this definition comes from the following simple
argument in Euclidean space. Let f : Rn → R be a smooth function. For any smooth curve
(ut)t∈[0,T ) in Rn and t ∈ (0, T ), we have

− d
dtf(ut) = −∇f(ut) · u̇t ≤ 1

2 |∇f(ut)|2 + 1
2 |u̇t|

2 .

Since equality holds if and only if u̇t = −∇f(ut), the reverse inequality − d
dtf(ut) ≥

1
2 |∇f(ut)|2 + 1

2 |u̇t|
2 is an equivalent formulation of the gradient-flow equation, which admits

a natural generalisation to metric spaces.

Definition 2.2.2 (curve of maximal slope, gradient flow, cf. [MS20, Dfn. 4.1]). Let J ⊂ R be
an interval and let f : X → (−∞,∞] be proper. We say that (yt)t∈J is a curve of maximal
slope for f if

(a) (yt)t∈J ∈ AC1
loc(J ;X);

(b) (f(yt))t∈J ∈ AC1
loc(J ;R);

(c) the following Energy Dissipation Inequality holds:

− d
dtf(yt) ≥ 1

2 |ẏt|
2 + 1

2 |D
−f |(yt)2 for dt-a.e. t ∈ J . (edi)

If additionally yinf J := limt↓inf J yt exists, we say that (yt)t∈J is a curve of maximal slope for f
starting at yinf J .

Remark 2.2.3. From (edi) and the absolute continuity of f we conclude that t ↦→ f(yt) is
non-increasing along curves of maximal slope (yt)t∈[0,T ).

There are several slightly different notions of curve of maximal slope in the literature, and the
distinction matters for our purposes. In particular, it is important here to include the absolute
continuity of the function along gradient-flow trajectories in our definition, as this allows one
to deduce the following well-known fact, asserting the equality of the speed of the gradient
flow and the slope of the driving functional.

Lemma 2.2.4. Let f : X → (−∞,∞] be proper and let (yt)t∈J be a curve of maximal slope.
For a.e. t ∈ J we have

− d
dtf(yt) = |ẏt|2 = |D−f |(yt)2. (2.2.3)

In particular, equality holds for a.e. t ∈ J in (edi).

Proof. Let t ∈ J be such that the metric speed |ẏt| and the derivative d
dtf(yt) exist. By local

absolute continuity of (yt)t and (f(yt))t, this property holds almost everywhere. Using the
definitions we obtain

− d
dtf(yt) = lim sup

s↓t

f(yt)− f(ys)
|t− s|

≤ lim sup
s↓t

f(yt)− f(ys)
d(yt, ys)

· lim sup
s↓t

d(yt, ys)
|t− s|

≤ |D−f |(yt) · |ẏt|.
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2.3. Convergence of gradient flows

Combining this inequality with (edi), we find that

1
2 |ẏt|

2 + 1
2 |D

−f |(yt)2 ≤ − d
dtf(yt) ≤ |D−f |(yt) · |ẏt|,

which, again by Young’s inequality, implies the desired identities. ■

In light of Lemma 2.2.4, every curve of maximal slope satisifies the Energy Dissipation Equality
for a.e. t ∈ J :

− d
dtf(yt) = 1

2 |ẏt|
2 + 1

2 |D
−f |(yt)2. (ede)

Remark 2.2.5. Let J = [a, b) with −∞ < a < b ≤ ∞ and suppose that ya ∈ dom(f). If f
is bounded from below by some constant M ∈ R, then t ↦→ |ẏt| belongs to L2(a, b) for every
curve of maximal slope (yt)t∈J . Indeed, for t ∈ (a, b), integration of (edi) yields

1
2

∫︂ t

a
|ẏr|2 dr + 1

2

∫︂ t

a
|D−f |(yr)2 dr ≤ f(ya)− f(yt) ≤ f(ya)−M. (2.2.4)

The conclusion follows by passing to the limit t ↑ b.

Remark 2.2.6 (Comparison with [HM19, Dfn.s 2.12, 2.13]). Our Definition 2.2.2 is more
restrictive than [HM19, Dfn.s 2.12, 2.13] as we additionally require the condition in (b). This
condition guarantees that |D−f | is a strong upper gradient of f along (yt)t∈J ; see e.g. [AGS14,
Rmk. 2.8]. Furthermore, by (b) we may integrate (edi) to conclude that t ↦→ f(yt) is
non-increasing, which is rather an assumption in [HM19, Dfn. 2.12]. Everywhere below,
following [HM19], we could drop the assumption of (b) and replace |D−f | by any given
strong upper gradient g. For the sake of simplicity however, we confine our exposition to the
case g :=|D−f | for which the assumptions in [HM19] are verified in light of (b) as discussed
above.

2.3 Convergence of gradient flows
This section is devoted to the proof of Theorem 2.1.4, which deals with the converence of
gradient flows under Assumption (A).

Definition 2.3.1 (Equilibrium point). We say that x⋆ ∈ X is an equilibrium point for f if
x⋆ ∈ dom(|D−f |) and |D−f |(x⋆) = 0.

We refer to cf. [HM19, Dfn. 2.35] for a more general definition for strong upper gradients.

Clearly, every local minimizer x⋆ ∈ dom(f) is an equilibrium point for f .

It will be useful to first investigate gradient flow curves starting from an equilibrium point.

Lemma 2.3.2 (Trivial flows). Let f : X → (−∞,∞] be proper and T ∈ (0,∞].

(i) If x⋆ ∈ dom(f) is an equilibrium point for f , then the constant curve (yt)t∈[0,T ) defined
by yt ≡ x⋆ is a curve of maximal slope for f starting at x⋆.

(ii) If x⋆ ∈ dom(f) is a local minimizer for f , then the constant curve (yt)t∈[0,T ) defined
by yt ≡ x⋆ is the only curve of maximal slope for f starting at x⋆.
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2. Local conditions for global convergence

Proof. (i): This follows immediately from the definitions.

(ii): Let x⋆ ∈ dom(f) be a local minimizer and let U be a neighbourhood of x⋆ such that
f ≥ f(x⋆) on U . Furthermore, let (yt)t∈[0,T ) be a curve of maximal slope for f starting at x⋆,
and set

t0 := inf {t > 0 : yt /∈ U} ∧ T .

Note that t0 > 0, since t ↦→ yt is continuous. Since yt ∈ U for t ∈ [0, t0), we have f(yt) ≥
f(x⋆) for t ∈ [0, t0). As t ↦→ f(yt) is non-increasing by (edi), we thus infer that f(yt) = f(x⋆)
for t ∈ [0, t0). Therefore, t ↦→ d

dtf(yt) is identically 0, hence |ẏt| = 0 for t ∈ [0, t0) again
by (edi). Applying (2.2.1) to the metric speed, we infer that d(yt, y0) ≤

∫︁ t
0 |ẏr| dr = 0,

hence yt = y0 :=x⋆ for all t ∈ [0, t0). By continuity of t ↦→ yt we conclude that t0 = T , which
proves the assertion. ■

For convenience of the reader we recall the following definition from the introduction.

Definition 2.3.3 (Auxiliary function). Given a parameter function θ : [0,∞)→ [0,∞) we
consider the auxiliary function

η : [0,∞)→ [−∞,∞), η(u) :=
∫︂ u

1

(︂
θ′(s)

)︂2
ds for u ∈ [0,∞),

Γ : [0, θ(∞))→ [−∞,∞), Γ(u) := (η ◦ θ−1)(u).

Here we use the convention that θ(∞) := limu→∞ θ(u). Note that θ is indeed invertible
and nonnegative, so that Γ is well-defined. The following lemma collects some elementary
properties of θ. We leave the proof to the reader.

Lemma 2.3.4 (Properties of the auxiliary function). The function η is strictly increasing,
η(1) = 0, and η(0) is possibly −∞. Moreover, η is continuously differentiable on (0,∞) and
η′(u) = (θ′(u))2 for all u > 0.

Remark 2.3.5. In the special case where θ(u) = c
γ
uγ we have the explicit formulas

η(u) = c2

2γ − 1(u2γ−1 − 1) if γ > 0, γ ̸= 1
2 , and η(u) = c2 log u if γ = 1

2 .

The following lemma contains the crucial quantitative bounds on the distance and the driving
functional that can be derived from Condition (A), for suitable gradient-flow trajectories that
stay within the ball Br(x0).

Lemma 2.3.6 (Distance bound and energy bound). Let f : X → [0,∞] be lower semicontin-
uous, and suppose that x0 ∈ dom(f) and r > 0 satisfy Condition (A) for some parameter
function θ. Let (yt)t∈[0,T ), with T ∈ (0,∞], be a curve of maximal slope starting at x0. Let
0 ≤ s ≤ t < T and assume that yu ∈ Br(x0) and f(yu) > 0 for all u ∈ [s, t]. Then:

(θ ◦ f)(ys)− (θ ◦ f)(yt) ≥ d(yt, ys), (2.3.1)
(η ◦ f)(ys)− (η ◦ f)(yt) ≥ t− s. (2.3.2)

Proof. As θ and η are continuously differentiable on (0,∞), and t ↦→ f(yt) is locally absolute
continuous, we conclude that also H : t ↦→ (θ◦f)(yt) and t ↦→ (η◦f)(yt) are locally absolutely
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2.3. Convergence of gradient flows

continuous on (0, T ). For almost every u ∈ [s, t], we obtain by absolute continuity of H,
by (2.2.3), and by (A),

−H′(u) = −(θ′ ◦ f)(yu) · d
duf(yu) = (θ′ ◦ f)(yu) · |D−f |(yu)|ẏu| ≥ |ẏu|. (2.3.3)

Since t ↦→ yt is locally absolute continuous, we obtain

d(yt, ys) ≤
∫︂ t

s
|ẏu| du ≤

∫︂ t

s
−H′(u) du = H(s)−H(t), (2.3.4)

which proves (2.3.1).

Moreover, using again that f(yu) > 0 for all u ∈ [s, t], we obtain for a.e. u ∈ (s, t), by
Lemma 2.3.4, by Lemma 2.2.4, and by (A),

− d
du(η ◦ f)(yu) = −(η′ ◦ f)(yu) · d

duf(yu) =
(︃

(θ′ ◦ f)(yu) · |D−f |(yu)
)︃2
≥ 1.

Integration of this inequality yields (2.3.2). ■

Example 2.3.7. An explicit computation shows that in the special case where θ(u) = c
γ
uγ,

the energy estimate (2.3.2) becomes

f(yt) ≤

⎧⎪⎪⎨⎪⎪⎩
(︄
f(ys)2γ−1 − 2γ − 1

c2 (t− s)
)︄1/(2γ−1)

if γ > 0 , γ ̸= 1
2 ,

e−(t−s)/c2
f(ys) if γ = 1

2 .

(2.3.5)

We are now ready to prove our first main result.

Proof of Theorem 2.1.4. We assume that f(x0) > 0, as the result would otherwise follow
immediately from Lemma 2.3.2.

(i) We define

t0 := inf
{︂
t ∈ [0, T ) : yt ∈ ∂Br(x0)

}︂
∧ T

and note that t0 > 0, since (yt)t∈[0,T ) is continuous. If t0 = T the conclusion follows, hence it
suffices to treat the case where t0 < T .

If f(yt0) = 0, the conclusion follows from Lemma 2.3.2 and the definition of t0. It thus
remains to treat the case where t0 < T and f(yt0) > 0. We will show that these conditions
yield a contradiction, which completes the proof.

Indeed, (2.3.1) and Assumption (A) yield, for 0 < t < t0,

d(yt, x0) ≤ (θ ◦ f)(x0)− (θ ◦ f)(yt) ≤ r − (θ ◦ f)(yt0) .

Since (θ ◦ f)(yt0) > 0 and t ↦→ yt is continuous, it follows by passing to the limit t ↑ t0 that
d(yt0 , x0) < r. This is the desired contradiction, since d(yt0 , x0) = r by construction.

(ii) Since t ↦→ f(yt) is continuous, it follows that

t∗ := inf {t ∈ [0, T ) : f(yt) = 0} ∧ T > 0 .
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2. Local conditions for global convergence

We first claim that yT := limt→T yt exists and belongs to Br(x0).

If t∗ < T , then yt = yt∗ for every t ∈ [t∗, T ) by Lemma 2.3.2, and the claim follows.

If otherwise t∗ = T , then (2.3.1) holds for all 0 ≤ s ≤ t < T . Write H(t) :=(θ ◦ f)(yt). Then
H : [0, T ) → [0,∞) is continuous, non-increasing and bounded from below, so it admits a
continuous non-increasing extension on [0, T ]. Thus, the bound (for 0 ≤ s < t < T )

d(ys, yt) ≤ H(s)−H(t) ≤ H(s)−H(T )

combined with H(s) ↓ H(T ) ≥ 0 as s→ T implies the Cauchy property of (yt)t, hence the
existence of the limit, which proves the claim.

By lower semicontinuity of f and Lemma 2.3.2 and in view of (i), we infer that (2.3.1) holds
for all 0 ≤ s ≤ t ≤ T (even if t∗ < T ). Choosing s = 0 and t = T , the last part of the
statement follows using 2.1.7.

(iii) Let 0 ≤ t < t∗. In view of (i), (2.1.10) follows from (2.3.2). Next, by (2.1.8) we have

d(yt, yT ) ≤ θ(f(yt))− θ(f(yT )) ≤ θ(f(yt)).

Using this bound and (2.1.10), we obtain

(η ◦ θ−1)(d(yt, yT )) ≤ (η ◦ f)(yt) ≤ (η ◦ f)(x0)− t ≤ (η ◦ θ−1)(r)− t,

which shows (2.1.9). By continuity of (yt)t and lower semicontinuity of f , (2.1.9) and (2.1.10)
extend to t = t∗.

Finally, suppose that T = ∞. If t∗ < ∞, then clearly f(y∞) = 0. If on the other hand
t∗ = ∞, it follows from (2.1.10) that (η ◦ f)(yt) → −∞ as t → ∞, hence f(yt) → 0. By
lower semicontinuity of f the result follows. ■

In the special case where the parameter function θ takes the form θ(u) = c
γ
uγ , we obtain the

following more explicit result. The notation t∗ was introduced in Theorem 2.1.4.

Corollary 2.3.8. Let f : X → [0,∞] be lower semicontinuous and suppose that x0 ∈ dom(f)
and r > 0 satisfy Condition (A) with parameter function θ(u) = c

γ
uγ for some c > 0

and γ ∈ (0, 1]. Let (yt)t∈[0,T ) be a curve of maximal slope for f starting at x0, for some
T ∈ (0,∞]. Then yT := limt→T yt exists, yt belongs to Br(x0) for all t ∈ [0, T ], and for all
0 ≤ t ≤ t∗ we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d(yt, yT ) ≤ c
γ

(︄(︃
γr
c

)︃ 2γ−1
γ

− 2γ−1
c2 t

)︄ γ
2γ−1

,

f(yt) ≤
(︄
f(x0)2γ−1 − 2γ−1

c2 t

)︄ 1
2γ−1

,

if γ ̸= 1
2 , (2.3.6)

⎧⎨⎩ d(yt, yT ) ≤ re− t
2c2 ,

f(yt) ≤ f(x0) e− t
c2 ,

if γ = 1
2 . (2.3.7)

Moreover, if 1
2 < γ ≤ 1, we have t∗ ≤ c2

2γ−1f(x0)2γ−1.

Proof. The estimates for d(yt, yT ) and f(yt) are obtained from (2.1.9) and (2.1.10) by
rearranging terms. The final assertion follows from the second bound in (2.3.6). ■
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2.4. Comments on the assumption

Remark 2.3.9 (The case θ(u) = c
2
√
u). Under the above assumptions, the distance estimate

in Corollary 2.3.8 can be improved if γ = 1
2 , using the following the ideas of [Cha22]. Let

0 ≤ s ≤ t ≤ T and assume that yu ∈ Br(x0) and f(yu) > 0 for all u ∈ [s, t]. Then:

d(yt, ys)2 ≤ 4c2
(︃
e− s

2c2 − e− t
2c2

)︃√︂
f(x0)

(︃√︂
f(ys)−

√︂
f(yt)

)︃
(2.3.8)

≤ 4c2e− s
2c2

(︃
e− s

2c2 − e− t
2c2

)︃
f(x0) . (2.3.9)

Proof. We can assume t < T and then extend the result to t = T by taking limits. Using the
local 2-absolute continuity of (yt)t∈[0,T ), the Cauchy–Schwarz inequality, and the assumption
that f(yu) > 0 for all u ∈ [s, t], we find

d(yt, ys) ≤
∫︂ t

s
|ẏu| du ≤

(︃∫︂ t

s

√︂
f(yu) du

)︃1/2
⎛⎝∫︂ t

s

|ẏu|2√︂
f(yu)

du
⎞⎠1/2

. (2.3.10)

By local absolute continuity of u ↦→ f(yu) we see that u ↦→
√︂
f(yu) too is locally absolutely

continuous, and d
du

√︂
f(yu)(t) =

(︂
2
√︂
f(yu)

)︂−1 d
duf(yu) holds a.e. on (0, T ). Since d

duf(yu) =
−|ẏu|2 by (2.2.3), we obtain∫︂ t

s

|ẏu|2√︂
f(yu)

du = −
∫︂ t

s

d
duf(yu)√︂
f(yu)

du = −2
∫︂ t

s

d
du

√︂
f(yu) du = 2

(︃√︂
f(ys)−

√︂
f(yt)

)︃
.

(2.3.11)

Since (yu)u∈[s,t] ⊆ Br(x0), we can take the square root of the second bound in (2.3.7) to see
that ∫︂ t

s

√︂
f(yu) du ≤

√︂
f(x0)

∫︂ t

s
e− u

2c2 du = 2c2
(︂
e− s

2c2 − e− t
2c2
)︂√︂

f(x0) . (2.3.12)

Inserting (2.3.11) and (2.3.12) into (2.3.10), we arrive at (2.3.8).

Finally, another application of the second bound in (2.3.7) yields√︂
f(ys)−

√︂
f(yt) ≤

√︂
f(ys) ≤

√︂
f(x0) e− s

2c2 .

Inserting this inequality into the right-hand side of (2.3.8) we obtain (2.3.9). ■

2.4 Comments on the assumption
In this section we collect some comments on the main assumption of this paper, Conditions (A)
and (A′) introduced in Definition 2.1.3.

Remark 2.4.1 (Comparison with [Cha22]). Let f : X → [0,∞] be proper. For r > 0
and x0 ∈ dom(f) with f(x0) > 0 we define

α = α(x0, r) := inf
x∈Br(x0)

0<f(x)≤f(x0)

|D−f |(x)2

f(x) . (2.4.1)

If 0 < α <∞, it follows immediately from the definitions that the following statements are
equivalent:
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2. Local conditions for global convergence

(i) Condition (A) holds for the parameter function θ(u) := 2
√︂
u/α(x0, r);

(ii) The following inequality holds:

α(x0, r) ≥
4f(x0)
r2 . (C)

Similarly, the slightly stronger Condition (A′) from Definition 2.1.3 is equivalent to Condition
(C ′), the strict inequality α(x0, r) > 4f(x0)

r2 . The latter condition is essentially identical to the
main standing assumption in [Cha22], in the setting of C2 functions on Rn. The difference
is that we restrict in (2.4.1) to a sub-level set of f and work with an open ball instead of a
closed ball of radius r around x0.

The following example illustrates that it is occasionally useful to consider the weaker Condi-
tion (C) instead of Condition (C ′).

Example 2.4.2. Fix x0 > 0 and consider the function f : R→ R defined by (see Fig. 2.1)

f(x) =

⎧⎨⎩x
2 if x ≥ 0
x2

0
2 if x < 0

. (2.4.2)

Then α(x0, r) = 4 for 0 < r ≤ x0 and α(x0, r) = 0 for r > x0. Therefore, Condition (C ′)

Figure 2.1: The function in (2.4.2).

fails to hold regardless of the choice of r > 0, but Condition (C) is satisfied for r = x0.

Remark 2.4.3 (Attainment of the minimum). Assumption (A′) implies the existence of a
global minimizer x⋆ of f satisfying d(x⋆, x0) ≤ (θ ◦ f)(x0) and f(x⋆) = 0. This follows from a
result by Ioffe [Iof77], which we recall in Lemma 2.6.1 below. To derive the conclusion, Ioffe’s
result should be to be applied to the function θ ◦ f , and a metric version of the chain rule is
required to relate the slope of f to the slope of θ ◦ f . For completeness, we give a proof of
this chain rule in Lemma 2.7.1.
In light of this observation, it is possible to derive results similar to Theorem 2.1.4 by applying
existing results for convergence to a global minimum under the KŁ condition that assume the
existence of a global minimum close to the starting point x0; see, e.g., [ABRS10, Thm. 10]
and [ABS13, Thm. 2.12] for such results for discrete schemes. However, a combination of
these results with Ioffe’s result yields a non-optimal criterion, as the KŁ inequality is required
to hold on a bigger set than necessary. Moreover, some additional assumptions are made in
the aforementioned results.
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2.4. Comments on the assumption

Remark 2.4.4 (Sharpness of Condition (A)). To guarantee the existence and the proximity of
a global minimizer of f under Condition (A), the constant r in the inequality (θ ◦ f)(x0) ≤ r
cannot be replaced by any larger constant.

To see this, fix M <∞ (large) and consider for (small) ε ≥ 0 the function fε : [0,∞)→ [0,∞)
defined by fε(x) = θ−1(x+ ε) for 0 ≤ x < M and fε(x) = 0 for x ≥M . Fix x0 ∈ (0,M/2).
Differentiating the identity θ(fε(x)) = x+ε, we find that (θ′◦fε)(x)f ′

ε(x) = 1 for 0 < x < M .
In particular, the second inequality in Condition (A) is satisfied in an open ball of radius x0
around x0.

If ε = 0, the identity θ(f0(x0)) = x0 implies that Condition (A) holds with r = x0, and indeed,
the distance of x0 to the nearest global minimizer of f (which is 0) equals x0.

If ε > 0, Condition (A) fails to hold just barely (since θ(fε(x0)) = x0 + ε), but the distance
of x0 to the nearest global minimizer (which is M) is enormous (namely, M − x0) and the
gradient flow curve starting from x0 will converge to 0, which is not a global minimizer.

The following non-smooth example in R shows that Condition (A) can be applied in a setting
where there is no uniqueness of gradient flow curves with a given starting point.

Example 2.4.5 (Non-uniqueness). Let λ > 0 and a > 0, and consider the function f : R→ R
(see Fig. 2.2a)

f(x) = min
{︄
λ

2 (x− a)2,
λ

2 (x+ a)2
}︄
. (2.4.3)

This function is everywhere smooth except at the origin. For each x0 ̸= 0, there exists a
unique gradient-flow trajectory starting at x0, given by yt := e−λtx0 ±

(︂
1− e−λt

)︂
a for x0 ≷ 0.

However, there are two distinct gradient-flow trajectories y+ and y− starting at the origin,
given y±

t :=±
(︂
1− e−λt

)︂
a for t ≥ 0.

In spite of this non-uniqueness, we shall verify that this example satisfies our assumptions.
Note that |D−f |(x) = λ

⃓⃓⃓
|x|−a

⃓⃓⃓
for all x ∈ R. In particular, f has finite slope at 0, although it

is not differentiable. Consequently, |D−f |(x)2

f(x) = 2λ for all x ∈ R. It follows that Condition (C)
holds for all x0 ∈ R with α(x0, r) = 2λ (hence Condition (A) holds with θ(u) =

√︂
2u/λ),

provided r ≥ |x0 − a| ∧ |x0 + a|. Thus, at every point x0 ∈ R, the criterion provides the
optimal result, in the sense that it yields the smallest possible ball centered at x0 containing
each gradient-flow trajectory starting at x0.

Remark 2.4.6 (Restriction to path connected component). The second inequality in Condi-
tion (A) is required to hold for all y ∈ Br(x0) ∩ {0 < f ≤ f(x0)}. However, in the proof of
Theorem 2.1.4, this bound is needed only on the set G(x0, r) consisting of all points inside
the ball that are reachable by the considered curve of maximal slope starting at x0. Therefore,
Theorem 2.1.4 would still hold if one replaces the set Br(x0) ∩ {0 < f ≤ f(x0)} by G(x0, r)
in the definition in (A). Of course, in practice G(x0, r) is often not explicitly known, so this
condition might be not easy to check. Instead of G(x0, r), one could also consider the path
connected component P (x0, r) of x0 in Br(x0) ∩ {0 < f ≤ f(x0)} and modify the definition
of (A) accordingly.

The following modification of Example 2.4.5 provides an example where it is useful to employ
the modified assumption. Let λ > 0 and a > 0, and consider the function f : R → R (see
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2. Local conditions for global convergence

Fig. 2.2b) given by

f(x) = min
{︄

max
{︄
λ

2 (x− a)2, ε

}︄
λ

2 (x+ a)2
}︄
. (2.4.4)

For this function, Assumption (C) is satisfied for every x0 < 0 and suitable r > 0 when α(x0, r)
is defined with P (x0, r) in place of Br(x0) ∩ {f ≤ f(x0)}. However, it is not satisfied for
any x0 < 0 yet sufficiently close to 0 when α(x0, r) is defined as in (2.4.1).

(a) A non-smooth double-well potential (2.4.3). (b) An asymmetric double-well poten-
tial (2.4.4).

Figure 2.2: The objective functions in Example 2.4.5 and Remark 2.4.6

2.5 Extension of gradient-flow trajectories
It is possible, even under Condition (A), that a curve of maximal slope defined on a finite
interval [0, T ) does not extend to a curve of maximal slope on [0,∞). The following simple
example illustrates this phenomenon.

Figure 2.3: There is no curve of maximal slope with T =∞ starting at x0.

Example 2.5.1. For fixedm, ε > 0, consider the lower-semicontinuous function f : R→ [0,∞)
defined by

f(x) = mx1[0,1](x) + (mx+ ε)1(1,∞)(x) .
See Figure 2.3. Let x0 > 1 and fix r > 0. Then f(x0) = mx0 + ε and Condition (A) is
satisfied with

θ(u) = 2
m

√︂
u(mx0 + ε)

and r ≥ 2(mx0 + ε)/m. On the interval [0, T ) with T = x0−1
m

, there exists a unique curve
of maximal slope (yt)t∈[0,T ) starting from x0. This is the curve which travels at constant
speed m towards the discontinuity of f , namely yt = x0 −mt. However, there is no extension
of (yt)t∈[0,T ) to a curve of maximal slope defined on [0, T ′) for any T ′ > T , since t ↦→ f(yt)
cannot be (absolutely) continuous on [0, T ′).
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2.5. Extension of gradient-flow trajectories

Of course, the curve in this example can be naturally extended to [0,∞) by defining yT = 1,
and concatenating a new curve of maximal slope starting from there. The resulting curve,
given by yt = (x0 −mt)+ for t ≥ 0, satisfies the exponential convergence rates of Corollary
2.1.5, even though it is not a curve of maximal slope in the sense of Definition 2.2.2.

Theorem 2.5.3 below shows that, under Condition (A), concatenated curves of maximal slope
always satisfy the convergence rates of Theorem 2.1.4. The key ingredient is the following
simple observation, which shows that Condition (A) is preserved under curves of maximal
slope (yt)t≥0 in a suitable sense: if the condition holds at time 0 for x0 and some r > 0, then
it holds at any time t ≥ 0 for the point yt and the radius r − d(yt, y0) and with the same
parameter function θ.

Remark 2.5.2 (Assumption preserved along the flow). Suppose that Condition (A) holds
for x0 ∈ dom(f) and r > 0. Let (yt)t∈[0,T ) be a curve of maximal slope, and extend it to
(yt)t∈[0,T ] using Theorem 2.1.4. Then we have by (2.3.1) that for t ∈ [0, T ),

(θ ◦ f)(yt) ≤ (θ ◦ f)(x0)− d(x0, yt) ≤ r − d(x0, yt),

which implies that Condition (A) holds for yt (in place of x0) and r− d(x0, yt) (in place of r);
note that if f(yt) = 0 it is possible that r − d(x0, yt) = 0; otherwise this quantity is strictly
positive. If f is lower semicontinuous, then Condition (A) holds also for yT and r− d(x0, yT ),
as can be seen by taking limits.

Theorem 2.5.3. Let f : X → [0,∞] be a lower semicontinuous function on a complete
metric space (X, d) and suppose that x0 ∈ X and r > 0 satisfy Condition (A) for some
parameter function θ. Let K ≥ 1, 0 = T0 < T1 < . . . < TK = T ≤ ∞ and (yt)t∈[Ti,Ti+1) be
curves of maximal slope starting from xi, where xi = limt↑Ti

yt ∈ Br(x0) for 1 ≤ i ≤ K − 1.
Then, setting t∗ := inf {t ∈ [0, T ) : f(yt) = 0} ∧ T , the following assertions hold:

(i) yt ∈ Br(x0) for all 0 ≤ t < T ;

(ii) yT := limt→T yt exists and belongs to Br(x0);

(iii) d(ys, yt) ≤ (θ ◦ f)(ys)− (θ ◦ f)(yt) for all 0 ≤ t ≤ T .

(iv) for all 0 ≤ t ≤ t∗

Γ
(︂
d(yt, yT )

)︂
≤ Γ(r)− t, (2.5.1)

(η ◦ f)(yt) ≤ (η ◦ f)(x0)− t. (2.5.2)

Proof. (i) and (ii) follow from a repeated application of Theorem 2.1.4 and Remark 2.5.2.

(iii): Recall first that, for K = 0, . . . , K − 1 and Tk ≤ s ≤ t ≤ Tk+1, by (2.1.8)

d(ys, yt) ≤ (θ ◦ f)(ys)− (θ ◦ f)(yt) .

Therefore by a telescoping sum argument, the same inequality holds for all 0 ≤ s ≤ t ≤ T .

(iv): If K = 1, the claim follows from Theorem 2.1.4. Proceeding by induction, we assume
that the claim holds for all K ≤ K̄. We shall show that it also holds for K = K̄ + 1. For
this purpose, suppose that t∗ ≥ K̄ and let TK̄ ≤ t ≤ t∗, otherwise the conclusion is trivial.
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2. Local conditions for global convergence

Then notice that the induction hypothesis yields (η ◦ f)(xK̄) ≤ (η ◦ f)(x0)− TK̄ . Moreover,
applying Theorem 2.1.4 for (yt)t∈[TK̄ ,TK̄+1], we find

(η ◦ f)(yt) ≤ (η ◦ f)(xK̄)− (t− TK̄).

Combining these bounds, (2.5.2) follows. Finally, (2.5.1) follows from (iii) and (2.5.2) in the
same way as in the proof of Theorem 2.1.4. ■

Remark 2.5.4. Theorem 2.5.3 still holds true if we replace the sub-level set of f in condition (A)
with the path-connected component P (x0, r) as in Remark 2.4.6; however the proof does not
work if we instead use G(x0, r), since, in this case, the inequality (θ′ ◦ f) · |D−f |≥ 1 may not
hold on G

(︂
yTi
, r − d(x0, yTi

)
)︂
.

2.6 Convergence of the discrete scheme
This section contains the proof of Theorem 2.1.6, which deals with the convergence of proximal
point sequences to a global minimizer. Our proof is based on adaptation of the arguments
in [BDLM10, Thm. 24]). A key tool is the following result by Ioffe [Iof00]; see also [DIL15,
Lemma 2.5].

Lemma 2.6.1 (Ioffe’s Lemma). Let g : X → [−∞,∞] be a lower semicontinuous functional
on a complete metric space (X, d). Let x ∈ dom(g) and suppose that there are constants
δ ≤ g(x) and R > 0 such that 3

|D−g|(u) ≥ v for all u ∈ BR(x) ∩ {δ < g ≤ g(x)}

for some v > (g(x)− δ)/R. Then:

d
(︂
x, {g ≤ δ}

)︂
≤ g(x)− δ

v
. (2.6.1)

Throughout the remainder of this section we impose the following standing assumptions that
are in force without further mentioning:

• f : X → [0,∞] is a proper and lower semicontinuous functional on a complete metric
space (X, d);

• x0 ∈ dom(f) and r > 0 satisfy Condition (A′) for some parameter function θ;

• there exists a time-step τ̄ > 0 (that will be fixed from now on) such that, for all
x ∈ Br(x0) ∩ {f ≤ f(x0)} and τ ∈ (0, τ̄), the functional

X ∋ y ↦−→ f(y) + 1
2τ d(x, y)2 (2.6.2)

has at least one global minimizer. The non-empty set of minimizers will be denoted by
Jτ (x).

3Note that the corresponding result in [DIL15] involves the closed ball {y ∈ X : d(x, y) ≤ R} instead of
the open ball BR. It is easy to see that the statements are equivalent, possibly after taking a slightly smaller
radius.
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2.6. Convergence of the discrete scheme

The latter condition is satisfied with τ̄ =∞ if (X, d) is proper, i.e., if all closed d-bounded
sets in X are compact.

The following result contains some fundamental properties of Jτ , which can be found in
[AGS08] under slightly different assumptions. The same proofs apply to our setting.

Lemma 2.6.2. For x ∈ Br(x0) ∩ {f ≤ f(x0)} the following assertions hold:

f(z0) ≥ f(z1) ∀ 0 < τ0 ≤ τ1 < τ̄, z0 ∈ Jτ0(x), z1 ∈ Jτ1(x) ;
(2.6.3)

d(x, z) ≥ τ |D−f |(z) ∀ 0 < τ < τ̄ , z ∈ Jτ (x) ; (2.6.4)

f(z) + d(x, z)2

2τ +
∫︂ τ

0

d(x, zs)2

2s2 ds = f(x) ∀ 0 < τ < τ̄ , z ∈ Jτ (x), zs ∈ Js(x) . (2.6.5)

Proof. Inequality (2.6.3) can be found in [AGS08, Lem. 3.1.2]; (2.6.4) can be found in
[AGS08, Lem. 3.1.3]; (2.6.5) can be found in [AGS08, Thm. 3.1.4, Eqn. (3.1.12)]. ■

In the following result we consider a slightly more general notion of proximal point sequences,
as we allow the step-size τ = τk to depend on the step k. This will be useful in Lemma 2.6.6
below.

Lemma 2.6.3 (Confinement and distance bound). Let (yk)Nk=0 with N ∈ N be a proximal
point sequence starting at x0 with step-sizes τk ∈ (0, τ̄) for 0 ≤ k < N . Then for all
0 ≤ k ≤ ℓ ≤ N we have the distance bound

d(yk, yℓ) ≤ (θ ◦ f)(yk)− (θ ◦ f)(yℓ). (2.6.6)

In particular, yk ∈ Br(x0) for all 0 ≤ k ≤ N .

Proof. We will prove that (2.6.6) holds for all 0 ≤ i ≤ j ≤ N by induction on N , noting that
the case N = 0 is trivial.

We thus suppose that the claim is true for some N ≥ 0, and let (yk)N+1
k=0 be a proximal point

sequence starting at x0. By the induction hypothesis and the triangle inequality it suffices to
prove that d(yN , yN+1) ≤ (θ ◦ f)(yN) − (θ ◦ f)(yN+1). If f(yN) = 0, we have yN = yN+1
and the claim follows. We thus assume that f(yN) > 0.

By Condition (A′) there exists ε > 0 such that (1 + ε)(θ ◦ f)(x0) < r. We will apply Lemma
2.6.1 to

g = θ ◦ f, x = yN , δ = (θ ◦ f)(yN+1), R = (1 + ε)(θ ◦ f)(yN), v = 1.

We will show that the assumptions of Lemma 2.6.1 are satisfied.

• Firstly, we claim that |D−g|(u) ≥ 1 for u ∈ BR(yN) ∩ {δ < g ≤ g(yN)}. Indeed, by
the triangle inequality and the induction hypothesis,

d(x0, u) ≤ d(x0, yN) + d(yN , u)

≤
(︃

(θ ◦ f)(x0)− (θ ◦ f)(yN)
)︃

+ (1 + ε)(θ ◦ f)(yN)

= (θ ◦ f)(x0) + ε(θ ◦ f)(yN) ≤ (1 + ε)(θ ◦ f)(x0) < r.
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2. Local conditions for global convergence

This shows that u ∈ Br(x0). Moreover, since θ is strictly increasing, f(u) ≤ f(yN) ≤
f(x0). Since furthermore f(u) > 0, Condition (A′) implies that θ′(f(u))|D−f |(u) ≥ 1.
In particular, |D−f |(u) > 0, hence u is not an isolated point. Therefore, Lemma 2.7.1
yields the desired inequality

|D−g|(u) = θ′(f(u))|D−f |(u) ≥ 1.

• Secondly, we claim that g(yN)− δ < R. Indeed,

g(yN)− δ = (θ ◦ f)(yN)− (θ ◦ f)(yN+1) < (1 + ε)(θ ◦ f)(yN) = R.

Using that θ is strictly increasing, we deduce from Lemma 2.6.1 that

d
(︂
yN ,

{︂
f ≤ f(yN+1)

}︂)︂
≤ (θ ◦ f)(yN)− (θ ◦ f)(yN+1).

This means that for any κ > 0 there exists x̄ ∈ X such that

f(x̄) ≤ f(yN+1) and d(x̄, yN) < (θ ◦ f)(yN)− (θ ◦ f)(yN+1) + κ.

On the other hand, since yN+1 ∈ JτN
(yN), we have

d2(yN+1, yN) ≤ 2τN
(︂
f(x̄)− f(yN+1)

)︂
+ d2(x̄, yN).

As κ > 0 can be chosen arbitrarily small, a combination of these bounds yields

d
(︂
yN , yN+1

)︂
≤ (θ ◦ f)(yN)− (θ ◦ f)(yN+1),

which completes the induction step and the proof of (2.6.6).

The final assertion follows from (2.6.6) since θ(f(x0)) < r by Condition (A′) . ■

Lemma 2.6.4. For any τ ∈ (0, τ̄) there exists an infinite proximal point sequence (yk)k≥0
with y0 = x0.

Proof. It suffices to iteratively construct the sequence (yk)k by letting y0 :=x0 and yk+1 be
a minimizer in (2.6.2) with yk in place of x, noting that yk ∈ Br(x0) by Lemma 2.6.3 and
f(yk) ≤ f(x0) by (2.6.5). ■

Lemma 2.6.5. Let (yk)k≥0 be a proximal point sequence and suppose that y∞ := limk→∞ yk
exists. Then

f(y∞) = lim
k→∞

f(yk) and lim
k→∞
|D−f |(yk) = 0.

Proof. The lower semicontinuity of f yields f(y∞) ≤ lim infk→∞ f(yk). On the other hand,
since yk ∈ Jτ (yk−1) we have

f(yk) ≤ f(y∞) + 1
2τ d(yk−1, y∞)2,

hence lim supk→∞ f(yk) ≤ f(y∞). Combining these inequalities, we obtain the first identity.

As for the second identity, note that

0 ≤ |D−f |(yk) ≤
d(yk−1, yk)

τ

for k ≥ 1 by (2.6.4). The conclusion follows by letting k →∞. ■
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2.6. Convergence of the discrete scheme

Proof of Theorem 2.1.6. Fix τ ∈ (0, τ̄). The existence of an infinite proximal point sequence
(yk)k≥0 with y0 = x0 and step-size τ was proved in Lemma 2.6.4.

Statement (i) was proved in Lemma 2.6.3.

The distance bound in (iii) was proved for 0 ≤ i ≤ j <∞ in Lemma 2.6.3 as well.

To prove (ii), note that (θ(f(yk)))k is a Cauchy sequence, as it is non-negative and non-
increasing. Therefore, (iii) implies the Cauchy property of (yk)k and hence the existence of
y∞ := limk→∞ yk. Using (2.6.6) and Condition (A′) we infer for 0 ≤ i <∞ that

d(yi, y∞) ≤ lim inf
j→∞

d(yi, yj) ≤ (θ ◦ f)(yi) < r.

This show that y∞ ∈ Br(x0) and the distance bound in (iii) for j =∞ follows as well. To
show that f(y∞) = 0, we may assume that f(yk) > 0 for all k, since otherwise there is
nothing to prove. Since |D−f |(yk)→ 0 as k →∞ by Lemma 2.6.5 and

θ′(f(yk)) · |D−f |(yk) ≥ 1

by Condition (A′), we infer that θ′(f(yk)) → ∞. As θ′ is continuous on (0,∞) and the
sequence (f(yk))k is non-increasing, it follows that f(yk) → 0, hence f(y∞) = 0 by lower
semicontinuity of f . ■

For specific choices of the parameter function θ it is possible to obtain more explicit estimates
on the decay of f(yk) and d(yk, y∞) as k →∞. We adapt and refine some arguments from
[AB09], where similar results are proved.

Lemma 2.6.6. Let (yk)∞
k=0 be a proximal point sequence with step-size τ ∈ (0, τ̄) starting at

x0. If the parameter function θ is concave, we have, for all k ≥ 0,

f(yk)− f(yk+1) ≥
τ

(θ′ ◦ f)(yk+1)2 . (2.6.7)

Proof. Fix k ≥ 0 and take zs ∈ Js(yk) for s ∈ (0, τ). Using De Giorgi’s formula (2.6.5), the
inequality (2.6.4), and Condition (A′), we obtain

f(yk)− f(yk+1) = d(yk, yk+1)2

2τ +
∫︂ τ

0

d(yk, zs)2

2s2 ds ≥ τ

2 |D
−f |(yk+1)2 + 1

2

∫︂ τ

0
|D−f |(zs)2 ds

≥ τ

2(θ′ ◦ f)(yk+1)2 +
∫︂ τ

0

1
2(θ′ ◦ f)(zs)2 ds .

Note that Condition (A′) can be applied to zs since f(zs) ≤ f(yk) ≤ f(x0) and Lemma
2.6.3 implies that zs ∈ Br(x0). Since θ is concave and f(zs) ≥ f(yk+1) by (2.6.3), the result
follows. ■

Note that a weaker decay estimate with an additional factor of 1/2 in the right-hand side of
(2.6.7) can be obtained without using De Giorgi’s identity (2.6.5).

Corollary 2.6.7. Suppose that the parameter function θ is given by θ(u) = c
γ
uγ for some c > 0

and γ ∈ (0, 1]. Let (yk)k≥0 be a proximal point sequence starting at x0 with step-size τ ∈ (0, τ̄),
and set y∞ := limk→∞ yk. The following assertions hold:

(i) If γ = 1, then yk = y∞ and f(yk) = 0 for all k ≥ ⌈cr/τ⌉.
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2. Local conditions for global convergence

(ii) If 1
2 < γ < 1, then, for k ≥ 0,

f(yk) ≤
(︃

1 + τ

c2f(x0)1−2γ
)︃−k

f(x0) ,

d(yk, y∞) ≤ c

γ
f(yk)γ = O

(︄(︃
1 + τ

c2f(x0)1−2γ
)︃−kγ

)︄
,

and, for k ≥ k0 := log1+α̃

(︂
2α̃−1/(2γ−1)

)︂
with α̃ := τ

c2f(x0)1−2γ,

f(yk) ≤
(︃
τ

c2

)︃ 1
2γ−1

2−(2−2γ)−(k−k0)
,

d(yk, y∞) ≤ c

γ
f(yk)γ = O

(︂
2−γ(2−2γ)−(k−k0))︂

.

(iii) If γ = 1
2 then, for k ≥ 0,

f(yk) ≤
(︃

1 + τ

c2

)︃−k
f(x0) ,

d(yk, y∞) ≤ 2c
√︂
f(yk) ≤ 2c

(︃
1 + τ

c2

)︃−k/2√︂
f(x0) .

(iv) If 0 < γ < 1
2 then, for k ≥ 0,

f(yk) ≤
(︃
f(x0)−(1−2γ) + C1k

)︃− 1
1−2γ

= O
(︂
k− 1

1−2γ

)︂
,

d(yk, y∞) ≤ c

γ
f(yk)γ = O

(︂
k− γ

1−2γ

)︂
,

where C1 = supR>1 min
{︂
τ(1−2γ)
c2R

,
(︂
R

1−2γ
2−2γ − 1

)︂
f(x0)2γ−1

}︂
.

Proof. (i): Suppose that f(yK) > 0 for some K ≥ 0. Condition (A′) yields |D−f |(yk) ≥ 1
c

for all 0 ≤ k ≤ K, hence d(yk, yk+1) ≥ τ
c

for all 0 ≤ k ≤ K − 1 by (2.6.4). Using Condition
(A′) and Lemma 2.6.3 we infer that

r > c(f(x0)− f(yK)) = c
K−1∑︂
k=0

(︃
f(yk)− f(yk+1)

)︃
≥

K−1∑︂
k=0

d(yk, yk+1) ≥
Kτ

c
,

hence K < cr/τ . It follows that f(yk) = 0 and therefore yk = y∞ for all k ≥ ⌈cr/τ⌉.

(ii)− (iv): Write fk := f(yk). From (2.6.7) we deduce the recursive inequality

fk−1 − fk ≥
τ

c2f
2−2γ
k .

This inequality yields the decay of fk using Lemma 2.8.1 with α = τ/c2 and δ = 2− 2γ. The
decay estimates for dk := d(yk, y∞) follow from the bounds for fk combined with Theorem
2.1.6(iii). ■

Remark 2.6.8. In general — unlike in the continuous setting of Corollary 2.3.8 — the
discrete scheme does not converge in a finite number of steps when 1

2 < γ < 1. For suitable
f ∈ C1(Rn), this is easy to deduce from the equivalent formulation in (2.1.3). However, the
corollary above shows that the rate of convergence is (asymptotically) faster than exponential.
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2.7. A nonsmooth chain rule

Example 2.6.9 (Non-uniqueness revisited). Let us consider again the function f defined in
(2.4.3) (see Fig. 2.2a) and let τ > 0. For any x0 ̸= 0, the resolvent Jτ (x0) is single-valued.
However, if x0 = 0, the resolvent Jτ (x0) contains two elements, say xτ and −xτ . Consequently,
there are two distinct proximal point sequences starting at x0 = 0; once x1

τ ∈ Jτ (x0) is selected,
the rest of the sequence is determined. Corollary 2.1.7 implies the exponential convergence for
both of these sequences.

2.7 A nonsmooth chain rule
In practice, it can be difficult to compute the slope of a non differentiable function, because
tools such as the chain rule are missing. We have however the following basic substitute
Lemma.

Lemma 2.7.1. Let f : X → (−∞,∞] be proper and lower semicontinuous and let g : R→ R
be lower semicontinuous and non-decreasing. Then g ◦ f : X → (−∞,∞] is proper and lower
semicontinuous. Furthermore, if x ∈ dom(f) is not isolated and is such that there exists the
left derivative ∂−g(f(x)) ≥ 0 of g at f(x), then

|D−(g ◦ f)|(x) = ∂−g(f(x)) · |D−f |(x) . (2.7.1)

Proof. The lower semicontinuity of g ◦ f is well known, so we only prove (2.7.1). Set

S := {(yn)n ⊂ X : yn → x , yn ̸= x} .

Since x is not isolated, S ̸= ∅. For a function h : X → (−∞,∞] we have

lim sup
y→x

h(y) = sup
{︃

lim sup
n→∞

h(yn) : (yn)n ∈ S
}︃

= max
{︃

lim sup
n→∞

h(yn) : (yn)n ∈ S
}︃
.

(2.7.2)
We first prove that

|D−(g ◦ f)|(x) ≤ ∂−g(f(x)) · |D−f |(x) . (2.7.3)
Let (yn)n ∈ S. We need to show that

lim sup
n→∞

[(g ◦ f)(yn)− (g ◦ f)(x)]−
d(yn, x) ≤ ∂−g(f(x)) · |D−f |(x) .

Observe that if f(yn) ≥ f(x) then, since g is non decreasing,

[(g ◦ f)(yn)− (g ◦ f)(x)]−
d(yn, x) = 0 .

Therefore without loss of generality (by changing sequence and/or restricting to a subsequence)
we can assume that f(yn) < f(x). Then, passing to the limit superior as n → ∞ we see
that lim supn f(yn) ≤ f(x). By lower semicontinuity of f we have as well that lim infn f(yn) ≥
f(x), thus there exists limn f(yn) = f(x). Noting also that

[(g ◦ f)(yn)− (g ◦ f)(x)]−
d(yn, x) =

[︂
(g ◦ f)(yn)− (g ◦ f)(x)

]︂
−[︂

f(yn)− f(x)
]︂

−

·

[︂
f(yn)− f(x)

]︂
−

d(yn, x)

= g(f(x))− g(f(yn))
f(x)− f(yn) ·

[f(yn)− f(x)]−
d(yn, x)

(2.7.4)
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we conclude that

lim sup
n→∞

[︂
(g ◦ f)(yn)− (g ◦ f)(x)

]︂
−

d(yn, x) ≤ ∂−g(f(x)) · |D−f |(x)

as desired.

We now prove the converse inequality:

|D−(g ◦ f)|(x) ≥ ∂−g(f(x)) · |D−f |(x) . (2.7.5)

If |D−f |(x) = 0 the claim is trivial, so we assume now that |D−f |(x) > 0. By (2.7.2) there
exists (yn)n ∈ S such that

lim sup
n→∞

[︂
f(yn)− f(x)

]︂
−

d(yn, x) = |D−f |(x) > 0 .

By restricting to a subsequence we can assume that f(yn) < f(x). Arguing as before we
have the existence of limn f(yn) = f(x) and that (2.7.4) holds. Taking the limit superior as
n→∞ in (2.7.4) gives

|D−(g ◦ f)|(x) ≥ lim sup
n→∞

[(g ◦ f)(yn)− (g ◦ f)(x)]−
d(yn, x) ≥ ∂−g(f(x)) · |D−f |(x)

as desired. Combing (2.7.5) with the opposite inequality (2.7.3) yields the assertion. ■

2.8 Estimating recursive inequalities
The following lemma contains some estimates that are used in the proof of Corollary 2.6.7.

Lemma 2.8.1. Let (fk)k∈N be a sequence of non-negative real numbers with f0 > 0 and
suppose that for some α, δ > 0 the recursive relation

fk−1 − fk ≥ αf δk (2.8.1)

holds for all k ≥ 1. Then, for all k ≥ 0:

fk ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂
f

−(δ−1)
0 + Ck

)︂−1/(δ−1)
if δ > 1 , (2.8.2a)

(1 + α)−kf0 if δ = 1 , (2.8.2b)
(1 + α̃)−kf0 if δ < 1 , (2.8.2c)

where α̃ = α/f 1−δ
0 and

C := sup
R>1

min
{︄
α(δ − 1)

R
,
(︂
R(δ−1)/δ − 1

)︂
f 1−δ

0

}︄
.

Furthermore, if δ < 1, we also have

fk ≤ α1/(1−δ) · 2−δ−(k−k0) for k ≥ k0 := log1+α̃

(︂
2α̃−1/(1−δ)

)︂
. (2.8.3)
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Proof. Note first that in all cases the sequence (fk)k is non-increasing.

(2.8.2a): We follow the arguments of [AB09]. Fix R ∈ (1,∞) and consider the concave
function H(s) = 1

1−δs
1−δ and its derivative h(s) = H ′(s) = s−δ. Observe that (2.8.1) can be

equivalently written as
α ≤ (fk−1 − fk)h(fk) .

Suppose first that h(fk) ≤ Rh(fk−1). Using the concavity of H we obtain

α ≤ (fk−1 − fk)h(fk) ≤ R(fk−1 − fk)h(fk−1) ≤ R(H(fk−1)−H(fk))

= R

δ − 1
(︂
f 1−δ
k − f 1−δ

k−1

)︂
.

Writing C1(R) := α(δ − 1)/R > 0, this shows that

f 1−δ
k − f 1−δ

k−1 ≥ C1(R) .

Suppose next that instead h(fk) > Rh(fk−1). Raising this inequality to the power δ−1
δ

we
obtain

f 1−δ
k > R

δ−1
δ f 1−δ

k−1

and hence, since (fk)k is non-increasing,

f 1−δ
k − f 1−δ

k−1 ≥
(︂
R

δ−1
δ − 1

)︂
f 1−δ
k−1 ≥

(︂
R

δ−1
δ − 1

)︂
f 1−δ

0 =: C2(R) > 0.

Finally, defining C := supR∈(1,∞) min{C1(R), C2(R)} > 0, the above inequalities combined
yield

f 1−δ
k − f 1−δ

k−1 ≥ C.

Evaluating a telescopic sum, we obtain f 1−δ
k − f 1−δ

0 ≥ Ck. Rearranging terms we obtain the
desired inequality (2.8.2a).

(2.8.2b): This is straightforward.

(2.8.2c): Suppose without loss of generality that fk > 0. From (2.8.1) it follows that

fk−1

fk
≥ 1 + α

f 1−δ
k

≥ 1 + α

f 1−δ
0

= 1 + α̃,

from which we deduce (2.8.2c).

(2.8.3): Writing f̃k := α−1/(1−δ)fk we note that (2.8.1) implies f̃ δk ≤ f̃k−1 and therefore

f̃k ≤
(︂
f̃k0

)︂δ−(k−k0)

.

Moreover, (2.8.2c) and the definition of k0 yield f̃k0 ≤ (1 + α̃)−k0 f̃0 = 1
2 . Combining these

estimates, we obtain the desired estimate f̃k ≤ 2−δ−(k−k0) . ■
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CHAPTER 3
Contractive coupling rates and

curvature lower bounds for Markov
chains

This chapter corresponds to the preprint [Ped23].

Contractive coupling rates have been recently introduced by Conforti as a tool to establish
convex Sobolev inequalities (including modified log-Sobolev and Poincaré inequality) for some
classes of Markov chains. In this work, for most of the examples discussed by Conforti, we
use contractive coupling rates to prove stronger inequalities, in the form of curvature lower
bounds (in entropic and discrete Bakry–Émery sense) and geodesic convexity of some entropic
functionals. In addition, we recall and give straightforward generalizations of some notions of
coarse Ricci curvature, and we discuss some of their properties and relations with the concepts
of couplings and coupling rates: as an application, we show exponential contraction of the
p-Wasserstein distance along the heat flow in the aforementioned examples.

3.1 Introduction
In this work, we are mostly concerned with finite state space continuous time Markov chains
and we assume that they are irreducible and reversible: we use the letter Ω for the state space,
L for the generator and m for the invariant measure. A fundamental problem in the theory of
Markov chains consists in estimating the speed of convergence to the stationary distribution
and giving upper bound for its mixing time. Convex Sobolev inequalities are a particularly
useful tool to address this task. Given a convex function ϕ : R≥0 → R such that ϕ ∈ C1(R>0),
we define the ϕ-entropy of a function ρ : Ω→ R>0 by

Hϕ(ρ) := Em[ϕ ◦ ρ]− ϕ(Em[ρ]). (3.1.1)

Notice that by Jensen’s inequality Hϕ(ρ) ≥ 0 and Hϕ(C) = 0 for any constant C > 0.
Therefore, if we denote by ρ = dµ

dm
the density of a probability measure µ with respect to m,

we can think of Hϕ(ρ) as a (non-symmetric) measure of distance of µ from m. We also recall
the definition of the Dirichlet form E : RΩ × RΩ → R via

E(f, g) := −Em[f(Lg)],
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3. Contractive coupling rates and curvature lower bounds for Markov chains

and of the ϕ−Fisher information

Iϕ(ρ) := E(ρ, ϕ′ ◦ ρ). (3.1.2)

We then say that a ϕ-convex Sobolev inequality holds with constant K > 0 (notation:
CSIϕ(K)) if for all positive functions ρ : Ω→ R>0 we have that

KHϕ(ρ) ≤ Iϕ(ρ). (3.1.3)

The interest behind this inequality lies in the fact that, denoting by Pt = etL the semigroup
associated to the generator L, we have the well-known identity

d

dt
Hϕ(Ptρ) = −Iϕ(Ptρ)

for any ρ : Ω → R≥0. Thus, by Grönwall Lemma, (3.1.3) is equivalent to the exponential
decay of the entropy along the heat flow

Hϕ(Ptρ) ≤ e−KtHϕ(ρ),

and therefore quantifies the speed of convergence to equilibrium of the Markov chain. Classical
choices of the function ϕ include the function ϕα for α ∈ [1, 2] defined by

ϕα(t) =

⎧⎨⎩ t log t− t+ 1 if α = 1,
tα−t
α−1 − t+ 1 if α ∈ (1, 2].

(3.1.4)

When ϕ = ϕ1, we get the relative entropy and inequality (3.1.3) is the celebrated modified
log-Sobolev inequality [BT06] (notation: MLSI(K)); when ϕ = ϕ2, we find the variance and
(3.1.3) is the Poincaré inequality (notation: PO(K)). For α ∈ (1, 2), inequalities (3.1.3) are
known as Beckner inequalities, which interpolate between modified log-Sobolev and Poincaré
[BT06, JY17].

Curvature of Markov chains In the setting of Riemannian manifolds, positive lower bounds
for the Ricci curvature have been linked to many functional inequalities: this has motivated
the seminal independent works of Sturm [Stu06] and Lott and Villani [LV09], who extended
the notion of curvature lower bound and many of its consequences (including some logarithmic
Sobolev inequalities) to a large class of geodesic metric measure spaces. In spite of its generality,
this theory does not apply to Markov chains on discrete spaces; for this reason, several adapted
notions of curvature have been proposed, based on different equivalent characterisations of
Ricci curvature for Riemannian manifolds. Among these, we recall in particular the entropic
curvature by Erbar and Maas [EM12], which is based on displacement convexity of the relative
entropy with respect to an adapted Wasserstein-like metric W introduced in [Maa11] (see
also the work of Mielke [Mie13]). This theory shares many similarities with the classical
Lott–Sturm–Villani one, and among its merits it is such that many of the desired functional
inequalities follow from positive lower bounds on the Ricci curvature, including in particular the
modified log-Sobolev inequality. Moreover, as shown in [EM14], the role of the classical relative
entropy (with respect to m) can be taken over by other ϕ-entropy functionals as defined in
(3.1.1), provided that one changes accordingly a parameter function in the definition of W :
once again, from positive geodesic convexity one can derive many consequences, including the
convex Sobolev inequality (3.1.3). Unfortunately, establishing positive lower bounds for the
entropic Ricci curvature (or more generally K-geodesic convexity of an entropic functional
Hϕ) of a Markov chain can be challenging, and in many interesting examples good estimates
are not available.
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Coupling rates and Conforti’s results While studying the entropic curvature of a Markov
chain is a difficult task, in general even finding good estimates on the best constant for the
modified log-Sobolev inequality (or other convex Sobolev inequalities) can be difficult. For
this reason, in the recent paper [Con22], Conforti introduced a method based on the new
notion of coupling rates to study general convex Sobolev inequalities, and applied it to some
interesting classes of Markov chains. Coupling rates are a modification of the familiar notion of
coupling: roughly speaking, they are used to “couple” the action of the generator L from two
different states. While couplings have been extensively used to establish fast convergence of
Markov chains (“probabilistic” approach to fast mixing), their use to establish convex Sobolev
inequalities (which belong to the “analytic” approach to fast mixing) is less common, and the
results of [Con22] give an interesting connection between these two families of methods.

Our contribution and organization of the paper In this work, we show that the coupling
rates introduced by Conforti are a powerful tool to establish entropic curvature lower bounds
and other related inequalities for some classes of Markov chains. As an illustration of the
applications of these methods, we state below one particular instance of our results. We refer
to Sections 3.2–3.4 below for precise definitions.

Theorem 3.1.1 (Cf. Sections 3.4.1, 3.4.3). Denote by Rice the entropic curvature of a
continuous time reversible Markov chain [EM12, FM16, EHMT17].

• For the Curie–Weiss model with size N and parameter β > 0, in the limit N →∞ we
have

Rice ≥ (1− β) + (1− 2β)e−β

for β ≤ 1
2 .

• For the Ising model in dimension d with parameter β > 0, we have

Rice ≥ 1 + e−2βd − 3d(1− e−2β)e2βd

if 2d
(︂
1− e−2β

)︂
e4dβ ≤ 1.

• For the hardcore model on a graph with maximum degree ∆ and parameter β > 0, set
κ∗ = 1− β(∆− 1) and κ∗ = min{β, 1− β∆}. Then

Rice ≥
κ∗

2 + κ∗

provided that β∆ ≤ 1.

We remark that in all the examples above we find new estimates for the entropic curvature
of those Markov chains: these estimates imply in particular MLSI with the same constant
obtained in [Con22], but also other interesting functional inequalities, such as exponential
contractivity along the heat flow of the popular Wasserstein-like metric W of [Maa11] (see
Section 3.2.1 and references therein for more details). Therefore, in this sense, we provide a
strengthening of the results of [Con22].

To conclude this section, we briefly present below the organization of this paper while giving a
more complete overview of our contributions.
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3. Contractive coupling rates and curvature lower bounds for Markov chains

• In Section 3.2 we give some preliminary definitions and define the general abstract
inequality that we consider: it reads B(ρ, ψ) ≥ KA (ρ, ψ) for a constant K and
all ρ : Ω → R>0 and ψ : Ω → R, and it depends on an additional weight function
θ : R>0 × R>0 → R>0. This inequality was first introduced by Erbar and Maas in their
works on the entropic curvature of a Markov chain [EM12] and, more generally, on the
geodesic convexity of some entropic functionals [EM14]. To motivate the interest in
studying this inequality and for the sake of completeness, in the following subsections we
recall some results by Erbar and Maas in connection with specific choices of the weight
function θ. In particular:

– In Section 3.2.1 we recall that when θ is the logarithmic mean then the inequality
corresponds to an entropic curvature lower bound for the Markov chain, as proved
in [EM12]. For the convenience of the reader, we also recall from [EM12] some
necessary definitions and consequences of such curvature lower bound, including
MLSI(2K).

– In Section 3.2.2, by the results of [EM14], we extend the considerations of the
previous section to the case where the relative entropy is replaced by some other
ϕ-entropy functionals, and in particular we explain how we recover a family of
convex Sobolev inequalities as in (3.1.3) (consistently with [Con22]), together with
other functional inequalities.

– In Section 3.2.3 we recall that if θ is the arithmetic mean then the inequality of
interest corresponds to a lower bound for another notion of discrete curvature,
namely the discrete Bakry–Émery one (see [Sch99]).

• In Section 3.3 we recall the definition of coupling rates. Moreover, under some basic
assumptions on the weight function θ, we use coupling rates to provide a lower bound
for the quantity B(ρ, ψ): this is the content of Lemma 3.3.1, which will be crucial
for our method and the applications to the particular Markov chains considered later
in this paper. This section also includes some heuristic considerations, explaining the
favorable role of “contractivity” of the couplings in proving the abstract inequality
B(ρ, ψ) ≥ KA (ρ, ψ), which can also guide possible future applications of this tool.

• In Section 3.4 we illustrate the considerations of the previous section by considering
most of the examples discussed in [Con22] and correspondingly establishing the general
abstract inequality B(ρ, ψ) ≥ KA (ρ, ψ) introduced in Section 3.2. More specifically:

– In Section 3.4.1 we consider Glauber dynamics, which includes in particular the
Ising model and the Curie–Weiss model.

– In Section 3.4.2 we consider a simplified version of the Bernoulli–Laplace model.
– In Section 3.4.3 we consider the classical hardcore model.
– In Section 3.4.4 we consider the case of interacting random walks on the discrete

grid Nd.

In particular, by choosing θ to be the logarithmic mean, we find new estimates for
the entropic curvature of the Ising model, the Curie–Weiss model and the hardcore
model, and we recover the best known lower bound for the entropic curvature of the
Bernoulli–Laplace model.

• Finally, in Section 3.5 we explain how the coupling rates constructed by Conforti are
naturally connected with the notion of coarse Ricci curvature by Ollivier [Oll09]. We
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recall some well-known definitions and properties of the coarse Ricci curvature, and we
also provide some natural generalizations. In particular, inspired by the properties of the
coupling rates constructed by Conforti, we consider a stronger notion of coarse Ricci
curvature which, roughly speaking, is based on simultaneous contraction of 1-Wasserstein
distance W1 and non-expansion of the ∞-Wasserstein distance W∞ along the Markov
chain dynamics (where both Wasserstein distances are defined with respect to the
natural graph distance d on Ω). Correspondingly, we raise the question of connecting
positive lower bounds for this notion of curvature to a modified log-Sobolev inequality,
formulating a weaker version of a conjecture by Peres and Tetali.
As a further application of the discussion in Section 3.5, and as already done by Conforti
for the specific case of the interacting random walks of Section 3.4.4, we show that
in all the other examples discussed in Section 3.4 Conforti’s coupling rates imply an
exponential contraction of the Wasserstein distance of the form

Wp(Ptρ, Ptσ) ≤ e− Kt
p Wp(ρ, σ)

for all starting densities ρ, σ and p ≥ 1.
As a final remark, we emphasize how, in some sense, this section shows that the
connections between probabilistic and analytic methods emerging in [Con22] carry over
at the level of curvature. In fact, while contractive couplings are naturally linked to the
coarse Ricci curvature, we use them to establish (for some classes of Markov chains)
lower bounds on the entropic curvature, which is a rather analytic notion of curvature.

3.2 Preliminaries and main inequality
Following [Con22], we work with a so-called “mapping representation” of the Markov chain,
which we briefly recall. We are given a finite set of moves G (where a move σ ∈ G is a
function σ : Ω → Ω) together with a transition rate function c : Ω × G → R≥0, so that
c(η, σ) represents the rate of using the move σ starting from the state η. Such a mapping
representation has already proved useful before in establishing functional inequalities and
curvature lower bounds for Markov chains [PP13, CPP09, EM12, FM16, EHMT17]. Typically
(and if not otherwise specified) we use the letter η for a state and σ, γ, γ̄ for moves, and
to lighten the notation we write for example ση instead of σ(η) for the state reached after
jumping with the move σ from the state η. We make the assumption that for each move σ
there exists a unique inverse σ−1 ∈ G such that σ−1ση = η whenever m(η)c(η, σ) > 0 (recall
that we denote by m the unique invariant measure). We also denote by e : Ω→ Ω the ‘null
move” (i.e. the identity map); without loss of generality, we assume that e /∈ G and we denote
by G∗ := G ∪ {e} the enlarged set of moves, as in [Con22]. With this notation, we can write
explicitly the action of the generator L of the continuous time Markov chain in the form

Lψ(η) =
∑︂
σ∈G

c(η, σ)(ψ(ση)− ψ(η)) (3.2.1)

for any bounded ψ : Ω→ R. Notice that in (3.2.1) we could also take the sum for σ ∈ G∗,
and that in this context the rates c(η, e) can be arbitrarily defined. The state space Ω is at
most countable, and we assume that∑︂

η∈Ω,σ∈G
m(η)c(η, σ) <∞.
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We also use the notation
∇σψ(η) := ψ(ση)− ψ(η)

for the discrete gradient and

S := {(η, σ) ∈ Ω×G | c(η, σ) > 0}.

We assume that for all bounded functions F : Ω×G→ R we have∑︂
η∈Ω,σ∈G

m(η)c(η, σ)F (η, σ) =
∑︂

η∈Ω,σ∈G
m(η)c(η, σ)F (ση, σ−1). (3.2.2)

As observed in e.g. [FM16, Def 3.1] (cf. also [PP13, EM12, EHMT17, Con22]), the condition
(3.2.2) expresses the reversibility of the Markov chain, and every irreducible and reversible
Markov chain admits a mapping representation satisfying the above requirements. In practice,
it is typically useful to consider such a description where the set of moves G is small. In all
the concrete examples of Markov chains considered in Section 3.4, following [Con22], we will
work with mapping representations satisfying the above conditions.

We now proceed to introduce in an abstract way the main inequality of interest in this paper.
For this, we first need an additional ingredient, i.e. a weight function θ : R>0 × R>0 → R≥0.
In this paper, we always work under the following basic

Assumption 1. The weight function θ is such that:

1. θ is not identically 0;

2. θ(s, t) = θ(t, s);

3. θ is differentiable;

4. θ is concave.

Given a weight function θ satisfying the above, the inequality reads

B(ρ, ψ) ≥ KA (ρ, ψ) (3.2.3)

for all positive functions ρ : Ω → R>0, functions ψ : Ω → R and for a constant K ∈ R
independent of ρ, ψ, where we have

A (ρ, ψ) = 1
2

∑︂
(η,σ)∈S

m(η)c(η, σ)θ(ρ(η), ρ(ση))[ψ(η)− ψ(ση)]2,

B(ρ, ψ) = C (ρ, ψ)−D(ρ, ψ),

with

C (ρ, ψ) = 1
4

∑︂
(η,σ)∈S

m(η)c(η, σ)
{︄
∇θ(ρ(η), ρ(ση)) ·

(︄
Lρ(η)
Lρ(ση)

)︄}︄
[ψ(η)− ψ(ση)]2,

D(ρ, ψ) = 1
2

∑︂
(η,σ)∈S

m(η)c(η, σ)θ(ρ(η), ρ(ση))(ψ(η)− ψ(ση))(Lψ(η)− Lψ(ση)).

This inequality was introduced in the work of Erbar and Maas [EM12, EM14]: depending on
the choice of θ, it has different interpretations and consequences, which we discuss in the next
subsections.
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3.2.1 Logarithmic mean and entropic curvature
The main reason for studying inequality (3.2.3) comes from the work [EM12] and for choosing
as θ the logarithmic mean

θ1(s, t) :=
∫︂ 1

0
s1−ptp dp =

⎧⎨⎩
s−t

log s−log t if s ̸= t,

s if s = t.
(3.2.4)

Let us now denote by P(Ω) the set of probability densities on Ω with respect to m, i.e.
functions ρ : Ω→ R≥0 such that Em(ρ) = 1, and by P∗(Ω) the set of strictly positive densities.
In [Maa11], Maas introduced a Wasserstein-like metric W on P(Ω) via a discrete variant of the
Benamou–Brenier formula, and showed that, as in the classical setting, for any ρ ∈ P(Ω) the
heat flow t→ Ptρ = etLρ is the gradient flow of the relative entropy functional in (P(Ω),W )
started at ρ, where the relative entropy is the restriction of the functional Hϕ1 (as in (3.1.1))
to P(Ω). Writing it explicitly, for ρ ∈ P(Ω) we have that

Hϕ1(ρ) =
∑︂
η∈Ω

m(η)ρ(η) log(ρ(η)),

with the convention that 0 log 0 = 0 in the above sum. In this setting, inequality (3.2.3) can
be interpreted as a lower bound for the Hessian of Hϕ1 with respect to W (see [EM12, Thm.
4.5]), or equivalently as a statement of K-geodesic convexity (see also the independent work
of Mielke [Mie13]). As gradient flows of geodesically K-convex functionals enjoy many useful
properties, functional inequalities can be subsequently derived for the Markov chains. In the
next Proposition we collect in particular some results proved in [EM12] (cf. Proposition 4.7
and Theorems 7.3, 7.4 therein). To be precise, [EM12] considers actually the case where the
generator corresponds to a Markov Kernel K (whose rows sum to 1), but these definitions and
properties easily extend to non-normalised transition rates, as considered in the subsequent
literature [EM14, FM16, EHMT17].

Proposition 3.2.1. Assume that θ is the logarithmic mean and that inequality (3.2.3) holds
for some constant K ∈ R and for all ψ : Ω→ R, ρ ∈ P∗(Ω). Then:

• the HWI(K) inequality

Hϕ1(ρ) ≤ W (ρ,1)
√︂
Iϕ1(ρ)− K

2 W (ρ,1)2

holds for all ρ ∈ P(Ω);

• for any ρ, σ ∈ P(Ω)
W (Ptρ, Ptσ) ≤ e−KtW (ρ, σ);

• if K > 0 then the modified log-Sobolev inequality MLSI(2K)

2KHϕ1(ρ) ≤ Iϕ1(ρ)

holds for all ρ ∈ P∗(Ω).

Following [EM12], when (3.2.3) holds for the logarithmic mean, we say that the entropic
curvature of the Markov chain is bounded from below by K, and we use the notation

Rice ≥ K.

For more consequences of entropic curvature lower bounds we refer the reader to [EM12, EF18].
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3.2.2 Weight functions and convex Sobolev inequalities
In some cases, it is possible to let other ϕ-entropies take over the role of the relative entropy
in the previous section, following [EM14] and by choosing an appropriate weight function θ.
First, we consider a function ϕ : R≥0 → R and correspondingly we make the following

Assumption 2. The function ϕ : R≥0 → R is such that

1. ϕ is continuous and ϕ ∈ C2(R>0);

2. ϕ is strictly convex.

Moreover, the weight function θ = θϕ defined by

θ(s, t) :=

⎧⎨⎩
s−t

ϕ′(s)−ϕ′(t) if s ̸= t,
1

ϕ′′(s) if s = t
(3.2.5)

satisfies Assumption 1.

A first motivation for defining θ as in (3.2.5) comes from the following result due to [EM14]
(see Theorem 4.8 therein).

Proposition 3.2.2. Suppose that Assumption 2 is satisfied and that inequality (3.2.3) holds
for some K > 0. Then the convex Sobolev inequality (3.1.3) holds with constant 2K (notation:
CSIϕ(2K)).

For completeness, we provide the proof of this proposition in Section 3.6, since it was proved
in [EM14] under slightly more restrictive assumptions, as a consequence of stronger geodesic
convexity results, as explained later in this section. The idea for the proof of Proposition 3.2.2
is that, when restricting to the specific choice ψ := ϕ′ ◦ ρ, inequality (3.2.3) is equivalent to
the second order differential inequality

d2

dt2

⃓⃓⃓⃓
⃓⃓
t=0

Hϕ(Ptρ) ≥ 2KIϕ(ρ). (3.2.6)

From this, it is standard to deduce the convex Sobolev inequality (3.1.3) with constant 2K,
essentially by integration, following what is known as the “Bakry–Émery argument”. Actually,
this is exactly the approach used by Conforti in [Con22], that is, he uses couplings rates to
establish (3.2.6) and subsequently deduces the convex Sobolev inequality CSIϕ(2K). Since
(3.2.6) is a particular case of (3.2.3) for a specific choice of ψ, it is clear that proving (3.2.3)
under Assumption 2 gives a stronger result as compared to (3.2.6) and is in general more
challenging to achieve as one has to deal with two unknown functions (ρ and ψ) as opposed to
just one (i.e. ρ). Another difference with the work of Conforti lies in the assumptions on the
convex function ϕ: indeed, our Assumption 2 requires that θ is concave. This assumption was
present also in [JY17] and (as already observed there) implies in particular that 1

ϕ′′ is concave,
which is a classical assumption for the continuous setting. On the other hand, Conforti does
not assume concavity of θ, but requires instead that the function

(s, t)→ (s− t) · (ϕ′(s)− ϕ′(t)) (3.2.7)

is convex.
While both assumptions are enough to deduce convex Sobolev inequalities, it is possible to
make another more demanding one and deduce stronger consequences from inequality (3.2.3).
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Assumption 3. Assumption 2 is satisfied. Moreover, with θ as in (3.2.5), we have that:

• ϕ ∈ C∞(R>0);

• θ ∈ C∞(R>0 × R>0);

• θ extends to a continuous function defined on R≥0 × R≥0;

• θ(r, s) ≤ θ(r, t) for all 0 ≤ s ≤ t and 0 ≤ r.

If the above is satisfied, then in [EM14] the authors showed it is possible to adapt some of the
results of Section 3.2.1. Replacing the W metric with a suitable modified metric Wϕ (where
the new weight function θ replaces the logarithmic mean), it holds that for any starting density
ρ ∈ P(Ω) the heat flow t → Ptρ is the gradient flow of the ϕ-entropy Hϕ in (P(Ω),Wϕ).
Moreover, as in the previous section, inequality (3.2.3) si equivalent to K-geodesic convexity
of Hϕ in (P(Ω),Wϕ) and the following result holds (cf. Propositions 4.2, 4.6 and Theorem
4.8 in [EM14]).

Proposition 3.2.3. Under Assumption 3, suppose that inequality (3.2.3) holds for some
constant K ∈ R and for all ψ : Ω→ R, ρ ∈ P∗(Ω). Then:

• the inequality
Hϕ(ρ) ≤ Wϕ(ρ,1)

√︂
Iϕ(ρ)− K

2 Wϕ(ρ,1)2

holds for all ρ ∈ P(Ω);

• for any ρ, σ ∈ P(Ω)
Wϕ(Ptρ, Ptσ) ≤ e−KtWϕ(ρ, σ);

• if K > 0 then the ϕ-convex Sobolev inequality CSIϕ(2K)

2KHϕ(ρ) ≤ Iϕ(ρ)

holds for all ρ ∈ P∗(Ω).

All the functions ϕα defined in (3.1.4) satisfy Assumption 3 (see also [JY17, Lemma 16]): for
the corresponding weight function, we use the notation θα. Notice in particular that for α = 1
we recover the logarithmic mean of the previous subsection, while for 1 < α < 2 we have

θα(s, t) =

⎧⎨⎩
α−1
α

s−t
sα−1−tα−1 if s ̸= t,

1
α
s2−α if s = t.

(3.2.8)

Remark 3.2.4 (Case α = 2). The case α = 2 is particular and should be studied separately. In
this case, indeed, the weight function satisfies θ2 ≡ 1

2 . Therefore, the quantities B(ρ, ψ) and
A (ρ, ψ) become independent of ρ, which makes establishing inequality (3.2.3) significantly
simpler. Actually, for θ = θ2 establishing (3.2.3) for all ρ, ψ is equivalent to establishing
(3.2.6) for all ρ, as done by Conforti. Therefore, in this case it is usually possible to establish
inequality (3.2.3) with a better constant than what would happen just under Assumption
1. In all the examples of Section 3.4, this can be achieved by a simple modification of the
arguments after substituting θ ≡ 1

2 , or alternatively, given the equivalence of (3.2.3) and
(3.2.6), by just applying the results of [Con22]. For this reasons, for the results of Section 3.4
applied to θ = θα we focus on α ∈ [1, 2) when comparing to [Con22].
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3.2.3 Arithmetic mean and discrete Bakry–Émery curvature

If θ is the arithmetic mean, it is well known that inequality (3.2.3) is equivalent to a lower bound
for the discrete Bakry–Émery curvature (for example, it was already observed in [Maa17]).
For completeness, and since we did not find a detailed proof in the literature, we recall the
definitions and include a proof of this fact. In analogy with the classical setting discussed in
great detail in [BGL14], for f, g : Ω→ R define

Γ(f, g)(η) := 1
2
∑︂
σ∈G

c(η, σ)(f(ση)− f(η))(g(ση)− g(η)),

Γ(f) := Γ(f, f) and

Γ2(f) := 1
2LΓ(f)− Γ(f, Lf).

Definition 3.2.5 ([Sch99]). We say that the curvature condition CD(K,∞) is satisfied if for
all f : Ω→ R

Γ2(f) ≥ KΓ(f). (3.2.9)

Proposition 3.2.6. Suppose that θ is the arithmetic mean. Then for any K ∈ R inequality
(3.2.3) holds if and only if CD(K,∞) holds.

Proof. Notice that, using reversibility,

A (ρ, ψ) = 1
4

∑︂
(η,σ)∈S

m(η)c(η, σ)(ρ(η) + ρ(ση))[ψ(η)− ψ(ση)]2

= 1
2
∑︂
η∈Ω

m(η)ρ(η)
[︄∑︂
σ∈G

c(η, σ)[ψ(η)− ψ(ση)]2
]︄

=
∑︂
η∈Ω

m(η)ρ(η)Γ(ψ)(η).
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Moreover, using reversibility multiple times (cf. also (3.2.2)),

C (ρ, ψ) = 1
8

∑︂
(η,σ)∈S

m(η)c(η, σ)(Lρ(η) + Lρ(ση))[ψ(η)− ψ(ση)]2

= 1
4

∑︂
(η,σ)∈S

m(η)c(η, σ)Lρ(η)[ψ(η)− ψ(ση)]2

= 1
4
∑︂
η∈Ω
σ,γ∈G

m(η)c(η, σ)c(η, γ)(ρ(γη)− ρ(η))[ψ(η)− ψ(ση)]2

= 1
4
∑︂
η∈Ω
σ,γ∈G

m(η)c(γη, σ)c(η, γ)ρ(η)[ψ(γη)− ψ(σγη)]2

− 1
4
∑︂
η∈Ω
σ,γ∈G

m(η)c(η, σ)c(η, γ)ρ(η)[ψ(η)− ψ(ση)]2

= 1
4
∑︂
η∈Ω

m(η)ρ(η)
∑︂
γ∈G

c(η, γ)
∑︂
σ∈G

{︃
c(γη, σ)[ψ(γη)− ψ(σγη)]2

− c(η, σ)[ψ(η)− ψ(ση)]2
}︃

=
∑︂
η∈Ω

m(η)ρ(η)1
2LΓψ(η),

and

D(ρ, ψ) = 1
4

∑︂
(η,σ)∈S

m(η)c(η, σ)(ρ(η) + ρ(ση))(ψ(η)− ψ(ση))(Lψ(η)− Lψ(ση))

= 1
2
∑︂
η∈Ω

m(η)ρ(η)
∑︂
σ∈G

c(η, σ)(ψ(η)− ψ(ση))(Lψ(η)− Lψ(ση))

=
∑︂
η∈Ω

m(η)ρ(η)Γ(ψ,Lψ)(η).

Therefore, (3.2.3) is equivalent to∑︂
η∈Ω

m(η)ρ(η)Γ2ψ(η) ≥ K
∑︂
η∈Ω

m(η)ρ(η)Γψ(η). (3.2.10)

From this, it is clear that CD(K,∞) implies (3.2.3) by choosing f = ψ. Conversely, choosing
ρ = dδη

dm
to be the density of a Dirac and ψ = f in (3.2.10) gives the converse implication. ■

For more details about and consequences of the discrete Bakry–Émery curvature we refer the
reader to [FS18] and the references therein.

3.3 Coupling rates and curvature lower bound
Coupling rates were introduced by Conforti in [Con22] as a tool to establish convex Sobolev
inequalities. They are a modification of the usual notion of coupling, and they apply to
continuous time Markov chains. Roughly speaking, they are a way of letting the generator L act
at the same time at two different states, in a way that is consistent with equation (3.2.1) when
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3. Contractive coupling rates and curvature lower bounds for Markov chains

one looks separately at the two states. More precisely, for any pair of different states η, η̄ ∈ Ω,
we consider coupling rates between them in the form of a function ccpl(η, η̄, ·, ·) : G∗ ×G∗ →
R≥0 such that

∀γ ∈ G,
∑︂
γ̄∈G∗

ccpl(η, η̄, γ, γ̄) = c(η, γ),

∀γ̄ ∈ G,
∑︂
γ∈G∗

ccpl(η, η̄, γ, γ̄) = c(η̄, γ̄).

It can be seen easily seen that, for any fixed states η ̸= η̄, coupling rates between them always
exist; for example, one can consider the “product coupling rates”, constructed as follows.
Suppose without loss of generality (otherwise, exchange the role of η, η̄) that∑︂

σ∈G
c(η, σ) ≤

∑︂
σ∈G

c(η̄, σ) =: M,

and notice 0 < M <∞ (since G is finite and the chain is irreducible). Then, set c(η, e) =
M −∑︁σ∈G c(η, σ) and c(η̄, e) = 0, where e is the null move. Finally, for γ, γ̄ ∈ G∗, define

ccpl(η, η̄, γ, γ̄) = 1
M
c(η, γ)c(η̄, γ̄),

which is easily seen to define appropriate coupling rates between η and η̄.

From the definition of coupling rates, it follows immediately that one can jointly express the
action of the generator (3.2.1) on a function ψ at the states η and η̄ as follows:

Lψ(η) =
∑︂

γ,γ̄∈G∗
ccpl(η, η̄, γ, γ̄)(ψ(γη)− ψ(η)),

Lψ(η̄) =
∑︂

γ,γ̄∈G∗
ccpl(η, η̄, γ, γ̄)(ψ(γ̄η̄)− ψ(η̄)).

(3.3.1)

In [Con22], Conforti showed that coupling rates are useful for organizing the terms appearing
in the inequality (3.2.6), and thus (if one manages to establish it), in proving convex Sobolev
inequalities via the Bakry–Émery argument. Heuristically, it turns out it is convenient to
consider not arbitrary coupling rates, but rather “contractive” ones. Informally, this means
that, for neigbouring states η ̸= ση with η ∈ Ω, σ ∈ G, the coupling rates ccpl(η, ση, γ, γ̄)
between them are such that “as often as possible” γη = γ̄ση (and, in particular, a fruitful
choice is (γ, γ̄) = (σ, e) or (e, σ−1)). Indeed, when this is achieved, some terms cancellations
going into the right direction occur when studying inequality (3.2.6).

In the rest of this section, we show that similar considerations also hold when studying the
stronger inequality (3.2.3). In particular, we will derive a lower bound for B(ρ, ψ) using
coupling rates under only Assumption 1 on θ: this gives a sufficient condition for establishing
the inequality B(ρ, ψ) ≥ KA (ρ, ψ). In general, this is a more challenging situation compared
to (3.2.6), since now we are dealing with two unknowns (ρ, ψ) as opposed to just ρ, and we
also have an additional non linear weight function θ to deal with; moreover, as discussed in
Section 3.2.2, inequality (3.2.6) corresponds to a particular case of (3.2.3) with the choice
ψ = ϕ′ ◦ ρ and θ as in Assumption 2. Next, we will conclude the section by discussing
heuristically how contractions in the coupling rates can help proving the inequality (3.2.3) too,
similarly to what happened in [Con22].

We now proceed to show how arbitrary coupling rates can help rewrite the main inequality
(3.2.3) in a convenient way, by organizing the involved terms. Notice first that we can write,
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3.3. Coupling rates and curvature lower bound

using coupling rates as in (3.3.1),

∇θ(ρ(η), ρ(ση)) ·
(︄
Lρ(η)
Lρ(ση)

)︄

=∇θ(ρ(η), ρ(ση)) ·
⎡⎣ ∑︂
γ,γ̄∈G∗

ccpl(η, ση, γ, γ̄)
(︄
ρ(γη)− ρ(η)
ρ(γ̄ση)− ρ(ση)

)︄⎤⎦
=

∑︂
γ,γ̄∈G∗

ccpl(η, ση, γ, γ̄)∇θ(ρ(η), ρ(ση)) ·
[︄(︄

ρ(γη)
ρ(γ̄ση)

)︄
−
(︄
ρ(η)
ρ(ση)

)︄]︄

≥
∑︂

γ,γ̄∈G∗
ccpl(η, ση, γ, γ̄)[θ(ρ(γη), ρ(γ̄ση))− θ(ρ(η), ρ(ση))],

(3.3.2)

where we used concavity of θ in the last line. Therefore, for C (ρ, ψ) we have the lower bound

C (ρ, ψ) ≥ 1
4

∑︂
(η,σ)∈S

∑︂
γ,γ̄∈G∗

m(η)c(η, σ) ccpl(η, ση, γ, γ̄)θ(ρ(γη), ρ(γ̄ση))[ψ(η)− ψ(ση)]2

− 1
4

∑︂
(η,σ)∈S

∑︂
γ,γ̄∈G∗

m(η)c(η, σ)ccpl(η, ση, γ, γ̄)θ(ρ(η), ρ(ση))[ψ(η)− ψ(ση)]2.

As for the term D(ρ, ψ), we can write

D(ρ, ψ) = 1
2

∑︂
(η,σ)∈S

∑︂
γ,γ̄∈G∗

m(η)c(η, σ)ccpl(η, ση, γ, γ̄)θ(ρ(η), ρ(ση))

·
{︂
(ψ(η)− ψ(ση))(ψ(γη)− ψ(γ̄ση))− (ψ(η)− ψ(ση))2

}︂
.

Combining the bound for C and the expression for D we derive the following:

Lemma 3.3.1. Let θ be a weight function satisfying Assumption 1. We have

B(ρ, ψ) ≥ 1
4

∑︂
(η,σ)∈S

∑︂
γ,γ̄∈G∗

m(η)c(η, σ) ccpl(η, ση, γ, γ̄)J(η, σ, γ, γ̄) (3.3.3)

for all ρ : Ω→ R>0 and ψ : Ω→ R, where we define the function J : Ω×G∗×G∗×G∗ → R
by

J(η, σ, γ, γ̄) := {θ(ρ(γη), ρ(γ̄ση)) + θ(ρ(η), ρ(ση))}[ψ(η)− ψ(ση)]2

− 2θ(ρ(η), ρ(ση))(ψ(η)− ψ(ση))(ψ(γη)− ψ(γ̄ση)).

It is also convenient to define the function I : Ω×G∗ ×G∗ ×G∗ → R by

I(η, σ, γ, γ̄) = I1(η, σ, γ, γ̄)− I2(η, σ, γ, γ̄),
I1(η, σ, γ, γ̄) = θ(ρ(γη), ρ(γ̄ση))[ψ(η)− ψ(ση)]2 ≥ 0,
I2(η, σ, γ, γ̄) = θ(ρ(η), ρ(ση))[ψ(γη)− ψ(γ̄ση)]2 ≥ 0.

Notice that we have

J(η, σ, γ, γ̄) = I(η, σ, γ, γ̄) + θ(ρ(η), ρ(ση))[ψ(η)− ψ(ση)− ψ(γη) + ψ(γ̄ση)]2

≥ I(η, σ, γ, γ̄).
(3.3.4)
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3. Contractive coupling rates and curvature lower bounds for Markov chains

At this point, we can explain at least heuristically why it is useful to consider especially
contractive coupling rates. In view of Lemma 3.3.1, to establish inequality (3.2.3) it suffices
to prove that for some coupling rates

1
2

∑︂
(η,σ)∈S

∑︂
γ,γ̄∈G∗

m(η)c(η, σ) ccpl(η, ση, γ, γ̄)J(η, σ, γ, γ̄)

≥K
∑︂

(η,σ)∈S
m(η)c(η, σ)θ(ρ(η), ρ(ση))[ψ(ση)− ψ(η)]2 = 2KA (ρ, ψ).

(3.3.5)

Notice first of all that whenever γη = γ̄ση the second term in the definition of J(η, ση, γ, γ̄)
is 0, so J is non-negative, suggesting a first lower bound for B(ρ, ψ). More precisely, when
γη = γ̄ση, looking at the corresponding terms in the left-hand-side of the inequality (3.3.5),
we see that

ccpl(η, ση, γ, γ̄)J(η, σ, γ, γ̄)
= ccpl(η, ση, γ, γ̄){θ(ρ(γη), ρ(γ̄ση)) + θ(ρ(η), ρ(ση))}[ψ(η)− ψ(ση)]2

≥ ccpl(η, ση, γ, γ̄)θ(ρ(η), ρ(ση))[ψ(η)− ψ(ση)]2.
(3.3.6)

Hence, we recognise some terms appearing in the sum in the right-and-side of (3.3.5) defining
A (ρ, ψ), multiplied by the factor ccpl(η, ση, γ, γ̄): therefore, if we have a uniform positive
lower bound for

inf
(η,σ)∈S

∑︂
γ,γ̄∈G∗

γη=γ̄ση

ccpl(η, ση, γ, γ̄) > 0, (3.3.7)

we are in a good position to prove the inequality (3.3.5), provided that we can also accomplish
the non-trivial task of dealing with the other terms appearing in the left-hand-side of (3.3.5)
(corresponding to the pairs of moves (γ, γ̄) not realising a contraction). This is indeed the
general strategy that we will use in Section 3.4, where we analyse specific classes of Markov
chains.

A second point we wish to make is that sometimes, depending also on the weight function θ,
we can improve the bounds obtained with the strategy described before. The first observation
is that in (3.3.6) we have thrown away some non-negative terms, corresponding to

ccpl(η, ση, γ, γ̄)θ(ρ(γη), ρ(γ̄ση))[ψ(η)− ψ(ση)]2. (3.3.8)

We now restrict our attention to two particular pairs of moves that are “contractive”, given
respectively by (e, σ−1) and (σ, e). In this case, the terms in (3.3.8) sum up to{︂

ccpl(η, ση, e, σ−1)θ(ρ(η), ρ(η)) + ccpl(η, ση, σ, e)θ(ρ(ση), ρ(ση))
}︂
[ψ(η)− ψ(ση)]2.

These terms could also be related to the ones appearing in the definition of A (ρ, ψ), if we
knew that for some constant Mθ

θ(ρ(η), ρ(η)) + θ(ρ(ση), ρ(ση)) ≥ 2Mθθ(ρ(η), ρ(ση)),

and if we had a uniform positive lower bound

inf
(η,σ)∈S

min
{︂
ccpl(η, ση, σ, e), ccpl(η, ση, e, σ−1)

}︂
> 0, (3.3.9)
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similarly to (3.3.7). For this reason, for a given weight function θ satisfying Assumption 1, it
is natural to define the quantity

Mθ := inf
s,t>0:
θ(s,t)>0

θ(s, s) + θ(t, t)
2θ(s, t) ∈ [0, 1], (3.3.10)

so that for all s, t ≥ 0
2Mθθ(s, t) ≤ θ(s, s) + θ(t, t).

By choosing s = t we can see that Mθ ≤ 1. The next proposition, whose proof is given in
Section 3.7, provides the value of Mθ for the explicit examples of θ considered in Section 3.2.

Proposition 3.3.2. • For α ∈ [1, 2] and θα as in equations (3.2.4), (3.2.8), we have

Mθα =

⎧⎨⎩ 1 if α ∈
[︂
1, 3

2

]︂
or α = 2;

1
2(α−1) if α ∈

(︂
3
2 , 2

)︂
.

• For the arithmetic mean we have Mθ = 1.

As a concluding remark for this section, we emphasize that, while the method described in this
section potentially applies to a wide variety of settings, in general it seems that some extra
assumptions on the Markov chains are helpful to get the desired conclusions. In particular,
reversibility of the model and an underlying symmetry of the structure of the Markov chain
can help obtain useful terms cancellations to deal with the “non-contractive” pairs of moves
(γ, γ̄) in the left-hand-side of (3.3.5).

3.4 Applications
In this section, we apply Lemma 3.3.1 to establish the general inequality of interest (3.2.3) for
most of the examples considered in [Con22], under just Assumption 1. In particular, Section
3.4.1, 3.4.2, 3.4.3 and 3.4.4 corresponds to Section 4, 5.1, 5.2 and 3 of [Con22] respectively.
Not surprisingly, the proofs are similar to the ones of Conforti, and in all these examples the
considered contractive coupling rates are the ones constructed in [Con22]. The case of the
interacting random walks of Section 3.4.4 is the only one where an additional assumption is
present compared to [Con22]: moreover, as done by Conforti, in that section a localization
procedure is used to deal with the infinite cardinality of the state space.

3.4.1 Glauber dynamics
We work in the setting of Section 4 of [Con22] (i.e. Glauber dynamics) and we use the same
notation, which we briefly recall. The state space is a finite set Ω. We assume that σ = σ−1

and σγη = γση for all moves σ, γ ∈ G and states η ∈ Ω. Given an inverse temperature
parameter β > 0 and an Hamiltonian function H : Ω→ R, the rates are defined by

c(η, σ) = exp
(︄
−β2∇σH(η)

)︄
,

where we recall the notation ∇σH(η) = H(ση)−H(η) for the discrete gradient. The reversible
measure is then the Gibbs measure

m(η) = 1
Zβ

exp(−βH(η))
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where Zβ > 0 is the appropriate normalization constant. Finally we make the key assumption
that κ(η, σ) ≥ 0 for all states η ∈ Ω and moves σ ∈ G, where we define

κ(η, σ) := c(ση, σ)−
∑︂
γ:γ ̸=σ

max{−∇σc(η, γ), 0}.

This assumption is crucial for the construction of appropriate contractive coupling rates, for
which we will apply Lemma 3.3.1. We also define the quantities

κ∗ := inf
η,σ
κ(η, σ) + κ(ση, σ), κ∗ := inf

η,σ
κ(η, σ),

which correspond respectively to the infimums in (3.3.7) and (3.3.9). Notice that 2κ∗ ≤ κ∗.

Theorem 3.4.1. With the previous notation, suppose that for all η ∈ Ω and σ, γ ∈ G we
have σγ = γσ, σ = σ−1 and κ(η, σ) ≥ 0. Let θ be a weight function satisfying Assumption 1.
Then the inequality (3.2.3) holds with constant

K = Mθκ∗ + κ∗

2 .

Remark 3.4.2 (Comparison with [Con22]). In [Con22, Thm. 4.1], under the same assumptions
on the model, Conforti establishes inequality (3.2.6) and thus CSIϕ(2K) with constant K
equal to

• κ∗
2 for general convex ϕ satisfying convexity of (3.2.7);

• κ∗
2 + κ∗ for ϕ = ϕ1 (thus MLSI(κ∗ + 2κ∗));

• α
2κ∗ for ϕ = ϕα with α ∈ (1, 2].

Thus, by Proposition 3.3.2 and by the discussion in Section 3.2 (i.e. recalling for example
Proposition 3.2.1 and that (3.2.6) is particular case of (3.2.3)), we obtain a stronger result
for the case θ = θ1 and complementary results for other choices of θ.

Proof of Theorem 3.4.1

As done in [Con22], we define

Υ<(η) = {(σ, γ) ∈ G×G | σ ̸= γ,∇σc(η, γ) < 0},
Υ>(η) = {(σ, γ) ∈ G×G | σ ̸= γ,∇σc(η, γ) > 0},
Υ=(η) = {(σ, γ) ∈ G×G | σ ̸= γ,∇σc(η, γ) = 0},

where we recall the notation

∇σc(η, γ) = c(ση, γ)− c(η, γ)

= exp
(︄
−β2 [H(γση)−H(ση)]

)︄
− exp

(︄
−β2 [H(γη)−H(η)]

)︄
.

We then define the same coupling rates: for η ∈ Ω, σ ∈ G set

ccpl(η, ση, γ, γ̄) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{c(ση, γ), c(η, γ)} if γ = γ̄ and σ ̸= γ, γ ∈ G,
−∇σc(η, γ) if γ̄ = σ and (σ, γ) ∈ Υ<(η),
∇σc(η, γ̄) if γ = σ and (σ, γ̄) ∈ Υ>(η),
κ(ση, σ) if γ = σ, γ̄ = e,
κ(η, σ) if γ = e, γ̄ = σ,
0 otherwise.
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Notice that these are indeed admissible coupling rates between η and ση, since by assumption
κ(ση, σ), κ(η, σ) ≥ 0. With these coupling rates and using Lemma 3.3.1 and (3.3.4) we can
write B(ρ, ψ) ≥ 1

4(A+B + C +D) with

A =
∑︂

η∈Ω,σ,γ∈G,
σ ̸=γ

m(η)c(η, σ) min{c(η, γ), c(ση, γ)}I(η, σ, γ, γ),

B = −
∑︂
η∈Ω,

(σ,γ)∈Υ<(η)

m(η)c(η, σ)∇σc(η, γ)I(η, σ, γ, σ),

C =
∑︂
η∈Ω,

(σ,γ̄)∈Υ>(η)

m(η)c(η, σ)∇σc(η, γ̄)I(η, σ, σ, γ̄),

D =
∑︂

η∈Ω,σ∈G
m(η)c(η, σ)(κ(ση, σ)J(η, σ, σ, e) + κ(η, σ)J(η, σ, e, σ)).

We show below that A = B = C = 0 and that D ≥ (4Mθκ∗ + 2κ∗)A (ρ, ψ), which concludes
the proof of the theorem. It is useful to have an auxiliary lemma:

Lemma 3.4.3. For all η ∈ Ω and σ, γ ∈ G with σ ̸= γ the following hold:

1. c(η, σ)∇σc(η, γ) = c(η, γ)∇γc(η, σ).

2. c(η, σ)c(ση, γ) = c(η, γ)c(γη, σ).

3. ∇σc(ση, γ) = −∇σc(η, γ).

4. (σ, γ) ∈ Υ<(η) ⇐⇒ (γ, σ) ∈ Υ<(η).

5. (σ, γ) ∈ Υ>(γη) ⇐⇒ (σ, γ) ∈ Υ<(η).

6. (σ, γ) ∈ Υ>(ση) ⇐⇒ (σ, γ) ∈ Υ<(η).

7. (σ, γ) ∈ Υ=(γη) ⇐⇒ (σ, γ) ∈ Υ=(η).

8. I(η, σ, γ, σ) = −I(η, γ, σ, γ).

9. I(ση, σ, σ, γ) = −I(γη, γ, γ, σ).

10. I(η, σ, γ, γ) = −I(γη, σ, γ, γ).

Proof of Lemma. Statements 1–7 were already observed in the proof of [Con22, Thm. 4.1]
and are easy to check, while statements 8–10 are immediate from the definitions. ■

Term D We have
J(η, σ, σ, e) = {θ(ρ(ση), ρ(ση)) + θ(ρ(η), ρ(ση))}[ψ(η)− ψ(ση)]2

J(η, σ, e, σ) = {θ(ρ(η), ρ(η)) + θ(ρ(η), ρ(ση))}[ψ(η)− ψ(ση)]2

and so
κ(ση, σ)J(η, σ, σ, e) + κ(η, σ)J(η, σ, e, σ)
≥{κ∗[θ(ρ(ση), ρ(ση)) + θ(ρ(η), ρ(η))] + κ∗θ(ρ(η), ρ(ση))}[ψ(η)− ψ(ση)]2

≥(2Mθκ∗ + κ∗)θ(ρ(η), ρ(ση))[ψ(η)− ψ(ση)]2.

Therefore we get
D ≥ (4Mθκ∗ + 2κ∗)A (ρ, ψ).
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Term B We have that
B =−

∑︂
η∈Ω,

(σ,γ)∈Υ<(η)

m(η)c(η, σ)∇σc(η, γ)I(η, σ, γ, σ)

= −
∑︂
η∈Ω,

(γ,σ)∈Υ<(η)

m(η)c(η, σ)∇σc(η, γ)I(η, σ, γ, σ)

= −
∑︂
η∈Ω,

(σ,γ)∈Υ<(η)

m(η)c(η, γ)∇γc(η, σ)I(η, γ, σ, γ)

= −
∑︂
η∈Ω,

(σ,γ)∈Υ<(η)

m(η)c(η, σ)∇σc(η, γ)I(η, γ, σ, γ)

=
∑︂
η∈Ω,

(σ,γ)∈Υ<(η)

m(η)c(η, σ)∇σc(η, γ)I(η, σ, γ, σ)

= −B
which implies that B = 0. In the above, the second equality is by 4. of Lemma 3.4.3, the
third by exchanging the role of σ and γ, the fourth by 1. of Lemma 3.4.3 and the fifth by 8.
of Lemma 3.4.3.

Term C This is similar to term B using reversibility. We have

C =
∑︂
η∈Ω,

(σ,γ̄)∈Υ>(η)

m(η)c(η, σ)∇σc(η, γ̄)I(η, σ, σ, γ̄).

Using the reversibility property (3.2.2) with F (η, σ) = ∑︁
γ̄:(σ,γ̄)∈Υ>(η)∇σc(η, γ̄)I(η, σ, σ, γ̄),

the assumption σ = σ−1 and properties 3. and 6. of Lemma 3.4.3, we get

C = −
∑︂
η∈Ω,

(σ,γ̄)∈Υ<(η)

m(η)c(η, σ)∇σc(η, γ̄)I(ση, σ, σ, γ̄).

We want to show that this expression is 0, analogously to what was done for B. Notice that
C =−

∑︂
η∈Ω,

(σ,γ̄)∈Υ<(η)

m(η)c(η, σ)∇σc(η, γ̄)I(ση, σ, σ, γ̄)

= −
∑︂
η∈Ω,

(γ̄,σ)∈Υ<(η)

m(η)c(η, σ)∇σc(η, γ̄)I(ση, σ, σ, γ̄)

= −
∑︂
η∈Ω,

(σ,γ̄)∈Υ<(η)

m(η)c(η, γ̄)∇γ̄c(η, σ)I(γ̄η, γ̄, γ̄, σ)

= −
∑︂
η∈Ω,

(σ,γ̄)∈Υ<(η)

m(η)c(η, σ)∇σc(η, γ̄)I(γ̄η, γ̄, γ̄, σ)

=
∑︂
η∈Ω,

(σ,γ̄)∈Υ<(η)

m(η)c(η, σ)∇σc(η, γ̄)I(ση, σ, σ, γ̄)

= − C,
which implies that C = 0. In the above, the second equality is by 4. of Lemma 3.4.3, the third
by exchanging the role of σ and γ̄, the fourth by 1. of Lemma 3.4.3 and the fifth by 9. of
Lemma 3.4.3.
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Term A We split A into three different terms: A = A1 + A2 + A3, where

A1 =
∑︂
η∈Ω,

(σ,γ)∈Υ<(η)

m(η)c(η, σ)c(ση, γ)I(η, σ, γ, γ),

A2 =
∑︂
η∈Ω,

(σ,γ)∈Υ>(η)

m(η)c(η, σ)c(η, γ)I(η, σ, γ, γ),

A3 = 1
2

∑︂
η∈Ω,

(σ,γ)∈Υ=(η)

m(η)c(η, σ)(c(ση, γ) + c(η, γ))I(η, σ, γ, γ).

We want to show that A1 + A2 = 0 and A3 = 0. We have that

A2 =
∑︂
η∈Ω,

(σ,γ)∈Υ>(η)

m(η)c(η, σ)c(η, γ)I(η, σ, γ, γ)

=
∑︂
η∈Ω,

(σ,γ)∈Υ>(γη)

m(η)c(η, γ)c(γη, σ)I(γη, σ, γ, γ)

=−
∑︂
η∈Ω,

(σ,γ)∈Υ<(η)

m(η)c(η, σ)c(ση, γ)I(η, σ, γ, γ)

=− A1.

In the above, the second equality is by the reversibility property (3.2.2) with F (η, γ) =∑︁
σ:(σ,γ)∈Υ>(η) c(η, σ)I(η, σ, γ, γ) and the assumption γ = γ−1, while the second equality is by

the properties 2., 5. and 10. of Lemma 3.4.3. It follows that the contribution of the first two
terms is 0.
It remains to show that A3 = 0, which is done in a similar way: notice that∑︂

η∈Ω,
(σ,γ)∈Υ=(η)

m(η)c(η, σ)c(η, γ)I(η, σ, γ, γ)

=
∑︂
η∈Ω,

(σ,γ)∈Υ=(γη)

m(η)c(η, γ)c(γη, σ)I(γη, σ, γ, γ)

=−
∑︂
η∈Ω,

(σ,γ)∈Υ=(η)

m(η)c(η, σ)c(ση, γ)I(η, σ, γ, γ).

In the above, the first equality is by the reversibility property (3.2.2) with the function
F (η, γ) = ∑︁

σ:(σ,γ)∈Υ=(η) c(η, σ)I(η, σ, γ, γ) and by the assumption γ = γ−1, while the second
equality holds by properties 2., 7. and 10. of Lemma 3.4.3. It follows that A3 = 0, thus
concluding the proof of the theorem.

Examples of Glauber dynamics

Below, following [Con22], we present two examples of Glauber dynamics models satisfying the
assumptions of Theorem 3.4.1.

Curie Weiss model For the Curie Weiss model, the state space is the discrete hypercube
Ω = {−1, 1}N for some integer N > 0. The set of moves G is given by G = {σ1, . . . , σN}
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3. Contractive coupling rates and curvature lower bounds for Markov chains

where σi : Ω→ Ω corresponds to flipping the i-th bit. Finally, the Hamiltonian function is

H(η) := − 1
2N

∑︂
i,j

ηiηj.

In this setting, the assumptions of Theorem 3.4.1 and the explicit values of κ∗, κ∗ were checked
by Conforti, who proves the following

Theorem 3.4.4 (Thm. 4.2 of [Con22]). Assume that

(N − 1)
(︂
e

2β
N − 1

)︂
≤ 1.

Then the assumptions of Theorem 3.4.1 are satisfied with

κ∗ = fCW,β,N

(︃⌊︃
N − 1

2

⌋︃)︃
,

κ∗ = e− β
N

(N−1)
[︂
1− (N − 1)

(︂
1− e

2β
N

)︂]︂
,

where fCW,β,N : N→ R is defined by

fCW,β,N(m) := e− β
N

(N−1−2m)
[︂
1− (N − 1−m)

(︂
e

2β
N − 1

)︂]︂
+ e

β
N

(N−1−2m)
[︂
1−m

(︂
e

2β
N − 1

)︂]︂
.

Remark 3.4.5 (Comparison with Cor. 4.5 of [EHMT17]). In particular, in the limit N →∞,
the condition above reads β ≤ 1

2 . Thus by choosing θ = θ1 and combining Theorems 3.4.1
and 3.4.4 we have that as N →∞ the entropic curvature of the Curie–Weiss model satisfies

Rice ≥ (1− β) + (1− 2β)e−β

for β ≤ 1
2 . This improves both in the estimate and in the range of admissible β over [EHMT17,

Cor. 4.5], where it was proved that, as N →∞, Rice ≥ 2(1− 2βe2β)e−β for β ⪅ 0.284.

Ising model The second example of Glauber dynamics that we consider is the Ising model.
For the Ising model, we let Λ ⊂ Zd be a connected subset of Zd, endowed with the inherited
graph structure ∼ of the discrete grid, and consider the state space Ω = {−1, 1}Λ. The set
of moves is G = {σx}x∈Λ where σx : Ω→ Ω acts on a state η by flipping the spin ηx at site
x. Finally, the Hamiltonian is defined by

H(η) := −1
2
∑︂
x∼y

ηxηy.

Again, the assumptions and values of κ∗, κ∗ in Theorem 3.4.1 were checked in [Con22], where
the following result is proved.

Theorem 3.4.6 (Thm. 4.3 of [Con22]). Assume that

2d
(︂
1− e−2β

)︂
e4dβ ≤ 1. (3.4.1)

Then the assumptions of Theorem 3.4.1 are satisfied and we have

κ∗ = 2− 2d(1− e−2β)e2βd

κ∗ = e−2βd − 2d(1− e−2β)e2βd.
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Remark 3.4.7 (Comparison with Cor. 4.4 of [EHMT17]). By combining Theorems 3.4.1 and
3.4.4 and by choosing the logarithmic mean θ = θ1, it follows that

Rice ≥ 1 + e−2βd − 3d(1− e−2β)e2βd if 2d
(︂
1− e−2β

)︂
e4dβ ≤ 1. (3.4.2)

On the other hand, in [EHMT17, Cor. 4.4], it was proved for the Ising model that

Rice ≥ 2
[︂
1− (2d− 1)

(︂
1− e−2β

)︂
e4βd

]︂
e−2βd if (2d− 1)

(︂
1− e−2β

)︂
e4βd ≤ 1.

(3.4.3)
As observed by Conforti, the condition in (3.4.2) is a bit more demanding then the one in
(3.4.3), but when it is satisfied then the corresponding lower bound for the entropic Ricci
curvature is better (for d ≥ 2).

3.4.2 Bernoulli–Laplace model
In this subsection we analyze a simplified version of the Bernoulli–Laplace model, following
Section 5.1 of [Con22]. Given integers L > N ∈ N, where L represents the number of sites
and N the number of particles, the state space is

Ω =
{︄
η ∈ {0, 1}[L] |

L∑︂
i=1

ηi = N

}︄
,

where [L] = {1, . . . , L}. Let δi ∈ {0, 1}[L] be defined by δi(k) =
{︄

1 if i = k,
0 otherwise . Then

the set of moves is G = {σik | i, k ∈ [L]} where σik moves a particle from site i to site k if
possible, i.e.

σij(η) =
{︄
η − δi + δj if ηi(1− ηj) > 0,
η otherwise.

The transition rates are given by

c(η, σij) = ηi(1− ηj)

and the reversible measure m is the uniform one on Ω. Finally, notice that we have σ−1
ij = σji.

Theorem 3.4.8. For the Bernoulli–Laplace model and for all weight functions θ satisfying
Assumption 1, the inequality (3.2.3) holds with constant

K = Mθ + L

2 .

Remark 3.4.9 (Comparison with [Con22]). In [Con22, Thm. 5.1], under the same assumptions
on the model, Conforti establishes inequality (3.2.6) and thus CSIϕ(2K) with constant K
equal to

• L
2 for general convex ϕ satisfying convexity of (3.2.7);

• L
2 + 1 for ϕ = ϕ1, corresponding to MLSI(L+ 2);

• αL
2 for ϕ = ϕα with α ∈ (1, 2].

Thus, by the discussion in Section 3.2, we obtain a stronger result for the case θ = θ1 and
complementary results for other choices of θ.
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3. Contractive coupling rates and curvature lower bounds for Markov chains

Remark 3.4.10. The entropic curvature of the Bernoulli–Laplace model has been studied
before [EMT15], also in the more general case of non-homogeneous rates [FM16]. In the
homogeneous setting, our result for θ = θ1 recovers the same (best known) lower bound of
[EMT15].

Proof of Theorem 3.4.8

Again, the proof is based on Lemma 3.3.1 and adapts the arguments of [Con22], from which
we use the same coupling rates: for (η, σij) ∈ S (i.e. ηi = 1, ηj = 0) set

ccpl(η, σijη, γ, γ̄) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min{c(η, γ), c(σijη, γ)} if γ = γ̄,
1 if γ = σij, γ̄ = e or if γ = e, γ̄ = σji,
1− ηl if γ = σil, γ̄ = σjl and l /∈ {i, j},
ηk if γ = σkj, γ̄ = σki and k /∈ {i, j},
0 otherwise.

With these coupling rates and by (3.3.4), the right hand side of equation (3.3.3) from Lemma
3.3.1 is bounded from below by 1

4(A+B + C +D), where we define

A =
∑︂

η,i,j,k,l

m(η)c(η, σij) min{c(η, σkl), c(σijη, σkl)}I(η, σij, σkl, σkl),

B =
∑︂
η,i,j

m(η)c(η, σij)[J(η, σij, σij, e) + J(η, σij, e, σji)],

C =
∑︂
η,i,j

m(η)c(η, σij)
⎡⎣∑︂
l ̸=i,j

(1− ηl)J(η, σij, σil, σjl)
⎤⎦,

D =
∑︂
η,i,j

m(η)c(η, σij)
⎡⎣∑︂
k ̸=i,j

ηkJ(η, σij, σkj, σki)
⎤⎦.

We show that

• A = 0,

• B ≥ (4 + 4Mθ)A (ρ, ψ),

• C ≥ 2(L−N − 1)A (ρ, ψ),

• D ≥ 2(N − 1)A (ρ, ψ),

from which the theorem follows by Lemma 3.3.1. It is convenient to prove first the following

Lemma 3.4.11. For all η ∈ Ω and i, j, k, l ∈ [L] the following hold:

1. c(η, σij) min{c(η, σkl), c(σijη, σkl)} =
{︄

1 if i ̸= k, j ̸= l, ηi = ηk = 1, ηj = ηl = 0,
0 otherwise .

2. c(η, σij) min{c(η, σkl), c(σijη, σkl)} = c(η, σkl) min{c(η, σij), c(σklη, σij)}.

3. I(η, σij, σkl, σkl) = −I(σklη, σij, σlk, σlk) if c(η, σij) min{c(η, σkl), c(σijη, σkl)} > 0.

Proof of Lemma. Statements 1–2 were already observed by Conforti in the proof of [Con22,
Thm 5.1] and are easy to check, while statement 3 is immediate from the definitions. ■
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Term A We have, using 2. of Lemma 3.4.11,

A =
∑︂

η,i,j,k,l

m(η)c(η, σij) min{c(η, σkl), c(σijη, σkl)}I(η, σij, σkl, σkl)

=
∑︂

η,i,j,k,l

m(η)c(η, σkl) min{c(η, σij), c(σklη, σij)}I(η, σij, σkl, σkl)

=
∑︂
η,k,l

m(η)c(η, σkl)F (η, σkl)

with
F (η, σkl) =

∑︂
i,j

min{c(η, σij), c(σklη, σij)}I(η, σij, σkl, σkl).

Next, using the reversibility property (3.2.2), the fact that σlk = σ−1
kl for the first and second

equality, and properties 2 and 3 of Lemma 3.4.11 respectively for the third and fourth equality,
we deduce that

A =
∑︂
η,k,l

m(η)c(η, σkl)F (σklη, σlk)

=
∑︂

η,i,j,k,l

m(η)c(η, σkl) min{c(η, σij), c(σklη, σij)}I(σklη, σij, σlk, σlk)

=
∑︂

η,i,j,k,l

m(η)c(η, σij) min{c(η, σkl), c(σijη, σkl)}I(σklη, σij, σlk, σlk)

=−
∑︂

η,i,j,k,l

m(η)c(η, σij) min{c(η, σkl), c(σijη, σkl)}I(η, σij, σkl, σkl)

=− A.

This implies that A = 0, as desired.

Term B Notice that for (η, σij) ∈ S

J(η, σij, σij, e) = {θ(ρ(σijη), ρ(σijη)) + θ(ρ(η), ρ(σijη))}[ψ(η)− ψ(σijη)]2

J(η, σij, e, σji) = {θ(ρ(η), ρ(η)) + θ(ρ(η), ρ(σijη))}[ψ(η)− ψ(σijη)]2

and so

J(η, σij, σij, e) + J(η, σij, e, σji) ≥ {2Mθ + 2}θ(ρ(η), ρ(σijη))[ψ(η)− ψ(σijη)]2.

Therefore we get
B ≥ 4(Mθ + 1)A (ρ, ψ).

Term C Notice that for (η, σij) ∈ S we have ηi = 1, ηj = 0 and there are L−N − 1
empty sites left. Moreover when l ̸= i, j and ηl = 0 we have that σjlσijη = σilη and so

J(η, σij, σil, σjl) ≥ θ(ρ(η), ρ(σijη))[ψ(η)− ψ(σijη)]2.

Therefore we get
C ≥ 2(L−N − 1)A (ρ, ψ).
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Term D Notice that for (η, σij) ∈ S we have ηi = 1, ηj = 0 and there are N − 1 other
occupied sites. Moreover when k ̸= i, j and ηk = 1 we have σkiσijη = σkjη and so

J(η, σij, σkj, σki) ≥ θ(ρ(η), ρ(σijη))[ψ(η)− ψ(σijη)]2.

Therefore we get
D ≥ 2(N − 1)A (ρ, ψ).

Combining these estimates for A,B,C,D, an application of Lemma 3.3.1 gives

B(ρ, ψ) ≥
(︃

1 +Mθ + L

2 − 1
)︃
A (ρ, ψ) =

(︃
Mθ + L

2

)︃
A (ρ, ψ).

This concludes the proof of the theorem.

3.4.3 Hardcore model
Following Section 5.2 of [Con22], we consider the classical hardcore model. Let (V,E) be a
simple, finite, connected graph and write x ∼ y if the vertices x, y are connected (in the rest
of this subsection, x, y always denote general elements of V ). The state space is

Ω =
{︂
η ∈ {0, 1}V | ηxηy = 0 if x ∼ y

}︂
.

In other words, each vertex can either be empty or be occupied by a particle, with the rule
that if a site is occupied then its neighbors are all free. Let Nx = {y ∈ V | x ∼ y} be the
set of neighbors of vertex x, N̄x = Nx ∪ {x} and as before let δx ∈ {0, 1}V be defined by

δx(y) =
{︄

1 if x = y,
0 otherwise . Then, the set of moves is given by G = {γ+

x , γ
−
x | x ∈ V } where

γ+
x adds a particle to site x if possible and γ−

x removes it if possible, i.e.

γ+
x (η) =

{︄
η + δx if η + δx ∈ Ω,
η otherwise ,

γ−
x (η) =

{︄
η − δx if η − δx ∈ Ω,
η otherwise.

We also denote G+ = {γ+
x | x ∈ V } and G− = {γ−

x | x ∈ V }. For a given parameter
β ∈ (0, 1), the transition rates are defined by

c(η, γ+
x ) = β

∏︂
y∈N̄x

(1− ηy),

c(η, γ−
x ) = ηx

for all η ∈ Ω, x ∈ V . With these choices, we have (γ+
x )−1 = γ−

x and the reversible measure is
given by

m(η) = 1
Z
1η∈Ω

∏︂
x∈V

βηx ,

where Z > 0 is the normalization constant.
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Theorem 3.4.12. Let ∆ be the maximum degree of (V,E) and assume that

β∆ ≤ 1. (3.4.4)

Set
κ∗ = 1− β(∆− 1), κ∗ = min{β, 1− β∆}.

Then, for all weight functions θ satisfying Assumption 1, inequality (3.2.3) holds with constant

K = κ∗

2 +Mθκ∗.

Remark 3.4.13 (Comparison with [Con22]). In [Con22, Thm. 5.2], under the same assump-
tions on the model, Conforti establishes inequality (3.2.6) and thus CSIϕ(2K) with constant
K equal to

• κ∗
2 for general convex ϕ satisfying convexity of (3.2.7);

• κ∗
2 + κ∗ for ϕ = ϕ1, corresponding to MLSI(κ∗ + 2κ∗);

• ακ∗
2 for ϕ = ϕα with α ∈ (1, 2].

Thus, by the discussion in Section 3.2, we obtain a stronger result for the case θ = θ1 and
complementary results for other choices of θ.

Remark 3.4.14. The entropic curvature of the hardcore model has been studied before in
[EHMT17], where a more general version of the model is considered. When restricting to the
classical version discussed in this section, it was proved in [EHMT17, Cor. 4.8] that

Rice ≥
κ∗

2
under condition (3.4.4). Therefore, in this setting, by choosing θ = θ1 in Theorem 3.4.12 we
find a better lower bound for the entropic curvature.

Proof of Theorem 3.4.12

The proof is based on Lemma 3.3.1 and on the arguments in [Con22], from which we use the
same coupling rates. For (η, γ+

x ) ∈ S (i.e. η |N̄x
= 0) we set

ccpl(η, γ+
x η, γ, γ̄) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min{c(η, γ), c(γ+
x η, γ)} if γ = γ̄,

β if γ = γ+
y , γ̄ = γ−

x with y ∼ x, η|N̄y
= 0,

β if γ = γ+
x , γ̄ = e,

1− β
⃓⃓⃓{︂
y : y ∼ x, η|N̄y

= 0
}︂⃓⃓⃓

if γ = e, γ̄ = γ−
x ,

0 otherwise.

If (η, γ−
x ) ∈ S then also (γ−

x η, γ
+
x ) ∈ S, and so we can set

ccpl(η, γ−
x η, γ, γ̄) = ccpl(γ−

x η, γ
+
x γ

−
x η, γ̄, γ) = ccpl(γ−

x η, η, γ̄, γ).

With these coupling rates the right hand side of equation (3.3.3) from Lemma 3.3.1 reads
1
4

∑︂
(η,γ+

x )∈S

∑︂
γ,γ̄∈G∗

m(η)c(η, γ+
x )ccpl(η, γ+

x η, γ, γ̄)J(η, γ+
x , γ, γ̄)

+1
4

∑︂
(η,γ−

x )∈S

∑︂
γ,γ̄∈G∗

m(η)c(η, γ−
x )ccpl(γ−

x η, η, γ̄, γ)J(η, γ−
x , γ, γ̄).
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Using the reversibility property (3.2.2) with

F (η, σ) = 1G−(σ)
∑︂

γ,γ̄∈G∗
ccpl(ση, η, γ̄, γ)J(η, σ, γ, γ̄)

and that J(η, ση, γ, γ̄) = J(ση, σ−1, γ̄, γ) (when σ−1ση = η) the second term is equal to the
first, so we can rewrite the previous quantity as

1
2

∑︂
(η,γ+

x )∈S

∑︂
γ,γ̄∈G∗

m(η)c(η, γ+
x )ccpl(η, γ+

x η, γ, γ̄)J(η, γ+
x , γ, γ̄). (3.4.5)

Similarly we have

A (ρ, ψ) =1
2

∑︂
(η,γ+

x )∈S

m(η)c(η, γ+
x )θ

(︂
ρ(η), ρ(γ+

x η)
)︂[︂
ψ(η)− ψ(γ+

x η)
]︂2

+1
2

∑︂
(η,γ−

x )∈S

m(η)c(η, γ−
x )θ

(︂
ρ(η), ρ(γ−

x η)
)︂[︂
ψ(η)− ψ(γ−

x η)
]︂2

and using again reversibility (3.2.2) the second term is equal to the first, so that we can write

A (ρ, ψ) =
∑︂

(η,γ+
x )∈S

m(η)c(η, γ+
x )θ

(︂
ρ(η), ρ(γ+

x η)
)︂[︂
ψ(η)− ψ(γ+

x η)
]︂2
.

We then have that (using that ∀η, x, y c(η, γ−
y ) ≤ c(γ+

x η, γ
−
y ) and c(η, γ+

y ) ≥ c(γ+
x η, γ

+
y ))

the quantity (3.4.5) (and in particular B(ρ, ψ) too) is lower bounded by 1
2(A+B + C) with

A =
∑︂
η,x,y

m(η)c(η, γ+
x )c(η, γ−

y )I(η, γ+
x , γ

−
y , γ

−
y )

+
∑︂
η,x,y

m(η)c(η, γ+
x )c(γ+

x η, γ
+
y )I(η, γ+

x , γ
+
y , γ

+
y ),

B = β
∑︂
η,x,y:

x∼y,η|N̄y
=0

m(η)c(η, γ+
x )I(η, γ+

x , γ
+
y , γ

−
x ),

C =
∑︂
η,x

m(η)c(η, γ+
x )
[︂(︂

1− β
⃓⃓⃓{︂
y : y ∼ x, η|N̄y

= 0
}︂⃓⃓⃓)︂

J(η, γ+
x , e, γ

−
x ) + βJ(η, γ+

x , γ
+
x , e)

]︂
.

We will show that

• A = 0,

• B = 0,

• C ≥ (κ∗ + 2Mθκ∗)A (ρ, ψ).

An application of Lemma 3.3.1 then concludes the proof of the theorem. To do so, we will
use the following:

Lemma 3.4.15. For all η ∈ Ω and x, y ∈ V the following hold:
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1. c(η, γ+
x )c(γ+

x η, γ
+
y ) = c(η, γ+

x )c(γ+
x η, γ

+
y ) =

{︄
β2 if x ≁ y, η|N̄x∪N̄y

= 0,
0 otherwise.

2. x ≁ y, η|N̄x∪N̄y
= 0 =⇒ γ+

x γ
+
y η = γ+

y γ
+
x η.

3. If η|N̄x∪N̄y
= 0 then c(η, γ+

x ) = c(η, γ+
y ) = β.

4. I(γ+
y η, γ

+
x , γ

−
y , γ

−
y ) = −I(η, γ+

x , γ
+
y , γ

+
y ) if x ≁ y, η|N̄x∪N̄y

= 0 .

5. I(η, γ+
x , γ

+
y , γ

−
x ) = −I(η, γ+

y , γ
+
x , γ

−
y ) if η|N̄x∪N̄y

= 0.

Proof of Lemma. Statements 1–3 were already in the proof of [Con22, Thm. 5.2] and are
easy to check, while statement 4–5 are immediate from the definitions. ■

Term A We look at the first term in the sum defining A: we can write it as∑︂
η,γ

m(η)c(η, γ)F (η, γ)

with
F (η, γ) = 1G−(γ)

∑︂
x

c(η, γ+
x )I(η, γ+

x , γ, γ).

Using reversibility (3.2.2) we can rewrite it as∑︂
η,x,y

m(η)c(η, γ+
y )c(γ+

y η, γ
+
x )I(γ+

y η, γ
+
x , γ

−
y , γ

−
y ).

Then we have ∑︂
η,x,y

m(η)c(η, γ+
y )c(γ+

y η, γ
+
x )I(γ+

y η, γ
+
x , γ

−
y , γ

−
y )

=
∑︂
η,x,y

m(η)c(η, γ+
x )c(γ+

x η, γ
+
y )I(γ+

y η, γ
+
x , γ

−
y , γ

−
y )

=−
∑︂
η,x,y

m(η)c(η, γ+
x )c(γ+

x η, γ
+
y )I(η, γ+

x , γ
+
y , γ

+
y )

using Lemma 3.4.15. Therefore, the first term in the sum of A is the opposite of the second,
which implies A = 0.

Term B We have

B = β
∑︂
η,x,y:

x∼y,η|N̄y
=0

m(η)c(η, γ+
x )I(η, γ+

x , γ
+
y , γ

−
x ).

Noticing as in [Con22] that (η, γ+
x ) ∈ S if and only if η|N̄x=0 we can write

B = β
∑︂

η,x,y:
x∼y,η|N̄y

=0,η|N̄x
=0

m(η)c(η, γ+
x )I(η, γ+

x , γ
+
y , γ

−
x ). (3.4.6)

By exchanging x, y we therefore also have

B = β
∑︂

η,x,y:
x∼y,η|N̄y

=0,η|N̄x
=0

m(η)c(η, γ+
y )I(η, γ+

y , γ
+
x , γ

−
y ). (3.4.7)
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Summing these two expressions we get

2B = β
∑︂

η,x,y:
x∼y,η|N̄y

=0,η|N̄x
=0

m(η)
[︂
c(η, γ+

x )I(η, γ+
x , γ

+
y , γ

−
x ) + c(η, γ+

y )I(η, γ+
y , γ

+
x , γ

−
y )
]︂

= β
∑︂

η,x,y:
x∼y,η|N̄y

=0,η|N̄x
=0

m(η)
[︂
c(η, γ+

x )− c(η, γ+
y )
]︂
I(η, γ+

x , γ
+
y , γ

−
x )

= 0,

where we used Lemma 3.4.15.

Term C We have

C =
∑︂
η,x

m(η)c(η, γ+
x )
[︂(︂

1− β
⃓⃓⃓{︂
y : y ∼ x, η|N̄y

= 0
}︂⃓⃓⃓)︂

J(η, γ+
x , e, γ

−
x ) + βJ(η, γ+

x , γ
+
x , e)

]︂
=
∑︂
η,x

m(η)c(η, γ+
x )
[︂
ψ(η)− ψ(γ+

x η)
]︂2

·
[︃(︂

1− β
⃓⃓⃓{︂
y : y ∼ x, η|N̄y

= 0
}︂⃓⃓⃓)︂(︂

θ(ρ(η), ρ(η)) + θ
(︂
ρ(η), ρ(γ+

x η)
)︂)︂

+ β
(︂
θ
(︂
ρ(γ+

x η), ρ(γ+
x η)

)︂
+ θ

(︂
ρ(η), ρ(γ+

x η)
)︂)︂]︃

≥
∑︂
η,x

m(η)c(η, γ+
x )θ

(︂
ρ(η), ρ(γ+

x η)
)︂[︂
ψ(η)− ψ(γ+

x η)
]︂2

(κ∗ + 2Mθκ∗)

= (κ∗ + 2Mθκ∗)A (ρ, ψ).

This concludes the proof of the theorem.

3.4.4 Interacting random walks
Following Section 3 of [Con22], we now consider the case of interacting random walks. One
motivation in this subsection is to find a discrete analogue of the following classical result.

Proposition 3.4.16. Consider Rd equipped with the standard Euclidean distance d. Let
V : Rd → R be convex, γd be the law of a standard Gaussian in Rd and Z > 0 be a
normalizing constant so that 1

Z
e−V dγd is a probability measure. Then the metric measure

space
(︂
Rd, d, 1

Z
e−V dγd

)︂
has Ricci curvature Ric ≥ 1 in the sense of the Lott–Sturm–Villani

theory.

To find a discrete analogue, here the role of Rd is taken over by the discrete state space
Ω = Nd, while the Gaussian measure γd is replaced by the multivariate Poisson distribution µλ
given by the product measure of d one-dimensional Poisson distribution of intensity 1

λ
, i.e. for

η ∈ Ω we have

µλ(η) =
d∏︂
i=1

e− 1
λ
λ−ηi

ηi!
.

It remains to define a Markov chain on this state space. We consider the set of moves G
containing γ+

i , γ
−
i for i ∈ [d], where

γ+
i η = η + ei,

γ−
i η = η − ei 1ηi>0,
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and we denote as usual by e the null move. Consider two potentials V +, V − : Nd → R and
correspondingly define transition rates

c(η, γ+
i ) = exp

(︂
−∇+

i V
+(η)

)︂
,

c(η, γ−
i ) =

{︄
exp

(︂
−∇−

i V
−(η)

)︂
if ηi > 0,

0 if ηi = 0,

where we define ∇±
i = ∇γ±

i
. Then the reversible measure takes the form

m = 1
Z

exp(−V + − V −),

where Z is athe normalizing constant. An interesting choice is given by

V −(η) =
d∑︂
i=1

log(λ)ηi + log(ηi!), (3.4.8)

which corresponds to c(η, γ−
i ) = ληi1ηi>0 = ληi. In this case, we write V = V + and the

reversible measure becomes
1
Z
e−V dµλ,

which is reminiscent of the setting of Proposition 3.4.16. Therefore, to find an analogous
discrete result, we are left to look for conditions on the potential V that resemble convexity
and yield positive entropic curvature of the corresponding Markov chain; we will do this in
Section 3.4.4, as an application of the main theorem of this section below.

The first assumption that we make on the model is that for all η ∈ Nd and i, j ∈ [d] we have

∇+
i c(η, γ+

j ) ≤ 0; (3.4.9)
∇+
i c(η, γ−

j ) ≥ 0. (3.4.10)

Notice that for V − as in (3.4.8) the condition (3.4.10) is always satisfied. We remark that
this assumption was not needed in [Con22], but it will be useful later in the proof of the main
theorem of this section to obtain some terms cancellations.

Next, following [Con22], we make the crucial assumptions that for all η ∈ Nd, i ∈ [d] the
following quantities are non-negative:

κ+(η, i) := −∇+
i c(η, γ+

i ) −
∑︂

j∈[d],j ̸=i
∇+
i c(η, γ−

j ) ≥ 0, (3.4.11)

κ−(η, i) := ∇+
i c(η, γ−

i ) +
∑︂

j∈[d],j ̸=i
∇+
i c(η, γ+

j ) ≥ 0. (3.4.12)

Correspondingly we set
κ∗ = inf

η∈Nd,i∈[d]
κ+(η, i) + κ−(η, i).

It is natural to introduce the additional quantity

κ∗ = min
{︄

inf
η∈Nd,i∈[d]

κ+(η, i), inf
η∈Nd,i∈[d]

κ−(η, i)
}︄
.

As in [Con22] and in analogy with the previous examples, the assumptions in (3.4.11), (3.4.12)
are needed for the construction of appropriate contractive coupling rates; compared to [Con22],
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the expressions are slightly simplified thanks to the additional assumptions (3.4.9), (3.4.10).
With regard to the heuristic discussion in Section 3.3, the quantities κ∗ and κ∗ correspond
respectively to (3.3.7) and (3.3.9).

It is also important to notice that this is the only example that we discuss where the cardinality
of the state space is not finite and that, because of this, there are some additional technical
difficulties and not all the considerations of Section 3.2 can be directly applied here. In
this paper, to deal with the infinite cardinality of the state space, we proceed as in [Con22]
and make use of a localization argument, which we now briefly describe; more precisely,
with this procedure and with ϕ and θ satisfying Assumption 2, we explain how to derive
inequality (3.1.3) from establishing (3.2.3) for a localizing sequence of finite state space Markov
chains. Given an integer N ≥ 2, let ΩN =

{︂
η ∈ Nd | ηi ≤ N ∀i ∈ [d]

}︂
. On ΩN , consider the

Markov chain with generator LN described by the set of moves GN =
{︂
γ+,N
i , γ−,N

i | i ∈ [d]
}︂

,
where γ+,N

i (η) = η + ei1ηi<N and γ−,N
i (η) = η − ei1ηi>0 = γ−

i |ΩN
η (and γ−

i |ΩN
denotes

the restriction of γ−
i to ΩN), and by the transition rates cN(η, γ+,N

i ) = c(η, γ+
i )1ηi<N and

cN(η, γ−,N
i ) = c(η, γ−

i ). Clearly
(︂
γ±,N
i

)︂−1
= γ∓,N

i ; moreover, as observed by Conforti, it is
easy to check that this Markov chain is reversible with respect to the probability measure
mN = m

m(ΩN ) on ΩN and (3.2.2) holds. Finally, denote by BN and AN the corresponding
quantities B and A for this Markov chain, set G+

N =
{︂
γ+,N
i | i ∈ [d]

}︂
, G−

N =
{︂
γ−,N
i | i ∈ [d]

}︂
,

and, as usual, consider the enlarged set of moves G∗
N = GN ∪ {e}. The main theorem of this

section reads as follows.

Theorem 3.4.17. With the previous notation, suppose that for all η ∈ Nd and i, j ∈ [d]
the assumptions (3.4.9), (3.4.10), (3.4.11) and (3.4.12) are satisfied. Let also θ be a weight
function satisfying Assumption 1. Then we have that

BN(ρ, ψ) ≥
(︃
κ∗

2 +Mθκ∗

)︃
AN(ρ, ψ)

for all integers N ≥ 2 and for all functions ρ : ΩN → R>0 and ψ : ΩN → R.

Remark 3.4.18. With θ as in Assumption 2, by the discussion of Section 3.2 the previ-
ous theorem allows to deduce the convex Sobolev inequality (3.1.3) for all Markov chains
(ΩN , LN ,mN) with uniform constant. As observed in [Con22], this allows us to deduce the
same convex Sobolev inequality for the original Markov chain by taking limits, when ϕ is
lower bounded (as it is the case for ϕ = ϕα with α ∈ [1, 2] in particular), cf. Corollary 2.1 of
[Con22].

Remark 3.4.19 (Comparison with [Con22]). In [Con22, Thm. 3.1], Conforti establishes
inequality (3.2.6) for the localizing sequence of Markov chain on ΩN with a uniform constant
K, and thus also CSIϕ(2K) for the original Markov chain, with constant K equal to

• κ∗
2 for general convex ϕ satisfying convexity of (3.2.7);

• ακ∗
2 for ϕ = ϕα with α ∈ (1, 2].

Compared to our assumptions on the model, he does not assume non-negativity in (3.4.9),
(3.4.10); however, these additional assumptions are satisfied in the examples of Section 3.4.4.
By the discussion in Section 3.2, we therefore obtain a complementary result to [Con22, Thm.
3.1].

72



3.4. Applications

Proof of Theorem 3.4.17

The proof adapts the one in [Con22], with slightly different notation and choices. Fix an
integer N ≥ 2 and consider the Markov chain described by the triple (ΩN , LN ,mN). Notice
that we have

SN := {(η, σ) ∈ ΩN ×GN | cN(η, σ) > 0}
=
{︂
(η, γ+,N

i ) | η ∈ ΩN , i ∈ [d], ηi < N
}︂
∪
{︂
(η, γ−,N

i ) | η ∈ ΩN , i ∈ [d], ηi > 0
}︂
.

Notice that from our definitions it follows that if
(︂
η, γ+,N

i

)︂
∈ SN then γ+,N

i η = γ+
i |ΩN

η. To
lighten the notation, with a slight abuse of notation, we will take advantage of this and drop the
superscript N in γ±,N

i (i.e. we just write γ±
i ), and we will also write cN (η, γ±

i ) = cN (η, γ±,N
i ).

Similarly, for a function ψ : ΩN → R, a state η ∈ ΩN and i ∈ [d], we will write ∇±
i ψ(η)

instead of ∇γ±,N
i

ψ(η). Again, this minor abuse of notation is justified by the fact that whenever
∇+
i ψ(η) appears in the computations below, it will be multiplied by a jump rate equal to 0 if

ηi = N . In analogy with (3.4.11), for the localized Markov chain and for (η, γ+
i ) ∈ SN , we

consider the quantity

κ+,N(η, i) := −∇+
i cN(η, γ+

i )−
∑︂

j∈[d],j ̸=i
∇+
i cN(η, γ−

j ),

and we observe that

κ+,N(η, i) = κ+(η, i) + c(γ+
i η, γ

+
i )1ηi=N−1 ≥ κ+(η, i) ≥ 0, (3.4.13)

where the first equality is due to the fact that we have set cN(η̃, γ+
i ) = 0 if η̃i = N , as

opposed to c(η̃, γ+
i ). Similarly, we define

κ−,N(η, i) := ∇+
i cN(η, γ−

i ) +
∑︂

j∈[d],j ̸=i
∇+
i cN(η, γ+

j )

and we notice that

κ−,N(η, i) = κ−(η, i)−
∑︂

j∈[d],j ̸=i
1ηj=N · ∇+

i c(η, γ+
j ) ≥ κ−(η, i) ≥ 0, (3.4.14)

where the first equality follows from the fact that we have set cN(η̃, γ+
j ) = 0 if η̃j = N , as

opposed to c(η̃, γ+
j ), and the first inequality is due to (3.4.9).

With these definitions, we are now ready to construct appropriate coupling rates, analogously
to [Con22]. For (η, γ+

i ) ∈ SN and γ, γ̄ ∈ G∗
N set

ccpl(η, γ+
i η, γ, γ̄) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{cN(η, γ), cN(γ+
i η, γ)} if γ = γ̄ ̸= e,

max
{︂
∇+
i cN(η, γ̄), 0

}︂
if γ = γ+

i and γ̄ ̸= γ+
i , γ

−
i , e,

max
{︂
−∇+

i cN(η, γ), 0
}︂

if γ ̸= γ+
i , γ

−
i , e and γ̄ = γ−

i ,

κ+,N(η, i) if γ = γ+
i , γ̄ = e,

κ−,N(η, i) if γ = e, γ̄ = γ−
i ,

0 otherwise.

Next, notice that if (η, γ−
i ) ∈ SN then (γ−

i η, γ
+
i ) ∈ SN and so we can set ccpl(η, γ−

i η, γ, γ̄) =
ccpl(γ−

i η, γ
+
i γ

−
i η, γ̄, γ) = ccpl(γ−

i η, η, γ̄, γ).
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By Lemma 3.3.1, to prove the theorem it suffices to show that

1
4

∑︂
(η,σ)∈SN

∑︂
γ,γ̄∈G∗

N

m(η)cN(η, σ)ccpl(η, ση, γ, γ̄)J(η, σ, γ, γ̄) ≥
(︃
κ∗

2 +Mθκ∗

)︃
AN(ρ, ψ)

(3.4.15)

for all ρ : ΩN → R>0 and ψ : ΩN → R.

The left hand side of equation (3.4.15) reads

1
4

∑︂
(η,γ+

i )∈SN

∑︂
γ,γ̄∈G∗

N

m(η)cN(η, γ+
i )ccpl(η, γ+

i η, γ, γ̄)J(η, γ+
i , γ, γ̄)

+1
4

∑︂
(η,γ−

i )∈SN

∑︂
γ,γ̄∈G∗

N

m(η)cN(η, γ−
i )ccpl(γ−

i η, η, γ̄, γ)J(η, γ−
i , γ, γ̄).

Using reversibility (3.2.2) and that J(η, σ, γ, γ̄) = J(ση, σ−1, γ̄, γ) when σ−1ση = η, we get
that the second summand is equal to the first and so we can rewrite our quantity as

1
2

∑︂
(η,γ+

i )∈SN

∑︂
γ,γ̄∈G∗

N

m(η)cN(η, γ+
i )ccpl(η, γ+

i η, γ, γ̄)J(η, γ+
i , γ, γ̄).

With our explicit choice of coupling rates it follows that we can write the left-hand side of
(3.4.15) as 1

2(Ã+ B̃ + C̃ +D), where

Ã =
∑︂

(η,γ+
i )∈SN

∑︂
γ∈GN

m(η)cN(η, γ+
i ) min

{︂
cN(η, γ), cN(γ+

i η, γ)
}︂
J(η, γ+

i , γ, γ),

B̃ =
∑︂

(η,γ+
i )∈SN

∑︂
γ∈GN

γ ̸=γ±
i

m(η)cN(η, γ+
i ) max{∇+

i cN(η, γ), 0}J(η, γ+
i , γ

+
i , γ),

C̃ =
∑︂

(η,γ+
i )∈SN

∑︂
γ∈GN

γ ̸=γ±
i

m(η)cN(η, γ+
i ) max{−∇+

i cN(η, γ), 0}J(η, γ+
i , γ, γ

−
i ),

D =
∑︂

(η,γ+
i )∈SN

m(η)cN(η, γ+
i )
[︂
κ+,N(η, i)J(η, γ+

i , γ
+
i , e) + κ−,N(η, i)J(η, γ+

i , e, γ
−
i )
]︂
.

This is then lower bounded (since J ≥ I by (3.3.4)) by 1
2(A+B + C +D) where

A =
∑︂

(η,γ+
i )∈SN

∑︂
γ∈GN

m(η)cN(η, γ+
i ) min

{︂
cN(η, γ), cN(γ+

i η, γ)
}︂
I(η, γ+

i , γ, γ),

B =
∑︂

(η,γ+
i )∈SN

∑︂
γ∈GN

γ ̸=γ±
i

m(η)cN(η, γ+
i ) max{∇+

i cN(η, γ), 0}I(η, γ+
i , γ

+
i , γ),

C =
∑︂

(η,γ+
i )∈SN

∑︂
γ∈GN

γ ̸=γ±
i

m(η)cN(η, γ+
i ) max{−∇+

i cN(η, γ), 0}I(η, γ+
i , γ, γ

−
i ).
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Next, using the assumptions (3.4.9) and (3.4.10) we can rewrite the expressions of A,B,C as

A =
∑︂

(η,γ+
i )∈SN

∑︂
j∈[d]

m(η)cN(η, γ+
i )cN(γ+

i η, γ
+
j )I(η, γ+

i , γ
+
j , γ

+
j )

+
∑︂

(η,γ+
i )∈SN

∑︂
j∈[d]

m(η)cN(η, γ+
i )cN(η, γ−

j )I(η, γ+
i , γ

−
j , γ

−
j ),

B =
∑︂

(η,γ+
i )∈SN

∑︂
j∈[d]
j ̸=i

m(η)cN(η, γ+
i )∇+

i cN(η, γ−
j )I(η, γ+

i , γ
+
i , γ

−
j ),

C =
∑︂

(η,γ+
i )∈SN

∑︂
j∈[d]
j ̸=i

m(η)cN(η, γ+
i ){−∇+

i cN(η, γ+
j )}I(η, γ+

i , γ
+
j , γ

−
i ).

Finally, we notice that we can write

AN(ρ, ψ) =1
2

∑︂
(η,γ+

i )∈SN

m(η)cN(η, γ+
i )θ

(︂
ρ(η), ρ(γ+

i η)
)︂[︂
ψ(η)− ψ(γ+

i η)
]︂2

+1
2

∑︂
(η,γ−

i )∈SN

m(η)cN(η, γ−
i )θ

(︂
ρ(η), ρ(γ−

i η)
)︂[︂
ψ(η)− ψ(γ−

i η)
]︂2

=
∑︂

(η,γ+
i )∈SN

m(η)cN(η, γ+
i )θ

(︂
ρ(η), ρ(γ+

i η)
)︂[︂
ψ(η)− ψ(γ+

i η)
]︂2

using reversibility (3.2.2) again for the last equality.

In what follows, we will show that D ≥ (2Mθκ∗ + κ∗)AN(ρ, ψ) and that A = B = C = 0,
thus verifying (3.4.15) and concluding the proof of the theorem.

Term D We have

J(η, γ+
i , γ

+
i , e) =

(︂
θ
(︂
ρ(γ+

i η), ρ(γ+
i η)

)︂
+ θ(ρ(η), ρ(γ+

i η))
)︂[︂
ψ(η)− ψ(γ+

i η)
]︂2

and
J(η, γ+

i , e, γ
−
i ) =

(︂
θ(ρ(η), ρ(η)) + θ(ρ(η), ρ(γ+

i η))
)︂[︂
ψ(η)− ψ(γ+

i η)
]︂2

and so, remembering also (3.4.13) and (3.4.14),

κ+,N(η, i)J(η, γ+
i , γ

+
i , e) + κ−,N(η, i)J(η, γ+

i , e, γ
−
i )

≥
{︂
κ∗
[︂
θ
(︂
ρ(γ+

i η), ρ(γ+
i η)

)︂
+ θ(ρ(η), ρ(η))

]︂
+ κ∗θ

(︂
ρ(η), ρ(γ+

i η)
)︂}︂[︂

ψ(η)− ψ(γ+
i η)

]︂2
≥(2Mθκ∗ + κ∗)θ

(︂
ρ(η), ρ(γ+

i η)
)︂[︂
ψ(η)− ψ(γ+

i η)
]︂2
.

Therefore it follows that
D ≥ (2Mθκ∗ + κ∗)AN(ρ, ψ).

Other terms We now show that each one of the other terms is 0, concluding the proof of
the theorem. To show that A = B = C = 0 we proceed similarly to [Con22]. It is useful to
have an auxiliary lemma.

Lemma 3.4.20. For all η ∈ Nd, η̃ ∈ ΩN and i, j ∈ [d]
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1. c(η, γ+
j )c(γ+

j η, γ
+
i ) = c(η, γ+

i )c(γ+
i η, γ

+
j ) and similarly

cN(η̃, γ+
j )cN(γ+

j η̃, γ
+
i ) = cN(η̃, γ+

i )cN(γ+
i η̃, γ

+
j ).

2. c(η, γ−
i )∇−

i c(η, γ−
j ) = c(η, γ−

j )∇−
j c(η, γ−

i ) and similarly
cN(η̃, γ−

i )∇−
i cN(η̃, γ−

j ) = cN(η̃, γ−
j )∇−

j cN(η̃, γ−
i ).

3. c(η, γ+
i )∇+

i c(η, γ+
j ) = c(η, γ+

j )∇+
j c(η, γ+

i ) and similarly when ηi, ηj < N
cN(η̃, γ+

i )∇+
i cN(η̃, γ+

j ) = cN(η̃, γ+
j )∇+

j cN(η̃, γ+
i ).

4. I(γ+
j η, γ

+
i , γ

−
j , γ

−
j ) = −I(η, γ+

i , γ
+
j , γ

+
j ).

5. I(γ−
i η, γ

+
i , γ

+
i , γ

−
j ) = −I(γ−

j η, γ
+
j , γ

+
j , γ

−
i ) if ηi, ηj > 0.

6. I(η, γ+
i , γ

+
j , γ

−
i ) = −I(η, γ+

j , γ
+
i , γ

−
j ).

Proof of Lemma. Statements 1–3 were already observed in the proof of [Con22, Thm. 3.1]
and are easy to check, while statements 4–6 are immediate from the definitions and the
assumptions on the model. ■

Term A Using the reversibility property (3.2.2) in the second summand defining A with

F (η, σ) = 1G−
N

(σ)
∑︂
i∈[d]

cN(η, γ+
i )I(η, γ+

i , σ, σ).

we find that ∑︂
η∈ΩN
i,j∈[d]

m(η)cN(η, γ+
i )cN(η, γ−

j )I(η, γ+
i , γ

−
j , γ

−
j )

=
∑︂
η∈ΩN
i,j∈[d]

m(η)cN(η, γ+
j )cN(γ+

j η, γ
+
i )I(γ+

j η, γ
+
i , γ

−
j , γ

−
j )

=−
∑︂
η∈ΩN
i,j∈[d]

m(η)cN(η, γ+
i )cN(γ+

i η, γ
+
j )I(η, γ+

i , γ
+
j , γ

+
j ),

where in the last equality we have used properties 1. and 4. of Lemma 3.4.20. This implies
that A = 0, as desired.

Term B First, using the reversibility property (3.2.2) with

F (η, σ) = 1G+
N

(σ)
∑︂

γ∈G−
N ,γ ̸=σ,σ−1

∇σcN(η, γ)I(η, σ, σ, γ),

and the fact that γ+
i γ

−
i η = η if ηi > 0 we find

B =
∑︂

η∈ΩN ,
i ̸=j∈[d]

m(η)cN(η, γ−
i )∇+

i cN(γ−
i η, γ

−
j )I(γ−

i η, γ
+
i , γ

+
i , γ

−
j )

=
∑︂

η∈ΩN ,
i ̸=j∈[d]

m(η)cN(η, γ−
i ){−∇−

i cN(η, γ−
j )}I(γ−

i η, γ
+
i , γ

+
i , γ

−
j ).

(3.4.16)
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By exchanging i, j first and then using properties 5. and 2. of Lemma 3.4.20 we deduce that

B =
∑︂

η∈ΩN ,
i ̸=j∈[d]

m(η)cN(η, γ−
j ){−∇−

j cN(η, γ−
i )}I(γ−

j η, γ
+
j , γ

+
j , γ

−
i )

= −
∑︂

η∈ΩN ,
i ̸=j∈[d]

m(η)cN(η, γ−
j ){−∇−

j cN(η, γ−
i )}I(γ−

i η, γ
+
i , γ

+
i , γ

−
j )

= −
∑︂

η∈ΩN ,
i ̸=j∈[d]

m(η)cN(η, γ−
i ){−∇−

i cN(η, γ−
j )}I(γ−

i η, γ
+
i , γ

+
i , γ

−
j ).

Comparing this with the expression of B in (3.4.16) we deduce that B = −B, hence B = 0.

Term C We have

C =
∑︂

η∈ΩN ,
i ̸=j∈[d]

m(η)cN(η, γ+
i ){−∇+

i cN(η, γ+
j )}I(η, γ+

i , γ
+
j , γ

−
i )

=
∑︂

η∈ΩN ,
i ̸=j∈[d]

m(η)cN(η, γ+
j ){−∇+

j cN(η, γ+
i )}I(η, γ+

j , γ
+
i , γ

−
j )

= −
∑︂

η∈ΩN ,
i ̸=j∈[d]

m(η)cN(η, γ+
j ){−∇+

j cN(η, γ+
i )}I(η, γ+

i , γ
+
j , γ

−
i )

= −
∑︂

η∈ΩN ,
i ̸=j∈[d]

m(η)cN(η, γ+
i ){−∇+

i cN(η, γ+
j )}I(η, γ+

i , γ
+
j , γ

−
i )

where we have exchanged i, j in the first equality and used properties 6. and 3. of Lemma
3.4.20 in the last two. This shows that C = −C, hence C = 0.
This concludes the proof of the theorem.

Examples of interacting random walks

As anticipated, as an application of Theorem 3.4.17 and looking for a discrete analogue of
Proposition 3.4.16, we now revisit some particular examples of interacting random walks
considered in [Con22] . In this subsection, we stick to the particular choice of V − given in
(3.4.8) (for which (3.4.10) is satisfied) and we simply write V = V +. Notice first of all that
our assumption (3.4.9) can be written equivalently as

∇+
i ∇+

j V (η) ≥ 0 for all η ∈ Nd, i, j ∈ [d]. (3.4.17)

Interestingly, while in Proposition 3.4.16 the key assumption was the convexity of V (i.e. the
positive semi-definiteness of the Hessian ∇2V ), here we see that the non-negativity of the
entries of a “discrete Hessian” of the potential V comes into play.
Under this assumption (3.4.17), the conditions (3.4.11) and (3.4.12) were checked by Conforti
[Con22], and in particular we have the following

Corollary 3.4.21 (Cor 3.2 of [Con22]). With the notation of this section, suppose that
(3.4.17) holds and that for all η ∈ Nd, i ∈ [d]

λ−
d∑︂

j=1,
j ̸=i

[︂
e−∇+

j V (η) − e−∇+
j V (γ+

i η)
]︂
≥ 0.
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3. Contractive coupling rates and curvature lower bounds for Markov chains

Then, the assumptions of Theorem 3.4.17 are satisfied and

κ∗ = inf
η∈Nd

i∈[d]

λ+
[︂
e−∇+

i V (η) − e−∇+
i V (γ+

i η)
]︂
−

d∑︂
j=1,
j ̸=i

[︂
e−∇+

j V (η) − e−∇+
j V (γ+

i η)
]︂
.

If in addition
min
i∈[d]

λ−
∑︂
j=1
j ̸=i

e−∇+
j V (0) ≥ 0 (3.4.18)

then κ∗ is bounded from below by the expression in (3.4.18).

We consider now a particular example of potential V satisfying (3.4.17). Given a function
h : R≥0 → R and some β > 0, set

V (η) := βh(|η|),

where |η| = ∑︁
i ηi for η ∈ Nd. Using the notation ∇+h(m) := h(m + 1) − h(m), Conforti

observed the following

Corollary 3.4.22 (Cor 3.1 of [Con22]). With the notation of this section, suppose that h is
convex and that

inf
m∈N

λ− (d− 1)
[︂
e−β∇+h(m) − e−β∇+h(m+1)

]︂
≥ 0.

Then the assumptions of Theorem 3.4.17 are satisfied and

κ∗ = inf
m∈N

λ− (d− 2)
[︂
e−β∇+h(m) − e−β∇+h(m+1)

]︂
.

In particular, if h(1) > h(0) and

β ≥ log(d− 1)− log(λ)
h(1)− h(0)

then the assumptions of Theorem 3.4.17 are satisfied with

κ∗ ≥ λ− (d− 2)e−β∇+h(0).

Interestingly, as before, a notion of convexity of the potential is naturally involved. Note also
that the necessary condition of a lower bound on β means this is a non perturbative criterion,
since the resulting reversible measure is far from being a product measure. It is known that
product measures behave well with the entropic curvature, i.e. they tensorize (see Theorem
6.2 of [EM12]). Therefore, it is particularly interesting to have conditions implying positive
entropic curvature for a Markov chain whose stationary measure is not close to a product
measure.

3.5 Couplings and coarse Ricci curvature
In this section, we recall some well-known related definitions of curvature for discrete and
continuous time Markov chains (generally referred to as “coarse Ricci curvature”), give some
natural generalizations and discuss the relations among them and with the concept of coupling.
As an application, we show that in all the examples of Section 3.4 (except for Section 3.4.4 -
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3.5. Couplings and coarse Ricci curvature

which was however covered in [Con22, Sec. 3.3] - since we restrict to the case of finite state
space Markov chains), when the assumptions of the respective main theorems are satisfied then
the coarse curvature is positive, and for all starting probability densities we have exponential
contraction of the p-Wasserstein distances along the heat flow Pt (see the precise details later).
The coarse Ricci curvature was first introduced by Ollivier for discrete time Markov chains (see
[Oll09, Oll10]) and later modified to apply to continuous time models (see [LLY11, Vey12]).
Compared to the entropic Ricci curvature, it is often easier to establish positive curvature for
this notion. However, it is not known whether positive coarse Ricci curvature implies some
functional inequalities, and in particular the modified log-Sobolev inequality (see Section 3.5.4
for a discussion).

Throughout this section, we switch to a more standard notation, and we don’t employ the
description of the Markov chain in terms of its allowed moves. As anticipated, we always
assume in this section that we are working with irreducible and reversible Markov chains on a
finite state space. We use the letter Ω for the state space, x, y, v, w, z for elements of Ω, P
for a stochastic transition matrix and L,Q for a generator L with transition rates Q, so that
the action of L on a function ψ : Ω→ R is given by

Lψ(x) =
∑︂
y∈Ω

Q(x, y)(ψ(y)− ψ(x)).

Here we have Q(x, y) ≥ 0 and we do not assume Q(x, x) = 0, and in fact we often change
the value of Q(x, x) (without loss of generality) depending on convenience; on the other hand,
we sometimes identify L, as a linear operator, with a matrix, in which case by construction
L(x, x) = −∑︁y ̸=xQ(x, y). We typically identify measures with row vectors: in particular,
let δx be the row vector with entry 1 corresponding to x and 0 everywhere else, which is
identified with the Dirac measure at x; on the other hand, densities with respect to π and
other functions on the state space are identified with column vectors. We also introduce a
simple graph structure, where x ∼ y if and only if x ̸= y and P (x, y) > 0 or Q(x, y) > 0
respectively, and correspondingly consider the unweighted graph distance d. With respect to
this graph distance d, we will consider the p-Wasserstein distances Wp. Couplings for the
transition measures/rates from starting points x ̸= y ∈ Ω will be described by non-negative
functions Π(x, y, ·, ·), C(x, y, ·, ·) : Ω×Ω→ R≥0 respectively in discrete and continuous time,
so that ⎧⎨⎩

∑︁
w∈Ω Π(x, y, w, z) = P (y, z) for all z ∈ Ω,∑︁
z∈Ω Π(x, y, w, z) = P (x,w) for all w ∈ Ω,

(3.5.1)
⎧⎨⎩
∑︁
w∈Ω C(x, y, w, z) = Q(y, z) for all z ∈ Ω,∑︁
z∈Ω C(x, y, w, z) = Q(x,w) for all w ∈ Ω.

(3.5.2)

Similarly to what we observed in Section 3.3, the set of such admissible couplings is non-
empty, provided that in continuous time one redefines Q(x, x) appropriately without loss
of generality: notice indeed that the existence of the coupling rates implies (by summing
over w, z ∈ Ω) that ∑︁wQ(x,w) = ∑︁

z Q(y, z) =: Z; if this holds, the “product” coupling
rates C(x, y, w, z) = 1

Z
Q(x,w)Q(y, z) are admissible. Notice also that, to compare with the

notation of the previous sections of this work, we could write, for states x, y, w, z ∈ Ω and
enlarged set of moves G∗,

C(x, y, w, z) =
∑︂

γ,γ̄∈G∗

γx=w,γ̄y=z

ccpl(x, y, γ, γ̄).
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3. Contractive coupling rates and curvature lower bounds for Markov chains

Preliminaries definitions

Before turning to a detailed discussion of the coarse Ricci curvature, we recall a few definitions
from optimal transport, which will be needed in the sequel. Throughout this section, we
denote by P(X) the set of probability measures on a space X.

In what follows, we let X, Y be two finite sets. Given two probability measures µ ∈ P(X),
ν ∈ P(Y ), we denote by Γ(µ, ν) the family of couplings between µ and ν, i.e. the family of
probability measures γ ∈ P(X × Y ) having marginals µ and ν respectively.

Given a cost function c : X × Y → R≥0, the optimal transport cost Tc(µ, ν) between two
probability measures µ ∈ P(X), ν ∈ P(Y ) is defined by

Tc(µ, ν) = inf
γ∈Γ(µ,ν)

∑︂
x∈X,y∈Y

c(x, y)γ(x, y). (3.5.3)

When X = Y and we are given a distance d on X, we can define the Wasserstein distance of
any order p ∈ (1,∞) as follows: for µ, ν ∈ P(X)

W p
p (µ, ν) = Tdp(µ, ν) = inf

γ∈Γ(µ,ν)

∑︂
x∈X,y∈Y

d(x, y)pγ(x, y).

When discussing the coarse Ricci curvature of a Markov chain with finite state space Ω, we
will consider the Wasserstein distances with respect to the natural graph distance d mentioned
before.

Finally, we will consider also the total variation distance between two probability measures
µ, ν ∈ P(X), which is defined by

∥µ− ν∥TV = 1
2
∑︂
x∈X
|µ(x)− ν(x)| ∈ [0, 1].

3.5.1 Discrete time
An important notion of curvature for Markov chains is the coarse Ricci curvature introduced
by Ollivier (see [Oll09] and [Oll10]).

Definition 3.5.1. Given p ≥ 1 and x ̸= y, we say that the Markov chain has (discrete time)
p-coarse Ricci curvature Kdc,p(x, y) in direction (x, y) if

Wp(δxP, δyP ) = (1−Kdc,p(x, y))d(x, y).

Remark 3.5.2. Ollivier focused in particular on the case p = 1; in this paper, however, it will
be useful to consider also other values of p.

We also give the following definition, inspired by the properties of the couplings constructed in
the previous sections.

Definition 3.5.3. For x ̸= y, we define the (discrete time) ∞-coarse Ricci curvature
Kdc,∞(x, y) in direction (x, y) to be the supremum of all K ∈ R such that there exists a
coupling Π(x, y, ·, ·) of (δxP, δyP ) satisfying:

• ∑︁
w,z∈Ω Π(x, y, w, z)1d(w,z)>d(x,y) = 0;

80



3.5. Couplings and coarse Ricci curvature

• ∑︁
w,z∈Ω Π(x, y, w, z)d(w, z) ≤ (1−K)d(x, y).

We use the convention that sup ∅ = −∞.

Remark 3.5.4. We have that Kdc,∞(x, y) ∈ R≥0 ∪ {−∞}; if Kdc,∞(x, y) ≥ 0 then the
supremum in the definition is attained. Notice that, equivalently, Kdc,∞(x, y) ≥ 0 means that
there exists a coupling (X, Y ) of the one-step probability distributions (δxP, δyP ) which proves
Kdc,1(x, y) ≥ Kdc,∞(x, y) (i.e. E[d(X, Y )] ≤ (1−Kdc,∞(x, y))d(x, y)) and at the same time
satisfies d(X, Y ) ≤ d(x, y) almost surely.

For p ∈ [1,∞] we write
Ricdc,p ≥ K

if Kdc,p(x, y) ≥ K for all x ̸= y ∈ Ω. The next proposition collects some useful results.

Proposition 3.5.5. The following hold:

1. For p ∈ [1,∞], if Kdc,p(x, y) ≥ K for all x ∼ y then Ricdc,p ≥ K.

2. For 1 ≤ p ≤ q <∞ we have Kdc,p(x, y) ≥ Kdc,q(x, y). Moreover if x ∼ y we have

Kdc,p(x, y) ≥ 1− (1−Kdc,∞(x, y))
1
p ≥ Kdc,∞(x, y)

p
.

3. If x ∼ y and limp→∞ Kdc,p(x, y) ≥ 0 we have

Kdc,∞(x, y) ≥ 1− e− lim supp→∞ p·Kdc,p(x,y).

4. For p ∈ [1,∞), if Ricdc,p ≥ K then for any starting probability measures µ, ν and n ≥ 0
we have

Wp(µP n, νP n) ≤ (1−K)nWp(µ, ν).

Proof. 1. If p < ∞, this is done as in [Oll09, Prop. 19]: suppose d(x, y) = n and let
x = z0 ∼ z1 ∼ . . . ∼ zn = y. Then

Wp(δxP, δyP ) ≤
n−1∑︂
i=0

Wp

(︂
δzi−1P, δzi

P
)︂
≤ (1−K)n = (1−K)d(x, y).

Suppose now that p = ∞: if K = −∞ the conclusion is trivial, hence assume that
K ≥ 0. Let again n = d(x, y) and x = z0 ∼ z1 ∼ . . . ∼ zn = y: we prove the claim by
induction over n. The base case n = 1 follows directly by the assumption. Now suppose
n > 1 and that the inductive hypothesis holds. Let Π(x, zn−1, ·, ·) and Π(zn−1, y, ·, ·)
be such that ∑︂

v,w∈Ω
Π(x, zn−1, v, w)1d(v,w)>d(x,zn−1) = 0,

∑︂
v,w∈Ω

Π(x, zn−1, v, w)d(v, w) ≤ (1−K)d(x, zn−1),∑︂
v,w∈Ω

Π(zn−1, y, v, w)1d(v,w)>1 = 0,
∑︂
v,w∈Ω

Π(zn−1, y, v, w)d(v, w) ≤ (1−K).
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By the Gluing lemma [Vil09], there exists Π̂(·, ·, ·) = Π̂(x, zn−1, y, ·, ·, ·) ∈ P(Ω×Ω×Ω)
such that p1,2#Π̂ = Π(x, zn−1, ·, ·) and p2,3#Π̂ = Π(zn−1, y, ·, ·), where pi,j is the
projection on coordinates i, j and # denotes the pushforward of a measure via a map.
The measure Π(x, y, ·, ·) := p1,3#Π̂ then realizes a coupling with the desired properties,
since, given that d(v, w) ≤ d(v, s) + d(s, w), we have∑︂

v,w∈Ω
Π(x, y, v, w)d(v, w)

=
∑︂

v,w,s∈Ω
Π̂(x, zn−1, y, v, s, w)d(v, w)

≤
∑︂

v,w,s∈Ω
Π̂(x, zn−1, y, v, s, w)(d(v, s) + d(s, w))

=
∑︂
v,s∈Ω

Π(x, zn−1, v, s)d(v, s) +
∑︂
s,w∈Ω

Π(zn−1, y, s, w)d(s, w)

≤(1−K)(d(x, zn−1) + d(zn−1, y))
=(1−K)d(x, y),

and similarly∑︂
v,w∈Ω

Π(x, y, v, w)1d(v,w)>d(x,y)

=
∑︂

v,w,s∈Ω
Π̂(x, zn−1, y, v, s, w)1d(v,w)>d(x,y)

≤
∑︂

v,w,s∈Ω
Π̂(x, zn−1, y, v, s, w)1d(v,s)+d(s,w)>d(x,zn−1)+d(zn−1,y)

≤
∑︂

v,w,s∈Ω
Π̂(x, zn−1, y, v, s, w)

(︂
1d(v,s)>d(x,zn−1) + 1d(s,w)>d(zn−1,y)

)︂
=
∑︂
v,s∈Ω

Π(x, zn−1, v, s)1d(v,s)>d(x,zn−1) +
∑︂
s,w∈Ω

Π(zn−1, y, s, w)1d(s,w)>d(zn−1,y)

= 0.

2. The first statement follows by the inequality Wp(µ, ν) ≤ Wq(µ, ν) for 1 ≤ p ≤ q <∞.
For the second statement, suppose that x ∼ y and K := Kdc,∞(x, y) ≥ 0 . Let Π be
the optimal coupling in the definition of Kdc,∞(x, y). Then notice that

Wp(δxP, δyP ) ≤ [1−K]
1
p ≤ 1− K

p
,

from which the conclusion follows.

3. Let K = lim supp→∞ p · Kdc,p(x, y) ≥ 0 and consider a sequence (pn)n ⊂ [1,∞)
such that pn → +∞ as n → ∞, and denote by Πn(x, y, ·, ·) associated couplings of
(δxP, δyP ) that show Wpn(δxP, δyP ) ≤ (1−Kn), i.e.

(︄∑︂
w,z

Πn(x, y, w, z)d(w, z)pn

)︄ 1
pn

≤ 1−Kn.

By viewing Πn(x, y, ·, ·) as elements of [0, 1]Ω×Ω and by a compactness argument (recall
that Ω is finite), we can pass to a subsequence (which we denote in the same way) and
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assume that there exists Π ∈ [0, 1]Ω×Ω such that Πn(x, y, ·, ·)→ Π(x, y, ·, ·) entrywise
as n→∞. It is straightforward to check that Π is still a coupling of (δxP, δyP ), and
we claim that Π has the desired properties. Indeed, by construction for n ≥ 1 we have

2pn
∑︂
w,z

Πn(x, y, w, z)1d(w,x)≥2 +
∑︂
w,z

Πn(x, y, w, z)1d(w,x)=1

≤W pn
pn

(δxP, δyP )
≤(1−Kn)pn

≤e−Knpn .

Letting n→∞ in the previous we deduce⎧⎨⎩
∑︁
w,z Π(x, y, w, z)1d(w,x)≥2 = 0,∑︁
w,z Π(x, y, w, z)1d(w,x)=1 ≤ e−K ,

which yields the desired conclusion.

4. Let Πµ,ν and Πx,y be the optimal couplings in the definitions of Wp(µ, ν) and Kdc,p(x, y)
respectively. Then

W p
p (µP, νP ) ≤

∑︂
x,y

d(x, y)p
∑︂
w,z

Πµ,ν(w, z)Πw,z(x, y)

≤ (1−K)p
∑︂
w,z

Πµ,ν(w, z)d(w, z)p

≤ (1−K)pW p
p (µ, ν).

The conclusion follows by induction over n.

■

3.5.2 Continuous time
In this subsection, we describe the analogous notions of coarse Ricci curvature for continuous
time Markov chains with generator L on a finite state space (see [Vey12, LLY11, MW19]).
Recalling that we identify L with a matrix with zero row sums, we use the notation

P̃t = I + tL,

so that for t > 0 small enough P̃t is a stochastic matrix too and we expect it to approximate
the transition matrix Pt (given it corresponds to the first order Taylor expansion of Pt = etL).
The next definition is motivated by the study of the idleness function in [BCL+18].

Definition 3.5.6. Let T = (maxx∈Ω−L(x, x))−1 =
(︂
maxx∈Ω

∑︁
y ̸=xQ(x, y)

)︂−1
. Fix x ̸=

y ∈ Ω and let p ∈ [1,∞). Then we define the function Ip,x,y : [0, T ]→ R by

Ip,x,y(t) := W p
p (δxP̃t, δyP̃t).

For 0 ≤ t ≤ T we have that P̃t is a stochastic matrix, so δxP̃t and δyP̃t are probability
measures on Ω and Ip,x,y(t) is well-defined. For simplicity, we drop the subscripts x, y when
there is no confusion. Notice that Ip(0) = d(x, y)p. The next propositions and lemma are
straightforward adaptations of the results in [BCL+18], where the case p = 1 was considered.
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Our motivation here is to establish linearity of t → Ip(t) for small values of t, hence the
differentiability at t = 0 (cf. Proposition 3.5.9): this allows us to consider a first definition of
coarse Ricci curvature in continuous time, cf. Definition 3.5.11. This definition was first given
for p = 1 in [LLY11] for combinatorial graphs (i.e. simple random walks on graphs), and later
studied in a more general setting in [MW19].

Proposition 3.5.7. The function t→ Ip(t) is convex.

Proof. We use Kantorovich duality: for a function ψ : Ω → R, we denote by ψc,p its dp-
transform, i.e.

ψc,p(x) := inf
y
{d(x, y)p − ψ(y)}.

Then we have for t ∈ [0, T ]

W p
p (δxP̃t, δyP̃t)

= sup
ψ

⎧⎨⎩∑︂
z∈Ω

ψ(z) ·
(︂
δxP̃t

)︂
(z) + ψc,p(z) ·

(︂
δyP̃t

)︂
(z)

⎫⎬⎭
= sup

ψ

⎧⎨⎩ψ(x)
(︄

1− t
∑︂
z

Q(x, z)
)︄

+ ψc,p(y)
(︄

1− t
∑︂
z

Q(y, z)
)︄

+t
[︄∑︂
z

Q(x, z)ψ(z) +Q(y, z)ψc,p(z)
]︄⎫⎬⎭.

This is the supremum of affine functions of t, hence t → W p
p (δxP̃t, δyP̃t) = Ip,x,y(t) is

convex. ■

Lemma 3.5.8. Let 0 ≤ t1 < t2 ≤ T and suppose that (ψ, ψc,p) is a pair of optimal
Kantorovich potentials in the definition of both Wp(δxP̃t1 , δyP̃t1) and Wp(δxP̃t2 , δyP̃t2). Then
t→ Ip(t) is linear over [t1, t2].

Proof. We already know the function t→ W p
p

(︂
δxP̃t, δyP̃t

)︂
is convex, hence is suffices to show

it is also concave over [t1, t2]. This follows by the assumption using Kantorovich duality, since
for α ∈ [0, 1]

W p
p

(︂
δxP̃αt1+(1−α)t2 , δyP̃αt1+(1−α)t2

)︂
≥
∑︂
z∈Ω

ψ(z) ·
(︂
δxP̃αt1+(1−α)t2

)︂
(z) + ψc,p(z) ·

(︂
δyP̃αt1+(1−α)t2

)︂
(z)

=ψ(x)
(︄

1− (αt1 + (1− α)t2)
∑︂
z

Q(x, z)
)︄

+ ψc,p(y)
(︄

1− (αt1 + (1− α)t2)
∑︂
z

Q(y, z)
)︄

+(αt1 + (1− α)t2)
[︄∑︂
z

Q(x, z)ψ(z) +Q(y, z)ψc,p(z)
]︄

=αW p
p

(︂
δxP̃t1 , δyP̃t1

)︂
+ (1− α)W p

p

(︂
δxP̃t2 , δyP̃t2

)︂
.

■

Proposition 3.5.9. The function Ip is linear over [0, T2 ].
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Proof. Fix t < T
2 and let ψ and γ be a couple of optimal Kantorovich potential and optimal

transport plan for Wp

(︂
δxP̃t, δyP̃t

)︂
. Then, it is easy to see that γ(x, y) > 0 (since the

laziness of P̃t is at least 1 − t/T > 1
2 , and so δxP̃t(x), δyP̃t(y) > 1

2). It follows that
ψ(x) + ψc(y) = d(x, y)p (cf. [Vil09, Thm. 5.10] for example). This implies that (ψ, ψc) is
optimal also for Wp(δxP̃0, δyP̃0) = Wp(δx, δy) = d(x, y). The conclusion follows by Lemma
3.5.8 and by letting t→ T

2 (by continuity at T
2 , which follows from the convexity of Ip). ■

Since linear functions are easily differentiated, the previous proposition immediately implies
the following corollary, which gives an expression for the derivative of Ip(t) at t = 0.

Corollary 3.5.10. For x ̸= y there exists

d

dt

⃓⃓⃓⃓
⃓
t=0
W p
p

(︂
δxP̃t, δyP̃t

)︂
= −1

s

(︂
d(x, y)p −W p

p

(︂
δxP̃s, δyP̃s

)︂)︂
(3.5.4)

for all 0 < s ≤ T
2 .

Definition 3.5.11. The continuous time p-coarse Ricci curvature in direction (x, y) is defined
via

Kcc,p(x, y) := − 1
d(x, y)

d

dt

⃓⃓⃓⃓
⃓
t=0
Wp

(︂
δxP̃t, δyP̃t

)︂
= − 1

p · d(x, y)p
d

dt

⃓⃓⃓⃓
⃓
t=0
W p
p

(︂
δxP̃t, δyP̃t

)︂

= 1
sp

⎛⎝1−
W p
p

(︂
δxP̃s, δyP̃s

)︂
d(x, y)p

⎞⎠ (3.5.5)

for all 0 < s ≤ T
2 .

Remark 3.5.12. The original definition in [LLY11] (see also [MW19]) focused on the case
p = 1, but in this paper it will be useful to consider also other values of p.

Next, we prove a few preliminary results needed for the proof of Corollary 3.5.16, which will
show that we can define Kcc,p also by involving Pt instead of P̃t. For p = 1, this shows the
equivalence with the notion of continuous time coarse Ricci curvature defined in [Vey12],
which was first proved in [MW19, Thm. 5.8].

Lemma 3.5.13. Let X, Y be finite sets and µ, µ̃ ∈ P(X), ν ∈ P(Y ) be probability measures.
Suppose that γ ∈ Γ(µ, ν) is a coupling between µ and ν. Then, there exists a coupling
γ̃ ∈ Γ(µ̃, ν) between µ̃ and ν that satisfies

∥γ̃ − γ∥TV = ∥µ̃− µ∥TV.

Proof. We will construct a coupling γ̃ ∈ Γ(µ̃, ν) such that

γ̃(x, y) ≥ γ(x, y) if and only if µ̃(x) ≥ µ(x). (3.5.6)

85



3. Contractive coupling rates and curvature lower bounds for Markov chains

Notice that this implies the thesis since we would have

∥γ̃ − γ∥TV = 1
2

∑︂
x∈X,y∈Y

|γ̃(x, y)− γ(x, y)|

= 1
2

∑︂
x,y:µ̃(x)≥µ(x)

[γ̃(x, y)− γ(x, y)] + 1
2

∑︂
x,y:µ̃(x)<µ(x)

[γ(x, y)− γ̃(x, y)]

= 1
2

∑︂
x:µ̃(x)≥µ(x)

[µ̃(x)− µ(x)] + 1
2

∑︂
x:µ̃(x)<µ(x)

[µ(x)− µ̃(x)]

= 1
2
∑︂
x∈X
|µ̃(x)− µ(x)|

= ∥µ̃− µ∥TV.

Let us thus construct γ̃ that satisfies (3.5.6). To do that, for every x ∈ X, y ∈ Y set

α(x) = µ̃(x)− (µ̃ ∧ µ)(x),

β(y) = ν(y)−
∑︂

x∈X:µ̃(x)<µ(x)
γ(x, y) µ̃(x)

µ(x) −
∑︂

x∈X:µ̃(x)≥µ(x)
γ(x, y).

It is easy to see that ∑︁x∈X α(x) = ∑︁
y∈Y β(y) = ∥µ− µ̃∥TV. Then we define

γ̃(x, y) := 1µ̃(x)<µ(x)
µ̃(x)
µ(x)γ(x, y) + 1µ̃(x)≥µ(x)γ(x, y) + 1

∥µ− µ̃∥TV
α(x)β(y).

It is easy to check that γ̃ ∈ Γ(µ̃, ν) and that γ̃ satisfies (3.5.6). ■

Corollary 3.5.14. Let X, Y be finite sets, µ1, µ2 ∈ P(X), ν1, ν2 ∈ P(Y ) and c : X ×
Y → R≥0 be a cost function. For any probability measures µ ∈ P(X), ν ∈ P(Y ), let
T (µ, ν) = Tc(µ, ν) be the optimal transport cost associated to the cost c. Then

|T (µ1, ν1)− T (µ2, ν2)| ≤ 2 max
x∈X,y∈Y

c(x, y) · (∥µ1 − µ2∥TV + ∥ν1 − ν2∥TV).

Proof. Let M := maxx∈X,y∈Y c(x, y) ≥ 0. Notice that

|T (µ1, ν1)− T (µ2, ν2)| ≤ |T (µ1, ν1)− T (µ2, ν1)|+ |T (µ2, ν1)− T (µ2, ν2)|,

hence it suffices to show that

|T (µ1, ν1)− T (µ2, ν1)| ≤ 2M · ∥µ1 − µ2∥TV,

|T (µ2, ν1)− T (µ2, ν2)| ≤ 2M · ∥ν1 − ν2∥TV.

We prove only the first inequality, since the proof of the second one is similar. Let γ be an
optimal coupling in the definition of T (µ1, ν1) and γ̃ be the coupling for (µ2, ν1) given by
Lemma 3.5.13. Then it follows that

T (µ2, ν1) ≤
∑︂
x,y

c(x, y)γ̃(x, y)

≤
∑︂
x,y

c(x, y)(γ(x, y) + |γ̃ − γ|(x, y))

≤ T (µ1, ν1) + 2M∥γ̃ − γ∥TV

≤ T (µ1, ν1) + 2M∥µ1 − µ2∥TV.
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Similarly one shows that

T (µ1, ν1) ≤ T (µ2, ν1) + 2M∥µ1 − µ2∥TV,

which concludes the proof of the corollary. ■

Corollary 3.5.15. For any probability measures µ, ν ∈ P(Ω) and t > 0 small enough we have⃓⃓⃓
W p
p (µPt, νPt)−W p

p

(︂
µP̃t, νP̃t

)︂⃓⃓⃓
= O(t2)

as t→ 0.

Proof. Fix µ, ν ∈ P(X) and t > 0 small and let D := diam(Ω). Since Ω is finite, we have
that D <∞ and ∥µP̃t − µPt∥TV, ∥νP̃t − νPt∥TV = O(t2). By applying Corollary 3.5.14 for
t > 0 small enough with µ1 = µPt, µ2 = µP̃t, ν1 = νPt, ν2 = νP̃t, we find⃓⃓⃓

W p
p (µPt, νPt)−W p

p

(︂
µP̃t, νP̃t

)︂⃓⃓⃓
≤ 2Dp ·

(︂
∥µP̃t − µPt∥TV + ∥νP̃t − νPt∥TV

)︂
= O(t2),

as desired.

■

We can finally give an equivalent definition of Kcc,p using Pt instead of P̃t.

Corollary 3.5.16. For x ̸= y ∈ Ω we have

Kcc,p(x, y) = − 1
d(x, y)

d

dt

⃓⃓⃓⃓
⃓
t=0
Wp(δxPt, δyPt). (3.5.7)

Proof. Recalling Definition 3.5.11, it suffices to show that

d

dt

⃓⃓⃓⃓
⃓
t=0
Wp

(︂
δxP̃t, δyP̃t

)︂
= d

dt

⃓⃓⃓⃓
⃓
t=0
Wp(δxPt, δyPt).

Equivalently, since Wp(δxP0, δyP0) = Wp

(︂
δxP̃0, δyP̃0

)︂
= d(x, y) > 0, it is enough to show

d

dt

⃓⃓⃓⃓
⃓
t=0
W p
p

(︂
δxP̃t, δyP̃t

)︂
= d

dt

⃓⃓⃓⃓
⃓
t=0
W p
p (δxPt, δyPt),

but this follows from Corollary 3.5.15. ■

Remark 3.5.17. As anticipated, for p = 1 the right hand side in (3.5.7) corresponds to the
definition of curvature for continuous time Markov chain introduced by Veysseire (see [Vey12]).
For p = 1, the identity in the corollary was established in [MW19] (in a more general setting).

As in discrete time, we define also the curvature for p =∞.

Definition 3.5.18. For x ̸= y, we define the continuous time ∞-coarse Ricci curvature
Kcc,∞(x, y) in direction (x, y) to be the supremum of all K ∈ R such that there exist coupling
rates C(x, y, ·, ·) satisfying:

• ∑︁
v,z∈Ω C(x, y, v, z)1d(v,z)>d(x,y) = 0;
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3. Contractive coupling rates and curvature lower bounds for Markov chains

• ∑︁
v,z∈Ω C(x, y, v, z)d(v, z) ≤

(︂∑︁
v,z C(x, y, v, z)−K

)︂
d(x, y).

Remark 3.5.19. We have that Kcc,∞(x, y) ∈ R≥0∪{−∞}; if Kcc,∞(x, y) ≥ 0, the supremum
in the definition is attained. Notice that if C(x, y, ·, ·) gives optimal coupling rates, then we
can change the value C(x, y, x, y) arbitrarily obtaining other optimal coupling rates.

As in discrete time, for p ∈ [1,∞] we write

Riccc,p ≥ K

if Kcc,p(x, y) ≥ K for all x ̸= y ∈ Ω.

The next result shows that, given coupling rates from x ̸= y, we can construct a coupling
for the probability measures

(︂
δxP̃t, δtP̃t

)︂
for any t > 0 small enough. This will be useful to

connect the notions of coarse Ricci curvature for discrete and continuous time Markov chains,
when we consider a natural correspondence between stochastic transition matrices P and
generators L, see Section 3.5.3.

Lemma 3.5.20. Let x ̸= y ∈ Ω and C(x, y, ·, ·) denote coupling rates from x, y, and set

M :=
∑︂
v,w

C(x, y, v, w) =
∑︂
v

Q(x, v) =
∑︂
w

Q(y, w).

Then, for any 0 < t ≤ 1
M−C(x,y,x,y) we have that γt is a coupling for

(︂
δxP̃t, δtP̃t

)︂
, where we

define

γt(v, w) =

⎧⎨⎩C(x, y, v, w) · t if (v, w) ̸= (x, y),
1−M · t+ C(x, y, x, y) · t if (v, w) = (x, y).

Proof. Clearly for 0 < t ≤ 1
M−C(x,y,x,y) and v, w ∈ Ω we have that 0 ≤ γt(v, w) ≤ 1. Now, if

v ̸= x we have that∑︂
w

γt(v, w) = t
∑︂
w

C(x, y, v, w) = tQ(x, v) = (δxP̃t)(v).

If v = x instead then∑︂
w

γt(x,w) = t
∑︂
w ̸=y

C(x, y, x, w) + 1−M · t+ C(x, y, x, y) · t

= 1 +Q(x, x) · t−M · t
= (δxP̃t)(x).

Hence, this shows that the first marginal of γt is δxP̃t. Similarly, one checks that the second
marginal of γt is δyP̃t, as desired. ■

The next proposition collects some useful results, and it is a continuous time analogue of
Proposition 3.5.5.

Proposition 3.5.21. The following hold:

1. For p ∈ [1,∞], if Kcc,p(x, y) ≥ K for all x ∼ y then Riccc,p ≥ K.
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2. For 1 ≤ p ≤ q <∞ we have Kcc,p(x, y) ≥ Kcc,q(x, y). Moreover if x ∼ y we have that

Kcc,p(x, y) ≥ Kcc,∞(x, y)
p

.

3. For p ∈ [1,∞), if Riccc,p ≥ K then for any starting probability measures µ, ν ∈ P(Ω)
and any t ≥ 0 we have that

Wp(µPt, νP t) ≤ e−KtWp(µ, ν).

Proof. 1. Suppose first that p <∞ and let n = d(x, y) with x = z0 ∼ z1 ∼ . . . ∼ zn = y.
Then for t > 0 small enough we have that

−Wp(δxP̃t, δyP̃t) ≥
n−1∑︂
i=0
−Wp

(︂
δzi
P̃t, δzi+1P̃t

)︂
by the triangle inequality. Therefore adding n = d(x, y) and dividing by t

d(x, y)−Wp(δxP̃t, δyP̃t)
t

≥
n−1∑︂
i=0

1−Wp

(︂
δzi
P̃t, δzi+1P̃t

)︂
t

.

Letting t→ 0 and using the assumption gives the conclusion.
Suppose now that p = ∞: if K = −∞ the conclusion is trivial, hence assume that
K ≥ 0. Let again n = d(x, y) and x = z0 ∼ z1 ∼ . . . ∼ zn = y: we prove the claim by
induction over n. The base case n = 1 follows directly by the assumption. Now suppose
n > 1 and that the inductive hypothesis holds. Let C(x, zn−1, ·, ·) and C(zn−1, y, ·, ·)
be such that

∑︂
v,w∈Ω

C(x, zn−1, v, w)1d(v,w)>d(x,zn−1) = 0,

∑︂
v,w∈Ω

C(x, zn−1, v, w)d(v, w) ≤
⎛⎝ ∑︂
v,w∈Ω

C(x, zn−1, v, w)−K
⎞⎠d(x, zn−1),∑︂

v,w∈Ω
C(zn−1, y, v, w)1d(v,w)>1 = 0,

∑︂
v,w∈Ω

C(zn−1, y, v, w)d(v, w) ≤
⎛⎝ ∑︂
v,w∈Ω

C(zn−1, y, v, w)−K
⎞⎠.

Without loss of generality, by changing if needed the values of C(x, zn−1, x, zn−1),
C(zn−1, y, zn−1, y), Q(x, x), Q(zn−1, zn−1), Q(y, y), we can assume that∑︂

s∈Ω
Q(x, s) =

∑︂
s∈Ω

Q(zn−1, s) =
∑︂
s∈Ω

Q(y, s)

=
∑︂
v,w∈Ω

C(x, zn−1, v, w) =
∑︂
v,w∈Ω

C(zn−1, y, v, w)

=:M > 0.

Therefore, we can apply the Gluing lemma (which easily extends to measures having the
same total mass) to conclude that there exists Ĉ(·, ·, ·) = Ĉ(x, zn−1, y, ·, ·, ·) : Ω× Ω×
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Ω→ R≥0 such that p1,2#Ĉ = C(x, zn−1, ·, ·) and p2,3#Ĉ = C(zn−1, y, ·, ·), where pi,j
is the projection on coordinates i, j and # is the pushforward, so that∑︂

w∈Ω
Ĉ(x, zn−1, y, v, s, w) = C(x, zn−1, v, s),∑︂

v∈Ω
Ĉ(x, zn−1, y, v, s, w) = C(zn−1, y, s, w).

Defining C(x, y, ·, ·) := p1,3#Ĉ gives coupling rates with the desired properties, analo-
gously to the proof of Proposition 3.5.5. Indeed, we have that∑︂

v,w

C(x, y, v, w)d(v, w) =
∑︂
v,w,s

Ĉ(x, zn−1, y, v, s, w)d(v, w)

≤
∑︂
v,w,s

Ĉ(x, zn−1, y, v, s, w)(d(v, s) + d(s, w))

=
∑︂
v,s

C(x, zn−1, v, s)d(v, s) +
∑︂
s,w

C(zn−1, y, s, w)d(s, w)

≤(M −K)(d(x, zn−1) + d(zn−1, y))

=
(︄∑︂
v,w

C(x, y, v, w)−K
)︄
d(x, y),

and similarly∑︂
v,w

C(x, y, v, w)1d(v,w)>d(x,y)

=
∑︂
v,w,s

Ĉ(x, zn−1, y, v, s, w)1d(v,w)>d(x,y)

≤
∑︂
v,w,s

Ĉ(x, zn−1, y, v, s, w)1d(v,s)+d(s,w)>d(x,zn−1)+d(zn−1,y)

≤
∑︂
v,w,s

Ĉ(x, zn−1, y, v, s, w)
(︂
1d(v,s)>d(x,zn−1) + 1d(s,w)>d(zn−1,y)

)︂
=
∑︂
v,s

C(x, zn−1, v, s)1d(v,s)>d(x,zn−1) +
∑︂
s,w

C(zn−1, y, s, w)1d(s,w)>d(zn−1,y)

= 0.

2. The first statement follows by the inequality Wp(µ, ν) ≤ Wq(µ, ν): indeed it implies

d(x, y)−Wp(δxP̃t, δyP̃t)
t d(x, y) ≥ d(x, y)−Wq(δxP̃t, δyP̃t)

t d(x, y) ,

from which the conclusion follows by letting t→ 0. For the second statement, suppose
Kcc,∞(x, y) ≥ 0 for x ∼ y. Let C(x, y, ·, ·) be optimal coupling rates in the definition
of Kcc,∞(x, y). Then for t > 0 small enough consider the coupling γt given by Lemma
3.5.20. It is easy to see that this coupling is such that∑︂

v,w

γt(v, w)1d(v,w)>1 = 0;∑︂
v,w

γt(v, w)1d(v,w)=0 ≥ Kcc,∞(x, y) · t.

Therefore, it shows that

Wp

(︂
δxP̃t, δyP̃t

)︂
≤ (1−Kcc,∞(x, y) · t)

1
p ≤ 1− Kcc,∞(x, y) · t

p
.
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3.5. Couplings and coarse Ricci curvature

Hence we have
1−Wp(δxP̃t, δyP̃t)

t
≥ Kcc,∞(x, y)

p
,

from which the conclusion follows by letting t→ 0.

3. Let γµ,ν and γx,y,t be optimal couplings in the definitions of Wp(µ, ν) and Wp(δxPt, δyPt)
respectively. Then notice that

W p
p (µPt, νPt) ≤

∑︂
x,y

d(x, y)p
∑︂
w,z

γµ,ν(w, z)γw,z,t(x, y)

=
∑︂
w,z

γµ,ν(w, z)W p
p (δwPt, δzPt),

and so

W p
p (µPt, νPt)−W p

p (µ, ν)
t

≤
∑︂
w,z

γµ,ν(w, z)
W p
p (δwPt, δzPt)− d(w, z)p

t
.

Taking the lim supt→0+ and denoting by d+

dt
the upper Dini derivative (cf. Section 3.8)

we find that

d+

dt

⃓⃓⃓⃓
⃓
t=0
W p
p (µPt, νPt)

≤
∑︂
w,z

γµ,ν(w, z)
d

dt

⃓⃓⃓⃓
⃓
t=0
W p
p (δwPt, δzPt)

=
∑︂
w,z

γµ,ν(w, z) p d(w, z)p−1 d

dt

⃓⃓⃓⃓
⃓
t=0
Wp(δwPt, δzPt)

≤−K p
∑︂
w,z

γµ,ν(w, z)d(w, z)p

=−K pW p
p (µ, ν),

where we also used Corollary 3.5.16. Therefore,

d+

dt

⃓⃓⃓⃓
⃓
t=0
W p
p (µPt, νPt) ≤ −KpW p

p (µ, ν).

and by Markovianity this extends to every t̄ > 0, i.e.

d+

dt

⃓⃓⃓⃓
⃓
t=t̄
W p
p (µPt, νPt) ≤ −KpW p

p (µPt̄, νPt̄).

Noticing also that t→ W p
p (µPt, νPt) is continuous by Corollary 3.5.14, we can apply

Lemma 3.8.1 to conclude that

W p
p (µPt, νPt) ≤ e−KptW p

p (µ, ν),

for any t ≥ 0, as desired.

■
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3.5.3 Comparison discrete and continuous time
There is a natural way to construct a continuous time Markov chain from a discrete time one:
namely, for λ > 0 and a stochastic matrix P , the generator is defined by L = λ(P − I). On
the other hand, it is readily seen that, given a generator L, for any λ > 0 big enough there
exists a corresponding stochastic matrix P = I + 1

λ
L (recall we are assuming finiteness of the

state space, so the entries of L are bounded).

Remark 3.5.22. Let P be a stochastic matrix and λ > 0. In view of Definition 3.5.11, we
see that for p = 1 the Ricdc,1 and Riccc,1 notions of curvature are essentially equivalent for
the continuous time Markov chain with generator L = λ(P − I) (and transition semigroup Pt)
and the lazy discrete time Markov chain with transition matrix P̃ := I+P

2 . Indeed, it follows
from the identity in (3.5.5) with s = 1

2λ that

K
(P̃ )
dc,1(x, y) = 1

2λKcc,1(x, y), (3.5.8)

where above K(P̃ )
dc,1(x, y) is the curvature Kdc,1(x, y) for the Markov chain with transition

matrix P̃ , not P . Notice that here it is fundamental to consider the lazy version with transition
matrix P̃ . To see why, consider the following simple example: the state space is the two-point
space Ω = {x, y}, the stochastic matrix is

P =
(︄

0 1
1 0

)︄

and λ = 1. Then we have K(P )
dc,1(x, y) = 0 for P , K(P̃ )

dc,1(x, y) = 1 for P̃ and Kcc,1(x, y) = 2
for L = P − I. Hence (3.5.8) is satisfied only when Kdc,1(x, y) is defined for P̃ and not for P .

The next proposition shows that an analogous relation as the one described in the above
remark holds true also for Ricdc,∞ and Riccc,∞.

Proposition 3.5.23. Suppose L = λ(P − I) for a stochastic matrix P and λ > 0. Then the
following hold for any x ̸= y:

1. Kcc,∞(x, y) ≥ λK
(P )
dc,∞(x, y).

2. For the lazy Markov chain with transition matrix P̃ = P+I
2 , we have K(P̃ )

dc,∞(x, y) ≥
1

2λKcc,∞(x, y).

Proof. 1. Assume K(P )
dc,∞(x, y) ≥ 0, otherwise the claim is trivial. Let Π(x, y, ·, ·) be an

optimal coupling in the definition of K(P )
dc,∞(x, y) and define then the coupling rates

C(x, y, w, z) = λ · Π(x, y, w, z). It is easy to check that these coupling rates are
admissible and yield the first conclusion.

2. Again, assume Kcc,∞(x, y) ≥ 0, otherwise the conclusion is trivial. Let C(x, y, ·, ·) be
optimal coupling rates in the definition of Kcc,∞(x, y). Notice that for L = λ(P − I)
and t = 1

2λ we have

P̃t = P̃ 1
2λ

= I + 1
2λ · λ(P − I) = P̃ .
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3.5. Couplings and coarse Ricci curvature

Therefore, since

M :=
∑︂
v,w

C(x, y, v, w) = C(x, y, x, y) +
∑︂

v,w:(v,w)̸=(x,y)
C(x, y, v, w)

≤ C(x, y, x, y) +
∑︂

v,w:v ̸=x
C(x, y, v, w) +

∑︂
v,w:w ̸=y

C(x, y, v, w)

= C(x, y, x, y) +
∑︂
v ̸=x

Q(x, v) +
∑︂
w ̸=y

Q(y, w)

≤ C(x, y, x, y) + 2λ,

we can apply Lemma 3.5.20 to obtain a coupling Π(x, y, ·, ·) for
(︂
δxP̃ , δyP̃

)︂
, i.e.

Π(x, y, v, w) =

⎧⎨⎩C(x, y, v, w) · 1
2λ if (v, w) ̸= (x, y),

1−M · 1
2λ + C(x, y, x, y) · 1

2λ if (v, w) = (x, y).

Clearly, by the assumptions on C(x, y, ·, ·) we have that∑︂
v,w∈Ω

Π(x, y, v, w)1d(v,w)>d(x,y) = 0.

Moreover
∑︂
v,w∈Ω

Π(x, y, v, w)d(v, w) =
(︃

1− M

2λ

)︃
d(x, y) + 1

2λ
∑︂
v,w

C(x, y, v, w)d(v, w)

≤
(︃

1− M

2λ

)︃
d(x, y) + 1

2λ(M −Kcc,∞(x, y))d(x, y)

=
(︄

1− Kcc,∞(x, y)
2λ

)︄
d(x, y).

This shows that K(P̃ )
dc,∞(x, y) ≥ 1

2λKcc,∞(x, y) for the lazy Markov chain P̃ , as desired.

■

3.5.4 Applications and related problems
Recalling Definition 3.5.18 and Proposition 3.5.21, we see that for a continuous time Markov
chain on a finite state space Ω we have that Riccc,∞ ≥ K > 0 if and only if for all neighbouring
states x ∼ y ∈ Ω there exist coupling rates C(x, y, ·, ·) satisfying

• ∑︁
v,z∈Ω C(x, y, v, z)1d(v,z)>1 = 0;

• ∑︁
v,z∈Ω C(x, y, v, z)1d(v,z)=0 ≥ K.

Bearing this mind, we can see that in the examples of Section 3.4 the constructed coupling
rates immediately yield positive Riccc,∞ curvature: more precisely, we have the following result.

Theorem 3.5.24. The following hold:

• Under the assumptions of Theorem 3.4.1, we have Riccc,∞ ≥ κ∗ for Glauber dynamics.
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3. Contractive coupling rates and curvature lower bounds for Markov chains

• Under the assumptions of Theorem 3.4.8, we have Riccc,∞ ≥ L for the Bernoulli–Laplace
model.

• Under the assumptions of Theorem 3.4.12, we have Riccc,∞ ≥ κ∗ for the hardcore
model.

In particular, by Proposition 3.5.21, under the respective theorems’ assumptions for all
probability measures µ, ν ∈ P(Ω), p ≥ 1 and t ≥ 0 we have

Wp(µPt, νPt) ≤ e− K
p
tWp(µ, ν), (3.5.9)

with K =

⎧⎪⎪⎨⎪⎪⎩
κ∗ for Glauber dynamics,
L for the Bernoulli–Laplace model,
κ∗ for the hardcore model.

We remark here that the estimate (3.5.9) was already established in [Con22] only for the
specific case of interacting random walks on the grid of Section 3.4.4 (see Theorem 3.2 of
[Con22]), which doesn’t follow directly from the arguments of this section since we restricted
our discussion to finite state space Markov chains.
We also remark that Theorem 3.5.24 shows that, for some Markov chains, assumptions that
are strictly connected to positive Riccc,∞ curvature are useful for establishing the modified
log-Sobolev inequality, positive entropic curvature, positive discrete Bakry–Èmery curvature
and other related inequalities (cf. the discussion in Section 3.2). This suggests interesting
connections with some other open problems in the theory of functional inequalities and discrete
curvature for Markov chains, as we discuss next.

Peres–Tetali Conjecture One notable example is the following important unpublished
conjecture by Peres and Tetali, which links coarse Ricci curvature to the modified log-Sobolev
inequality in the setting of lazy simple random walks on finite graphs (see also [ELL17, Con.
3.1], [Fat19, Con. 4], [BCC+22, Rmk. 1.1]).

Conjecture 3.5.25. There exists a universal constant α > 0 such that the following holds.
Let Ω be a finite unweighted graph and consider the stochastic matrix P associated with the
simple random walk on this graph, P̃ = P+I

2 associated to the lazy simple random walk and
the generator L = P −I. If Ricdc,1 ≥ K > 0 for the lazy stochastic matrix P̃ (or, equivalently,
if Riccc,1 ≥ 2K for L), then MLSI(αK) holds.

In all the examples of Theorem 3.5.24 we have positive Riccc,∞ curvature, which implies in
particular positive Riccc,1 curvature by Proposition 3.5.21. Therefore, it is natural to study the
following problem related to the above conjecture: assuming a strictly positive lower bound of
Riccc,∞ (and under some additional assumptions), is it possible to deduce a lower bound of
the same order for the MLSI constant? In particular, if the additional assumptions are that we
are in the setting of simple random walks on finite graphs, this problem constitutes a weaker
form of the Peres–Tetali Conjecture.

Coarse and entropic curvature Another important open problem consists in comparing
the different notions of discrete curvature. For example, it is not known when a positive lower
bound for the coarse Ricci curvature implies a positive lower bound of the same order for the
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entropic curvature, or vice versa (and similarly for the discrete Bakry–Émery curvature). In
light of the results of this paper, the following is also a natural question: assuming a strictly
positive lower bound of Riccc,∞ (and under some additional assumption), is it possible to
deduce a lower bound of the same order for the entropic curvature? Interestingly, we remark
that positive lower bounds for the entropic curvature are linked to exponential contraction
with respect to the metric W . Precisely, if Rice ≥ K then

W (µPt, νPt) ≤ e−KtW (µ, ν)

for all t ≥ 0 and starting probability measures µ, ν (see [EM12, Prop 4.7] and cf. Proposition
3.2.1). This is of course reminiscent of the exponential decay of (3.5.9), which follows from
Riccc,∞ ≥ K. However, not much is known about the relationship between W and Wp (see
[EM12, Prop. 2.12, 2.14] for a lower(/upper) bound of W in terms of W1(/W2)), so it is not
clear how these exponential decay estimates are connected.

3.6 Proof of Proposition 3.2.2
Here, we work in the setting of Section 3.5 and with that notation; recall in particular that
the state space is finite and the Markov chain is irreducible and reversible.

Proof. Suppose Ω is finite and Assumption 2 is satisfied and that (3.2.3) holds for all
ρ : Ω→ R>0 and ψ : Ω→ R. Fix now ρ : Ω→ R>0 and choose ψ = ϕ′ ◦ ρ. Notice then that

A (ρ, ϕ′ ◦ ρ)

= 1
2

∑︂
x,y:ψ(x)̸=ψ(y)

π(x)Q(x, y) ρ(x)− ρ(y)
(ϕ′ ◦ ρ)(x)− (ϕ′ ◦ ρ)(y) [(ϕ′ ◦ ρ)(x)− (ϕ′ ◦ ρ)(y)]2

= E(ρ, ϕ′ ◦ ρ).

Moreover if ψ(x) ̸= ψ(y) we have that

∇θ(ρ(x), ρ(y)) = 1
ψ(x)− ψ(y) [1− ϕ′′(ρ(x)) θ(ρ(x), ρ(y)),−1 + ϕ′′(ρ(y)) θ(ρ(x), ρ(y))].

It follows that

C (ρ, ϕ′ ◦ ρ) = 1
4
∑︂
x,y

π(x)Q(x, y)[(ϕ′ ◦ ρ)(x)− (ϕ′ ◦ ρ)(y)]

·
{︄

[1− ϕ′′(ρ(x)) θ(ρ(x), ρ(y)),−1 + ϕ′′(ρ(y)) θ(ρ(x), ρ(y))] ·
(︄
Lρ(x)
Lρ(y)

)︄}︄

= 1
2E(Lρ, ϕ′ ◦ ρ)− 1

2E(ρ, (ϕ′′ ◦ ρ) · Lρ)

= 1
2E(ρ, L(ϕ′ ◦ ρ))− 1

2E(ρ, (ϕ′′ ◦ ρ) · Lρ),

D(ρ, ϕ′ ◦ ρ) = 1
2
∑︂
x,y

π(x)Q(x, y)(ρ(x)− ρ(y))(L(ϕ′ ◦ ρ)(x)− L(ϕ′ ◦ ρ)(y))

= E(ρ, L(ϕ′ ◦ ρ)).

Therefore

B(ρ, (ϕ′ ◦ ρ)) = −1
2E [ρ, (ϕ′′ ◦ ρ) · Lρ+ L(ϕ′ ◦ ρ)].
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From this, letting ρt = Ptρ, we see that

d

dt

⃓⃓⃓⃓
⃓⃓
t=0

E(ρt, ϕ′ ◦ ρt) = −2B(ρ, ϕ′ ◦ ρ).

Therefore the inequality B(ρ, ϕ′ ◦ ρ) ≥ KA (ρ, ϕ′ ◦ ρ) is equivalent to inequality (3.2.6), from
which CSIϕ(2K) follows. ■

Remark 3.6.1. In the particular case when θ is the logarithmic mean, for any constant Z > 0
we have B(Z · ρ, ψ) = ZB(ρ, ψ) and A (Z · ρ, ψ) = ZA (ρ, ψ), so it suffices to consider the
case where ρ is a density with respect to π when proving inequality (3.2.3).

3.7 Proof of Proposition 3.3.2
In this section we prove Proposition 3.3.2, which gives the value of Mθ from (3.3.10) for some
of the weight functions considered in Section 3.2.

Proof. Recall the definition

Mθ := inf
s,t≥0:
θ(s,t)>0

θ(s, s) + θ(t, t)
2θ(s, t) ∈ [0, 1].

The statement about the arithmetic mean is trivial, while the one about the logarithmic mean
θ1 follows from equation (2.1) in [EM12]. Let us therefore consider the case of the weight
function θα, which was defined in (3.2.5) with ϕ = ϕα as in (3.1.4), corresponding to Beckner
functionals. In other words, we have

θ(s, t) = α− 1
α

s− t
sα−1 − tα−1

for s ̸= t > 0 and θ(s, s) = 1
α
s2−α. Again, for α = 2 the result is trivial, so we assume

henceforth 1 < α < 2. Without loss of generality we can minimize over s > t > 0, so that
substituting the expression of θα from (3.2.8) the problem reduces to computing

Mθα = inf
s>t>0

1
2(α− 1)

(s2−α + t2−α) · (sα−1 − tα−1)
s− t

= 1
2(α− 1)

{︄
1 + inf

s>t>0

sα−1t2−α − s2−αtα−1

s− t

}︄

= 1
2(α− 1)

{︄
1 + inf

λ>1

λα−1 − λ2−α

λ− 1

}︄ (3.7.1)

where we set λ := s
t
> 1. If α ≥ 3

2 , the conclusion follows by noticing that λα−1−λ2−α

λ−1 ≥ 0 for
λ > 1 and by letting λ→∞. Suppose hence now that α ∈

(︂
1, 3

2

)︂
: to conclude that in this

case Mθα = 1 it is enough to show that for λ > 1

λα−1 − λ2−α

λ− 1 ≥ 2α− 3. (3.7.2)

Notice that equality holds as λ→ 1+. By density of Q in R and by a continuity argument, it
suffices to show that for all λ > 1 and all even integers p, s ∈ N with p > s we have that

λ
s

p+s − λ
p

p+s

λ− 1 ≥ −p− s
p+ s

,

96



3.8. Grönwall’s lemma with Dini derivative

where we used the substitution α = 1 + s
p+s . Rearranging this and renaming λ← λ

1
p+s we

need to prove equivalently that for all λ > 1
λp+s − 1
p+ s

≥ λp − λs

p− s
.

Equivalently, dividing both sides by λ− 1 and denoting by AM the arithmetic mean, we need
to prove that

AM
(︂
1, . . . , λp+s−1

)︂
≥ AM

(︂
λs, . . . , λp−1

)︂
.

This last inequality holds true, since for λ > 1 and integers 0 < i < j we have that

λi−1 + λj+1 ≥ λi + λj

by the classical rearrangement inequality. ■

3.8 Grönwall’s lemma with Dini derivative
For a continuous function f : I → R, where I ⊂ R is an interval, we consider the upper/lower
Dini derivative, which are defined respectively by

d+

dt

⃓⃓⃓⃓
⃓
t0

f(t) = lim sup
h→0+

f(t+ h)− f(t)
h

,

d−

dt

⃓⃓⃓⃓
⃓
t0

f(t) = lim inf
h→0+

f(t+ h)− f(t)
h

.

Clearly, d−

dt
f(t) ≤ d+

dt
f(t). It may be useful to apply Grönwall’s lemma in absence of differ-

entiability, by considering instead the Dini derivatives. In particular, the following variant
holds.

Lemma 3.8.1 (Grönwall’s lemma). Let I = [a, b) ⊂ R be an interval,with a < b ≤ ∞, and
consider real valued continuous functions u, β : I → R. Suppose that for all t ∈ I

d−

dt
u(t) ≤ β(t)u(t). (3.8.1)

Then for all t ∈ I
u(t) ≤ exp

(︃∫︂ t

0
β(s)ds

)︃
u(a).

Proof. Set v(t) = exp
(︂
−
∫︁ t

0 β(s)ds
)︂
, which satisfies v(t) > 0, v′(t) = −β(t)v(t). Notice

that for all t ∈ I
d−

dt
[u(t)v(t)] = lim inf

h→0+

[u(t+ h)− u(t)]v(t+ h)
h

+ u(t)[v(t+ h)− v(t)]
h

=
[︄
d−

dt
u(t)

]︄
v(t) + u(t)v′(t)

≤β(t)u(t)v(t)− u(t)β(t)v(t)
=0.

Next, we notice as in [DS08, Eqn. (3.8)] that this implies that the continuous function u(t)v(t)
is non-increasing on I. In particular, we have u(t)v(t) ≤ u(a), which implies the thesis by
substituting the expression for v(t) and rearranging. ■

97





CHAPTER 4
Improved Convergence of Score-Based

Diffusion Models via
Prediction-Correction

This chapter corresponds to the publication [PMM24].

Score-based generative models (SGMs) are powerful tools to sample from complex data
distributions. Their underlying idea is to (i) run a forward process for time T1 by adding
noise to the data, (ii) estimate its score function, and (iii) use such estimate to run a reverse
process. As the reverse process is initialized with the stationary distribution of the forward
one, the existing analysis paradigm requires T1 → ∞. This is however problematic: from
a theoretical viewpoint, for a given precision of the score approximation, the convergence
guarantee fails as T1 diverges; from a practical viewpoint, a large T1 increases computational
costs and leads to error propagation. This paper addresses the issue by considering a version
of the popular predictor-corrector scheme: after running the forward process, we first estimate
the final distribution via an inexact Langevin dynamics and then revert the process. Our key
technical contribution is to provide convergence guarantees which require to run the forward
process only for a fixed finite time T1. Our bounds exhibit a mild logarithmic dependence
on the input dimension and the subgaussian norm of the target distribution, have minimal
assumptions on the data, and require only to control the L2 loss on the score approximation,
which is the quantity minimized in practice.

4.1 Introduction
Score matching models [SE19, SE20] and diffusion probabilistic models [SDWMG15, HJA20] –
recently unified into the single framework of score-based generative models (SGMs) [SGSE20]
– have shown remarkable performance in sampling from unknown complex data distributions,
achieving the state of the art in image [SGSE20, DN21] and audio [PVG+21, KPH+21,
CZZ+21] generation; see also the recent surveys [YZS+23, CHIS23]. The idea is to gradually
perturb the data by adding noise, and then to learn to revert the process. Both the forward
process that adds noise and the reverse process can be described by a stochastic differential
equation and, specifically, the reverse process is defined in terms of the score function (i.e.,
the gradient of the logarithm of the perturbed density at all noise scales, see Section 4.3 for
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details). This time-dependent score function can be learned with a neural network, using
efficient techniques such as sliced score matching [SGSE20] or denoising score matching
[Vin11]. Then, to start the reverse process, one would ideally need to sample from the
perturbed distribution, which is in principle unknown: instead, one runs the forward process
for a long enough time T1 so that the perturbed distribution pT1 is well approximated by the
stationary distribution π, which is known and can be readily sampled from.

A central theoretical question is to understand the quality of the sampling, i.e., measure a
distance between the output distribution of the reverse process and the true one. Three
sources of error are given by (i) starting the reverse process from the stationary distribution
π, rather than from the perturbed distribution pT1 , (ii) approximating the score function
(e.g., with a neural network), and (iii) discretizing the reverse stochastic differential equation.
The quantitative characterization of such errors has been carried out in a number of recent
papers, see [SDME21, KFL22, LLT22, CCL+23b, CLL22, Bor22] and Section 4.2. However,
to achieve convergence of the output distribution to the ground truth, this line of work requires
to run the forward process for T1 → ∞. This is due to the first source of error mentioned
above, i.e., the approximation of pT1 with π. At the same time, large values of T1 amplify
the other two sources of error and are also responsible for an increased computational cost
in the training procedure, because of the need to approximate the score function on a large
time interval [0, T1]. Thus, there appears to be a subtle trade-off between the precision in the
score approximation and the running time T1: on the one hand, one needs to take T1 →∞ so
that pT1 approaches π; on the other hand, for a given precision in the score, the convergence
guarantees fail as T1 → ∞,1 which highlights the instability of existing results. For these
reasons, it is of great interest to characterize an appropriate time T1 where to stop the forward
process [YZS+23, Sec. 8].

Main contribution. In this work, we address the trade-off in the choice of the running
time T1 of the forward process by considering a variant of the predictor-corrector methods of
[SSDK+21]. More precisely, after obtaining pT1 via the forward process, we sample from pT1

via an inexact Langevin dynamics that leverages the approximation of the score at time T1.
Then, we use the resulting sample to start a standard reverse process. Our main convergence
result (Theorem 4.4.1) focuses on the deterministic reverse process, which has the form of an
ordinary differential equation (ODE), and analyzes the proposed algorithm: in particular, it
provides convergence guarantees in Wasserstein distance for a vast class of data distributions
and under realistic assumptions on the score estimation, which are compatible with the training
loss used in practice. We highlight that our bounds require a perturbation time T1 that
only depends logarithmically on the dimension of the space and on the subgaussian norm
of the target distribution, and not on the desired sampling precision. The mild logarithmic
dependence suffices to ensure the regularity – in the form of a log-Sobolev inequality – of
the perturbed measure pT1 , which in turn allows the inexact Langevin dynamics to converge
exponentially fast.

Our analysis improves upon earlier bounds in Wasserstein distance [KFL22] by removing both
the need for T1 → ∞ and an assumption on the score estimator (more precisely, on its
one-sided Lipschitz constant, see the discussion after Theorem 4.4.1 for details). This comes
at the cost of requiring a control on a loss function for the score estimate at time T1, which
is stronger than the usual L2 loss. To address this issue, we exploit the fast convergence

1See, e.g., [CCL+23b, Thm. 2] and note that the third term in the bound diverges when εscore is fixed
and T →∞.
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of the forward process to its stationary distribution in order to correct the score estimator,
which in turn allows us to translate upper bounds for the L2 loss into upper bounds for
the stronger loss (Theorem 4.4.2). Finally, when considering instead a stochastic reverse
process (SDE), we show how the algorithm is compatible with the existing analyses for the
convergence of the discretized reverse SDE in information-divergence metrics. This allows
us to deduce convergence guarantees in total variation distance for a discretization of the
algorithm. Consequently, we highlight some advantages over previous results that arise from
the choice of a fixed perturbation time T1, related again to the decreased computational cost
in the training procedure and to the stability of the error bounds.

Paper organization. Section 4.2 discusses related works. Section 4.3 sets up the technical
framework by recalling the formal description of SGMs. Section 4.4 presents our main
contribution: after describing the algorithm, we state the convergence result in Wasserstein
distance. Section 4.4.1 contains a sketch of the proofs, with the full arguments deferred to
Section 4.8. Our main convergence results in Section 4.4 are stated in continuous time and
in Wasserstein distance. Then, Section 4.5 contains a discussion about discretizations of the
algorithm, as well as a convergence result in total variation distance. Section 4.6 concludes
the paper with some final remarks.
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4.2 Related work
The empirical success of SGMs has led to extensive research aimed at providing theoretical
guarantees on their performance. Specifically, the goal is to give upper bounds on the distance
between the true data distribution p and the output distribution pθ of the sampling method.
Adopting the description of forward and reverse process in terms of stochastic differential
equations [SSDK+21], an upper bound on the KL-divergence DKL(p ∥ pθ) is provided in
[SDME21]: under some regularity assumptions, this KL-divergence goes to 0, as T1 → ∞
and the score approximation error vanishes. In a similar vein, using the theory of optimal
transport instead of stochastic tools, an upper bound on the Wasserstein distance2 W2(p, pθ)
is provided in [KFL22]. In many important situations, results in Wasserstein distance are
more meaningful than in KL-divergence or total variation: for example, under the manifold
hypothesis, it is not possible to obtain non-trivial convergence guarantees in those metrics,
as one has DKL(p ∥ pθ) = ∞ and ∥p − pθ∥TV = 1 (cf. [Bor22, CCL+23b]). However, to
obtain convergence, [KFL22] imposes a strong assumption on the score estimator. A line
of work has focused on the discretization of the reverse stochastic differential equation.
Specifically, convergence in Wasserstein distance of order 1 is provided in [Bor22] under the
manifold hypothesis, but the results depend poorly on important parameters, such as the
sampling precision, the input dimension and the diameter of the support of p. The works

2For general data distributions µ, ν, there is no relation between DKL(ν ∥µ) and W2(µ, ν), therefore
the results in KL-divergence cannot be translated trivially to results in W2, and vice versa. In particular,
the analysis in W2 seems to be more challenging, because of an expansive term in the reverse process (cf.
[CCL+23b, Sec. 4]).
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[LLT23, CCL+23b, CLL22] provide convergence guarantees for general distributions in KL-
divergence and total variation (which is weaker by Pinsker’s inequality). From these results,
bounds in Wasserstein distance are also deduced for some classes of distributions, including
bounded support ones. This improves upon [Bor22], but the improvement requires an extra
projection step and comes at the cost of a worse dependence on the problem’s parameters in
comparison with the bounds in KL-divergence and total variation. Other works have provided
convergence results for SGMs, but they suffer from at least one of the following drawbacks
[CCL+23b]: (i) non-quantitative bounds [Pid22, BTHD21] or poor dependence on important
problem parameters [BMR22], (ii) strong assumptions on the data distribution, typically in the
form of a functional inequality [LLT22, YYW23], and (iii) strong assumptions on the score
estimation error, such as a uniform pointwise control [BTHD21], which is not observed in
practice [ZC23].

In most of these works, to guarantee convergence of pθ to p, it is necessary to have T1 →∞.
In contrast, [BTHD21] introduces a different approach based on solving the Schrödinger bridge
problem (see also [CLT22, SBDD22, Son22]), which allows for a finite time perturbation
of the target measure; however, this strategy does not come with quantitative convergence
results under realistic assumptions. The work [FRY+23] adopts an approach closer to ours:
an auxiliary model is used to bridge the gap between the limiting distribution of the forward
process and the true perturbed distribution, which is then followed by a standard reverse
process. However, the design of the auxiliary model appears to be ad hoc for the data
distribution, and a theoretical convergence result for general data distributions is missing.
Our algorithm can also be considered as an instance of the predictor-corrector approach of
[SSDK+21]: there, the authors suggest to alternate one step of the reverse process with a
few steps of a corrector method based on the score function, such as Langevin dynamics,
and provide extensive empirical evidence showing an improved performance. In this work, we
consider instead the case where all the corrector steps (Langevin dynamics) are performed at
the beginning, and they are then followed by a standard (non-corrected) reverse process. We
remark that error bounds for (a different variant of) the predictor-corrector schemes were first
provided in [LLT22]. The results therein, however, impose strong assumptions on the data
distribution, in the form of a log-Sobolev inequality; the log-Sobolev constant enters crucially
in the derived bounds, which depend polynomially on it, and not just logarithmically.

Concurrent work. The concurrent work [CCL+23a] also studies the performance of a
predictor corrector scheme. Instead of our two-stage algorithm, [CCL+23a] considers an
implementation closer to [SSDK+21], that alternates deterministic predictor steps with corrector
steps based on Langevin dynamics. For this method, the authors provide convergence guarantees
in total variation distance: interestingly, they show that when the corrector steps are based
on the underdamped Langevin dynamics (rather then the classical overdamped version), it is
possible to obtain a better dependence on the dimension d. Contrary to our results, however,
the error bounds in [CCL+23a] still require T1 →∞ to obtain convergence, with analogous
disadvantages as we discussed for pre-existing results.

After the first version of our paper appeared online, further progress on the theoretical study
of SGMs has been made. The work [LWCC23] obtains convergence guarantees for both
the standard reverse SDE and the deterministic reverse ODE (without corrector), using
an approach based on studying directly discrete time methods rather than controlling the
errors in approximating the continuous time dynamics. The paper [BDBDD23] improves
the dimension dependence of convergence guarantees for the reverse SDE, when one does
not assume Lipschitzness of ∇ log pt, by exploiting a connection with stochastic localization
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[Eld13, Mon23]. The work [CDS23] proves convergence in KL-divergence without early
stopping when replacing the classical Lipschitzness assumption on ∇ log pt with finiteness of
the relative Fisher information.

In general, these works can be considered complementary to the present contribution, in that
their analysis techniques can be combined with our methods to provide convergence results
for the two-stage algorithm under a set of different assumptions, gaining the advantage of a
fixed perturbation time T1. We refer the reader to Section 4.5 for an example of this.

4.3 Preliminaries
To sample from an unknown data distribution p on Rd, the framework of SGMs consists in
perturbing p through a forward process that converges to a known prior distribution and then
approximately reverse this process. The forward process is described by a stochastic differential
equation (SDE) ⎧⎨⎩ X0 ∼ p,

dXt = f(t,Xt) dt+ g(t) dBt,
(4.3.1)

where Bt is a standard Brownian motion, f and g are sufficiently smooth, and the SDE
is run until some time T1 > 0. The law of Xt, denoted by pt, correspondingly solves the
Fokker–Planck equation⎧⎨⎩ p0 = p,

∂tpt +∇ ·
[︂
pt
(︂
f(t, x)− g(t)2

2 ∇ log pt(x)
)︂]︂

= 0.
(4.3.2)

Remarkably, under some regularity conditions, this SDE admits a reverse process, in the sense
that, for any smooth function M : [0, T1]→ R≥1, the process (Ut)t defined by⎧⎨⎩U0 ∼ pT1 ,

dUt = −f(T1 − t, Ut) dt+ M(t)
2 g(T1 − t)2∇ log pT1−t(Ut) dt+

√︂
M(t)− 1g(T1 − t) dBt,

(4.3.3)
is such that UT1 ∼ p. Usual choices are M(t) ≡ 2 or M(t) ≡ 1 and, considering the latter,
the reverse process is deterministic, except for its initialization, see [SSDK+21, Sec. 4.3].
Below, we will first focus on M ≡ 1 for simplicity, but similar results can be readily deduced
for general M(t).

To simulate the reverse SDE (4.3.3) and sample from p, one needs to (i) approximately
sample from pT1 to initialize the backward process, and (ii) estimate the score function with
sθ(t, ·) ≈ ∇ log pt for t ∈ [0, T1]. For the first point, one chooses T1 big enough so that pT1 is
close to a known distribution π and samples from Y0 ∼ π. For the second point, one learns a
function sθ(t, x) that approximates ∇ log pt(x) e.g. with a neural network: specifically, the
training loss considered in practice is

JSM(θ, λ) =
∫︂ T1

0
λ(t)Ept

[︂
∥∇ log pt − sθ(t, ·)∥2

]︂
dt, (4.3.4)

for some strictly positive weight function t→ λ(t). Notably, although the score ∇ log pt is
unknown, this loss can be estimated with standard score-matching techniques [Vin11, SGSE20,
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SSDK+21]. When λ(t) = g(t)2, which corresponds to the likelihood weighting of [SDME21],
we simply write JSM(θ). The corresponding sampling algorithm simulates the process⎧⎨⎩Y0 ∼ π,

dYt = −f(T1 − t, Yt) dt+ M(t)
2 g(T1 − t)2sθ(T1 − t, Yt) dt+

√︂
M(t)− 1g(T1 − t) dBt,

(4.3.5)
until time T1, and it takes YT1 as an approximate sample of p. This reverse SDE can be
approximated via standard general-purpose numerical solvers, or by taking advantage of the
additional knowledge of the approximated score function sθ(t, ·) ≈ ∇ log pt: for example,
the predictor-corrector methods of [SSDK+21] alternate one discretized step for the reverse
process (4.3.5) with several steps of a score-based corrector algorithm, such as Langevin
dynamics or Hamiltonian Monte Carlo.

For ease of exposition, we will focus on the popular Ornstein–Uhlenbeck (OU) forward process⎧⎨⎩ X0 ∼ p,

dXt = −Xt dt+
√

2 dBt,
(4.3.6)

which corresponds to a method known as Denoising Diffusion Probabilistic Models (DDPMs)
[HJA20], and is also referred to as Variance Preserving SDE in [SSDK+21]. Its Fokker–Planck
equation reads ⎧⎨⎩ p0 = p,

∂tpt +∇ · [pt(−x−∇ log pt(x))] = 0.
(4.3.7)

The standard Gaussian γ is the limiting distribution of the OU process: more precisely, if
Z ∼ γ is independent of X0, then Xt ∼ e−tX0 +

√
1− e−2tZ, and pt converges to γ e.g. in

Wasserstein distance W2 and in relative entropy DKL(· ∥ γ) [Vil03, Chap. 9]. Restricting to
the OU process (or its time reparametrization) is commonly done in the theoretical literature,
see [LLT22, Bor22, CCL+23b, CLL22]; as for these works, our techniques can be extended to
other choices of the forward process, such as those considered in [SGSE20, Sec. 3.4].

Notation. We denote by γy,t the density of a normal random variable in Rd with mean
y and variance tId, and for compactness we write γt = γ0,t and γ = γ1. With abuse
of notation, we identify the law of a random variable with the corresponding probability
density. Given two probability measures µ, ν, the KL-divergence is defined by DKL(µ ∥ ν) =∫︁

log
(︂
dµ
dν

)︂
dµ if µ is absolutely continuous with respect to ν, and DKL(µ ∥ ν) = +∞ otherwise;

if µ, ν have finite second moment, the 2-Wasserstein distance is defined by W 2
2 (µ, ν) =

infX∼µ,Y∼ν E[∥X − Y ∥2]. We denote by P(Rd) the space of probability measures on Rd.
Throughout this paper, we denote by p the target probability measure and by pt its law
following the OU process; correspondingly, we consider random variables X ∼ p, Xt ∼ pt. We
use the symbol ≲ to denote an inequality up to an absolute positive multiplicative constant.

4.4 Improved Wasserstein-convergence in continuous
time via prediction-correction

Description of the algorithm. We consider the following predictor-corrector algorithm.
First, we run the OU forward process (4.3.6) until time T1 and, for 0 ≤ t ≤ T1, we approximate
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∇ log pt(x) with sθ(t, x). Next, we approximate pT1 by following an inexact Langevin dynamics
started at γ until time T2:⎧⎨⎩ Z0 ∼ γ,

dZt = sθ(T1, Zt) dt+
√

2 dBt, 0 ≤ t ≤ T2.
(4.4.1)

We remark that the Langevin dynamics (4.4.1) is inexact as it uses sθ(T1, x) in place of
∇ log pT1(x), since we have access to the former but not to the latter. The idea is that, as
these two quantities are close, the random variable ZT2 provides an approximate sample of
pT1 , for sufficiently large T2. Then, we approximate the original distribution p by following a
deterministic reverse process that starts from ZT2 :

⎧⎨⎩ Y0 = ZT2 ,

dYt = Yt dt+ sθ(T1 − t, Yt) dt, 0 ≤ t ≤ T1.
(4.4.2)

We let qt = law(Yt) for t ∈ [0, T1] and σt = law(Zt) for t ∈ [0, T2]. In particular, we have
q0 = σT2 . Here, the prediction-correction consists in starting (4.4.2) from ZT2 , instead of γ.
We also note that this reverse process is deterministic except for its initialization Y0 = ZT2 .
This allows to use standard numerical methods for solving ordinary differential equations, and
in particularly exponential integrator schemes have shown remarkable performances [LZB+22].
Finally, we take YT1 to be an approximate sample from p. For stability reasons, we can
also choose a small time 0 < τ ≪ T1 and stop the reverse process (4.4.2) at time T1 − τ ,
taking YT1−τ as an approximate sample from p. This is commonly done in practice, see e.g.
[SSDK+21, Sec. C].

Assumptions. Throughout this section, we consider the following assumptions.

(A1) The estimator sθ : [0, T1]× Rd → Rd is Lipschitz continuous. Moreover, for t ∈ [0, T1]
we denote by Ls(t) ∈ R the one-sided Lipschitz constant for sθ(t, ·), such that for all
x, y ∈ Rd,

(sθ(t, x)− sθ(t, y)) · (x− y) ≤ Ls(t)∥x− y∥2.

(A2) X ∼ p is norm-subgaussian.

Condition (A1) is mild: in fact, sθ is typically given by a neural network, which corresponds to
a Lipschitz function for most practical activations. We emphasize that the requirement on the
Lipschitz constant of sθ is purely qualitative, in the sense that it does not enter our bounds
(as opposed to the one-sided Lipschitz constant, which instead plays a quantitative role in the
bounds).

As for condition (A2), we recall that an Rd-valued random variable X is norm-subgaussian if
its euclidean norm ∥X∥ is subgaussian (for details and a formal definition, see Section 4.7).
We denote by ∥X∥SG the corresponding norm. Bounded random variables and subgaussian
ones (in the sense of [Ver18, Def. 3.4.1]) are norm-subgaussian, which covers most practical
cases (e.g., in image generation pixels are usually rescaled in [0, 1]). Other properties of
norm-subgaussian random vectors are established in [JNG+19].
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Performance of the proposed algorithm. Our main result is stated below.

Theorem 4.4.1. Let Assumptions (A1)-(A2) hold, and let pt be obtained via the forward
OU process in (4.3.6). Pick 0 < δ < 1, T2 > 0, T1 ≥ 1

2 log
(︃

2 + 172∥X∥2
SG
δ

+ d
2δ

)︃
and a small

early stopping time 0 < τ ≤ min
{︃
T1,

d
2∥X∥2

SG

}︃
. Let pθ = qT1−τ = law(YT1−τ ), where YT1−τ is

obtained from the reverse process in (4.4.2). Consider the loss functions given by

b(t) = Ept

[︂
∥∇ log pt − sθ(t, ·)∥2

]︂
, εMGF = logEpT1

[︃
exp

(︃ 1
1− δ∥∇ log pT1 − sθ(T1, ·)∥2

)︃]︃
.

Then, the distance between the output pθ and the target distribution p can be bounded as
follows:

W2(p, pθ) ≤
√

3τd+
∫︂ T1

τ

√︂
b(t)Iτ (t) dt+ Iτ (T1)

√︄
2

1− δ

(︃
δe− (1−δ)T2

2 + 2εMGF

)︃
(4.4.3)

≤
√

3τd+
√︄
JSM(θ)

2

∫︂ T1

τ
Iτ (t)2 dt+ Iτ (T1)

√︄
2

1− δ

(︃
δe− (1−δ)T2

2 + 2εMGF

)︃
, (4.4.4)

where Iτ (t) = exp
(︂
t− τ +

∫︁ t
τ Ls(r) dr

)︂
.

The right-hand side of (4.4.3)–(4.4.4) consists of three error terms, due to (i) the early stopping
of the reverse process (4.4.2), (ii) the approximation of the score function sθ(t, ·) ≈ ∇ log pt in
(4.4.2), and (iii) the approximation q0 = σT2 ≈ pT1 from the output of the Langevin dynamics
(4.4.1). A key feature of Theorem 4.4.1 is that, to have a vanishing sampling error, one does
not need T1 →∞. In fact, consider a sequence of estimators satisfying the additional technical
assumption3 lim supJSM→0

∫︁ T1
τ exp

(︂
2
∫︁ t
τ Ls(r) dr

)︂
dt < ∞. Then, letting τ → 0, JSM → 0,

εMGF → 0 and T2 → ∞, with T1 fixed, the convergence of pθ to p in W2 distance follows
from Theorem 4.4.1. We now discuss the roles of T1, T2, τ and of the free parameter δ.

The role of T1 is to ensure the regularity of pT1 . Specifically, we show that pT1 satisfies a log-
Sobolev inequality with constant at least 1−δ, which leads to the mild logarithmic dependence
of T1 on the subgaussian norm ∥X∥SG. In fact, the dependence on d can be even dropped
(although the subgaussian norm ∥X∥SG may still depend on d): if T1 ≥ 1

2 log
(︃

2 + 172∥X∥2
SG
δ

)︃
,

then (4.4.3) and (4.4.4) hold with d
3 exp

(︂
− (1−δ)T2

2

)︂
in place of δ exp

(︂
− (1−δ)T2

2

)︂
(see the last

term of the expression). Choosing T1 > 0 is necessary, as performing Langevin dynamics
directly for p works poorly. This was already observed in [SE19] and served precisely as a
motivation for SGMs.

The role of T2 is to improve the accuracy of sampling from pT1 and, due to the regularity
of this distribution, the convergence is exponential in T2. Taking T2 large, instead of T1, is
beneficial, as the neural network needs to approximate the score of the forward process only
until time T1 and, correspondingly, JSM increases with T1. In contrast, [KFL22, Thm. 1, Cor.
2] requires T1 →∞ to achieve convergence, and a full quantitative analysis of the dependence
of the bounds on T1 is missing.

3This condition was implicitly needed in [KFL22] for the same reasons. To see that it is reasonable, notice
that Ls is upper bounded by the Lipschitz constant lip(sθ), which is expected to be similar to lip(∇ log pt) as
JSM → 0. The latter is well behaved by the regularization properties of the OU flow: if p has bounded support,
then

∫︁ T1
τ

lip(∇ log pt) dt <∞ for all 0 < τ < T1 [CCL+23b, Lem. 20]. Note also that the one-sided Lipschitz
constant can be negative (e.g., for γt it is equal to − 1

t ), which helps with the convergence of the integral.
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The role of τ is to allow for early stopping in the reverse process (4.4.2). If that is not needed
(since e.g. the distribution p is sufficiently regular), then one can simply take the limit τ → 0
in (4.4.3)-(4.4.4).4

The role of δ is to provide a trade-off between T1 and T2. We remark that the result of
Theorem 4.4.1 holds for any δ ∈ (0, 1), and smaller values of δ give a faster decay of the error
term coming from the Langevin dynamics, due to the larger log-Sobolev constant of pT1 . This
improvement comes at the price of a tighter lower bound for T1.
We highlight that our convergence result does not need the condition limt→∞ Ls(t) = −1,
which was introduced in [KFL22]. This requirement was heuristically justified by the one-sided
Lipschitz constant of the stationary distribution γ of the forward process (4.3.6) being −1,
but obtaining a rigorous control on limt→∞ Ls(t) only from the L2 loss of the score estimation
remained challenging. To circumvent this issue, we instead introduce the additional loss εMGF
in Theorem 4.4.1, which concerns the score estimation only at time T1. By Jensen’s inequality,
this is a stronger loss than the usual L2 one (εMGF ≥ 1

1−δ b(T1)). However, a simple truncation
of the estimator sθ(T1, ·) allows us to control εMGF in terms of b(T1). This is formalized in
the result below.

Theorem 4.4.2. Let Assumptions (A1)-(A2) hold, and let pt be obtained via the forward
OU process in (4.3.6) starting from X ∼ p. Pick 0 < δ < 1 and T1 ≥ log

(︂
16
δ
d(∥X∥SG + 1)

)︂
.

Define the estimator ˜︂sθ : Rd → Rd by

[˜︁sθ(x)]i =

⎧⎪⎪⎨⎪⎪⎩
[sθ(T1, x)]i, if |−xi − [sθ(T1, x)]i| ≤ ℓ,

−xi − ℓ, if [sθ(T1, x)]i < −xi − ℓ,
−xi + ℓ, if [sθ(T1, x)]i > −xi + ℓ,

(4.4.5)

where ℓ = ℓ(x) = δ
2d(1 + ∥x∥). Fix 0 < ε < 1. Then, for all 0 < β ≤ 1

36δ2 , we have

logEpT1

[︂
exp

(︂
β∥∇ log pT1 − ˜︁sθ∥2

)︂]︂
≤ ε, (4.4.6)

provided that
b(T1) ≤

1
34β ε

1+36βδ2
. (4.4.7)

A combination of Theorems 4.4.1 and 4.4.2 gives an end-to-end convergence result in W2
distance requiring only a control on the L2 loss {b(t)}t∈[0,T1], which is the object minimized in
practice. We regard the truncation of the estimator sθ(T1, ·) carried out in Theorem 4.4.2
as purely technical. In fact, even if the estimator sθ(T1, ·) explicitly minimizes the training
loss b(T1), one also expects the stronger loss εMGF to be small, when δ is sufficiently small.
This is confirmed by the numerical results of Figure 4.1, for which we do not replace the
estimator sθ(T1, ·) with ˜︁sθ. Specifically, the plots show that, having fixed T1, both W2(p, pθ)
(in orange) and W2(pT1 , q0) (in blue) decrease as a function of the running time T2 of the
inexact Langevin dynamics (4.4.1) for different standard datasets.

4.4.1 Proof ideas
Analysis of the reverse process (4.4.2). To obtain Theorem 4.4.1, we start with the
analysis of the reverse process (4.4.2). By adapting the argument in [KFL22], we derive the
following bound on the Wasserstein distance between pτ and qT1−τ .

4This passage can be justified by an application of monotone convergence, after estimating the one-sided
Lipschitz constant Ls(t) with the Lipschitz constant of sθ(t, ·).
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Figure 4.1: Simulation results for an asymmetric mixture of two gaussians (left), the two
moons dataset (center) and the rescaled swiss roll (right). For fixed T1 and variable T2, we
plot in blue the W2 distance between the perturbed measure pT1 and the output of (4.4.1),
while we plot in orange the W2 distance between the true distribution p and the output of the
algorithm pθ. As expected, both quickly decrease as T2 increases.

Proposition 4.4.3. Under Assumptions (A1)-(A2), for 0 ≤ τ < T1, we have

W2(pτ , qT1−τ ) ≤ Iτ (T1)W2(pT1 , q0) +
∫︂ T1

τ
Iτ (t)

√︂
b(t) dt. (4.4.8)

For completeness we include a proof in Section 4.8, since compared to [KFL22] we consider
M(t) ≡ 1 (and not M(t) ≡ 2), a different starting distribution for Y0, and early stopping. In
addition, we need the following short-time estimate on W2(p, pτ ), which is proved in Section
4.8.

Lemma 4.4.4. Suppose that M :=
∫︁
Rd∥x∥2p(x)dx <∞. Then, for 0 < τ < d

M2 , we have

W2(p, pτ ) ≤
√

3τd.

Using the triangle inequality for W2, the combination of Proposition 4.4.3 and Lemma 4.4.4
readily gives

W2(p, qT1−τ ) ≤
√

3τd+ Iτ (T1)W2(pT1 , q0) +
∫︂ T1

τ

√︂
b(t)Iτ (t) dt. (4.4.9)

This bound shows that to achieve convergence, we need (i) small τ , (ii) b(t)→ 0 (which is
reasonable, since sθ is obtained by minimizing the L2 loss), and (iii) W2(q0, pT1)→ 0. The
latter condition corresponds to choosing a good starting distribution for the reverse process
(instead of γ), and it is ensured by the inexact Langevin dynamics (4.4.1), which will be
analyzed next.

Analysis of inexact Langevin dynamics (4.4.1). Recall the definition of the log-Sobolev
inequality.

Definition 4.4.5. A probability measure µ satisfies a log-Sobolev inequality with constant
κ > 0 (notation: LSI(κ)) if, for all probability measures ν,

DKL(ν ∥µ) ≤ 1
2κIµ(ν), (4.4.10)
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where Iµ(ν) is the relative Fisher Information, defined by

Iµ(ν) =

⎧⎪⎨⎪⎩
∫︂
Rd

⃦⃦⃦⃦
∇ log dν

dµ

⃦⃦⃦⃦2
dν = 4

∫︂
Rd

⃦⃦⃦⃦
∇
√︃

dν
dµ

⃦⃦⃦⃦2
dµ, if ν ≪ µ and

√︂
dν
dµ
∈ H1(µ),

+∞, otherwise.
(4.4.11)

Here, H1(µ) denotes the weighted Sobolev space. If µ satisfies a log-Sobolev inequality, we
use the notation CLS(µ) for its optimal constant.

Remark 4.4.6. If µ satisfies LSI(κ) for some κ > 0, then it also satisfies the transport-entropy
inequality [OV00] (see also [GL10, Thm. 8.12] for an overview of related results)

W2(ν, µ) ≤
√︄

2
κ
DKL(ν ∥µ). (4.4.12)

It is well known that Langevin dynamics for a measure µ converges exponentially fast in
KL-divergence if µ satisfies a log-Sobolev inequality, see e.g. [Vil03, VW19]. A similar
convergence result has recently been proved in [YYW23] for the inexact Langevin dynamics⎧⎨⎩ Z0 ∼ ν,

dZt = sθ(Zt) dt+
√

2 dBt,
(4.4.13)

where sθ approximates the score ∇ log µ. For convenience, we state Theorem 1 of [YYW23]
below.

Theorem 4.4.7. Let µ, ν be probability measures with full support that admit densities with
respect to the Lebesgue measure. Suppose that µ satisfies a log-Sobolev inequality and let
κ = CLS(µ). Then, the time-marginal law νt of the inexact Langevin dynamics (4.4.13)
satisfies, for t ≥ 0,

DKL(νt ∥µ) ≤ e− 1
2κtDKL(ν ∥µ) + 2 logEµ

[︃
exp

(︃1
κ
∥∇ log µ− sθ∥2

)︃]︃
.

The application of Theorem 4.4.7 requires pT1 to satisfy a log-Sobolev inequality, as well as the
estimation of CLS(pT1). To ensure this, we notice that pT1 = law

(︂
e−T1X +

√
1− e−2T1Z

)︂
where Z ∼ γ is an independent Gaussian, and apply recent results from [CCNW21] that
quantify the log-Sobolev constant of the convolution of a subgaussian probability measure
with a Gaussian having sufficiently high variance (cf. Lemma 4.8.3 and Theorem 4.8.4 in
Section 4.8). In this way, we deduce that CLS(pT1) ≥ 1− δ. Next, in order to apply Theorem
4.4.7 with µ = pT1 and ν = γ, we need an estimate of DKL(γ ∥ pT1). This is provided by the
result below, which is proved in Section 4.8.

Lemma 4.4.8. Let p ∈ P(Rd) with M :=
∫︁
Rd∥x∥2 dp(x) <∞. Then, for t > 0 we have

DKL(γ ∥ pt) ≤
d

2σt

(︃
M

d
e−2t + σt log σt − σt + 1

)︃
,

with σt = 1− e−2t. Thus, for t ≥ max
(︂
log(
√

2), log
(︂√︂

(M + d/2)/δ
)︂)︂

, we have the upper
bound DKL(γ ∥ pt) ≤ δ, while for t ≥ max

(︂
log(
√

2), log
(︂√

3M
)︂)︂

we have DKL(γ ∥ pt) ≤ d
3 .
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By combining the estimate on DKL(σT2 ∥ pT1) given by Theorem 4.4.7 with the transport-
entropy inequality (4.4.12) (which also uses CLS(pT1) ≥ 1 − δ > 0) and the above lemma,
we obtain an upper bound on W2(σT2 , pT1) = W2(q0, pT1). Combining this upper bound
with (4.4.9) gives the desired inequality (4.4.3). The inequality (4.4.4) then follows from
the Cauchy-Schwarz inequality, which concludes the proof of Theorem 4.4.1. The complete
argument is contained in Section 4.8.

Controlling a stronger loss (Theorem 4.4.2). It is not difficult to construct an estimator
sθ(T1, ·) such that b(T1) is arbitrarily small and εMGF diverges. In fact, consider estimating
the score of the standard Gaussian γ, given by ∇ log γ(x) = −x, via a sequence of estimators
of the form sM(x) = −x1∥x∥≤M . Then, we have limM→∞ b(T1) = 0, but εMGF is infinite for
all M ≥ 0. This might seem discouraging, but we can prevent such pathological problems by
leveraging our knowledge about the target score function. This allows us to fix predictions of
the estimator sθ(T1, x) that happen to be very far from the target value ∇ log pT1(x). More
precisely, by choosing T1 according to the prescription of Theorem 4.4.2, we can ensure that
∇ log pT1(x) lies in a region around the score of the standard Gaussian ∇ log γ = −x, i.e.,

|−xi − ∂i log pT1 | ≤
δ

2d(1 + ∥x∥), for all i ∈ {1, . . . , d},

see Lemma 4.9.2. This is illustrated in Figure 4.2, in one dimension: the green dashed line
represents ∇ log γ = −x, and our choice of T1 guarantees that ∇ log pT1 lies in the region
delimited by the blue and purple lines. Whenever sθ returns a value outside this region, we
correct it by choosing the closest value on the boundary. This leads to the definition of the
estimator ˜︁sθ given by (4.4.5). For this new estimator, we can now convert an L2 error into an
upper bound for εMGF, which gives Theorem 4.4.2. The argument crucially relies on the fast
decay of the tails of pT1 , thanks to the similarity with the standard Gaussian γ, and exploits
the confinement knowledge to deduce a converse bound to Jensen’s inequality, cf. Lemma
4.7.4. The complete proof is contained in Section 4.9.

Figure 4.2: The confinement region for ∇ log pT1 .
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4.5 Convergence of discretized schemes in total
variation distance

In practical implementations, the continuous time dynamics needs to be approximated by
a discrete time scheme. The existing literature for discretizations of the reverse process
[CCL+23b, CLL22, LLT22] focuses on the reverse SDE instead of the ODE (i.e., M(t) = 2
instead of M(t) = 1 in (4.3.3)), and on information-divergence metrics instead of the
Wasserstein distance, as for the latter the analysis seems significantly more complicated
[CCL+23b, Sec. 4]. The two-stage algorithm (with a stochastic reverse process) considered in
this paper is compatible with such recent analyses: we illustrate this in the present section by
providing convergence guarantees for a natural discretization of the algorithm. The argument
proceeds in a similar way to Section 4.4. In particular, a key role is played again by Lemmas
4.8.3 and 4.4.8: the first guarantees that pT1 satisfies a log-Sobolev inequality with a good
constant, so that a discretization of the inexact Langevin dynamics performs well, while the
second ensures that the Gaussian distribution γ is a good initialization for the algorithm.

For the discretization of (4.4.1), we consider following the inexact Langevin algorithm with
variable step sizes hk > 0:⎧⎨⎩ Z0 ∼ γ,

Zk+1 = Zk + hksθ(T1, Zk) +
√

2hkBk,
(4.5.1)

where (Bk)k iid∼ N (0, Id). This is run for a variable number of steps N2, and we now denote
by σk the law of Zk.

Convergence guarantees for Zk as k → ∞ can be obtained from the analysis in [YYW23,
Thm. 2], which we slightly modify to take into account a decaying step size: this will give
a logarithmic improvement on the computational complexity, in the same spirit as [DK19].
As in Section 4.4 (and as in [YYW23]), the analysis of the Langevin algorithm introduces a
modified loss ε̃MGF, which is stronger than the standard L2 error on the accuracy of the score
estimate. However, at time T1 this loss can be controlled again thanks to Theorem 4.4.2 (cf.
also Remark 4.5.2).

As for the reverse process, to take advantage of the existing literature, we consider a discretiza-
tion of the reverse SDE instead of the reverse ODE (corresponding to M(t) = 2 instead of
M(t) = 1 in (4.3.5)). The chosen numerical method is the popular exponential integrator
scheme [ZC23], so that the second stage of the algorithm is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y0 = ZN2 ,

Yk+1 = Yke
h̃k + 2sθ(tk, Yk)

(︂
eh̃k − 1

)︂
+
√︂
e2h̃k − 1B̃k,

tk = T1 −
∑︁k−1
i=0 h̃i,

(4.5.2)

for a sequence of step sizes (h̃k)N1−1
k=0 such that ∑︁N1−1

k=0 h̃k ≤ T1 and for (B̃k)k iid∼ N (0, Id).
The output YN1 is finally taken as an approximate sample from p, and we denote now by pθ
its law; under appropriate assumptions, we derive convergence guarantees of pθ to p in total
variation distance. In place of the integrated L2 loss in (4.3.4), for discrete time schemes it is
natural to introduce the analogous loss

ˆ︃JSM =
N1−1∑︂
k=0

h̃kEptk

[︂
∥∇ log ptk − sθ(tk, ·)∥

2
]︂
.
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We can think of ˆ︃JSM as an approximation of JSM: it is a standard and realistic assumption
that ˆ︃JSM can be made arbitrarily small with sufficient data and model capacity. The errors
arising in the reverse process (4.5.2) (due to the inaccuracy of the score estimate and the
use of the discrete scheme) can be bounded thanks to the recent theoretical literature on
the performance of diffusion models, see e.g. [CCL+23b, CLL22]; together with the analysis
of (4.5.1), this allows us to deduce end-to-end convergence guarantees for the two-stage
algorithm.

To illustrate this, we present below one such result which exploits the analysis of [CLL22, Thm.
1], and we refer the reader to Section 4.10 for the proof. Additional results under different
assumptions and choices of the step size can be deduced by adapting other arguments (e.g.
[CLL22, Thm. 2]). Specifically, we consider a constant step size for the reverse process and a
standard smoothness condition [CCL+23b, CLL22].

Theorem 4.5.1. Under Assumption (A1), pick 0 < δ ≤ 1
2 and suppose that T1 ≥

1
2 log

(︃
2 + 172∥X∥2

SG
δ

+ d
2δ

)︃
. Assume in addition that ∇ log pt is L1-Lipschitz for t ∈ [0, T1]

and that sθ(T1, ·) is L2-Lipschitz with L1, L2 ≥ 1, and consider the modified loss at time T1

ε̃MGF := logEpT1

[︃
exp

(︃ 9
1− δ∥∇ log pT1 − sθ(T1, ·)∥2

)︃]︃
. (4.5.3)

Then, for the algorithm described above with step sizes hk = 1
24L1L2+ k+1

16
and h̃k = h̃ = T1

N1
≤ 1,

we have that

∥p− pθ∥TV ≲

√︄ˆ︃JSM + dL2
1T

2
1

N1
+

⌜⃓⃓⎷(︃ L1L2

N2 + 1

)︃2
+ dL2

2
N2 + 1 + ε̃MGF

=
√︂ˆ︃JSM + dL2

1T1h̃+

⌜⃓⃓⎷(︃ L1L2

N2 + 1

)︃2
+ dL2

2
N2 + 1 + ε̃MGF.

(4.5.4)

Remark 4.5.2. To deduce convergence from the above result assuming only L2 accuracy of
the score, we need to control ε̃MGF. This can be done again using Theorem 4.4.2, where we
now choose β = 9

1−δ and take 0 < δ < 0.054 to fulfill β ≤ 1
36δ2 .

Remark 4.5.3 (Complexity of sampling). Suppose that the goal is to achieve ∥p− pθ∥TV ≤ ε
for some 0 < ε < 1. A typical assumption is to be able to control the L2 error of the score
approximation; hence, by the remark above, we can assume that ˆ︃JSM, ε̃MGF ≲ ε2, as needed
in the bound (4.5.4). Consequently, (4.5.4) shows that the algorithm needs at most N steps
to ensure ∥p− pθ∥TV ≤ ε, with

N = N1 +N2 ≲
d

ε2 ·
(︂
L2

1 log2(d+ ∥X∥SG) + L2
2

)︂
.

Remark 4.5.4. If we choose also for the inexact Langevin algorithm (4.5.1) a fixed step size
hk = h ≤ 1

24L1L2
, we obtain instead the bound

∥p− pθ∥TV ≲

√︄ˆ︃JSM + dL2
1T

2
1

N1
+
√︂
e− 1

8hN2 + L2(L1 + L2)dh+ ε̃MGF.

In this case, for the number of steps N to achieve ∥p− pθ∥TV ≤ ε, we have that

N = N1 +N2 ≲
d

ε2 ·
(︃
L2

1 log2(d+ ∥X∥SG) + L2(L1 + L2) log 1
ε

)︃
.
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4.5.1 Comparison with previous results
To highlight a few favorable properties of the predictor-corrector algorithm, we compare the
result above with [CLL22, Thm. 1], translated into total variation distance via Pinsker’s
inequality. The authors of [CLL22] consider, under similar assumptions, the standard sampling
scheme based on a discretization of the reverse SDE without the prior Langevin algorithm
or any corrector; in other words, they consider (4.5.2) with constant step size initialized at
Z0 ∼ γ. For the corresponding output distribution ˆ︂pθ they prove the bound

∥p−ˆ︂pθ∥TV ≲

√︄
(M + d)e−2T1 + ˆ︃JSM + dL2T 2

1
N1

=
√︂

(M + d)e−2T1 + ˆ︃JSM + dL2T1h̃,

(4.5.5)

where M is the second moment of p. Therefore, to achieve ∥p−ˆ︂pθ∥TV ≤ ε the reverse SDE
needs at most N steps with

N ≲
dL2

1
ε2 log2

(︄
M + d

ε2

)︄
.

Comparing the bounds (4.5.4) and (4.5.5) shows some advantages of the predictor-corrector
schemes, arising from a fixed choice of T1 independent of the desired sampling accuracy ε.

1. The convergence result in (4.5.4), unlike (4.5.5), is stable with T1. In other words, for
a fixed choice of step size h̃ in the reverse process, the bound in (4.5.5) explodes as
T1 →∞, which is however necessary to minimize the error (M + d)e−2T1 arising from
the approximation pT1 ≈ γ. Thus, there is a trade-off between the choice of T1 and
the step size in the reverse process. In contrast, this problem does not occur for the
bound in (4.5.4), since T1 is now fixed. For the specified choice of step sizes hk (which
is independent of the desired accuracy), the error goes to 0 as h̃→ 0 and N2 →∞. At
the same time, the bound is now stable for any choice of the variable quantities h̃ ≤ 1
and N2 ≥ 1. [YYW23] is also aimed at obtaining stable convergence. However, the
results therein apply only to distributions satisfying a log-Sobolev inequality and under
stronger assumptions on the accuracy of the score.

2. To achieve convergence, the bound (4.5.5) requires learning the score ∇ log pt on a
time interval which increases as T1 →∞: correspondingly, the error term ˆ︃JSM increases
too with T1. For example, assuming that we have L2-accuracy of ε2 at every time (i.e.,
b(tk) ≤ ε2 for every tk, cf. Assumption 3 of [CCL+23b]) we have that ˆ︃JSM = ε2T1, which
diverges as T1 →∞ with fixed ε > 0 (see also [CCL+23b, Thm. 2]). These problems
do not occur with the bound in (4.5.4), since T1 is fixed; this simplifies the training
procedure of the neural network learning the score and contributes to the stability of the
convergence result. At the same time, this further pushes the observation by [CCL+23b]
that “sampling is as easy as learning the score”, in the sense that knowledge of the score
∇ log pt for all times t suffices for efficient sampling. Indeed, Theorem 4.5.1 shows the
stronger result that, for norm-subgaussian distributions, knowledge of the score on a
fixed finite time interval is actually enough.

3. Finally, when looking at the dependence on the desired accuracy ε, the bound of (4.5.4)
removes a factor of log2

(︂
1
ε

)︂
in the number of steps required by the algorithm.
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4.6 Concluding remarks
In this work, we give convergence guarantees for a variant of the popular predictor-corrector
approach in the context of score-based generative modeling. Our analysis provides bounds
that (i) require running the forward process only for a fixed time T1, which does not depend
on the final sampling accuracy, (ii) make minimal assumptions on the data (subgaussianity of
the norm), (iii) exhibit a mild logarithmic dependence on the input dimension and on the tails
of the data distribution, and (iv) allow for realistic assumptions on the score estimation, in the
form of a control on the standard L2 loss integrated over the finite time T1.

4.7 Additional and auxiliary lemmas

Notation
Recall that a scalar random variable X is subgaussian if there exists a constant K > 0 such
that E

[︃
e

X2
K2

]︃
≤ 2. Its subgaussian norm is defined by ∥X∥ψ2 := inf

{︃
t > 0 : E

[︃
e

X2
t2

]︃
≤ 2

}︃
.

Furthermore, an Rd-valued random variable X is said to be norm-subgaussian if its euclidean
norm ∥X∥ is subgaussian. We define ∥X∥SG := ∥∥X∥∥ψ2 Note that both ∥·∥ψ2 and ∥·∥SG
are norms and, if SuppX ⊂ B(0, R) for some radius R > 0, then ∥X∥SG ≤ R√

log(2)
.

For the convenience of the reader, in the table below we recall the relevant notation used in
the paper.

Notation Meaning

∥X∥ψ2 Subgaussian norm of random variable
∥X∥SG = ∥∥X∥∥ψ2

Subgaussian norm of random vector
p Target distribution
pt Perturbed distribution at time t
pθ Output distribution of the algorithm

sθ(t, x) ≈ ∇ log pt(x) Estimator for the score function
Ls(t) One-sided Lipschitz constant of sθ(t, ·)
τ ≥ 0 Early stopping time
T1 > 0 Running time of the forward process
N1 > 0 Number of steps for reverse process
T2 ≥ 0 Running time of Langevin dynamics
N2 ≥ 0 Number of steps for Langevin algorithm

b(t) = Ept

[︂
∥∇ log pt − sθ(t, ·)∥2

]︂
L2-error for score approximation

εMGF = logEpT1

[︃
e

1
1−δ∥∇ log pT1 −sθ(T1,·)∥2]︃

ε̃MGF = logEpT1

[︃
e

9
1−δ∥∇ log pT1 −sθ(T1,·)∥2]︃ Stronger losses for the score at time T1
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Auxiliary lemmas
First of all, we recall the following classical properties of the Gaussian distribution.

Lemma 4.7.1. Let Z ∼ γt. Then,

∥Z∥SG ≤ 2
√
dt.

Moreover, CLS(γx,t) ≥ 1
t

for all x ∈ Rd and t > 0.

Proof. Without loss of generality, suppose that Z ∼ γ (i.e. t = 1). Recalling the moment
generating function of the χ2-distribution, we have that, for 0 ≤ c ≤ 1

4d <
1
2 ,

E
[︂
ec∥Z∥2]︂ = (1− 2c)− d

2 ≤ 1
1− 2cd ≤ 2,

which proves the first claim.

The statement about the log-Sobolev constant is well known (it follows for example from the
Bakry–Émery criterion, cf. [Vil03, Thm. 9.9],[BGL14]). ■

Lemma 4.7.2. For all t, c > 0, we have∫︂ ∞

t
e−cx2

dx ≤ 1
2cte

−ct2 .

Proof. As in [Ver18, Prop 2.1.2], we have∫︂ ∞

t
e−cx2

dx =
∫︂ ∞

0
e−c(x2+2xt+t2)dx ≤ e−ct2

∫︂ ∞

0
e−2ctxdx = 1

2cte
−ct2 .

■

The next lemma provides some useful estimates for norm-subgaussian random vectors (cf.
[Ver18, JNG+19]).

Lemma 4.7.3. Let X ∼ p be a norm-subgaussian random vector. The following hold:

(i) For all s ≥ 0,

P(∥X∥ ≥ s) ≤ 2e
− s2

∥X∥2
SG . (4.7.1)

Moreover,
E
[︂
∥X∥2

]︂
≤ 2∥X∥2

SG. (4.7.2)

(ii) For any L > 0 and 0 < c < 1
∥X∥2

SG
,

∫︂
B(0,L)c

ec∥X∥2
dp(x) ≤ 2

(︄
1 + c∥X∥2

SG
1− c∥X∥2

SG

)︄
e

−L2·
(︃

1
∥X∥2

SG
−c
)︃
.

(iii) For any L > 0, ∫︂
B(0,L)c

∥x∥ dp(x) ≤
(︄

2L+ ∥X∥
2
SG

L

)︄
e

− L2
∥X∥2

SG .
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Proof. (i) As in [Ver18, Prop. 2.5.2], we have

P(∥X∥ ≥ s) = P

⎛⎝e ∥X∥2

∥X∥2
SG ≥ e

s2
∥X∥2

SG

⎞⎠ ≤ e
− s2

∥X∥2
SG E

⎡⎣e ∥X∥2

∥X∥2
SG

⎤⎦ ≤ 2e
− s2

∥X∥2
SG ,

where the first inequality follows from Markov inequality and the second uses the
definition of norm-subgaussianity. Using (4.7.1), we obtain

E
[︂
∥X∥2

]︂
=
∫︂ ∞

0
P
(︂
∥X∥2 ≥ k

)︂
dk ≤ 2

∫︂ ∞

0
e

− k

∥X∥2
SG dk = 2∥X∥2

SG,

which proves (4.7.2).

(ii) Let Y = ec∥X∥2
1{∥X∥≥L}. Then,

∫︁
B(0,L)c ec∥X∥2

p(x)dx = E[Y ]. Moreover, the following
chain of inequalities holds:

E[Y ] =
∫︂ ∞

0
P(Y ≥ k) dk

≤ ecL
2 · P(∥X∥ ≥ L) +

∫︂ ∞

ecL2
P

(︄
∥X∥2 ≥ log k

c

)︄
dk

≤ 2ecL2
e

− L2
∥X∥2

SG + 2
∫︂ ∞

ecL2
k

− 1
c∥X∥2

SG dk

= 2
(︄

1 + c∥X∥2
SG

1− c∥X∥2
SG

)︄
e

−L2

(︃
1

∥X∥2
SG

−c
)︃
,

where the third line follows from point (i).

(iii) Similarly to the proof of the previous point, let Y = ∥X∥1∥X∥≥L. Then,∫︂
B(0,L)c

∥X∥p(x)dx = E[Y ].

Moreover, the following chain of inequalities holds:

E[Y ] =
∫︂ ∞

0
P(Y ≥ k) dk

≤ L · P(∥X∥ ≥ L) +
∫︂ ∞

L
P(∥X∥ ≥ k) dk

≤ 2Le
− L2

∥X∥2
SG + 2

∫︂ ∞

L
e

− k2
∥X∥2

SG dk

≤ 2Le
− L2

∥X∥2
SG + ∥X∥

2
SG

L
e

− L2
∥X∥2

SG

=
(︄

2L+ ∥X∥
2
SG

L

)︄
e

− L2
∥X∥2

SG ,

where the second inequality follows from point (i) and the third one follows from Lemma
4.7.2.

■

The next lemma will be useful to find an upper bound for εMGF in terms of b(T1); the
corresponding lower bound is easy and follows immediately from Jensen’s inequality.
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Lemma 4.7.4. Consider a random variable F such that 0 ≤ F ≤M for some M > 0. Then,

E
[︂
eF
]︂
≤ 1 + eME[F ].

Proof. By the mean value theorem, for x ≥ 0 we have the bound ex ≤ 1 + xex. Hence,
eF ≤ 1+eMF , from which the conclusion follows by taking the expectation on both sides. ■

4.8 Proof of Theorem 4.4.1
We begin with the proof of Proposition 4.4.3, which gives W2-estimates for the reverse process
Yt satisfying (4.4.2). Its time-marginals qt = law(Yt) satisfy the continuity equation⎧⎨⎩ q0 = law(ZT2),

∂tqt(x) +∇ · [qt(x)(x+ˆ︂sθ(t, x))] = 0.
(4.8.1)

Here and below we use the symbol ˆ︂(·) to denote the time-reversal of a function on [0, T1],
e.g., p̂t = pT1−t, ˆ︂sθ(t, ·) = sθ(T1 − t, ·), b̂(t) = b(T1 − t), ˆ︂Ls(t) = Ls(T1 − t).

Our goal is to obtain an upper bound for W2(pτ , qT1−τ ), where (p̂t)t satisfies the Fokker–Planck
equation ⎧⎨⎩ p̂0 = pT1 ,

∂tp̂t(x) +∇ · [p̂t(x)(x+∇ log p̂t(x))] = 0.
(4.8.2)

Following [KFL22], we apply the following well-known formula for the derivative of the
Wasserstein distance between two curves of probability measures, cf. [AGS08, Thm. 8.4.7,
Rmk. 8.4.8], [Vil09, Thm. 23.9].

Theorem 4.8.1. Let (P2(Rd),W2) be the space of probability measures on Rd with finite
second moment equipped with the Wasserstein distance W2. Consider two weakly continuous
curves (µt)t, (νt)t in P2(Rd) that solve the continuity equations

∂tµt +∇ · (ξtµt) = 0, ∂tνt +∇ ·
(︂
ξ̃tνt

)︂
= 0.

Suppose moreover that, for some 0 ≤ t1 < t2 <∞, we have
∫︂ t2

t1

(︃
Eµt

[︂
∥ξt∥2

]︂
+ Eνt

[︃⃦⃦⃦
ξ̃t
⃦⃦⃦2
]︃)︃
dt <∞.

Then, denoting by πt an optimal coupling for W2(µt, νt), we have

d

dt

W 2
2 (µt, νt)

2 = Eπt

[︂
(x− y) · (ξt(x)− ξ̃t(y))

]︂
,

for a.e. t ∈ (t1, t2).

To apply the theorem above and deduce a differential inequality, we first need to prove the
following result.
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Lemma 4.8.2. For 0 < τ < T1 <∞, we have∫︂ T1−τ

0
Eqt

[︂
∥x+ˆ︂sθ(t, x)∥2

]︂
dt <∞, (4.8.3)∫︂ T1−τ

0
Ep̂t

[︂
∥x+∇ log p̂t(x)∥2

]︂
dt <∞. (4.8.4)

Hence, the curves (qt)t∈[0,T1−τ ] and (p̂t)t∈[0,T1−τ ] are absolutely continuous in
(︂
P2(Rd),W2

)︂
.

Proof. We start with (4.8.4). Recall first that for t > 0,

− d
dtDKL(pt ∥ γ) = Iγ(pt) = Ept

⎡⎣⃦⃦⃦⃦⃦∇ log dpt
dγ

⃦⃦⃦⃦
⃦

2
⎤⎦ = Ept

[︂
∥x+∇ log pt(x)∥2

]︂
,

where, with abuse of notation, we have identified the probability measures pt, γ with their
densities with respect to the Lebesgue measure. Integrating this inequality between τ and T1
we find ∫︂ T1

τ
Ept

[︂
∥x+∇ log pt(x)∥2

]︂
dt ≤ DKL(pτ ∥ γ) <∞,

where we used non-negativity of the KL-divergence and that DKL(pτ ∥ γ) < ∞, cf. [Vil03,
Rmk. 9.4]. The conclusion follows by a change of variable in the integral.

As for (4.8.3), we argue as in the proof of [Vil09, Thm. 23.9]. Note first that q0 ∈ P2(Rd), since
pT1 ∈ P2(Rd) and W2(q0, pT1) <∞. Let vt(x) denote the velocity field vt(x) = x+ˆ︂sθ(t, x).
Since T1 is finite, it follows from our assumption (A1) in Section 4.4 that there exists a
constant C > 0 such that ∥vt(x)∥ ≤ C(1+∥x∥) for all x ∈ Rs and 0 ≤ t ≤ T1. The Lipschitz
assumption on sθ in our assumption (A1) in Section 4.4 also implies that v is Lipschitz.
Therefore, there exists a unique trajectory map Tt : Rd → Rd associated to the continuity
equation (4.8.1), i.e., ⎧⎨⎩T0(x) = x,

d
dt
Tt(x) = vt(Tt(x)).

Then, by the conservation of mass formula [Vil09], we have qt = (Tt)#q, where # denotes
the pushforward of a measure by a map. Notice now that, for all 0 ≤ t ≤ T1,

∥Tt(x)∥ =
⃦⃦⃦⃦
x+

∫︂ t

0
vt(Tt)(x)dt

⃦⃦⃦⃦
≤ ∥x∥+ CT1 + C

∫︂ t

0
∥Tt(x)∥dt.

Therefore, by the integral version of Gronwall’s lemma applied to the continuous function
t→ ∥Tt(x)∥, we deduce that

∥Tt(x)∥ ≤ (∥x∥+ CT1)eCT1 .

It follows that, for 0 ≤ t ≤ T1,∫︂
Rd
∥x∥2qt(dx) =

∫︂
Rd
∥Tt(x)∥2q0(dx) ≤ e2CT1

∫︂
Rd

(∥x∥+ CT1)2q0(dx) =: C̃ <∞,

thus the second moment of qt is uniformly bounded by C̃ for 0 ≤ t ≤ T1. Replacing C̃ with
C̃+1, we note that also the first moment is uniformly bounded by C̃. Therefore, recalling that
∥x+ sθ(t, x)∥ = ∥vT1−t(x)∥ ≤ C(1 + ∥x∥), we obtain the following bound, for all 0 ≤ t ≤ T1,

Eqt

[︂
∥x+ sθ(t, x)∥2

]︂
≤ C(1 + Eqt

[︂
∥x∥2

]︂
) ≤ C(1 + C̃).
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4.8. Proof of Theorem 4.4.1

This implies the desired estimate (4.8.3).

Finally, the absolute continuity of the curves (qt)t∈[0,T1−τ ] and (p̂t)t∈[0,T1−τ ] is an immediate
consequence of the bounds (4.8.3) and (4.8.4) in view of [AGS08, Thm. 8.3.1]. ■

Proof of Proposition 4.4.3. Thanks to Lemma 4.8.2, we can apply Theorem 4.8.1. Let πt be an
optimal coupling in W2 for p̂t and qt, so that by definition we have Eπt [∥x− y∥2] = W 2

2 (p̂t, qt).
Then, we deduce that, for a.e. t ∈ [0, T1 − τ ],

1
2

d
dtW

2
2 (p̂t, qt)

= Eπt [(x− y) · (x− y)] + Eπt [(x− y) · (∇ log p̂t(x)−ˆ︂sθ(t, y))]
= W 2

2 (p̂t, qt) + Eπt [(x− y) · (ˆ︂sθ(t, x)−ˆ︂sθ(t, y))] + Eπt [(x− y) · (∇ log p̂t(x)−ˆ︂sθ(t, x))]

≤ W 2
2 (p̂t, qt) + ˆ︂Ls(t)Eπt

[︂
∥x− y∥2

]︂
+
√︂
Eπt [∥x− y∥2] ·

√︂
Eπt [∥∇ log p̂t(x)−ˆ︂sθ(t, x)∥2]

=
(︂
1 + ˆ︂Ls(t))︂W 2

2 (p̂t, qt) +
√︂
b̂(t)W2(p̂t, qt).

From this we deduce the differential inequality
d
dtW2(p̂t, qt) ≤

(︂
1 + ˆ︂Ls(t))︂W2(p̂t, qt) +

√︂
b̂(t).

We can solve this differential inequality by introducing the auxiliary function I(τ, t) :=
exp

(︂
t− τ +

∫︁ t
τ Ls(r)dr

)︂
, which satisfies

I(τ, r)I(r, t) = I(τ, t), I(t, t) = 1, and d

dt
I(τ, t) = (1 + Ls(t))I(τ, t). (4.8.5)

Combining the latter identity with the differential inequality above, we find
d

dt

(︃
I(T1, T1 − t)W2(p̂t, qt)

)︃
≤ I(T1, T1 − t)

√︂
b̂(t),

for a.e. t. Since the curve t→ I(τ, t) is Lipschitz by (A1) in Section 4.4, it is also absolutely
continuous. Moreover, the triangle inequality for W2 yields

|W2(p̂t, qt)−W2(p̂s, qs)| ≤ |W2(p̂t, qt)−W2(p̂t, qs)|+ |W2(p̂t, qs)−W2(p̂s, qs)|
≤ W2(qt, qs) +W2(p̂t, p̂s).

Using the absolute continuity of p̂t, qt in (P2(Rd),W2) (cf. Lemma 4.8.2) we deduce that
t→ W2(p̂t, qt) is absolutely continuous too on [0, T1 − τ ]. Therefore, also the function

t→ I(T1, T1 − t)W2(p̂t, qt)

is absolutely continuous on [0, T1 − τ ]. Hence, we can apply the second fundamental theorem
of calculus for the Lebesgue integral and integrate the differential inequality between 0 and
T1 − τ . Doing this gives

I(T1, τ)W2(pτ , qT1−τ ) ≤ W2(pT1 , q0) +
∫︂ T1−τ

0
I(T1, T1 − t)

√︂
b̂(t)dt.

Using the properties of I from (4.8.5) we find

W2(pτ , qT1−τ ) ≤ I(τ, T1)W2(pT1 , q0) +
∫︂ T1−τ

0
I(τ, T1 − t)

√︂
b̂(t)dt,

which yields the desired expression after a change of variables t′ := T1 − t. ■
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4. Convergence of Diffusion Models via Prediction-Correction

We now prove Lemma 4.4.4, which gives a well-known Hölder continuity bound in Wasserstein
distance for the Ornstein-Uhlenbeck flow.

Proof of Lemma 4.4.4. Let X be a random variable with law p, and let be Z be a standard
Gaussian random variable that is independent of X. Then Xτ := e−τX +

√
1− e−2τZ has

law pτ . Using independence, we obtain

W 2
2 (p, pτ ) ≤ E

[︂
|X −Xτ |2

]︂
= E

[︂
|(1− e−τ )X −

√
1− e−2τZ|2

]︂
= (1− e−τ )2E

[︂
|X|2

]︂
+ (1− e−2τ )E

[︂
|Z|2

]︂
≤ τ 2M2 + 2τd,

which implies the result. ■

As discussed in Section 4.4.1, to establish fast convergence of the approximate Langevin
dynamics in (4.4.1) we need a quantitative estimate for the log-Sobolev constant of pT1 , which
is provided in the next result.

Lemma 4.8.3. Let (pt)t≥0 be the law of the Ornstein–Uhlenbeck flow starting from a
norm-subgaussian random vector X. Then, pt satisfies a log-Sobolev inequality with constant

CLS(pt) ≥
1

1 + 172∥X∥2
SGe

−2t ,

for all t > t0 := 1
2 log(1 + 4∥X∥2

SG).
Consequently, for any δ ∈ (0, 1), the log-Sobolev constant of pt satisfies CLS(pt) ≥ 1 − δ
whenever t ≥ max

(︂
t0,

1
2 log(172∥X∥2

SG/δ)
)︂
.

The proof is based on the following recent result from [CCNW21, Thm. 2], which gives an
estimate for the log-Sobolev constant of Gaussian convolutions of sub-Gaussian distributions.

Theorem 4.8.4. Let µ be a probability measure and σ,CSG > 0 be such that∫︂ ∫︂
e

∥x−x′∥2

σ2 µ(dx)µ(dx′) ≤ CSG. (4.8.6)

For all t > σ2, the measure µ ∗ γt satisfies a log-Sobolev inequality with the constant

CLS(µ ∗ γt) ≥
(︄

3t
[︄

t

t− σ2 + C
σ2

t−σ2
SG

]︄[︄
1 + σ2

t− σ2 logCSG

]︄)︄−1

. (4.8.7)

Proof of Lemma 4.8.3. Note that pt is the law of e−tX +
√

1− e−2tZ, with X ∼ p and
Z ∼ γ independent. Consequently, pt = µt ∗ γ1−e−2t , where µt denotes the law of e−tX.
Suppose now that 1+4∥X∥2

SG < e2t and define σ :=
√

2e−t∥X∥SG. Since 1−e−2t−2σ2 > 0,
we may proceed as in [CCNW21, Rmk. 3] and write

pt = µt ∗ γ2σ2 ∗ γ1−e−2t−2σ2 . (4.8.8)

We claim that µt satisfies the assumption of Theorem 4.8.4 with CSG = 4 and σ as defined
above. Indeed,∫︂

Rd

∫︂
Rd
e

∥x−x′∥2

σ2 µt(dx)µt(dx′) ≤
∫︂
Rd

∫︂
Rd
e2 ∥x∥2+∥x′∥2

σ2 µt(dx)µt(dx′)

=
(︃∫︂

Rd
e

2∥x∥2

σ2 µt(dx)
)︃2
≤ 4,

(4.8.9)
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where the last step uses our definition of σ. Therefore, an application of Theorem 4.8.4 yields

CLS(µt ∗ γ2σ2) ≥
[︂
6σ2(2 + C)(1 + logC)

]︂−1
≥
[︂
86σ2

]︂−1
.

Using the subadditivity of C−1
LS under convolution (cf. [WW16, Prop. 1.1]) and the estimate

CLS(γ1−e−2t−2σ2) ≥ CLS(γ) = 1 from Lemma 4.7.1, we obtain using (4.8.8),

CLS(pt) ≥
[︄

1
CLS(µt ∗ γ2σ2) + 1

CLS(γ1−e−2t−2σ2)

]︄−1

≥
[︂
86σ2 + 1

]︂−1
,

which proves the first part of the statement. The second part follows immediately. ■

Proof of Lemma 4.4.8. We proceed in two steps. Suppose first that p = δx for some x ∈ Rd.
Then pt = γe−tx,σt is Gaussian with σt := 1− e−2t. An explicit calculation gives

DKL(γ ∥ γe−tx,σt) = d

2σt

(︄
e−2t∥x∥

2

d
+ σt log σt − σt + 1

)︄
. (4.8.10)

In the general case where p ∈ Rd has finite second moment, we condition on the initial value
using the disintegration formula

pt(dy) =
∫︂
Rd
γe−tx,σt(dy) p(dx).

Using this formula, we employ the joint convexity of the KL-divergence and (4.8.10) to obtain

DKL(γ ∥ pT1) = DKL

(︃
γ
⃦⃦⃦⃦ ∫︂

Rd
γe−tx,σt dp(x)

)︃
= DKL

(︃∫︂
Rd
γ dp(x)

⃦⃦⃦⃦ ∫︂
Rd
γe−tx,σt dp(x)

)︃
≤
∫︂
Rd
DKL(γ ∥ γe−tx,σt) dp(x) = d

2σt

(︄
M2(p)
d

e−2t + σt log σt − σt + 1
)︄
,

where M2(p) :=
∫︁
∥x∥2 dp(x).

For the second claim, we use the scalar inequalities r log r− r+ 1 ≤ (r− 1)2 for r ≥ 0. Thus,
whenever e−2t ≤ 1

2 , we have

DKL(γ ∥ pT1) ≤ d

2(1− e−2t)

(︄
M2(p)
d

e−2t + e−4t
)︄
≤
(︄
M2(p) + d

2

)︄
e−2t.

This implies the desired result. ■

We are now ready to prove Theorem 4.4.1.

Proof of Theorem 4.4.1. Note first that, by the triangle inequality for W2, we have

W2(p, pθ) = W2(p, qT1−τ ) ≤ W2(p, pτ ) +W2(pτ , qT1−τ ).

The first term can be estimated with Lemma 4.4.4, the second with Proposition 4.4.3. Plugging
in these estimates gives

W2(p, pθ) ≤
√

3dτ + Iτ (T1)W2(pT1 , q0) +
∫︂ T1

τ
Iτ (t)

√︂
b(t)dt.
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4. Convergence of Diffusion Models via Prediction-Correction

Therefore, to prove (4.4.3), it suffices to show that

W2(pT1 , q0) ≤
√︄

2
1− δ

(︃
δe− (1−δ)T2

2 + 2εMGF

)︃
.

To see this, observe that CLS(pT1) ≥ 1 − δ by Lemma 4.8.3: therefore, we can combine
(4.4.12) with Theorem 4.4.7 to deduce that

W2(pT1 , q0) ≤
√︄

2
1− δ

(︃
DKL(γ ∥ pT1)e− (1−δ)T2

2 + 2εMGF

)︃
.

Recalling that E[∥X∥2] ≤ 2∥X∥2
SG by (i) of Lemma 4.7.3, we can use the estimate

DKL(γ ∥ pT1) from Lemma 4.4.8 to prove (4.4.3); an application of Cauchy–Schwarz in-
equality then gives (4.4.4). Finally, if we only know T1 ≥ 1

2 log
(︃

2 + 172∥X∥2
SG
δ

)︃
, then we can

instead estimate DKL(pT1 ∥ γ) ≤ d
3 , again by Lemma 4.4.8, which proves our claim in the

discussion on the role of T1 after Theorem 4.4.1. ■

4.9 Proof of Theorem 4.4.2
When starting an Ornstein–Uhlenbeck flow from a norm-subgaussian distribution, the distribu-
tion at time T1 will be norm-subgaussian too, and we can estimate its norm.

Lemma 4.9.1. Let (Xt)t≥0 be an Ornstein–Uhlenbeck process (4.3.6) starting from a norm-
subgaussian random vector X. Then, if T1 ≥ log ∥X∥SG√

d
, we have

∥XT1∥SG ≤ 3
√
d. (4.9.1)

Proof. Let Z ∼ γ be independent of X. Then, XT1 is equal in law to e−T1X +
√

1− e−2T1Z.
Consequently,

∥XT1∥SG =
⃦⃦⃦⃦
e−T1X +

√︂
1− e−2T1Z

⃦⃦⃦⃦
SG
≤ e−T1∥X∥SG + ∥Z∥SG ≤ 3

√
d,

where in the last inequality we use Lemma 4.7.1 and the choice of T1. ■

The following lemma gives an a priori estimate for ∇ log pT1 which can be used to correct
predictions of sθ(T1, ·) that are far from the ground-truth.

Lemma 4.9.2. Let (pt)t≥0 be the law of the Ornstein–Uhlenbeck flow starting from a norm-
subgaussian random vector X with law p. Fix 0 < δ < 1 and take T1 ≥ log

(︂
16
δ
d(∥X∥SG + 1)

)︂
.

Then, for all x ∈ Rd and i ∈ {1, . . . , d}, we have

|−xi − ∂i log pT1(x)| ≤ δ

2d(1 + ∥x∥).

Proof. Let µ be the law of e−T1X and set σ2 = 1− e−2T1 . By our choice of T1, we have

⃦⃦⃦
e−T1X

⃦⃦⃦
SG
≤ δ

16d and e−2T1 = 1− σ2 ≤
(︄
δ

16d

)︄2

. (4.9.2)
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Notice that pT1 = µ ∗ γσ2 . Therefore, for all x ∈ Rd, we can write as in [BGMZ18]

pT1(x) =
∫︂
Rd

(2πσ2)− d
2 exp

(︄
−∥x− z∥

2

2σ2

)︄
µ(dz) = (2πσ2)− d

2 exp
(︄
−
(︄
∥x∥2

2σ2 +Wσ(x)
)︄)︄

,

where we set
Wσ(x) = − log

∫︂
Rd

exp
(︄
x · z
σ2 −

∥z∥2

2σ2

)︄
µ(dz).

Taking the logarithm and differentiating, we find that

∂i log pT1(x) = − 1
σ2xi − ∂iWσ(x). (4.9.3)

Observe now that

⃓⃓⃓
σ2∂iWσ(x)

⃓⃓⃓
≤
∫︁
Rd|zi| exp

(︂
x·z
σ2 − ∥z∥2

2σ2

)︂
µ(dz)∫︁

Rd exp
(︂
x·z
σ2 − ∥z∥2

2σ2

)︂
µ(dz)

=
∫︁
Rd |zi|γx,σ2(z)µ(dz)∫︁
Rd γx,σ2(z)µ(dz) , (4.9.4)

where, with some abuse of notation, γx,t denotes the density of a gaussian N (x, tId). We
claim that ∫︂

Rd
|zi|γx,σ2(z)µ(dz) ≤ δ(1 + ∥x∥)

4d

∫︂
Rd
γx,σ2(z)µ(dz), (4.9.5)

which we prove later. Using this bound in (4.9.4) we deduce that

|∂iWσ(x)| ≤ δ(1 + ∥x∥)
4dσ2 .

Inserting this estimate in (4.9.3), it follows using (4.9.2) that

|−∂i log pT1(x)− xi| ≤
1− σ2

σ2 |xi|+
δ(1 + ∥x∥)

4dσ2 ≤ 1 + ∥x∥
σ2

⎡⎣(︄ δ

16d

)︄2

+ δ

4d

⎤⎦
≤ δ

2d(1 + ∥x∥),

where in the last inequality we used that

1
σ2

⎡⎣(︄ δ

16d

)︄2

+ δ

4d

⎤⎦ ≤ 1
1− e−2T1

[︃ 1
256 + 1

4

]︃
δ

d
≤ 1

1− 1/256
δ

3d ≤
δ

2d,

since 0 < δ < 1 and T1 ≥ log(16). This the desired estimate.

It remains to prove (4.9.5). To do so, we start by writing∫︂
Rd
γx,σ2(z)µ(dz) ≥

∫︂
B(0,δ)

γx,σ2(z)µ(dz)

≥ (2πσ2)− d
2 exp

(︄
−(∥x∥+ δ)2

2σ2

)︄
µ(B(0, δ))

≥ (2πσ2)− d
2 exp

(︄
−(∥x∥+ δ)2

2σ2

)︄
[1− 2 exp(−256)],

(4.9.6)
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where in the last step we use (i) of Lemma 4.7.3 and the estimate
⃦⃦⃦
e−T1X

⃦⃦⃦
SG
≤ δ

16d ≤
δ
16 ,

which holds in view of (4.9.2). We now split the integral in the left-hand side of (4.9.5) into
two terms that we will estimate separately. Set r = δ(1+∥x∥)

8d . Then,
∫︂
B(0,r)

|zi|γx,σ2(z)µ(dz) ≤ r
∫︂
B(0,r)

γx,σ2(z)µ(dz) ≤ δ(1 + ∥x∥)
8d

∫︂
Rd
γx,σ2(z)µ(dz).

Therefore, recalling (4.9.6), to conclude the proof of (4.9.5) it is enough to show that∫︂
B(0,r)c

|zi|γx,σ2(z)µ(dz) ≤ δ(1 + ∥x∥)
8d [1− 2 exp(−256)](2πσ2)− d

2 exp
(︄
−(∥x∥+ δ)2

2σ2

)︄
.

To do this, we write

(2πσ2) d
2

∫︂
B(0,r)c

|zi|γx,σ2(z)µ(dz) ≤
∫︂
B(0,r)c

∥z∥µ(dz)

≤
(︄

2r + δ2

256d2r

)︄
exp

(︄
−256d2r2

δ2

)︄

=
(︄

2δ
8d(1 + ∥x∥) + δ

32d
1

1 + ∥x∥

)︄
exp

(︂
−4(1 + ∥x∥)2

)︂
≤ 3δ

8d(1 + ∥x∥) exp
(︂
−4(1 + ∥x∥)2

)︂
,

where in the second line we have used (iii) of Lemma 4.7.3. As σ2 ≥ 1
2 by (4.9.2), δ < 1,

and 3 exp(−4) ≤ [1− 2 exp(−256)], we have

3 exp
(︂
−4(1 + ∥x∥)2

)︂
≤ [1− 2 exp(−256)] exp

(︄
−(∥x∥+ δ)2

2σ2

)︄

for all x, which concludes the proof. ■

We are now ready to move to the proof of Theorem 4.4.2.

Proof of Theorem 4.4.2. Notice that, thanks to Lemma 4.9.2 and to our definition of ˜︂sθ, for
all x ∈ Rd we have

∥∇ log pT1(x)−˜︂sθ(x)∥2 ≤ δ2

d
(1 + ∥x∥)2, (4.9.7)

∥∇ log pT1(x)−˜︂sθ(x)∥ ≤ ∥∇ log pT1(x)− sθ(T1, x)∥. (4.9.8)

As log(1 + ε) ≤ ε, it suffices to show that∫︂
Rd

exp
(︂
β∥∇ log pT1(x)−˜︂sθ(x)∥2

)︂
dpT1(x) ≤ 1 + ε.

Now let us fix a radius R > 0, whose value we specify later. We will show that, for an
appropriate choice of R > 0,∫︂

B(0,R)c
exp

(︂
β∥∇ log pT1(x)−˜︂sθ(x)∥2

)︂
dpT1(x) ≤ ε

2 , (4.9.9)

and ∫︂
B(0,R)

exp
(︂
β∥∇ log pT1(x)−˜︂sθ(x)∥2

)︂
dpT1(x) ≤ 1 + ε

2 , (4.9.10)
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thus concluding the proof.

First, we consider (4.9.9). Notice that

exp
(︂
β∥∇ log pT1(x)−˜︂sθ(x)∥2

)︂
≤ exp

(︄
β
δ2

d
(1 + ∥x∥)2

)︄

≤ exp
(︄

2βδ2

d

)︄
exp

(︄
2βδ2

d
∥x∥2

)︄

≤
(︄

1 + 4βδ2

d

)︄
exp

(︄
2βδ2

d
∥x∥2

)︄

≤ 2 exp
(︃ 1

18d∥x∥
2
)︃
.

Here, for the first inequality we use (4.9.7); for the third inequality, we use that es ≤ 1 + 2s
for 0 ≤ s ≤ 1 and the condition on β; the condition on β is used again for the last inequality.
Therefore, we deduce that∫︂

B(0,R)c
exp

(︂
β∥∇ log pT1(x)−˜︂sθ(x)∥2

)︂
dpT1(x) ≤ 2

∫︂
B(0,R)c

exp
(︃ 1

18d∥x∥
2
)︃
dpT1(x)

≤ 8e− R2
18d ,

where for the last inequality we use (ii) of Lemma 4.7.3 and Lemma 4.9.1. Therefore, picking

R =
√︄

18d log 16
ε

readily gives (4.9.9). With this choice of R, we now consider (4.9.10). Let us define the
random variable

F = β∥∇ log pT1(XT1)−˜︂sθ(XT1)∥2
1{︂
∥XT1∥≤R

}︂,
where XT1 ∼ pT1 as usual. We note that∫︂

B(0,R)
exp

(︂
β∥∇ log pT1 −˜︂sθ∥2

)︂
pT1(x)dx ≤ E

[︂
eF
]︂
.

It remains to estimate E
[︂
eF
]︂
, which we will do using Lemma 4.7.4. To show that F satisfies

the conditions of Lemma 4.7.4, we check its boundedness. Using (4.9.7) and the constraint
on β we obtain

0 ≤ F ≤ β
δ2

d
(1 +R)2 ≤ 1

18d + 36βδ2 log 16
ε

=: M.

Furthermore, using (4.9.8) and (4.4.7) we can estimate E[F ] by

E[F ] ≤ βEpT1

[︂
∥∇ log pT1 − sθ(T1, ·)∥2

]︂
≤ 1

34ε
1+36βδ2

.

Notice also that

eM = e
1

18d 1636βδ2
ε−36βδ2 ≤ 16e 1

18 ε−36βδ2
,

where we used once more the constraint on β. We can now apply Lemma 4.7.4 to deduce that

E
[︂
eF
]︂
− 1 ≤ eME[F ] ≤ 16e 1

18

34 ε ≤ ε

2 ,

which concludes the proof. ■

125



4. Convergence of Diffusion Models via Prediction-Correction

4.10 Proof of Theorem 4.5.1
The first step of the argument in the proof of Theorem 4.5.1 consists in giving an upper bound
for ∥p− pθ∥TV which allows to control separately the errors originating from (i) taking ZN2 as
an approximate sample from pT1 , and (ii) approximating the reverse process with a discretized
scheme and with an L2 accurate score. To do so, we follow the strategy of [CCL+23b, CLL22].
Let us denote by S the Markov kernel which associates to a probability measure µ the law of
the random variable UT1 , where (Ut)t satisfies the true backward SDE initialised at µ, i.e.,

⎧⎨⎩ U0 ∼ µ,

dUt = Utdt+ 2∇ log pT1−t(Ut)dt+
√

2dBt.

In particular, we have p = pT1S. Similarly, we denote by Ŝ the Markov kernel which corresponds
to following the approximate reverse process in (4.5.2) initialised at µ. In particular, we have
pθ = σN2Ŝ (recall that σk = law(Zk)). The following chain of inequalities holds:

∥p− pθ∥TV = ∥pT1S − σN2Ŝ∥TV

≤ ∥pT1S − pT1Ŝ∥TV + ∥pT1Ŝ − σN2Ŝ∥TV

≲
√︃
DKL

(︂
pT1S

⃦⃦⃦
pT1Ŝ

)︂
+ ∥pT1 , σN2∥TV

≲
√︃
DKL

(︂
pT1S

⃦⃦⃦
pT1Ŝ

)︂
+
√︂
DKL(σN2 ∥ pT1).

(4.10.1)

In the above, we have used the triangle inequality for the total variation distance, Pinsker’s
inequality and the data-processing inequality. This achieves the desired decomposition, so that
we can study the two processes (4.5.1), (4.5.2) separately.

Convergence of inexact Langevin algorithm.
To control the error term DKL(σN2 ∥ pT1), we need to study convergence of the process (4.5.1).
This is done by adapting the results of [YYW23] to the case of a decaying step size. In
particular, we prove the following

Proposition 4.10.1. Suppose that Assumption (A2) holds and pick 0 < δ < 1
2 and T1 ≥

1
2 log

(︃
2 + 172∥X∥2

SG
δ

+ d
2δ

)︃
. Assume in addition that∇ log pT1 is L1-Lipschitz and that sθ(T1, ·)

is L2-Lipschitz, with L1, L2 ≥ 1. Then, for the inexact Langevin algorithm (4.5.1) with step
sizes hk = 1

24L1L2+ k+1
16

, we have that

DKL(σN2 ∥ pT1) ≲
(︃
L1L2

N2 + 1

)︃2
+ dL2

2
N2 + 1 + ε̃MGF, (4.10.2)

where ε̃MGF is defined in (4.5.3).

The proof is postponed to the end of this section. Using Proposition 4.10.1 gives the desired
upper bound for the second error term in (4.10.1), when using a decaying step size. For the
analogous result with a constant step size, see [YYW23, Thm. 2].
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4.10. Proof of Theorem 4.5.1

Analysis of the reverse process.
It remains to give an upper bound for the error due to the discretization and approximation
of the score in the reverse process, corresponding to the first term in the right hand side of
(4.10.1). This has been analysed in a number of recent works, under different assumptions. We
recall in particular the following results, proved in [CLL22] building on the Girsanov framework
developed in [CCL+23b].

Lemma 4.10.2. Suppose that p has finite second moment and that ∇ log pt is L1-Lipschitz
for t ∈ [0, T1] with T1, L1 ≥ 1. Then, choosing a constant step size h̃k = T1

N1
≤ 1 gives

DKL
(︂
p
⃦⃦⃦
pT1Ŝ

)︂
= DKL

(︂
pT1S

⃦⃦⃦
pT1Ŝ

)︂
≲ ˆ︃JSM + dL2T 2

1
N1

.

Inserting this bound in (4.10.1) concludes the proof of Theorem 4.5.1.

Proof of Proposition 4.10.1
The proof of Proposition 4.10.1 is based on the results of [YYW23], and in particular on
Lemma 6 therein, which upper bounds the relative entropy after one step of the inexact
Langevin algorithm and which we recall below.

Lemma 4.10.3 (Lemma 6 of [YYW23]). Let µ, ν0 be probability measures with full support
that admit densities with respect to the Lebesgue measure. Suppose that µ satisfies a log-
Sobolev inequality and let 0 < κ ≤ CLS(µ). In addition, suppose that sθ is an approximation
of ∇ log µ, that sθ is L2-Lipschitz and that ∇ log µ is L1-Lipschitz with L1, L2 ≥ 1. Set
Z0 ∼ ν0 and

Z1 = Z0 + hsθ(Z0) +
√

2hB

where B ∼ N (0, Id) is independent of Z0 and 0 < h < min
{︂

κ
12L1L2

, 1
2κ

}︂
. Then, letting

ν1 = law(Z1), we have

DKL(ν1 ∥µ) ≤ e− 1
4κhDKL(ν0 ∥µ) + 144L2

2L1dh
3 + 24dL2

2h
2 + h

κ

2 logEµ
[︂
e

9
κ

∥sθ−∇ logµ∥2]︂
.

With this lemma at hand, we can prove Proposition 4.10.1.

Proof of Proposition 4.10.1. By the choice of T1, we have that CLS(pT1) ≥ 1 − δ ≥ 1
2 . In

particular, the step sizes (hk)N2−1
k=0 defined by

hk = 1
24L1L2 + k+1

16

satisfy the constraint in Lemma 4.10.3 with µ = pT1 and sθ = sθ(T1, ·). We can therefore
apply the lemma to deduce that, after each step of the inexact Langevin algorithm,

DKL(σk+1 ∥ pT1) ≤ e− 1
8hkDKL(σk ∥µ) + 30dL2

2h
2
k + hkε̃MGF,

for 0 ≤ k ≤ N2 − 1. By iterating the above result we find that

DKL(σN2 ∥ pT1) ≤ e− 1
8
∑︁N2−1

i=0 hi +
N2−1∑︂
i=0

{︃(︂
30dL2

2h
2
i + hiε̃MGF

)︂
· e− 1

8
∑︁N2−1

j=i+1 hj

}︃
, (4.10.3)
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where we have also used that DKL(σ0 ∥ pT1) ≤ δ ≤ 1 by Lemma 4.4.8.

Now, notice that, for 0 ≤ j ≤ k, we have the bound

k∑︂
i=j

hi ≥
∫︂ k+1

j

1
24L1L2 + x+1

16
dx = 16 log

24L1L2 + k+2
16

24L1L2 + j+1
16

(4.10.4)

and
1 > hk+1

hk
≥ h1

h0
=

24L1L2 + 1
16

24L1L2 + 1
8
≥ 1

2 .

Using this in (4.10.3), we find that

DKL(σN2 ∥ pT1)

≤
(︄

24L1L2 + 1
16

24L1L2 + N2+1
16

)︄2

+
N2−1∑︂
i=0

⎧⎨⎩(︂30dL2
2h

2
i + hiε̃MGF

)︂
·
(︄

24L1L2 + i+2
16

24L1L2 + N2+1
16

)︄2
⎫⎬⎭

≤

⎛⎝ 2
1 + N2

384L1L2

⎞⎠2

+ 30dL2
2

N2−1∑︂
i=0

h2
i

h2
N2

h2
i+1

+ ε̃MGF

N2−1∑︂
i=0

hi ·
hN2

hi+1

≤

⎛⎝ 2
1 + N2

384L1L2

⎞⎠2

+ 120dL2
2N2 ·

(︄
1

24L1L2 + N2
16

)︄2

+ 2ε̃MGF ·
N2

24L1L2 + N2
16

≤

⎛⎝ 2
1 + N2

384L1L2

⎞⎠2

+ 30720 dL2
2

N2 + 1 + 32ε̃MGF

≲

[︄(︃
L1L2

N2 + 1

)︃2
+ dL2

2
N2 + 1 + ε̃MGF

]︄
.

(4.10.5)

This concludes the proof of the proposition. ■

128



CHAPTER 5
Heat flow, log-concavity, and Lipschitz

transport maps

This chapter corresponds to the preprint [BP24].

In this paper we derive estimates for the Hessian of the logarithm (log-Hessian) for solutions
to the heat equation. For initial data in the form of log-Lipschitz perturbation of strongly
log-concave measures, the log-Hessian admits an explicit, uniform (in space) lower bound.
This yields a new estimate for the Lipschitz constant of a transport map pushing forward
the standard Gaussian to a measure in this class. Further connections are discussed with
score-based diffusion models and improved Gaussian logarithmic Sobolev inequalities. Finally,
we show that assuming only fast decay of the tails of the initial datum does not suffice to
guarantee uniform log-Hessian upper bounds.

5.1 Introduction
Let d ≥ 1. We say that a function V : Rd → R ∪ {+∞} is α-convex, and that a probability
density µ ∈ L1

+(Rd) is α-log-concave, if, respectively, x → V (x) − α
2 ∥x∥

2 is convex, and
µ(x) = e−V (x) for some α-convex function such that

∫︁
Rd e−V (x)dx = 1. In case α = 0, µ is a

log-concave probability density; if α > 0, µ is strongly log-concave. We also consider the heat
flow over Rd: ⎧⎨⎩ ∂tf = 1

2 ∆f,
limt→0 f(t, ·) = µ.

(5.1.1)

Taking µ = δ0, the Dirac delta centered in zero, then the fundamental solution to (5.1.1) is

f(t, x) = γt(x) := (2πt)−d/2 e−∥x∥2/2t,

where γt is the isotropic Gaussian density with zero mean and covariance matrix equal to tId.
Any other solution to (5.1.1) is then given by µ ∗ γt, where ∗ is the symbol of convolution:
(g1 ∗ g2)(x) =

∫︁
Rd g1(x− y) g2(y) dy. Denote by (Pt)t the corresponding heat semigroup, i.e.

Ptµ := µ ∗ γt, t > 0, (5.1.2)

which is induced by the flow of (5.1.1). As solutions to (5.1.1) are Gaussian convolutions of
the initial datum µ, it is expected that those would inherit some features from the Gaussian.
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5. Log-hessian estimates along the heat flow

There is a vast literature on the subject, which can be roughly classified into three types of
results.

(1). Properties holding as soon as t > 0. For example, for all t > 0, f(t, ·) is smooth [Eva22].
(2). Asymptotic behaviour, in the limit t→∞, for which we refer to [BE85, DT15, Váz17].
(3). Properties which are satisfied by f(t, ·) for t ≥ T, after a finite time T > 0.

5.1.1 Log-concavity in finite time
Observing that the fundamental solution to (5.1.1) is log-concave for all t > 0, we pose the
following, in the spirit of (3).

Question. Given a probability measure µ on Rd, does there exist a time T > 0, such that the
solution f(t, x) to (5.1.1) is log-concave for t ≥ T?

In general, we cannot expect instantaneous creation of log-concavity, as suggested by the
example µ = 1

2(δ(1) + δ(−1)) ∈ P(R), see [Bri23]. In addition, some hypotheses on the
behaviour at infinity of µ shall be required, as suggested by [Her99]. On the other hand, our
question has a positive answer in two known cases.

• If µ is already log-concave, the solution to (5.1.1) is log-concave at all times, see
[SW14, Pre73, Lei72, BL76]. Then, by the semigroup property, if a solution to (5.1.1)
is log-concave at a time T > 0, this property will be propagated to all t ≥ T.

• If µ is supported in B(0, R), then f(t, ·) is log-concave for all t ≥ R2, as pointed out
first in [LV03]. More precisely, in [BGMZ18] it is shown that for all t > 0

−∇2 log(µ ∗ γt) ≽
1
t

(︄
1− R2

t

)︄
Id. (5.1.3)

One aim of ours is to extend the class of measures for which creation of log-concavity in
finite time holds, beyond the compactly supported case, motivated also by the series of papers
[IST21, IST22, Ish23, IST24], concerning various concavity property of solutions for the heat
flow.

An analogous question can be posed in the context of functional inequalities satisfied by the
Gaussian distribution. Starting from the case of compactly supported measures, previously
analysed in [Zim13, WW16, BGMZ18], Chen, Chewi, and Niles-Weed prove in [CCNW21]
that if µ is subgaussian, i.e. for some ε,K > 0

∫︂
Rd

eε∥x∥2
µ(dx) ≤ K, (5.1.4)

then the solution µt := f(t, ·) dx to (5.1.1) satisfies a log-Sobolev inequality, for t ≥ T (ε,K).
Moreover, the subgaussianity assumption is also necessary. Indeed, if µT satisfies a log-Sobolev
inequality for some T > 0, then µT is also subgaussian [BGL14, Prop. 5.4.1], which implies
that µ is subgaussian in the first place. On the other hand, strongly log-concave measures do
also satisfy a logarithmic Sobolev inequality, see [BE85]. Then, one might wonder if (5.1.4)
would be sufficient for a measure to become log-concave along the heat flow. The following
theorem implies that this is not the case.
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5.1. Introduction

Theorem 5.1.1. For all non-decreasing function Ψ: R≥0 → R≥0, there exists an explicit
probability measure on R such that

• ∫︁
R eΨ(x)µ(dx) <∞;

• for all t > 0, infx∈R
{︂
− d2

dx2 log µ ∗ γt
}︂

= −∞.

Remark 5.1.2. Similar conclusions hold in arbitrary dimension, as it can be seen by considering
the product probability measure µ× δ0 × . . .× δ0, with µ given by Theorem 5.1.1.

Our result shows that the creation of log-concavity cannot be guaranteed by assuming only
some control on the tails of the distributions µ. Therefore, we restrict our analysis to a
perturbation regime, i.e. we take measures µ which are close to being strongly log-concave,
and we show that they become log-concave after a finite time along (5.1.1). More precisely,
we prove the following

Theorem 5.1.3. Suppose that µ = e−(V+H) ∈ L1
+(Rd), where V : Rd → R ∪ {+∞} is

α-convex and H : Rd → R is L-Lipschitz for some α ∈ R, L ≥ 0. Then for every t > 0 such
that αt+ 1 > 0 we have

1
t

⎡⎢⎣1− 1
t

⎛⎝ L

α + 1
t

+
⌜⃓⃓⎷ 1
α + 1

t

⎞⎠2
⎤⎥⎦Id ≼ −∇2log(µ ∗ γt) ≼

1
t
Id. (5.1.5)

In particular, for α > 0 and t ≥
(︂
L
α

+
√︂

1
α

)︂2
, we have that µ ∗ γt is strongly log-concave.

Equation (5.1.5) goes beyond the problem of log-concavity, yielding interesting consequences,
as explained in the next subsections.

5.1.2 Application to Lipschitz transport maps
In a seminal paper [Caf00], Caffarelli showed that the Brenier map [Bre91] from optimal
transport between the standard Gaussian γ and an α-log-concave probability measure µ is
(1/
√
α)-Lipschitz. This result is useful because Lipschitz transport maps transfer functional

inequalities (including isoperimetric, log-Sobolev and Poincaré inequalities) from a probability
measure to another one, and it is typically much easier to prove these inequalities for the
Gaussian measure in the first place. For example, suppose that a probability measure µ satisfies
the log-Sobolev inequality LSI(C) for some C > 0, i.e. for all regular enough probability
measures ρ≪ µ

∫︂ dρ

dµ
log dρ

dµ
dµ ≤ 2C

∫︂ ⃓⃓⃓⃓
∇
√︂
dρ/dµ

⃓⃓⃓⃓2
dµ, (LSI(C))

where the two sides of the inequalities go under the name of relative entropy and relative Fisher
information, respectively. Suppose, furthermore, that T : Rd → Rd is L-Lipschitz and consider
the pushforward probability measure ν := T#µ. Then, ν satisfies LSI(L2 · C). Therefore,
Caffarelli’s result (together with the Gaussian LSI [Gro75]) immediately implies that strongly
α-log-concave probability densities satisfy LSI(1/α), recovering the celebrated result by Bakry
and Émery [BE85]. Further details and many more applications of Lipschitz transport maps
are discussed in [MS23, CE02] and the references therein.
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5. Log-hessian estimates along the heat flow

More recently, Kim and Milman [KM12] generalized Caffarelli’s result by constructing another
transport map, which is obtained by reverting an appropriate heat flow, and is referred to
as the heat-flow map (notation: T flow). Other Lipschitz estimates for this transport map
were then provided in [MS23], where the authors considered different types of assumptions
on the target measure ν (namely, measures that satisfy a combination of boundedness and
(semi-)log-concavity and some Gaussian convolutions).

Several works dealt with the study of Lipschitz transport maps [KP21, CF21, DGH+23, MS21,
She24, CFJ17, CFS24, CP23]; the recent paper [FMS24] in particular considers an analogous
class of target measure as in the present contribution. For comparison, we recall below its
main result in the Euclidean setting.

Theorem 5.1.4 ([FMS24], Theorem 1). Let µ = e−(V+H), ν = e−V be probability densities
on Rd such that for all x ∈ Rd we have

∥∇H∥ ≤ L, ∇2V (x) ≥ αId,
⃓⃓⃓
∇3V (x)(w,w)

⃓⃓⃓
≤ K for all w ∈ Sd−1,

for some α > 0, L, K ≥ 0. Then, there exists a transport map T : Rd → Rd such that
T#ν = µ and T is exp

(︂
5L2

α
+ 5

√
πL√
α

+ LK
2α2

)︂
-Lipschitz.

Since Lipschitz transport maps can be composed, this result (combined with Caffarelli’s
theorem [Caf00]) implies in particular the existence of transport map T̃ such that T̃#γ = µ
and T̃ is Lipschitz with constant

1√
α

exp
(︄

5L2

α
+ 5
√
πL√
α

+ LK

2α2

)︄
. (5.1.6)

On the other hand, we will prove in Section 5.3 that our Theorem 5.1.3 implies new upper
bounds on the Lipschitz norm for the heat-flow map from γ to µ.

Theorem 5.1.5. Let µ = e−(V+H) ∈ L1
+(Rd) be a probability density on Rd such that V is

α-convex for α > 0 and H is L-Lipschitz for L ≥ 0. Then, there exists a map T flow : Rd → Rd

such that T flow#γ = µ and T flow is 1√
α

exp
(︂
L2

2α + 2 L√
α

)︂
-Lipschitz.

Remark 5.1.6. Consider the case where d = 1, V (x) = 1
2x

2 and H(x) = L|x|+ log(Z) for
a normalizing constant Z, so that the assumptions of Theorem 5.1.5 are satisfied with α = 1.
Then, it was observed in [FMS24] that the Lipschitz norm of any map T such that T#γ = µ

is at least eL2
2 . Hence, the dependence on L2 in Theorem 5.1.5 is sharp.

The estimate for the Lipschitz constant of T flow in Theorem 5.1.5 improves in particular on
the value in (5.1.6), yielding the best available bound in this setting. Moreover, Theorem
5.1.5 does not need any assumption on ∇3V .

On the technical side, in Theorem 5.1.5 we transport directly γ to µ via the heat-flow map,
and our proof only exploits elementary log-Hessian estimates for the heat semigroup, as in
Theorem 5.1.3. On the other hand, [FMS24] employs a construction based on reverting the
overdamped Langevin dynamics targeting the measure ν = e−V : this requires estimates for the
corresponding semigroup (cf. [FMS24, Proposition 2]), which is less explicit and needs more
sophisticated arguments. We remark that the results of [FMS24] are of independent interest,
due to the construction of a Lipschitz map transporting ν to µ therein, and the extension to
some non-Euclidean spaces.
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5.1.3 Score-based diffusions models and the Gaussian LSI
To further motivate our results, we briefly describe here two more applications of Theorem
5.1.1 and 5.1.3.

Score-based diffusion models A similar construction as in Section 5.1.2, based on reverting
an ergodic diffusion process, has also recently found application in the machine learning
community, within the framework of score-based diffusion models [SSDK+21, HJA20]. Let
µ be a probability measure, from which we want to generate random samples. Consider the
Ornstein–Uhlenbeck process (initialized at µ)

X0 ∼ µ, dXt = −Xtdt+
√

2dBt,

and denote by Qt the associate semigroup, i.e.

Qtf(x) =
∫︂
f
(︂
e−tx+

√
1− e−2t

)︂
γ(x) dx. (5.1.7)

The key observation is that this process can be reverted, i.e. for T1 > 0 the reverse SDE

Y0 ∼ law(XT1), dYt = −Yt dt+ 2∇ logQt

(︄
dµ

dγ

)︄
(Yt)dt+

√
2dBt (5.1.8)

is such that YT1 ∼ µ, see [And82, CCGL23, SSDK+21]. Therefore, one can simulate the
process (Yt)t until time T1 to sample from µ. A common assumption in theoretical works
aimed at analysing this method is some control on the Lipschitz constant of ∇ logQt

(︂
dµ
dγ

)︂
[CCL+23a, CCL+23b, CLL22] or on the one-sided one [KFL22, PMM24]. These assumptions
are indeed useful to control the discretization errors when employing a numerical scheme to
simulate the process or some sort of “contractivity” along the reverse dynamics. On the one
hand, Theorem 5.1.3 enlarges the class of distributions µ for which these assumptions can be
justified, by implying bounds on the Hessian ∇2 logQt

(︂
dµ
dγ

)︂
(cf. Corollary 5.3.2), beyond the

setting where the initial distribution µ has bounded support.

On the other hand, Theorem 5.1.1 shows that, for some distributions µ, such assumptions can
be too restrictive. Thus, complementary analysis is needed, as done in [CDS23, BDBDD23,
CLL22].

Improvements in the Gaussian LSI The standard Gaussian measure γ satisfies LSI(1).
Henceforth, let ν ≪ γ be a probability measure, and set u2 := dν

dγ
∈ L1(γ): then

∫︂
Rd
|∇u|2 dγ − 1

2

∫︂
Rd
u2 log u2 dγ ≥ 0, if u ∈ H1(dγ). (γ-LSI)

The Gaussian logarithmic Sobolev inequality was written first in [Gro75], although it can be
deduced from [Sha48]. The related literature is wide: see [BDS23b] for a recent review, and
[RV08, Car91] for accurate historical comments. The constant C = 1 is optimal, with extremal
probability measures belonging to M := {νa,b := ea+⟨b,x⟩ γ, a ∈ R, b ∈ Rd}, according to
[Car91]. Then, one may investigate whether the constant in the Gaussian LSI can be improved
on a subclass of measures ν, under orthogonality constraints. Contributions in this direction
appear in [FIL16, BDS23b], and they are closely related to stability inequalities, for which
the reader may refer to [DEF+22, DEF+24, BDS23a, BDS24, IK21], and references quoted
therein.
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In [BDS23b, Theorem 1], an improved Gaussian LSI is shown: for all ε,K > 0, there exists a
constant η(ε,K) > 0, such that for all probability measures ν = u2 γ satisfying

∫︁
Rd x ν = 0,

and (5.1.4), we have
∫︂
Rd
|∇u|2 dγ − 1

2

∫︂
Rd
u2 log u2 dγ ≥ η

∫︂
Rd
|∇u|2 dγ, if u ∈ H1(dγ). (5.1.9)

The core of the proof for (5.1.9) is showing that – after a finite time T > 0 – the solution
f(t, ·) = ν ∗ γt to (5.1.1), starting at ν, satisfies a Poincaré inequality:

∫︂
Rd
φ(x)2 f(t, x) dx−

(︃∫︂
Rd
φ(x) f(t, x) dx

)︃2
≤ CP

∫︂
Rd
|∇φ(x)|2 f(t, x) dx,

for all functions φ ∈ H1(f(t, ·) dx), and some constant CP > 0. Condition (5.1.4) guarantees
such a Poincaré inequality in finite time, see [CCNW21]. Then, [FIL16, Theorem 1] applies,
and an improved inequality like (5.1.9) holds for u(T, ·) =

√︂
f(T, ·)/γ, after a finite time.

The proof is completed by integrating backwards in time via [BDS23b, Lemma 2].

• We notice first that, if ν = e−(V+H) is a log-Lipschitz perturbation of a strongly log-
concave measure, then the ideas of [BDS23b, Theorem 1] apply, since (5.1.4) holds true.
Alternatively, one could estimate the Poincaré constant of f(t, ·) = ν ∗ γt, for any t ≥ 0,
either via the Lipschitz transport map of Section 5.3, or by a perturbation argument
[CG22], and apply [FIL16, Theorem 1]. Finally, one can optimise the resulting constant
in (5.1.9) over the parameter t ≥ 0.

• The scheme of proof for [BDS23b, Theorem 1] can be adapted to measures ν = u2 dγ
which become α-log-concave in finite time along (5.1.1), for α > 0. In this case, the
Poincaré inequality is given by the Bakry-Émery method [BE85].

• The same can be done for measures ν which become just log-concave (α = 0) in finite
time along (5.1.1), provided an a priori bound on the second-order moment

∫︁
Rd |x|2 ν,

see [Bob99] and the discussion of [BDS23b, Section 2].

5.1.4 Structure of the paper
The proof of Theorem 5.1.3 is given in Section 5.2, followed by Subsection 5.2.1, where
sufficient conditions in order to apply Theorem 5.1.3 are discussed. In Section 5.3, we detail
our main application to the existence of Lipschitz transport maps, with the proof of Theorem
5.1.5. Finally, in Section 5.4, we prove the negative result for the creation of log-concavity in
finite time, namely Theorem 5.1.1.
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5.2. Log-Lipschitz perturbations of log-concave measures: proof of Theorem 5.1.3

5.2 Log-Lipschitz perturbations of log-concave measures:
proof of Theorem 5.1.3

Let µ be a probability measure on Rd. For t > 0 and z ∈ Rd, define the probability measure
µz,t by

µz,t ∝ exp
(︄
z · x
t
− ∥x∥

2

2t

)︄
µ(x) ∝ γz,t(x)µ(x), (5.2.1)

where γz,t is the Gaussian density with mean z and covariance matrix tId. We will make
frequent use of the following well-known probabilistic characterization of the Hessian of
log(µ ∗ γt), cf. [BGMZ18, KP21]:

−∇2 log(µ ∗ γt)(z) = 1
t

(︄
Id −

Covµz,t

t

)︄
. (5.2.2)

Consequently, bounds on ∇2 log(µ ∗ γt) are given by bounds on covariance matrices. For
this purpose, we provide the following lemma, which gives an upper bound for the covariance
matrix of a probability measure µ in terms of the covariance of another probability measure ν
and of the Wasserstein distance between the two.

Lemma 5.2.1. Let µ, ν be probability measures on Rd. For any unit vector w ∈ Sd−1

⟨w,Covµw⟩ ≤
(︃
W2(µ, ν) +

√︂
⟨w,Covν w⟩

)︃2
. (5.2.3)

Proof. Let (X, Y ) be an optimal coupling for W2(µ, ν). Fix a unit vector w ∈ Rd and let
Xw := ⟨w,X⟩ and Yw := ⟨w, Y ⟩. We have that

⟨w,Covµw⟩ = E
[︂
(Xw − E[Xw])2

]︂
≤ E

[︂
(Xw − E[Yw])2

]︂
= E

[︂
(Xw − Yw + Yw − E[Yw])2

]︂
≤
(︄√︃

E
[︂
(Xw − Yw)2

]︂
+
√︃
E
[︂
(Yw − E[Yw])2

]︂)︄2

(by Cauchy–Schwarz)

≤
(︄
W2(µ, ν) +

√︃
E
[︂
(Yw − E[Yw])2

]︂)︄2

=
(︃
W2(µ, ν) +

√︂
⟨w,Covµw⟩

)︃2
.

■

Proof of Theorem 5.1.3. The upper bound in (5.1.5) is well known, and holds for arbitrary
probability measures µ (cf., for example, [EL18, Lemma 1.3]); alternatively, it follows from
(5.2.2) and the fact that covariance matrices are positive semidefinite. Let us then turn to
the first inequality. Fix t > 0 and z ∈ Rd. Define the probability density νz,t ∈ L1

+(Rd)
by νz,t ∝ e−V γz,t. Notice that νz,t is (α + 1

t
)-log-concave: therefore, Covνz,t ≼ 1

α+ 1
t

Id

by the Brascamp–Lieb inequality [BL76] (cf. also [EL14, Lemma 5]). Moreover we have
µz,t ∝ e−Hνz,t: it follows from [KMP24, Corollary 2.4] that

W2(µz,t, νz,t) ≤ W∞(µz,t, νz,t) ≤
L

α + 1
t

.
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We are now in position to apply Lemma 5.2.1: for any unit vector v ∈ Rd we have

⟨v,Covµz,t v⟩ ≤
(︂
W2(µz,t, νz,t) +

√︂
⟨v,Covνz,t v⟩

)︂2

≤

⎛⎝ L

α + 1
t

+
⌜⃓⃓⎷ 1
α + 1

t

⎞⎠2

.

This shows that Covµz,t ≼

(︄
L

α+ 1
t

+
√︃

1
α+ 1

t

)︄2

Id, and the conclusion follows from (5.2.2). ■

Remark 5.2.2. In the proof of Theorem 5.1.3, we estimated from above W2(µz,t, νz,t) with
the L∞-Wasserstein distance W∞(µz,t, νz,t). Alternatively, we could have achieved the same
conclusion as follows, using that νz,t satisfies LSI

(︂
t

αt+1

)︂
. First, a transport-entropy inequality

[OV00] allows to estimate W2(µz,t, νz,t) in terms of the relative entropy of µz,t with respect
to νz,t; then, the relative entropy is bounded from above by the relative Fisher information
using the logarithmic Sobolev inequality of νz,t; finally, the relative Fisher information is easily
estimated using that µz,t ∝ e−Hνz,t and H is L-Lipschitz.

5.2.1 Sufficient conditions
By Theorem 5.1.3, log-Lipschitz perturbations of strongly log-concave measures become
log-concave in finite time along (5.1.1); by Theorem 5.1.5, they are the pushforward of
the Gaussian measure via a Lipschtzt transport map. The purpose of this subsection is to
give sufficient conditions for a measure µ to be a log-Lipschitz perturbation of a strongly
log-concave measure.

Example 5.2.3. Suppose that µ is a probability measure supported on the Euclidean ball
B(0, R) for some radius R > 0. Then, proceeding as in [BGMZ18], for any s > 0 we can
write

µ ∗ γs = e−Hγs

where H : Rd → Rd is R
s
-Lipschitz. By 1

s
-log-concavity of γs, Theorem 5.1.3 applied to µ ∗ γs

and t > 0 yields that

1
t

⎡⎢⎣1− 1
t

⎛⎝ R/s

1/s+ 1
t

+
⌜⃓⃓⎷ 1

1/s+ 1
t

⎞⎠2
⎤⎥⎦Id ≼ −∇2log(µ ∗ γt+s) ≼

1
t+ s

Id.

By letting s→ 0, we recover the classical estimate

1
t

(︄
1− R2

t

)︄
Id ≼ −∇2 log(µ ∗ γt) ≼

1
t
Id,

cf. [BGMZ18, Sec. 2.1]. In this sense, we can say that the class of densities considered in
Theorem 5.1.3 contains both log-concave ones (taking L = 0) and the ones with bounded
support.

Consider now a probability density µ = e−U ∈ L1
+(Rd) for some U ∈ C2(Rd). The following

result asserts that, if we have a uniform positive lower bound for the Hessian of U outside some
Euclidean ball, then we can rewrite µ as a log-Lipschitz perturbation of a strongly log-concave
measure.
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Lemma 5.2.4. Let U ∈ C2(Rd) be such that for some α, β,R ≥ 0 it holds that⎧⎨⎩∇2U(x) ≽ αId if ∥x∥ ≥ R,

∇2U(x) ≽ −βId if ∥x∥ < R.

Then there exists V,H ∈ C1(Rd) such that U = V +H, V is α-convex and H is 2(α+ β)R-
Lipschitz.

Proof. Let H : Rd → R be defined by

−H(x) =

⎧⎨⎩ (α + β)∥x∥2 if ∥x∥ ≤ R,

2(α + β)R∥x∥ − 2(α + β)R2 if ∥x∥ ≥ R,

and set V (x) = U(x)−H(x). Then we have that U = V +H, V ∈ C1(Rd) is α-convex and
∥∇H∥ ≤ 2(α + β)R, as desired. ■

The above lemma can be useful to study linear combinations of strongly log-concave densities,
via the following

Proposition 5.2.5. Consider a measure µ = ∑︁N
i=1 αi e−Ui for some N > 0, weights αi > 0

and potentials Ui ∈ C2(Rd) such that e−Ui ∈ L1
+(Rd). Assume ∇2Ui ≽ KId for all i and

some K > 0. Then

−∇2 log µ ≽ KId −
∑︁
i>j αiαje−Ui−Uj (∇Ui −∇Uj)⊗2

µ2 (5.2.4)

≽ KId −
∑︂
i>j

(∇Ui −∇Uj)⊗2(︂
2 + αi

αj
eUj−Ui + αj

αi
eUi−Uj

)︂ . (5.2.5)

Proof. Notice that
−∇2 log µ = µ−2(∇µ⊗∇µ− µ∇2µ).

Set µi := αie−Ui so that µ = ∑︁N
i=1 µi. By construction

∇µi = −∇Ui µi, ∇2µi = (−∇2Ui +∇Ui ⊗∇Ui)µi, ∀i = 1, . . . , N.

Then,

−∇2 log µ =

(︂∑︁N
i=1∇Ui µi

)︂⊗2
−
(︂∑︁N

i=1 µi
)︂ (︂∑︁N

i=1(−∇2Ui +∇Ui ⊗∇Ui)µi
)︂

µ2

=
µ
∑︁N
i=1∇2Ui µi −

∑︁N
i,j=1 µi µj(∇Ui ⊗∇Uj −∇Uj ⊗∇Uj)

µ2

≽ K Id −
∑︁
i>j µiµj(∇Ui −∇Uj)⊗2

µ2 ,

which shows (5.2.4). The crude estimate

µ2 =
N∑︂

l,m=1
µl µm ≥ 2µi µj + µ2

i + µ2
j for i ̸= j

then gives (5.2.5). ■
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From the above proposition, it is clear that when the right-hand-side of (5.2.4) is uniformly
positive definite outside a Euclidean ball, then by Lemma 5.2.4 we can recast µ as a log-
Lipschitz perturbation of a strongly log-concave measure. Therefore, the assumptions of
Theorem 5.1.3 are satisfied, and µ ∗ γt becomes strongly log-concave in finite time along the
heat flow (5.1.1). We illustrate this in the following example, where µ is a finite mixture of
Gaussians in dimension 1.

Example 5.2.6. Let µ be a linear combination of one-dimensional Gaussians, i.e. µ =∑︁N
i=1 αi e−Ui for some N ≥ 2, weights αi > 0 and potentials Ui of the form

Ui(x) = (x−mi)2

σ2
i

for some mi ∈ R, σ2
i > 0. Without loss of generality we can assume that Ui ≠ Uj for i ̸= j.

By Proposition 5.2.5, we have that

− d2

dx2 log µ ≽
1

maxi σ2
i

−
∑︂
i>j

(U ′
i − U ′

j)2(︂
2 + αi

αj
eUj−Ui + αj

αi
eUi−Uj

)︂ .
It is then not difficult to see that the argument of the sum in the right-hand-side converges to
0 as |x| → ∞. By the previous discussion, it follows that the assumptions of Theorem 5.1.3
are satisfied for some L, α > 0: hence, a finite linear combination of Gaussian densities on R
becomes strongly log-concave in finite time along the heat flow.

5.3 Lipschitz transport maps: proof of Theorem 5.1.5
Construction of the heat-flow map. Let µ ∈ L1

+(Rd) be a probability density on Rd.
Assume, furthermore, that µ has finite second-order moment. We begin by sketching the
construction of the heat-flow map, and refer the reader to [KM12, MS23] for details. The
idea is to interpolate between µ and γ along the Ornstein–Uhlenbeck flow

X0 ∼ µ, dXt = −Xtdt+
√

2dBt. (5.3.1)

Let us denote by Qt the associated transition semigroup (5.1.7) and by µt the law of Xt.
Then, µt satisfies the Fokker–Planck equation

∂µt −∇ ·
[︄
µt∇ logQt

(︄
dµ

dγ

)︄]︄
= 0.

Correspondingly, we can consider the flow maps (St)t≥0 obtained by solving

S0(x) = x,
d
dtSt(x) = −∇ logQt

(︄
dµ

dγ

)︄

for all x ∈ Rd. Under some regularity assumptions (cf. [KM12, MS23, OV00, Vil03]), this
defines a flow of diffeomorphisms such that St#µ = µt; conversely, Tt := S−1

t is such that
Tt#µt = µ. The heat-flow map is then heuristically defined by T flow = limt→∞ Tt and is such
that T flow#γ = µ. To make things rigorous, we recall/adapt the following result from [MS23].

138



5.3. Lipschitz transport maps: proof of Theorem 5.1.5

Lemma 5.3.1. Suppose that µ ∈ L1
+(Rd) is a probability density with finite second-order

moment. Suppose, furthermore, that for all t > 0 there exist θmax
t , θmin

t ∈ R such that

θmin
t Id ≼ ∇2 logQt

(︄
dµ

dγ

)︄
≼ θmax

t Id (5.3.2)

and for all s > 1
sup

1
s
<t<s

max
{︂
|θmin
t |, |θmax

t |
}︂
<∞.

Then, provided that L := lim supt→∞
∫︁ t

1
t
θmax
t dt <∞, there exists a map T : Rd → Rd such

that T#γ = µ and T is eL-Lipschitz.

Proof. Notice first of all that µt is a smooth density for every t > 0. Fix s > 0: by the
assumptions in the Lemma and by [MS23, Lemma 2 and 3] there exists a map Ts which
is exp

(︂∫︁ s
1
s
θmax
t dt

)︂
-Lipschitz and such that Ts#µs = µ 1

s
. Since µs → γ and µ 1

s
→ µ in

W2-distance (hence weakly) as s→∞, the conclusion follows from [MS23, Lemma 1]. ■

New estimates. In view of Lemma 5.3.1, the goal is to provide estimates on ∇2 logQt

(︂
dµ
dγ

)︂
,

for some classes of probability measures µ on Rd. The Ornstein–Uhlenbeck semigroup Qt

is related to the heat semigroup Pt in (5.1.2) by the identity Qtf(x) = P1−e−2tf(e−tx) for
f ∈ L1(γ). Combining this with Theorem 5.1.3 yields the following

Corollary 5.3.2 (Corollary of Thm. 5.1.3). Let µ = e−V−H ∈ L1
+(Rd) be a probability density

on Rd such that V is α-convex and H is L-Lipschitz, for some α,∈ R, L ≥ 0. Then for every
0 < t such that αt+ 1 > 0 we have

− 1
e2t − 1 Id ≼∇

2 logQt

(︄
dµ

dγ

)︄

≼

⎛⎝ 1− α
α(e2t − 1) + 1 + e2tL2

(α(e2t − 1) + 1)2 + 2Le2t√︂
(e2t − 1) (α(e2t − 1) + 1)3/2

⎞⎠ Id.(5.3.3)

Proof of Theorem 5.1.5. We integrate the upper bound in (5.3.3). An elementary computation
using the change of variable τ = e2t − 1 shows that

∫︂ ∞

0

⎛⎝ 1− α
α(e2t − 1) + 1 + e2tL2

(α(e2t − 1) + 1)2 + 2Le2t√︂
(e2t − 1) (α(e2t − 1) + 1)3/2

⎞⎠ dt
=
∫︂ ∞

0

(︄
1− α
τα+ 1 + L2 τ + 1

(τα+ 1)2 + 2L τ + 1√
τ (τα+ 1)3/2

)︄
1

2(τ + 1)dτ

= − 1
2 log(α) + L2

2α + 2 L√
α
.

The desired conclusion then follows from Lemma 5.3.1. ■

139



5. Log-hessian estimates along the heat flow

5.4 The negative result: proof of Theorem 5.1.1
Before proving the actual theorem, we give some heuristics behind the proof. The leading
idea is the following. If one considers (5.1.1) with µ = δ0, then the solution is immediately
log-concave for t > 0. However, this behaviour is not stable.

Proposition 5.4.1. Fix x0 ∈ R. Let µ = α
α+β δ0 + β

α+β δx0 , for some α, β > 0. Then, µ ∗ γt
is log-concave (if and) only if t ≥ 1

4x
2
0.

Proof. We prove only the only if part, since the other implication follows directly from (5.1.3).
It is not difficult to see that with x0, t, α, β > 0 fixed, there exists z̄ ∈ R for which

αe− z̄2
2t = βe− (z̄−x0)2

2t .

Then, using (5.2.2), we have that

d2

dx2 (− log µ ∗ γt)(z̄) = 1
t

(︄
1− x2

0
4t

)︄
,

which is negative if t < x2
0/4. ■

From equation (5.1.3) we see that a compactly-supported distribution becomes log-concave
along (5.1.1) after a time T = O(R2). Proposition 5.4.1 gives a simple account of this time
scale being correct. In addition, we see that the time needed for the measure µ of Proposition
5.4.1 to become log-concave along (5.1.1) does not depend on the mass of the perturbation
δx0 . Exploiting these observations allows us to create mixtures of Dirac deltas with arbitrarily
thin tails, which never become log-concave along (5.1.1).

Proof of Theorem 5.1.1. For i ≥ 0, set xi = i(i+1)
2 ≥ 0. Define the probability measure µ on

R by

µ ∝
∞∑︂
i=0

1
(i+ 1)2 e

−Ψ(xi)δxi

and let X ∼ µ. It is immediate to check that E
[︂
eΨ(X)

]︂
<∞. Let us now fix t ≥ 0. Recall

from (5.2.2) that

− d2

dx2 log µ ∗ γt(z) = 1
t

(︄
1− Varµz,t

t

)︄
,

where
µz,t(x) ∝ e

zx
t

− x2
2t µ(x) ∝

∞∑︂
i=0

1
(i+ 1)2 e

−Ψ(xi)+
zxi

t
−

x2
i

2t δxi
.

Therefore, it suffices to prove that, for every M > 0, there exists z such that Varµz,t ≥M2.
To this end, fix M and choose j ≥

√
2M so that

|xj − xj−1|2 = j2 ≥ 2M2.

To conclude, it suffices to show that there exists z ∈ R such that

µz,t([0, xj−1]) = 1
2 = µz,t([xj,+∞]). (5.4.1)
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Indeed, the above implies that Varµz,t ≥M2. Notice now that (5.4.1) is equivalent to finding
a solution to the equation F (z) = 0, where

F (z) =
j−1∑︂
i=0

1
(i+ 1)2 e

−Ψ(xi)+
zxi

t
−

x2
i

2t −
∞∑︂
i=j

1
(i+ 1)2 e

−Ψ(xi)+
zxi

t
−

x2
i

2t . (5.4.2)

It is straightforward to check that F (0) ≥ 0, e.g. using that 1 > ∑︁∞
i=1

1
(i+1)2 and that Ψ is non-

decreasing. Moreover, F is continuous, since for any compact interval [a, b] ⊂ R, the series in
(5.4.2) converges uniformly in C([a, b]). To conclude, we show now that limz→∞ F (z) = −∞.
To this end, notice that

F (z) ≤ je−Ψ(0)+
zxj−1

t − 1
(j + 1)2 e

−Ψ(xj)−
x2

j
2t

+
zxj

t

= e
zxj−1

t

(︄
je−Ψ(0) − 1

(j + 1)2 e
−Ψ(xj)−

x2
j

2t e
zj
t

)︄
,

which yields the desired conclusion since j > 0. ■
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CHAPTER 6
L∞-optimal transport of anisotropic

log-concave measures and exponential
convergence in Fisher’s infinitesimal

model

This chapter corresponds to the preprint [KMP24].

We prove upper bounds on the L∞-Wasserstein distance from optimal transport between
strongly log-concave probability densities and log-Lipschitz perturbations. In the simplest set-
ting, such a bound amounts to a transport-information inequality involving the L∞-Wasserstein
metric and the relative L∞-Fisher information. We show that this inequality can be sharpened
significantly in situations where the involved densities are anisotropic. Our proof is based
on probabilistic techniques using Langevin dynamics. As an application of these results, we
obtain sharp exponential rates of convergence in Fisher’s infinitesimal model from quantitative
genetics, generalising recent results by Calvez, Poyato, and Santambrogio in dimension 1 to
arbitrary dimensions.

6.1 Introduction
Upper bounds on transport distances to log-concave probability densities play a central role
in the theory of optimal transport and in applications in high-dimensional geometry and
probability.

One fundamental example is Talagrand’s inequality [Tal96], which provides a remarkable upper
bound for the 2-Wasserstein distance to the standard Gaussian measure γ. For all probability
measures ν having finite relative entropyDKL(ν ∥ γ) =

∫︁
log dν

dγ (x)dν(x), Talagrand’s inequality
asserts that W2(ν, γ) ≤

√︂
2DKL(ν ∥ γ). More generally, Otto and Villani [OV00] showed that

W2(ν, µ) ≤
√︄

2
κ
DKL(ν ∥µ) (6.1.1)

for all ν, whenever µ satisfies a logarithmic Sobolev inequality with constant κ > 0. This
includes in particular the class of all κ-log-concave densities. (A probability density µ is said
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to be κ-log-concave for some κ ∈ R, if µ = e−U where U : Rd → R ∪ {+∞} is κ-convex ;
i.e., x ↦→ U(x)− κ

2 |x|
2 is convex.) The main reason for the great interest of this inequality is

that it implies dimension-free Gaussian concentration for µ.

Another seminal result of a similar flavour is Caffarelli’s contraction theorem [Caf00], which
asserts that any 1-log-concave probability density µ can be obtained as the image (or push-
forward) of the standard Gaussian measure γ under a 1-Lipschitz map T : Rd → Rd. In fact,
the optimal transport map for the W2-distance (the so-called Brenier map) does the job. This
theorem is a powerful tool to transfer functional inequalities from the Gaussian measure to
the large class of 1-log-concave measures.

6.1.1 L∞-optimal transport of log-concave densities
This paper deals with yet another class of bounds on the transport distance to a log-concave
reference density, involving the transport distance W∞ instead of the more common distance
W2. For probability measures µ, ν on Rd, W∞(µ, ν) can be defined in probabilistic terms by

W∞(µ, ν) = inf
X,Y

{︃
esssup
ω∈Ω

|X(ω)− Y (ω)|
}︃
,

where the infimum runs over all Rd-valued random vectors X and Y defined on the same
probability space (Ω,F ,P) with law(X) = µ and law(Y ) = ν.

Our goal is to obtain quantitative bounds on the transport distance W∞(µ, ν) to a log-concave
reference density µ for a large class of measures. The following result is a prototypical example,
which we obtain as a consequence of our main result; see Corollary 6.2.4 below.

Proposition 6.1.1. Let µ and ν be probability densities on Rd. Suppose that µ is κ-log-
concave for some κ > 0, and that ν = e−Hµ, where H ∈ C(Rd) is L-Lipschitz for some
L <∞. Then:

W∞(µ, ν) ≤ L

κ
. (6.1.2)

This bound is sharp, as can be seen by considering two shifted isotropic Gaussian measures.
Under the more restrictive assumptions that both densities µ and ν are κ-log-concave, supported
on a Euclidean ball and bounded away from 0 on it, such a bound was recently proved in
[CPS23, Prop. 3.1] by completely different methods.

Proposition 6.1.1 can also be formulated as a functional inequality involving the L∞ relative
Fisher information I∞(ν ∥µ) defined by

I∞(ν ∥µ) =
⃦⃦⃦⃦
∇ log

(︃dν
dµ

)︃⃦⃦⃦⃦
L∞(Rd,µ)

for sufficiently regular densities ν ≪ µ. Indeed, Proposition 6.1.1 asserts that any probability
density µ ∈ L1

+(Rd) that is κ-log-concave for some κ > 0 satisfies the L∞ transport-information
inequality

W∞(µ, ν) ≤ 1
κ
I∞(ν ∥µ)

for all sufficiently regular probability densities ν. This inequality can be viewed as an L∞-
analogue of well known L2-based transport-information inequalities; see Section 6.2 for more
details.
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One of the main contributions of this paper is the insight that the estimate (6.1.2) can be
improved significantly when the involved probability densities are anisotropic. Anisotropic
densities are ubiquitous in applications, e.g., when densities are concentrated near a lower-
dimensional manifold. To formulate the improved estimate, it will be convenient to introduce
some more notation.

Let K ∈ Rd×d be a symmetric matrix. A function U : Rd → R ∪ {+∞} is K-convex
if x ↦→ U(x) − 1

2⟨x,Kx⟩ is convex. If U ∈ C2(Rd), then U is K-convex if and only if
∇2U(x) ≽ K for all x ∈ Rd. A function µ ∈ L1

+(Rd) \ {0} is said to be K-log-concave
if µ = e−U for some K-convex function U . The special case K = κId corresponds to the
notions of κ-convexity and κ-log-concavity introduced above. If K = 0, we recover the usual
notions of convexity and log-concavity.

Let A and B be orthogonal subspaces satisfying A⊕B = Rn, and let PA and PB denote the
corresponding orthogonal projections. The following result (see Corollary 6.2.7 below) is a
generalisation of Proposition 6.1.1, capturing different behaviour of the involved measures on
the subspaces A and B. In the special case where A = Rn and B = ∅ we recover (6.1.2).

Theorem 6.1.2. Let µ and ν be probability densities on Rd. Suppose that µ is K-log-concave
where K = κAPA + κBPB for some κA, κB > 0, and that ν = e−Hµ, with H ∈ C(Rd)
satisfying, for some LA <∞,

∥H(x)−H(y)∥ ≤ LA|PA(x− y)| for all x, y ∈ Rd .

Then:

W∞(µ, ν) ≤

⎧⎨⎩
LA

κA
if κA ≤ 2κB ,

LA

2
√
κB(κA−κB)

if κA ≥ 2κB .

In the regime 1 ≤ κA

κB
≤ 2, observe that the constants in the denominator depends only on

the directional log-concavity constant κA, and not on the uniform log-concavity constant κB.

Proposition 6.1.1 and Theorem 6.1.2 will be proved as corollaries to a general criterion
(Theorem 6.2.1). The proof is based on a probabilistic argument using careful estimates for
Langevin dynamics for µ and ν.

While our main results are general, our investigation is partly motivated by applications to
the long-term behaviour of Fisher’s infinitesimal model from quantitative genetics, as will
be discussed in Section 6.1.2. The improvement of Theorem 6.1.2 over Proposition 6.1.1 is
crucial to obtain sharp rates of convergence in this model, as we will discuss below.

6.1.2 Application to Fisher’s infinitesimal model
Fisher’s infinitesimal model from quantitative genetics describes the distribution Fn ∈ L1

+(Rd)
of a d-dimensional trait x ∈ Rd in an evolving population at discrete times n ∈ N0. The
trait distribution evolves according to the rule Fn+1 = T [Fn], where T = S ◦ R consists of
a reproduction operator R and a selection operator S acting on L1

+(Rd). The reproduction
operator R is Fisher’s infinitesimal operator given by

R[F ](x) =
∫︂
Rd×Rd

G
(︃
x− x1 + x2

2

)︃
F (x1)F (x2)
∥F∥L1

dx1dx2
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for F ∈ L1
+(Rd) and x ∈ Rd, where G(x) = (2π)−d/2 exp(−|x|2/2) is the standard Gaussian

kernel on Rd. We use the natural convention that R[0] = 0. This operator describes sexual
reproduction in a mean-field model where individuals mate independently and produce offspring
whose traits are (isotropic) Gaussian centred at the average traits of their two parents. The
operator R preserves the size of the population: ∥R[F ]∥L1 = ∥F∥L1 for all F ∈ L1

+(Rd).
Selection effects are modelled using the multiplication operator S, which is given by

S[F ](x) = e−m(x)F (x)

for a fixed mortality function m : Rd → [0,∞). This operator reflects the idea that individuals
with certain traits have a higher survival probability than others. In this paper, m will be
strictly convex, which means that individuals with intermediate trait values have a higher
survival probability. This is the regime of stabilising selection.
Fisher’s infinitesimal model was introduced in [Fis19] and explicitly formulated in [Bul85].
Though the model has been influential in quantitative genetics since it was proposed, it was
proved only recently that the model emerges as a limit of models subject to the laws of
Mendelian inheritance when the number of discrete loci tends to infinity [BEV17]. We refer to
[WL18, Ch. 24] for the biological background of various different infinitesimal models.

Long-term behaviour

Significant recent progress has been obtained in understanding the long-term behaviour of the
model as n→∞ under suitable assumptions on the mortality function m. In particular, it is
natural to ask whether there exists a (unique) probability distribution F that is quasi-invariant
in the sense that T [F] = λF for some λ > 0. Then one may ask whether the renormalised
densities Fn/λn converge to F for a general class of initial probability distributions F0, and to
quantify the speed of convergence using suitable metrics or functionals.
A comprehensive investigation has been carried out in the special case of quadratic selection,
namely m(x) = α

2 |x|
2 for some α > 0 [CLP24]. In this situation, the model preserves the class

of Gaussian distributions and it is shown that there exists a unique quasi-equilibrium F, which
is an explicit Gaussian distribution. Moreover, the authors prove exponential convergence to F
(in the sense of relative entropy) for general initial data.
The remarkable recent paper [CPS23] treats more general uniformly convex selection in
dimension 1. Namely, under the assumption that m : R→ [0,∞] satisfies m′′ ≥ α for some
α > 0, the authors show the existence of a (non-explicit) β-log-concave quasi-equilibrium
F, without establishing its uniqueness. The parameter β > max{1

2 , α} depends on α in an
explicit way. Moreover, [CPS23] uncovers a remarkable central role played by the L∞ relative
Fisher information. The authors show that the one-step contractivity estimate

I∞(T [F ] ∥F) ≤
(︂

1
2 + β

)︂−1
I∞(F ∥F) (6.1.3)

holds for all F ∈ L1
+(Rd). This inequality immediately yields the exponential convergence

bound I∞(Fn ∥F) ≤ (1
2 +β)−nI∞(F0 ∥F) for all initial distributions F0 with I∞(F0 ∥F) <∞.

Observe that the latter condition is a strong assumption on the initial datum F0; e.g., if G and
G′ are 1-dimensional Gaussian distributions with different variances, then I∞(G ∥G′) =∞.

Proof of the one-step contractivity

Let us briefly discuss the strategy of the proof of (6.1.3) from [CPS23]. After proving
the existence of a β-log-concave quasi-equilibrium F, the authors consider the renormalised
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densities un := Fn/λ
nF, which satisfy the recursive equation

un+1(x) =
∫︂
Rd×Rd

un(x1)un(x2)
∥unF∥L1(Rd)

P (x1, x2;x)dx1dx2 ,

where P (x1, x2;x) denotes the weighted transition rates from parental traits (x1, x2) to a
child with trait x. These rates are given by

P (x1, x2;x) = 1
Z(x)F(x1)F(x2)G

(︃
x− x1 + x2

2

)︃
, (6.1.4)

where Z(x) =
∫︁
Rd×Rd F(x1)F(x2)G

(︂
x − x1+x2

2

)︂
dx1dx2 denotes the normalising constant

which ensures that P (·;x) is a probability distribution on Rd × Rd for all x ∈ Rd.

The proof of the one-step contractivity estimate (6.1.3) relies on two key inequalities. Firstly,
for all strictly positive initial data u0 ∈ C1(Rd) and all x, x̃ ∈ Rd, it is shown in [CPS23,
Lem. 2.4] that

| log u1(x)− log u1(x̃)| ≤
⃦⃦⃦
∇ log u0

⃦⃦⃦
L∞(Rd)

W∞,1
(︂
P (·;x), P (·; x̃)

)︂
. (6.1.5)

Here, W∞,1 denotes the∞-Wasserstein metric over the base space R2d endowed with the norm
|(x1, x2)|1 := |x1|+ |x2|, with |xi| denoting the euclidean norm of xi ∈ Rd for i = 1, 2. While
(6.1.5) is stated in [CPS23] for d = 1, the proof extends verbatim to arbitrary dimensions.

The second key inequality from [CPS23] is a sharp bound on the W∞,1-distance appearing in
the above inequality. Namely, in the special case d = 1, it is shown that, for all x, x̃ ∈ R,

W∞,1
(︂
P (·;x), P (·; x̃)

)︂
≤
(︂

1
2 + β

)︂−1
|x− x̃| . (6.1.6)

The inequalities (6.1.5) and (6.1.6) combined yield the crucial one-step contractivity inequality
(6.1.3) for the L∞ relative Fisher information.

However, as pointed out in [CPS23, Rem. 1.6], there are non-trivial obstacles that prevent
an extension of the proof of (6.1.6) to higher dimensions. The reason is that this proof
employs the Brenier map (the optimal transport map for the W2-distance), which satisfies
the Monge-Ampère equation. The required L∞-bound on the Brenier map between P (·;x)
and P (·; x̃) ∈ L1

+(R2) is then obtained by using a maximum principle for the Monge-Ampère
equation in convex but not uniformly convex domains, exploiting recent progress on the
regularity theory for the Monge-Ampère equation in two-dimensional domains with special
symmetries [Jha19].

Results

In this paper we obtain a sharp multi-dimensional version of (6.1.6) by a completely different
(probabilistic) method, as a consequence of Theorem 6.1.2. Using the notation from above, we
first establish the existence of a quasi-invariant distribution in the multi-dimensional setting.

Theorem 6.1.3 (Existence of a quasi-equilibrium). Let m ∈ C1(Rd) be α-convex for some
α > 0. Then there exist λ ∈ (0, 1) and a probability density F ∈ L1

+(Rd) such that
T [F] = λF. Moreover, F is β-log-concave, where β > max

{︂
1
2 , α

}︂
satisfies β = α + β

1
2 +β .
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The proof of this result adapts the arguments from [CPS23], where the corresponding result
was obtained for d = 1. The key technical tool is the L∞-transport bound from Theorem
6.1.2, which yields a Cauchy property for a sequence of iterates, and hence a candidate
quasi-equilibrium. The properties of the L∞ relative Fisher information require us to work first
with a localised problem on a bounded domain, and subsequently identify a quasi-equilibrium
for the original operator T by an approximation procedure. The extension of this argument to
higher dimensions brings additional technicalities to deal with the boundedness of the domains
and to show tightness of a sequence of quasi-equilibria.

As Theorem 6.1.3 yields the existence of a quasi-equilibrium F, we can define the weighted
transition kernels P (·;x) by P (x1, x2;x) = 1

Z(x)F(x1)F(x2)G
(︂
x − x1+x2

2

)︂
as in (6.1.4),

where Z(x) denotes a normalising constant. Using Theorem 6.1.2 we obtain the following
d-dimensional generalisation of (6.1.6).

Theorem 6.1.4 (W∞-contractivity). Let m ∈ C1(Rd) be α-convex for some α > 0. Then:

W∞
(︂
P (·;x), P (·; x̃)

)︂
≤ 2−1/2

(︂
1
2 + β

)︂−1
|x− x̃|

for all x, x̃ ∈ Rd, where β > max{1
2 , α} satisfies β = α + β

1
2 +β .

Since W∞,1 ≤
√

2W∞ in view of the trivial inequality |(x1, x2)|1 ≤
√

2 ∥(x1, x2)∥, this result
implies the desired bound (6.1.6). Consequently, the main conclusions of [CPS23] carry over
to multi-dimensional traits. The following result summarises these conclusions.

Corollary 6.1.5. Let m ∈ C1(Rd) be α-convex for some α > 0, and let (λ,F) be as in
Theorem 6.1.3. Take 0 ̸= F0 ∈ L1

+(Rd) with I∞(F0 ∥F) < ∞, and set Fn = T n[F0] for
k ≥ 0. Then:

(i) (Convergence of the relative L∞-Fisher information) For all n ∈ N we have

I∞(Fn ∥F) ≤
(︂

1
2 + β

)︂−n
I∞(F0 ∥F) .

(ii) (Convergence of the relative entropy) There exists a constant C > 0 depending on F0
such that for all n ∈ N we have

DKL

(︄
Fn
∥Fn∥L1

⃦⃦⃦⃦
⃦F

)︄
≤ C

(︂
1
2 + β

)︂−2n
and

⃓⃓⃓⃓
⃓ ∥Fn∥L1

∥Fn−1∥L1
− λ

⃓⃓⃓⃓
⃓ ≤ C

(︂
1
2 + β

)︂−n
.

One may wonder whether analogues of the contraction property in ((i)) hold with the same rate
for functionals other than I∞(· ∥F), such as the relative entropy and the relative L2-Fisher
information. In Section 6.4 we show that this is not the case, not even in the setting of
quadratic selection (m(x) = α

2 |x|
2) and Gaussian initial data. We refer the reader to Section

6.4 for the details.

6.1.3 Structure of the paper
Section 6.2 deals with L∞-optimal transport bounds for perturbations of log-concave densities,
containing a general criterion (Theorem 6.2.1) and the proofs of Proposition 6.1.1 and Theorem
6.1.2. The applications to Fisher’s infinitesimal model, and in particular the proof of Theorems
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6.1.3 and 6.1.4 and Corollary 6.1.5, can be found in Section 6.3. The discussion after Corollary
6.1.5 is expanded in Section 6.4, which deals with the relative L2-Fisher information and the
relative entropy instead of the relative L∞-Fisher information. Finally, Section 6.5 contains two
lemmas on log-concave distributions that are used in the proof of Theorem 6.1.3 in Section
6.3.

6.1.4 Notation and preliminaries
Let L1

+(Rd) denote the cone of non-negative functions in L1(Rd). Throughout the paper, we
identify (probability) densities in L1

+(Rd) with the corresponding (probability) measures.
Weak convergence of densities (or measures) denotes convergence in duality with bounded
continuous functions. We will frequently use that (µ, ν) ↦→ W∞(µ, ν) is jointly continuous
with respect to weak convergence of probability measures. This follows from the corresponding
result for Wp, since Wp → W∞ pointwise as p→∞; see [GS84].

Definition 6.1.6. Suppose that µ ∈ L1
+(Rd) is a κ-log-concave density for some κ ∈ R, not

necessarily normalised, so that Suppµ is closed and convex. If ν ∈ L1
+(Rd) satisfies ν ≪ µ

and log
(︂

dν
dµ

)︂
= f µ-a.e. for some Lipschitz function f : Suppµ→ R, then

I∞(ν ∥µ) := sup
{︄
|f(x)− f(y)|
|x− y|

: x, y ∈ Suppµ , x ̸= y

}︄
. (6.1.7)

Otherwise, I∞(ν ∥µ) := +∞.

Remark 6.1.7. In particular, if ν ≪ µ and log
(︂

dν
dµ

)︂
= f µ-a.e. for some f ∈ C1(Suppµ),

then I∞(ν ∥µ) = ∥∇f∥L∞(Rd,µ).

The relative entropy (or Kullback-Leibler divergence) of a probability density ν with respect to
a probability density µ is defined by

DKL(ν ∥µ) =

⎧⎪⎨⎪⎩
∫︂
Rd
ρ log ρdµ if ν ≪ µ with ρ := dν

dµ ,

+∞ otherwise .
(6.1.8)

Br(x) denotes the open ball of radius r > 0 around x ∈ Rd. Its closure will be denoted Br(x)
γµ,C denotes the centred Gaussian density with mean µ ∈ Rd and covariance matrix C ∈ Rd×d.
If µ = 0 we simply write γC .
The following well-known property of log-concave densities will be useful in the sequel; see,
e.g., [SW14, Thm. 3.7.2].

Lemma 6.1.8 (Preservation of log-concavity). For i = 1, 2, let µi ∈ L1
+(Rd) be Ki-log-

concave for some matrix Ki ∈ Rd×d with Ki ≻ 0. Then µ1 ∗ µ2 is K-log-concave with
K−1 = K−1

1 +K−1
2 .

We also use the following well-known result in the reverse direction; see [EL18, Lem. 1.3].

Lemma 6.1.9 (Log-convexity along the heat flow). Let µ be a probability measure on Rd.
For any t > 0 the probability density µt := µ ∗ γtId

is (−1
t
)-log-convex, in the sense that, for

all x ∈ Rd,
∇2
(︂
− log µt(x)

)︂
≼

1
t
Id . (6.1.9)
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6.2 L∞-optimal transport of log-concave measures
In this section we present several bounds for the ∞-Wasserstein distance W∞(µ, ν) between a
log-concave measure µ and a log-Lipschitz perturbation ν. Unless specified otherwise, the
Wasserstein distance is taken with respect to the Euclidean distance on the underlying space.
Our bounds will be derived from the following general criterion.

Theorem 6.2.1. Let µ and ν be probability densities on Rd satisfying the following assump-
tions:

(i) µ is K-log-concave for some matrix K ∈ Rd×d with K ≻ 0.

(ii) ν = e−Hµ with H ∈ C(Rd) satisfying

|H(y)−H(x)| ≤ ℓ(x− y) for all x, y ∈ Rd ,

for some positively 1-homogeneous function ℓ ∈ C(Rd).

Then we have
W∞(µ, ν) ≤M ,

where
M := sup

z∈Rd

{︃
|z| : ⟨z,Kz⟩ ≤ ℓ(z)

}︃
.

Remark 6.2.2. Note that the assumptions imply that H is Lipschitz continuous with Lipschitz
constant L := sup|z|=1 ℓ(z). A possible choice of ℓ is given by ℓ(z) = L∥z∥. However, it is
important to allow for other choices of ℓ which take anisotropy into account. This will indeed
be crucial to get optimal bounds in our application to the Fisher model. When H ∈ C1(Rd),
the assumed bound on H can be written equivalently as

⟨∇H(x), z⟩ ≤ ℓ(z) for all x, z ∈ Rd .

Proof. The proof consists of three steps.

Step 1. Suppose first that µ = e−U for some U ∈ C2(Rd) such that ∇U is Lipschitz, and
that H ∈ C1(Rd). It then follows from the standard theory of stochastic differential equations
[KS91, Thm. 5.2.9] that there exists a unique strong solution to the following system of SDEs,
driven by the same Brownian motion Bt, for all times t ≥ 0:

dXt = −∇U(Xt)dt+
√

2dBt , X0 ∼ ν , (6.2.1)
dYt = −∇U(Yt)dt−∇H(Yt)dt+

√
2dBt , Y0 = X0 . (6.2.2)

Subtracting these equations in their integral form we note that the Brownian term vanishes,
and since X and Y have a.s. continuous sample paths, we infer that the sample paths of
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Z := X − Y are continuously differentiable a.s. Using the chain rule and our assumptions, we
find

1
2

d
dt |Zt|

2 = −
⟨︂
Xt − Yt,∇U(Xt)−∇U(Yt)

⟩︂
+
⟨︂
Xt − Yt,∇H(Yt)

⟩︂
≤ −⟨Zt, K Zt⟩+ ℓ(Zt) .

Observe now that, for any differentiable function h : R≥0 → R≥0 with h(0) = 0 we have
suph = supx≥0{h(x) : h′(x) ≥ 0}. Applying this identity to h(t) = 1

2 |Zt|
2, we obtain

|Xt − Yt| ≤M for all t ≥ 0 . (6.2.3)

Since µ is strongly log-concave and X0 has finite second moment, law(Xt) converges to µ
in W2-distance as t → ∞, hence weakly. Using the joint lower semicontinuity of W∞ with
respect to weak convergence [GS84] we deduce that W∞(µ, ν) ≤M .

Step 2. We now remove the extra assumptions on µ. To this end, set µn = µ ∗ γ 1
n
Id

and
define the probability density νn ∝ e−Hµn. Note that Un = − log µn is smooth with

Kn :=
(︃
K−1 + 1

n
Id

)︃−1
≼ ∇2Un ≼

1
n
Id

by Lemma 6.1.8. Therefore, we are in a position to apply Step 1 and we obtain the bound
W∞(µn, νn) ≤Mn, where

Mn := sup
z∈Rd

{︃
|z| : ⟨z,Knz⟩ ≤ ℓ(z)

}︃
.

Note that µn → µ weakly. Moreover, Lemma 6.2.3 below implies that νn → ν weakly too.
Hence, using again the joint lower semicontinuity of W∞ with respect to weak convergence
we find

W∞(µ, ν) ≤ lim inf
n→∞

W∞(µn, νn) ≤ lim inf
n→∞

Mn .

It thus remains to show that Mn →M .

For this purpose, we define the sets

Cn =
{︂
z ∈ Rd : ⟨z,Knz⟩ ≤ ℓ(z)

}︂
and C =

{︂
z ∈ Rd : ⟨z,Kz⟩ ≤ ℓ(z)

}︂
.

Since t ↦→ t−1 is operator monotone (see, e.g., [Car10, Lemma 2.7]), we have ⟨z,Knz⟩ ≥
⟨z,Kn−1z⟩ for all z, hence Cn ⊆ Cn−1 and Mn ≤Mn−1. Moreover, since ⟨z,Knz⟩ → ⟨z,Kz⟩
monotonically for all z, we have C = ⋂︁

nCn.

Using the continuity and the positive 1-homogeneity of ℓ, we infer that the sets Cn are non-
empty and compact. Consequently, there exists zn ∈ Cn ⊆ C1 with |zn| = Mn. Since C1 is
compact, we may extract a subsequence {znk

}k converging to some ẑ ∈ C1. Since each Cm is
closed, and since znk

∈ Cm whenever nk ≥ m, it follows that ẑ ∈ Cm, hence ẑ ∈ ⋂︁mCm = C.
Therefore, M ≥ |ẑ| = limk→∞ |znk

| = limk→∞ Mnk
. Since M ≤ Mn ≤ Mn−1 for all n, it

follows that limn→∞ Mn = M .
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Step 3. We remove the differentiability assumptions on H. Write

L := sup
∥x∥=1

ℓ(x) <∞ ,

so that H is L-Lipschitz. Let j : Rd → R≥0 be a smooth mollifier supported in the unit ball
of Rd. We write jn(x) := ndj(nx) and Hn := jn ∗H, so that

Hn(x) = nd
∫︂
Rd
H(x− y)j(ny)dy =

∫︂
Rd
H
(︃
x− y

n

)︃
j(y)dy .

Since Supp j ⊆ B1(0), we have for all x, y ∈ Rd,

|Hn(x)−H(x)| ≤ L

n
, (6.2.4)

|Hn(x)−Hn(y)| ≤ ℓ(x− y) ≤ L∥x− y∥ . (6.2.5)

Define the probability measures νn ∝ e−Hnµ. Since Hn is a smooth function satisfying (6.2.5),
an application of Step 2 yields

W∞(µ, νn) ≤M .

Hence, since W∞ is jointly weakly lower semicontinuous, it suffices to show that νn → ν
weakly. For this purpose, it is in turn sufficient to prove that e−Hn converges to e−H in L1(µ),
which we will do next.

Fix ε > 0. Since µ is κ-log-concave with κ > 0, we have − log µ(x) ≥ κ
2 |x − x̄|

2 for some
x̄ ∈ Rd. Furthermore, since |H(x)| ≤ |H(0)|+L|x|, (6.2.4) implies that |Hn(x)| ≤ C+L∥x∥
with C := |H(0)|+ L. Therefore, there exists R > 0 such that, for all n ≥ 1,∫︂

BR(0)c
e−Hndµ+

∫︂
BR(0)c

e−Hdµ ≤ ε

2 .

Furthermore, since the function x ↦→ e−x is uniformly continuous on bounded intervals, (6.2.4)
implies that there exists n̄ ≥ 1 such that for all n ≥ n̄,

sup
x∈BR(0)

⃓⃓⃓
e−Hn(x) − e−H(x)

⃓⃓⃓
≤ ε

2 .

Consequently, for n ≥ n̄,∫︂
Rd

⃓⃓⃓
e−Hn − e−H

⃓⃓⃓
dµ ≤

∫︂
BR(0)c

e−Hndµ+
∫︂
BR(0)c

e−Hdµ+ sup
BR(0)

⃦⃦⃦
e−Hn − e−H

⃦⃦⃦
≤ ε ,

which implies that e−Hn → e−H in L1(µ) as n→∞. ■

Lemma 6.2.3. Let µ ∈ L1
+(Rd) be a K-log-concave probability density for some matrix

K ∈ Rd×d with K ≻ 0, and define µn = µ ∗ γ 1
n
Id

for n ≥ 1. Then
∫︂
fdµn →

∫︂
fdµ

for all continuous functions f : Rd → R satisfying |f(x)| ≤ C exp(C∥x∥) for some C > 0.
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Proof. We show first that the integrals above are finite. Let f be as in the statement, let
X ∼ µ and Z ∼ γId

be independent, and set Xn = X + Z√
n
.

Let κ > 0 be the smallest eigenvalue of K, and fix κ′ ∈ (0, κ). It follows from Lemma 6.1.8
that µn is κ′-log-concave for all n sufficiently large. Therefore, the Bakry-Émery criterion
implies that the measures µ and µn satisfy a logarithmic Sobolev inequality with the same
constant. Using this, the growth assumption on f , and the fact that E[Xn] = E[X], the so-
called Herbst argument [BGL14, Prop. 5.4.1] implies that f(Xn) ∈ L2 and that the sequence
{f(Xn)}n is bounded in L2. In particular, f(X), f(Xn) ∈ L1, hence the integrals above are
finite. It remains to show that

E[f(Xn)]→ E[f(X)].

For this purpose, note first that Xn → X in probability. Since f is continuous, f(Xn)→ f(X)
in probability as well; see, e.g. [Kal21, Lem. 5.3]. Therefore, to conclude that f(Xn)→ f(X)
in L1 it suffices to show that {f(Xn)}n is uniformly integrable; see, e.g. [Kal21, Thm. 5.12].
But this follows from the fact that the sequence {f(Xn)}n is bounded in L2, which we proved
above. ■

6.2.1 Isotropic case
The simplest non-trivial case of Theorem 6.2.1 is the following estimate, which we stated as
Proposition 6.1.1 above.

Corollary 6.2.4. Let µ and ν be probability densities on Rd. Suppose that µ is κ-log-concave
for some κ > 0, and that ν = e−Hµ, where H ∈ C(Rd) is L-Lipschitz for some L < ∞.
Then:

W∞(µ, ν) ≤ L

κ
. (6.2.6)

Proof. This is an application of Theorem 6.2.1 with K = κId and ℓ(z) = L|z|. ■

The following result is a reformulation of Corollary 6.2.4 as a functional inequality.

Theorem 6.2.5 (∞-Transport-Information Inequality). Let µ ∈ L1
+(Rd) be a κ-log-concave

probability density for some κ > 0. Then the transport-information inequality

W∞(µ, ν) ≤ 1
κ
I∞(ν ∥µ) (6.2.7)

holds for all probability densities ν ∈ L1
+(Rd).

Proof. Suppose that I∞(ν ∥µ) < +∞; otherwise there is nothing to prove. In view of
Definition 6.1.6 there exists a Lipschitz function h : Suppµ → R with Lipschitz constant
L := I∞(ν ∥µ), that agrees with log

(︂
dν
dµ

)︂
µ-a.e.. By the Kirszbraun theorem, h can be

extended to a Lipschitz function H on Rd with the same Lipschitz constant L. Since
ν = e−Hµ, the result follows from Corollary 6.2.4. ■
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6. L∞-optimal transport and Fisher’s infinitesimal model

Remark 6.2.6. The inequality (6.2.7) is an L∞-analogue of the well-known L2-based transport-
information inequality

W2(µ, ν) ≤ 1
κ

√︂
I2(ν ∥µ) , (6.2.8)

where I2(ν ∥µ) denotes the L2-relative Fisher Information, i.e. I2(ν ∥µ) :=
⃦⃦⃦
∇ log

(︂
dν
dµ

)︂⃦⃦⃦2

L2(ν)
for sufficiently regular densities ν.
The latter inequality holds under the assumption that µ satisfies a logarithmic Sobolev
inequality DKL(ν ∥µ) ≤ 1

2κI2(ν ∥µ), and thus for every κ-log concave measure µ by the
Bakry–Émery criterion. To prove (6.2.8), note that the logarithmic Sobolev inequality implies
the transport-entropy inequality W2(µ, ν) ≤

√︂
2
κ
DKL(ν ∥µ) by the work of Otto and Villani

[OV00]. Combining these two inequalities immediately yields (6.2.8). For a systematic study
of transport-information inequalities we refer to [GLWY09].

6.2.2 Anisotropic case
We will now develop a more refined criterion, that yields improved bounds in situations where
the measures behave differently in different directions. Let A and B be non-empty subspaces
of Rd that are orthogonal and satisfy A ⊕ B = Rd. Let PA and PB be the corresponding
orthogonal projections.

Corollary 6.2.7. Let µ and ν be probability densities on Rd satisfying the following assump-
tions:

(i) µ is K-log-concave, with K = κAPA + κBPB for some κA, κB > 0.

(ii) ν = e−Hµ with H ∈ C(Rd) satisfying, for some LA <∞,

∥H(x)−H(y)∥ ≤ LA|PA(x− y)| for all x, y ∈ Rd .

Then:

W∞(µ, ν) ≤

⎧⎨⎩
LA

κA
if κA ≤ 2κB ,

LA

2
√
κB(κA−κB)

if κA ≥ 2κB .
(6.2.9)

Proof. Applying Theorem 6.2.1 with K = κAPA + κBPB and ℓ(z) = LA|PAz|, we infer that
W∞(µ, ν) ≤M , where

M := sup
zA,zB≥0

{︃√︂
z2
A + z2

B : κAz
2
A + κBz

2
B ≤ LAzA

}︃
. (6.2.10)

Performing the maximisation over zB first, we observe that

M2 = sup
{︃
z2
A + 1

κB

(︂
LAzA − κAz2

A

)︂
: 0 ≤ zA ≤

LA
κA

}︃
= 1
κB

sup
{︃
p(zA) : 0 ≤ zA ≤

LA
κA

}︃
,

where p(z) = LAz − (κA − κB)z2. We now distinguish two cases.
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6.2. L∞-optimal transport of log-concave measures

If κA ≤ 2κB, then p is non-decreasing on the interval [0, LA/κA]. Therefore, the supremum
of p on [0, LA/κA] is attained at the right endpoint of this interval, hence

M2 = 1
κB

p
(︃
LA
κA

)︃
= L2

A

κ2
A

.

If κA > 2κB, then p attains its global maximum in the open interval (0, LA/κA), at z :=
LA

2(κA−κB) . Therefore,

M2 = 1
κB

p
(︃

LA
2(κA − κB)

)︃
= L2

A

4κB(κA − κB) ,

as desired. ■

Remark 6.2.8. Note that the right-hand side of (6.2.9) involves the the ratio of a “directional
Lipschitz constant” and an “effective convexity parameter”. In this sense, the bound has
the same form as (6.2.6). The bound (6.2.9) is sharp for κA ≤ 2κB, as we will see in the
application to the Fisher model below.

We finally state a corollary that will be used in the application to Fisher’s infinitesimal model.
Let F = e−V be a κ-log-concave probability density on R2d for some κ > 0. For x ∈ Rd we
consider the probability density P (·;x) on R2d defined by

P (x1, x2;x) = 1
Zx

exp
(︃
−V (x1, x2)−

1
2

⃓⃓⃓⃓
x− x1 + x2

2

⃓⃓⃓⃓2)︃
, (6.2.11)

where Zx > 0 is the normalising constant which ensures that Px is a probability density. The
transition rates appearing in the Fisher model are precisely of this form; see Theorem 6.1.4.

Corollary 6.2.9. Let F be a κ-log-concave probability density on R2d for some κ > 1
2 . Then,

for any x, x̃ ∈ Rd,

W∞
(︂
P (·;x), P (·; x̃)

)︂
≤ 1

1
2 + κ

|x− x̃|√
2

. (6.2.12)

Before proving this result, we first show that an application of the isotropic criterion from
Corollary 6.2.4 yields a suboptimal result. For ease of notation, suppose that V ∈ C2(R2d).
Fix x, x̃ ∈ Rd and let us write µx = e−U := P (·;x) and µx̃ = e−Hµ := P (·; x̃). Then:

∇2U(x1, x2) =∇2V (x1, x2) + 1
4

(︄
Id Id
Id Id

)︄
and ∇H(x1, x2) = 1

2

(︄
x− x̃
x− x̃

)︄
.

Taking into account that ∇2V ≽ κI2d by assumption, we have the bounds

∇2U(x) ≽ κI2d and |∇H(x)| ≤ |x− x̃|√
2

. (6.2.13)

An application of Corollary 6.2.4 then yields the estimate W∞(µx, µx̃) ≤ |x−x̃|
κ

√
2 , which is weaker

than the desired inequality (6.2.12). (In particular, in the application to the Fisher model,
where κ = β, the comparison of norms |x|1 ≤

√
2|x|2 implies that W∞,1(µx, µx̃) ≤ |x−x̃|

β
,

which is weaker than the desired inequality (6.1.6).)

The following proof crucially exploits anisotropy to obtain the sharp constant.
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6. L∞-optimal transport and Fisher’s infinitesimal model

Proof of Corollary 6.2.9. Consider the orthogonal decomposition of R2d into symmetric and
anti-symmetric vectors: R2d = R2d

s ⊕ R2d
a , where

R2d
s :=

{︄(︄
x
x

)︄
∈ R2d : x ∈ Rd

}︄
and R2d

a :=
{︄(︄

x
−x

)︄
∈ R2d : x ∈ Rd

}︄
.

The corresponding orthogonal projections Ps,Pa : R2d → R2d have the form

Ps

(︄
x1
x2

)︄
= 1

2

(︄
x1 + x2
x1 + x2

)︄
and Pa

(︄
x1
x2

)︄
= 1

2

(︄
x1 − x2
x2 − x2

)︄
.

The crucial observation is now that the isotropic bounds (6.2.13) can be replaced by more
refined estimates that take into account how U and H behave in symmetric and anti-symmetric
directions. Namely, since

(︂
Id Id
Id Id

)︂
= 2Ps, we have the following improvement over (6.2.13):

∇2U(x) ≽
(︃1

2 + κ
)︃

Ps + κPa and |⟨∇H(x), z⟩| ≤ |x− x̃|√
2
|Psz| .

(The first inequality holds when V ∈ C2(R2d). In the general case, the corresponding
nonsmooth statement holds, which asserts that U is K-convex with K =

(︂
1
2 + κ

)︂
Ps + κPa.)

Therefore, an application of Corollary 6.2.7 to A = R2d
s and B = R2d

a with parameters

κA = 1
2 + κ , κB = κ , LA = |x− x̃|√

2
,

yields, if κ ≥ 1
2 ,

W∞(µx, µx̃) ≤
1

1
2 + κ

|x− x̃|√
2

,

which is the desired inequality. ■

Remark 6.2.10 (Optimality). The constants in (6.2.12) are sharp. In fact, it was observed
in [CPS23, Remark 2.7] that equality holds in the context of Fisher’s infinitesimal model with
quadratic selection in dimension 1, which means that m(x) = α

2x
2 with α > 0. In this case,

we have V (x1, x2) = β
2 (x2

1 + x2
2), with β > 1

2 as in Theorem 6.1.3. The measures P (·;x) are
then Gaussian with mean (1

2 + β)−1(x2 ,
x
2 ) and the same covariance matrix. The W∞-distance

between two such measures is simply the euclidean distance between the respective means,
which corresponds to the right-hand side in (6.2.12).
To show that this bound can not be improved, take arbitrary densities µ and ν with finite first
moment, and random variables X and Y with marginals µ and ν respectively. Then:⃓⃓⃓⃓∫︂

xdµ(x)−
∫︂
xdν(x)

⃓⃓⃓⃓
=
⃓⃓⃓
E[X − Y ]

⃓⃓⃓
≤ E[|X − Y |] ,

which implies that, |∫︁ xdµ(x)−
∫︁
xdν(x)| ≤ W∞(µ, ν).

6.2.3 Boundedness of the forward-flow transport map
In this subsection we sketch an alternative argument to prove the transport bound of Corollary
6.2.4. Instead of constructing a suitable coupling, we provide an upper bound on the
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displacement of the forward-flow map, whose inverse is the so-called Langevin transport
map. The Langevin transport map and the forward-flow map were introduced by Kim and
Milman [KM12] in their work on generalisations of Cafferelli’s contraction theorem [Caf00].
Subsequently, there has been a lot of interest in Lipschitz bounds for the forward-flow map
[MS23, FMS24, Nee22, KP21], as such bounds allow one to transfer functional inequalities
from log-concave measures to their image under the forward-flow map. Here we show that
L∞-bounds can be obtained as well.

As we already provided a rigorous proof of Corollary 6.2.4 by a different method, we keep the
arguments in this section formal, so as not to obscure the main ideas. In particular, we do not
discuss the delicate issues of existence of flow maps. For more details on the construction and
rigorous justifications we refer the reader to [OV00, KM12, MS23, FMS24].

Construction of the forward-flow map Consider probability densities µ and ν. Here we
assume that µ = e−U and ν = e−Hµ with smooth U,H : Rd → R. Moreover, µ is assumed
to be κ-log-concave (i.e., ∇2U ≥ κId) for some κ > 0 and ν is a log-Lipschitz perturbation
(i.e. |∇H| ≤ L for some L <∞).

We shall briefly and informally describe the construction of the forward-flow map S : Rd → Rd,
which pushes-forward ν onto µ (i.e., S#ν = µ), referring the reader to the aforementioned
references for details.

The key idea is to interpolate between ν and µ using the Langevin dynamics

X0 ∼ ν, dXt = −∇U(Xt)dt+
√

2dBt .

Denoting ρt := law(Xt), we have ρ0 = ν and ρt → µ weakly as t→∞. Moreover, ρt satisfies
the Fokker-Planck equation, which we formulate here as a continuity equation

∂tρt −∇ ·
(︂
ρt∇ log ft

)︂
= 0 , (6.2.14)

where ft := dρt

dµ . Since f0 = dν
dµ = e−H , our assumptions imply the pointwise bound

|∇ log f0| = |∇H| ≤ L. We will show that

|∇ log ft| ≤ Le−κt (6.2.15)

for all t ≥ 0.

For this purpose, let (Pt)t≥0 be the transition semigroup associated to the Langevin dynamics,
and note that ft = Ptf0 by reversibility. Since µ is κ-log-concave, the Bakry-Émery theory
[BGL14, Thm. 3.3.18] implies the pointwise gradient estimate

|∇Ptf | ≤ e−κtPt|∇f | (6.2.16)

for all sufficiently regular f : Rd → R. Using this inequality, the inequality |∇f0| ≤ Lf0, and
the positivity of Pt, we obtain

|∇ft| ≤ e−κtPt|∇f0| ≤ Le−κtPtf0 = Le−κtft ,

which yields the claimed bound (6.2.15).

For t ≥ 0, consider the flow map St : Rd → Rd associated to the vector field (t, x) ↦→
−∇ log ft(x), which satisfies

S0(x) = x ,
d
dtSt(x) = −∇ log ft

(︂
St(x)

)︂
.
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Then, by construction, (St)#ν = ρt, and for 0 ≤ s ≤ t, (6.2.15) yields

∥Ss − St∥L∞ ≤
∫︂ t

s
∥∇ log(fr ◦ Sr)∥L∞dr ≤ L

κ

(︂
e−κs − e−κt

)︂
. (6.2.17)

Passing to the limit, it is now simple to deduce that the forward-flow map S = limt→∞ St is
well-defined, that S#ν = µ, and that

∥S − I∥L∞(Rd) ≤
L

κ
. (6.2.18)

This is the desired bound, which immediately implies the bound W∞(µ, ν) ≤ L
κ

from (6.2.6).

The inverse of the forward-flow map S is known as the Langevin transport map. In general,
these maps do not coincide with the Brenier map [Tan21, LS22], except in dimension 1. An
analogous bound to (6.2.18) was proved in [CPS23, Prop. 3.1] for the Brenier map, under
the stronger conditions that µ and ν are κ-log-concave, supported on a euclidean ball, and
bounded away from 0 on it.

6.3 Applications to Fisher’s infinitesimal model
Throughout this section, we fix α > 0 and an α-convex mortality function m ∈ C1(Rd). We
assume that m ≥ 0 and m(0) = 0. These assumptions are without loss of generality, except
for the claim in Theorem 6.3.2 below that λ ∈ (0, 1). We also fix β > 1

2 through the identity
β = α + β

1
2 +β , as in Theorem 6.1.3.

The following result is taken from [CPS23, Lemma 2.4]. For the convenience of the reader we
include their proof. Recall that the metric W∞,1 was defined after (6.1.5).

Lemma 6.3.1. Let c > 0, and let P (· ; x) be a probability density on R2d for each x ∈ Rd.
Suppose that u0, u1 ∈ C(Rd) are strictly positive functions, that log u0 is L-Lipschitz, and
that

u1(x) = c
∫︂
R2d

P (x1, x2;x)u0(x1)u0(x2)dx1dx2 (6.3.1)

for all x ∈ Rd. Then we have

| log u1(x)− log u1(x̃)| ≤ LW∞,1
(︂
P (·;x), P (·; x̃)

)︂
(6.3.2)

for all x, x̃ ∈ Rd.

Proof. Fix x, x̃ ∈ Rd, and let γ ∈ P
(︂
R2d × R2d

)︂
be an optimal coupling in the definition of

W∞,1
(︂
P (·;x), P (·; x̃)

)︂
. For (x1, x2), (x̃1, x̃2) ∈ R2d we have

log
(︂
u0(x1)u0(x2)

)︂
− log

(︂
u0(x̃1)u0(x̃2)

)︂
= log u0(x1)− log u0(x̃1) + log u0(x2)− log u0(x̃2)
≤L

(︂
|x1 − x̃1|+ |x2 − x̃2|

)︂
.
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Writing W := W∞,1
(︂
P (·;x), P (·; x̃)

)︂
, it follows using the bound above that

u1(x) = c
∫︂
R4d

u0(x1)u0(x2) γ(dx1, dx2, dx̃1, dx̃2)

≤ c
∫︂
R4d

exp
(︃
L
(︂
|x1 − x̃1|+ |x2 − x̃2|

)︂)︃
u0(x̃1)u0(x̃2) γ(dx1, dx2, dx̃1, dx̃2)

≤ ceLW
∫︂
R4d

u0(x̃1)u0(x̃2) γ(dx1, dx2, dx̃1, dx̃2) = eLWu1(x̃) .

The desired conclusion follows after exchanging the roles of x and x̃. ■

6.3.1 Analysis of a localised problem
As in [CPS23, Sec. 4], we study an auxiliary localised problem. Specifically, for R > 0, we
consider the localised selection function

mR(x) := m(x) + χBR
,

where χ denotes the convex indicator function, i.e.,

χA(x) =

⎧⎨⎩ 0 if x ∈ A ,
+∞ otherwise .

The corresponding localised operator is given by

TR[F ](x) = e−mR(x)
∫︂
R2d

G
(︃
x− x1 + x2

2

)︃
F (x1)F (x2)
∥F∥L1

dx1dx2 .

In this section we establish the existence of a quasi-stationary distribution for the localised
problem, adapting the proof of [CPS23, Thm. 4.1(i)].

Theorem 6.3.2. Let R > 0. There exists λR ∈ (0, 1) and a β-log-concave probability density
FR on Rd that is bounded away from 0 on its support BR, and satisfies

TR[FR] = λRFR .

The following result, proved in [CPS23, Lemma 2.2, 2.3], is an immediate consequence of the
fact that log-concavity is preserved by convolution (Lemma 6.1.8) and pointwise multiplication
with log-concave functions.

Lemma 6.3.3 (Preservation of log-concavity). Let R > 0. If F is κ-log-concave for some
κ > 0, then T [F ] and TR[F ] are κ′-log-concave with κ′ := α + 2κ

1+2κ . In particular, if F is
β-log-concave, then T [F ] and TR[F ] are β-log-concave as well.

The key ingredient in the proof of Theorem 6.3.2 is the following contractivity estimate.

Lemma 6.3.4. Define F0 ∈ L1
+(Rd) by F0(x) = exp

(︂
−β

2∥x∥
2− χBR(0)(x)

)︂
and set Fn+1 :=

TR[Fn] for n ≥ 0. Then, for all n ≥ 1:

I∞(Fn+1 ∥Fn) ≤
(︂

1
2 + β

)︂−1
I∞(Fn ∥Fn−1) .
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Proof. Set BR := BR(0) for brevity, and define un := Fn

Fn−1
for n ≥ 1. Note that un is strictly

positive and of class C1 on BR. Using the identities

Fn(x) = e−mR(x)

∥Fn−1∥L1

∫︂
R2d

Fn−1(x1)Fn−1(x2)G
(︃
x− x1 + x2

2

)︃
dx1dx2 ,

Fn+1(x) = e−mR(x)

∥Fn∥L1

∫︂
R2d

Fn−1(x1)un(x1)Fn−1(x2)un(x2)G
(︃
x− x1 + x2

2

)︃
dx1dx2 ,

we obtain the recursion relation

un+1(x) = ∥Fn−1∥L1

∥Fn∥L1

∫︂
R2d

Pn(x1, x2;x)un(x1)un(x2)dx1dx2 (6.3.3)

for x ∈ BR and n ≥ 1, with n-dependent transition rates

Pn(x1, x2;x) = 1
Zn(x)Fn−1(x1)Fn−1(x2)G

(︃
x− x1 + x2

2

)︃
,

where Zn(x) > 0 is the normalising constant ensuring that Pn(· ;x) is a probability density for
all x ∈ Rd. Arguing as in the proof of Lemma 6.3.1, we infer that

| log un+1(x)− log un+1(x̃)| ≤ ∥∇ log un∥L∞(BR) W∞,1
(︂
Pn(·;x), Pn(·; x̃)

)︂
for all x, x̃ ∈ BR. Since Fn is β-log-concave by Lemma 6.3.3, Corollary 6.2.9 yields, in view
of the elementary comparison of norms |(x1, x2)|1 ≤

√
2|(x1, x2)| for x1, x2 ∈ Rd,

W∞,1
(︂
Pn(·;x), Pn(·; x̃)

)︂
≤
√

2W∞
(︂
Pn(·;x), Pn(·; x̃)

)︂
≤ |x− x̃|1

2 + β
.

Combining these inequalities, we find

∥∇ log un+1∥L∞(BR) ≤
(︂

1
2 + β

)︂−1
∥∇ log un∥L∞(BR) ,

which is the desired inequality. ■

Proof of Theorem 6.3.2. Set F0 = 1
Z

exp
(︂
−β

2∥x∥
2 − χBR

)︂
as in Lemma 6.3.4 and define

Fn+1 = TR[Fn] for n ≥ 0, and write Vn := − logFn. Clearly, the restriction of Fn to BR

(which will simply be denoted by Fn as well) is bounded away from 0 and it belongs to
C1(BR) for all n ≥ 0. Adapting arguments from [CPS23], we will show that log

(︂
Fn/∥Fn∥L1

)︂
converges in C(BR) as n→∞. This statement will follow from two claims.

Firstly, we claim that ∇ log
(︂
Fn/∥Fn∥L1

)︂
= −∇Vn converges in C(BR) as n→∞. To prove

this, we observe that Lemma 6.3.4 yields

I∞(Fn+1 ∥Fn) ≤
(︂

1
2 + β

)︂−n
I∞(F1 ∥F0) .

Since I∞(Fn+1 ∥Fn) = ∥∇Vn−∇Vn+1∥C(BR) , the sequence ∇Vn is Cauchy in C(BR), hence
convergent.

Secondly, we claim that Fn(0)
∥Fn∥L1

converges in R as n→∞. To show this, we use the identity

Fn(x)
∥Fn∥L1

=
∫︁
BR×BR

G
(︂
x− x1+x2

2

)︂
exp

(︂
−m(x)− vn(x1)− vn(x2)

)︂
dx1dx2∫︁∫︁

BR×BR×BR
G
(︂
x′ − x1+x2

2

)︂
exp

(︂
−m(x′)− vn(x1)− vn(x2)

)︂
dx1dx2dx′

,
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where we write vn(x) = Vn−1(x)− Vn−1(0) for brevity. Note that the artifically introduced
factors eVn−1(0) cancel out. Writing vn(x) = x ·

∫︁ 1
0 ∇Vn−1(θx)dθ we infer from the first claim

that vn converges uniformly. Therefore, the second claim follows using dominated convergence.

The two claims combined imply that log
(︂
Fn/∥Fn∥L1

)︂
converges in C(BR) as n→∞. Let

−VR be its limit, and define FR := exp
(︂
−VR − χBR

)︂
. It remains to verify that FR has the

desired properties.

Since VR is bounded, it follows that FR is bounded away from 0 on its support BR.

To prove the identity TR[F] = λRFR we write

∥Fn+1∥L1

∥Fn∥L1
=
∫︂
BR×BR

HR(x1, x2)
Fn(x1)
∥Fn∥L1

Fn(x2)
∥Fn∥L1

dx1dx2 ,

where H(x1, x2) =
∫︁
BR
e−m(x)G

(︂
x − x1+x2

2

)︂
dx is bounded. Since HR is bounded and

Fn/∥Fn∥L1 converges uniformly by the first part of the proof, we infer that ∥Fn+1∥L1
∥Fn∥L1

→ λR

for some λR > 0. Since Fn

∥Fn∥L1
→ F in C(BR), it follows that TR

[︂
Fn

∥Fn∥L1

]︂
→ TR[F]. On the

other hand,

TR
[︄

Fn
∥Fn∥L1

]︄
= ∥Fn+1∥L1

∥Fn∥L1

Fn+1

∥Fn+1∥L1
→ λRFR

as n→∞. This yields the desired identity TR[F] = λRFR.

Since F0 is a β-log-concave density, so are all Fn by Lemma 6.3.3. Therefore, the functions
− log

(︂
Fn/∥Fn∥L1

)︂
are β-convex, and so is their uniform limit VR. It follows that FR is

β-log-concave.

Finally, we will show that λR ∈ (0, 1). Indeed, since FR is quasi-stationary, we have

λRFR(x)emR(x) =
∫︂
R2d

G
(︃
x− x1 + x2

2

)︃
FR(x1)FR(x2)dx1dx2 .

From this, it is immediate to see that λR > 0, by choosing x = 0. To see that λR < 1, it
suffices to integrate over x ∈ Rd on both sides. Indeed, there exists a small δ ∈ (0, R) such
that cδ :=

∫︁
Bδ(0) FR(x)dx < 1. But then, using the assumptions on m,

∫︂
Rd
emR(x)FR(x)dx ≥ eαδ

2/2
∫︂
Bδ(0)

FR(x)dx+
∫︂
Bδ(0)c

FR(x)dx = cδe
αδ2/2 + (1− cδ) > 1 ,

while ∫︂
Rd

∫︂
R2d

G
(︃
x− x1 + x2

2

)︃
FR(x1)FR(x2)dx1dx2 dx = 1 .

Consequently, λR ∈ (0, 1). ■

6.3.2 Existence of a β-log-concave quasi-equilibrium
The following second-moment bound is an analogue of [CPS23, Prop. 5.1], but the proof
is based on different arguments that seem more convenient in the multi-dimensional setting.
In particular, we use various properties of maxima of strongly log-concave densities, that are
proved in Section 6.5.
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Proposition 6.3.5. For R > 0, let FR be a solution to the localised problem given in Theorem
6.3.2. Then:

sup
R>0

∫︂
Rd
|x|2FR(x)dx <∞ .

Proof. Let µR =
∫︁
Rd xFR(x)dx be the barycenter of FR = e−VR . Since the measures FR are

β-log-concave, it follows from the Poincaré inequality [BGL14, Prop. 4.8.1] that

sup
R>0

∫︂
Rd
|x− µR|2FR(x)dx ≤ d

β
<∞ .

Therefore, it suffices to show that supR>0 |µR| <∞. Let vR ∈ Rd be the unique minimizer of
VR. Since FR is β-log-concave, Lemma 6.5.1 implies that

|vR − µR| ≤
√︄
d

β
.

Define GR := R[FR] and write GR = e−UR . The barycenter µR of FR is also the barycenter
of GR, since GR can be written in probabilistic terms as GR = law

(︂
XR+X̃R

2 + Z
)︂
, where

XR, X̃R are independent random variables with law FR and Z is standard Gaussian, and we
have E

[︂
XR+X̃R

2 +Z
]︂

= E[XR]. Moreover, Lemma 6.3.3 implies that GR is τ -log-concave with
τ := β/(1

2 + β). Therefore, another application of Lemma 6.5.1 yields

|uR − µR| ≤
√︄
d

τ
, (6.3.4)

where uR ∈ Rd denotes the unique minimizer of UR.

Since T [FR] = λFR, it follows that VR = mR +UR + log λR. Recall that mR has its unique
minimizer at 0 and satisfies ∇2mR ≽ αId. Observe that Lemma 6.1.9 implies that ∇2UR ≼ Id.
Therefore, Lemma 6.5.2 implies that

α|uR| ≤ (1 + α)|uR − vR| .

Combining the three inequalities above, we find

α

1 + α
|uR| ≤ |uR − vR| ≤ |uR − µR|+ |vR − µR| ≤

√︄
d

τ
+
√︄
d

β
.

Another application of (6.3.4) implies that supR>0 |µR| <∞, as desired. ■

To prove Theorem 6.1.3, we can now follow the argument from [CPS23, Thm. 5.2].

Proof of Theorem 6.1.3. It follows from Proposition 6.3.5 that the family of probability mea-
sures {FR}R>0 is tight. Therefore, there exists a sequence of radii (Rn)n with Rn ↑ ∞ and a
limiting probability measure F such that FRn → F weakly. Then, proceeding as in the proof of
[CPS23, Thm. 5.2], it follows that λRn converges to some λ ∈ [0, 1], that F is β-log-concave,
and that the pair (λ,F) satisfies T [F] = λF. Proceeding as in the proof of Theorem 6.3.2
we also find that λ ∈ (0, 1). ■
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6.3.3 Exponential convergence to quasi-equilibrium

Proof of Theorem 6.1.4. Recall from (6.1.4) that

P (x1, x2;x) = 1
Zx

F(x1)F(x2) exp
(︃
−1

2

⃓⃓⃓⃓
x− x1 + x2

2

⃓⃓⃓⃓2)︃
, (6.3.5)

where F is a β-log-concave quasi-equilibrium obtained in Theorem 6.1.3. Therefore, the result
follows from Corollary 6.2.9. ■

Proof of Corollary 6.1.5. We follow the proof of [CPS23, Thm. 1.1]; for the convenience of
the reader, we reproduce the argument here.

((i)): Take 0 ̸= F0 ∈ L1
+(Rd) with I∞(F0 ∥F) < ∞. Then we can write F0 = u0F for

some strictly positive u0 ∈ C(Rd) such that log u0 is L-Lipschitz with L := I∞(F0 ∥F).
For n ≥ 1, set un = Fn

λnF . We will show by induction that log un is Ln-Lipschitz with
Ln =

(︂
1
2 + β

)︂−n
I∞(F0 ∥F), which implies ((i)) in Corollary 6.1.5. To this end, recall that

we have the recursion

un+1(x) =
∫︂
Rd×Rd

un(x1)un(x2)
∥unF∥L1

P (x1, x2;x)dx1dx2

for all x ∈ Rd. Therefore, Lemma 6.3.1 implies

∥log un+1(x1)− log un+1(x2)∥ ≤ I∞(Fn ∥F)W∞,1
(︂
P (·;x), P (·; x̃)

)︂
for all x1, x2 ∈ Rd with x1 ̸= x2. Using the elementary bound W∞,1 ≤

√
2W∞ and Theorem

6.1.4, we obtain

W∞,1
(︂
P (·;x), P (·; x̃)

)︂
≤
√

2W∞
(︂
P (·;x), P (·; x̃)

)︂
≤ |x− x̃|1

2 + β
.

Combining these inequalities, we find I∞(Fn+1 ∥F) ≤
(︂

1
2 + β

)︂−1
I∞(Fn ∥F), which implies

the desired conclusion.

((ii)): For brevity, write ˆ︁Fn := Fn/∥Fn∥L1 . Since F is β-log-concave, it satisfies a logarithmic
Sobolev inequality by the Bakry–Émery theory [BGL14, Cor. 5.7.2]). Using this and the trivial
bound I2(· ∥F) ≤ I∞(· ∥F)2, we deduce that

DKL
(︂ ˆ︁Fn ⃦⃦⃦F

)︂
≤ 1

2βI2
(︂ ˆ︁Fn ⃦⃦⃦F

)︂
≤ 1

2βI∞(Fn ∥F)2 ≤ I∞(F0 ∥F)2

2β
(︂

1
2 + β

)︂2n .

As for the last conclusion, set ϕ := e−m ∗G ∈ Cb(Rd), and note that

∥Fn+1∥L1

∥Fn∥L1
=
∫︂
R2d

ϕ
(︃
x1 + x2

2

)︃ ˆ︁Fn(x1) ˆ︁Fn(x2)dx1dx2 ,

λ =
∫︂
R2d

ϕ
(︃
x1 + x2

2

)︃
F(x1)F(x2)dx1dx2 ,

hence, by Hölder’s inequality,⃓⃓⃓⃓
⃓∥Fn+1∥L1

∥Fn∥L1
− λ

⃓⃓⃓⃓
⃓ ≤ ∥ϕ∥L∞

⃦⃦⃦ ˆ︁Fn ⊗ ˆ︁Fn − F⊗ F
⃦⃦⃦
L1
.
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Using Pinsker’s inequality, the tensorization of the relative entropy, and the previous step we
deduce that⃦⃦⃦ ˆ︁Fn ⊗ ˆ︁Fn − F⊗ F

⃦⃦⃦
L1
≤
√︄

1
2DKL

(︂ ˆ︁Fn ⊗ ˆ︁Fn ⃦⃦⃦F⊗ F
)︂
≤
√︃
DKL

(︂ ˆ︁Fn ⃦⃦⃦F
)︂
≤ I∞(F0 ∥F)
√

2β
(︂

1
2 + β

)︂n ,
which gives the desired conclusion. ■

6.4 Other information metrics
In view of the crucial contraction estimate I∞(T [F ] ∥F) ≤

(︂
1
2 +β

)︂−1
I∞(F ∥F), it is natural

to ask whether analogous inequalities hold for other functionals F , such as the relative entropy
DKL(· ∥F) and the L2 relative Fisher information I2(· ∥F), which play a central role in the
Bakry–Émery theory for diffusion equations.

Here we consider the case of quadratic selection m(x) = α
2 |x|

2 for some α > 0 in dimension
d = 1, which has been analysed in detail in [CLP24]. In this case, the operator T maps
Gaussian densities to multiples of Gaussian densities. Indeed, for µ ∈ R and σ > 0, we have

T [γµ,σ2 ] ∝ γµ̃,σ̃2 , where µ̃ = µ

1 + α
(︂
1 + σ2

2

)︂ and σ̃2 =
1 + σ2

2

1 + α
(︂
1 + σ2

2

)︂ , (6.4.1)

see (3.5) in [CLP24]. Moreover, the unique quasi-stationary probability distribution F is the
centered Gaussian density with variance 1

β
, where β > 1

2 is the log-concavity parameter in
Theorem 6.1.3; see (1.12) and (1.13) in [CLP24].

To analyse the behaviour of the three functionals under T , we consider the renormalised
operator ˆ︁T given by ˆ︁T [F ] := T [F ]/∥T [F ]∥L1 that preserves probability densities. Let us
first consider the case where Gµ := γµ, 1

β
is a Gaussian density having the variance 1

β
of the

quasi-equilibrium F with arbitrary nonzero mean µ ∈ R. Then ˆ︁T [Gµ] is Gaussian with variance
1
β

as well, and the three functionals contract with the same rate:

DKL
(︂ ˆ︁T [Gµ]

⃦⃦⃦
F
)︂

DKL(Gµ ∥F) =
I2
(︂ ˆ︁T [Gµ]

⃦⃦⃦
F
)︂

I2(Gµ ∥F) =
⎛⎝I∞

(︂ ˆ︁T [Gµ]
⃦⃦⃦

F
)︂

I∞(Gµ ∥F)

⎞⎠2

=
(︂

1
2 + β

)︂−2
< 1 . (6.4.2)

These equalities readily follow from the following Gaussian identities, which hold for µ, µ̄ ∈ R
and σ2, σ̄2 > 0:

DKL(γµ,σ2 ∥ γµ̄,σ̄2) = 1
2

(︄
(µ− µ̄)2

σ̄2 + log
(︄
σ̄2

σ2

)︄
− 1 + σ2

σ̄2

)︄
, (6.4.3)

I2(γµ,σ2 ∥ γµ̄,σ̄2) = (µ− µ̄)2

σ̄4 + (σ2 − σ̄2)2

σ2σ̄4 , (6.4.4)

I∞(γµ,σ2 ∥ γµ̄,σ̄2) = |µ− µ̄|
σ2 if σ = σ̄; otherwise, I∞(γµ,σ2 ∥ γµ̄,σ̄2) = +∞ . (6.4.5)

Next, let us suppose that G = γµ,σ2 is a Gaussian density with arbitrary mean µ ∈ R and
variance σ2 ̸= 1

β
. In this case, I∞(G ∥F) = I∞(T [G] ∥F) = +∞. However, the relative

entropy and the L2 relative Fisher information are finite, so one might wonder whether these
functionals contract under ˆ︁T with the rate suggested by (6.4.2). The following result shows
that this is not the case.
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Proposition 6.4.1. Let m(x) = α
2 |x|

2 for some α > 0, and define β > max
{︂

1
2 , α

}︂
by

β = α+ β
1
2 +β , as in Theorem 6.1.3. Then there exist Gaussian probability densities G ∈ L1

+(R)
such that

I2
(︂ ˆ︁T [G]

⃦⃦⃦
F
)︂

I2(G ∥F) >
(︂

1
2 + β

)︂−2
and

DKL
(︂ ˆ︁T [G]

⃦⃦⃦
F
)︂

DKL(G ∥F) >
(︂

1
2 + β

)︂−2
.

Proof. Let F be either DKL(· ∥F) or I2(· ∥F). Using (6.4.1) we observe that

lim
µ→∞

F
(︂ ˆ︁T [γµ,σ2 ]

)︂
F(γµ,σ2) =

(︃
1 + α

(︂
1 + σ2

2

)︂)︃−2
.

Consequently,

lim
σ2→0

lim
µ→∞

F
(︂ ˆ︁T [γµ,σ2 ]

)︂
F(γµ,σ2) = (1 + α)−2 . (6.4.6)

Since (1 + α)−2 > (1
2 + β)−2, the claim follows. ■

We illustrate the behaviour of the contraction factor CF(µ, σ2) :=
F
(︂ ˆ︁T [γµ,σ2 ]

)︂
F(γµ,σ2) in Fig. 6.1.

(a) (b)

Figure 6.1: Heatmaps of CF(µ, σ2) for (a) F = I2(· ∥F) and (b) F = DKL(· ∥F). The
chosen parameter value is α = 0.45, and the variance of the Gaussian quasi-equilibrium is
1/β ≈ 0.87. This value is indicated by the grey line. The corresponding contraction factor is(︂

1
2 + β

)︂−2
≈ 0.37 as computed in (6.4.2). As σ2 → 0 after µ→∞, the contraction factor

CF(µ, σ2) approaches (1 + α)−2 ≈ 0.48, as computed in (6.4.6).

165



6. L∞-optimal transport and Fisher’s infinitesimal model

6.5 Peaks of strongly of log-concave densities
The following standard result asserts that strongly log-concave distributions concentrate around
the minimizer of their potential. Since we apply the result for general log-concave densities
(not necessarily having full support on Rd), we provide a detailed proof.

Lemma 6.5.1. Let µ = e−V be a κ-log-concave probability density on Rd for some κ > 0.
Assume that V is lower semicontinuous, and set x̂ := arg minV . Then we have∫︂

Rd
|x− x̂|2µ(x)dx ≤ d

κ
. (6.5.1)

Proof. Note first that since V is lower semicontinuous and κ-convex, it indeed admits a
minimizer. The proof then consists of two steps.

Step 1. Assume that V : Rd → R is of class C2 and such that ∇V is Lipschitz. In this case,
∇2V ≽ κId and there exists a solution to the Langevin equation

dXt = −∇V (Xt)dt+
√

2dBt , X0 = x̂ .

Using Itô’s formula, the κ-convexity of V , and the fact that ∇V (x̂) = 0, we find

1
2

d
dtE

[︂
|Xt − x̂|2

]︂
= −E[∇V (Xt) · (Xt − x̂)] + d ≤ −κE

[︂
|Xt − x̂|2

]︂
+ d .

Hence,
E
[︂
|Xt − x̂|2

]︂
≤ d

κ

for all t ≥ 0. As E
[︂
∥Xt − x̂∥2

]︂
= W2(law(Xt), δx̂)2, the conclusion follows by passing to the

limit t→∞, since W2(law(Xt), µ)→ 0; see e.g., [AGS08, Thm. 11.2.1].

Step 2. We remove the additional assumptions on µ. To this end, define µn := µ ∗ γ 1
n
, set

Vn := − log µn, and x̂n := arg minVn. Then µn is nκ
n+κ -log-concave by Lemma 6.1.8. Using

the triangle inequality in L2(µn) and an application of Step 1 to µn we find
(︄∫︂
|x− x̂|2µn(x)dx

)︄1/2

≤
(︄∫︂
|x− x̂n|2µn(x)dx

)︄1/2

+ |x̂n − x̂|

≤
(︄
d
n+ κ

nκ

)︄1/2

+ |x̂n − x̂| .

Since µn converges weakly to µ, and x ↦→ |x− x̂|2 is continuous and bounded from below, we
have (︄∫︂

|x− x̂|2µ(x)dx
)︄1/2

≤ lim inf
n→∞

(︄∫︂
|x− x̂|2µn(x)dx

)︄1/2

.

Thus, to obtain the desired result, it remains to show that ∥x̂n − x̂∥ → 0.

For this purpose, fix ε ∈ (0, 1). It remains to show that there exists n̂ ≥ 1 such that µn
attains its maximum in a ball of radius ε around x̂ whenever n ≥ n̂.

Let δ > 0 be a small parameter, only depending on ε, that will be specified later.
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6.5. Peaks of strongly of log-concave densities

First we will argue that µn attains a large value near x̂. For this purpose, observe that dom(V )
has non-empty interior, since µ is a log-concave density. Take z ∈ dom(V )◦. Since V is
continuous on its domain, V is bounded on an open ball around z. Therefore, by convexity of
V , we can find y ∈ B ε

2
(x̂) ∩ dom(V )◦ and a radius h > 0 such that µ(x) ≥ µ(x̂)− δ for all

x ∈ Bh(y). Without loss of generality, we choose h ≤ min{δ, ε2}. Observe now that there
exists a constant n̂ ≥ 1 depending only on h and the dimension d, such that∫︂

Bh(0)
γ 1

n
(x)dx ≥ 1− h (6.5.2)

for all n ≥ n̂. Hence, for n ≥ n̂, (6.5.2) yields

µn(y) ≥
(︂
µ(x̂)− δ

)︂
(1− h) ≥

(︂
µ(x̂)− δ

)︂
(1− δ) . (6.5.3)

Next we will quantify the fact that µn decreases fast if |x− x̂| increases. Indeed, since V is
κ-convex and x̂ = arg minV , we have V (x) ≥ V (x̂) + κ

2 |x− x̂|
2 for all x ∈ Rd, hence

µ(x) ≤ e− κ
2 |x−x̂|2µ(x̂) .

Therefore, if |x− x̂| > ε, another application of (6.5.2) yields, taking into account that h ≤ ε
2 ,

µn(x) ≤ sup
|y−x|≤h

µ(y) + h sup
y∈Rd

µ(y) ≤ sup
|y−x̂|≥ ε

2

µ(y) + hµ(x̂) ≤
(︂
e− κ

8 ε
2 + δ

)︂
µ(x̂) . (6.5.4)

Choosing δ > 0 small enough (depending on ε), it follows by combining (6.5.3) and (6.5.4)
that

µn(y) > sup
x:|x−x̂|>ε

µn(x) ,

hence x̂n ∈ Bε(x̃) whenever n ≥ n̂, which completes the poof. ■

Lemma 6.5.2. Let V, U : Rd → R ∪ {+∞} be strictly convex functions such that

(i) V is lower semicontinuous and α-convex for some α > 0;

(ii) U belongs to C1(Rd), it admits a minimizer, and ∇U is β-Lipschitz for some β > 0.

Define x = arg minV , y = arg minU , and z = arg min(V + U). Then:

1
α
∥z − y∥ ≥ max

{︃ 1
β
∥z − x∥ , 1

α + β
∥y − x∥

}︃
.

Proof. Note first that since V + U is lower semicontinuous and α-convex, it indeed admits a
minimizer.

Step 1. Assume additionally that V ∈ C1(Rd). Then one of the two desired inequalities
follows from

α∥z − x∥ ≤ ∥∇V (z)∥ = ∥∇U(z)∥ ≤ β∥z − y∥ .

The other one follows by combining this inequality with the triangle inequality ∥z − x∥ ≥
∥y − x∥ − ∥z − y∥.
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6. L∞-optimal transport and Fisher’s infinitesimal model

Step 2. We now remove the additional assumption that V ∈ C1(Rd). For λ > 0, we consider
the Moreau-Yosida approximation Vλ of V defined by

Vλ(x) = inf
y∈Rd

{︃
V (y) + 1

2λ∥x− y∥
2
}︃
.

It is classical that Vλ is of class C1 and αλ-convex with αλ ↓ α > 0 as λ → 0 (cf. [Clé09,
Prop. 3.1]). Clearly, x = arg minVλ.

Write zλ := arg min(Vλ + U). An application of Step 1 yields

1
αλ
∥zλ − y∥ ≥ max

{︃ 1
β
∥zλ − x∥ ,

1
αλ + β

∥y − x∥
}︃
.

Therefore, to derive the desired conclusion, it remains to prove that zλ → z as λ→ 0.

To show this, define z̃λ := arg miny
{︂
V (y) + 1

2λ∥y − zλ∥
2
}︂
, so that

Vλ(zλ) = V (z̃λ) + 1
2λ∥zλ − z̃λ∥

2 . (6.5.5)

We claim that there exists a compact set C such that zλ, z̃λ ∈ C for all λ ∈ (0, 1]. Let us show
this. Since Vλ ≤ V , zλ = arg min(Vλ + U), and (6.5.5), we obtain

V (z) + U(z) ≥ Vλ(z) + U(z) ≥ Vλ(zλ) + U(zλ) ≥ V (z̃λ) + 1
2λ∥zλ − z̃λ∥

2 + U(zλ) .
(6.5.6)

Using this inequality and the fact that x = arg minV and y = arg minU , we find

V (z) + U(z) ≥ V (x) + 1
2λ∥zλ − z̃λ∥

2 + U(y) .

Consequently,

∥zλ − z̃λ∥2 ≤ 2λM , where M := V (z) + U(z)− V (x)− U(y) . (6.5.7)

Since x = arg minV and V is α-convex, y = arg minU , and (6.5.6), we deduce

1
2 |z̃λ − z|

2 ≤ |z̃λ − x|2 + |x− z|2 ≤ 2
α
V (z̃λ) + |x− z|2

≤ 2
α

(︃
V (z̃λ) + 1

2λ∥zλ − z̃λ∥
2 + U(zλ)− U(y)

)︃
+ |x− z|2

≤ 2
α

(︃
V (z) + U(z)− U(y)

)︃
+ |x− z|2 .

Together with (6.5.7), this estimate yields the claim.

Fix ε > 0. Since U is uniformly continuous on C, there exists δ ∈ (0, ε2) such that

|U(x1)− U(x2)| ≤
αε2

8 (6.5.8)

for all x1, x2 ∈ C with ∥x1 − x2∥ ≤ δ. Define λ̂ := min
{︂
1, δ2

2M

}︂
. To complete the proof, we

shall show that ∥z − zλ∥ ≤ ε whenever λ ≤ λ̂.
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6.5. Peaks of strongly of log-concave densities

Note first that ∥zλ − z̃λ∥ ≤ δ for all 0 < λ ≤ λ̂ by (6.5.7) and the definition of λ̂. Using
(6.5.6), (6.5.8), the α-convexity of V + U and the fact that z = arg min(V + U), we further
deduce that

V (z) + U(z) ≥ V (z̃λ) + U(zλ) ≥ V (z̃λ) + U(z̃λ)−
αε2

8

≥ V (z) + U(z) + α

2 ∥z − z̃λ∥
2 − αε2

8 .

This implies ∥z − z̃λ∥ ≤ ε
2 . Since ∥zλ − z̃λ∥ ≤ δ < ε

2 , we obtain the desired result. ■
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