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Abstract

Acquiring, retaining, and retrieving information over a wide range of timescales are crucial
functions of the brain. The successful processing of memories affects many aspects of our
lives and enables us and many other organisms to operate in a complex environment and
to interact with it. In this context, the hippocampus and functionally connected brain
areas, such as the prefrontal cortex, are central and have been subject to intensive research
in the past decades. Storage of memories is believed to rely on distributed neural activity
within these neural circuits. Additionally, neural memory traces of recent experience are
reinstated during periods of rest or sleep. These reactivations are thought to play an
outstanding role in the consolidation of memories and potentially facilitate the transfer of
information from the hippocampus to cortical areas for long-term storage and integration
into existing knowledge.
However, there is growing evidence that memory-related neural representations in the
hippocampus are not as stable as initially thought and that they change even in the
absence of learning. It has been suggested that these changes reflect the accumulation of
experience, but the influence of interspersed consolidation periods has not been considered.
Previous studies have analyzed consolidation periods by detecting activity that strongly
resembled neural activity during the acquisition of memory. Besides being often limited
to only non-rapid eye movement (NREM) sleep, the used approaches were not capable of
tracking changes in neural representations over extended temporal periods. More fluid
representations do not only challenge our understanding of how information is stored, but
they also affect the transfer of information between brain areas during the consolidation
process.
For this thesis, I investigated the evolution of memory-related activity during sleep
periods expected to be involved in consolidation in the hippocampus and between the
hippocampus and prefrontal cortex. I found that reactivated activity in the hippocampus
gradually transformed during prolonged periods of sleep and inactivity. In the beginning,
neural activity strongly resembled acquisition activity, whereas, with the progression of
time, it became more similar to the subsequent recall activity. NREM periods drove
this process, while rapid-eye movement (REM) periods showed a resetting effect. This
reactivation drift was due to firing rate changes of a subset of cells and mirrored the
representational changes from the acquisition to the recall. A stable subset of cells
withstood the drift and maintained their activity. Therefore, my results indicate that
memory-related representations undergo spontaneous modifications during consolidation
periods and that these changes are predictive of representational drift.
Furthermore, I found that the amount of change in the neural activity during subsequent
sleep periods was biased by prior behavioral performance. Observed changes in the
hippocampus and the prefrontal cortex were synchronized and increased after poor
performance, highlighting a potential role in the exchange of information. Low-variance
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periods with distinct, more stable activity from a subset of cells significantly contributed
to the heightened synchrony between both areas. Hence, interleaved phases of more stable
neural activity could facilitate the information transfer between brain areas.
In conclusion, my investigations underline the fluidity of memory-related representations
and assign a prominent role to sleep reactivation periods in their evolution. In addition, I
identified a potential mechanism of stable activity phases that might facilitate the syn-
chronization across hippocampal-prefrontal activity despite ongoing changes. Reconciling
and integrating findings from both spontaneous and behaviorally-related representational
changes in functionally related brain areas will help to broaden our understanding of how
knowledge is stored, maintained, updated, and transferred between brain areas.
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CHAPTER 1
Introduction

The ability to acquire, update, and retain knowledge about the external world and
one’s own experiences is a crucial function of the brain. Accessing memories allows an
organism to successfully deal with recurring obstacles using previously acquired strategies
and solutions. On the other hand, while facing novel scenarios, the recall of previous
approaches and the familiarity with the constraints of the environments facilitate the
inference of new strategies1,2. Memory also plays a critical role when it comes to the
avoidance of adverse experiences and is central to social interactions3,4. Taken together,
memory processes significantly increase the chance of survival and, therefore, can be found
across a wide range of species5.
This thesis focuses on spatial memory, a specific type of memory that is concerned with
information about the locations of objects such as food and which facilitates spatial
navigation6. A subcortical brain area, the hippocampus, has been identified as a prime
location involved in the processing of these memories6–8.
The first research chapter characterizes the evolution of neural activity in the rat hip-
pocampus from the acquisition to the recall of a spatial memory. In this regard, I
focused on neural activity during long rest periods, which are of great importance for the
stabilization of memories9,10.
In the second research chapter, I investigated changes in neural activity in rats during
rest following a spatial rule-switch task in two relevant brain areas. The successful
execution of this task was not only dependent on the hippocampus but also relied on the
prefrontal cortex11. The prefrontal cortex is a cortical brain area involved in working
memory, decision-making, and memory consolidation12–14. By analyzing synchronous
neural activity in both brain areas during rest periods after the task, I tried to identify
features related to prior task performance and interregional coordination15.

1.1 Hippocampus and memory
The hippocampus is part of the medial temporal lobe and is located many synapses
away from sensory receptors and motor neurons. Scientific investigations spanning over a
century have established it as playing a major role in the acquisition and consolidation of
different types of memories.
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1. Introduction

Our modern understanding of hippocampal involvement in memory functions can be
traced back to a study from the 1950s, which was the first one to provide experimental
evidence implicating the medial temporal lobes in memory processes16. Following the
surgical removal of the temporal lobes to stop seizures, the patient Henry Molaison
(referred to as patient H.M.) showed very specific memory impairments. Although he
was able to recall episodic memories (personal experiences) from before the intervention,
he was unable to acquire new ones. Furthermore, he was not able to acquire or recall
spatial memories. On the other hand, neither his intellectual nor perceptual abilities
nor his capacity to acquire or recall procedural memories (motor skills) was affected by
the resective surgery. In the following years, further human case studies and a growing
number of animal studies confirmed the outstanding role of the hippocampus and adjacent,
anatomically related brain regions for the processing of memories17, more specifically for
declarative memories. Nowadays, the identification of the hippocampus as the initial
storage site for memories has been widely accepted and has been further integrated into
several broader theories of memory processing in the brain. All of these theories imply the
existence of a two-stage memory consolidation, that is, the process leading to the transfer
of hippocampal memory traces to cortical areas for long-term storage and integration18.
The hippocampus receives inputs from various brain regions representing multiple sensory
modalities19. In this context, the entorhinal cortex, an adjacent brain region, acts as
a gateway and comprises many direct projections to and from the hippocampus. The
multitude of inputs is combined in the hippocampus to form more abstract neural
representations20–22. In the classical view, input signals reach the hippocampal subregion
dentate gyrus first. Resulting patterns of neural activity are believed to encode information
in a distinct, non-overlapping way to avoid interference of similar neural activity (pattern
separation)23,24. The neural signal is then relayed to the subregions CA3 via the mossy
fiber pathway25. The neurons in the CA3 show strong recurrent connectivity and have
been hypothesized to perform pattern completion to allow the generalization and the
association in the presence of incomplete inputs26,24. Neural signals then travel to the
hippocampal subregion CA1 via the Schaffer collateral pathway25. The CA1 is the major
output site of the hippocampus and has many projections to the subiculum, the entorhinal
cortex, and the prefrontal cortex25. Neural signals originating in the CA1 have been
shown to be relayed to cortical areas27–29 and different CA1 cells are believed to transmit
different types of information in parallel30.
Learning and the acquisition of new memories are thought to rely on changes in synap-
tic strength and on the intrinsic excitability of involved neurons31–34. Modifications of
functional connectivity between cells can be achieved through the means of Hebbian
learning35. The experimentally observed long-term potentiation (LTP) of synaptic connec-
tivity has been hypothesized as a potential mechanism to store information in biological
neural networks such as the hippocampus36–39,22,40 In this context, glutamatergic NMDA
receptors facilitate certain types of synaptic plasticity and are relevant for the storage of
different types of memories41–44. During the early phase of a Hebbian LTP, simultaneous
pre- and post-synaptic activity triggers a signaling cascade, which eventually can lead to
the insertion of AMPA receptors in the postsynaptic membrane and a strengthening of
the connection (glutamatergic transmission) between both cells45–47. The late phase of
LTP facilitates structural changes in the synapse, including the enlargement and addition
of new dendritic spines (functional contact sites between cells)48,49.
Dopamine release in the hippocampus, which can be induced by novelty or surprise,
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1.1. Hippocampus and memory

has been shown to promote LTP and therefore has a modulatory effect on memory pro-
cesses50–54. There are indications that LTP positively correlates with memory performance,
whereas long-term depression (LTD) leads to memory impairment55. Although an increas-
ing number of studies support the close relationship between NMDA receptor-dependent
plasticity, LTP, and memory, there remains doubt about a causal relationship56,39,57,58.
According to the famous theory of Donald Hebb, the modification of synaptic connectivity
through experience and learning leads to groups of cells that tend to fire together
to associate and ultimately form cell assemblies59,60. The collective activity of these
assemblies is believed to code for memory-related information and is, therefore, crucial
for the acquisition and retrieval of a memory61–66. But how are neurons assigned to cell
assemblies? It has been shown that the assembly recruitment during learning depends on
the excitability of neurons in the circuit. That means that cells that can be efficiently
activated during the acquisition phase have a higher chance of becoming members of the
associated assembly67–70. The excitability of single neurons is hypothesized to depend
on intrinsic membrane properties and is potentially driven by the synchrony of synaptic
inputs71,68. In this context, inhibitory neurons play a major role in regulating the
activity of cells and are possibly involved in shaping cell assemblies during the acquisition
process72,73.
In addition to their role in memory processes, many principal neurons in all three
hippocampal subregions of rodents are modulated by the current spatial position of the
animal74,75. Hence, each of these cells (called “place cells”) is preferentially active in
a distinct part of the environment (its “place field”). It has been a major endeavor to
reconcile the concepts of memory processing and spatial coding in the hippocampus76. One
theory is that the neural representation in the hippocampus is a substrate for navigating
in both the physical and the mental space6. Along these lines, hippocampal neural activity
has also been shown to encode non-spatial dimensions such as frequencies of a tone or
time77,78.
How can we relate the concepts of memory, plasticity, and the emergence of assemblies to
the spatial firing of hippocampal cells? First of all, there is substantial evidence that the
spatial representations in the hippocampus are distinct for different environments and
that these representations quickly emerge during the first couple of minutes of exposure76.
The reorganization of the spatial representation, which is accompanied by the formation
of new place fields and the modification of single cell activity (firing rates), is referred
to as remapping76. Remapping between environments could therefore facilitate distinct
experiences and minimize the risk of interference76. In agreement with this hypothesis,
even small changes in the environment and alterations in non-spatial cues can cause
changes in the hippocampal spatial representation79–82.
Observations that hippocampal spatial maps and representations of functionally connected
areas are modified during learning support the existence of memory encoding in the
hippocampal circuitry83–85,23,86–88. In this context, assemblies are formed by binding
together cells with overlapping place fields and the recruitment of place cells can be
influenced by changing their excitability during behavior89,90. To recall previously acquired
information, patterns of activity representing these memory items are thought to be
reinstated. Therefore, it has been proposed that memories are stored in stable activity
states (attractors) in the network and that similar inputs will lead to discrete or at
least distinct representations in the hippocampus91–94. Experimental evidence that the
activation of hippocampal neurons that were active during learning can trigger the recall
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of the acquired memory was first shown by Liu et al95. However, the relationship between
memory and the stability of spatial hippocampal maps remains inconclusive.
Early studies suggested that the spatial firing of hippocampal neurons in rats within an
environment is stable across re-exposures over several weeks96. The reinstatement of a
stable spatial representation was hypothesized to constitute the successful retrieval of
components of the animal’s memory97. In support of this hypothesis, Wang et al. showed
that place cells remapped during the learning of an aversive stimulus and that the resulting
spatial representation exhibited long-term stability when the stimulus was presented again
over the course of 5 days98. Learning-induced changes in the hippocampal spatial map and
maintained spatial firing during subsequent recall have also been reported for hippocampal-
dependent navigational tasks99. In this context, the stability of spatial representation was
promoted by the attention and engagement of the animal97. Nonetheless, there is a growing
body of evidence that hippocampal spatial representations do change across exposures to
the same environment or task in the absence of learning100–102. This phenomenon, called
representational drift, has been mainly observed in mice and may be less prominent in
rats and differs for different hippocampal sublayers103–106. While spatial representations
in the CA1-CA3 continuously change, the spatial code of granule cells in the dentate
gyrus seems to be more stable104.
The observed instability of hippocampal maps could be a passive, noise-driven process
based on the turnover dynamics of hippocampal synapses56,107. A more exciting possibility
is that the evolution of spatial representations in the hippocampus reflects to some degree
the incorporation of new experiences and associations into existing knowledge108,107.
Along these lines, some studies propose that changes in the spatial firing across multiple
exposures could potentially timestamp events and therefore provide different neural
codes to distinguish between overlapping but temporally distinct experiences109,100,110–113.
Additionally, the study by Hayashi reports that continuous change in place-cell activity is
NMDA receptor-dependent and might therefore describe an active rather than a passive
process100. Further evidence comes from two recent studies which claim that experience
and not the passage of time is the driving force of representational drift114,115. In support
of their finding, Blair et al. describe a stronger reorganization of the spatial firing in the
hippocampus following an aversive event within a familiar environment116. Results by
Geva et al. put forward the idea that there might be different mechanisms coding for time
(changes in activity rates) and different experiences (changes in spatial tuning)114,117.
Given the observed representational drift, is it still possible to retain important behaviorally
relevant information from the hippocampal circuitry? A set of experiments suggests exactly
that. Kinsky et al. showed that hippocampal neurons with behaviorally relevant coding
exhibit heightened stability across multiple days118. Another study found that contextual
coding in the hippocampus was maintained, albeit in the presence of representational
drift in terms of spatial coding119. Along these lines, it has been suggested that the
drift in neuronal activity could be constrained to directions unrelated to behaviorally
relevant encoding120,121,107. Changes in neural activity could therefore occur as long as
the correct output patterns would be generated for the respective inputs122. Alternatively,
plasticity based on a local learning rule in downstream populations could potentially
compensate for representational drift and, therefore, correct for changes in hippocampal
output patterns123.
As a last thought, findings of representational drift outside the hippocampus indicate that
changes in representations are not constrained to memory and might therefore describe
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a more general phenomenon with potentially different implications for different brain
areas124–126,123,127.

1.2 Medial prefrontal cortex
The medial prefrontal cortex (mPFC) has been assigned a variety of functions related to
decision-making and adaptive behavior12. For example, the mPFC is involved in reward-
guided learning and cognitive control128,129. Lesions of the mPFC resulted in reduced
behavioral flexibility and impaired the ability to shift between different strategies130,80.
In addition, several studies uncovered the mPFC’s role in retrieving recent and remote
memories - a prerequisite for adaptive behavior131,132. The mPFC is also involved in
processing short-term memories and is important for the consolidation of memories13,14.
Disrupting mPFC activity immediately after learning impaired the memory performance
for a range of tasks and the consolidation of a fear memory133–137. The critical tem-
poral window for consolidation in the mPFC seems to be 1 to 2 hours after learning
because memory impairment does not occur for disruptions beyond this window12. With
regard to memory processes, the mPFC’s functional interaction with the hippocampus
is crucial. A multitude of direct and indirect pathways between both areas have been
identified138. These allow for the bi-directional communication between the hippocampus
and the mPFC, a functional connection that has been shown to support many cognitive
processes139,140,130,141–143.

1.3 Rest periods and memory consolidation
There is ample evidence that sleep and rest periods greatly enhance memory performance9.
One of the first studies investigating the influence of sleep on remembering nonsense
syllables dates back to the year 1924. Jenkins and Dallenbach found that forgetting
happened at a much slower rate when subjects slept during the intervening period instead
of being awake144. Shortly after, two main brain states during sleep were discovered: slow-
wave sleep (SWS or NREM) with slow oscillations and rapid eye movement (REM, also
referred to as paradoxical sleep) sleep resembling awake neural activity10. Early studies
focused on REM sleep because of its association with dreaming and found that REM sleep-
deprived rats showed deficits in memory and learning145–147. Further confirmation of REM
sleep’s role in memory consolidation came from experiments involving the presentation
of a learning-associated cue while the animal was asleep. Animals that received the cue
during bouts of REM sleep were much better at remembering the task afterwards148. But
how are memories, encoded during behavior, strengthened during REM sleep? A study
by Ravassard et al. provided the first evidence that long-term potentiation during REM
sleep might be crucial for the stabilization of certain memories149. Additionally, REM
sleep is characterized by strong theta (6-10 Hz) oscillations in the hippocampus and these
oscillations potentially facilitate memory consolidation150–152.
However, the role of REM sleep in the consolidation process is still controversial and
evidence from human studies underlined the great importance of NREM sleep for the
consolidation and retention of hippocampal-dependent memories153,154. Many NREM-
centered investigations of memory consolidation were inspired by the two-stage model
of memory consolidation brought forward by Gyorgy Buzsaki155,18. According to this
model, information from the neocortex is transferred to the CA3, triggering heterosynaptic
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1. Introduction

potentiation during behavior. In subsequent sleep and rest, long-term synaptic modifica-
tions are induced in the same subsets of CA3 neurons and their targets in CA1 through
high synchrony activity accompanied by high-frequency oscillations (sharp wave ripples,
SWRs) during NREM phases. This implied that activity observed during behavior should
be reactivated in a “time-compressed manner” to allow the strengthening of synapses
(long-term potentiation) during SWRs in sleep. Many studies in the following years
confirmed the compressed, sequential replay of awake hippocampal activity during SWRs
in subsequent sleep and rest, providing support for the two-stage model of memory156–158.
Along these lines, it was also shown that reactivation of hippocampal activity and the
number of SWRs was correlated with the successful acquisition and recall of a task-related
memory84,159,160. Reactivated activity in NREM sleep has been detected as recurring
single-cell activity, correlated firing between pairs of cells, and preserved temporal order
of firing strongly resembling the neural activity from the encoding phase161,162,157,158.
Due to the advancement in technology, recent animal studies could directly relate reacti-
vations during SWRs to memory performance: disruption of hippocampal ripples during
post-training consolidation periods caused an impairment of the associated memory163,164.
On the other hand, artificially prolonging SWRs in the hippocampus facilitated subse-
quent memory recall165. As further proof of the outstanding role of reactivations during
SWRs, Grydchin et al. selectively impaired a distinct spatial memory by inhibiting SWRs
reactivations of the associated experience through optogenetics166.
However, the observation that many memories are only hippocampus-dependent during
the encoding and consolidation period led to the realization that memory processes must
involve brain areas beyond the hippocampus167,161,15,16. In the system consolidation
view, the replay of hippocampal activity during SWRs in slow-wave sleep triggers the
gradual transformation and integration of memory-relevant representations in neocor-
tical networks161. The observation of simultaneous widespread cortical activation in
correspondence with SWRs additionally boosted scientists’ interest in NREM sleep’s
role in memory consolidation168–170. It shall be noted though, that neocortical areas
are involved in the acquisition and encoding phase as well171,172. In the special case of
episodic memories, components of the experience are believed to be encoded in different
brain areas, representing certain aspects of the experience, whereas the hippocampus
binds them together161,15,173. By reinstating the respective hippocampal representation
during consolidation periods, related representations distributed in the neocortex would be
simultaneously reactivated9. This mechanism could potentially strengthen representations
in the neocortex and allow the integration of newly acquired information into pre-existing
memories161,174. The recall of most (non-spatial) memories stored in the neocortex would
then become hippocampal-independent after the consolidation period161,16. A set of
experiments has shown the replay of behaviorally relevant activity in the prefrontal cortex
during subsequent sleep and rest, underpinning the system consolidation theory175,176.
Further evidence comes from studies in which mPFC activity was disrupted immediately
after learning and caused severe memory impairments133,12,136,14.
But how is the activity between the hippocampus and neocortical areas synchronized
during the consolidation period? There is evidence that hippocampal SWRs coincide
with certain intervals of cortical spindles (10-18Hz) and that these “spindle-ripple events”
facilitate the hippocampus-to-neocortical transmission of reactivated memory informa-
tion177,178,161,179–184. Additionally, hippocampal ripple activity is modulated by slow
oscillations (<1.5Hz) generated in the neocortex, leading to a suppression of ripples

6



1.4. Aims of the Thesis

during the down-state and an up-regulation during the up-state185,179. Through these
mechanisms, the cortex could potentially trigger hippocampal reactivations selectively,
which then, in turn, would reinforce cortical reactivations of relevant neural patterns12,183.
Another phenomenon related to memory consolidation in the brain during sleep is synaptic
rescaling161. Memory representations for long-term storage need to be selectively strength-
ened, whereas representations of the initial encoding period are believed to be weakened.
This can be achieved by synaptic upscaling and downscaling, respectively186. Overall,
the number of synapses in the cortex, functional synaptic strength, hippocampal and
cortical firing rates, and cortical excitability decrease throughout sleep in agreement with
the synaptic homeostasis hypothesis187–189,161,190–193,106. However, locally the number of
synapses, the area of synaptic contact, and the firing rates of subgroups of cells do increase,
a sign of the selective strengthening of distinct representations194–197. In this regard,
REM and NREM are believed to play different roles in the synaptic up- and downscaling;
contrasting results from different studies make a clear conclusion difficult though161.
Nevertheless, there seems to be a tendency of REM sleep to be more strongly involved in
the global synaptic downscaling, while maintaining newly formed synapses161,196. NREM
sleep, on the other hand, might be primarily involved in strengthening newly formed
connections and promoting the formation of new ones161,197.
Although most studies have focused on either NREM or REM sleep, there have been early
attempts to combine memory processes occurring during both sleep stages into one joint
framework198,10: the sequential hypothesis states that NREM and REM sleep participate
in the offline consolidation process in a sequential manner. In this way, the selection of
relevant information could be performed during one sleep stage, whereas the processing
and integration into existing knowledge would be done in the other198,108,10,2.

1.4 Aims of the Thesis
Sleep’s role in memory consolidation has attracted much attention in the past 100 years9,161.
The observation that sleep significantly enhances memory performance and the prediction
and detection of reactivated activity during consolidation periods have led to a wide range
of follow-up studies. Advances in technology enabled scientists to directly manipulate the
consolidation process and therefore impair or reinforce the recall of distinct memories.
However, the specific roles of NREM and REM sleep in the consolidation process are still
topics of ongoing research. So are mechanisms enabling the transfer and transformation
of newly formed memories into existing knowledge - a process that involves multiple brain
areas. By examining the neural activity during rest and sleep from the perspectives of
reactivations, consolidation, and its contribution to awake representational drift, my Ph.D.
thesis aims to answer the following questions:

1. How stable is the activity during rest and is there a connection with (a) changes in
neural activity across behavioral episodes and, (b) prior behavioral performance?

2. How do long-duration rest episodes affect neural activity and do different sleep
stages play a role?

3. If there are systematic changes, is this a population-wide effect, or do different cells
contribute to a different extent?
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4. Are systematic changes in neural activity during rest from different, interacting
populations (HPC & PFC) synchronized?

5. If systematic changes are synchronized between the hippocampus and PFC, is this
coherence dependent on prior performance, and if yes, what drives the synchrony?
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CHAPTER 2
Sleep stages antagonistically

modulate reactivation drift

2.1 Abstract
Acquiring, consolidating, and recalling spatial memories are critical brain functions for
survival. In this context, a major role has been assigned to the reactivation of awake
hippocampal activity during rest periods, which was shown to significantly contribute
to memory performance. Thus far, studies have only considered reactivations strongly
resembling prior neural activity ignoring the possibility that reactivations could change
as part of the consolidation process. I addressed this option by tracking hippocampal
reactivations during an extended rest period (∼20h) following a spatial-memory acquisition
paradigm.
I found that reactivations during long rest periods underwent a gradual transformation.
At the beginning of rest, reactivations strongly mirrored the neural activity from the
acquisition of the memory, as previously shown. However, with increasing time during
rest, reactivated activity progressively resembled neural activity observed during the recall
of the memory. This drift in reactivation activity occurred mainly during non-rapid eye
movement (NREM) periods and was driven by firing rate changes of a plastic subset of
cells. Conversely, rapid eye movement (REM) sleep showed a resetting effect and drove
the neural activity during rest toward prior observed activity. A persistent subset of cells
maintained their firing rates from the acquisition to the recall and therefore withstood
the reactivation drift. These persistent cells showed constant spatial coding before and
after sleep and, during memory acquisition, showed similar remapping characteristics to
the supposedly more plastic cells.
My findings unveil the active role of rest in reshaping memory representations. This
process was mainly driven by firing rate changes in a subset of cells, while a minority
of cells maintained their firing rates. The modifications during rest could potentially
contribute to representational drift across days previously described in the literature.
Furthermore, the offline reactivation drift and distinct effects of different sleep stages
suggest that the gradual changes in memory representations could be part of a brain-wide
consolidation process.
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2.2 Introduction
The Hippocampus has been characterized as the initial storage site for spatial memories
in the brain. Hippocampal neuronal activity changes during the acquisition of a memory
and is replayed in subsequent periods of rest199,76,181; these reactivations of neural activity
patterns play a critical role in the consolidation of recently established memories and have
been linked to memory performance9,84,188,161,200. For example, prolonging the sharp-wave
ripples (SWRs) that usually accompany hippocampal reactivations facilitates subsequent
memory recall201. On the other hand, disruption of SWRs caused impaired memory
performance164,166. Although some studies showed that reactivation events are observed
during extended periods of rest202, the specific reactivated activity patterns have mostly
been studied during short rest periods (<1h). Activity associated with recent experience
is preferentially reinstated during the initial phases of rest, but this time interval might
only capture the initial phase of memory consolidation203. In addition, the study of
reactivations has been restricted to the identification of activity strongly resembling
previously observed neural activity.
However, there is some evidence that reactivations in the visual cortex are predictive
of future stimulus responses and therefore reactivations might incorporate additional
functionality rather than simply replaying constant activity patterns204. It is unknown
whether hippocampal reactivations show similar dynamics. In support of less static
hippocampal representations, recent studies have shown that the hippocampal coding of the
same environment changes through repeated experiences114,115,102. The representational
drift has been linked to the updating or processing of memories. This mechanism could
potentially be supported by changes in reactivation content during offline periods that
are predictive of changes occurring between experiences.
In this study, I tracked hippocampal reactivation dynamics during an extended rest period
following a spatial memory paradigm to assess changes and reactivation relationship
to the acquisition and recall of the memory. I found that hippocampal activity during
rest gradually changes from acquisition-like to recall-like. This process was driven by
non-rapid eye movement (NREM) sleep, whereas rapid eye movement (REM) sleep showed
a resetting effect. I identified firing rate changes of a plastic subset of neurons as the main
cause of the memory drift. A smaller subset of cells maintained its firing rates and spatial
coding from the acquisition to the recall acting as a stable backbone. Therefore, offline
reactivations of memory-relevant activity might directly contribute to changes in neural
representations over days, a phenomenon that might support updating and processing of
memories.

2.3 Results

Stable recordings during acquisition, long rest, and successful
recall of a spatial memory
Principal neurons in the dorsal CA1 of three long-Evans rats were recorded using bilaterally
implanted 32-channel tetrode microdrives (see Methods). The food-deprived animals
learned a set of three reward locations on the cheeseboard and successfully recalled this
spatial memory after an extended rest period (Fig. 2.1a). The excess path (deviation from
the optimal path between reward locations) on the first trial of recall was not significantly

10



2.3. Results

longer than the excess path of the third trial during acquisition (Fig. 2.1b). Hence,
animals were able to immediately recall the direct paths between reward locations after
the extended rest period.
To confirm the stability of the tetrode recordings throughout the experiment, I analyzed
the temporal stability of waveforms of identified spikes from all neurons (Fig. 2.1c-f).
This allowed me to assess whether spikes from different neurons were well separated and
if they showed temporal consistency in terms of their waveform shape.
First, I confirmed that for each cell the first twelve waveform based clustering features
remained stable over time (Figure 2.1d). I then investigated whether waveforms of different
neurons were well separated for the duration of the experiment. To do so, I compared
the distance between the cell’s mean waveform from the nth hour and the first hour with
the distance between the cell’s mean waveform from the nth hour and the other cells’
mean waveforms from the first hour (see Methods). The distance to each cell’s mean
waveform from the first hour was significantly smaller yielding a ratio much smaller than
one and no significant differences for different time points during the experiment (Fig.
2.1e). The same was true when I compared the distance to each cell’s mean waveform
with the distance of other cells’ mean waveform from the nth hour with the cell’s mean
waveform from the first hour (Fig. S2.1a). Next, I compared the distance between the
mean waveform of the first hour with the mean waveform of the last hour for each cell
with the across cells’ waveform distance during the first hour (Fig. 2.1f). The across-cell
distance during the first hour was significantly larger than the distance between mean
waveforms from the first and the last hour of the experiment for each cell (p < 0.001).
Therefore, single-cell waveforms were much more similar to each other than compared to
other cells’ waveforms. Taken together, my analysis confirmed the separation of single
units and the stability of our recordings based on spike waveform-based features for the
entire duration of the experiment.

Sleep neural activity undergoes transformation from patterns
observed during acquisition to patterns occurring during recall
After confirming the stability of the recordings, I investigated reactivations during the
extended rest period separating the acquisition and the recall of the spatial memory.
First, I fit two Poisson hidden Markov models (pHMMs) to the acquisition and the recall
neural data, respectively. This allowed me to capture stereotypical neural patterns in
both behavioral episodes. By relating the activity during rest to these representations I
was able to identify acquisition-like and recall-like neural patterns. The optimal number
of hidden states for both pHMMs was derived using the cross-validated log-likelihood (Fig.
S2.2a). The optimal number was comparable for the acquisition and the recall model
(Fig. S2.2b).
Next, I verified that the pHMMs accurately reproduced basic statistics of the neural data
(Fig. S2.2c-d). By aligning hidden state activations with the location tracking data of the
animal, I was able to further analyze single states. Despite not providing location data to
the model explicitly, most hidden states were spatially constrained with a large proportion
of states showing activations around reward locations (Fig. S2.3a-b). Furthermore, I
was able to decode the animal’s location using pHMM state activations (see Methods)
with errors comparable to standard Bayesian decoding (Fig. S2.2c-f). In summary, the
pHMMs accurately captured the neural activity during acquisition and recall. In addition,
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Figure 2.1: Stable wireless tetrode recordings in CA1 during extended-time
learning paradigm. (a) Structure of analyzed behavioral sessions and tracking data for
one example session: learning a novel set of goal locations (acquisition), long rest period
( 20h), and re-exposure to the same goal arrangement for memory assessment (recall).
(b) Excess path measured as a multiple of the optimal path between goals during the
first nine trials of memory acquisition and the first trial of recall. The excess paths of
the first trial during recall and trials three to nine during acquisition are not significantly
different (data from all sessions, * p < 0.05, *** p < 0.001, n.s. p > 0.05, one-sided
Mann-Whitney U test, corrected for multiple comparisons). (c) Waveforms over the 25
hours recording period for three exemplary principal cells. (d) Distribution of first 12
clustering features z-scored for different time intervals for all sessions. The mean of each
feature is computed in the corresponding time window and z-scored using the mean and
std of the same feature during the first hour (p > 0.4 for all comparisons, two-sided
Mann-Whitney U test). (e) Distance with the cell’s mean from the first hour versus
distance with other cells’ means from the first hour for one example session. For each
time interval the distance (1-Pearson R) between the first 12 clustering features during
the interval (5th, 10th, 15th hour), and the mean of the first 12 clustering features from
the first hour is calculated (no sign. Difference between 7th and 21st hour for all sessions,
p>0.15, two-sided Mann-Whitney U test). (f) Waveform distance per cell for one example
session. For each cell, the mean of the first 12 clustering features during the first hour
is computed. Then, the across-cell distance is computed using the mean features of the
cell of the first hour and the other cells’ features from the first hour. The within distance
is the distance (1-Pearson R) of the cell’s mean from the first hour with its waveforms
during the last hour of the experiment. There was a s´ignificant difference for all sessions
(p < 0.001, two-sided Mann-Whitney U test).

hidden states represented spatial and non-spatial components of the neural activity during
behavior.
To evaluate the similarity of the neural activity during rest with either acquisition or
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recall, I first looked at the probability of decoding either an acquisition or a recall state
(Fig. 2.2a-c). Initially, acquisition states were much more likely to be decoded than recall
states. By the end of sleep recall states had a higher probability of being decoded (p <
10e-8, one-sided t-test).
Next, I computed the drift score to analyze the rest neural activity on finer timescales:
for each neural activity bin (12 spikes, see Methods), the normalized difference between
maximum log-likelihoods given the acquisition pHMM and the recall pHMM was calculated
(Fig. 2.2a and Methods). Confirming the changes in decoding probabilities, the drift score
was initially below zero, corresponding to greater similarity of the rest neural activity
with the acquisition, and gradually moved to values greater than zero at the end of rest
(Fig. 2.2d-e). However, the drift did not occur uniformly throughout sleep. The first
half of sleep contributed more strongly to the drift than the second half (Fig. S2.4a). I
confirmed my findings using a standard Bayesian decoding approach (see Methods and
Fig. S2.4b-c).
To check whether the drift was driven by an overall decrease in decoding quality or
by the actual transformation of the neural activity during rest from acquisition-like to
recall-like, I performed additional analysis steps. Although the number of significant
SWR reactivations decreased throughout rest due to fewer SWRs during later stages of
rest (Fig. S2.4d), the fraction of significant reactivations stayed constant (Fig. S2.4e-g).
Maximum log-likelihoods of the acquisition pHMM generally decreased throughout rest,
whereas maximum log-likelihoods of the recall pHMM increased (Fig. S2.4h-i). When I
projected the rest neural activity onto the vector between the decoded acquisition and
the decoded recall state (Fig. S2.4j and Methods), I found that the relative distance to
the decoded acquisition states continuously increased (p=0.0017, two-sided t-test). On
the other hand, the relative distance to the decoded recall state was reduced (p=0.012,
two-sided t-test).
In summary, the neural activity during rest gradually changed from being very similar to
the acquisition of the memory at the beginning of rest towards being more similar to the
neural activity during recall at the end of rest.

Non-rapid eye movement sleep accelerates changes, while rapid
eye movement sleep has a resetting effect
Sleep stages differ in their physiological properties and are thought to serve different
functions in the memory consolidation process. I separated the data based on the
theta/delta ratio of the local field potential (LFP) into non-rapid eye movement sleep
(NREM) and rapid eye movement sleep (REM) to assess the contributions of each to
the overall drift in the rest neural activity. Surprisingly, REM and NREM sleep epochs
had opposing effects on the drift (Fig. 2.3a-c). While NREM sleep showed a positive
contribution in the transition from acquisition-like to recall-like patterns of activity,
REM sleep had a negative, oppositely directed effect, akin to resetting the memory
representation to its previous state (Fig. 2.3b).
The same applied to the cumulative contribution of NREM and REM epochs to the
drift (Fig. 2.3c and Fig. S2.5a). When I compared the overall change in the drift
score throughout rest with the cumulative change of NREM and REM epochs, I found
a difference of two orders of magnitude (Fig. 2.3d). Short-term changes in drift score
occurring during NREM and REM epochs were not correlated with the longer-term
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Figure 2.2: Rest neural activity continuously transitions from being similar
to acquisition neural activity towards greater similarity with recall neural
activity. (a) Decoding neural activity during rest. Two separate Poisson Hidden Markov
models are fit to the awake neural data from acquisition and recall. Rest data is binned
using a constant number of 12 spikes. The data likelihood for each bin is computed
using acquisition and recall states from the Poisson HMM models. The Drift score is
calculated using the maximum likelihoods from acquisition and recall. (b) Reactivation
probabilities for acquisition and recall pHMM states during sleep for one example session.
(c) Summed reactivation probabilities for acquisition and recall pHMM states respectively
for all sessions. The summed reactivation probabilities at t=0 differ significantly from the
corresponding values at t=1 (p < 10e-8, one-sided t-test). (d) Drift score (normalized
difference between max. recall and max. acquisition likelihoods) computed using rest
activity as a function of time for one example session (green). Time bin shuffle (n=500)
mean and standard deviation (yellow). (e) Drift scores as a function of normalized sleep
duration for all sessions. The Drift scores are below zero at t=0 (p < 0.001, one-sided
t-test), above zero for t=1 (p < 0.01, one-sided t-test), and significantly different between
t=0 and t=1 (p < 10e-5, one-sided t-test).

changes (Fig. S2.5b). Hence, the drift score fluctuated strongly on shorter timescales
without a clear direction, whereas the long-term change was directed and much smaller in
magnitude.
Next, I tested if the opposing contributions of REM and NREM sleep were an overall effect
or whether there was a direct link to interactions between subsequent sleep epochs. The
contributions of neighboring epochs to the drift were anti-correlated while the contributions
of non-neighboring epochs were not correlated (Fig. 2.3e-h). This effect was even stronger
using a fixed succession of NREM epochs being followed by REM epochs (Fig. 2.3e).
Sleep epochs of the same type (separated by a sleep epoch of the opposite type) were only
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weakly correlated (Fig. 2.3g-h). Taken together, these findings suggest that there is an
immediate correspondence between subsequent NREM and REM epochs. The sleep neural
activity during NREM epochs undergoes modifications that make it less acquisition-like
and more recall-like. During subsequent REM epochs, these modifications are partially
reset making the sleep neural activity again more similar to the activity observed during
the acquisition.
In support of this finding, I found that the normalized likelihoods per decoded pHMM
state were greater during REM epochs than during NREM epochs (Fig. S2.5c-d), implying
a more “pure” reactivation of acquisition states in REM sleep. Additionally, the temporal
dynamics of the decoded activity resembled the awake activity much better during REM
epochs (Fig. S2.5e-j).
Next, I explored if differences in reactivated content could partially explain why the activity
during REM epochs was a better reflection of the activity during the acquisition. E.g. the
possibility that certain locations or awake activity patterns were only reactivated during
REM and not during NREM yielding cleaner reactivations for the former. First, I focused
on the decoded spatial locations during sleep using the Bayesian decoding approach (Fig.
S2.6a-b). Decoded positions during REM and NREM were highly correlated. Secondly, I
computed the number of times a pHMM state was decoded during either REM or NREM
epochs (Fig. S2.6c). I found that pHMM state reactivations in REM and NREM were
highly correlated. Both results (Fig. S2.6d) suggest that the content being reactivated
during REM and NREM strongly overlaps. Therefore, differences in reactivated content
cannot explain the differential effect of NREM and REM sleep stages on the drift.

Different subsets of cells contribute distinctively to reactivation
drift
I then asked if the drift was a population-wide phenomenon or whether different cells
contributed distinctively. To do so, I separated cells into three groups based on the
difference in their firing rate distributions between acquisition and recall: an increasing,
a decreasing, and a persistent subset (Fig. 2.4a-b and Methods). Not surprisingly, the
difference in mean firing rates was confirmed when I looked at the acquisition and recall
states: persistent cells showed similar mean firing rates, increasing cells increased their
firing rates from acquisition to recall states and decreasing cells reduced their firing rates
(Fig. S2.7a).
Interestingly, more than half of the recorded cells were from the decreasing group, and
only a smaller portion of cells had stable firing rates over the entire experiment (Fig.
S2.7b). Cells with persistent activity, on average, exhibited lower firing rates than the
changing firing rate groups but maintained a comparatively higher rate during sleep (Fig.
S2.7c-e and Fig. 2.4c). I did not find differences in SWR firing gain or waveform stability
between the different subsets (Fig. S2.7f-g), nor did cells belonging to the same subset
cluster around one tetrode (Fig. S2.7h).
Next, I computed the drift score using the identified subsets of cells: using only persistent
cells yielded a stable drift score around zero - implying similar activity patterns during
acquisition and recall and consistent reactivations during rest (Fig. 2.4d-e). However,
using either decreasing or increasing cells for the decoding resulted in drift score changes
similar to the ones calculated using all cells. Therefore, unstable, rate-changing cell groups
were the primary driver of the observed reactivation drift.
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Figure 2.3: NREM and REM sleep stages show opposing effects on the observed
drift. (a) Drift score as a function of sleep duration (REM periods in red, NREM periods
in blue) for one example session. Computation of the ∆Drift score for the respective
sleep stage (inset). (b) Contributions of REM and NREM epochs to drift. For each
epoch, the delta score was computed as the difference in the drift score between end and
beginning. Percentage of epochs with positive and negative deltas are depicted for REM
(red) and NREM (blue). Data from all sessions (mean±SEM, ** p < 0.001, two-sided
Mann-Whitney U test). (c) Summed ∆Drift score for REM and NREM epochs for all
sessions (p < 0.01, two-sided Mann-Whitney U test). (d) The net effect of change in
drift score (difference in drift score between the beginning and the end of rest) and the
cumulative effect of change in drift score (sum of absolute ∆Drift score for REM and
NREM periods). Data from all sessions (p < 0.01, two-sided Mann-Whitney U test).
(e)-(f) ∆Drift score values of neighboring NREM and REM epochs considering the order
of sleep periods. (e) NREM epoch followed by a REM epoch, R = -0.62, p = 1.6e-132. (f)
REM epoch followed by an NREM epoch: R = -0.38, p = 6.2e-45. (g)-(h) ∆Drift score
values of subsequent sleep epochs of the same type. (g) R = 0.01, p = 0.85, REM. (h) R
= 0.08, p = 0.003, NREM.

Firing rate modulations of an unstable cell population correlate
with changes in Drift score
The observed reactivation drift could have been driven by changes in the coordinated
firing between cells, changes in firing rates of single cells, or a combination of both.
Since I identified rate-changing cells as strong contributors to the reactivation drift, I
hypothesized that rate changes are the main cause of the drift. First, I investigated
the role of sleep-related changes in the structure of pairwise activity correlations after
having controlled for firing rate changes (Fig. S2.8a-b and Methods). Consistently with a
rate-dominated drift, I could find only minor rearrangements in the correlation values
of persistent cells, showing that cell co-activations were only mildly affected, besides the
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Figure 2.4: Cells that modulate their firing from acquisition to recall drive
memory drift, while persistent cells reduce it. (a) Average firing rates of persistent,
increasing, and decreasing cells during acquisition, sleep, and recall (all sessions). Cells
were classified based on the difference between their firing rate distributions during
Acquisition and Recall. (b) Normalized firing rate change from Acquisition to Recall for
persistent, decreasing, and increasing cells (all p < 0.001, two-sided Mann-Whitney U test,
corrected for multiple comparisons). (c) Mean firing rate ratio for decreasing, increasing,
and persistent cells using mean firing from acquisition, sleep, and recall (n.s. p > 0.05,
** p < 0.001, two-sided Mann-Whitney U test). (d) Drift score using either all cells
(gray), only persistent cells (violet), only increasing cells (orange), or only decreasing cells
(turquoise) for one example session. (e) Normalized slope fit to Drift score computed using
different subsets of cells (** p < 0.01, * p < 0.05, n.s.: p > 0.05, two-sided Mann-Whitney
U test, corrected for multiple comparisons).

overall changes in firing rate in different cell groups. The pairwise activity correlations
using all cells did show small but significant alterations during sleep, not surprisingly,
given the use of a mixture of cells moving in and out of the reactivated assemblies and
spanning a wide interval of average firing rate changes (Fig. S2.8b).
I then correlated firing probability changes and the drift score changes for each NREM
and REM epoch to directly measure the contribution of firing rate modulations (Fig.
2.5a). For the increasing cell group, I found a positive correlation (Fig. 2.5b-c). This
result suggests that increases in firing probability for this subset during NREM go hand-
in-hand with increases in the drift score. At the same time, a stronger decrease in firing
probability resulted in a stronger “reset” of the drift score during REM epochs. On the
other hand, decreasing cells showed a negative correlation (Fig. 2.5d-e). Therefore, a
decrease in firing probability for decreasing cells causes an increase in the drift score
during NREM. Increasing their firing probability in REM resulted in the reduction of the
drift score. Persistent cells showed weaker, but significant correlations with drift score
changes (Fig. 2.5f-g). Similarly to the drift score changes, neighboring REM and NREM
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Figure 2.5: Memory drift is driven by firing rate modulations of a subset of
cells. (a) Illustration of drift score and firing probability fluctuations of decreasing and
increasing cells for one example session. (b-g) Correlation between ∆Drift score and the
change in firing probability for increasing cells during NREM and REM periods. Inset:
correlation values per session(increasing cells: NREM (b) R = 0.68, p = 4.13e-171, REM
(c) R=0.70, p = 2.61e-184; decreasing cells: NREM (d) R = -0.52, p = 1.46e-87, REM (e)
R = -0.56, p = 9.42e-106); persistent cells: NREM (f) R = -0.23, p = 2.33e-16, REM (g)
R = -0.21, p = 2.60e-13).

periods exhibited correlated firing rate changes for both the decreasing and increasing
groups with a stronger effect for NREM periods being followed by REM periods (Fig.
S2.8c-f). Firing rate changes between sleep epochs of the same type were only weakly
correlated (Fig. S2.8g-j).
In summary, firing rate modulations of unstable cells that occurred majorly during NREM
periods were the main driver of the observed drift. Since cells were classified using the
acquisition and recall periods, observed offline firing modulations are directly linked to
how the representation of the spatial memory changes from acquisition to recall.

Persistent cell population maintains their population activity
and spatial coding from acquisition to recall
The identified persistent subset of cells, which did not participate in the reactivation drift,
showed consistent firing rates between the acquisition and recall of the spatial memory.
Hence, I asked whether this subset of cells also maintained their spatial coding across
the behavioral episodes. First, I looked at the spatial coding properties of the identified
subsets. Persistent cells had lower spatial information than the decreasing cells during
the acquisition and lower spatial information than increasing cells during the recall (Fig.
2.6a). Therefore, the persistent subset did not exhibit superior spatial coding ability
compared to the more active unstable subsets during the respective behavioral session.
However, when I computed the population vector correlations between acquisition and
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Figure 2.6: Persistent cells maintain their spatial map and population activity
from acquisition to recall. (a) Skaggs spatial information for persistent, decreasing,
and increasing cells during acquisition and recall (*** p < 0.001, ** p < 0.01, n.s. p > 0.05,
two-sided Mann-Whitney U test, corrected for multiple comparisons). Only cells with a
mean firing rate above 1 Hz were considered. (b) Mean population vector correlations
between acquisition and recall for persistent, increasing, and decreasing cells (*** p <
0.001, two-sided Mann-Whitney U test, corrected for multiple comparisons). (c) Decoding
error using Bayesian decoder for persistent cells trained on 50% of acquisition data. Error
on held-out acquisition data (light gray) and error on recall data (dark gray). Spatial bin
shuffle in brown. Both acquisition and recall have significantly lower decoding errors than
shuffle (one-sided Mann-Whitney U test, both p < 0.001).

recall, I found that persistent cells showed a significantly greater overlap in terms of
population-wide spatial coding (Fig. 2.6b). In support of this finding, a Bayesian decoder
for animal position trained using only persistent cell activity from acquisition performed
significantly above chance during recall (Fig. 2.6c). Taken together, persistent cells not
only “bridged” the acquisition and recall of the memory by maintaining their firing rates,
but also by having a consistent spatial map between these two episodes.

Similar amount of remapping for persistent and decreasing cells
during the acquisition of the spatial memory
Since the persistent subset seemed to play a linking role between acquisition and recall,
they might also play a distinctive role in the actual acquisition of the memory. Therefore, I
investigated the changes in spatial coding of cells during the acquisition, first independently,
and then with respect to preceding (pre-probe) and subsequent (post-probe) behavioral
episodes (Fig. 2.7a). The coding for goal locations is potentially crucial for the cheeseboard
task. Hence, I computed the distances between the peak firing location per cell and the
closest goal location (Fig. 2.7b). Throughout acquisition, these distances decreased for
persistent and decreasing cells without major differences between the two subsets (for
distances during recall see Fig. S2.9a-b). Next, I looked at population vector correlations
across behavioral episodes. First, I divided the experimental paradigm into blocks and
computed mean population vector correlations between these blocks for persistent and
decreasing cells (Fig. 2.7d). When I divided the population vector correlations between
acquisition and recall by the values from acquisition vs. pre-probe (see red rectangles),
the ratio increased continuously and leveled well above a value of 1 for persistent cells
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(Fig. 2.7e). This result implies that learning-induced remapping of persistent cells during
the acquisition carried over to the recall of the memory. Decreasing cells and increasing
cells (Fig. S2.9c-d) did show an increase in population vector correlations with the recall
during acquisition, but the values were below those of persistent cells and did not go
above one. Therefore, the spatial map of decreasing cells at the end of acquisition was not
more similar to the spatial map of the recall than to the spatial map of the pre-probe.
In conclusion, persistent and decreasing cell activity was modulated during the acquisition
of the memory with persistent cells showing a greater connection with the recall activity
for the population vector correlation analysis at the end of acquisition.
I then asked whether persistent cell activity was only consistent between the acquisition
and recall or whether this subset maintained similar activity throughout all behavioral
episodes of the experiment (Fig. 2.7a). To answer this question, I binned activity from all
behavioral episodes (see Methods) and trained separate support-vector machines (SVMs)
to evaluate how well behavioral episodes could be distinguished based on persistent cell
activity (Fig. 2.7f-g). Interestingly, I found that decoding accuracy was the lowest, while
still above chance, for the discrimination of acquisition and recall (p > 0.01, MWU test).
This implies that, although persistent cell activity did change from the acquisition to
the recall, the persistent cell activity during these two episodes was more similar to each
other than to the persistent cell activity of any other episode.

Persistent cell activity during rest is more strongly modulated by
the interleaved acquisition session than decreasing cell activity
After relating changes in neural activity during acquisition to preceding and subsequent
behavioral episodes, I assessed its relation with rest activity before and after. Previous
studies have shown that behaviorally relevant neural activity is replayed during subsequent
rest periods181. Other studies demonstrated that certain neural activity patterns observed
during behavior can be pre-played during prior rest periods205.
I explored these two possibilities by first fitting pHMMs to the neural activity of decreasing
and persistent cells during the acquisition, separately (Fig. 2.8a and Methods). Increasing
cells were excluded from this analysis due to their very low firing rates during the
initial behavioral episodes. Then, I computed the data likelihoods in the rest before the
acquisition (pre-rest) and in the first hour of the rest after the acquisition (rest) for the
decoded neural states given the two pHMMs. By computing a normalized ratio of these
likelihoods in pre-rest and rest, I identified neural states that were either more likely to
be active during rest before (ratio = +1) or rest after (ratio = -1) the acquisition (Fig.
2.8b). States with a ratio around zero were not differentially expressed between both rest
episodes. Normalized ratios of neural states from the persistent cell pHMM had more
ratios closer to 1 and -1 as compared to neural states from the decreasing cell pHMM (p
< 0.01, MWU test using absolute ratios, Fig. 2.8c), suggesting that behavioral neural
activity patterns for persistent cells were more selectively active in either the rest before
or the rest after. In support of this finding, persistent cell activity during acquisition, as
captured by the pHMM model, was significantly different from pre-probe activity (Fig.
S2.9e). For increasing and decreasing cells, I did not observe a difference (Fig. S2.9f-g).
Decreasing and persistent cells had a similar number of states that were either replayed
(normalized ratio > 0.5) or pre-played (normalized ratio < 0.5, S9h-i).
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Figure 2.7: Similar remapping for persistent and decreasing cells during acqui-
sition. (a) Schematic showing all experimental episodes. (b)-(c) Distances between place
field peak firing locations and goal locations during acquisition for persistent (b) and
decreasing (c) cells (data from all sessions, *** p < 0.001, ** p < 0.01, * p < 0.05, two-
sided Mann-Whitney U test, corrected for multiple comparisons). (d) Spatial population
vector correlations between behavioral episodes. Spatial bins that were not visited in all
behavioral episodes and the first trial of learning were excluded. All diagonal elements
were set to zero and the remaining values normalized to lie within 0 and 1. (e) Ratio
between mean population vector correlations (normalized) from pre-probe and acquisition
and recall and acquisition for decreasing and persistent cells. (f) Mean decoding accuracy
of SVM decoder trained to distinguish between behavioral episodes. Data from all sessions.
(f Decoding accuracy of SVM decoder trained to distinguish between behavioral episodes
(data from all sessions). Decoding accuracy is significantly lower for acquisition vs. recall
(p < 0.01, two-sided Mann-Whitney U test). (g) Decoding accuracy of SVM decoder
trained to distinguish between behavioral episodes for all sessions (** p < 0.001, two-sided
Mann-Whitney U test).

Finally, I investigated whether the entire spectrum of the acquisition activity was reacti-
vated during the first hour of the rest after the acquisition. To do so, I computed the
fraction of pHMM states that were never decoded during this interval. I found that for
persistent cells only a small part of the acquisition states were reactivated (Fig. 2.8d).
On the contrary, most of the decreasing cell pHMM states were decoded during the first
hour of rest.
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Figure 2.8: Persistent cell activity during rest is more strongly influenced by
the interleaved acquisition session than decreasing cell activity. (a) Schematic
showing persistent and decreasing cell pHMM models during acquisition and likelihood
computation in pre-sleep and sleep (only the first hour of the long rest was used to
compute the likelihood in sleep.). (b) Difference in expression between pre-rest and first
part of long rest for decoded persistent cell pHMM states and decreasing cell pHMM states
(see Methods). A normalized likelihood ratio < -0.5 defines pre-play states, whereas a
normalized likelihood ratio > 0.5 corresponds to pre-play states. (c) Absolute differential
expression of decoded persistent cell pHMM states and decoded decreasing cell pHMM
states (** p < 0.01, two-sided Mann-Whitney U test). (d) Number of acquisition states
that were never decoded during the first hour of long rest for decreasing and persistent
cells (*** p < 0.001, Mann-Whitney U test).

In summary, persistent cell activity during rest was more strongly modulated by the
interleaved acquisition session than for decreasing cells. However, the number of replayed
and pre-played states for persistent and decreasing cells was similar. Furthermore, only
a fraction of persistent cell activity patterns were reactivated during subsequent rest,
whereas decreasing cell activity was reactivated close to its entirety.

2.4 Discussion
I showed how reactivated activity in the hippocampus during rest underwent a gradual
transformation. Initially, reactivations showed a great overlap with neural activity observed
during the acquisition of the spatial memory. Towards the end of rest, reactivations were
more recall-like and therefore resembled future activity that only occurred after the rest
epoch. This memory drift was mainly driven by the firing rate changes of an unstable
subset of cells. The modulation of these cells arose during NREM epochs, whereas
REM sleep showed a resetting effect. The stable subset maintained firing rates and its
spatial coding from the acquisition to the recall. In this way, stable cells provided a link
between multiple experiences involving the same set of goal locations. While remapping
properties of unstable and persistent subsets during the acquisition were comparable, the
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relationship with the rest before and after was distinct for both subsets. The interleaved
acquisition session led to greater differences between the rest activity before and after
for the persistent cells. However, only a fragment of persistent cell activity was actually
reactivated during the rest after the acquisition.
The discrepancy between my results and previous studies which did not identify temporal
changes in hippocampal reactivations during rest might be due to the following two
reasons. Firstly, previous studies used data from much shorter rest periods (< 6 hours).
Secondly, the most common approach to quantifying reactivations is to compare rest
activity with prior neural activity during behavior and shuffled neural activity data.
During the initial part of rest, my results showed acquisition-like reactivation activity
and therefore support previous studies188. I also found that the number of significant
reactivations decreased over time due to a decrease in SWR occurrences, confirming
previous results (Fig. S2.4d)202. However, since I compared each activity bin in rest with
prior (acquisition) and subsequent (recall) neural activity I was able to identify a gradual
drift - a finding that could not have resulted from the standard reactivation analysis. This
gradual transformation was most strongly pronounced within the first ∼10h leading to
more recall-like activity towards the end of rest.
The occurrence of neural activity patterns from future behavioral episodes during rest
has been characterized before204. Unlike in our study, pre-play was identified during rest
before the exploration of a novel environment. In my case, the environment and the goal
locations associated with the spatial memory were kept constant between acquisition and
recall. Hence, it is natural to relate my findings to representational drift: recent studies
have shown that repeated experiences in an environment lead to changes in hippocampal
spatial representations114,115,102. These changes were hypothesized to only occur when
the animal actively engaged with a memory as part of an updating process. Yet, my
results suggest that this process is at least partially initiated during interleaved rest
periods. Since a large portion of the identified pHMM states were spatially constrained,
a transition from acquisition states towards recall states during rest could translate to
changes in hippocampal spatial representations between both behavioral episodes206. In
addition, I found that changes in firing rates during rest were consistent with firing rate
changes between acquisition and recall - further confirming the strong interrelatedness
between offline and online modulations of the hippocampal neural activity.
The memory drift did not occur homogeneously across the whole population. Low-firing,
persistent cells acted as a “backbone” and bridged the acquisition and recall of the spatial
memory by maintaining their firing rates and their spatial coding. A previous study has
also identified low-firing cells that code for novel features of an experience in the CA1
neural population207,104. In support of their findings, I show that persistent cell activity
is significantly modulated during the learning of goal locations and that this modulation
causes significant differences between the rest before and after208. However, I did not
find a superior SWR gain for my persistent subset compared to the unstable subset (Fig.
S2.7f).
During rest, decreasing and increasing cells gradually left or joined the neural assemblies
anchored by persistent cell activity. Since this process showed differential contributions
by NREM and REM sleep, it could be partially explained by the different functions and
brain states that are associated with these sleep stages.
My results suggest that the reshaping of neural activity is more strongly driven during
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NREM sleep and consists of increasing and decreasing activity of distinct subsets. Since
SWRs happening during NREM have been associated with the transfer of information to
neocortical areas170, I propose that modulations of hippocampal activity are driven by
the global network state. One possibility is that newly acquired information is integrated
into existing knowledge to promote generalization209. Another explanation could be that
memory representations are transformed in a way to make them sparser while maintaining
the information content210. Alternatively, modulations could be due to homeostatic
effects such as synaptic downscaling211. However, the downscaling of synapses has been
associated with REM sleep mainly.
A resetting effect of REM periods on firing rate increases happening during NREM sleep
and the symbiotic relationship between both sleep stages has recently received increasing
support188,212. I found that REM reactivations are more similar to the awake activity and
therefore resemble a more “pure” form of the memory. Therefore, my findings support
the idea that both sleep stages perform distinctive functions: NREM sleep edits the
memory-related activity, whereas REM sleep has a stabilizing role213,214. In this way,
recent memories are reactivated in a pure form during REM sleep, which is followed by
more global computations during NREM phases supporting the 2-stage model for memory
consolidation18.
Future experiments will be needed to identify how the observed modulations during sleep
affect previously reported sequential replay215,216 in the hippocampus, something my
pHMM approach is potentially capable of. In addition, simultaneously recorded sleep
activity of the hippocampus and the neocortex are essential to better understand the
connection between REM-NREM modulations of memory-related activity and the 2-stage
memory consolidation process.
In summary, my results suggest that rest periods contribute to changes in neural repre-
sentations across days and that these modifications are functionally driven by repeated
REM-NREM cycles to potentially support the updating and consolidation of spatial
memories.
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2.5 Supplementary Figures

Figure S2.1: (a) Distance (1 - Pearson R) between the mean (first 12 clustering features)
during the corresponding interval (5th, 10th, 15th hour) and the cell’s mean from the first
hour divided by the distance between the other cells’ means during the corresponding
interval and the cell’s mean from the first hour for one example session (for all sessions
p>0.13, two-sided Mann-Whitney U test).

25



2. Sleep stages antagonistically modulate reactivation drift

Figure S2.2: pHMM model fit and its quality. (a) Cross-validated log-likelihood
to identify optimal number of hidden states (example session). (b) Optimal number of
states for acquisition and recall for all sessions. (c) Mean firing rates of real data versus
mean firing rates of data sampled from the pHMM for one example session (R = 1.0, p
=2.3375e-262). Inset: Pearson R values for all sessions (all R > 0.99088). (d) Correlation
of instantaneous firing rate of cell pairs of real data versus sampled data from the pHMM
for one example session (R = 0.967, p = 0.0). Inset: Pearson R values for all sessions (all
R > 0.85709).
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Figure S2.3: spatial selectivity of decoded pHMM states. (a, b) Top: examples
showing the cheese board locations where a given pHMM state was decoded during
acquisition. Bottom: (a) distribution of median distances of decoded locations for each
pHMM state for all sessions. (b) Distribution of goal selectivity of pHMM states measured
as the proportion of instances when a pHMM state was active near (<10cm) a goal
for all sessions. (c) True and decoded locations using the pHMM states for decoding
(see Methods) for one example trial. (d) The distribution of cross-validated decoding
errors using the pHMM decoding approach for all sessions. (e-f) Same as (c-d) but using
Bayesian decoding.
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Figure S2.4: (a) Drift score changes more strongly during the first half of sleep than during
the second half of sleep (alternative hypothesis: ratio first half/second half is greater
than 1, p < 0.05, one-sided t-test). (b) Drift score using Bayesian decoding (one example
session). (c) Drift score using Bayesian decoding for all sessions. (d) Number of significant
sharp wave ripple (SWR) reactivations during sleep. (e) Decoding quality of Acquisition
states for one example session (see Methods). (f) Decoding quality of Recall states for one
example session (see Methods). (g) Fraction of significant reactivations throughout sleep
(beginning vs. end, p=0.1129, two-sided T-test). Result for all sessions. (h) Maximum
likelihoods of sleep neural data for acquisition pHMM and for recall pHMM (one example
session). (i) Likelihoods like in (i) for another example session. (j) Schematic showing the
projection of the sleep neural activity (12-spike bin) onto the vector between the decoded
Acquisition state and the decoded Recall state. The relative projected distance to the
decoded state is computed by dividing the length of the projection by the length of the
vector between decoded Acquisition and decoded Recall state. (k) Relative projected
distance to decoded Acquisition state throughout sleep (beginning vs. end, p=0.0017,
two-sided T-test). Results for all sessions are shown. (l) Relative projected distance to
decoded Recall state throughout sleep (beginning vs. end, p=0.012, two-sided T-test).
Results for all sessions.
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Figure S2.5: (a) Cumulative delta score for REM and NREM for all sessions using
Bayesian decoding of sleep activity. (b) Correlation between cumulative effect (sum
of absolute ∆Drift score values per epoch) and net effect (difference in ∆Drift score
between the end and the beginning of each epoch) for all sleep epochs (data from all
sessions, see Methods). (c) Normalized likelihoods per decoded pHMM state in NREM
and REM. Only modes with significant differences in terms of normalized likelihood
between NREM and REM were used. Data from all sessions (p < 0.001, two-sided
Mann-Whitney U test). (d) Distribution of ratios between normalized likelihood in REM
and normalized likelihood in NREM per state. Only states with significant differences
in terms of normalized likelihood between NREM and REM were used. Data from all
sessions (p < 0.001, one-sided T-test comparing distribution of ratios to a mean of 1). (e)
Auto-correlation of likelihood vectors for pHMM decoding in REM (red), NREM (blue)
and awake (yellow) for one example session. Exponential coefficients for REM, NREM
and awake data (inset, two-sided Mann-Whitney U test). (f) Auto-correlation of the drift
score in time for REM and NREM sleep (one example session). (g) Exponential fit for
auto-correlation of the drift score. Exponential coefficient k for REM and NREM data
from one example session. (h) Exponential coefficient k like in (g) for REM and NREM
for all sessions. (i) Distance between subsequently decoded locations during sleep using
Bayesian decoding. (j) Auto-correlation of the drift score as a function of shift (nr. of
spikes) in NREM and REM.
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Figure S2.6: (a) Example decoding probability maps using Bayesian decoding for NREM
(left) and REM (right) for one session (using acquisition map, Pearson R = 0.89, p =
0). (b) Correlation of spatial bin decoding probabilities from NREM and REM periods
for all sessions. (c) Correlation between state decoding probabilities of REM and NREM
for pHMM decoding and correlation between spatial bin decoding probabilities of REM
and NREM for Bayesian decoding. (d) Correlation between reactivation probabilities in
NREM and REM for pHMM and Bayesian decoding.
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Figure S2.7: (a) Normalized difference in firing rates between acquisition and recall states
for persistent, decreasing and increasing cells (*** p < 0.001, two-sided Mann-Whitney U
test, Bonferroni correction). (b) Number of persistent, decreasing and increasing cells for
all sessions. (c-e) Mean firing rates during acquisition (c), rest (d) and recall (e) sessions
(*** p < 0.001* p < 0.05, n.s. p > 0.05, two-sided Mann-Whitney U test, Bonferroni
correction). (f) SWR firing rate gain (mean±SEM, ratio of baseline to SWR peak firing
rate) for persistent, decreasing and increasing cells ( all p>0.29, two-sided Mann-Whitney
U test). (g) Cluster stability of different cell groups. Distance (1 - Pearson R) between
the mean cluster (first 12 clustering features) between first and fifteenth hour. Ratio of
within vs. across cluster distance is shown. Data from all sessions (all p > 0.05, two-sided
Mann-Whitney U test). (h) Number of persistent, decreasing and increasing cells detected
across the different tetrodes of an example recording session.
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Figure S2.8: (a) Similarity of across cell firing correlations during sleep compared to
correlations of acquisition and recall. Only persistent cells with equalized firing rates over
time were used (beginning vs. end, p>0.1, T-test). (b) Similarity of across cell firing
correlations during sleep compared to correlations of acquisition and recall. All cells with
equalized firing rates over time were used (beginning vs. end, p<0.001, T-test). (c)-(f)
Correlation between changes in firing probability in neighboring NREM and REM periods
for (c, d) decreasing and (e, f) increasing cells considering the order of subsequent sleep
type periods (R < -0.47, p < 1.579e-71 for NREM followed by REM and R < -0.14, p
< 2.609e-6 for REM followed by NREM). (g)-(j) Correlation between firing probability
changes in subsequent sleep epochs of the same type for (g, h) decreasing and (i, j)
increasing cells (R < 0.24 for NREM, R < -0.07 for REM).
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Figure S2.9: (a-b) Distances between place field peak firing locations and goal locations
during Recall for (a) persistent cells and (b) increasing cells (n.s. p > 0.05, ** p <
0.01, two-sided Mann-Whitney U test). (c) Mean population vector correlation between
different experimental episodes for increasing cells. The diagonal was set to zero and all
remaining values normalized to lie between 0 and 1. (d) Ratio between mean population
vector correlations (normalized) from pre-probe and acquisition and post-probe and
acquisition for decreasing, increasing and persistent cells. (e-g) Median likelihood of
pHMM states trained during acquisition using (e) only persistent, (f) only decreasing
and (g) only increasing cells. Significance per session was computed by using one-sided
Mann-Whitney U test (alternative: likelihoods pre-probe < likelihoods acquisition) and
all sessions with p<0.01 were considered as showing statistical difference. For all sessions
a binomial test was performed (p=0.0078 for persistent cells, p=0.9375 for decreasing
cells, p=0.22656 for increasing cells). (h-i) Percentage of (h) replay (differential expression
between pre-sleep and first part of sleep < -0.5, see Methods) and (i) preplay (differential
expression between pre-sleep and first part of sleep > 0.5) pHMM states (n.s. p > 0.05,
two-sided Mann-Whitney U test).
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2.6 Methods

Animals and surgery
Animals were implanted with microdrives housing 32 (2x16) independently movable
tetrodes targeting the dorsal CA1 region of the hippocampus bilaterally. Each tetrode was
fabricated out of four 10 µm tungsten wires (H-Formvar insulation with Butyral bond coat
California Fine Wire Company, Grover Beach, CA) that were twisted and then heated to
bind them into a single bundle. The tips of the tetrodes were then gold-plated to reduce
the impedance to 200-400 kΩ. During surgery, the animal was under deep anesthesia using
isoflurane (0.5%-3% MAC), oxygen (1-2l/min), and an initial injection of buprenorphine
(0.1mg/kg). Two rectangular craniotomies were drilled at relative to bregma (centered at
AP = -3.2; ML = ±1.6), the dura mater removed and the electrode bundles implanted
into the superficial layers of the neocortex, after which both the exposed cortex and the
electrode shanks were sealed with paraffin wax. Five to six anchoring screws were fixed
onto the skull and two ground screws (M1.4) were positioned above the cerebellum. After
removal of the dura, the tetrodes were initially implanted at a depth of 1-1.5 mm relative
to the brain surface. Finally, the microdrive was anchored to the skull and screws with
dental cement (Refobacin Bone Cement R, Biomet, IN, USA). Two hours before the end
of the surgery the animal was given the analgesic Metacam (5mg/kg). After a one-week
recovery period, tetrodes were gradually moved into the dorsal CA1 cell layer (stratum
pyramidale). After completion of the experiments, the rats were deeply anesthetized and
perfused through the heart with 0.9% saline solution followed by a 4% buffered formalin
phosphate solution for the histological verification of the electrode tracks.

Data Acquisition, Training and Behavior
The animals were housed individually in a separate room under a 12h light/12h dark cycle.
Following the postoperative recovery period, rats were reduced to and maintained at 85%
of their age-matched preoperative weight. Water was available ad libitum. Each animal
was handled and familiarized with the recording room and with the general procedures of
data acquisition. Behavioral training was performed after electrode implantation during
days when the electrodes were moved towards the hippocampus, but before they reached
the hippocampus. Overall 9 rats were trained to perform the seek of the hidden rewards
task on the cheeseboard maze84,217 and come back to the start-box. In order to achieve
this, random groups of visible food pellets (MLab rodent pellet 20 mg, TestDiet) were
spread out on the surface of the cheeseboard maze while the rat was inside the start
box. Then we opened the door and left the animal freely foraging the entire maze and
once the animal returned to the start box we closed the start-box door. With the help
of this training protocol we could shape our animals behavior to automatically explore
the entire maze and return to the start-box. Despite the automatic behavior we could
ensure that under experiments rats had no or limited experience in performing the cheese-
board maze task during the time of the recordings. Each daily experiment consisted of
a sequence of nine recording sessions in the following order: a free exploration session
on a familiar environment, half hour immobility/sleep rest session in the animal own
cage, free exploration on the cheese-board, an immobility/sleep rest session (own cage), a
learning session (4 randomly selected invisible locations) on the cheese-board, 20 hour
continuous monitoring in the cage, recall learning session with the same bait locations, an
immobility/sleep rest session (own cage), post probe on the cheese-board (free exploration,
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unrewarded) and another free exploration session on the same familiar environment as
first. Under the learning session once animals learned the four invisible goal locations,
they performed only 5 additional trials to master the task. Following the 20 hour long
rest session we tested the recall performance of the animal on the cheeseboard maze in 50
further rewarded trials with the same bait locations that were learned 20 hours before.
To be able to record extracellular electric signals continuously over a long period of time
we adapted to our commonly built 3D printed microdrive a new, high-fidelity 128-channel
wireless recording system from TBSI (Triangle BioSystems, Durham, NC, W128) to use
in our experiments. Using this experimental preparation, we recorded cell population
activity continuously over 30 hours during learning, long periods of rest where reactivation
takes place and memory recall tests in the end. This telemetry system has been able to
amplify and transmit wide band (0.7 Hz to 9 kHz) signals above 20 kHz on 128 analog
channels which were then digitized at 20 kHz.
Two small light-emitting diodes (LEDs) mounted on the preamplifier headstage were used
to track the location of the animal via an overhead video camera. The animal’s location
was constantly monitored throughout the experiment. We detected 2 LEDs with a custom
made tracking software (positrack, github.com/kevin-allen/positrack) made by Kevin
Allen. Video signal has been triggered and tracked continuously with a TTL pulse sent
by the camera’s computer on a common analog channel.

Spike detection, sorting and stability
The spike detection and sorting procedures, clustering were performed as previously
described218,219. Continuously recorded wide-band signals were digitally high-pass filtered
(0,8-5 kHz). Action potentials were extracted by first computing power in the 800-
9000 Hz range within a sliding window (12.8 ms). Action potentials with a power of
> 5 SD from the baseline mean were selected and spike features were then extracted
by using principal components analyses (PCA). The detected action potentials were
segregated into multiple putative single units by using automatic clustering software
(http://klustakwik.sourceforge.net/). These clusters were manually refined by a graphical
cluster cutting program. Only units with clear refractory periods in their autocorrelation
(<20µs) and well-defined cluster boundaries were used for further analysis. We further
confirmed the quality of cluster separation by calculating the Mahalanobis distance
between each pair of clusters220. To be able to analyze changes in the firing patterns of
neuronal ensembles over time, we have to guarantee that our set of putative cells was
sampled from clusters with stable firing over the whole recording. To ensure this we
clustered together periods of waking and rest sessions and then we plotted spike features
over time by plotting 2-dimensional unit PCA cluster plots across the whole recording
in addition to the stability of spike waveforms. With the help of this method we could
exclude those spike clusters which are overlapped during the course of recording. To
further verify spike cluster stability we used the t-student stochastic neighbor embedding
(t-sne) dimensionality reduction method: T-sne embeds the n-dimensional extracellular
spikes (n = number of features by which each spike is decomposed) into a low dimensional
space221. T-sne focuses on ensuring that the local structure remains intact while it ignores
the global structure, therefore when we expressed T-sne features over time we could
visually exclude those clusters which were unstable during the whole recording due to
electrode drifting.
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Putative pyramidal cells and putative interneurons in the CA1 region were discriminated
by their autocorrelations, firing rate, and waveforms, as previously described218.

Sleep classification
In recordings exploratory and immobility or sleep sessions were manually separated off-line
as previously described222,219. For each session, the theta/delta ratio was plotted against
speed so that the behavioral state could be manually identified. The theta/delta field
power ratio was measured in 1,600 ms segments (800 ms steps between measurement
windows) with Thomson’s multitaper method223,224. Waking behavior included periods of
locomotion and/or the presence of theta oscillations (visible in the theta/delta ratio), with
no more than 2.5 s of transient immobility. Rest epochs were selected when both the speed
and theta-delta ratio dropped below a pre-set threshold (speed: <4cm/s, theta/delta
ratio: <2) for at least 2.4 s. During periods of active waking behavior, theta-oscillatory
waves detection was performed as previously described222,219 using the negative peaks
of individual theta waves from the filtered trace of the local field potential (5–28 Hz).
The band used for the detection was wider than the theta band in order to precisely
detect the negative peaks of the theta waves, which otherwise would have smoothed out
in using a narrow theta band. Sleep segments have been identified by longer periods of
immobility (because of the lengths of our recording at least 10 min) and the clear presence
of REM-theta and slow-wave field oscillations.

Sharp wave ripple detection
For the detection of SWRs, local field potentials were band-pass filtered (150–250 Hz),
and a reference signal (to ensure the lack of ripple activity we left a tetrode above the
hippocampus as a reference) was subtracted to eliminate the so-called common noise
(muscle artifacts due to scratching, twitching etc.). The power (root mean square) of the
filtered signal was calculated for each electrode and summed across electrodes designated
as being in the CA1 stratum pyramidale. The threshold for SWR detection was set to 7
SD above the background mean. The SWRs detection threshold was always set in the
first sleep session, but longer (at least 35 min) as it was described earlier and the same
threshold was used for all other sessions219.

Stability of clustering features over time
To assess the temporal stability of waveforms, I used the first 12 clustering features. For
each feature, the mean was computed for the corresponding interval (5th, 10th, 15th hour)
and z-scored using the mean and std of the first hour.

Cell separation over time
I estimated the separation of cells by using the first 12 clustering features and three
different approaches. First, for each cell, I divided the distance (1 - Pearson R) between
the mean value of each feature during the corresponding interval (5th, 10th, 15th hour)
and the cell’s mean feature values from the first hour by the distance between the mean
feature values during the corresponding interval and the other cells’ feature means from
the first hour. Using this measure I investigated whether a cell’s waveform at a later stage
during the experiment is more similar to its waveform from the first hour than to first
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hour waveforms from other cells. Second, for each cell, I divided the distance (1 - Pearson
R) between the mean feature values during the corresponding interval and the cell’s
mean values from the first hour by the distance between the other cells’ feature means
during the corresponding interval and the cell’s feature means from the first hour. This
measure estimates whether other cells’ waveforms at later stages during the experiment
are more similar to the cell’s waveform from the first hour than its waveforms at later
stages. Third, I compared the across-cell distance with the within-cell distance. For the
across-cell distance, the distance between the mean feature values per cell of the first hour
and the other cells’ feature means from the first hour was calculated. The within distance
corresponds to the distance between the cell’s feature means from the first hour and the
same cell’s feature means of the last hour of the experiment.

Clustering feature stability
For each cell I calculated the mean and std for each of the first 10 PCA clustering features
using data from the first hour. I then computed the mean per clustering feature of each
cell at different time intervals (7th, 15th and 21nd hour) of the experiment. In order to
test whether clustering features drift away from the initial values, I z-scored the means
during different time intervals using the mean and std from the first hour.

Measuring excess path during acquisition and recall
I assessed the animal’s ability to learn and recall goal locations on the cheeseboard by
computing the excess path: once the rat had left the start box, I measured the length
of the path the animal took to reach any of the four goals (animal position within 10
cm radius around goal location). Next, I detected when the animal left the goal again
and measured the path length to the next goal. This procedure was repeated for the
remaining two goals. I then calculated the optimal paths as straight lines between either
start location and the first goal or between subsequently visited goals. Each taken path
length was then divided by the optimal path length to yield the excess path as a multiple
of the optimal path.

Poisson hidden markov model (pHMM) and model fitting
I trained two separate hidden Markov models with Poisson emissions (pHMM) on the
neural data obtained during the cheeseboard task before (acquisition) and after (recall) the
long sleep. Only data from running periods (speed > 5cm/s) was used. The acquisition
data length was matched in terms of duration to the recall data to have the same training
data length for acquisition and recall. Then, the neural data was binned using temporal
bins of 100 ms length. The pHMM model assumes the temporal evolution of an unobserved
discrete state qt as described in225. In short, the probability of observing an ensemble Ot

of N independently firing neurons at time t for state i can be modeled as:

P (Ot | qt = i) =
N∏︂

n=1
P (on,t | qt = i) ∝

N∏︂
n=1

(λn,i)on,texp(−λn,i) (2.1)

where on,t is the number of spikes of neuron n at time t. The firing rate is modeled
according to a Poisson process with a mean number of spikes λn,i defined by the unobserved
discrete state i. The transition probabilities between M unobserved states is captured by

37



2. Sleep stages antagonistically modulate reactivation drift

the M x M transition matrix A. The hyperparameter M defining the number of states of
the model was determined using the cross-validated maximum likelihood (Fig. S2.2). All
model parameters were inferred using the EM-algorithm.

Rate map generation for Bayesian decoding
For each session and cell one rate map for acquisition and one rate map for recall was
computed.
In order to reconstruct the two-dimensional spatial distribution of each cell’s firing, I used
spatial bins of 5 cm size and temporal windows of 10ms. For each spatial bin, the mean
number of spikes per cell was computed using all temporal windows, which corresponded
to the animal being within the spatial bin. Periods of rest (speed < 5cm/s) were excluded.

Decoding sleep activity using pHMM
In order to compensate for differences in temporal dynamics between REM and NREM
sleep, I binned the sleep data using bins with a constant number of 12 spikes. Since the
awake pHMM models were trained on temporal bins of 100 ms I computed a scaling factor
between awake and sleep neural activity to match the two. First, I calculated the mean
number of spikes occurring within 100 ms time bins during awake behavior nawake,100ms.
The scaling factor γphmm is defined as:

γphmm = 12
nawake,100ms

(2.2)

The likelihood of the sleep activity at time t given the discrete pHMM state q with N
neurons is computed as follows:

L(qt = i) =
N∏︂

n=1

(γphmm · λi,n)on,t

on,t!
exp(−γphmm · λi,n) (2.3)

where on,t is the number of spikes of neuron n at time t and λi,n is the mean number of
spikes (per 100ms) of the neuron in state I. Notice that for my decoding procedure the
transition probabilities across states were not considered. To assess which state was most
likely reactivated at time t during sleep the state with the maximum log-likelihood was
selected.

Decoding sleep activity using Bayesian decoding
Equivalent to the pHMM decoding approach the sleep data was binned using bins with
a constant number of 12 spikes. In the case of Bayesian decoding the acquisition and
recall rate maps were computed using 10 ms time bins. Therefore, the scaling factor
λbayesian is computed using the mean number of spikes occurring within 10 ms time bins
nawake,10ms during awake behavior:

γbayesian = 12
nawake,10ms

(2.4)

The likelihood of the sleep activity at time t given the spatial bin x is given by:
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L(xt = i) =
N∏︂

n=1

(γbayesian · λi,n)on,t

on,t!
exp(−γbayesian · λi,n) (2.5)

where on,t is the number of spikes of neuron n at time t and λi,n is the mean number of
spike (per 10ms) of that neuron in spatial bin x. To reconstruct the spatial bin that was
most likely reactivated at time t, the spatial bin with the maximum log-likelihood was
selected.

Quantifying drift during sleep
For each time point t in sleep, I calculated the Drift score in the following way:

Driftscore = max(Lrecall) − max(Lacquisition)
max(Lrecall) + max(Lacquisition) (2.6)

with Lrecall and Lacquisition being the maximum likelihoods across all states or spatial bins
for the acquisition or recall models (pHMM or rate maps) at time t, respectively. The
resulting Drift score was smoothed across time.

Spike shuffle
As a control I used the following spike shuffling procedure: two random constant spike
bins were selected. Within these constant spike bins two cells with at least one spike each
were randomly chosen. Then, one spike for each cell was transferred by moving it from
one bin to the other. This maintains mean firing rates per cell, but shifts the spike times.
The swapping of spikes was repeated 50 times the number of total spike bins. I computed
means mshuffle and stdshuffle of the shuffled data by repeating the above procedure 30
times. The z-scored Driftscore with regards to the shuffled ratios was computed as follows:

Driftscorezscored = Driftscore − mshuffle

stdshuffle

(2.7)

From the above expression the p-values related to the difference between similarity ratios
and the shuffle were computed.

First versus second half of sleep
In order to validate whether the drift is more prominent during the first half of sleep, I
computed the delta of the similarity ratio for the first and second half of sleep separately.
Then, I tested whether the ratio between the delta of the first half and the delta of the
second half was greater than 1 using the student T-test.

Net effect vs. cumulative effect of drift
In order to assess the amount of memory drift with respect to different timescales, I
compared the net effect and cumulative effect. For the net effect, I computed the difference
in drift score between the beginning and the end of the rest period. On the other side,
the cumulative effect was computed by summing the absolute values of the drift score
throughout the rest period.
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Decoding quality
Decoding quality per population vector in sleep was assessed in the following way: I
computed the cosine distance between the population vector (12 spike bin) and the
decoded Acquisition or Recall state. Next, I computed the cosine distance between the
population vector and 100 artificially created Recall or Acquisition states (shuffle). For
each artificial state, every neuron’s mean firing rate is randomly chosen from one of the
pHMM states from the Acquisition or Recall model, respectively. If the distance to the
decoded Acquisition or Recall state is 1.96 std below the mean of the distances to the
shuffle, the decoding quality was classified as sufficient.

Projecting sleep activity onto decoded Acquisition state -
decoded Recall state axis
For each sleep activity bin (12-spike bin), I determined the decoded Acquisition and the
decoded Recall state using my maximum likelihood approach. Assuming Poisson firing,
I generated a 12-spike bin from the decoded Acquisition and the decoded Recall state,
respectively. This was done to have all vectors in the same format for the subsequent
computations. I derived the vector between the decoded Acquisition and Recall state
(12-spike bins) in neuron space. Then, the sleep activity bin was projected onto this
vector. The length of the resulting projected vector was divided by the length of the vector
between the decoded Acquisition to the decoded Recall state. This relative projected
distance indicates whether the projected sleep activity bin is closer to either the decoded
Acquisition or the decoded Recall state. Next, I selected all sleep activity bins where the
maximum likelihood across Acquisition states was greater than the maximum likelihood
across Recall states (Drift score < 0) and plotted the relative projected distance to the
decoded Acquisition state. The same was done for distance to the decoded Recall state for
sleep activity bins with maximum likelihood across Recall states > maximum likelihood
across Acquisition states (Drift score > 0).

Opposing effect on drift in NREM and REM
NREM and REM periods were identified as described above. Neighboring sleep epochs of
the same type were merged to obtain a set of alternating NREM/REM epochs. For each
epoch, the change in similarity ratio was computed by subtracting the first value of the
epoch from the last value of the epoch.

Differences in NREM and REM reactivation quality
To assess differences in the quality of sleep reactivations in NREM and REM, I first looked
at the maximum likelihoods per constant number spike bin during sleep (see Decoding
sleep activity). For each bin I computed the likelihoods for all pHMM states and selected
the maximum likelihood per bin. This procedure was done for NREM and REM bins
separately and the distributions of maximum likelihoods compared. Next, I analyzed REM
and NREM posterior probabilities per pHMM state. For each pHMM state I identified
when this state was reactivated during sleep (using my maximum a-posterior decoding
approach) for REM and NREM epochs separately. Then, I identified states that showed
a significant difference between REM and NREM epochs. The difference for a given state
was considered significant if the ratio between posterior probabilities of REM and NREM

40



2.6. Methods

epochs deviated more than 2 std from the mean of the REM posterior probabilities. The
ratios of all significantly different states were then used to assess the quality of sleep
reactivations in REM and NREM.

Temporal differences in NREM and REM reactivations
I analyzed the decay of reactivations in NREM and REM by computing the auto-correlation
of the similarity ratio. In order to display the decay as a function of time instead of the
number of constant number spike bins, I computed the mean duration of the 12 spike bins
in sleep for REM and NREM. Then, I z-scored the resulting auto-correlation values using
the mean and std of the tails. The exponential coefficient k was determined by fitting an
exponential function using the standard numpy optimize library.

Similarity in NREM and REM reactivations
In order to investigate the similarity in reactivation content between REM and NREM, I
used my decoding results from pHMM and Bayesian decoding. For the Bayesian decoding,
I computed the probability of decoding one spatial bin using either all NREM or REM
epochs. Then, the correlation of the flattened probability maps was computed. The
equivalent approach for the pHMM decoding correlates the probabilities of decoding one
state for all states between REM and NREM epochs.

Persistent and unstable subsets
Persistent and unstable cell subsets were identified based on changes in their firing rate
distributions from acquisition to recall. For each cell the distributions of firing rates
for acquisition and recall were computed separately. If the acquisition distribution was
significantly greater than the recall distribution (one-sided Mann-Whitney U test, p<0.01),
the cell was assigned to the decreasing subset. If, on the other hand, the recall distribution
was significantly greater than the acquisition distribution (one-sided Mann-Whitney U
test, p<0.01), the cell was labeled as increasing. All other cells which did not show a
significant difference in their firing rate distributions from acquisition to recall made up
the persistent subset.

Drift using different subsets of cells
To evaluate the effect of using only a subset of cells for my sleep decoding procedure on
the observed drift I proceeded as follows. I removed all cells not contained in the subset
from my constant number spike bins and computed the Drift score using the maximum
likelihoods from the acquisition and recall states. Then, the Drift score for the entire
sleep duration was split into four parts of equal length. For each part, a line was fit and
the resulting slope calculated. The mean slope of the four parts was then compared to
the equivalent value of the Drift score using the entire cell population.

Firing probability changes in NREM and REM
REM and NREM sleep epochs were identified as described above. Thereafter, for each
subset of stable, increasing and decreasing cells I computed the change in firing probability
from the beginning to the end of each epoch. The firing probability is defined as the
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number of spikes contributed by the subset to the total number of spikes per constant
spike bin. I computed the change by subtracting the firing probability of the first bin
of the epoch from the value of the last bin of the epoch. Only epochs with significant
changes in firing probability were considered.

Measuring spatial information
To assess the spatial information of single cells, I computed the sparsity and spatial
information per second as previously described226. The sparsity for X spatial bins is
defined as follows:

s = (∑︁X
i=1 piλi)2∑︁X
i=1 piλ2

i

(2.8)

with pi being the probability of being in spatial bin i and λi being the mean firing rate in
that bin. The spatial information per second was computed using the following equation:

Isec =
X∑︂

i=1
piλlog(λi

λ
) (2.9)

where pi and λi are the probability of occupying and the firing rate of bin i, respectively.
Parameter λ describes the mean firing rate of the cell in the environment.

Decoding positions using neural activity during behavior
Bayesian decoding I applied standard Bayesian decoding using 5 cm spatial bins. First,
I computed the mean number of spikes λn,i per 10ms for each cell n and spatial bin i.
Given the spikes ON of N neurons at time t, I computed the likelihood of being in bin i
using the following equation:

L(ON | x = i) =
N∏︂

n=1

λ
on,t

i,n

on,t!
exp(−λi,n) (2.10)

with on being the number of spikes (per 10ms) of neuron n at time t. The spatial bin
with the highest likelihood represented the decoded location.

Decoding using pHMM
Using the entire neural data from acquisition and the trained pHMM, I inferred the most
likely state sequence using the Viterbi algorithm. By matching the sequence of states
with the tracking data of the animal I identified a mean spatial location for each state.
Given the activity of N neurons at time t, I computed the normalized likelihood for each
state of my pHMM. The decoded location was then calculated by weighing the mean
location of each state with its normalized likelihood and computing the average position
across all states.

Computing mean firing rates
Acquisition, sleep and recall were split into 5 min. chunks to computed mean and
maximum firing rates of the different cell subsets.
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Distance between peak firing and closest goal
For each cell, I computed its rate map and determined the location on the maze with the
highest firing rate. Next, I calculated the distance between the location with the peak
firing rate and the closest goal location.

Population vector correlations
Neurons were separated into persistent, increasing and decreasing cells according to the
procedure defined above. Neural activity per subset was binned using spatial bins of 10
cm2 size yielding one population vector per spatial bin. Spatial bins which were not visited
in all relevant behavioral episodes were excluded. Then, Pearson correlations between
population vectors of the same spatial bin during the different behavioral episodes were
computed. Computing similarity in co-firing with equalized firing rates In order to assess
the similarity of co-firing during rest with either the acquisition or recall and controlling
for firing rate changes I performed the following analysis steps. First, I excluded cells with
very low firing rates. Then, I computed the correlation matrices for the acquisition and
recall using the unmodified firing rate rasters. I divided the rest activity into chunks of
200 seconds and computed the minimum number of spikes per 200 second window for each
cell. For each cell, I then removed random spikes from each 200 second window until the
minimum number of spikes was reached. This procedure allowed us to remove the effect
of firing rate changes throughout rest. I repeated the subsampling procedure fifty times
and computed the correlation matrix between cell firing for each iteration. Then, the
firing-equalized correlation matrices for each window were correlated with the acquisition
and recall correlation matrices. Using the normalized difference, I obtained a temporal
measure for the relative similarity of the co-firing during rest with either acquisition or
recall.

Pre- & replay states analysis
I assessed the extend of activity being pre-played during the sleep before (pre-sleep) the
actual experience and the extend of activity re-played during the sleep after (sleep) in
the following manner. Cells were split into stable and decreasing subsets in accordance
with the aforementioned procedure. For each subset I fit a separate pHMM model to the
activity during acquisition. Then, for each subset I used the corresponding pHMM model
to decode the activity during the pre-sleep and the first part of the long sleep. I only
used the first part of the long sleep to avoid effects of the observed drift in activity. For
both sleeps separately, I computed the mean likelihood per decoded pHMM state. This
yielded per state, the mean likelihood for pre-sleep Lpre−sleep and the mean for the first
part of the long sleep Lsleep. I then computed the normalized difference between the two
to evaluate if a state is differentially expressed:

differenceexpression = Lpre−sleep − Lsleep

Lpre−sleep+Lsleep

(2.11)

I defined states with differenceexpression < -0.5 as replay states and states with
differenceexpression > 0.5 as preplay states.
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Support Vector Machine (SVM) to decode behavioral episodes
I trained a support vector machine to distinguish between behavioral episodes. First, the
neural activity of two behavioral episodes (e.g. acquisition and recall) was binned into 2s
temporal bins. Then I assigned labels to the temporal bins identifying which episode each
bin belonged to. The data was then split into a training and a test set. After training the
SVM, I computed the accuracy on the held-out training data.
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CHAPTER 3
Prior behavioral performance

determines stability and synchrony in
the memory system during rest

3.1 Abstract
A major challenge to our current views on information storage in the brain comes from
growing evidence indicating that neural activity in cortical and subcortical areas undergoes
changes and significant reorganization even in the absence of novel experiences or learning.
Such fluidity in the nature of neural activity posits challenges for our understanding of
processes based on the exchange of information between multiple brain regions, such as
memory acquisition and consolidation. Here, I focused on the coordination of activity
between the hippocampus (HPC) and the medial prefrontal cortex (PFC) - two regions
known to be relevant to memory functions. Specifically, I studied how prior performance
in a rule-switching task impacts the stability and coordination of the resting activity in
both areas.
Rest periods are known to be important for the consolidation of memories, potentially
involving the transfer of information between the hippocampus and the prefrontal cortex.
I found that during rest neural activity underwent systematic changes both in the PFC
and in the HPC. Such reorganization differed in the two regions in terms of degree and
relationship with previous behavior: while hippocampal reorganization increased after
poor task performance, such a trend was not observed for the prefrontal cortical activity.
Nevertheless, the neural activity in the PFC showed more systematic changes during rest
than the hippocampal activity.
Poor behavioral performance was also followed by an increase in coherence between the
short-term fluctuations in neural activity in the two regions, possibly as an effect of a
heightened flow of information between HPC and PFC in response to cognitive demands.
The synchrony was mostly driven by sustained periods of low-variance (∼5-20s) in the
neural activity, which coincided in both populations and which were entrained by an
ultraslow oscillation in the range of 0.1 Hz driving the alternation between them in slow
wave sleep (SWS) periods. The majority of PFC and HPC cells were down-regulated
during these brief periods, but a small subset of cells consistently increased their activity.
I identified opposing firing rate modulations during SWRs, indicating that active cells
during low-variance periods differ from SWR up-regulated cells. The identified subsets
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of cells showed significant differences in coding task-relevant features and they might
contribute to different aspects of solving and learning the rule switch task.
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3.2 Introduction
Many situations of everyday life require the ability to flexibly adapt behavior based on
changes in the environment. Evidence about these changes might not always be readily
available and one might need to infer the accurate behavior based on the outcome of
performed actions. This cognitive process has been linked to activity in the prefrontal
cortex (PFC)227,228. Previous studies have shown that PFC is involved in decision-making,
flexible behavior, and storage of knowledge229–231. To solve different tasks, knowledge
about previous experiences and more generalized knowledge about when to change
behavior is crucial2. The process of acquiring and consolidating relevant memories has
been attributed to the hippocampal-neocortical network232,233. Along these lines, sleep
and rest have been found to elicit the strengthening of relevant memories9,161. One
mechanism contributing to the cooperative processing of information is the coupling of
hippocampal sharp-wave ripples (SWRs) and cortical spindles182. However, both areas
could potentially communicate through alternative mechanisms such as slow oscillatory
activity or during periods of reduced cortical activity as well234,170. A more thorough
understanding of simultaneously occurring neural activity in the hippocampus and the
prefrontal cortex might therefore uncover how information is processed to facilitate flexible
behavior in the future.
In addition to the open questions regarding the transfer of information between brain
areas, previous studies have shown that neural representations are not as stable as initially
thought114,107,102. Recent investigations, including the study of Chapter 1, uncovered
systematic changes in neural activity during rest/sleep or without external stimuli235.
There is also evidence that these changes actually actively contribute to changes in
representations across matching sensory experiences235. The link between offline neural
activity changes and changes in behavioral neural activity could therefore help us to
understand the mechanisms that drive the fluidity of representations. A first step in this
direction is to uncover the relationship between prior behavior and subsequent offline
activity drift. Furthermore, the coordination of changes in the neural activity during rest
from populations of the same functional network might be a critical component concerning
information transfer and remains to be explored107.
In this study, I assessed systematic changes in neural activity in two memory-relevant
brain regions (HPC and PFC) during rest after the execution of a rule-switch task. I
found a greater amount of change in the PFC neural activity as compared to activity from
the hippocampus. For the hippocampal neural activity during rest, good performance
was followed by an increase in activity reconfiguration. Slow fluctuations in the neural
activity across the two populations were more synchronized after poor performance, a
potential marker of active transfer of information between the two areas. The synchrony
was primarily driven by the co-occurrence of low-variance periods in both populations.
Active cells during these periods differed from those cells that were recruited during rest
SWRs, suggesting that there might be an alternative mechanism besides SWR-spindle
coupling to coordinate activity between the HPC and PFC.
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3.3 Results

Offline activity drift was observed during short rest and changed
with prior performance
To assess the influence of prior behavior on the offline activity drift during rest, I used
data from a rule-switch paradigm with interleaved rest periods which was previously
recorded in our lab11. Animals were trained to apply one of two pre-trained rules in order
to navigate from the start location of the plus maze to the rewarded arm (Fig. 3.1a).
During the first behavioral episode, the food-deprived animal had to follow the first of
the two pre-trained rules (rule A) to receive a food reward. Subsequently, the animal was
placed in a rest box for 40 minutes (rest 1). After the rest period, the rewarded arms
were still assigned according to rule A. At a random point in time, the rule was switched
from rule A to the other pre-trained rule B without indicating the change to the animal
(rule switch). Therefore, the animal had to independently adapt its strategy to rule B to
navigate to the correct arm to receive a reward. I measured the behavioral performance
by counting the number of trials until the animal correctly executed five consecutive trials
adhering to rule B (Fig. S3.1a). After the rule switch session, the animal was allowed to
rest in the rest box for another 40 minutes (rest 2) before concluding the experiment with
another behavioral episode with rule B.
As a first step, I wanted to quantify if the neural activity during rest periods underwent
systematic changes. I binned the neural activity of each population using temporal bins (1
s) and trained a linear regression model that predicted time passed during rest based on
the neuronal firing (Fig. 3.1b). I then tested the model’s performance on held-out data
(80/20 train-test split) from the same session and computed the coefficient of determination
(report mean value across 100 train-test iterations with changing training and test splits).
In this way, I was able to evaluate how tightly changes in neuronal firing were linked to
time passed using a linear model.
I observed that the prefrontal cortical neural activity was a better predictor of time
compared to the hippocampal neural activity and therefore showed stronger offline
activity drift (p < 0.05, MWU test, Fig. 3.1c). I confirmed this result using a multinomial
logistic regression model (see Methods and Fig. S3.1b). Moreover, the offline activity
drift was more pronounced in rest 2 after the rule switch episode as compared to rest 1 (p
< 0.05, MWU test). This might be an indication of more pronounced systematic changes
in the neural activity in both regions after a more challenging behavioral episode.
After establishing that offline neural activity drift could be detected during the rest periods
using the described ridge regression approach, I wondered if there was a relationship
between the amount of drift and prior rule switch performance. Therefore, I correlated the
difference in offline activity drift between rest 2 and rest 1 with the behavioral performance
as measured by the number of trials the animal took to adjust its strategy to the changed
rule (Fig. 3.1d-f). I found a negative, but not significant correlation for the PFC (R =
-0.5, p = 0.116) and a significant positive correlation for the HPC (R=0.63, p = 0.036).
Although not significant, there was a weak trend for PFC neural activity to undergo more
systematic changes in rest 2 after good rule switch performance with respect to rest 1
(Fig. 3.1e). After poor rule switch performance, neural activity in the PFC tended to
reduce the amount of change in the rest after (Fig. 3.1f). The amount of hippocampal
offline activity drift increased after poor performance but showed less change between
rest 1 and rest 2 after good performance.
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Next, I investigated if the offline activity drift showed temporal consistency between
HPC and PFC. For each population, I projected the neural activity onto the predictive
axis of the corresponding ridge regression model to obtain two time series (Fig. 3.1g).
Cross-correlating the time series yielded a clear peak at zero offset with a mean correlation
value of R = 0.61 (SEM=0.196, Fig. 3.1h). Thus, the offline activity drift in the HPC
and the offline activity drift in the PFC were temporally aligned, despite the difference in
absolute magnitude.
In summary, my analysis revealed that the neural activity during short consolidation
periods (∼ 40 min) underwent systematic changes and that the magnitude of change was
biased by the prior performance of the animal. I found that changes in the hippocampal
neural activity were more pronounced after good performance. On the other hand, the
neural activity in the prefrontal cortex showed the opposite trend, exhibiting more stable
activity after good performance. Despite their differential relationship with the animal’s
rule-switch performance, changes in neural activity in both brain regions were strongly
correlated. This hinted at performance providing only modulatory effects on the overall
activity structure, which appeared to be dominated by the synergy between the two
regions.

Synchrony of low-frequency fluctuations in the neural activity
between HPC and PFC is modulated by prior behavioral
performance
To further investigate how changes in neural activity were related between HPC and
PFC, I performed the following analysis. First, I computed the cosine distance between
subsequent population vectors (1s bins), for each brain region independently, to capture
time-point to time-point changes in neural activity (Fig. 3.2a). The two resulting time
series of short-term fluctuations showed a significant correlation with a peak at zero offset
(mean R = 0.371, SEM R = 0.052, all 10 sessions, except for one, had an R > 0.17 and p
< 10e-15, Fig. 3.2b).
Since the HPC-PFC circuitry is potentially involved in consolidating knowledge related to
the successful execution of the rule switch task, I speculated that changes in the synchrony
between both areas could be related to the prior task performance. To test this possibility,
I correlated the difference in synchrony between rest 2 and rest 1 for each offset separately
with the number of trials the animal took to adapt its behavior after the rule switch (Fig.
3.2c). I found a positive correlation for all offsets between -10 and +10 seconds (R >
0.6, all p < 0.05) indicating that the synchrony in the rest after increases with poor rule
switch performance. This finding was most prominent when I only used the first half of
each rest (Fig. 3.2c) but held true when using the entire rest data (S2a-b). The highest
correlation between the difference in synchrony and rule switch performance was found
for an offset of -2 seconds (R=0.96, p=3.35e-6, Fig. 3.2c-d), corresponding to changes in
which hippocampal activity led by two seconds relative to the prefrontal cortex activity.
Still, it is important to note that there was an overall increase in synchrony following
poor rule switch performance that was not exclusive to a specific temporal offset between
both neural populations (Fig. S3.2c).
The observed change in synchrony could potentially have been initiated during the
behavioral rule switch episode itself. To exclude this option I applied the same analysis,
cross-correlating the time series of cosine-distances, to the awake neural activity during
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Figure 3.1: Offline activity drift in the hippocampus and prefrontal cortex.(a)
Experimental paradigm of the rule-switch task: a rewarded arm of the plus maze according
to the pre-learned rule A (first behavioral episode), rest interval of 40 min (Rest 1), rule
switch task (the rule is switched to pre-learned rule B unannounced), rest interval of 40
min (Rest 2), rewarded arm of the plus maze according to the pre-learned rule B (last
behavioral episode). (b) Predicting the time passed during rest to measure the amount of
offline activity drift. Left: example raster from rest 2. Predicted and true time during
rest 2 using PFC neural activity (middle) and HPC neural activity (right). (c) Coefficient
of determination of the ridge regression to predict time for HPC and PFC during rest 1
and rest 2. (d) Difference in coefficient of determination between the rest before (rest
1) and rest after (rest 2) as a function of rule switch performance. Different symbols
correspond to different animals. (e)-(f) True and predicted time during rest before and
after for two example sessions with good and poor rule-switch performance. (g) Time
traces of smoothed predicted time values for HPC and PFC for one example session.
(h) Cross-correlation of un-smoothed predicted time traces from HPC and PFC for all
sessions (mean: 0.614, standard error of the mean: 0.0196).

the rule switch task (Fig. S3.2d). Since I did not find a significant correlation (R=0.107,
p=0.75) between the synchrony during behavior and the performance of the animal, I
concluded that the increase in synchrony is an isolated phenomenon happening during
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rest after the task.
The cosine distance between subsequent population vectors showed a strong alignment
with the overall activity of the population. That means that periods of low cosine distance
values overlapped with periods of low overall neural activity and periods of high cosine
distance values coincided with periods of high overall activity (Fig. S3.2e). When I used
the synchrony between the overall activity of HPC and PFC, and correlated the difference
between rest 1 and rest 2 with the animal’s performance, I didn’t find a significant
relationship (R=0.38, p=0.25 for an offset of zero seconds, Fig. S3.2f). Therefore, the
synchrony of short-term fluctuations in neural activity, although correlated with the
overall population activity, seemed to be more tightly modulated by prior performance.
The computation of cosine distances between subsequent population vectors (Fig. 3.2a)
was performed using 1s temporal bins. To investigate whether the observed modulation
of synchrony with respect to prior rule switch performance was primarily driven by
fluctuations at this temporal resolution, I resorted to a filter analysis approach. High-pass
filtering the time series of the cosine distances of HPC and PFC before cross-correlating
them, revealed that the low-frequency components were the main driver of the observed
behavioral modulation (Fig. 3.2e). Applying a band-pass filter uncovered the frequency
range between 0 and 0.05 Hz to be crucial (Fig. 3.2f-g). Consequently, prior rule-switch
performance most strongly affected the synchrony of changes in the neural activity between
the HPC and PFC at these ultra-slow frequencies.
Taken together, I found that fluctuations in neural activity between the hippocampus
and prefrontal cortex aligned strongly and that their synchrony was increased after
poor rule switch performance - a potential sign of heightened information exchange
between both areas as part of the consolidation process. Furthermore, I identified low-
frequency components in these fluctuations which mainly drove the synchrony between
the hippocampus and prefrontal cortex.

Different regimes of short-term fluctuations correspond to
different brain states
The time series of cosine distances between subsequent population vectors showed distinct
regions with stereotypical distributions of cosine distance values (Fig. 3.2a). This raised
the question if these regimes corresponded to different brain states and whether the
synchrony in neural activity fluctuations was modulated by prior behavior for all of
them. As a first step, I clustered the hippocampal time series of cosine distances using
a semi-automatic clustering approach (Fig. 3.3a, Fig. S3.3a, and Methods). Temporal
windows of 60 seconds duration were assigned to one of three clusters: regime 1 showed
high fluctuations in neural activity (high cosine distance values) with brief periods of
stable activity (low cosine distance values). Regime 2 corresponded to generally more
stable activity as indicated by lower cosine distances between subsequent population
vectors. The transition cluster captured time periods of great variability in cosine distance
values. I found that regime 1 was the predominant one during rest (p < 0.01, regime 1
duration vs. regime 2 duration for all sessions) and that its duration did not change from
rest 1 to rest 2 (p > 0.05, MWU test, data from all sessions, Fig. S3.3b).
Next, I computed the power of standard frequency ranges in the HPC and PFC, respec-
tively, and aligned the results with the cosine distance clusters (Fig. 3.3a and Fig. S3.3c).
Regime 1 was further subdivided into periods of high cosine distances (HI) and periods
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Figure 3.2: Offline activity drift in the hippocampus and prefrontal cortex.(a)
Computing short-term fluctuations in neural activity. Raster plots of neural activity
during rest from HPC (top) and PFC (bottom). Cosine distance between neighboring
population vectors in HPC (salmon) and PFC (blue). (b) Cross-correlation of short-term
change from HPC and PFC. Top: data from (a). Bottom: Data from all sessions for rest 1
and rest 2. (c) Correlation between the difference in cross-correlation (short-term changes)
from rest 1 and rest 2 using the first half of each rest for different offsets and the number
of trials the animal took for the rule-switch. (d) Number of trials the animals took to
switch the rule versus the difference in correlation (short-term fluctuations) from rest 1
to rest 2 for an offset of -2s (HPC leading). (e)-(f) Correlation between the difference in
cross-correlation (short-term fluctuations) from rest 1 to rest 2 (offset: -2s) and the number
of trials the animal took for the rule-switch after filtering the short-term fluctuations
in HPC and PFC with different filters. Results for high-pass filtered (e) and bandpass
filtered (f) short-term fluctuations. (g) Bandpass filtered (passband: [1e-5 Hz, 0.55 Hz])
short-term fluctuations in HPC and PFC for one example session.
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of low cosine distances (LO). I identified significant differences in delta, theta, gamma,
ripple, and spindle power between the different regimes (p < 0.001 for all comparisons,
Fig. 3.3b-c, Fig. S3.3c-e), implying that the regimes corresponded to different brain states.
Given the spectral properties of the two regimes and the lower Theta-Delta ratio for
regime 1 (Fig. 3.3c) it is very likely that regime 1 corresponds to NREM sleep and to an
alternation of SWS with periods of low-delta power regulated by an ultraslow oscillation
of around 0.1Hz. Regime 2 properties are instead highly overlapping with those expected
from REM sleep.
When I looked at the modulation of synchrony of low-frequency fluctuations in the neural
activity between HPC and PFC (see previous section) due to prior behavior for each
regime separately, the effect remained for regime 1 (max correlation for offsets between
-5s and +5s: R=0.75, p=0.0068) and the transition regime (R=0.674, p=0.023), but not
for regime 2 (R=0.408, p=0.213, Fig. S3.3e-g). Therefore, the changes in synchrony in
regime 1 from rest 1 to rest 2 seemed to be most sensitive to the animal’s rule switch
performance.
To summarize, fluctuations in neural activity could be assigned to distinct regimes during
the consolidation period. This classification was based on the distribution of cosine
distances between subsequent population vectors: the different regimes corresponded to
periods where the neural activity fluctuated to different extents over small temporal scales.
Interestingly, the identified regimes showed well-defined oscillatory profiles in the local
field potential and therefore are likely to overlap with specific brain states. Increased
synchrony between the fluctuations in neural activity from HPC and PFC after poor
performance was most prominent during regime 1. This regime showed periods of high
fluctuations interspersed with periods of high stability in neural activity and most likely
corresponded to NREM sleep.

low-variance periods in PFC and HPC coincide and different
cells are up- and down-regulated
Regime 1 was characterized by strong fluctuations in neural activity interspersed with
periods of high stability in neural activity (Fig. 3.3a and Fig. 3.4a). These low-variance
states lasted for 1-25 seconds (Fig. S3.4a), coincided with a decrease in oscillation power
(p < 0.001, MWU test, Fig. 3.3b-c, Fig. 3.4a and Fig. S3.4b), and were a main driver
for the synchrony in low fluctuations between HPC and PFC. Hence, when I removed
intervals of low-variance from the data, the correlation between low fluctuations in HPC
and PFC significantly decreased (p < 0.05, MWU test, Fig. S3.4c). Not surprisingly, the
low-variance periods in HPC and PFC showed a strong temporal overlap (68% of absolute
temporal differences between troughs < 5s, Fig. 3.4c-d). However, neither the number of
low-variance periods nor the temporal fraction of low-variance periods in regime 1 showed
a positive relationship with the animal’s behavior (p > 0.05, Fig. S3.4d-e).
During a low-variance period, the overall population activity of excitatory cells decreased,
while the activity of a subset of cells was up-regulated (Fig. 3.4a,e-g). This effect was
more prominent in the HPC as compared to the PFC (p=3.2754e-98, one-sided MWU).
When I looked at the activity of interneurons, the difference between the HPC and PFC
was even more prominent (HPC > PFC, p = 5.347e-5, one-sided MWU, Fig. S3.5a-c).
While the majority of interneurons in the HPC decreased their firing during a low-variance
period (fraction of positively correlated cells with HPC cosine distance > 0.5, p = 0.00452,
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Figure 3.3: Different regimes of low frequency fluctuations.(a) Result of semi-
automatic clustering approach applied to hippocampal neural activity using Gaussian
mixtures to divide short-term change (cosine distance between subsequent population
vectors) into different regimes for one example session (top left). Top right: zoomed-
in snippet from regime 1 showing low-variance periods. Bottom: Delta, Theta, slow
Gamma, medium Gamma, and ripple/spindle power in the hippocampus (colored) and
prefrontal cortex (black). (b) Delta, Theta, and ripple/spindle power in the hippocampus
for different regimes (data from all sessions, *** p < 0.001, Mann-Whitney U with
Bonferroni-correction). (c) Hippocampal Theta-Delta ratio for different regimes.

binomial test) in a similar fashion like the excitatory cells, many PFC interneurons were
up-regulated (fraction of negatively correlated cells with HPC cosine distance > 0.5, p =
8.472e-8, binomial test). This result might imply that the majority of the HPC network
was shut down during a low-variance period, whereas the PFC network showed a more
local inhibition potentially driven by PFC interneurons.
In conclusion, I found that low variance periods majorly contributed to the synchrony
between fluctuations in the neural activity between HPC and PFC. The discovery that a
certain subset of cells from both populations was up-regulated during these periods led to
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the following hypothesis: the co-activity of distinct cells during low variance periods could
potentially be a mechanism to synchronize the activity between the HPC and the PFC.

HPC-PFC co-activity differs between low-variance periods and
SWRs
To test the possibility that both populations synchronized their activity during low-
variance periods, I first wanted to establish if the same subset of cells was consistently
up-regulated during these periods. I computed the normalized difference in mean firing
rates for excitatory cells between low-variance and high variance periods in regime 1
for rest 1 and rest 2, separately. The firing rate modulations were strongly correlated
between rest 1 and rest 2, indicating that a similar subset of cells was consistently up- or
down-regulated during low-variance periods (R > 0.66, p < 3.2e-118, Fig. 3.5a-b).
HPC-PFC communication has been ascribed to the coupling of hippocampal sharp-wave
ripples (SWR) with cortical spindles (10-18Hz oscillations of the local field potential in
the cortex). To identify the relationship between SWR-driven activity and the activity
during low-variance periods, I identified the subsets of cells that were recruited in both
cases. Surprisingly, the SWR-modulation of firing rates was anti-correlated with the
low-variance period-modulation (R < -0.35, p < 2.2e-28, Fig. 3.5c-d). This suggested that
cells which are up-regulated during low-variance periods are down-regulated during SWRs
and vice versa. Hence, certain excitatory cells from HPC and PFC were upregulated
together during low-variance periods and this co-activity involved a different subset of
cells than the one recruited during SWRs.
To further investigate the possibility of coherent co-activity in HPC and PFC during
low-variance periods, I resorted to an approach inspired by the idea of a communication
subspace between the two areas 20 (Fig. 3.5e). To uncover how the activity of one
population was related to the activity of the other, I performed the following analysis:
For each hippocampal excitatory cell, I fit a regression model predicting its activity (in
100ms temporal bins) using the co-occurring activity of all recorded excitatory prefrontal
cortical neurons. This yielded one regression direction (i.e. a line indicating a direction
defined by the regression weights of all PFC cells) for each HPC cell in the PFC activity
space (Fig. 3.5e). Then, I clustered all regression directions based on the cosine distance
between them to identify hippocampal cells which were modulated by similar prefrontal
cortex activity (F6f, F6h and Methods). I separated the regression directions into three
clusters anticipating that there could be one cluster capturing low-variance coactivity,
one cluster for SWR coactivity, and one additional cluster representing the remaining
coactivity. For each cluster, I computed the mean weight per PFC neuron (using all
regression directions of this cluster) describing the stereotypical relationship between PFC
and HPC activity (Fig. 3.5g). When I correlated the cluster-specific mean regression
weight with the firing rate modulation during SWRs and low-variance periods for all PFC
cells, the three clusters showed clear differences (Fig. 3.5i and Fig. 3.5k): for one cluster
(cluster 1), the activity of cells with large regression weights tended to be down-regulated
during low-variance periods (R = -0.46, p < 5.24e-40) and up-regulated during SWRs (R
= -0.42, p < 8.79e-33). The regression weights of PFC cells for another cluster (cluster
2) showed a positive correlation with low-variance modulation (R=0.28, p < 4.31e-15)
and a negative correlation with SWR modulation (R=-0.15, p < 3.11e-5). For the third
cluster (cluster 3), regression weights showed a negative correlation with the firing rate
modulation during low-variance periods (R=-0.28, p < 3.57e-15) and a positive correlation
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with the modulation during SWRs (R=0.45, p < 5.78e-38). Therefore, the two clusters
seemed to be more similar in terms of firing rate modulation (first and third cluster) than
cluster 2. The greater similarity of these two clusters was further confirmed by the smaller
angle between the mean predictive directions of the two (p < 0.05, Fig. S3.6a).
To support the argument that there is a state-dependent link between the activity of HPC
and PFC cells, a potential indicator for communication between the two populations, I
wanted to test if the predicted HPC cell activity showed the same modulation during
low-variance periods and SWRs as the predicting PFC cell activity. Since each predictive
axis corresponded to one HPC cell, I assigned each HPC cell to the corresponding cluster.
This implied that the activity of HPC cells from the same cluster was modulated by similar
PFC activity. Next, I compared the firing rate modulation of the HPC cells from different
clusters during low-variance periods and SWRs (Fig. 3.5j and Fig. 3.5l). Coherently, I
found that HPC cells belonging to a cluster characterized by a reduction in the activity
of predicting PFC cells during low-variance periods, also showed down-regulated activity
during these periods (low-variance periode modulation < 0, p<4.1545e-103, one-sided
T-test). On the other hand, the same HPC cells increased their firing during SWRs and
therefore mirrored the modulation of the predicting PFC cells (SWR modulation > 0,
p<4.3545e-113, one-sided T-test). HPC cells from the cluster with an up-regulation of
predicting PFC activity during low-variance periods were less likely to reduce or increase
their firing rates during low-variance periods and SWRs, respectively (p < 0.001, Fig.
3.5l).
When I repeated the above analysis using HPC activity to predict PFC activity, the
results showed the same trends (Fig. S3.6b-d). However, the differences in firing rate
modulations between the clusters were smaller in magnitude.
It is important to note that the emergence of clusters with different cell activity modulation
during low-variance periods and SWRs was not an explicit constraint of the prediction and
clustering procedure, but occurred by itself. To exclude the possibility that the finding
was mainly due to the chosen analysis approach, I performed a canonical correlation
analysis (CCA) using the same data. This allowed me to identify the contribution of
single cells to the correlation of neural activity between HPC and PFC. In support of the
idea that distinct activity patterns from both populations co-occur during low-variance
periods, the cell-specific weights defining the first pair of canonical variables showed a
significant positive correlation with the firing rate modulation during low-variance periods
(R > 0.5922, p < 1.94e-71, Fig. S3.6e-f).
In summary, the used prediction and clustering approach identified subsets of cells in
one population (HPC or PFC) whose activity could be predicted using distinct activity
patterns from the other population. Two of the identified clusters (cluster 1 and cluster
3) contained cells that were up-regulated during SWRs and down-regulated during low-
variance periods. For these clusters, the mean regression weights of the cells from the other
population were positively correlated with the SWR firing rate modulation and negatively
correlated with the low-variance period modulation. Therefore, the co-occurrence of
activity patterns from HPC and PFC for these clusters was mainly driven by SWRs.
On the other hand, the mean regression weights of the predicting cells from the remaining
cluster (cluster 2) showed a negative correlation with the SWR firing modulation and
were positively correlated with the low-variance period modulation. For this cluster, the
predicted cell activity was less down-regulated during low-variance periods and showed
a significantly reduced up-regulation during SWR. Consequently, I identified activity
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patterns that co-occurred in HPC and PFC during low-variance periods which were
different in terms of involved cells from activity patterns co-occurring during SWRs.
Taken together, my analysis revealed co-activity patterns in the hippocampus and pre-
frontal cortex that were either driven by low variance periods or SWRs. The observation
that different subsets of cells in the HPC and PFC were co-active during either low
variance periods or SWRs might indicate that these subsets serve different functions.

Difference in spatial coding and rule coding between SWR and
low-variance period favoring cells
The finding that different subsets of cells from HPC and PFC were co-active either during
SWRs or low-variance periods during rest raised the question of whether these cells also
differed in terms of activity during the rule switch paradigm.
Mean firing rates of hippocampal cells from the three clusters showed mild differences
during the rule switch session with significantly higher mean firing rates for cluster 3 (cells
with intermediate down-regulation during low-variance periods and strong up-regulation
during rest SWRs) in the behavioral episode after rest (p < 0.05, Fig. 3.6a-b). Mean
firing rates stayed relatively constant between the rule switch episode and the behavioral
episode of the recall after rest for all three clusters (p > 0.05, Fig. 3.6c). When I repeated
the same analysis for PFC cells (clusters derived from predicting PFC activity using HPC
activity during rest), I did not find any difference in mean firing rates across clusters nor
changes between behavioral episodes (p > 0.05, Fig. S3.7a-c). Hence, only hippocampal
cells that were intermediately down-regulated during low-variance periods and strongly
up-regulated during SWRs in rest showed higher mean firing rates than the other cells
and maintained this activity in the recall episode.
Since the rule switch paradigm has a spatial component and hippocampal cells are coding
for space, I was curious to see whether there were differences in spatial information for
the cells from different clusters (Fig. 3.6d-f). Interestingly, cells from the low-variance
favoring cluster had lower spatial information during the rule switch task (p < 0.01, MWU
test) and showed a moderate, but significant increase in spatial information in the recall
session after the rest (p < 0.001, MWU test). On the contrary, cells from the SWRs
favoring cluster showed a reduction in spatial information from the rule switch episode to
the recall episode (p < 0.001). Using sparsity as an alternative measure for spatial coding
confirmed the reduced spatial selectivity of cells from the low-variance favoring cluster (p
< 0.01, MWU test, Fig. S3.7d). Changes in sparsity from the rule switch episode to the
recall episode for the clusters only partially agreed with the observed changes in spatial
information (Fig. S3.7e-f).
It has been shown that PFC cells can also exhibit some degree of spatial coding11. When
I compared spatial information and sparsity of PFC cells from the different clusters, cells
from cluster 1 (up-regulation during SWRs and down-regulation during low-variance
periods) showed a higher spatial selectivity during the rule switch task (p < 0.05, MWU
test, Fig. S3.7g-m). Interestingly, all PFC cells displayed an increase in spatial information
from the rule switch episode to the recall episode (p < 0.05, MWU test, Fig. S3.7i).
The same trend was observed when using sparsity as a measure for spatial coding (Fig.
S3.7m).
In short, I identified differences in spatial information for the hippocampal cells from
different clusters, which might imply that they exhibit different functionality while the
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animal is engaged in different episodes of the rule switch paradigm.
Previous studies have shown that the neural activity from HPC and PFC can be used
to decode the rule the animal is currently following176. To test the possibility of cells
from different clusters coding for the rule to different extents, I performed the following
analysis: for each population, I split the rule switch data into two parts. The first part
consisted of the neural activity while the animal was performing the task using rule A.
The second part captured the neural activity after the animal successfully switched its
strategy to adhere to rule B. Then, I trained a support vector machine (SVM) to separate
the activity of rule A and rule B. I confirmed the decodability by cross-validation (mean
accuracy > 0.636 for all models). When I compared the magnitude of SVM coefficients for
the hippocampal cells from the three clusters, cells from cluster 2 (low-variance favoring
cluster) and cluster 3 (cells with intermediate down-regulation during low-variance periods
and strong up-regulation during rest SWRs) contributed more to the classification of
rule A and rule B activity (p < 0.01, MWU test, Fig. 3.6g). However, the hippocampal
cells from different clusters did not show a distinct up- or down-regulation of activity
between both rules as indicated by similar SVM coefficient distributions (p > 0.05, MWU
test, S8a). If I used PFC activity instead, there was no significant difference between the
clusters (derived from predicting PFC activity using HPC activity during rest) neither
for the SVM coefficients nor the absolute SVM coefficients (p > 0.05, MWU test, Fig.
S3.8b-c).
The SVM rule decoding analysis was purely based on firing rate changes of cells between
both rules (rate remapping). Nonetheless, there remained the possibility that cells coded
for the rule by changing their spatially defined activity between rules. For each cell, I
generated one rate map (firing rates per spatial bin) using the data from rule A and
one rate map using the data from rule B. Then, I computed the correlation between
these rate maps to evaluate their similarity. Hippocampal cells from cluster 3 (cells with
intermediate down-regulation during low-variance periods and strong up-regulation during
rest SWRs) showed a slightly, but significantly higher correlation between rule A and rule
B ratemaps (p < 0.05, Fig. 3.6h) indicating that these cells maintain their spatial tuning
across both rules more strongly. The same analysis using the PFC clusters yielded no
significant differences (p > 0.05, MWU test, Fig. S3.8d).
The animal needed to recall rule B during the behavioral episode after the rest and
hippocampal-cortical activity was potentially involved in this process. Hence, I wondered
how consistent the spatial tuning of hippocampal cells was between the rule B part of the
rule switch episode and the rule B recall episode after rest. Again, hippocampal cells from
cluster 3 showed a more consistent spatial tuning between these episodes as indicated by
higher correlation values between the corresponding rate maps (p < 0.01, MWU test, Fig.
3.6i). PFC cells from different clusters did not show a significant difference in this regard
(p > 0.05, MWU test, Fig. S3.8e). Finally, I wanted to test whether the preferential
firing rate modulation of cells during either low-variance periods or SWRs was somehow
related to the overall change in firing rates across rest. Interestingly, the overall change
in firing rates across sleep (slope of smoothed firing rate series) was correlated with the
low-variance modulation for HPC and PFC cells (p < 0.001, MWU test, Fig. S3.8f-g) and
anti-correlated with the SWR modulation (p < 0.001, MWU test, Fig. S3.8h-i). Hence,
cells that were up-regulated during low-variance periods also increased their firing rates
throughout rest. On the other hand, cells that were recruited during SWRs tended to
decrease their firing rates across sleep. This finding might provide a link to the offline
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activity drift analysis from the first part of this chapter.
In summary, hippocampal cell clusters that were computed using their relationship with
PFC activity during rest, did show differences in mean firing rates, spatial coding, and
rule coding while the animal was performing different episodes of the rule switch paradigm.
This indicates that the differential up-regulation of subsets of cells during low variance
periods or SWRs might indeed modulate cells based on their functionality during behavior.
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Figure 3.4: Correlated low-variance periods in PFC and HPC drive subsets of
cells.(a) low-variance periods in regime 1 for one example session. (b) LFP power around
low-variance periods for one example session (mean across all low-variance periods, centered
at the minimum mean cosine distance value across periods). (c) Short-term changes
in neural activity as measured by the cosine distance between subsequent population
vectors around low-variance periods in HPC and PFC for one example session (smoothed
mean+-std across all low-variance periods). (d) Temporal interval between troughs of
the short-term changes in neural activity for all low-variance periods from all sessions. A
negative interval corresponds to a trough that occurs first in the HPC with respect to the
PFC. A value of zero indicates perfect temporal overlap between the troughs from HPC
and PFC. (e) Event-triggered mean of the short-term changes (cosine distance) in HPC
(top). Event-triggered z-scored mean firing rates during low-variance periods of up- and
down-regulated cells in the HPC (middle) and PFC (bottom) for one example session.
(f)-(g) Normalized difference in firing rates within and outside low-variance periods for
hippocampal (f) and prefrontal cortical excitatory cells (g).
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Figure 3.5: Co-activity between HPC and PFC during sharp wave ripples and
low-variance periods.(a)-(b) Firing rate modulation of excitatory hippocampal (a) and
prefrontal cortical (b) cells during low-variance periods in rest 1 and rest 2. (c)-(d) Firing
rate modulation of hippocampal (c) and prefrontal cortical excitatory cells (d) during
low-variance periods and SWRs. (e)-(g) Schematic of prediction and clustering approach
for PFC-HPC co-activity. Visualization of regression directions for one HPC neuron (e,
adapted from 20), several HPC neurons (f), and clustered regression directions (g).
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Figure 3.5: continued from previous page
(h)-(j) Communication channel results for one example session. (h) Clustering regression
directions for all hippocampal neurons (activity for each HPC neuron is predicted by all
PFC neurons) using hierarchical clustering for one example session. Each entry corresponds
to the cosine distance between the regression directions on the x- and y-axis. (i) Firing
rate modulation during low-variance periods and SWRs for PFC neurons (regressors) with
the corresponding loadings for the three clusters from (h). (j) Firing rate modulations
of predicted HPC neurons during low-variance periods and SWRs for the three different
clusters (*** p < 0.001, MWU, Bonferroni-correction). (k)-(l) Communication channel
results for all sessions. (k) Correlation between firing rate modulation and cluster loadings
for PFC neurons (regressors). (l) Firing rate modulations of predicted HPC cells for the
three different clusters (*** p < 0.001, MWU, Bonferroni-correction).
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Figure 3.6: Features of clustered cells. (a)-(b) Mean firing rates of hippocampal cells
from different clusters (see previous section, Cluster 1 & 3: SWRs favoring cells, Cluster
2: low-variance periods favoring cells) during the rule switch task (a) and behavioral
episode after rest (rule B, panel b). (c) Comparison of mean firing rates between the rule
switch task and the behavioral episode after rest for hippocampal cells. (d)-(e) Spatial
information of hippocampal cells during the rule switch task (d) and the behavioral
episode after rest (e) for the three different clusters. (f) Changes in spatial information for
hippocampal cells from the rule switch task to the rule B recall episode after rest for the
three different clusters. (g) Rule coding: magnitude of support vector machine coefficients
of hippocampal cells used to classify rule A vs. rule B activity during the rules switch.
Each coefficient was assigned to a cluster based on the corresponding hippocampal cell’s
cluster assignment. (h) Rate map correlations between rule A and rule B during the rule
switch task for hippocampal cells. (i) Rate map correlations between rule B of the rule
switch task and rule B during the recall episode after rest for hippocampal cells. For all
panels: *** p < 0.001, ** p < 0.01,* p < 0.05 ,n.s. p > 0.05, Mann-Whitney U Test with
Bonferroni-correction.
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Population activity during low-variance periods
After establishing that a subsets of cells from HPC and PFC consistently up-regulated their
activity during low-variance periods simultaneously - a potential means of communication
- I wanted to provide a better description of the population activity occurring during these
periods. Furthermore, I attempted to find a link between low-variance period activity
from rest 2 and the other episodes of the experiment.
To start with, I identified low-variance periods during rest 2 using hippocampal neural
activity (see Methods). I selected population vectors from HPC and PFC coinciding
with the identified time intervals and computed the cosine distance between all pairs
within each population. Then, I compared the resulting distribution of distances with
the distribution of cosine distances between population vectors of the remaining activity
of regime 1 (Fig. 3.7a-b). Not surprisingly, for both populations, low-variance activity
appeared to be much more constrained, as indicated by lower cosine distances, than the
activity outside of these periods (p < 10e-50, MWU test).
Since low cosine distance values between subsequent population vectors did not only
occur during low-variance periods but were also prominent in regime 2 (see Fig. 3.3a), I
wondered if the activity during low-variance periods and the activity of regime 2 would
be similar to some extent. Indeed, when I computed the pairwise distances between
population vectors from the low-variance periods and the population vectors from regime
2, the resulting values were significantly lower than the pairwise distance between low-
variance activity and the remaining activity of regime 1 (p < 10e-50, MWU test, Fig.
3.7c-d). Hence, population activity from low-variance periods was constrained and showed
greater similarity with activity from regime 2.
To further investigate the stability constraints and evolution of the neural activity during
low-variance periods, I calculated the pairwise cosine distances between population vectors
considering the number of population vectors that separated the pair (Fig. 3.7e-f).
If population vectors occurred in close proximity, they were much more similar than
population vectors that were separated by a large number of other population vectors (p
< 0.001, MWU test, Fig. 3.7f). This result applied to both HPC and PFC low-variance
neural activity and implied that the neural activity evolved over time and did not stay
constant across low-variance periods. However, changes across a few population vectors
in low-variance neural activity were significantly smaller as compared to changes across a
few population vectors in the remaining neural activity of regime 1 (p < 0.001, MWU
test, Fig. 3.7g and Fig. S3.9a). Computing the distance between population vectors as a
function of time confirmed the aforementioned findings (Fig. 3.7b).
For the hippocampus, the similarity in neural activity of regime 1 outside low-variance
periods was very low (high cosine distance values) and did not show a dependency on the
number of population vectors in between (p > 0.05, MWU test, Fig. 3.7g). Hence, the
corresponding neural activity was neither correlated across longer or shorter timescales.
On the other hand, changes in PFC activity from low-variance periods and the remaining
regime 1 intervals increased with an increasing number of population vectors in between,
implying a stronger correlation of activity on shorter timescales.
Finally, I wanted to investigate whether low-variance period activity patterns were
exclusive to rest 2 or also occurred during other episodes of the rule switch paradigm. For
each brain region, I used all population vectors from the low-variance periods to compute
one mean low-variance population vector as a template. The cosine distances between
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the neural activity of rest 1, the rule switch task, rest 2 and the template were then used
to evaluate the similarity in neural activity (Fig. S3.9c-e). Not surprisingly, the activity
from rest 2 showed the greatest similarity (lowest cosine distance) with the template (p <
0.001, MWU test) followed by rest 1 activity. The neural activity during the rule switch
task was least similar to the template, indicating that the neural activity during behavior
did not resemble low-variance activity from rest 2. I obtained similar results when I
correlated the time traces of cosine distances with the templates from HPC and PFC:
when the activity in rest 2 was similar to the low-variance activity template in HPC, the
PFC activity was also more similar to the corresponding template from the PFC (Fig.
S3.9d). Applying the same measure to rest 1 revealed lower, but not significantly different
correlation values as compared to rest 2. For the awake neural activity during the rule
switch task, there was a reduced co-occurrence of low-variance period-like activity from
HPC and PFC as indicated by very low correlation values.
To summarize, neural activity during low-variance periods showed much smaller changes
as a function of time than the activity outside these periods. This finding held especially
true for activity from the HPC. low-variance period neural patterns and their co-activity
in HPC and PFC were mostly observed during rest and only weakly resembled neural
activity during behavior.
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3. HPC & PFC stability and synchrony during rest

Figure 3.7: population activity during low variance periods is constrained and
changes slowly. (a)-(b) Distribution of cosine distances between population vectors
within low variance periods (salmon and light blue) and within high variance periods
(gray) for regime 1. Results for hippocampal (a) and prefrontal cortical activity (b).
(c)-(d) Cosine distances between low variance activity and high variance activity of regime
1 (gray) and between low variance activity (regime 1) and activity from regime 2. Results
for hippocampal (c) and prefrontal cortical activity (d). (e) Cosine distance between
population vectors of low variance periods as a function of the number of population
vectors in between for one example session. Top: hippocampal activity (salmon) and
results from population vector ID shuffle (gray). Bottom: prefrontal cortical activity (light
blue) and shuffle (gray). Mean and sem for data and shuffle. (f) Cosine distance between
population vectors of low variance periods as a function of the number of population
vectors in between for all sessions. Top panel: hippocampal activity. Bottom: Prefrontal
cortical activity. Right panels: Mean cosine distances with few population vectors in
between (first 10 data points from left panel) versus mean cosine distances with many
population vectors in between (last 10 data points from left panel). *** p < 0.001, T-test.
(g) Cosine distances between population vectors of low variance periods and between
vectors of high variance periods as a function of the number of population vectors in
between for all sessions. Top: hippocampal activity. Bottom: prefrontal cortical activity.
Distributions of distances using data from the first 10 entries between low variance and
high variance periods are significantly different for hippocampal and prefrontal cortical
activity (p < 0.001, Mann-Whitney U). *** p < 0.001, n.s. p > 0.05 Mann-Whitney U.

3.4 Discussion
My analyses revealed that offline activity in the hippocampus showed stronger systematic
changes after poor rule switch task performance. On the contrary, the PFC neural activity
showed a non-significant tendency to change more after good rule switch performance.
While activity in the two areas presented such a dissociation over long time scales
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(minutes and hours), short-time fluctuations in the order of seconds and tens of seconds
were temporally aligned between the hippocampus and prefrontal cortex. Also, this
phenomenon presented a relationship with behavior. In fact, poor rule switch performance
was followed by an increase in synchrony of ultra-slow fluctuations (∼0.05 Hz) in neural
activity between the hippocampus and the prefrontal cortex during rest. Short-term
changes in neural activity, which were driving these fluctuations, were clustered into
different regimes based on the distribution of similarity between subsequent population
vectors. Taking into consideration the power spectrum profile associated with each of
these regimes, I estimated that each regime corresponded to a different brain state. Strong
delta and ripple components pointed to an identification of regime 1 with NREM sleep
and SWS, while the high theta/delta ratio and enhanced medium gamma power appeared
to indicate that regime 2 coincided with REM sleep.
Prior rule switch performance significantly modulated the synchrony between HPC
and PFC for regime 1, which was characterized by strong fluctuations in neural activity
interspersed with brief (1-25s) periods of low-variance in neural activity. These low-variance
periods in HPC and PFC coincided and significantly contributed to the synchrony between
both populations. During these periods, different subsets of cells were consistently up- or
down-regulated and this modulation was anti-correlated with the firing rate modulation
during sharp-wave ripples (SWRs). An across-area neural activity prediction and clustering
approach revealed the existence of co-active subsets of cells from HPC and PFC. Cells
of one subset tended to be consistently more active during low-variance periods and
were down-regulated during SWRs. The hippocampal cells of this subset had less spatial
information during the rule switch task and were involved in coding for the rule during
behavior. Finally, I showed that the population activity during the identified low-variance
periods, in particular in the hippocampus, was constrained and its evolution in time was
much slower than comparable neural activity recorded during other sleep periods.

Offline activity drift
The offline activity drift I described in the first part of this chapter stands in contrast to
the reactivation drift analysis I performed for Chapter 2. Here, I did not relate the neural
activity during rest to the neural activity before or after. This can explain why I was
able to detect systematic changes in neural activity also during shorter rests ( 40 min). A
complete assessment of the properties of offline activity drift and reactivation drift would
require a more thorough analysis and specifically designed datasets.
Although I did not explicitly detect sleep stages, the ability to regress time using rest
neural activity could be partially explained by the occurrence of different sleep stages
at different times during rest. Sleep stages have been shown to modulate the activity of
cells (previous chapter and188,236) and their temporal distribution could therefore strongly
influence the ability to regress time. The dataset from Chapter 2 could potentially be
used to distinguish systematic changes in neural activity happening during REM and
NREM sleep separately.
The reduction in offline activity drift in the HPC and the increase in systematic changes
in PFC neural activity after good rule switch performance could be interpreted as follows.
One possibility is that after the task structure is sufficiently learned, the hippocampus
replays the relevant neural activity237,176 (hence a reduction in offline activity drift) whereas
the prefrontal cortical activity is modified to encode this knowledge238,239. Changes in
the occurrence of reactivations as a function of e.g. novelty have been identified in the
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hippocampus before202. An alternative interpretation would be that the prefrontal cortical
neural activity during the rule switch task had already captured the necessary information.
Along these lines, the activity during rest was pushed to another location in neural state
space to avoid interference with this information240.
The observed decrease in changes in the PFC neural activity and the increase in offline
activity drift in the HPC after poor rule switch performance could imply that the activity in
the PFC is not updated because the task structure is not sufficiently learned. Alternatively,
relevant activity could have been reactivated in the PFC to encode this knowledge leading
to a reduction in offline activity drift175,176. At the same time, less stability in the
hippocampal activity during rest might have been due to fewer reactivations - a possibility
that could readily be tested using the current data set.
It is also important to note, that for the investigated experimental paradigm nothing new
was learned (because the animal had learned both rules before the actual experiment).
Still, the animal needed to associate the absence of a reward with the rule change.

Different regimes of instantaneous change
Although I did not detect sleep stages explicitly, I identified differences in oscillations of
the LFP which are often used to identify sleep stages222,224. The higher Theta-Delta ratio
(Fig. S3.3e) and the reduced ripple power (Fig. 3.3b) for regime 2 are strong indicators
that this regime corresponds to REM sleep. Regime 1, on the other hand, showed a lower
Theta-Delta ratio and a significantly higher ripple power. Therefore, regime 1 might
majorly overlap with NREM sleep.

HPC-PFC synchrony
The two-stage model of system consolidation has established the idea that newly acquired
information is initially stored in the hippocampus and is then transferred to other cortical
areas during subsequent rest or sleep18,161. Although SWRs-spindle coupling has been
identified as a primary mechanism for this transfer of information, recent studies have
considered the possibility of slower frequency oscillation contribution234,241. The results
presented in this chapter revealed differences in the coupling of hippocampal and cortical
activity in an ultra-slow frequency range with a dependency on prior behavior. The
finding that cells either up-regulated their activity during SWRs or low-variance periods,
might indicate that these two communication channels are also transmitting different
types of information or serve different functions. What remains to be investigated is
whether cells that are modulated during SWS (down-states correspond to time intervals
< 1s)241 are also the cells that increase their firing during low-variance periods (time
intervals 2-20s).

low-variance period co-activity versus SWRs co-activity
I used three clusters to separate HPC and PFC cell subsets that tended to either increase
their firing during low-variance periods or SWRs. This was an arbitrary choice and might
have impacted the other analyses using these clusters. A more insightful approach would
be to first identify the optimal number of clusters needed to separate cells based on
their low-variance period or SWR modulation. One possible criterion could be the angle
between the mean predictive axis of clusters.
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The sub-optimal separation of cells into clusters using the neural activity during rest
might have diminished differences between these clusters in terms of spatial coding and
rule coding during the actual behavior. A more principled analysis of the different cell
subsets could potentially reveal functional differences of cells that were up-regulated
during low-variance periods more clearly.
Nevertheless, I found that hippocampal cells which were not as strongly down-regulated
during low-variance periods exhibited less spatial information and coded for the rule
during behavior. Therefore, these cells might be involved in spatial coding to a lesser
extent and might have served a different function. On the other hand, cells that showed
an intermediate modulation during low-variance periods and a strong up-regulation during
SWRs tended to have higher mean firing rates during behavior, more spatial information,
were strongly coding for the rule, and exhibited higher rate map stability (Fig. 3.6). This
implies that these cells played a prominent role in spatial and rule coding during the rule
switch task11.
Assuming that the co-activity of certain cell subsets from HPC and PFC implies some
form of synchronization between the two areas that might be related to inter-area
communication242,243. Along these lines, the directionality of this communication is a
crucial feature. For the consolidation process, communication could be happening in both
directions: information transfer from the cortex has been linked to the transformation
of working memory into long-term memories244. At the same time, it has been shown
that memory traces which are initially located in the hippocampus are then transferred
to more cortical areas230. In this study, I did not assess the directionality but tried
to predict the activity of one population using the activity of the other using a simple
regression model. Since I used relatively large time bins (100 ms) and did not consider
the influence of activity not happening simultaneously, I cannot make any statements
about which population activity might have influenced the activity of the other. However,
answering the question about directionality might be crucial to also identify the function
of HPC-PFC subsets which tend to be active during low-variance periods, and the function
of HPC-PFC subsets active during SWRs.

low-variance periods and population activity
low-variance periods majorly contributed to the observed synchrony of low-frequency
fluctuations in the neural activity between HPC and PFC (Fig. S3.4d) which was increased
after poor performance. Interestingly, I found that the actual number of low-variance
periods showed the opposite effect: poor performance was followed by a reduction in the
number of low-variance periods (Fig. S3.4b-c). This implies that not the total number
of low-variance periods is the driver of synchrony, but rather the temporal alignment
between low-variance periods in the HPC and the PFC.
Good performance was followed by an increase in low-variance periods and the cells
that were up-regulated during these periods also tended to change their firing across
the subsequent rest more (Fig. S3.8f-g). This observation could be the link between
low-variance activity and the increased offline activity drift in the PFC as described in
the first part of this chapter. Relating the two concepts of across-population synchrony
and offline activity drift remains to be established by future research.
One intriguing hypothesis regarding the drift in neural activity and communication
between areas is that activity that is relevant for across-area communication is more stable
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(Fig. 3.7g). In this way, the effect of neural activity drift on the transfer to downstream
areas would be minimized.
The concept of brain areas linking their activity using slow-global neural ensembles,
whereas local ensembles are fast, has been brought forward before245. My findings support
the idea that neural ensembles that occur during low-variance periods change slowly
(Fig. 3.7) and are potentially involved in across-area communication. The finding that
the activity of these neural ensembles is more constrained, might relate to the idea of a
communication subspace243, positing that only a subset of the activity dimensionality is
actually relevant for cross-area communication246. Along these lines, fast-changing activity
(e.g. non low-variance activity of regime 1) could correspond to more local activity. I
found low-variance period activity to be more similar to the activity occurring in regime
2 (which likely corresponds to REM sleep). There is the possibility that the activity from
those two time intervals, which do not occur in close temporal proximity, is functionally
related. It remains to be explored how interleaved phases of REM sleep influence the
changes in the activity during low-variance periods in regime 1 (potentially NREM sleep).
There is evidence that REM and NREM sleep serve different functions (214, Chapter 2),
and establishing a link between the two could improve our understanding of the involved
processes.
I attempted to uncover the relevance of low-variance period activity for behavior but only
found that the low-variance period activity is significantly more similar to neural activity
during rest than neural activity occurring during the rule switch task. Using one mean
population vector to describe the low-variance period activity is a very crude approach,
especially considering that low-variance period activity does change (Fig. 3.7e-f). I
regard the link between identified low-variance activity patterns and the activity occurring
during prior or subsequent behavior as a crucial step to understanding the relevance
of low-variance periods. A more thorough decoding analysis, for example using hidden
Markov models as used for the first chapter, could provide a better description of the
relationship between low-variance activity and neural activity during behavior.
The presented results suggest that low-variance periods in neural activity during sleep
might be involved in the synchronization of activity between the hippocampus and the
prefrontal cortex. A phenomenon that is influenced by prior rule switch performance of
the animal. Additionally, there is a discrepancy between involved cells, which seem to be
also driving offline activity drift, and cells that are recruited during sharp wave ripples.
Therefore, the consolidation of task-relevant knowledge in the cortical memory system
might involve more processes apart from the coupling of SWRs and spindles. How these
processes potentially trigger systematic changes in neural activity during rest and how
these changes might influence neural activity during behavior remains to be explored.
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3.5 Supplementary Figures

Figure S3.1: (a) Measuring behavioral performance during rule switch paradigm. (b)
Offline activity drift measured using multinomial logistic regression (* p < 0.05, *** p <
0.001, Mann-Whitney test, Bonferroni-correction).
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Figure S3.2: (a) Correlation between the difference in cross-correlation (short-term
fluctuations) from rest 1 and rest 2 using the entire rest duration for different offsets and
the number of trials the animal took for the rule-switch. (b) Number of trials the animals
took to switch the rule versus the difference in correlation (short-term fluctuations) from
rest 1 to rest 2 using the entire rest for an offset of -5s (HPC leading). (c) Correlation
between the difference of the mean correlation (short-term fluctuations HPC and PFC, all
offsets from -20 to 20 seconds) from rest 1 to rest 2 using the entire rest and the number
of trials the animal took for the rule switch. (d) Synchrony of short-term fluctuations
(cosine distance) between HPC and PFC during the rule switch task (offset = 0s) versus
the number of trials the animal took for the rule switch. (e) Cross-correlation between
the cosine distance and the number of active cells per time bin for the hippocampus (all
sessions). (f) Correlation between the difference in cross-correlation (number of active
cells per time bin) between rest 1 and rest 2 and the number of trials for the rule switch.
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Figure S3.3: (a) Clustering algorithm to distinguish different regimes of short-term
changes in neural activity. Left: unclustered time trace of short-term changes (cosine
distance between subsequent population vectors) in the HPC and initial distributions of
cosine distance for regime 1, regime 2 and transitions. Right: clustered time trace and
distributions of cosine distance for the different regimes after clustering. (b) Duration of
regime 1, regime 2 and transition as a fraction of the entire rest 1 and rest 2. (c) Delta,
Theta and ripple / spindle power in the PFC for different regimes (data from all sessions,
*** p < 0.001, Mann-Whitney U with Bonferroni-correction). (d)-(e) Power of slow and
medium gamma for different identified regimes in the hippocampus (d) and the prefrontal
cortex (e). (f)-(h) Correlation between the difference in cross-correlation from rest 1 and
rest 2 for different offsets and the number of trials the animal took for the rule-switch
using different regimes.
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Figure S3.4: (a) Duration of low-variance periods from all sessions. (b) LFP power around
low-variance periods for one example session. (c) Influence of low-variance periods on
the synchrony of short-term change between HPC and PFC for regime 1 (result from
all sessions, * p < 0.05, T-test, Bonferroni-correction for multiple comparisons). (d)
Difference in number of low-variance periods in the hippocampus between rest 2 and rest
1 versus number of trials the animal needed to switch the rule. (e) Difference in fraction
of low-variance periods in regime 1 between rest 2 and rest 1 in the hippocampus versus
number of trials for the rule switch.
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Figure S3.5: (a) Firing rates of hippocampal and cortical interneurons around low-variance
periods. (b)-(c) Cross-correlogram of hippocampal (b) and cortical (c) interneuron firing
and short-term fluctuations (cosine distance between subsequent population vectors of
hippocampal pyramidal cell activity).
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Figure S3.6: (a) Angles between mean predictive directions for the different clusters using
PFC neurons’ firing rates as regressors (* p < 0.05, ** p < 0.01, MWU, Bonferroni-
correction). (b)-(d) Communication channel results for all sessions using HPC neuronal
activity to predict PFC neuronal activity. (b) Firing rate modulations of HPC neurons
(regressors) during low-variance periods and SWRs with the corresponding cluster loadings
for the three identified clusters. (c) Firing rate modulations of predicted PFC neurons
during low-variance periods and SWRs for the three clusters. (d) Angles between mean
predictive directions of the different clusters using HPC neuronal activity as regressors
(n.s. p > 0.05, MWU, Bonferroni-correction).(e)-(f) Correlation between low-variance
period modulation and canonical variate 1 (CV1) for HPC (e) and PFC (f).
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Figure S3.7: (a)-(b) Mean firing rates of prefrontal cells from different clusters (see
previous section, Cluster 1 & 3: SWRs favoring cells, Cluster 2: low-variance periods
favoring cells) during the rule switch task (a) and behavioral episode after rest (rule
B, panel b). (c) Comparison of mean firing rates between the rule switch task and the
behavioral episode after rest for prefrontal cells. (d)-(f) Sparsity of hippocampal cells
during the rule switch task (d) and the behavioral episode after rest (e) for the three
different clusters. (g)-(i) Spatial information of cortical cells during the rule switch task (d)
and the behavioral episode after rest (e) for the three different clusters. (k)-(m) Sparsity
of cortical cells during the rule switch task (d) and the behavioral episode after rest (e)
for the three different clusters. For all panels: *** p < 0.001, ** p < 0.01, * p < 0.05, n.s.
p > 0.05, Mann-Whitney U Test with Bonferroni-correction.
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Figure S3.8: (a) Coefficients of the support vector machine (SVM) to classify rule A
and rule B activity during the rule switch for hippocampal cells. (b)-(c) Magnitude of
coefficients (b) and coefficients (c) of SVM to classify rule A and rule B activity during
rule switch for cortical neurons. (d) Rate map correlations between rule A and rule B
during the rule switch task for cortical cells.(e) Rate map correlations between rule B of
the rule switch task and rule B during the recall episode after rest for cortical cells. (f)-(i)
low-variance period modulation versus overall modulation (slope of fitted linear curve to
firing rates throughout rest) for HPC (a) and PFC (b). Data from all sessions. For all
panels: *** p < 0.001, ** p < 0.01,* p < 0.05 ,n.s. p > 0.05, Mann-Whitney U Test with
Bonferroni-correction.
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Figure S3.9: (a) Cosine distances between population vectors of low-variance periods
and between vectors of high variance periods as a function of the number of population
vectors in between for one example session. Top: hippocampal activity. Bottom: pre-
frontal cortical activity. (b) Cosine distance between population vectors as a function
of the temporal gap between them for all sessions. Top: hippocampal activity. Bottom:
prefrontal cortical activity. Statistics were done on the first 10 and last 10 values from all
sessions, comparing low and high variance state cosine distances. (c)-(d) Cosine distance
between activity from rest 1, rule switch, rest 2 and the mean activity during low-variance
periods for hippocampal (b) and prefrontal (c) cells. The awake neural activity (rule
switch) was binned using 100ms windows, whereas for the rest activity (rest 1 and rest 2)
a temporal window of 1s was used to compute the population vectors. (d) Co-occurrence
of low-variance period-like activity in the hippocampus and prefrontal cortex for different
experimental episodes: across-area correlation of the cosine distance time series between
the neural activity and the mean low-variance activity. *** p < 0.001, ** p < 0.01, n.s. p
> 0.05 Mann-Whitney U with Bonferroni correction.
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3.6 Methods

Data & experimental setup
For details on the surgery, training and data acquisition see11. In short, four Long-Evans
rats were implanted with 32-tetrode microdrives targeting the right dorsal hippocampus
(CA1 sub-region, HPC) and left medial prefrontal cortex (prelimbic area, PFC). An
average of 63 PFC and 78 HPC principal cells were recorded per session.
Animals were placed in one of two start arms (north/south arm) and learned to retrieve
food in one of two goal arms (east/west arm) based on a spatial or a light-response rule.
For the spatial rule, the animal only received a reward in either the east or west arm,
irrespective of the starting arm. During the light-response rule, the animal was only
rewarded in the light-on arm. Importantly, the light in either the east or west arm was
also switched on (not necessarily indicating the rewarded arm) while the animal was
supposed to follow the spatial rule. Therefore, for a successful execution of the task using
the spatial rule, animals had to ignore the conflicting light stimulus. On each day, the
animal first had to recall the rule of the previous day (rule A) and was allowed to rest (rest
1) before performing the rule switch task (rule A → rule B). During the rule switch task,
the animal needed to first recall and apply rule A until reaching a performance criterion
(12/15 successful trials for the spatial rule, 24/30 successful trials for the light-response
rule). Then, the rule was switched unannounced by the experimenter. The animal had
to figure out the change in rule based on whether it received a reward and therefore
navigated to the correct goal arm. The rule switch task was followed by a rest of 40
minutes (rest 2) before the recall of rule B was tested (rule B).

Measuring behavioral performance
In order to assess the behavioral performance of the animal during the rule switch task,
I counted the number of trials it took the animal after the unannounced rule switch to
perform at least five successive, successful trials using the new rule (rule B). See also Fig.
S3.1.

Regressing time during rest
I used the ability to regress time during rest using an ordinary least square model (scikit
learn) based on the neural activity as a proxy for offline neural activity drift. First, I
binned the neural activity using temporal bins of 100ms duration. Next, I fitted the model
to 60% of the data and validated its performance on the remaining 20% of the data. The
resulting coefficient of determination for the test data was then used to characterize the
amount of the offline neural activity drift.

Multinomial logistic regression
As a control, I used a multinomial logistic regression to confirm that there are systematic
changes in the neural activity during sleep. I binned the sleep neural activity using 100ms
temporal bins and split the data into 4 chunks of equal length. All the bins within one
chunk were assigned the same ID and a multinomial logistic regression trained to predict
the ID based on the activity of the temporal bin. I then tested the model on held out
data (10% of the total data) to obtain the mean accuracy of the model.
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Computing synchrony between short-term fluctuations between
PFC and HPC
To compute short-term fluctuations in the neural activity of each brain area, I computed
the cosine distance between subsequent population vectors (temporal binning with 1s
bins). This resulted in two time traces, one for each population. Then, I calculated the
cross-correlation of these two time traces to assess their temporal alignment.

Frequency filtering of short-term fluctuations
To analyze the influence of different frequency components on the synchrony between
short-term fluctuations of both areas, I first filtered the time traces from each population
using a highpass or bandpass Butterworth filter. Then, the filtered time traces were
cross-correlated.

Clustering regimes of short-term fluctuations
I obtained regimes with similar distributions of short-term fluctuations using the following
analysis. By visual inspection, I identified one regime which was dominated by high cosine
values with interspersed low cosine value intervals (regime 1). Another regime showed
mostly low cosine values with some high cosine values (regime 2). The remaining data
resembled an intermediate distribution of cosine values (transition). Therefore, I decided
to represent the cosine distance distributions of regime 1 and regime 2 using a mixture
of two Gaussians each. On the other hand, the distribution of cosine distances of the
transition regime was captured by one Gaussian only. I defined the means of the initial
Gaussians using the 20th, 50th and 90th percentile of all cosine distance values. For
regime 1, the weights were set to 0.2 (variance: 0.01) for the Gaussian with the smaller
mean (corresponding to the 20th percentile) and to 0.8 (variance: 0.02) for the Gaussian
with the larger mean (corresponding to the 90th percentile). For regime 2 the values were
assigned in reversed order corresponding to predominantly small cosine distance values.
For the initial Gaussian for the transitions, I set the mean the 50th percentile and the
variance to 0.001. A window of 60s duration (without overlap) was then moved along
the time trace of cosine distances. For each window the likelihood of the cosine distance
distribution given the three models (regime 1, regime 2, transitions) was computed and all
cosine distance values of the window assigned to the model with the maximum likelihood.
After processing all windows, the models were updated using the assigned data. These
steps were repeated until model assignments per window did not change across iterations
resulting in one model assignment per window (regime 1, regime 2, transitions). Finally, I
visually verified the correct assignment of labels and re-assigned windows if there was a
mismatch.

LFP analysis
To obtain the power in different frequency bands, I applied a fourier transform (spectrogram
function from scipy.signal package) to the local field potential (LFP) data from one tetrode
in the hippocampus and one tetrode in the prefrontal cortex. The following bands were
used:

• delta : 1-4 Hz
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• theta : 8 - 12 Hz

• spindle : 10 - 16 Hz

• low gamma : 25 - 40 Hz

• med gamma : 60 - 80 Hz

• ripple : 150-250Hz

Detecting low-variance periods
To identify low-variance periods, I first selected only cosine distance values from regime 1
using hippocampal activity if not indicated otherwise. The obtained time trace was then
z-scored. Time points with values less than 2 standard deviations below the mean were
selected and extended by 1s in both directions to yield intervals with low-variance in the
population activity.

Computing firing rate modulation during low-variance periods
and SWRs
Differences in firing rates of cells between low-variance periods and the other activity
during regime 1 was calculated the following way:

modulationlowperiod = mwithinLow − moutsideLow

mwithinLow + moutsideLow

(3.1)

where m is the the mean firing rate during the corresponding time interval.
To compute the modulation during SWRs, low-variance periods were excluded to calculate
the baseline activity firing meanoutside SWR

modulationSW R = mwithinSW R − moutsideSW R

mwithinSW R + moutsideSW R

(3.2)

Prediction and hierarchical clustering analysis
The neural activity during rest was binned using 100ms temporal windows for each
population separately. Then the activity of each neuron from one population was regressed
using the activity of all the cells from the other population. The resulting regression
weights for each predictive dimension were normalized. The cosine distance between all
obtained regression dimensions (one per predicted cell activity) was computed and used
to assign predictive dimensions to one of three clusters (using Agglomerative clustering
from sklearn). Per cluster, the mean predictive dimension was then calculated using all
predictive dimensions belonging to that particular cluster.

Applying canonical correlation analysis to rest data
I applied a standard canonical correlation analysis (CCA, sklearn package) to the time
binned rest data (1s time bins) to identify each cell’s contribution to the correlation
between the neural activity from HPC and PFC.
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Measuring spatial information
To assess the spatial information of single cells, I computed the sparsity and spatial
information per second as previously described226. The sparsity for X spatial bins is
defined as follows:

s = (∑︁X
i=1 piλi)2∑︁X
i=1 piλ2

i

(3.3)

with pi being the probability of being in spatial bin i and λi being the mean firing rate in
that bin. The spatial information per second was computed using the following equation:

Isec =
X∑︂

i=1
piλlog(λi

λ
) (3.4)

where pi and λi are the probability of occupying and the firing rate of bin i, respectively.
Parameter λ describes the mean firing rate of the cell in the environment.

Rule decoding
The neural activity from either HPC or PFC during the rule switch task was binned using
100ms temporal bins. Bins which occurred before the experimenter switched the rule
were assigned one label (rule A), bins occurring after the animal successfully switched its
behavior were assigned another label (rule B). A support vector machine (sklearn package)
was trained to predict the label of each temporal bin and tested on held-out data. The
coefficient for each cell of the trained model was used as a proxy for its contribution to
rule coding.

Rate map correlations
To assess the similarity of per cell rate maps between different episodes, I first computed
the number of spikes occurring within each spatial bin (spatial bin size = 5 cm) and
divided the resulting matrix by the occupancy matrix. Gaussian smoothing was applied
to acquire one rate map per cell and episode. The similarity between the rate maps of the
same cell between different episodes was estimated using the Pearson correlation between
the flattened rate maps.

Computing modulation during rest
The overall modulation of firing rates per cell throughout rest was computed in the
following manner. First, the neural activity was binned using 1s temporal bins. Per cell
the firing rate data was normalized, smoothed and a line was fit to the resulting data.
The coefficient describing the slope was used to describe the overall modulation of the
cell’s firing rate throughout rest.

Cosine distance as a function of number of population vectors
The neural activity was binned using 1s temporal bins. Afterwards, bins were assigned to
either low-variance periods (see Detecting low-variance periods) or high variance periods
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(remaining activity of regime 1). The temporal order of bins was maintained. Then, the
cosine distance between all pairs of bins belonging to one group (low or high variance) was
computed yielding a varying number of cosine distances per gap between the population
vectors of each pair. The mean per gap (number of population vectors in between) was
then calculated using all corresponding cosine distances.

Correlation of similarity with low-variance period neural
patterns
To start with, a mean population vector across all low-variance activity temporal bins
(1s, rest 2) was calculated and used as a template. The similarity of activity with this
template was evaluated using the cosine distance. For rest 1, the neural activity was
binned using 1s time bins and for the neural activity during the rule switch temporal bins
of 100ms were used.
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CHAPTER 4
Conclusion & outlook

My analyses revealed that neural activity during consolidation periods undergoes distinct
changes. In the case of a long period of rest in between exposures to the same configuration
of goal locations, the evolution of the neural activity resembled changes observed from
the acquisition to the recall of the spatial memory. Consequently, cells that increased or
decreased their activity from the acquisition to the recall, showed the same trends during
the consolidation period. This phenomenon is potentially related to the stabilization and
integration of newly acquired information into existing knowledge161,174. Furthermore, my
findings challenge the view that changes in representations across exposures are purely
due to the accumulation of experiences or adaptations during behavior114,115. In fact, the
predictive power of reactivated activity for future neural activity was recently shown in the
visual cortex as well235. I observed that the activity at the end of the consolidation period
was similar but not identical to the subsequently observed neural activity during recall.
Therefore, it seems likely that the circuit is primed to the new pattern configuration
during rest, and that novel experience only causes additional modifications on top of those
already emerged during sleep67–70.
The question remains if the observed continuous transformation of neural activity during
consolidation periods was actually related to memory processes or indeed was the effect
of physiological adjustments intrinsic to the passage of time. In this regard, it would
be useful to run control experiments with repeated exposure to a familiar environment.
The analysis of interleaved long rest periods could confirm or reject the active role of
memory processes in driving changes in neural activity and provide a direct link to
representational drift. Along these lines, it could be informative to investigate how
the reactivated activity of two distinct experiences (e.g. from different environments or
contexts) evolves throughout the consolidation period. Are spontaneous changes in the
corresponding neural representations related or do we observe that the representations
become increasingly orthogonal76,210?
Another exciting endeavor might be the identification of differences or commonalities
between representational changes due to learning, consolidation periods, or simply the
passage of time107. The analysis of time scales and affected neurons could be a good
starting point to evaluate if e.g. changes triggered by learning are simply continued in
subsequent consolidation periods. Furthermore, one could ask how trial-to-trial variability
is related to changes in neural representations. In this context, it is important to identify
what kind of representation might be relevant for a given task. Studies investigating
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representational drift in the hippocampus have been focused on changes in spatial coding,
despite the observed coding for non-spatial dimensions119. Considering the coding for
different features, it could be informative to see how continuous changes affect the different
representations and whether task-relevant ones tend to be maintained118.
To perform the corresponding experiments, reliable long-term neural recordings during
behavior and offline periods for extended time intervals are necessary. So far, many studies
investigating representational drift relied on calcium imaging with head-fixed animals and
therefore were not able to collect neural data during consolidation periods. The use of
alternative recording technologies such as neural probes, grin lenses, and sophisticated
implants, might enable scientists to record the required neural data over several weeks247.
Recent developments in recording technology make it possible to record from a large
number of neurons from several brain regions in parallel248. These advancements, in
conjunction with the ability to record from the same neurons over long durations of
time, could lead to major discoveries related to fluid representations and their brain-wide
distribution and processing. My findings from Chapter 3 indicate that changes in neural
activity between HPC and PFC are synchronized and that certain brain states support
inter-area communication. Using these findings as a starting point, one could ask if the
functional coupling between both areas is maintained despite changes in neural activity.
Alternatively, the inter-area functional connectivity could also change. This question could
potentially be tackled by applying approaches related to a communication subspace243.
Longer, simultaneous recordings of the HPC and the PFC would also allow relating
changes in neural activity during rest to reactivations (as done in Chapter 2). In this
way, the co-evolution of memory-related neural representations in multiple, functionally-
connected areas could be investigated. Along these lines, the influence of SWRs, low
variance periods, and REM sleep on changes in neural activity occurring in both areas in
parallel could be analyzed further.
As a starting point, my analysis from Chapter 2 and Chapter 3 uncovered a range of
phenomena that either promoted changes in neural activity during consolidation periods
or had a stabilizing effect. I showed that SWRs occurring during NREM sleep caused the
neural activity to change from acquisition-like to recall-like, whereas REM periods showed
a more stable acquisition-like activity. Interestingly, the analysis from Chapter 3 revealed
that there were periods of stable activity during NREM sleep outside of SWRs. The
activity during these low-variance periods strongly resembled REM-like neural activity
and might therefore provide a functional link between NREM and REM sleep198,10.
The differential contribution of cell subsets to the stability and changes in neural activity
provides another exciting direction for future studies. In this context, I showed in Chapter
2 that changes in neural activity were driven by a plastic subset of cells, whereas a
persistent subset of cells maintained their activity from the acquisition to the recall of a
spatial memory. On the other hand, the analysis of Chapter 3 demonstrated that different
cells were either recruited during (change-promoting) SWRs or (stable activity) low-
variance periods. The next step would be to investigate the overlap between the described
subsets to get a coherent picture of involved cells and their relevance for memory-related
behavior.
Given the future existence of multi-area, long-term recordings, appropriate analysis
approaches to answer the aforementioned questions need to be developed as well. This
might include latent-state models249, time-series analysis for high-dimensional data to
assess its non-stationary characteristics (e.g. dynamical systems), and models that
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incorporate temporal dynamics. Since representational drift and continuous changes in
neural activity have been identified in other brain areas as well124,126,127, these approaches
have the potential to be extensively applied across a large number of datasets. In this
context, the pHMM analysis from Chapter 2 might be one solution. Since the model does
not assume the coding for a specific feature or dimension, it could be easily extended to
brain areas beyond the hippocampus.
As a last thought, theoretical advances, clarifying if fluid representations are advantageous
for neural computations or just a constraint of the biological system will help to inspire
future experiments107,123. Investigating information encoding, storage, integration and
transfer from the perspective of stability and change in neural representations will certainly
broaden our understanding of how the brain performs these fundamental operations.
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